Skip to main content

Research Repository

Advanced Search

Professor Ron Patton

Image

Ron Patton

Professor of Control and Intelligent Systems Engineering


Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment (2018)
Journal Article
Siya, J., Patton, R. J., & Guo, B. (2018). Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment. Renewable energy, 129(A), 500-512. https://doi.org/10.1016/j.renene.2018.06.006

To achieve optimal power in a wave energy conversion (WEC) system it is necessary to understand the device hydrodynamics. To maximize conversion efficiency the goal is to tune the WEC performance into resonance. The main challenge then to be overcome... Read More about Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment.

Numerical and experimental studies of excitation force approximation for wave energy conversion (2018)
Journal Article
Guo, B., Patton, R. J., Jin, S., & Lan, J. (2018). Numerical and experimental studies of excitation force approximation for wave energy conversion. Renewable energy, 125, 877-889. https://doi.org/10.1016/j.renene.2018.03.007

Past or/and future information of the excitation force is useful for real-time power maximisation control of Wave Energy Converter (WEC) systems. Current WEC modelling approaches assume that the wave excitation force is accessible and known. However,... Read More about Numerical and experimental studies of excitation force approximation for wave energy conversion.

A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults (2017)
Journal Article
Lan, J., & Patton, R. J. (2018). A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults. Automatica : the journal of IFAC, the International Federation of Automatic Control, 89, 290-299. https://doi.org/10.1016/j.automatica.2017.12.011

This paper proposes a decoupling approach to the integrated design of fault estimation (FE) and fault-tolerant control (FTC) for linear systems in the presence of unknown bounded actuator faults and perturbations. An adaptive sliding mode augmented s... Read More about A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults.

Study of scale modelling, verification and control of a heaving point absorber wave energy converter (2017)
Thesis
Guo, B. (2017). Study of scale modelling, verification and control of a heaving point absorber wave energy converter. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4220352

This study focuses on scale modelling of a heaving Point Absorber Wave Energy Converter (PAWEC), model verification via wave tank tests and power maximisation control development. Starting from the boundary element method simulation of the wave-PAWEC... Read More about Study of scale modelling, verification and control of a heaving point absorber wave energy converter.

Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion (2017)
Journal Article
Guo, B., Patton, R., Jin, S., Gilbert, J., & Parsons, D. (2017). Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion. IEEE Transactions on Sustainable Energy, 9(1), 453-461. https://doi.org/10.1109/tste.2017.2741341

Although the heaving Point Absorber (PA) concept is well known in wave energy conversion research, few studies focus on appropriate modelling of non-linear fluid viscous and mechanical friction dynamics. Even though these concepts are known to have n... Read More about Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion.

Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation (2017)
Journal Article
Lan, J., Patton, R. J., & Zhu, X. (2017). Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation. IET Control Theory and Applications, 11(14), 2232-2241. https://doi.org/10.1049/iet-cta.2016.1602

© The Institution of Engineering and Technology 2017. This study proposes a fault estimation (FE)-based fault-tolerant control (FTC) strategy to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter system with... Read More about Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation.

Robust model-based fault estimation and fault-tolerant control : towards an integration (2017)
Thesis
Lan, J. (2017). Robust model-based fault estimation and fault-tolerant control : towards an integration. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4219844

To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estima... Read More about Robust model-based fault estimation and fault-tolerant control : towards an integration.

Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation (2016)
Journal Article
Lan, J., Patton, R. J., & Zhu, X. (2018). Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renewable energy, 116, 219-231. https://doi.org/10.1016/j.renene.2016.12.005

Wind turbine pitch systems are essential for actuating desired blade angles and hence to keep the generator at rated speed in operation region 3. In the presence of parametric pitch actuator faults, pitch systems may have slow dynamics, affecting the... Read More about Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation.

Application of model-based LPV actuator fault estimation for an industrial benchmark (2016)
Journal Article
Chen, L., Patton, R., & Goupil, P. (2016). Application of model-based LPV actuator fault estimation for an industrial benchmark. Control engineering practice, 56, 60-74. https://doi.org/10.1016/j.conengprac.2016.08.003

To bridge the gap between model-based fault diagnosis theory and the industry practice, a linear parameter varying H_/H∞ fault estimation approach is applied to a high fidelity nonlinear aircraft benchmark, to deal with the various actuator fault det... Read More about Application of model-based LPV actuator fault estimation for an industrial benchmark.

Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling (2016)
Journal Article
Lan, J., & Patton, R. J. (2017). Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling. IEEE Transactions on Fuzzy Systems, 25(5), 1141-1154. https://doi.org/10.1109/tfuzz.2016.2598849

This paper proposes an integrated design of faulttolerant control (FTC) for nonlinear systems using Takagi-Sugeno (T-S) fuzzy models in the presence of modelling uncertainty along with actuator/sensor faults and external disturbance. An augmented sta... Read More about Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling.