Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Assessment of the mechanical role of cranial sutures in the mammalian skull: Computational biomechanical modelling of the rat skull (2023)
Journal Article
Sharp, A. C., Dutel, H., Watson, P. J., Gröning, F., Crumpton, N., Fagan, M. J., & Evans, S. E. (2023). Assessment of the mechanical role of cranial sutures in the mammalian skull: Computational biomechanical modelling of the rat skull. Journal of morphology, 284(3), Article e21555. https://doi.org/10.1002/jmor.21555

Cranial sutures are fibrocellular joints between the skull bones that are progressively replaced with bone throughout ontogeny, facilitating growth and cranial shape change. This transition from soft tissue to bone is reflected in the biomechanical p... Read More about Assessment of the mechanical role of cranial sutures in the mammalian skull: Computational biomechanical modelling of the rat skull.

From micro to macroevolution: drivers of shape variation in an island radiation of Podarcis lizards (2021)
Journal Article
Taverne, M., Dutel, H., Fagan, M., Štambuk, A., Lisičić, D., Tadić, Z., …Herrel, A. (2021). From micro to macroevolution: drivers of shape variation in an island radiation of Podarcis lizards. Evolution, 75(11), 2685-2707. https://doi.org/10.1111/evo.14326

Phenotypictraits have been shown to evolve in response to variation in the environment. However, the evolutionary processes underlying the emergence of phenotypic diversity can typically only be understood at the population level. Consequently, how s... Read More about From micro to macroevolution: drivers of shape variation in an island radiation of Podarcis lizards.

Computational biomechanical modelling of the rabbit cranium during mastication (2021)
Journal Article
Watson, P. J., Sharp, A. C., Choudhary, T., Fagan, M. J., Dutel, H., Evans, S. E., & Gröning, F. (2021). Computational biomechanical modelling of the rabbit cranium during mastication. Scientific reports, 11(1), https://doi.org/10.1038/s41598-021-92558-5

Although a functional relationship between bone structure and mastication has been shown in some regions of the rabbit skull, the biomechanics of the whole cranium during mastication have yet to be fully explored. In terms of cranial biomechanics, th... Read More about Computational biomechanical modelling of the rabbit cranium during mastication.

Regional patterning in tail vertebral form and function in chameleons (Chamaeleo calyptratus) (2021)
Journal Article
Luger, A. M., Watson, P. J., Dutel, H., Fagan, M. J., Van Hoorebeke, L., Herrel, A., & Adriaens, D. (2021). Regional patterning in tail vertebral form and function in chameleons (Chamaeleo calyptratus). Integrative and Comparative Biology, 61(2), 455-463. https://doi.org/10.1093/icb/icab125

Previous studies have focused on documenting shape variation in the caudal vertebrae in chameleons underlying prehensile tail function. The goal of this study was to test the impact of this variation on tail function using multibody dynamic analysis... Read More about Regional patterning in tail vertebral form and function in chameleons (Chamaeleo calyptratus).

Comparative cranial biomechanics in two lizard species: impact of variation in cranial design (2021)
Journal Article
Groning, F., Dutel, H., Gröning, F., Sharp, A. C., Watson, P. J., Herrel, A., …Fagan, M. J. (2021). Comparative cranial biomechanics in two lizard species: impact of variation in cranial design. The journal of experimental biology, 224(5), Article jeb.234831. https://doi.org/10.1242/jeb.234831

Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principl... Read More about Comparative cranial biomechanics in two lizard species: impact of variation in cranial design.

The biomechanical role of the chondrocranium and the material properties of cartilage (2020)
Journal Article
Jones, M. E. H., Gröning, F., Aspden, R. M., Dutel, H., Sharp, A., Moazen, M., …Evans, S. E. (2020). The biomechanical role of the chondrocranium and the material properties of cartilage. Vertebrate Zoology, 70(4), 699-715. https://doi.org/10.26049/VZ70-4-2020-10

The chondrocranium is the cartilage component of the vertebrate braincase. Among jawed vertebrates it varies greatly in structure, mineralisation, and in the extent to which it is replaced by bone during development. In mammals, birds, and some bony... Read More about The biomechanical role of the chondrocranium and the material properties of cartilage.

The biomechanical role of the chondrocranium and sutures in a lizard cranium (2017)
Journal Article
Jones, M. E. H., Gröning, F., Dutel, H., Sharp, A., Fagan, M. J., & Evans, S. E. (2017). The biomechanical role of the chondrocranium and sutures in a lizard cranium. Journal of the Royal Society interface / the Royal Society, 14(137), Article 20170637. https://doi.org/10.1098/rsif.2017.0637

The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biom... Read More about The biomechanical role of the chondrocranium and sutures in a lizard cranium.

Form-function relationships in dragonfly mandibles under an evolutionary perspective (2017)
Journal Article
Blanke, A., Schmitz, H., Patera, A., Dutel, H., & Fagan, M. J. (2017). Form-function relationships in dragonfly mandibles under an evolutionary perspective. Journal of the Royal Society interface / the Royal Society, 14(128), Article 20161038. https://doi.org/10.1098/rsif.2016.1038

© 2017 The Author(s). Functional requirements may constrain phenotypic diversification or foster it. For insect mouthparts, the quantification of the relationship between shape and function in an evolutionary framework remained largely unexplored. He... Read More about Form-function relationships in dragonfly mandibles under an evolutionary perspective.