Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Ultrasound cavitation induced nucleation in metal solidification: an analytical model and validation by real-time experiments (2021)
Journal Article
Huang, H., Qin, L., Tang, H., Shu, D., Yan, W., Sun, B., & Mi, J. (2021). Ultrasound cavitation induced nucleation in metal solidification: an analytical model and validation by real-time experiments. Ultrasonics Sonochemistry, 80, Article 105832. https://doi.org/10.1016/j.ultsonch.2021.105832

Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and... Read More about Ultrasound cavitation induced nucleation in metal solidification: an analytical model and validation by real-time experiments.

Effect of Temperature and Acoustic Pressure During Ultrasound Liquid-Phase Processing of Graphite in Water (2021)
Journal Article
Morton, J. A., Eskin, D. G., Grobert, N., Mi, J., Porfyrakis, K., Prentice, P., & Tzanakis, I. (2021). Effect of Temperature and Acoustic Pressure During Ultrasound Liquid-Phase Processing of Graphite in Water. JOM Journal of the Minerals, Metals and Materials Society, https://doi.org/10.1007/s11837-021-04910-9

Ultrasound-assisted liquid-phase exfoliation is a promising method for manufacturing two-dimensional materials. Understanding the effect of ultrasonication parameters such as the temperature and input power on the developed pressure field is pivotal... Read More about Effect of Temperature and Acoustic Pressure During Ultrasound Liquid-Phase Processing of Graphite in Water.

Ultrafast synchrotron X-ray imaging and multiphysics modelling of liquid phase fatigue exfoliation of graphite under ultrasound (2021)
Journal Article
Qin, L., Maciejewska, B. M., Subroto, T., Morton, J. A., Porfyrakis, K., Tzanakis, I., …Mi, J. (2022). Ultrafast synchrotron X-ray imaging and multiphysics modelling of liquid phase fatigue exfoliation of graphite under ultrasound. Carbon, 186, 227-237. https://doi.org/10.1016/j.carbon.2021.10.014

Ultrasound-assisted liquid phase exfoliation is a promising method for manufacturing of 2D materials in large scale and sustainable manner. A large number of studies using ex-situ nano/micro structural characterization techniques have been made to in... Read More about Ultrafast synchrotron X-ray imaging and multiphysics modelling of liquid phase fatigue exfoliation of graphite under ultrasound.

Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene (2021)
Journal Article
Tyurnina, A. V., Morton, J. A., Subroto, T., Khavari, M., Maciejewska, B., Mi, J., …Eskin, D. G. (2021). Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene. Carbon, 185, 536-545. https://doi.org/10.1016/j.carbon.2021.09.036

Ultrasound-aided liquid phase exfoliation (ULPE) of graphene in pure water is environment-friendly. Two limiting factors of ULPE are the non-uniform thickness of few-layer graphene (FLG) and a relatively low graphene yield. Here we describe ULPE in w... Read More about Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene.

Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning (2021)
Journal Article
Li, Z., Qin, L., Guo, B., Yuan, J., Zhang, Z., Li, W., & Mi, J. (2022). Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning. Acta Metallurgica Sinica (English Letters), 35(1), 115–123. https://doi.org/10.1007/s40195-021-01312-3

Fe-rich intermetallic phases in recycled Al alloys often exhibit complex and 3D convoluted structures and morphologies. They are the common detrimental intermetallic phases to the mechanical properties of recycled Al alloys. In this study, we used sy... Read More about Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning.

The correlation between X-ray scattering structure factor and shear bands density of a metallic glass and a composite (2021)
Journal Article
Zhang, C., Lee, T. L., Khong, J. C., Qiao, J. C., Daisenberger, D., Yao, Y., & Mi, J. (2021). The correlation between X-ray scattering structure factor and shear bands density of a metallic glass and a composite. Materials letters, 304, Article 130727. https://doi.org/10.1016/j.matlet.2021.130727

The tensile fractured surfaces of ZrTi-based bulk metallic glass and composite samples were studied using synchrotron X-ray total scattering. The scanned areas contain different shear bands densities. The shear bands create localized atomic strains,... Read More about The correlation between X-ray scattering structure factor and shear bands density of a metallic glass and a composite.

New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements (2021)
Journal Article
Morton, J. A., Khavari, M., Qin, L., Maciejewska, B. M., Tyurnina, A. V., Grobert, N., …Tzanakis, I. (2021). New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements. Materials Today, 49, 10-22. https://doi.org/10.1016/j.mattod.2021.05.005

The application of ultrasound and acoustic cavitation in liquid exfoliation of bulk layered materials is a widely used method. However, despite extensive research, the fundamental mechanisms remain far from being fully understood. A number of theorie... Read More about New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements.

Synchrotron X-ray imaging and ultrafast tomography in situ study of the fragmentation and growth dynamics of dendritic microstructures in solidification under ultrasound (2021)
Journal Article
Zhang, Z., Wang, C., Koe, B., Schlepütz, C. M., Irvine, S., & Mi, J. (2021). Synchrotron X-ray imaging and ultrafast tomography in situ study of the fragmentation and growth dynamics of dendritic microstructures in solidification under ultrasound. Acta Materialia, 209, Article 116796. https://doi.org/10.1016/j.actamat.2021.116796

High speed synchrotron X-ray imaging and ultrafast tomography were used to study in situ and in real time the fragmentation and growth dynamics of dendritic microstructures of an Al-15%Cu alloy in solidification under ultrasound. An ultrasound of 30... Read More about Synchrotron X-ray imaging and ultrafast tomography in situ study of the fragmentation and growth dynamics of dendritic microstructures in solidification under ultrasound.

3D phase field modeling of multi-dendrites evolution in solidification and validation by synchrotron x-ray tomography (2021)
Journal Article
Wang, S., Guo, Z., Kang, J., Zou, M., Li, X., Zhang, A., …Mi, J. (2021). 3D phase field modeling of multi-dendrites evolution in solidification and validation by synchrotron x-ray tomography. Materials, 14(3), Article 520. https://doi.org/10.3390/ma14030520

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. In this paper, the dynamics of multi-dendrite concurrent growth and coarsening of an Al-15 wt.% Cu alloy was studied using a highly computationally efficient 3D phase field model and real-time... Read More about 3D phase field modeling of multi-dendrites evolution in solidification and validation by synchrotron x-ray tomography.