Skip to main content

Research Repository

Advanced Search

All Outputs (77)

Timaeus: A digital art studio inspired by antiquity (2018)
Journal Article
Torrao, L., Papadopoulos, Y., & Mckie, D. (2018). Timaeus: A digital art studio inspired by antiquity. Generative art science and technology hard journal,

This project was motivated as an exploration of the capabilities provided by new digital media for creativity, art creation and art therapy. In the ancient Greek world, téchnē, the word for art, used to refer to both art and technology. The expressio... Read More about Timaeus: A digital art studio inspired by antiquity.

Model-based assessment of energy-efficiency, dependability, and cost-effectiveness of waste heat recovery systems onboard ship (2018)
Journal Article
Lampe, J., Rüde, E., Papadopoulos, Y., & Kabir, S. (2018). Model-based assessment of energy-efficiency, dependability, and cost-effectiveness of waste heat recovery systems onboard ship. Ocean engineering, 157, 234-250. https://doi.org/10.1016/j.oceaneng.2018.03.062

Technological systems are not merely designed with a narrow function in mind. Good designs typically aim at reducing operational costs, e.g. through achieving high energy efficiency and improved dependability (i.e. reliability, availability and maint... Read More about Model-based assessment of energy-efficiency, dependability, and cost-effectiveness of waste heat recovery systems onboard ship.

A Study of Automatic Allocation of Automotive Safety Requirements in Two Modes: Components and Failure Modes (2018)
Journal Article
Parker, D., Godof, A., Papadopoulos, Y., & Saintis, L. (2018). A Study of Automatic Allocation of Automotive Safety Requirements in Two Modes: Components and Failure Modes. SAE Technical Papers, 2018-April, https://doi.org/10.4271/2018-01-1076

ISO 26262 describes a safety engineering approach in which the safety of a system is considered from the early stages of design through a process of elicitation and allocation of system safety requirements. These are expressed as automotive safety in... Read More about A Study of Automatic Allocation of Automotive Safety Requirements in Two Modes: Components and Failure Modes.

Dynamic system safety analysis in HiP-HOPS with Petri Nets and Bayesian Networks (2018)
Journal Article
Papadopoulos, Y., Walker, M., & Kabir, S. (2018). Dynamic system safety analysis in HiP-HOPS with Petri Nets and Bayesian Networks. Safety science, 105, 55-70. https://doi.org/10.1016/j.ssci.2018.02.001

© 2018 Elsevier Ltd Dynamic systems exhibit time-dependent behaviours and complex functional dependencies amongst their components. Therefore, to capture the full system failure behaviour, it is not enough to simply determine the consequences of diff... Read More about Dynamic system safety analysis in HiP-HOPS with Petri Nets and Bayesian Networks.

DEIS: Dependability Engineering Innovation for Industrial CPS (2017)
Book Chapter
Armengaud, E., Macher, G., Massoner, A., Frager, S., Adler, R., Schneider, D., …Kelly, T. (2018). DEIS: Dependability Engineering Innovation for Industrial CPS. In C. Zachäus, B. Müller, & G. Meyer (Eds.), Advanced Microsystems for Automotive Applications 2017 : Smart Systems Transforming the Automobile (151-163). Cham: Springer. https://doi.org/10.1007/978-3-319-66972-4_13

The open and cooperative nature of Cyber-Physical Systems (CPS) poses new challenges in assuring dependability. The DEIS project (Dependability Engineering Innovation for automotive CPS. This project has received funding from the European Union’s Hor... Read More about DEIS: Dependability Engineering Innovation for Industrial CPS.

A model-based extension to HiP-HOPS for dynamic fault propagation studies (2017)
Journal Article
Kabir, S., Papadopoulos, Y., Walker, M., Parker, D., Aizpurua, J. I., Lampe, J., & Rüde, E. (2017). A model-based extension to HiP-HOPS for dynamic fault propagation studies. Lecture notes in computer science, 10437 LNCS, 163-178. https://doi.org/10.1007/978-3-319-64119-5_11

HiP-HOPS is a model-based approach for assessing the dependability of safety-critical systems. The method combines models, logic, probabilities and nature-inspired algorithms to provide advanced capabilities for design optimisation, requirement alloc... Read More about A model-based extension to HiP-HOPS for dynamic fault propagation studies.

Model-connected safety cases (2017)
Journal Article
Retouniotis, A., Papadopoulos, Y., Sorokos, I., Parker, D., Matragkas, N., & Sharvia, S. (2017). Model-connected safety cases. Lecture notes in computer science, 10437 LNCS, 50-63. https://doi.org/10.1007/978-3-319-64119-5_4

© 2017, Springer International Publishing AG. We propose the concept of a model-connected safety case that could simplify certification of complex systems. System design models support the synthesis of both the structure of the safety case and the ev... Read More about Model-connected safety cases.

Improved dynamic dependability assessment through integration with prognostics (2017)
Journal Article
Aizpurua, J. I., Catterson, V. M., Papadopoulos, Y., Chiacchio, F., & Manno, G. (2017). Improved dynamic dependability assessment through integration with prognostics. IEEE Transactions on Reliability, 66(3), 893-913. https://doi.org/10.1109/tr.2017.2693821

The use of average data for dependability assessments results in a outdated system-level dependability estimation which can lead to incorrect design decisions. With increasing availability of online data, there is room to improve traditional dependab... Read More about Improved dynamic dependability assessment through integration with prognostics.

Supporting group maintenance through prognostics-enhanced dynamic dependability prediction (2017)
Journal Article
Papadopoulos, Y., Aizpurua, J. I., Catterson, V. M., Chiacchio, F., D'Urso, D., Papadopoulos, Y., …D'Urso, D. (2017). Supporting group maintenance through prognostics-enhanced dynamic dependability prediction. Reliability Engineering and System Safety, 168, 171-188. https://doi.org/10.1016/j.ress.2017.04.005

Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and gro... Read More about Supporting group maintenance through prognostics-enhanced dynamic dependability prediction.

On cost-effective reuse of components in the design of complex reconfigurable systems (2017)
Journal Article
Aizpurua, J. I., Papadopoulos, Y., Muxika, E., Chiacchio, F., & Manno, G. (2017). On cost-effective reuse of components in the design of complex reconfigurable systems. Quality and Reliability Engineering International, 33(7), 1387-1406. https://doi.org/10.1002/qre.2112

Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems... Read More about On cost-effective reuse of components in the design of complex reconfigurable systems.

Fuzzy temporal fault tree analysis of dynamic systems (2016)
Journal Article
Kabir, S., Papadopoulos, Y., Walker, M., Rüde, E., & Securius, P. (2016). Fuzzy temporal fault tree analysis of dynamic systems. International Journal of Approximate Reasoning, 77, 20-37. https://doi.org/10.1016/j.ijar.2016.05.006

Fault tree analysis (FTA) is a powerful technique that is widely used for evaluating system safety and reliability. It can be used to assess the effects of combinations of failures on system behaviour but is unable to capture sequence dependent dynam... Read More about Fuzzy temporal fault tree analysis of dynamic systems.

A synthesis of logic and bio-inspired techniques in the design of dependable systems (2016)
Journal Article
Papadopoulos, Y., Walker, M., Parker, D., Sharvia, S., Bottaci, L., Kabir, S., …Sorokos, I. (2016). A synthesis of logic and bio-inspired techniques in the design of dependable systems. Annual Reviews in Control, 41, 170-182. https://doi.org/10.1016/j.arcontrol.2016.04.008

Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecast... Read More about A synthesis of logic and bio-inspired techniques in the design of dependable systems.

Application of the D3H2 methodology for the cost-effective design of dependable systems (2016)
Journal Article
Aizpurua, J. I., Muxika, E., Papadopoulos, Y., Chiacchio, F., & Manno, G. (2016). Application of the D3H2 methodology for the cost-effective design of dependable systems. Safety, 2(2), Article 9. https://doi.org/10.3390/safety2020009

The use of dedicated components as a means of achieving desirable levels of fault tolerance in a system may result in high costs. A cost effective way of restoring failed functions is to use heterogeneous redundancies: components that, besides perfor... Read More about Application of the D3H2 methodology for the cost-effective design of dependable systems.

Scalable allocation of safety integrity levels in automotive systems (2015)
Thesis
Azevedo, L. P. D. S. (2015). Scalable allocation of safety integrity levels in automotive systems. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4218322

The allocation of safety integrity requirements is an important problem in modern safety engineering. It is necessary to find an allocation that meets system level safety integrity targets and that is simultaneously cost-effective. As safety-critical... Read More about Scalable allocation of safety integrity levels in automotive systems.

Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets (2015)
Journal Article
Kabir, S., Papadopoulos, Y., & Walker, M. (2015). Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets. IFAC Proceedings Volumes/ International Federation of Automatic Control, 48(21), 458-463. https://doi.org/10.1016/j.ifacol.2015.09.569

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Using classical combinatorial fault trees, analysts are able to assess the effects of combinations of failures on system behaviour but are unab... Read More about Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets.

Automatic allocation of safety requirements to components of a software product line (2015)
Journal Article
De Oliveira, A. L., Papadopoulos, Y., Azevedo, L. S., Parker, D., Braga, R. T., Masiero, P. C., …Kelly, T. (2015). Automatic allocation of safety requirements to components of a software product line. IFAC Proceedings Volumes/ International Federation of Automatic Control, 48(21), 1309-1314. https://doi.org/10.1016/j.ifacol.2015.09.706

Safety critical systems developed as part of a product line must still comply with safety standards. Standards use the concept of Safety Integrity Levels (SILs) to drive the assignment of system safety requirements to components of a system under des... Read More about Automatic allocation of safety requirements to components of a software product line.

Automating allocation of development assurance levels: An extension to HiP-HOPS (2015)
Journal Article
Sorokos, I., Papadopoulos, Y., Azevedo, L., Parker, D., & Walker, M. (2015). Automating allocation of development assurance levels: An extension to HiP-HOPS. IFAC Proceedings Volumes/ International Federation of Automatic Control, 48(7), 9-14. https://doi.org/10.1016/j.ifacol.2015.06.466

Controlling the allocation of safety requirements across a system's architecture from the early stages of development is an aspiration embodied in numerous major safety standards. Manual approaches of applying this process in practice are ineffective... Read More about Automating allocation of development assurance levels: An extension to HiP-HOPS.

A synthesis of logic and biology in the design of dependable systems (2015)
Journal Article
Papadopoulos, Y. (2015). A synthesis of logic and biology in the design of dependable systems. IFAC Proceedings Volumes/ International Federation of Automatic Control, 28(7), 1-8. https://doi.org/10.1016/j.ifacol.2015.06.465

The technologies of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, have advanced in recent years. Much of this development can be attributed to the application of advances in f... Read More about A synthesis of logic and biology in the design of dependable systems.

Supporting the automated generation of modular product line safety cases (2015)
Book Chapter
de Oliveira, A. L., Braga, R. T., Masiero, P. C., Papadopoulos, Y., Habli, I., & Kelly, T. (2015). Supporting the automated generation of modular product line safety cases. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, & J. Kacprzyk (Eds.), . https://doi.org/10.1007/978-3-319-19216-1_30

Abstract The effective reuse of design assets in safety-critical Software Product Lines (SPL) would require the reuse of safety analyses of those assets in the variant contexts of certification of products derived from the SPL. This in turn requires... Read More about Supporting the automated generation of modular product line safety cases.

Model transformation for multi-objective architecture optimisation of dependable systems (2015)
Journal Article
Mian, Z., Bottaci, L., Papadopoulos, Y., Sharvia, S., & Mahmud, N. (2015). Model transformation for multi-objective architecture optimisation of dependable systems. Advances in Intelligent Systems and Computing, 307, 91-110. https://doi.org/10.1007/978-3-319-08964-5_6

The promise of model-based engineering is that by use of an integrated and coherent system model both functional and non-functional requirements may be analysed, implemented and tested in a rigorous and cost-effective manner. An important part of mod... Read More about Model transformation for multi-objective architecture optimisation of dependable systems.