Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Adsorption trajectories of nonspherical particles at liquid interfaces (2021)
Journal Article
Buzza, D. M. A., Stasiuk, G. J., Horozov, T. S., Adawi, A. M., Bouillard, J. G., Lowe, C., …Morgan, S. O. (2021). Adsorption trajectories of nonspherical particles at liquid interfaces. Physical Review E, 103(4), Article 042604. https://doi.org/10.1103/PhysRevE.103.042604

The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dy... Read More about Adsorption trajectories of nonspherical particles at liquid interfaces.

Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas (2021)
Journal Article
Córdova‐Castro, R. M., Krasavin, A. V., Nasir, M. E., Wang, P., Bouillard, J. S. G., McPolin, C. P. T., & Zayats, A. V. (in press). Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas. Advanced Optical Materials, Article 2001467. https://doi.org/10.1002/adom.202001467

Strong electromagnetic field confinement and enhancement can be readily achieved in plasmonic nanoantennas, however, this is considerably more difficult to realize over large areas, which is essential for many applications. Here, dispersion engineeri... Read More about Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas.

NIR-quantum dots in biomedical imaging and their future (2021)
Journal Article
Gil, H. M., Price, T. W., Chelani, K., Bouillard, J. S. G., Calaminus, S. D., & Stasiuk, G. J. (2021). NIR-quantum dots in biomedical imaging and their future. iScience, 24(3), Article 102189. https://doi.org/10.1016/j.isci.2021.102189

Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique opt... Read More about NIR-quantum dots in biomedical imaging and their future.

Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps (2021)
Journal Article
Hamza, A. O., Viscomi, F. N., Bouillard, J. S. G., & Adawi, A. M. (2021). Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps. Journal of Physical Chemistry Letters, 12(5), 1507-1513. https://doi.org/10.1021/acs.jpclett.0c03702

Förster resonance energy transfer (FRET) is a fundamental phenomenon in photosynthesis and is of increasing importance for the development and enhancement of a wide range of optoelectronic devices, including color-tuning LEDs and lasers, light harves... Read More about Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps.