Skip to main content

Research Repository

Advanced Search

All Outputs (2)

High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling (2014)
Journal Article
Daskoulidou, N., Xu, S. Z., Zeng, B., Gomez, M. F., Berglund, L. M., Atkin, S. L., …Daskoulidou, N. (2015). High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. Journal of Molecular Medicine, 93(5), 511-521. https://doi.org/10.1007/s00109-014-1234-2

© 2014, Springer-Verlag Berlin Heidelberg. Abstract: ORAI and stromal interaction molecule (STIM) are store-operated channel molecules that play essential roles in human physiology through a coupling mechanism of internal Ca 2+ store to Ca 2+ influx.... Read More about High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling.

The ryanodine receptor agonist 4-chloro-3-ethylphenol blocks ORAI store-operated channels: 4-Chloro-3-ethylphenol inhibits ORAI channels (2014)
Journal Article
Zeng, B., Chen, G., Daskoulidou, N., & Xu, S. (2014). The ryanodine receptor agonist 4-chloro-3-ethylphenol blocks ORAI store-operated channels: 4-Chloro-3-ethylphenol inhibits ORAI channels. British Journal of Pharmacology, 171(5), 1250-1259. https://doi.org/10.1111/bph.12528

Background Depletion of the Ca2+ store by ryanodine receptor (RyR) agonists induces store‐operated Ca2+ entry (SOCE). 4‐Chloro‐3‐ethylphenol (4‐CEP) and 4‐chloro‐m‐cresol (4‐CmC) are RyR agonists commonly used as research tools and diagnostic reagen... Read More about The ryanodine receptor agonist 4-chloro-3-ethylphenol blocks ORAI store-operated channels: 4-Chloro-3-ethylphenol inhibits ORAI channels.