University of Hull logo

Professor Daniel Parsons

Image

Daniel Parsons

Professor in Sedimentology/ Director, Energy and Environment Institute


Linking direct measurements of turbidity currents to submarine canyon-floor deposits (2019)
Journal Article
Maier, K., Gales, J., Paull, C., Rosenberger, K., Talling, P., Simmons, S., …Sumner, E. (2019). Linking direct measurements of turbidity currents to submarine canyon-floor deposits. Frontiers in Earth Science, 7, https://doi.org/10.3389/feart.2019.00144

Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedi... Read More

Linking direct measurements of turbidity currents to submarine canyon-floor deposits (2019)
Journal Article
Maier, K., Gales, J., Paull, C., Rosenberger, K., Talling, P., Simmons, S., …Sumner, E. (2019). Linking direct measurements of turbidity currents to submarine canyon-floor deposits. Frontiers in Earth Science, 7, https://doi.org/10.3389/feart.2019.00144

Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedi... Read More

Self-sharpening induces jet-like structure in seafloor gravity currents (2019)
Journal Article
Dorrell, R. M., Peakall, J., Darby, S. E., Parsons, D. R., Johnson, J., Sumner, E. J., …Tezcan, D. (2019). Self-sharpening induces jet-like structure in seafloor gravity currents. Nature communications, 10(1), https://doi.org/10.1038/s41467-019-09254-2

Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 196... Read More

Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery (2019)
Journal Article
Strick, R. J., Ashworth, P. J., Sambrook Smith, G. H., Nicholas, A. P., Best, J. L., Lane, S. N., …Dale, J. (2019). Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth surface processes and landforms : the journal of the British Geomorphological Research Group, 44(4), 953-972. https://doi.org/10.1002/esp.4558

Images from specially‐commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, C... Read More

On the causes of pulsing in continuous turbidity currents (2018)
Journal Article
Kostaschuk, R., Nasr-Azadani, M. M., Meiburg, E., Wei, T., Chen, Z., Negretti, M. E., …Parsons, D. R. (2018). On the causes of pulsing in continuous turbidity currents. Journal of geophysical research. JGR. Earth surface, 123(11), 2827-2843. https://doi.org/10.1029/2018JF004719

Velocity pulsing has previously been observed in continuous turbidity currents in lakes and reservoirs, even though the input flow is steady. Several different mechanisms have been ascribed to the generation of these fluctuations, including Rayleigh‐... Read More

Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring (2018)
Journal Article
Wu, X., Baas, J. H., Parsons, D. R., Eggenhuisen, J., Amoudry, L., Cartigny, M., …Ruessink, G. (2018). Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring. Journal of geophysical research. JGR. Earth surface, 123(11), 2784-2801. https://doi.org/10.1029/2018JF004681

Based on bed form experiments in a large‐scale flume, we demonstrate that the rate of development of wave ripples on a mixed sand‐clay bed under regular waves is significantly lower than on a pure‐sand bed, even at clay fractions as low as 4.2%, and... Read More

Powerful turbidity currents driven by dense basal layers (2018)
Journal Article
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., …Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature communications, 9(1), https://doi.org/10.1038/s41467-018-06254-6

Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirel... Read More

Controls on mud distribution and architecture along the fluvialto- marine transition (2018)
Journal Article
van de Lageweg, W. I., Braat, L., Parsons, D. R., & Kleinhans, M. G. (2018). Controls on mud distribution and architecture along the fluvialto- marine transition. Geology, 46(11), 971-974. https://doi.org/10.1130/G45504.1

© 2018 Geological Society of America. The interaction of marine (tides and waves) and fluvial processes determines the sedimentary fill of coastal systems in the fluvial-tomarine (FTM) transition zone. Despite frequent recognition of tidal and wave i... Read More

The adaptation of dunes to changes in river flow (2018)
Journal Article
Reesink, A. J. H., Parsons, D. R., Ashworth, P. J., Best, J. L., Hardy, R. J., Murphy, B. J., …Unsworth, C. (2018). The adaptation of dunes to changes in river flow. Earth-Science Reviews, 185, 1065-1087. https://doi.org/10.1016/j.earscirev.2018.09.002

The dunes that cover the beds of most alluvial channels change in size and shape over time and in space, which in turn affects the flow and sediment-transport dynamics of the river. However, both the precise mechanisms of such adaptation of dunes, an... Read More

Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents (2018)
Journal Article
Smith, G. M., Williams, R., Rowley, P., & Parsons, D. R. (2018). Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents. Bulletin of volcanology, 80(8), https://doi.org/10.1007/s00445-018-1241-1

The high mobility of dense pyroclastic density currents (PDCs) is commonly attributed to high gas pore pressures. However, the influence of spatial and temporal variations in pore pressure within PDCs has yet to be investigated. Theory suggests that... Read More