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Abstract 

Fault tree analysis is a widely used method of risk assessment in process industries. However, the classical fault tree 

approach has its own limitations such as the inability to deal with uncertain failure data and to consider statistical 

dependence among the failure events. In this paper, we propose a comprehensive framework for the risk assessment 

in process industries under the conditions of uncertainty and statistical dependency of events. The proposed 

approach makes the use of expert knowledge and fuzzy set theory for handling the uncertainty in the failure data and 

employs the Bayesian Network modeling for capturing dependency among the events and for a robust probabilistic 

reasoning in the conditions of uncertainty. The effectiveness of the approach was demonstrated by performing risk 

assessment in an ethylene transportation line unit in an ethylene oxide (EO) production plant. 
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1. Introduction

In recent years, complex chemical plants have been rapidly developed to meet the increasing demand of process 

industries. As these plants usually process hazardous materials, their failure can cause serious harm both to people 

and the environment. For this reason, it is necessary to identify potential risks posed by such systems and then take 

measures to minimize the likelihood of these risks. To deal with the large number of accidents, incidents, near 

misses, and mishaps in process industries, different risk assessment approaches have been developed and widely 

used to perform a hazard analysis, thus enabling the prevention of an inadvertent incident and planning of mitigative 

actions (Khakzad et al., 2013a, 2011; Yan et al., 2016). 

The risk assessment techniques deployed for identifying and controlling the risks in hazardous industries might 

appear satisfactory to their users; however, in a real life scenario, there have been many cases of disastrous accidents 

due to the failure of such preventive measure, such as deepwater horizon explosion and oil spill in 2010, Fukushima 

disaster in 2011, storage tank explosion at loading port in Tianjin in 2015, the explosion of a natural gas (NG) 

factory in Belgium in 2004, and conflagration caused by NG leakage in Paraguay in 2004, etc. (Escande et al., 2016; 

Han and Weng, 2011; Khakzad, 2015; Taveau, 2010). The approaches used for hazard analysis in process industries 

include, but are not limited to, Hazard and Operability Analysis (HAZOP) (Dunjó et al., 2010), Fault Tree Analysis 

(FTA) (Vesely et al., 2002), and Bow-tie diagrams (De Dianous and Fiévez, 2006). FTA is the most popular among 

all available techniques and it has been extensively used for risk analysis in several industries (Kabir, 2017; Khan et 

al., 2008; Wang et al., 2002). 

A fault tree (FT) can be analyzed both qualitatively and quantitatively. A qualitative analysis minimizes a fault tree 

to a set of minimal cut sets (MCSs), which are the smallest combinations of events that are necessary and sufficient 

to cause the top event (TE), i.e., a hazardous event. A quantitative analysis mathematically calculates the occurrence 
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probability of the top event and other relevant numerical indexes, given the failure rate/probability of an individual 

element of a system. For this reason, the applicability of FTA for quantitative analysis largely depends on the 

availability of failure data. However, for most of the large and complex systems, it is often very difficult to obtain 

precise failure data due to the lack of knowledge, scarcity of statistical data, ambiguous component behavior, and 

the operating environment of the system (Huang et al., 2004; Kabir et al., 2016; Omidvari et al., 2014). In such 

cases, FTA cannot be used for risk assessment due to the lack of failure data. In addition to that, during the 

quantitative analysis, different events (e.g. intermediate events representing MCSs) in the fault tree are generally 

considered to be statistically independent. However, in real life systems, the events are not always statistically 

independent. For example, two MCSs may become statistically dependent because of sharing of a common basic 

event. For this reason, the statistical independence assumption about the events could lead to an inappropriate 

estimation of system dependability. 

In order to deal with the ambiguities and shortages of data in conventional FTA, extensive studies have been 

performed by employing fuzzy set theory in different areas. In recent years, Celik et al. (2010) and Lavasani et al. 

(2015a, 2015b, 2011) have used the triangular and trapezoidal fuzzy numbers to compute the failure probability (FP) 

of the top event (TE) with respect to an expert judgment in different chemical industries. Fuzzy FTA was applied for 

the reliability analysis of fire and explosion of a crude oil tank by Wang et al.(2013). Furthermore, Yazdi et al. 

(2017) utilized the similarity aggregation method (SAM) in terms of fuzzy set theory to compute the failure 

probability of a granule storage tank. Ferdous et al. ( 2009) used a computer aided fuzzy fault tree analysis for the 

same purpose. However, their model cannot cope with the dependency and redundant events in a realistic system. A 

potential remedy to this problem is to translate a static fuzzy fault tree to a different model, which is capable of 

capturing dependency among events and can also model scenarios with redundant events. 

Bayesian network (BN) is a well-known graphical inference method which expresses the causal relationships 

between the causes and final outcomes in a system (Rausand, 2011). In addition, BN has also been widely used in 

various engineering applications such as risk and reliability assessment (Abimbola et al., 2015; Bouejla et al., 2014; 

Hänninen et al., 2014; Huang et al., 2006; Khakzad et al., 2013a, Yuan et al., 2015), improving the safety 

performance of a system ( Herrero et al., 2013; John et al., 2016; Trucco et al., 2008), updating failure probability 

(Leu and Chang, 2013; Musharraf et al., 2016; Wu et al., 2015), and mapping static or dynamic FTs into 

corresponding BNs (Barua et al., 2016; Hänninen et al., 2014; Kabir et al., 2014; Khakzad et al., 2013a, 2013b; 

Marvin et al., 2017; Pereira et al., 2016; Yeo et al., 2016; Zarei et al., 2017). In a BN model, both forward and 

backward analysis could be performed. A forward analysis is performed to estimate the probability of unknown 

variables by following the arcs of the network. On the other hand, the backward analysis is performed by following 

the network arcs in opposite direction to update the probability of known variables based on some evidence. 

The objective of this study was to find a new approach for performing risk analysis in a more consistent way under 

the condition of uncertainty. In the proposed approach, a fault tree is used for qualitative analysis to identify the root 

causes of the hazardous event and the fuzzy set theory, along with expert judgment, is used to obtain the unknown 

failure data of basic events of the FT. The probability of the occurrence of the hazardous events and other related 

reliability indexes are calculated by translating the fault tree into a Bayesian network. The proposed methodology 

was applied for risk analysis of ethylene transportation line. The results obtained by the proposed approach are also 

compared with those obtained by the classical fuzzy fault tree approach. This approach offers an improved 

quantitative analysis of complex systems by eliminating the assumption of statistical independence among the 

events. Moreover, unlike the traditional approaches, the proposed one can be used for diagnostic analysis of 

systems, which is particularly important to determine maintenance strategies.  
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This paper is organized as follows. In Section 2, a new approach based on the fuzzy theory and Bayesian modeling 

is introduced that computes the failure probability of TE. A numerical example is presented in Section 3 to 

exemplify the feasibility and effectiveness of the proposed model. Finally, the conclusion and future remarks are 

described in Section 4. 

2. Material and Methodology 

FT is a well-known method which is widely used in failure analysis (Yuan et al., 2015). It is a deductive 

methodology that represents the interrelationship between basic events (BEs) and the root cause in a complex 

system. These interrelationships are typically obtainable as logical AND/OR gates (Bobbio et al., 2001; Rausand, 

2011). In order to find the probability of TE in a specific case, the failure rates of BEs are taken from standard 

reliability data sources such as OREDA (2002). However, as mentioned earlier, there some limitations, which might 

occur during the analysis, such as the lack of data for BEs or analyzing the dynamic system, which conventional 

FTA is not capable of. This section, to deal with these limitations, provides a new approach. A graphical overview 

of the approach is shown in Fig. 1. Hazard analysis, FT construction and data collection, Bayesian modeling, and the 

calculation are the four key stages in the proposed method, which are presented in details as follows. 

2.1. Hazard analysis 

In the recent decade, several methods have been developed for hazard analysis, e.g., HAZOP and FMEA (Khakzad 

et al., 2011). In this regard, all possibilities of failures need to be considered. Therefore, understanding the process 

thoroughly is the vital step. After completing the collection of information process, the identification of all hazards 

and menaces for any hazardous events that may cause damage to the equipment or harm to people and/or 

environment needs to be taken into consideration (Rausand and Hoyland, 2004). Among all the mentioned analysis 

techniques based on brainstorming methods, the critical and hazardous system and sub-system can be figured out by 

employing a group of experts for further studies, such as causal and frequency analysis. In this study, the output of 

HAZOP is selected as a worst-case event. 

2.2. Fault tree construction and data collection 

The construction of an FT always starts with a specified TE placed at the top of the tree and the rest of the tree is 

constructed in the downward direction. The TE usually indicates an accident that can cause asset loss or safety 

hazards (Lewis, 1996). In order to complete a tree, the BEs that are denoted as the lowest level (leaves) of the tree 

should be known beforehand. In an FT, BEs are usually considered statistically independent and could be in any of 

the two binary states (failed and non-failed).  

As mentioned earlier, the exponentially distributed failure rate of known BEs can be obtained from OREDA (2002) 

and subsequently is transferred to failure probability by Equation (1).  

𝑃(𝑡)  =  1 − 𝑒−𝜆𝑡                                        (1) 

where P denotes the probability of failure, λ represents failure rate (the number of failures per year), and t is the time 

inspection interval. 

On the other hand, the three methods-extrapolation, statistical, and expert judgment-can be employed to estimate the 

probability of BEs with unknown or limited failure data (Preyssl, 1995). The extrapolation technique is based on an 

estimation approach, which is applied on a standard reliability data source, while the statistical technique implies the 

examination of data in a direct way to compute the probability of an event. Besides, the expert judgment method can 

be engaged to estimate the probabilities with respect to experts’ opinions. 
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Fig. 1. The framework of the proposed method 

In this study, the expert judgment method as a scientific consensus approach is employed to compute the probability 

of unknown BEs. Therefore, an integration of fuzzy set theory and subjective opinions to overcome any possible 

ambiguity can help the assessors (Yazdi et al., 2017a). 
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The following section introduces a way showing how experts can be employed and weighted to obtain the failure 

data. 

2.3. Using expert judgment (Fuzzy AHP) 

Fuzzy set theory has been used in several studies to aggregate the expert opinions to overcome the possible 

ambiguities in failure data. The main aspect of the fuzzy set theory is how to quantify the qualitative index. The 

subjectivity should be avoided in order to get more credible and reliable results. A simple averaging method, 

regarding some criteria including personal experience, job tenure, and education level, has mostly applied in the 

literature for expert weighting. This approach does not provide sufficiently high objectivity (Lavasani et al., 2015a, 

2015b; Miri Lavasani et al., 2011; Ramzali et al., 2015; Yan et al., 2016; Yazdi et al., 2017b). Therefore, an 

extension of fuzzy analytical hierarchy process (FAHP) can overcome subjectivity issues. 

Conventional AHP is a well-known method, which is commonly used in multi-criteria decision-making problems. In 

this case, as conventional AHP method cannot deal with subjective knowledge, FAHP has been developed to solve 

the AHP problems (Gul and Guneri, 2016). In other words,  the main purpose of AHP is collecting expert opinions, 

though conventional AHP cannot reflect the human thinking. Several FAHP techniques have been proposed in the 

last few decades. Of them, the two most important were introduced by Buckley (1985) and Chang (1996), which 

used trapezoidal and triangular fuzzy membership function for a pairwise comparison scale, respectively. 

In this study, an extension of Buckley's method was used for weighting the experts, due to the limitations in other 

techniques, such as all fuzzy comparison matrices cannot be completely used. Besides, in Buckley's method, 

illogical zero weight may also be obtained for the selection criteria (Chan and Wang, 2013).  

The weight of each expert can be computed in a more reliable way on the basis of their knowledge and experience. 

Therefore, the computed weights are vital in order to represent the relative superiority of the employed experts. The 

next section introduces an approach based on the fuzzy theory to transform the linguistic possibilities of expert 

opinions into a fuzzy probability to aggregate their opinions into a crisp probability value (Altunkaynak et al., 2005; 

Duan et al., 2016; Mohsendokht, 2017; Shi et al., 2014).  

2.4. Aggregation procedure  

The aggregation procedure of expert judgment in the fuzzy logic system is divided into three stages as below. 

Stage 1: Obtaining linguistic terms of unknown BEs based on expert judgment 

Stage 2: Converting linguistic terms into corresponding fuzzy numbers 

Stage 3: Converting fuzzy numbers into fuzzy possibility scores (FPS) 

Further details of the mentioned stages are explained below. 

2.4.1. Obtaining linguistic terms of unknown BEs based on expert judgment (stage 1) 

The purpose of stage 1 was determining the failure likelihood of BEs considering the linguistic terms expressed by 

the experts. Several experts were consulted for this purpose and were furnished with a questionnaire by email to 

provide their judgment about the failure possibility of basic events. The linguistic terms, representing the probability 

of BEs, were scaled at seven levels: very high (VH), high (H), fairly high (FH), medium (M), fairly low (FL), low 

(L), and very low (VL). These levels were based on Saaty's approach (Saaty and Ozdemir, 2003), who discussed that 

the proper number for expert judgment at a specified time is between five and nine or in the other words the 

common capacity of human judgment is seven plus/minus two chunks. 
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2.4.2. Converting linguistic terms into corresponding fuzzy numbers (stage 2) 

There are many applications of fuzzy set theory to deal with uncertainties and inaccuracy in expert judgments in 

linguistic terms such as triangular, trapezoidal, intuitionistic, and Gaussian fuzzy membership function (Atanassov, 

2012; Purba et al., 2014). The guarantee of the best membership function is based on realistic circumstances  

(Markowski and Mannan, 2008). In earlier studies, triangular and trapezoidal fuzzy numbers have been found to be 

effective for risk assessment purpose (Ferdous et al., 2013; Lavasani et al., 2015a, 2015b; Mardani et al., 2015; 

Ramzali et al., 2015; Yazdi, 2017). Therefore, both triangular and trapezoidal fuzzy numbers were utilized to map 

linguistic opinions to fuzzy membership function. The reason of using these two types of fuzzy numbers is that 

under some weak assumptions, the defined membership functions can directly meet the appropriate optimization 

criteria (Pedrycz, 1994). 
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Fig. 2. Fuzzy membership functions 

In this way, a corresponding fuzzy number for each linguistic term could be obtained. Further, it is necessary to 

aggregate subjective opinions of experts regarding identified BEs into a single opinion. Various techniques are 

available in the literature to aggregate experts' opinions such as linear opinion pool, max-min Delphi, sum-product, 

max-product, and similarity aggregation (Aqlan and Mustafa Ali, 2014; Ishikawa et al., 1993; Ross, 2009). 

However, Liu et al.(2014) discussed that there is no way to show which method has superiority to the other one. 

The sum-production algorithm, which is used in this study for the aggregation process could be presented as follows. 

𝑍𝑖 = ∑ 𝑤𝑗 . 𝑓𝑖𝑗
𝑛
𝑗=1  , 𝑖 = 1,2, … ,𝑚      𝑗 = 1,2, … , 𝑛                                            (2) 

where 𝑍𝑖 denotes the aggregated fuzzy number for BEi, 𝑤𝑗  represents the weight of experts j, and 𝑓𝑖𝑗is corresponding 

fuzzy number of BEi given by expert j. n and m are the number of experts and BEs respectively. The 𝛼-cut is a 

commonly used method to operate the fuzzy membership function (Lowen, 1996; Mesiar, 2007; Ross, 2009; Zhang 

et al., 2017). 

2.4.3. Converting fuzzy numbers into fuzzy possibility scores (FPS) (stage 3) 

FPS denotes a crisp value that is based on experts’ opinions aggregated for a possible event. In order to defuzzify a 

quantifiable outcome in the fuzzy set theory, several common techniques are available including the center of area 

(CoA), the center of the largest area, max-min, bisector, weighted average, mean max, and the center of sum 

(Akkurt et al., 2004; Ross, 2009). In this study, the max-min aggregation methods, proposed by Chen and Hwang 
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(1992), was used for defuzzification process (Shi et al., 2014).The maximum and minimum fuzzy sets are expressed 

as follows. 

𝑓𝑚𝑎𝑥(𝑥) = {
𝑥,        (0 ≤ 𝑥 ≤ 1)
0,         (otherwise)

                (3) 

 

𝑓𝑚𝑖𝑛(𝑥) = {
1 − 𝑥,        (0 ≤ 𝑥 ≤ 1)
    0,            (otherwise)

      (4) 

Subsequently, the right and left score of fuzzy set (Z) can be computed as follows, respectively. 

𝐹𝑃𝑆𝑅𝑖𝑔ℎ𝑡(𝑍) = [𝑓𝑧(𝑥) ⋀ 𝑓𝑚𝑎𝑥(𝑥)]𝑥
𝑠𝑢𝑝

= 
(1 − 𝑑)

[1 + (𝑑 − 𝑐)]⁄              (5) 

𝐹𝑃𝑆𝐿𝑒𝑓𝑡(𝑍) = [𝑓𝑧(𝑥) ⋀ 𝑓𝑚𝑖𝑛(𝑥)]𝑥
𝑠𝑢𝑝

= 
(1 − 𝑎)

[1 + (𝑏 − 𝑎)]⁄                (6) 

In addition, the relationship between left and right side of fuzzy set (Z) is illustrated in Fig. 3. 
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Fig. 3.The schematic computation of right and left FPS 

Therefore, the fuzzy possibility scores of fuzzy number 𝑍𝑖 can be obtained by the following equation. 

𝐹𝑃𝑆(𝑍𝑖) = [𝐹𝑃𝑆𝑅𝑖𝑔ℎ𝑡(𝑍𝑖) + 1 − 𝐹𝑃𝑆𝐿𝑒𝑓𝑡(𝑍𝑖)] 2⁄                                     (7) 

Thus the aggregated FPS with respect to experts’ weight is computed for each BE. In the next section, the failure 

probability calculation process and mapping of FT into BN for executing further actions are explained. 

2.5. Calculation and Bayesian Modeling 

2.5.1. The calculation of failure probability and TE probability 

FPS are converted to failure probability by using following equation proposed by Onisawa (1990). 

Failure probability = {1 10𝑘       𝐹𝑃𝑆 ≠ 0⁄
     0           𝐹𝑃𝑆 = 0

                               (8) 

𝐹𝑃𝑆𝑅𝑖𝑔ℎ𝑡(𝑍) 

𝐹𝑃𝑆𝐿𝑒𝑓𝑡(𝑍) 

𝑦 = 𝑥 

𝑦 = 1 − 𝑥 
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𝑘 = 2.301 × [(1 − 𝐹𝑃𝑆)/𝐹𝑃𝑆]1 3⁄                                             (9) 

The process of transferring linguistic terms into failure probabilities considering 𝛼-cut methods is completed at this 

point. Therefore, by following the above processes failure probability of all BEs can be computed. Moreover, using 

Boolean algebra and the failure probability of the BEs, the failure probability of TE can be computed (Banerjee, 

2003). This process is known as the analytical method for quantifying FTs. 

2.5.2. Bayesian Modeling 

2.5.2.1. Bayesian Network 

Similar to FT, BN is a probabilistic graphical technique, which is widely used for constructing system reliability 

models based on uncertain knowledge (Khakzad et al., 2013, 2011; Zarei et al., 2017). BN results in a directed 

acyclic graph that includes the set of nodes denoting the variables, which are connected by directed arcs. The arcs 

represent the probabilistic causal relationship between the variables and Conditional Probability Tables (CPTs) are 

set to the nodes in order to represent the conditional dependencies. 

According to conditional dependency of variables and chain rules, BN denoted the joint probability distribution of 

set of variables as follows (Jensen and Nielsen, 2007): 

𝑃(𝑈) = ∏ 𝑃(𝑋𝑖 ∣ 𝑋𝑖+1, … 𝑋𝑛)
𝑛−1
𝑖=1                                         (10) 

Where 𝑈 = {𝑋1, 𝑋2, … , 𝑋𝑛} and 𝑋𝑖+1is the parent of 𝑋𝑖. Accordingly, the probability of 𝑋𝑖 can be computed as: 

𝑃(𝑋𝑖) = ∑ 𝑃(𝑈)𝑈∖𝑋𝑖
                                                          (11) 

The risk and reliability analysis is a well-known application of BN to update the prior failure probabilities of 

specified events, given the new information in the form of evidence. This information is usually based on expert 

knowledge or becomes available in the lifecycle of processes, such as accidents, incidents, near misses, mishaps, etc. 

Therefore, BN allows reaching a better analysis in a dependable situation of a complex system including common 

cause failure (CCF) and diagnostic reasoning (Bobbio et al., 2001). 

Based on Bayes theorem, BN can be used to update the prior probability of an event (E): 

𝑃(𝑈 ∣ 𝐸 ) =
𝑃(𝑈∩𝐸)

𝑃(𝐸)
=

𝑃(𝑈∩𝐸)

∑ 𝑃(𝑈∩𝐸)𝑈
                                           (12) 

In the case of FT, it can be shown as follows: 

𝑃 (𝐵𝐸𝑘 ∣
∣ 𝐸𝑖𝑛𝑗,𝑘 ) =

𝑃(𝐵𝐸𝑘∩𝐸𝑖𝑛𝑗,𝑘
)

𝑃(𝐸𝑖𝑛𝑗,𝑘
)

=
𝑃(𝐸𝑖𝑛𝑗,𝑘 ∣∣

∣𝐵𝐸𝑘 )∙𝑃(𝐵𝐸𝑘)

𝑃(𝐸𝑖𝑛𝑗,𝑘
)

      (13) 

where 

 𝐸𝑖𝑛𝑗,𝑘 represents the jth state of “given new information” denoting the effect of new events on 𝐵𝐸𝑘 . Besides, 

𝑃 (𝐵𝐸𝑘 ∣
∣ 𝐸𝑖𝑛𝑗,𝑘 ) is the posterior failure probability of 𝐵𝐸𝑘 given 𝐸𝑖𝑛𝑗,𝑘; 

 𝑃(𝐵𝐸𝑘) is the prior failure probability of 𝐵𝐸𝑘  provided by expert judgment or standard reliability sources; 

 𝑃(𝐸𝑖𝑛𝑗,𝑘) is the probability of state j of the k “given new information” which is estimated from the BN 
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 𝑃 (𝐸𝑖𝑛𝑗,𝑘 ∣
∣ 𝐵𝐸𝑘 )  is denoted as degree of belief in the failure of  𝐸𝑖𝑛𝑗,𝑘  given the failure of 𝐵𝐸𝑘 . The value 

of 𝑃 ( 𝐸𝑖𝑛𝑗,𝑘 ∣
∣ 𝐵𝐸𝑘 ) can be found out by asking question from experts. 

2.5.2.2. Mapping procedure 

The mapping of FT into BN is based on graphical and numerical functions (Bobbio et al., 2001). In graphical 

mapping, top event, intermediate events, and basic events of FT are denoted as leaf nodes, intermediate nodes, and 

root nodes in an equivalent BN, respectively. In an FT, the top event and the intermediate events are always 

represented as logic gates. For this reason, to be able to distinguish the nodes representing the basic events from the 

nodes representing the logic gates in a BN, we used single circles to represent the basic event nodes and double 

circles to represent the top and intermediate event nodes.  In numerical mapping, the failure probabilities of BEs are 

given to the related nodes as prior failure probabilities. CPTs can be generated for all intermediate nodes based on 

the logic gates they represent ( see details in Bobbio et al. (2001)). Fig. 4 shows the simplified procedure of mapping 

of FTs into BNs presented by Khakzad et al.  (2011). 
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Fig. 4. Mapping of FT to BN 

2.5.3. Importance measures and Critical nodes 

In FTA, there are many importance measures available to measure the relative importance of each BE or MCS in 

terms of their impact on the occurrence of the top event (Modarres, 2006; Rausand, 2014). In parallel way, 

according to Bayesian theorem, the importance measures can be represented in the new approach and computed by 

their logical relationships in BN (Van Der Borst and Schoonakker, 2001). 

Birnbaum Measure (BM): BM of an event is obtained by taking the difference between the probability of the top 

event by setting the event probability to 1 and 0, respectively. 

In BN model, BM can be obtained as: 

𝐼𝐵𝐸𝑖
𝐵𝑀 = 𝑃( 𝑇𝐸 ∣∣ 𝐵𝐸𝑖 = 1 ) − 𝑃(𝑇𝐸 ∣∣ 𝐵𝐸𝑖 = 0 )                                   (14) 

Where 𝑃(𝑇𝐸 ∣∣ 𝐵𝐸𝑖 = 1 ) and 𝑃(𝑇𝐸 ∣∣ 𝐵𝐸𝑖 = 0 ) denoted the conditional probability of the TE for occurrence and 

nonoccurrence of 𝐵𝐸𝑖 , respectively.  

Risk Reduction worth (RRW): RRW shows the effect of BE on TE with respect to non-occurrence of 𝐵𝐸𝑖 . RRW 

represents the decrease of TE probability when a given BE is assured not to occur. It can be calculated from the BN 

as: 
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𝐼𝐵𝐸𝑖
𝑅𝑅𝑊 = 𝑃(𝑇𝐸) − 𝑃( 𝑇𝐸 ∣∣ 𝐵𝐸𝑖 = 0 )                                 (15) 

The criticality of the nodes can be obtained by computing above mentioned importance measures. The rank of 

critical nodes is obtained as follows. 

𝑅∗ =
𝐼𝑚

∑ 𝐼𝑚
𝑛
𝑖=1

× 100                                                          (16) 

where, 𝐼𝑚 is the mth importance measures and n is the number of BE or MCS. 𝑅∗ denotes the normalized weight of 

importance measures. 

The total weighing of importance measures can be computed as follows: 

𝑅𝑇𝑜𝑡𝑎𝑙
∗ = 𝑅𝐵𝑀

∗ +𝑅𝑅𝑅𝑊
∗                                                        (17) 

Finally, the BEs is ranked in ascending order from most critical to the least critical BEs. 

3. Application of the proposed methodology 

 

The proposed methodology was applied to an ethylene oxide (EO) plant for an ethylene transportation line unit. A 

risk assessment study was conducted by Khan et al. (2002) for an EO production plant. In the study, most hazardous 

units, such as the EO storage unit, reaction unit, ethylene EO distillation column, ethylene transportation line, and 

ethylene reboiler, were recognized. It was suggested that further details of risk assessment are required for the 

mentioned units. In addition, ethylene transportation line unit was identified as the third major hazard in the present 

units. Moreover, the most probable accident scenario that can be expected in this case is the ethylene release due to a 

leak or rupture, causing a vaporized cloud to be formed and reaching to an ignition source resulting in fire and 

explosion. To find an optimal maintenance strategy, another study was performed on the above case study in (Khan 

and Haddara, 2004) based on risk-based maintenance (RBM) method (Khan and Haddara, 2003). RBM 

methodology combines several pre-existing methods and tools such as MCAS (Khan, 2001), MAXCRED (Khan and 

Abbasi, 1999a), PROFAT (Khan and Abbasi, 1999b) and PROFAT II (Khan and Abbasi, 2000) to efficiently reach 

a maintenance decision.  

3.1. Overview of the Process  

EO is produced by the oxidation of ethylene and pure oxygen. The completed process flow diagram (PFD) of EO 

plant is illustrated in Fig.5. Ethylene and oxygen are reacted at 10-30 bar and 150-260ᵒ C in a fix bed catalysis 

reactor and has been transported from the storage tanks to isolated vicinity to the reaction unit through pipeline (see 

Khan et al. (2002) for more details). 

3.2. Probabilistic Risk Assessment 

3.2.1. FT Development 

The TE of the FT was selected as an ignition of vapor cloud which may lead to a fireball. The developed FT is 

illustrated in Fig. 6. The identified 25 basic events, which contribute directly and/or indirectly to the specified TE, 

are shown in Table 1. As mentioned earlier, the BEs with known failure rates are separated from the ambiguous 

ones. The failure rates of some BEs are determined by employing OREDA (2002) and the failure rates of the 

ambiguous ones are estimated based on the expert judgment. As shown in Table 1, failure rate data for 9 BEs were 

obtained from the reliability database, whereas the failure rates could not be identified for 16 BEs from the available 

data. 
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Fig. 5. Process flow diagram of the EO plant 

 

Fig. 6. Fault tree for the ethylene transportation line (modified after Khan and Haddara(2004)) 
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3.2.2. Obtaining Failure Rates of BEs  

As mentioned earlier, to perform a proper risk analysis, it is necessary to access the historical failure rate data to 

allocate them to BEs. Thus, the probability of hazards with identified failure rate can be computed. The failure 

probability of the BEs with known failure rates were computed on per year basis (8760 h) and are presented in Table 

2. 

The process of obtaining the failure probability of the basic events with unknown data is described in the following 

subsections. 

Table 1. Details of the BEs of FT of Fig. 6 (modified after Khan and Haddara (2004)) 

FT Tag BEs Description Failure Reference  

BE1 Flammable gas detector fail Reliability data source 

BE2 Gas out of run Expert judgment  

BE3 Inert gas release mechanism failed Expert judgment  

BE4 Flame arrestor A failed Expert judgment  

BE5 Flame arrestor B failed Expert judgment  

BE6 Ignition source present Expert judgment  

BE7 Mechanical failure due to corrosion Expert judgment  

BE8 Leak from valves (two valves) Reliability data source 

BE9 Leak from bends (four bends) Reliability data source 

BE10 Leak from joints (10 joints) Reliability data source 

BE11 Flow sensor failed Reliability data source 

BE12 Pressure sensor failed Reliability data source 

BE13 Pipeline chocked Reliability data source 

BE14 Valve chocked Reliability data source 

BE15 High inlet flow Expert judgment  

BE16 High inlet pressure Expert judgment  

BE17 Pressure controller/trip failed Expert judgment  

BE18 High inlet temperature Expert judgment  

BE19 External heat source present Expert judgment  

BE20 Side reaction Expert judgment  

BE21 Temperature controller/trip failed Expert judgment  

BE22 Phase change Expert judgment  

BE23 Valves fails open (two valves) Expert judgment 

BE24 Corrosion Reliability data source 

BE25 Mechanical damage Expert judgment  
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Table 2. Failure probability of basic events with known failure rates 

BEs Tag FP of  BEs 

BE1 0.005155 

BE8 0.000613 

BE9 0.018486 

BE10 0.000438 

BE11 0.028154 

BE12 0.009937 

BE13 0.003186 

BE14 0.001313 

BE24 0.005917 

3.2.3. Rating stage 

As mentioned above, to compute the FP of ambiguous BEs, an expert judgment is employed. The expert knowledge 

is biased by individual visions and purposes (Ford and Sterman, 1998); thus, it is very difficult to obtain an impartial 

expert opinion. The main point here is the selection of both heterogeneous specialists (e.g., workers and experts) and 

homogenous specialists (in this case it includes only experts). 

It has been suggested that the impact of individual experience is smaller in a homogenous group compared to a 

heterogeneous group as a result of differences in the experience. Therefore, the main advantage of a heterogeneous 

group compared to the homogenous group is that all possible opinions of heterogeneous specialists can be 

considered. Thus, in this study, a heterogeneous group of experts including four specialists with different 

backgrounds was employed to compute the FP of the 16 ambiguous BEs. 

Expert No. 1: An experienced safety auditor and risk assessor working as consultant for complex chemical plant. 

Expert No. 2: An experienced technician working in different kinds of process industry. 

Expert No. 3: A senior chemical process designer from process engineering department with master certificate. 

Expert No. 4: An experienced safety officer working in a complex process plant with safety engineering certificate. 

 

Fuzzy AHP method was used to compute each expert’s capability and assigning the respective weights. The system 

of expert information is illustrated in Fig. 7, and the expert profile and weights are shown in Table 3.  

Expert capabilities

Job field Experience

Expert 1 Expert 2 Expert 3

Education level

Expert 4

 

Fig. 7. Fuzzy AHP index system of respective expert capabilities  
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Table 3. Experts’ profile and related decision weights 

No Job field Experience (years) Education level Weighing scores 

Expert 1 Risk assessor 7 BSc 0.249 

Expert 2 Process technician 5 BSc 0.126 

Expert 3 Process designer 9 MSc 0.495 

Expert 4 Safety officer 2 MSc 0.128 

 

Let's take, as an example, that BE23 valve fails to open. With respect to the definition of fuzzy numbers presented in 

Fig. 2, the qualitative terms, given by four experts, fall into “VL”, “FL”, “FL”, and “FH” categories. The integrated 

fuzzy number is attained as follows: 

𝑓(𝑥) = 𝑤𝐸1 × 𝑓𝑉𝐿(𝑥) + (𝑤𝐸2 + 𝑤𝐸3) × 𝑓𝐹𝐿(𝑥) + 𝑤𝐸4 × 𝑓𝐹𝐻(𝑥) 

The membership function of aggregated fuzzy number can be obtained as: 

𝑓(𝑥) =

{
 
 

 
 

𝑥 + 0.128

0.16
,    0.188 < 𝑥 ≤ 0.288

1,              0.288 < 𝑥 ≤ 0.363
−𝑥 + 0.463

0.1
, 0.363 < 𝑥 ≤ 0.463

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The right and left utility scores of fuzzy number f(x) are computed using equations (5)-(7) and provided as follows: 

𝐹𝑃𝑆𝐿𝑒𝑓𝑡(𝑥) = 0.738 

𝐹𝑃𝑆𝑅𝑖𝑔ℎ𝑡(𝑥) = 0.488 

𝐹𝑃𝑆(𝑥𝑖) = 0.375 

Using equations (8) and (9), the FP of BE23 is computed to be 0.001874. 

The qualitative terms based on experts’ opinions and FP of unknown BEs are shown in Table 4. 

3.2.4 Bayesian Modeling and Analysis 

Once the data for all basic events are obtained, the fault tree (Fig. 6) is mapped to a Bayesian Network (Fig. 8). The 

prior probability values of the root nodes of the BN are defined based on the values shown in Tables 2 and 4. The 

conditional probability values of each intermediate node of the BN are populated based on the type of logic gate it 

represents. 

In this BN, G1 is the node corresponds to the TE of the FT. Now running a query on this node would return the 

value of system unreliability. The value of system unreliability for the system obtained from the BN model is 

3.623E−09. The system unreliability was also calculated using the analytical approach and the value obtained was 

3.713E−09. This value is 2.48% higher than the value estimated by the BN based approach. This is due to the fact 

that the analytical approach does not consider the statistical dependence among the events. However, it can be seen 

from the BN model that some events are statistically dependent on each other. For example, the events represented 

by nodes G4 and G5 are statistically dependent on each other as they share a common basic event BE1. For a similar 

reason, nodes G9 and G15, and G17 and G18 are also statistically dependent. The effect of these dependences also 

propagates through the network to the node representing the TE. 
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Table 4. Experts’ opinions, corresponding fuzzy number and corresponding failure probabilities of BEs 

BEs 

reference 
(E1 E2 E3 E4) 

Fuzzy corresponding 

number 

Defuzzification of 

subjective BEs 
Corresponding FPs 

BE2 (H L L FH) (0.300,0.400,0.413,0.513) 0.403 0.002391 

BE3 (FH FL FL FH) (0.313,0.388,0.512,0.612) 0.357 0.001581 

BE4 (M VL VL FH) (0.164,0.263,0.276,0.376) 0.403 0.002391 

BE5 (M VL VL FH) (0.164,0.263,0.276,0.376) 0.403 0.002391 

BE6 (H VL VL H) (0.264,0.364,0.364,0.464) 0.409 0.002509 

BE7 (FL L L FL) (0.138,0.237,0.275,0.375) 0.392 0.002172 

BE15 (M L L M) (0.213,0.313,0.313,0.413) 0.409 0.002509 

BE16 (M L L M) (0.213,0.313,0.313,0.413) 0.409 0.002509 

BE17 (FL FL FL L) (0.187,0.287,0.374,0.473) 0.370 0.001783 

BE18 (FL VL VL FL) (0.075,0.175,0.323,0.386) 0.369 0.001764 

BE19 (M L L H) (0.251,0.351,0.351,0.451) 0.409 0.002509 

BE20 (FL FL FL L) (0.187,0.287,0.374,0.473) 0.370 0.001783 

BE21 (FL L L L) (0.125,0.225,0.249,0.349) 0.398 0.002283 

BE22 (VL L L L) (0.075,0.17,0.175,0.275) 0.409 0.002509 

BE23 (VL FL FL FH) (0.188,0.288,0.363,0.463) 0.375 0.001874 

BE25 (L M M L) (0.286,0.386,0.386,0.486) 0.409 0.002509 

 

 

Fig. 8. Bayesian Network of the fault tree in Fig. 6 
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One important aspect of probabilistic risk assessment of a system is to determine the critical components based on 

their contribution to the occurrence of the system failure. This information can help in improving the system 

reliability by taking the necessary measures such as by putting more design efforts on the weakest part of the system 

or by improving the system design by introducing fault tolerant strategies. The criticality of the basic events of the 

FT in Fig. 6 is calculated following the procedure described in section 2.5.3 using both the analytical and the BN-

based approaches. The results of the evaluation are shown in Table 5. According to the results shown in Table 5, 

BE6 (Ignition source present) contributes the most to the top event probability, hence, ranked as the most critical 

component. The second most critical event is BE1 (Flammable gas detector fails). If we compare the ranking of the 

events, we can see that both BN-based and the analytical approaches agree on the ranking of most of the 

components. However, there are some disagreements between the two approaches regarding the ranking of events. 

For example, the BN-based approach ranked BE14 as the least critical event and BE16 as the second least critical, 

whereas the analytical approach ranked them in opposite order. We believe that these disagreements are due to the 

statistical independence assumption of the events in the analytical approach. 

Table 5. Importance measures of the basic events based on the proposed approach and the analytical approach 

Basic Events 
Fuzzy Bayesian Approach Analytical Approach 

Importance Measure Rank Importance Measure Rank 

BE6 61.11595518 1 60.78163054 1 

BE1 42.64527082 2 42.40267113 2 

BE4 31.40830058 3 31.27437432 3 

BE5 31.40830058 4 31.27437432 4 

BE11 13.17872795 5 13.26074705 5 

BE9 9.075048388 6 9.222933652 6 

BE12 5.513108605 7 5.652468777 7 

BE7 2.330717673 8 2.409440162 8 

BE8 1.697741564 9 1.758326646 9 

BE10 1.626812341 10 1.685240449 10 

BE25 4.1572E-06 11 4.91542E-06 13 

BE24 2.74737E-06 12 2.08435E-06 14 

BE2 2.29668E-06 13 0.148964989 11 

BE3 1.98417E-06 14 0.128815433 12 

BE13 1.05226E-06 15 1.1711E-06 15 

BE15 9.46526E-07 16 1.1711E-06 16 

BE22 8.30669E-07 17 1.10664E-06 17 

BE23 7.43748E-07 18 1.10664E-06 18 

BE17 5.49543E-07 19 3.70671E-07 19 

BE21 3.85666E-07 20 2.25626E-07 20 

BE19 1.50746E-07 21 8.59526E-08 22 

BE20 1.32713E-07 22 8.59526E-08 23 

BE18 1.32241E-07 23 8.59526E-08 21 

BE16 1.17332E-07 24 6.44645E-08 25 

BE14 9.42206E-08 25 6.44645E-08 24 
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We used the predictive reasoning on the BN model to obtain the system unreliability by following the directions of 

the network arcs. For predictive analysis, we used the information (failure probability) about the causes (component 

failure) to obtain the new belief (unreliability value) about the effect (system failure). With the help of an evidence-

based analysis, we can also perform a diagnostic analysis for the BN, i.e., reasoning from symptoms to causes. For 

instance, when an analyst observes that the system has failed, depending on this observation, his/her belief regarding 

the failure probability of the basic events can be updated. This means a posterior probability distribution for the 

components can be obtained given the status of the system. The posterior probability values for the root nodes of the 

BN (Fig. 8) are obtained by providing the evidence that the top event has occurred (i.e., observing the BN node G1 

to be true). The point to be noted is that this reasoning is performed backwardly, i.e., opposite to the direction of the 

arcs. Now, if we perform a predictive analysis based on this updated belief about the probability distribution of the 

basic events, then the value of system unreliability will also be updated. For this case study, the updated value of the 

system unreliability is 0.5407, previously it was 3.623E−09. 

4. Conclusion 

In this paper, we proposed a comprehensive framework to combine fuzzy set theory and expert knowledge with 

FTA through Bayesian Network modeling to enable risk assessment of complex systems with ambiguous failure 

data. The proposed method addresses three important issues in probabilistic risk assessments, namely, the challenges 

of unavailability of failure data, the dependency of failure events, and the uncertainty. The use of expert elicitation 

and fuzzy set theory allows handling of the issue of insufficient failure data and also explicitly highlights the areas 

of uncertainty in the data. We used Bayesian Network for probabilistic reasoning to obtain system reliability related 

indexes and also to capture the dependencies among the events. The effectiveness of this approach was 

demonstrated by applying it to the risk assessment of an ethylene transportation line unit in an ethylene oxide (EO) 

plant and by comparing the results with the results obtained by the analytical approach. The proposed approach was 

found to be more robust and the results obtained were more accurate, as this approach does not estimate the system 

reliability under the unrealistic assumption of statistical independence of events. 

In the present work, we consider the failure rate of basic events as exponentially distributed. In future, we have a 

plan to extend this work by considering non-exponentially distributed failure data and the dynamic behavior of 

systems.   
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