Skip to main content

Research Repository

Advanced Search

Outputs (3)

Influence of Coriolis force upon bottom boundary layers in a large‐scale gravity current experiment: Implications for evolution of sinuous deep‐water channel systems (2020)
Journal Article
Davarpanah Jazi, S., Wells, M., Peakall, J., Dorrell, R., Thomas, R., Keevil, G., …Valran, T. (2020). Influence of Coriolis force upon bottom boundary layers in a large‐scale gravity current experiment: Implications for evolution of sinuous deep‐water channel systems. Journal of Geophysical Research: Oceans, 125(3), https://doi.org/10.1029/2019JC015284

Oceanic density currents in many deep-water channels are strongly influenced by the Coriolis force. The dynamics of the bottom-boundary layer in large geostrophic flows, and low Rossby number turbidity currents, are very important for determining the... Read More about Influence of Coriolis force upon bottom boundary layers in a large‐scale gravity current experiment: Implications for evolution of sinuous deep‐water channel systems.

Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design (2020)
Journal Article
Padgett, T. E., Borman, D. J., Mould, D. C., Padgett, T., Thomas, R. E., Borman, D., & Mould, D. (2020). Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design. Royal Society Open Science, 7(1), Article 191505. https://doi.org/10.1098/rsos.191505

European eel populations have declined markedly in recent decades, caused in part by in-stream barriers, such as weirs and pumping stations, which disrupt the upstream migration of juvenile eels, or elvers, into rivers. Eel passes, narrow sloping cha... Read More about Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design.

Pulse propagation in gravity currents (2020)
Journal Article
Allen, P. A., Dorrell, R. M., Harlen, O. G., Thomas, R. E., & McCaffrey, W. D. (2020). Pulse propagation in gravity currents. Physics of Fluids, 32(1), Article 016603. https://doi.org/10.1063/1.5130576

Real world gravity current flows rarely exist as a single discrete event, but are instead made up of multiple surges. This paper examines the propagation of surges as pulses in gravity currents. Using theoretical shallow-water modeling, we analyze th... Read More about Pulse propagation in gravity currents.