Skip to main content

Research Repository

Advanced Search

Outputs (43)

An iterative strategy for robust integration of fault estimation and fault-tolerant control (2022)
Journal Article
Lan, J., & Patton, R. (2022). An iterative strategy for robust integration of fault estimation and fault-tolerant control. Automatica : the journal of IFAC, the International Federation of Automatic Control, 145, Article 110556. https://doi.org/10.1016/j.automatica.2022.110556

This paper considers fault estimation (FE) and fault-tolerant control (FTC) for linear parameter varying systems with actuator and sensor faults, uncertainties, and disturbances. The inevitable coupling between the FE and FTC functions needs to be ta... Read More about An iterative strategy for robust integration of fault estimation and fault-tolerant control.

Aggressive maneuver oriented robust actuator fault estimation of a 3-DOF helicopter prototype considering measurement noises (2021)
Journal Article
Wang, T., Lu, M., Zhu, X., & Patton, R. (2022). Aggressive maneuver oriented robust actuator fault estimation of a 3-DOF helicopter prototype considering measurement noises. IEEE/ASME Transactions on Mechatronics, 27(3), 1672-1682. https://doi.org/10.1109/TMECH.2021.3087193

This paper presents a robust actuator fault estimation strategy design for a 3-DOF helicopter prototype which can be adapted to aggressive maneuvers. First, considering large pitch angle condition during flight, nonlinear coupling characteristic of t... Read More about Aggressive maneuver oriented robust actuator fault estimation of a 3-DOF helicopter prototype considering measurement noises.

Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies (2021)
Journal Article
Patton, R. J., Liu, C., Jiang, B., & Zhang, K. (2021). Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(4), 1646-1658. https://doi.org/10.1109/TCSI.2021.3049347

This paper proposes a novel distributed fault-tolerant consensus tracking control design for multi-agent systems with abrupt and incipient actuator faults under fixed and switching topologies. The fault and state information of each individual agent... Read More about Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies.

Wind turbine asymmetrical load reduction with pitch sensor fault compensation (2020)
Journal Article
Liu, Y., Patton, R. J., & Shi, S. (2020). Wind turbine asymmetrical load reduction with pitch sensor fault compensation. Wind energy, 23(7), 1523-1541. https://doi.org/10.1002/we.2496

Offshore wind turbines suffer from asymmetrical loading (blades, tower, etc), leading to enhanced structural fatigue. As well as asymmetrical loading different faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mi... Read More about Wind turbine asymmetrical load reduction with pitch sensor fault compensation.

Observer-Based Unknown Input Estimator of Wave Excitation Force for a Wave Energy Converter (2019)
Journal Article
Abdelrahman, M., & Patton, R. (2020). Observer-Based Unknown Input Estimator of Wave Excitation Force for a Wave Energy Converter. IEEE Transactions on Control Systems Technology, 28(6), 2665-2672. https://doi.org/10.1109/TCST.2019.2944329

Several energy maximization control approaches for point-absorber wave-energy converter (PAWEC) systems require knowledge of the wave excitation force (WEF) that is not measurable during the PAWEC operation. Many WEF estimators have been proposed bas... Read More about Observer-Based Unknown Input Estimator of Wave Excitation Force for a Wave Energy Converter.

Integrated Fault-Tolerant Control for Close Formation Flight (2019)
Journal Article
Liu, C., Jiang, B., Patton, R. J., & Zhang, K. (2020). Integrated Fault-Tolerant Control for Close Formation Flight. IEEE Transactions on Aerospace and Electronic Systems, 56(2), 839-852. https://doi.org/10.1109/TAES.2019.2920221

This paper investigates the position-tracking and attitude-tracking control problem of close formation flight with vortex effects under simultaneous actuator and sensor faults. On the basis of the estimated state and fault information from unknown in... Read More about Integrated Fault-Tolerant Control for Close Formation Flight.

Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems (2019)
Journal Article
Liu, C., Jiang, B., Patton, R. J., & Zhang, K. (2020). Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems. IEEE Transactions on Cybernetics, 50(12), 4934-4945. https://doi.org/10.1109/TCYB.2019.2912636

This paper proposes a novel decentralized output sliding-mode fault-tolerant control (FTC) design for heterogeneous multiagent systems (MASs) with matched disturbances, unmatched nonlinear interactions, and actuator faults. The respective iteration a... Read More about Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems.

Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning (2018)
Journal Article
Jin, S., Patton, R. J., & Guo, B. (2019). Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning. Energy, 169, 819-832. https://doi.org/10.1016/j.energy.2018.12.074

In this work a three dimensional computational fluid dynamic (CFD) model has been constructed based on a 1/50 scale heaving point absorber wave energy converter (PAWEC). The CFD model is validated first via wave tank tests and then is applied in this... Read More about Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning.

Hierarchical-Structure-Based Fault Estimation and Fault-Tolerant Control for Multiagent Systems (2018)
Journal Article
Liu, C., Jiang, B., Patton, R. J., & Zhang, K. (2019). Hierarchical-Structure-Based Fault Estimation and Fault-Tolerant Control for Multiagent Systems. IEEE Transactions on Control of Network Systems, 6(2), 586-597. https://doi.org/10.1109/TCNS.2018.2860460

This paper proposes a hierarchical-structure-based fault estimation and fault-tolerant control design with bidirectional interactions for nonlinear multiagent systems with actuator faults. The hierarchical structure consists of distributed multiagent... Read More about Hierarchical-Structure-Based Fault Estimation and Fault-Tolerant Control for Multiagent Systems.

Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment (2018)
Journal Article
Siya, J., Patton, R. J., & Guo, B. (2018). Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment. Renewable energy, 129(A), 500-512. https://doi.org/10.1016/j.renene.2018.06.006

To achieve optimal power in a wave energy conversion (WEC) system it is necessary to understand the device hydrodynamics. To maximize conversion efficiency the goal is to tune the WEC performance into resonance. The main challenge then to be overcome... Read More about Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment.

Numerical and experimental studies of excitation force approximation for wave energy conversion (2018)
Journal Article
Guo, B., Patton, R. J., Jin, S., & Lan, J. (2018). Numerical and experimental studies of excitation force approximation for wave energy conversion. Renewable energy, 125, 877-889. https://doi.org/10.1016/j.renene.2018.03.007

Past or/and future information of the excitation force is useful for real-time power maximisation control of Wave Energy Converter (WEC) systems. Current WEC modelling approaches assume that the wave excitation force is accessible and known. However,... Read More about Numerical and experimental studies of excitation force approximation for wave energy conversion.

A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults (2017)
Journal Article
Lan, J., & Patton, R. J. (2018). A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults. Automatica : the journal of IFAC, the International Federation of Automatic Control, 89, 290-299. https://doi.org/10.1016/j.automatica.2017.12.011

This paper proposes a decoupling approach to the integrated design of fault estimation (FE) and fault-tolerant control (FTC) for linear systems in the presence of unknown bounded actuator faults and perturbations. An adaptive sliding mode augmented s... Read More about A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults.

Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion (2017)
Journal Article
Guo, B., Patton, R., Jin, S., Gilbert, J., & Parsons, D. (2017). Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion. IEEE Transactions on Sustainable Energy, 9(1), 453-461. https://doi.org/10.1109/tste.2017.2741341

Although the heaving Point Absorber (PA) concept is well known in wave energy conversion research, few studies focus on appropriate modelling of non-linear fluid viscous and mechanical friction dynamics. Even though these concepts are known to have n... Read More about Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion.

Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation (2017)
Journal Article
Lan, J., Patton, R. J., & Zhu, X. (2017). Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation. IET Control Theory and Applications, 11(14), 2232-2241. https://doi.org/10.1049/iet-cta.2016.1602

© The Institution of Engineering and Technology 2017. This study proposes a fault estimation (FE)-based fault-tolerant control (FTC) strategy to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter system with... Read More about Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation.

Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation (2016)
Journal Article
Lan, J., Patton, R. J., & Zhu, X. (2018). Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renewable energy, 116, 219-231. https://doi.org/10.1016/j.renene.2016.12.005

Wind turbine pitch systems are essential for actuating desired blade angles and hence to keep the generator at rated speed in operation region 3. In the presence of parametric pitch actuator faults, pitch systems may have slow dynamics, affecting the... Read More about Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation.

Application of model-based LPV actuator fault estimation for an industrial benchmark (2016)
Journal Article
Chen, L., Patton, R., & Goupil, P. (2016). Application of model-based LPV actuator fault estimation for an industrial benchmark. Control engineering practice, 56, 60-74. https://doi.org/10.1016/j.conengprac.2016.08.003

To bridge the gap between model-based fault diagnosis theory and the industry practice, a linear parameter varying H_/H∞ fault estimation approach is applied to a high fidelity nonlinear aircraft benchmark, to deal with the various actuator fault det... Read More about Application of model-based LPV actuator fault estimation for an industrial benchmark.

Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling (2016)
Journal Article
Lan, J., & Patton, R. J. (2017). Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling. IEEE Transactions on Fuzzy Systems, 25(5), 1141-1154. https://doi.org/10.1109/tfuzz.2016.2598849

This paper proposes an integrated design of faulttolerant control (FTC) for nonlinear systems using Takagi-Sugeno (T-S) fuzzy models in the presence of modelling uncertainty along with actuator/sensor faults and external disturbance. An augmented sta... Read More about Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling.

Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems (2016)
Journal Article
Lan, J., & Patton, R. J. (2017). Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems. International journal of robust and nonlinear control, 27(5), 761-780. https://doi.org/10.1002/rnc.3597

This paper proposes an integrated fault estimation and fault-tolerant control (FTC) design for Lipschitz non-linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non-linear unknown input observer without rank requirement... Read More about Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems.

A new strategy for integration of fault estimation within fault-tolerant control (2016)
Journal Article
Lan, J., & Patton, R. J. (2016). A new strategy for integration of fault estimation within fault-tolerant control. Automatica : the journal of IFAC, the International Federation of Automatic Control, 69, 48-59. https://doi.org/10.1016/j.automatica.2016.02.014

© 2016 Elsevier Ltd. All rights reserved. The problem of active fault tolerant control (FTC) of dynamical systems involves the process of fault detection and isolation/fault estimation (FDI/FE) used to either make a decision as to when and how to cha... Read More about A new strategy for integration of fault estimation within fault-tolerant control.

Robust fault estimation using an LPV reference model : ADDSAFE benchmark case study (2015)
Journal Article
Chen, L., Patton, R., & Goupil, P. (2016). Robust fault estimation using an LPV reference model : ADDSAFE benchmark case study. Control engineering practice, 49, 194-203. https://doi.org/10.1016/j.conengprac.2015.12.006

This paper investigates a mixed H−/H∞ linear parameter varying (LPV) fault estimator using an LPV reference estimator. LMIs are used to calculate the affine parameter-dependent gains of the LPV fault estimator. The design strategy is applied to a hig... Read More about Robust fault estimation using an LPV reference model : ADDSAFE benchmark case study.

Integrated fault estimation and fault tolerant control: A joint design (2015)
Journal Article
Tan, D., & Patton, R. J. (2015). Integrated fault estimation and fault tolerant control: A joint design. IFAC Proceedings Volumes/ International Federation of Automatic Control, 28(21), 517-522. https://doi.org/10.1016/j.ifacol.2015.09.578

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Over the past decades, substantial progress has been made in fault detection and diagnosis (FDD) and fault tolerant control (FTC) research. Rec... Read More about Integrated fault estimation and fault tolerant control: A joint design.

A relaxed solution to unknown input observers for state and fault estimation (2015)
Journal Article
Tan, D., Patton, R. J., & Wang, X. (2015). A relaxed solution to unknown input observers for state and fault estimation. IFAC Proceedings Volumes/ International Federation of Automatic Control, 28(21), 1048-1053. https://doi.org/10.1016/j.ifacol.2015.09.665

A lot of effort has been devoted to the unknown input observer (UIO) research over the past years. However, the strong disturbance decoupling assumption (manifested as some rank constraint) is often implicitly embedded in much of the existing UIO wor... Read More about A relaxed solution to unknown input observers for state and fault estimation.

Chemical process disturbance compensation as a fault tolerant control problem (2015)
Journal Article
Simani, S., Farsoni, S., & Patton, R. J. (2015). Chemical process disturbance compensation as a fault tolerant control problem. IFAC Proceedings Volumes/ International Federation of Automatic Control, 28(21), 1102-1107. https://doi.org/10.1016/j.ifacol.2015.09.674

In general, the control of chemical processes that involve unknown disturbances presents interesting challenges. Research issues have been focused on detailed modelling of the involved phenomena in order to use e.g. robust on-line disturbance compens... Read More about Chemical process disturbance compensation as a fault tolerant control problem.

An active fault tolerant control approach to an offshore wind turbine model (2014)
Journal Article
Shi, F., & Patton, R. (2015). An active fault tolerant control approach to an offshore wind turbine model. Renewable energy, 75(March), 788-798. https://doi.org/10.1016/j.renene.2014.10.061

The paper proposes an observer based active fault tolerant control (AFTC) approach to a non-linear large rotor wind turbine benchmark model. A sensor fault hiding and actuator fault compensation strategy is adopted in the design. The adapted observer... Read More about An active fault tolerant control approach to an offshore wind turbine model.

Fault estimation and active fault tolerant control for linear parameter varying descriptor systems (2014)
Journal Article
Shi, F., & Patton, R. J. (2015). Fault estimation and active fault tolerant control for linear parameter varying descriptor systems. International journal of robust and nonlinear control, 25(5), 689-706. https://doi.org/10.1002/rnc.3266

Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can... Read More about Fault estimation and active fault tolerant control for linear parameter varying descriptor systems.

Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model (2014)
Journal Article
Shaker, M. S., & Patton, R. J. (2014). Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model. Engineering applications of artificial intelligence, 34, 1-12. https://doi.org/10.1016/j.engappai.2014.04.005

This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind... Read More about Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model.

Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease (2014)
Journal Article
Ji, B., Genever, P. G., Patton, R. J., & Fagan, M. J. (2014). Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease. International journal for numerical methods in biomedical engineering, 30(11), 1085-1102. https://doi.org/10.1002/cnm.2645

Multiple myeloma (MM) is the second most common haematological malignancy and results in destructive bone lesions. The interaction between MM cells and the bone microenvironment plays an important role in the development of the tumour cells and MM-in... Read More about Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease.

A predator-prey based mathematical model of the bone remodelling cycle: Exploring the relationship between the model parameters and biochemical factors (2014)
Journal Article
Ji, B., Yang, Q., Genever, P. G., Patton, R. J., & Fagan, M. J. (2014). A predator-prey based mathematical model of the bone remodelling cycle: Exploring the relationship between the model parameters and biochemical factors. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228(10), 1035-1042. https://doi.org/10.1177/0954411914554633

© IMechE 2014. Bone remodelling is a vital process which enables bone to repair, renew and optimize itself. Disorders in the bone remodelling process are inevitably manifested in bone-related diseases, such as hypothyroidism, primary hyperparathyroid... Read More about A predator-prey based mathematical model of the bone remodelling cycle: Exploring the relationship between the model parameters and biochemical factors.

Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults (2013)
Journal Article
Sami, M., & Patton, R. J. (2013). Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults. International journal of control, automation, and systems, 11(6), 1149-1161. https://doi.org/10.1007/s12555-013-0227-1

The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the chall... Read More about Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults.

The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: A computer simulation (2012)
Journal Article
Jahani, M., Genever, P. G., Patton, R. J., Ahwal, F., & Fagan, M. J. (2012). The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: A computer simulation. Journal of biomechanics, 45(16), 2876-2883. https://doi.org/10.1016/j.jbiomech.2012.08.005

Osteocytes play a critical role in the regulation of bone remodelling by translating strain due to mechanical loading into biochemical signals transmitted through the interconnecting lacuno-canalicular network to bone lining cells (BLCs) on the bone... Read More about The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: A computer simulation.

An LPV pole-placement approach to friction compensation as an FTC problem (2012)
Journal Article
Chen, L., Patton, R., & Klinkhieo, S. (2012). An LPV pole-placement approach to friction compensation as an FTC problem. International Journal of Applied Mathematics and Computer Science, 22(1), 149-160. https://doi.org/10.2478/v10006-012-0011-z

The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC) has been the subject of considerable interest in the recent literature. The current study is motivated by the need to develop m... Read More about An LPV pole-placement approach to friction compensation as an FTC problem.

A novel mathematical model of bone remodelling cycles for trabecular bone at the cellular level (2012)
Journal Article
Ji, B., Genever, P. G., Patton, R. J., Putra, D., & Fagan, M. J. (2012). A novel mathematical model of bone remodelling cycles for trabecular bone at the cellular level. Biomechanics and Modeling in Mechanobiology, 11(7), 973-982. https://doi.org/10.1007/s10237-011-0366-3

After an initial phase of growth and development, bone undergoes a continuous cycle of repair, renewal and optimisation by a process called remodelling. This paper describes a novel mathematical model of the trabecular bone remodelling cycle. It is e... Read More about A novel mathematical model of bone remodelling cycles for trabecular bone at the cellular level.

Robust FDI applied to thruster faults of a satellite system (2010)
Journal Article
Patton, R. J., Polle, B., Simani, S., & Uppal, F. J. (2010). Robust FDI applied to thruster faults of a satellite system. Control engineering practice, 18(9), 1093-1109. https://doi.org/10.1016/j.conengprac.2009.04.011

This paper presents a practical solution to the problem of robust fault detection and isolation (FDI) for faults affecting the thrusters of a satellite system Mars Express (MEX). A non-linear model of MEX is used and the system is considered in the p... Read More about Robust FDI applied to thruster faults of a satellite system.

Friction compensation as a fault-tolerant control problem (2010)
Journal Article
Patton, R. J., Putra, D., & Klinkhieo, S. (2010). Friction compensation as a fault-tolerant control problem. International Journal of Systems Science, 41(8), 987-1001. https://doi.org/10.1080/00207720903434797

The control of systems that involve friction presents interesting challenges. Recent research has focused on detailed modelling of friction phenomena in order to use robust on-line friction compensation procedures, attempting to cancel out the fricti... Read More about Friction compensation as a fault-tolerant control problem.

Robust FDI for FTC coordination in a distributed network system (2008)
Journal Article
Klinkhieo, S., Patton, R. J., & Kambhampati, C. (2008). Robust FDI for FTC coordination in a distributed network system. IFAC Proceedings Volumes/ International Federation of Automatic Control, 41(2), 13551-13556. https://doi.org/10.3182/20080706-5-KR-1001.0468

This paper focuses on the development of a suitable Fault Detection and Isolation (FDI) strategy for application to a system of inter-connected and distributed systems, as a basis for a fault-tolerant Network Control System (NCS) problem. The work fo... Read More about Robust FDI for FTC coordination in a distributed network system.

Reliable fault diagnosis scheme for a spacecraft attitude control system (2008)
Journal Article
Patton, R. J., Uppal, F. J., Simani, S., & Polle, B. (2008). Reliable fault diagnosis scheme for a spacecraft attitude control system. Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 222(2), 139-152. https://doi.org/10.1243/1748006xjrr98

This paper presents a scheme for fault detection and isolation (FDI) of on-board gyroscope sensors and thrusters for spacecraft attitude control, based on the example of the Mars Express (MEX) satellite. The main contribution of the paper is related... Read More about Reliable fault diagnosis scheme for a spacecraft attitude control system.

A generic strategy for fault-tolerance in control systems distributed over a network (2007)
Journal Article
Patton, R. J., Kambhampati, C., Casavola, A., Zhang, P., Ding, S., & Sauter, D. (2007). A generic strategy for fault-tolerance in control systems distributed over a network. European journal of control / EUCA, European Control Association, 13(2-3), 280-296. https://doi.org/10.3166/ejc.13.280-296

This paper provides a tutorial overview, of a number of aspects and approaches to Control over the Network for Network Control Systems (NCS) that are likely to lead to good fault-tolerant control properties, subject to network faults. In order to ana... Read More about A generic strategy for fault-tolerance in control systems distributed over a network.

Fault diagnosis of an industrial gas turbine prototype using a system identification approach (2007)
Journal Article
Simani, S., & Patton, R. J. (2008). Fault diagnosis of an industrial gas turbine prototype using a system identification approach. Control engineering practice, 16(7), 769-786. https://doi.org/10.1016/j.conengprac.2007.08.009

In this work, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine simulated process is presented. The main point of the paper consists of exploiting an identification scheme in connectio... Read More about Fault diagnosis of an industrial gas turbine prototype using a system identification approach.

An interaction predictive approach to fault-tolerant control in network control systems (2007)
Journal Article
Kambhampati, C., Perkgoz, C., Patton, R. J., & Ahamed, W. (2007). An interaction predictive approach to fault-tolerant control in network control systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 221(6), 885-894. https://doi.org/10.1243/09596518jsce377

This paper illustrates some of the capabilities of previously proposed network control system (NCS) architectures to carry on functioning in the event of faults, without recourse to system reconfiguration. The principle of interaction prediction is u... Read More about An interaction predictive approach to fault-tolerant control in network control systems.

Observing a three-tank system (2005)
Journal Article
Hou, M., Xiong, Y., & Patton, R. (2005). Observing a three-tank system. IEEE Transactions on Control Systems Technology, 13(3), 478-484. https://doi.org/10.1109/TCST.2004.839578

Observability analysis and observer synthesis are studied for a three-tank water process. Observability of the process is considered under various assumptions on measurements. The observer design takes into account singularity of nonlinear observers.... Read More about Observing a three-tank system.

An observer design for linear time-delay systems (2002)
Journal Article
Hou, M., Zítek, P., & Patton, R. J. (2002). An observer design for linear time-delay systems. IEEE transactions on automatic control, 47(1), 121-125. https://doi.org/10.1109/9.981730

An observer design is proposed for linear systems with time delay. The key of the design is to find a generalized coordinate change such that in the new coordinates all the time-delay terms are injected by the system's output. The existence of such a... Read More about An observer design for linear time-delay systems.

Output feedback sliding mode FTC for a class of nonlinear inter-connected systems
Presentation / Conference
Patton, R. J., & Huang, Z. Output feedback sliding mode FTC for a class of nonlinear inter-connected systems. Paper presented at IFAC-PapersOnLine

This paper is concerned with the challenge of developing a fault-tolerant control (FTC) scheme for an inter-connected decentralised system in which the individual subsystems are linear but the inter-connections are non-linear functions of the subsyst... Read More about Output feedback sliding mode FTC for a class of nonlinear inter-connected systems.