Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Feedback control from the jaw joints during biting: An investigation of the reptile Sphenodon using multibody modelling (2010)
Journal Article
Curtis, N., Jones, M. E. H., Evans, S., Evans, S. E., O'Higgins, P., & Fagan, M. J. (2010). Feedback control from the jaw joints during biting: An investigation of the reptile Sphenodon using multibody modelling. Journal of biomechanics, 43(16), 3132-3137. https://doi.org/10.1016/j.jbiomech.2010.08.001

Sphenodon, a lizard-like reptile, is the only living representative of a group that was once widespread at the time of the dinosaurs. Unique jaw mechanics incorporate crushing and shearing motions to breakdown food, but during this process excessive... Read More about Feedback control from the jaw joints during biting: An investigation of the reptile Sphenodon using multibody modelling.

Comparison between in vivo and theoretical bite performance: Using multi-body modelling to predict muscle and bite forces in a reptile skull (2010)
Journal Article
Curtis, N., Jones, M. E. H., Lappin, A. K., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2010). Comparison between in vivo and theoretical bite performance: Using multi-body modelling to predict muscle and bite forces in a reptile skull. Journal of biomechanics, 43(14), 2804-2809. https://doi.org/10.1016/j.jbiomech.2010.05.037

In biomechanical investigations, geometrically accurate computer models of anatomical structures can be created readily using computed-tomography scan images. However, representation of soft tissue structures is more challenging, relying on approxima... Read More about Comparison between in vivo and theoretical bite performance: Using multi-body modelling to predict muscle and bite forces in a reptile skull.