Skip to main content

Research Repository

Advanced Search

All Outputs (5)

What determines the downstream evolution of turbidity currents? (2019)
Journal Article
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., …Pope, E. (2020). What determines the downstream evolution of turbidity currents?. Earth and planetary science letters, 532, Article 116023. https://doi.org/10.1016/j.epsl.2019.116023

© 2019 Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far f... Read More about What determines the downstream evolution of turbidity currents?.

Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines (2019)
Journal Article
Li, X., Li, M., Amoudry, L. O., Ramirez-Mendoza, R., Thorne, P. D., Song, Q., …McLelland, S. J. (2020). Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines. Renewable energy, 151, 956-965. https://doi.org/10.1016/j.renene.2019.11.096

A three-dimensional tidal turbine simulation based on an oceanographic numerical model has been tested for suspended sediment calculation, particularly in the wake of a standalone tidal turbine. The results suggest a need for further improvement of t... Read More about Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines.

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J. B., Sumner, E. J., Clare, M. A., Hughes Clarke, J., Talling, P. J., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical research letters, 46(20), 11310-11320. https://doi.org/10.1029/2019gl084526

©2019. The Authors. Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California (2019)
Journal Article
Maier, K. L., Rosenberger, K. J., Paull, C. K., Gwiazda, R., Gales, J., Lorenson, T., …Cartigny, M. J. (2019). Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep Sea Research Part I: Oceanographic Research Papers, 153, Article 103108. https://doi.org/10.1016/j.dsr.2019.103108

© 2019 Elsevier Ltd Submarine canyons are globally important conduits for sediment and organic carbon transport into the deep sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water colu... Read More about Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California.

Linking direct measurements of turbidity currents to submarine canyon-floor deposits (2019)
Journal Article
Maier, K. L., Gales, J. A., Paull, C. K., Rosenberger, K., Talling, P. J., Simmons, S. M., …Sumner, E. J. (2019). Linking direct measurements of turbidity currents to submarine canyon-floor deposits. Frontiers in Earth Science, 7, Article 144. https://doi.org/10.3389/feart.2019.00144

Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedi... Read More about Linking direct measurements of turbidity currents to submarine canyon-floor deposits.