University of Hull logo

Dr Sohag Kabir


Performance evaluation and design for variable threshold alarm systems through semi-Markov process (2019)
Journal Article
Aslansefat, K., Bahar Gogani, M., Kabir, S., Shoorehdeli, M. A., & Yari, M. (in press). Performance evaluation and design for variable threshold alarm systems through semi-Markov process. ISA Transactions, https://doi.org/10.1016/j.isatra.2019.08.015

In large industrial systems, alarm management is one of the most important issues to improve the safety and efficiency of systems in practice. Operators of such systems often have to deal with a numerous number of simultaneous alarms. Different kinds... Read More

Dynamic reliability assessment of flare systems by combining fault tree analysis and Bayesian networks (2019)
Journal Article
Kabir, S., Taleb-Berrouane, M., & Papadopoulos, Y. (in press). Dynamic reliability assessment of flare systems by combining fault tree analysis and Bayesian networks. Energy Sources, Part A,

Flaring is a combustion process commonly used in the oil and gas industry to dispose flammable waste gases. Flare flameout occurs when these gases escape unburnt from the flare tip causing the discharge of flammable and/or toxic vapor clouds. The tox... Read More

Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review (2019)
Journal Article
Kabir, S., & Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety science, 115, 154-175. https://doi.org/10.1016/j.ssci.2019.02.009

System safety, reliability and risk analysis are important tasks that are performed throughout the system life-cycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured... Read More

Fuzzy evidence theory and Bayesian networks for process systems risk analysis (2018)
Journal Article
Yazdi, M., & Kabir, S. (2018). Fuzzy evidence theory and Bayesian networks for process systems risk analysis. Human and Ecological Risk Assessment, 1-30. https://doi.org/10.1080/10807039.2018.1493679

Quantitative risk assessment (QRA) approaches systematically evaluate the likelihood, impacts, and risk of adverse events. QRA using fault tree analysis (FTA) is based on the assumptions that failure events have crisp probabilities and they are stati... Read More

Uncertainty-aware dynamic reliability analysis framework for complex systems (2018)
Journal Article
Kabir, S., Yazdi, M., Aizpurua, J. I., & Papadopoulos, Y. (2018). Uncertainty-aware dynamic reliability analysis framework for complex systems. IEEE access : practical innovations, open solutions, 6, https://doi.org/10.1109/ACCESS.2018.2843166

Critical technological systems exhibit complex dynamic characteristics such as time-dependent behaviour, functional dependencies among events, sequencing and priority of causes that may alter the effects of failure. Dynamic fault trees (DFTs) have be... Read More

A review of applications of fuzzy sets to safety and reliability engineering (2018)
Journal Article
Kabir, S., & Papadopoulos, Y. (2018). A review of applications of fuzzy sets to safety and reliability engineering. International Journal of Approximate Reasoning, 100, 29-55. https://doi.org/10.1016/j.ijar.2018.05.005

Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limi... Read More

An overview of the approaches for automotive safety integrity levels allocation (2018)
Journal Article
Gheraibia, Y., Kabir, S., Djafri, K., & Krimou, H. (2018). An overview of the approaches for automotive safety integrity levels allocation. Journal of failure analysis and prevention, 18(3), 707-720. https://doi.org/10.1007/s11668-018-0466-9

ISO 26262, titled Road Vehicles–Functional Safety, is the new automotive functional safety standard for passenger vehicle industry. In order to accomplish the goal of designing and developing dependable automotive systems, ISO 26262 uses the concept... Read More

Model-based assessment of energy-efficiency, dependability, and cost-effectiveness of waste heat recovery systems onboard ship (2018)
Journal Article
Lampe, J., Rüde, E., Papadopoulos, Y., & Kabir, S. (2018). Model-based assessment of energy-efficiency, dependability, and cost-effectiveness of waste heat recovery systems onboard ship. Ocean engineering, 157, 234-250. https://doi.org/10.1016/j.oceaneng.2018.03.062

Technological systems are not merely designed with a narrow function in mind. Good designs typically aim at reducing operational costs, e.g. through achieving high energy efficiency and improved dependability (i.e. reliability, availability and maint... Read More

Dynamic system safety analysis in HiP-HOPS with Petri Nets and Bayesian Networks (2018)
Journal Article
Papadopoulos, Y., Walker, M., & Kabir, S. (2018). Dynamic system safety analysis in HiP-HOPS with Petri Nets and Bayesian Networks. Safety science, 105, 55-70. https://doi.org/10.1016/j.ssci.2018.02.001

© 2018 Elsevier Ltd Dynamic systems exhibit time-dependent behaviours and complex functional dependencies amongst their components. Therefore, to capture the full system failure behaviour, it is not enough to simply determine the consequences of diff... Read More

A fuzzy Bayesian network approach for risk analysis in process industries (2017)
Journal Article
Yazdi, M., & Kabir, S. (2017). A fuzzy Bayesian network approach for risk analysis in process industries. Process Safety and Environmental Protection, 111, 507-519. https://doi.org/10.1016/j.psep.2017.08.015

Fault tree analysis is a widely used method of risk assessment in process industries. However, the classical fault tree approach has its own limitations such as the inability to deal with uncertain failure data and to consider statistical dependence... Read More