Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Dynamic electric field alignment of metal-organic framework micro- rods (2019)
Journal Article
Cheng, F., Young, A. J., Bouillard, J. G., Kemp, N. T., Guillet-Nicolas, R., Hall, C. H., …Chin, J. M. (2019). Dynamic electric field alignment of metal-organic framework micro- rods. Journal of the American Chemical Society, 141(33), 12989-12993. https://doi.org/10.1021/jacs.9b06320

Alignment of Metal Organic Framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that microrod crystals of the MOF NU-1000 can also be d... Read More about Dynamic electric field alignment of metal-organic framework micro- rods.

Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices (2019)
Journal Article
Jaafar, A. H., & Kemp, N. T. (2019). Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices. Carbon, 153, 81-88. https://doi.org/10.1016/j.carbon.2019.07.007

This paper reports on the first optically tunable graphene oxide memristor device. Modulation of resistive switching memory by light opens the route to new optoelectronic devices that can be switched optically and read electronically. Applications in... Read More about Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices.

Ballistic Spin Transport (2019)
Book Chapter
Doudin, B., & Kemp, N. (2019). Ballistic Spin Transport. In E. Y. Tsymbal, & I. Žutić (Eds.), Spintronics Handbook: Spin Transport and Magnetism, vol.3. (2nd. edition). Boca Raton, Fla.: CRC Press. https://doi.org/10.1201/9780429441189

This chapter presents the study of ballistic transport in magnetic nanostructures. Ballistic means that the charges carrying the electrical current go through the sample without experiencing scattering. Ballistic transport is a topic of increasing im... Read More about Ballistic Spin Transport.

Percolation threshold enables optical resistive‐memory switching and light‐tuneable synaptic learning in segregated nanocomposites (2019)
Journal Article
Jaafar, A. H., O'Neill, M., Kelly, S. M., Verrelli, E., & Kemp, N. T. (2019). Percolation threshold enables optical resistive‐memory switching and light‐tuneable synaptic learning in segregated nanocomposites. Advanced Electronic Materials, 5(7), Article 1900197. https://doi.org/10.1002/aelm.201900197

An optical memristor where the electrical resistance memory depends on the history of both the current flowing through the device and the irradiance of incident light onto it is demonstrated. It is based on a nanocomposite consisting of functionalize... Read More about Percolation threshold enables optical resistive‐memory switching and light‐tuneable synaptic learning in segregated nanocomposites.

A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects (2019)
Journal Article
Ghobaei Namhil, Z., Kemp, C., Verrelli, E., Iles, A., Pamme, N., Adawi, A. M., & Kemp, N. (2019). A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical chemistry chemical physics : PCCP, 21(2), 681-691. https://doi.org/10.1039/c8cp05510f

A significant impediment to the use of impedance spectroscopy in bio-sensing is the electrode polarization effect that arises from the movement of free ions to the electrode-solution interface, forming an electrical double layer (EDL). The EDL screen... Read More about A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.