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Abstract

The ubiquity and high bioavailability of microplast have an unknown risk on the marine
environment. Biomonitoring should be used to inigedé biotic impacts of microplastic
exposure. While many studies have used mussetslasiors for marine microplastic pollution,
a robust and clear justification for their selext@s indicator species is still lacking. Here, we
review published literature from field investigat®and laboratory experiments on microplastics
in mussels and critically discuss the suitabilibgd ahallenges of mussels as sentinel organisms
for microplastic pollution. Mussels are suitablentsgel organisms for microplastic pollution
because of their wide distribution, vital ecologdjiogches, susceptibility to microplastic uptake
and close connection with marine predators and huhnealth. Field investigations highlight a
wide occurrence of microplastics in mussels frohoaér the world, yet their abundance varies
enormously. Problematically, these studies arecootparable due to the lack of a standardized
approach, as well as temporal and spatial vartgbiinterestingly, microplastic abundance in
field-collected mussels is closely related to huraativity, and there is evidence for a positive
and quantitative correlation between microplastios mussels and surrounding waters.
Laboratory studies collectively demonstrate thatssels may be good model organisms in
revealing microplastic uptake, accumulation andcibx Consequently, we propose the use of
mussels as target species to monitor microplastiod call for a uniform, efficient and

economical approach that is suitable for a futargd-scale monitoring program.

Keywords: microplastic; mussel; bioindicator; plastic pdidun

Capsule: Mussel is a global bioindicator of microplastic lpéibn.
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1. Introduction

Environmental presence and accumulation of plalgiris has become a widespread
scientific and social concern due to the dramaiticdase in the production of plastics, with an
estimate of an additonal 335 million tonnes of wqylastic production in 2016 alone
(PlasticsEurope, 2017). Microplastics (particlesslthan 5 mm; Arthur et al., 2009) are reported
to account for 92.4% among marine plastic debngg¢En et al., 2014) and have been identified
in many environmental matrices globally. This irt#s surface waters of every major ocean, the
water column, beaches, sea ice, deep sea sedimenmge biota and consumables sourced from
the sea (Nor and Obbard, 2014; Van Cauwenberghle @013; Ng and Obbard, 2006; Eriksen
et al., 2014; Coézar et al., 2014; Wesch et al.620ang et al., 2015; Van Sebille et al., 2015;
Lusher et al., 2014, 2015; Browne et al., 2011).

Microplastics ingestion has been identified in rgeof species from mussels to mammals,
with over 220 species from different trophic levetsisuming microplastic debiiis natura and
99% of all seabird species are predicted to ingestoplastic by 2050 (Ter Halle et al., 2017,
Lusher et al., 2017a; Wilcox et al., 2015; Hu et2016). Microplastic ingestion by marine
organisms can accelerate microplastics' transfereom the sea surface through the water
column to the sea floor via feces and marine soowetween trophic chains via predation
(Farrell and Nelson, 2013; Santana et al., 201#@I&et al., 2014, Katija et al., 2017).
Additionally, microplastics are subjected to bidfog leading to colonization by
microorganisms and invertebrates, which in turnaantribute to long-range transport of alien
species, and serve as reservoirs for pathogemtrssisn, which broadens the risks of
microplastic pollution to marine organisms and gsteams (Andrady, 2011; Barnes, 2002;

GESAMP, 2015, 2016). In addition, envrionmental theang of microplastics may also cause
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release of harmful monomers and additives fronptiigmer into the associated media (Gandara
e Silva et al., 2016; Nobre et al., 2015; Rochmntaal.e2014). Together, these aspects represent
some of the primary and emerging problems assatisitid microplastics to date but are by no
means the only issues.

Since microplastics are ubiquitous and bioavailathle associated environmental and
health impacts have received an increasing amduattemtion amongst the scientific community,
regulatory agencies, the public, media and poliekens. Nevertheless, consequences of wild
biota interacting with microplastic have not bestablished, although the current body of
evidence from laboratory studies suggests thatapiastic exposure may lead to a suite of
negative health effects for marine biota; includiogexample, increased immune response,
decreased food intake and growth rate, weight Essigy depletion, apoptosis, upregulation of
stress and damage repair pathways and negativetsnpa subsequent generations (e.g., Von
Moos et al., 2012; Besseling et al., 2013; Caneasl. £2015; Sussarellu et al., 2016). However,
to date most exposure studies have tested unrealligthigh doses, and used plastic polymers
that are less environmentally-relevant (Phuond.e2@16), making extrapolation challenging in
terms of the microplastic associated risk to thearenment. In addition, microplastics’ capacity
to adsorb, act as vectors of, and leach toxic anbss to marine biota may also pose further
health risks (Frere et al., 2017; Engler, 2012;v8re et al., 2013; Gandara e Silva et al., 2016).

Despite uncertainties regarding ecological andthe#ks of microplastic pollution,
knowledge based on the wide occurrence of micrtptam the environment has led to calls to
classify microplastics as hazardous, and plastician has been compared with climate change
in terms of scale and degree of severity by theddnNations Environment Programme

(Rochman et al., 2013; UNEP, 2016; Borrelle et217). From a risk assessment perspective, it



109 is necessary to develop a comprehensive and haratedievaluation method of microplastic
110  pollution for inclusion in routine monitoring pragns. Traditionally, three marine compartments
111 including water column, sediment and biota couldibed to monitor spatial and temporal trends
112 of microplastic abundance. However, microplastigredances in water and sediment tend to be
113  affected by a variety of environmental factors sasltbiofilms, bioturbation, tides, winds,

114  currents and wave fronts; all these parametersgiaistochastic pattern, which can complicate
115  the interpretation of impacts on biota (Gibson Bogvman, 2000; Turra et al., 2014; Eriksen et
116  al., 2014; GESAMP, 2015; Moreira et al., 2016ajbnér et al., 2017). In addition, sediment is a
117  more complicated compartment to analyze than veatérmost biota, including mussels, since
118  sample processing requires multiple steps, whiscle In@t been standardised by the scientific
119 community, to degrade organic material and sepanateplastics from natural particles. In

120 terms of addressing unknowns regarding risk, biatoang, alongside investigations to

121 understand the relationship between an organisnthengolluted environment with respect to
122 microplastics and their ingestion, can be usedg@and Bowman, 2000; Wesch et al., 2016).
123 To have a robust sentinel species for environmendgatitoring the following criterias

124  should be fullfiled: a wide distribution range, allkknown biology, immobility, an ability to

125  provide an early alert, a key function in the estsyn, a homogeneous response to pollutants,
126  and the existence of identifiable toxic effectsoassted with the degree of pollution (Hilty and
127  Merenlender, 2000; Goodsell et al., 2009). Sealzsrdssea turtles have been selected as

128  bioindicators for monitoring ingestion of plastielatis (>1 mm) for the land-ocean interaction.
129  For instance, fulmamRulmarus glacialis)s used as an indicator species in Northern Eyrape
130 its digestive content is currently utilized as adicator for regional plastic pollution under the

131  OSPAR Convention (Van Franeker et al., 2011). Logged turtlesCaretta caretta have been



132 chosen as a target species to monitor litter poeseanthe Mediterranean Sea under UNEP-

133  MedPol Convention and Descriptor 10 of the Europgdaion (EU)'s Marine Strategy

134  Framework Directive (MSFD) (Galgani et al., 2018)e suitability of loggerhead turtles as a

135  bioindicator for marine litter >1 mm has been conéd and is widely supported (Campani et al.,
136  2013; Matiddi et al., 2017; Pham et al., 2017)hAiligh some studies have addressed their

137  proposal for indicator species in microplastic stgation, a robust and clear justification for

138 their selection as indicator species is still sedkfesch et al., 2016). Furthermore, the methods
139  currently used are not appropriate for the studghefingestion of smaller microplastics (<1 mm).
140 Mussels have been utilized extensively as idedbgical indicators in monitoring of

141 anthropogenic pollution trends in coastal waters wutheir special characteristics (Farrington et
142  al., 2016; Beyer et al., 2017). As one of the fasimals used to assess the environmental quality
143  of seawater (Goldberg, 1975), mussels meet alntiagtgaired criteria for a useful indicator

144  species. Firstly, mussels are globally distributssily accessible and have a high tolerance to a
145  wide range of environmental parameters includinigiég temperature, oxygen levels and food
146  availability (Bayne, 1976; O'Connor, 1998). Furthere, as representative benthic filter feeders,
147  mussels can efficiently accumulate chemical pafitddrom seawater to provide an integrative
148  measure of the concentration and bioavailabilitgedwater pollutania situ (Beyer et al.,

149  2017). Mussels provide food (Kautsky, 1981) andthalNorling and Kautsky, 2007) to a lot of
150  other species, forming important links between gieland benthic ecosystems (Dame, 1993).
151  They also act as a transport route of marine paoibstto higher trophic levels in the coastal

152 marine food chain (Meador et al., 1995; Strand Zawbbsen, 2005). Importantly, mussels have
153  been an important seafood for humans for thousahgsars (Beyer et al., 2017). Hence,

154  mussels also attract attention regarding assebsimgn health risks associated with marine
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pollution (Van Cauwenberghe and Janssen, 2014; URE). Up to now, mussel has been
widely used in many regional environmental monigrprograms such as U.S. Mussel Watch
Project, Assessment and Control of Pollution inNtegliterranean region (MEDPOL), OSPAR's
Coordinated Environmental Monitoring Program (CENBgyer et al., 2017).

In this review, both the suitability and challengekated to mussels as sentinel species for
microplastic pollution will be discussed. We aimafidress (i) why mussels lend themselves as
good indicators of microplastics; (ii) the extemtwhich mussel can provide useful information
regarding microplastics pollution in the marine ieonment; and (iii) how to improve current
methodology, with an emphasis of standardizatiotecifiniques to allow cross calibration

between studies worldwide.

2. Global field investigations on microplastic pollution in mussels

Environmental risks associated with microplasties@imarily focused on their suspected
bioavailability for marine organisms (Wright et,&013; Desforges et al., 2015). Bivalves are of
particular interest because their extensive filkading activity exposes them directly to
microplastics present in the environment. Globatygroplastic occurences in wild caught

mussels have been extensively investigated andtegp(rable 1).

2.1 Selected species and geogr aphic cover age

Blue musselsMlytilus spp.) are currently the dominant species usefidiarinvestigations
of microplastics. The genldytilus has seven subspecies that can interbreed withataehand
are widely distributed around the world (Beyerlet2017). For instancé. galloprovincialis
has become an invasive species and is widely spdagadSouth America, South Africa, Japan,

California, New Zealand, and Australia (Beyer et 2017). Different species within the genus
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Mytilus have different genomic composition and gene espragrofiles, which may lead to
differences in the way they deal with stress as ageicroplastic uptake (De Witte et al., 2014;
Lusher et al., 2017bMytilus spp. have been investigated in all the involveadhtiies except
Brazil and Indonesia, which investigatedrna viridisandP. pernainstead (Table 1, Fig. S1).
Spatially, field investigations of microplasticsrmussels are currently spread over 16
countries (Fig. S1), especially in European coestmcluding Germany, France, Belgium, the
Netherland, Italy, Greece, Portugal, Spain, Dengf@irkand, Norway and the U.K. In addition,
research from China, Indonesia, Canada and Brignilantribute to the available field data.
Research on microplastic can be traced back tosl@¥@n the occurrence of small plastic
particles in coastal environment was first repof@olwmer and Kershaw, 2010). At that time,
small polystyrene beads in New England (Carperital. €1972), Sargasso Sea (Carpenter and
Smith, 1972) and Bristol Channel (Morris and Haamlt1974) attracted researchers’s attention.
Afterwards, the term “microplastic” were put forwldor the first time by Thompson in Europe
(Thompson et al., 2004). Currently, the monitorafignarine litter is required as part of the EU
Marine Strategy Framework Directive (MSFD) (Hankele, 2013) and many projects fund
research on microplastic pollution in Europe sueiMarine Litter Projects Funded under FP7

and Horizon 2020, which likely accounts for thereased number of studies from Europe.



195

196

Table 1. Summary of global field investigations on microplasticsin mussels.

Species & Location Digestion I dentification Classification Abundance Size Environmental Reference
method technique (items/g.ww) (um) media
Mytilus. edulis
Canad 30% +,0, visual sortin fiber 2.7¢-7.42° no date sediments: -8 items/g.d\ Mathalon and Hill, 201
German! 69% HNG; micrc-Ramau particle 0.36+0.0° no dat: no dati Van Cauwenberghe and Janssen,
Belgiumr HNO;:HCIO, visual sortint fiber, fragment, film, sphe 0.2€-0.51 20C-150¢ no dat: De Witte et al., 201
France, Belgium 69% HNG; micrc-Ramai particle 0.2+0.: 20-90 seawater: 0.4+0.3 items Van Cauwenberghe et al., 2(
Netherlands
sediments:6+5.7 items/kg.dw

UK trypsin FTIR fiber, bead, fragment, fil 1.05-4.44 20C-1067(C no dat: Courten-Jones et al., 20
UK Corolase 708! FTIR fiber, particle, filr 2.t no dat: no dat: Catarino et al., 20:

enzyme
UK 30% F,0, micro-FTIR fiber, fragment, sphere, fla 0.7-2.¢ 8-470C seawater:1-6.7 items/l Lietal., 201!
Netherland proteinase | Ramai fiber, particle 37 (items/g.dw 30-200C seawater: 27 items Karlsson et al., 201

and 30% HO, sediments: 48 items/kg.dw
Netherland HNOs, NaOH & FTIR fibre, sphere, fo 19-105 10-500C sediments: 1¢-3600 items/kg.dv  Leslie et al., 201

30% HO, (items/g.dw)
France 10% KOF micro-FTIR filament, fragmer 0.2&0.2C 20-40C nodatz Phuong et al., 201!
France 10% KOF micro-FTIR fiber, fragmer 0.2&0.0¢ 30-20C no dati Phuong et al., 201
Canad: 68-70% HNGC; FTIR fiber, fragment, pell¢ wild:138+202 <53C no dat: Murphy, 201t

farmed:259+114

Chine 30% +,0, micra-FTIR fiber, fragment, sphere, fla 2.2 5-500C no dat: Lietal., 201!
Chine 30% +,0, micro-FTIR fiber, sheet, fragment, sphe 9.2° 50-500( no dat: Kolandhasamy et al., 20
Chine 30% F,0, micrc-FTIR fiber, fragment, pellt 1.52-5.3¢ 5-400C seawater: 0.€-6.44items/L Quetal., 201
M. galloprovincialis
Italy 30% F,0, visual sorting filament, fragmer 0.05 (items/g.dw 60.01 +3¢ no dat: Bonello et al., 201
Italy 30% H20: visual sortin filamen: 6.2-7.2 75C-600( no dat: Renzi et al., 201
Italy, Portugal, Spai 69% HNG; visual sortint fiber, particle 0.12+0.0¢ no dat: no dati Vandermeersch et al., 201

10



Italy, Portugal, Spa HNO;:HCIO, visual sortint fiber, particle 0.18+0.1« no dat: no dati Vandermeersch et al., 201

Greect 30% +,0, FTIR filament, fragment, filr 46.25% ingeste <500( seawater: 0.41 items?® Digka et al., 201¢
microplastics
sediments: 1816.7 items/m
Greec 30% +,0, FTIR fiber, fragmer wild:5.3+0.5 40-737 no dati Digka et al., 201€

farmed:2.5+0.3

Chine 30% F,0, micra-FTIR fiber, fragment, pelle 2.39 £1.3: 5-500( no dat: Lietal, 201!
M. trossulus

Sodium Dodecy FTIR fiber, fragment, sphere, fla 04+1¢ >20 seawater: 11-23.5 items/r® Railo et al., 201
Finland Sulphate (SDS)

and detergent

enzymes
Mytilus spp.
Norway 10% KOF micro-FTIR fiber, foam, fragment, filr 1.85+3.7« 15C-801C no dati Lusher et al., 2017
Norway 10% KOF micra-FTIR fiber, foam, fragment, filr 0.97+2.6: 70-387C no dat: Bréte et al., 201¢
UK Corolase® 708! Nile Red fiber, film, sphere, othe 3+0.€ 20C-200¢ no dat: Catarino et al., 20:

enzyme staining and particle

FT-IR

Italy, Netherland: HNO3:HCIO, visual sortin fiber, particle 0.13+0.1« no dat: no dat: Vandermeersch et al., 201

France, Denmark,
Spain, Portugal

Modiolus modiolus

UK Corolase® 708! Nile Red fiber, film, sphere, othe 0.086+0.03 20C-200¢ no dat: Catarino et al., 20:
enzyme staining and particle
FT-IR
Perna perna
Brazil 22.5 M HNG visual sortin fiber, irregular particl 75% ingeste no dat: no dat: Santana et al., 20
microplastics
P. viridis
Indonesii 30% +,0, SEM/EDX® fiber, fragment, sphere, fla 4-20 51.31-232 no dati Khoironi et al., 201
Chine 30% F,0, micrc-FTIR fiber, fragment, pell¢ 1.52-5.3¢ 5-400C seawater: 0.€-6.44items/L Quetal., 201

197
198  ?The microplastic level was transferred by dividtotal microplastics per individual by the shelledight.” The abundance of microplastics in intestffithe
199 abundance of microplastics in hepatopancreas disd’gihe abundance of microplastics in digestive glamitsgills.® Scanning Electron Microscopy/ Electron

200 Dispersive X-Ray.
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2.2 Characteristics of microplastic pollution

It is indisputable that microplastics are widesgraeboth wild and farmed mussels in
many countries (Table 1). Regarding the morphotybesicroplastics observed in such mussels,
fibers are dominant in 13/27 of the current filaddstigations compared with fragments which
account for 5/27. Only one paper reported the peexea of pellets (Murphy, 2018). The
remaining studies counted one type of microplastiesto methodological limitations or omitted
to report the proportion of different types. Pohygéne, polypropylene, polystyrene, polyester,
polyethylene terephthalate, polyamide, polyvinylbocide and cellophane were the most reported
polymers. Out of the studies conducted, nine aftidel perform a corresponding investigation
of the microplastic level in the accosiated sedinmerseawater (Table 1). From these, it appears
that the main morphotype and polymeric composiitiomussels tend to be consistent with their
surrounding environmental media (Li et al., 2018slie et al., 2017; Qu et al., 2018; Digka et al.,
2018a; Railo et al., 2018). Furthermore, Qu e{24118) observed consistency of their proportion
in mussels and in seawater. These results sudgggdhe microplastics in mussels can reflect the
real pollution status in the environment in terrhsnorphotype and polymer types.

For the size range of microplastics, the currentkimg minimum limit is um, yet some
studies fail to provide information on the minimwsize of the detected microplastics (Table 1).
The minimum limit depends methodology employeddsearch teams. Selected research to date
have adopted a classified size range approachnagming so have highlighted a dominant
smaller size range (e.g., 5-2pM, 10-300um, 50-100um, 50-250um,100-500um, 0.25-1 mm)
that reveals mussel’s uptake incidences for spesifie ranges (Li et al., 2018; Leslie et al., 2017
Phuong et al., 2018a; Kolandhasamy et al., 2018tQil, 2018; Digka et al., 2018b). However,

the lack of a unified classification standard feparting the size range complicates efforts to

12
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246

compare these results. In addition, smaller sizaiofoplastics seems to take up a larger
proportion in mussels compared to the surroundinvyenmental medium (Li et al., 2018; Qu et
al., 2018; Digka et al., 2018a). For example, thalker microplastics (<1 mm) account for
62.3%, 96.9%, 100% in seawater, sediments and fsussm the Northern lonian Sea
respectively (Digka et al., 2018a) and the mudseia U.K. contained 44%-83% of smaller
microplastics (less than 250n) compared to seawater with only 30%-40% (Li et2018).
Another interpretation is thus that the microplesin mussels indicates the size range in the
surrounding environment partially as a factor @itlselective feeding behavior (Ward and
Shumway, 2004).

Microplastic abundance varies between differerdist) ranging from 0.05 items/g to 259
items/g (Bonello et al., 2018; Murphy, 2018). Tisisnainly due to the differences in levels of
background contamination and the diversity of méshawsed amongst different research groups
as well as regional variations in microplastic @mtt On a broad scale, research has
demonstrated a positive correlation between coastabplastic concentrations and human
population density (Browne et al., 2010, 2011) tkemmnore, microplastic abundance in mussels
is closely related to human activity, and muss&mfareas with intensive human activities
contain significantly higher numbers (Li et al. 18), or in areas suggested to have accumulation
zones of microplastics such as the Barents Sedéru al., 2017b). There are indications that
microplastics can accumulate because significdmgier concentrations have been found in
mussels (3.7xtems/kg dry weight) compared to surrounding sediit{48 items/kg dry
weight) and seawater (27 items/L) (Karlsson et2811,7). When we unify the units of the
abundance in mussels as items/g.w and in seawaitnas/L, similar abundances can be found

in mussels and ambient seawater (Table 1, Van Qzhavghe et al., 2015; Li et al., 2018;

13
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Karlsson et al., 2017; Qu et al., 2018), whichuithér supported by a recent study that showed a
positive and quantitative correlation of micropiesin mussels and in their surrounding waters
(Qu et al., 2018). This indicates that microplaptiiution in mussels is closely correlated with
the degree of pollution in coastal habitats andreflect the real abundance of microplastics in
the environment within certain size range. Howesgg study does not show the quantitative
correlation between microplastics in mussels ae@t #timbient seawaters (Li et al., 2018), this
may be due to limited sampling sites and outliensvéd from contingency. More studies are

still needed to verify this outcome.

2.3 Methodological challenges

Procedures for investigating microplastic pollutiormussels involve a series of steps and
details that must be taken into consideration uiclg: sampling sites and strategy, sample size
(number of individuals per site), individual conadlit, sample storage, digestion solution, filter
pore size, chemical identification techniques, sifasation of microplastics, reporting units, and
contamination control. Although many reviews haystematically and critically discussed
existing microplastic extraction methods and idergtion techniques, there is still a lot of
debate and many knowledge gaps surrounding chofcas optimal method (Hidalgo-Ruz et al.,
2012; Lusher et al., 2017a,b; Elert et al., 20hintSet al., 2017). Variations in methods make it
hard to compare microplastic contamination amofffgrdint studies and locations
(Vandermeersch et al., 2015b).

Hence, a major challenge for monitoring microplapbllution within mussels is the lack of
uniform methods from extracting to identifying noptastics. Call for the standardization or
harmonization of methods are repeatedly highliglethe International Council for the

Exploration of the Sea (ICES) and researchers wugrkiithin the field (ICES, 2015; Hidalgo-
14



270 Ruzetal., 2012; Wesch et al., 2016; Lusher eR@ll7a, b; Rochman et al., 2017). Since these
271 methods always have a tension between accuraaysiore and feasibility, different approaches
272 should be chosen according to the sampling sitedjanequipment, replicates request and the
273 specific scientific questions of interest (Rochnedal., 2017). In this situation, we suggest that
274  both standardization and intercalibration of défer methods should be adopted at the same time
275  for improving the comparability of different studieSome factors could be united while other
276  variables should be intercalibrated and selectedrding to the actual situation in the specific
277  procedure.

278 Sampling strategy represents a challenge in degjgnrepresentative and adequately

279  replicated monitoring scheme. Patchiness of miastpds in different spatial (Browne et al.,

280 2011; Moreira et al., 2016a; Fisner et al., 201¢) 'emporal (Moreira et al., 2016b) scales may
281 lead to variable amounts within mussels. Phuoral. 2018a) showed the season was not a
282  relevant influencing factor on the quantitative apalitative analysis of microplastics in

283  mussels. However, a different conclusion reveaiedstmilarity of microplastic types and

284  significant differences of abundance in musselkectdd in different seasons (Catarino et al.,
285  2018). That is to say, some factors changing wa#sen (e.g., wind, currents, rainfall,

286  temperature, human activity) may affect microptadistribution. The extent to which these

287  factors change microplastic abundance or typeerettvironment varies with sampling sites.
288  Sampling time and sites should be variable faatorsidered during the investigation; such that
289  harmonization of sampling strategy should takedlwesnplex environmental and anthropogenic
290 factors that shows temporal and spatial differemugsconsideration. Additional factors such as
291 sampling number and preservation method must astdndardized. Both ICES and MSFD

292 recommend 50 individuals per species, althougharebesuggest 20 individuals could also be a

15



293  suitable number for large-scale spatial investagegi(Lusher et al., 2017b). Finally, but definetly
294  most importantly, is to minimise contaminaton ascimas possible during the sample

295  preservation and identification processes.

296 For the extraction method, common agents usedjestibiotic tissues include acid (H{O
297  HNOs:HCIQ,), alkaline (NaOH, KOH), oxidizing ($D,) and enzymatic (trypsin, proteinase K,
298  Corolase 7089) approaches. However, drawbackseéttigestion methods have been widely
299 reported, such as structural damage, dissolutidrdastoloration caused by acid, basic an@®
300 incomplete soft tissue digestion by enzyme; pradnadf foam caused by ,; expensive price
301 and time-consuming nature of some of the solvéelrablé 1, Lusher et al., 2017b). This might
302 lead to underestimations of microplastic loadseegly smaller particles, or limit their

303 adaptability for large scale monitoring. Henceesgbn of a digestion solution requires further
304 testing and optimization.

305 In the future investigations, different digestiareats could be chosen under the premise
306 that the selected agent does not destroy the nadympr types in the objective environment,
307  which requires consulting literature or preliminaegearch. In addition, the digestion efficiency
308 and recovery rate should be provided in orderHerihtercalibration of methods. However, only
309 ten published studies report corresponding recoresgeyand five tested polymer alterations by
310 digestion treatment (Table 1). Low digestion e#fitty and recovery rate may lead to

311  underestimations of microplastics, therefore, aghold for both efficiency is required.

312 The pore size of the filter, the magnification tsrend resolution of microscopy employed
313 determine the observed microplastic size lowertlifES has recommended the use of filter
314  with 5 um pore size for mussel (Vandermeersch et al., 201Blthe current literature, jom

315 pore size of filter has been the most frequentgdu®/27). Other studies had finer (0.45, 0.7, 0.8,
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1.2, 2.5, 2.4um) or bigger (12, 2@um) size. Among all the given size ranges of miaspts
detected in mussels,n is the minimum size (Table 1). Although smallees of microplasctic
undoubtably occur in mussels, their observationidedtification are still limited by current
instrumentation and method. For examplep@0seems to be the smallest size that could be
identified usinguFTIR in the reflection mode under manual inspec{@nuong et al., 2018b).
Hence, 5um is a good choice for the unity of pore size éfi The detection limit of current
methods will not hamper the use of mussels asiadiaator of microplatic pollution since a
guantitative correlation of microplastics withirrzen size range in mussels and in their
surrounding waters has been demonstrated (Qu, 04R3).

Current methods for microplastic identification atve visual sorting (with the aid of
polarized light microscopy), Nile Red staining, Feutransformed infrared spectrometry (FT-
IR), attenuated total reflectance (ATR), Raman 8peatetry, pyrolysis-gas chromatography
combined with mass spectroscopy (Pyr-GC-MS), heghpterature gel-permeation
chromatography (HT-GPC) with IR detection, SEM-E@if&rmal extraction desorption gas
chromatography mass spectrometry (TED-GC-MS) anddiextraction. FT-IR is the most
commonly used technique in recent literature (Tabl&ach applied technique has some
drawbacks including size limitations, time consitaiand interference factors and we refer the
readers to published literature on the advantagésimitations of these methods (Lusher et al.,
2017b; Elert et al., 2017; Shim et al., 2016, 208rce no single method is able to obtain the
physical (size, shape and colour) and chemical/(pet type) characteristics of particles in a
single step, the combination of several parallprapches should be applied and considered in

future research. Meanwhile, intercalibration betwdgferent methods is necessary to
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understand the extent to which each method diffecscompare the data already collected with
that in future studies.

Preliminary visual sorting is still needed for atfguantification analysidlevertheless, the
result is largely dependent on personal experigriteh may result in underestimation or
overestimation of real results ddferent degree. A library matching the photogon¥ironmental
samples with their spectrograms should be estaulith help reduce error rates and
misidentification and improve this method. For fetusmall-scale investigations, FTIR and
Raman are strongly recommended with 70% matchasatestandard threshold which has been
applied in most research. However, spectra libsasidl require intercalibration. For future
large-scale investigation, Nile Red staining aretitio-analytical technique could be combined
to obtain both qualitative and quantitive infornoatiefficiently. However, the accuracy of Nile
Red staining should be calibrated using spectrosnmgithodsimultaneously.

The variability in the way the results are charazésl further hampers the comparision
among different studies. These factors such agtreganits, classification of type and size
range should be standardized in the future stuBieth items individuat and items grafhas
reporting units are required. The latter is a nagpropriate unite to compare different studies
and it has been used most commonly in current rels€@able 1). For the classification of type,
four kinds including fiber (filament), fragment,tsgre (pellet, bead), film (flakeheet) could be
adopted which almost covers all the types in curstudies (Table 1An optimal classification
of size range still requires more research to deétes. In addition, contamination control is a
crucial factor during the whole procedure. Procatlnlanks must be carried out to monitor

contamination and correct the empirical data. Mdshe current investigations (25/27) set
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procedural blanks. Two studies even tested limdetéction of airbore fibers (De Witte et al.,

2014).

3. Laboratory exposures of microplasticsin mussels

3.1 Uptake, accumulation and clearance of microplastics

In addition to field studies, mussels have beerelyidsed in laboratory exposure
experiments to study uptake, accumulation, cleaaharacteristics and impact of microplastics.
Microplastic uptake has been demonstrated in gibsire concentrations (Table 2), and
egestion as feces and pseudofeces has also besmazh/Vard and Kach, 2009; Wegner et al.,
2012; Khan and Prezant, 2018; Santana et al., 2018ng active feeding, mussels can
continuously pump and filter seawater through cowated action of cilia localized at the gill
epithelium surface, at a rate of 50 ml of seawpéemminute (Famme et al., 1986).

According to mussel feeding strategies and laboyarposure studies, we can hypothesize
pathways of microplastics intake and accumulat®folows. When microplastics in seawater
encounter gill surfaces, they may be captured epped into mucus and subsequently
assimilated over the gill epithelium or transporie® the mouth and digestive system (Von
Moos et al., 2012; Beyer et al., 2017; Brate e2@l8a; Kolandhasamy et al., 2018). Not every
particle captured by gills is ingested (Santand52&antana et al., 2018) since mussels are able
to separate and reject nonnutritive particles asigafeces as a way to defend organisms against
high quantities of suspended particulate matterr{Vdad Shumway, 2004).

Von Moos et al. (2012) demonstrated that musselsrggest and accumulate microplastics
(0-80um) in digestive system epithelial cells within heuit appears that smaller particles are
ingested and retained in mussels more easily cadparthe larger particles (Van
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Cauwenberghe et al., 2015). However, behavior of P¥rticles in an
emulsion/microsuspension (E/M PVC; size range dft6.1.0um in diameter; Rodolfo et al.,
2006) was different, with larger particles propomtlly better represented in mussel digestive
glands (0.8 to 0.96m) in comparison to surrounding water (mean sizgu). Van
Cauwenberghe et al. (2015) found that larger sjzBeb00um) microplastics were detected in
mussel’s faeces compared to mussel tissue (20v90These findings indicate mussel's
selection for a specific size range of microplastiaring ingestion and egestion process, which
is consistent with the results of the field invgations discussed in section 2.2. However, this
selectivity characteristic poses an obstacle taefection of size distribution of microplastias i
the environment through biomonitoring. More reskasmeeded to test selectivity of mussels
for larger scope and more gradient sizes of miaistjis.

In addition to size variation, environmentally agedroplastics are differentially ingested
with pre-weathered microplastic ingested to a higix¢ent by mussels compared with virgin
microplastic (Brate et al., 2018a). In most expesiudies, only particles or spheres were used
for the exposure (Table 2), which ignores the seliég of mussels for microplastics of different
shapes. Qu et al. (2018) showed fibers were dorhinanussels from field investigation while
beads were most ingested by mussels after fivardimpor exposure. One explanation is that
fibers in mussels result from a long-term accunmtgprocess in the marine environment while
beads are more easily ingested by mussels in simarperiods. Once ingested, beads could be
egested more quickly than fibers. The delay in gege®f synthetic fibers has been addressed
since only fibers were detected in mussels afteclgarance period (De Witte et al., 2014).
Moreover, fibers trapped into gills and hepatopaasrcannot be easily removed by individuals

(Renzi et al., 2018).
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It has been suggested that microplastics accumglatimussels will achieve a dynamic
balance between ingestion and clearance and bestaivie (Li et al., 2016; Setala et al., 2016).
Although mussels selectively ingest microplasticd there are differences in intestinal retention
times for microplastics of different characteristauring this process (Farrell and Nelson, 2013;
Ward and Kach, 2009), a stable abundance in museds it easier to build relationship with
that in the environment media. Not only has a pasénd quantitative correlation of
microplastics in mussels and in their surroundiragens from field investigations been reported
(Qu et al., 2018), but similar results from laborgtexposure experiments have been found. The
abundance of microplastics in mussels was sigmifigdnigher in the high concentration
exposure group than that in low concentration gr@up et al., 2018) and a significant and linear
increase of microplastic uptake in mussel larvédnwitreasing exposure concentrations was
observed (Capolupo et al., 2018).

Microplastics can be taken up over the digestivéasa of mussels gastrointestinal tracts by
endocytosis and granulocytomas and then transfesrggosomes and circulatory system or
eliminated as pseudofaeces particles, which cartegto microplastic adherence to the foot and
mantle (Browne et al., 2008; Von Moos et al., 2002Zgner et al., 2012; Beyer et al., 2017,
Kolandhasamy et al., 2018; Khana and Prezant, 2@&t8)vne et al. (2008) showed the ability
of mussel to ingest polystyrene microspheres betv@eand 1Qum in size and to transfer them to
the circulatory system, where smaller particleseajppd to undergo translocation more readily
than larger ones. Assimilation of very small paescof emulsion/microsuspension PVC ()
was also recorded fét. perna(Santana 2015; Santana et al., 2017). Assimilatiamall

particles contributes to their accumulation in nelsselatively steadily. This may explain why,
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after a three day gut clearance, only larger degi¢> 20um) were egested completly, whilst
smaller particles (5-2(m) were still present (Van Cauwenberghe and Jang6ad).

Theoretically, small particles or beads should aotdor a larger proportion due to their
assimilation. However, fibers were always dominarfteld investigations as mentioned in
section 2.2. This could be explained by the linotabf current methodology. Van
Cauwenberghe et al. (2015) demonstrated that ormdsopiastics of the smallest size (L)
was detected in mussles although three sizegr(l,B0um, 90um) of microplastics were used
in the exposure experiment. Furthermore, the dizeicroplastics reported to occur in
haemolymph (e.g., 0.14m, 3pum, 9.6um, 10pum, 20-25um, Table 2) tend to be close to or
smaller than the detection limit of field investiigam method. Therefore, a large proportion of
these small particles are unlikely to be deteatefield surveys. Even so, laboratory exposures of
these smaller microplastics contribute to our usideding of accumulation of microplastics in
mussels and relative toxicology effects.

The total body burden of microplastics in musselssgoeyond ingestion. Besides uptake
through the gut and across the gills, microplasiatisere to mussel’s soft tissue (mantle, gonad,
adductor, visceral tissue and foot) can furthetrioute to microplastic presence within
individuals. This has been verified in both fieltldaboratory environments (Von Moos et al.
2012; Kolandhasamy et al., 2018). Since musselsaen whole by both animals and humans,
Microplastics can also be passed to higher troleviels following predation, as demonstrated in
laboratory exposure experiments (Farrell and Nei8; Watts et al., 2014; Santana et al.,
2017).

At present, however, the microparticles behavioithiw the mussels tissue is still largely

unknown; this includes translocation into, and frédv@emolymph to other tissues as well as
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depuration and egestion rates. Studies have shHmtmicroplastics may be retained for
extended periods of time, for example, completarelece of microplastics was not achieved
after a seven-days depuration period under labyratinditions with microbeads (2,8n) being
retained within the digestive tracts (Paul-Pordlgt2016). In addition, microplastics were
remained in the haemolymph i edulis48 days after exposure (Browne et al., 2008)yever,
there was a reduce in microplastic numbers oves tiich suggested egestion was occurring.
These results suggest that mussels are effectiveaiiors of recent exposure. Although efficient
gut clearance and selective feeding behavior ofseladimit their quantitative ability as
indicators of microplastic. For example, the onkglébale data on retention refers to those that
have been selected by mussels, especially in tefisige. Microplastics in mussels can still
reflect the abundance, polymer type and morphotypeicroplastics in the environment when

sampling and thereby come a bit closer to theasgdessment.

Table 2. Uptake and accumulation of microplastics by musselsin laboratory exposures

Exposure microplastic Exposure Exposure Uptake and Reference
concentration time accumulation
organs
Types Shapes Sizes
Mytilus edulis
PS spheres 3, 9i6n 42 particles/L 3h-48d gut, haemolymph Browne et al., 2008
clearance
PS particles, beads 100 nm, 10 1.3x1d 45 min-72 h digestive gland Ward and Kach, 2009
um particles/ml and clearance
1000 beads/ml
HDPE powder: 0-80um 2.54¢ll 96 gill, stomach Von Moos et al., 201
digestive gland
Ps bead 30 nn 0.1,0.2,0..g/L 8+t foot Wegner et al., 20:
PS spheres 10, 30,90 110 particles/ml 14 d-24 h whole soft tissue Van Cauwenberghe et al.,
um clearance 2015
beads, fragments 100,1000 5d whole soft tissue Quetal., 2018
and fibers particles/L
fibers 2000 microfibers/L 48 h-48 h gill, intestine, foot, Kolandhasamy et al., 2018

stomach, mantle,

clearance
gonad, adductor
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464
465
466

467

468

469

470

471

472

visceral tissue

PS,PE, PP  beads, fibers 7180 50 beads/mlor 0.1 60 min whole soft tissue Porter et al., 2018
(beads)or g0 o/m
23 x 3000u
m (fibers)

M. galloprovincialis

PS, PI powder: <100pum 1.5¢g/L 7¢ haemolymph, gi Avio et al.,201!
digestive gland
LDPE particles 20-2om 2.34x10 28d hemolymph, gills, Pittura et al., 2018
. digestive glands,
particles/L intestine
PE fragments 50-590 um 0.01 g/L 21d digestive tract, wholeBrate et al., 2018a
(derived from body
toothpaste)
PS spheres 3um 50-1%10 24 h-192 h gut of larva Capolupo et al., 2018
particles /ml clearance
Mytilus spp.
PS beads 2, pm 32ug/L/day 7d-7d digestive tract Paul-Pont et al., 2016
=2000 clearance intestine, gills
beads/ml/day

Dreissena polymorpha

PS beads 1, 16m 1x16 or 4x10 6d gut, digestive gland, Magni et al., 2018

particles/L haemolymph

Geukensia demissa

PS, PI sphere 5, 25C-300 3467g/L 2 k24 h stomach, digestiv Khan and Prezant, 20
clearance . .
um tubules, intestine
Perna perna
PVC spheres 0.14m 0.5¢g/L 3h-12d gut, haemolymph Santana et al., 2017
clearance

Abbreviations: PS, polystyrene; PE, polyethylenBRE, high-density polyethylene; LDPE, low-density
polyethylene; PP polypropylene; PVC, polyvinyl chloride.

3.2 Toxic effects of microplastics

In terms of toxicity, a number of adverse effesaiated with microplastic ingestion have
been reported. Notable histological changes in glugestive cells, strong inflammatory
responses with formation of granulocytomas, anddgsal destabilization which increases with
exposure time, have all been observed (Von Moa ,€012). Avio et al. (2015) demonstrated

cellular effects including alterations of immunalcg) responses, lysosomal
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compartmentalisation, peroxisomal proliferationti@uadant system, neurotoxic effects, onset of
genotoxicity, and changes in gene expression prakociated with microplastic exposure.
Brate et al. (2018a) found histological alterationgills and digestive tissue, and hemocytic
aggregates in the digestive gland following expesarPE fragments (ranging from 50-580)
extracted from toothpaste. On a nanoplastic soalissels showed reduced filtering activity, and
the total weight of the feces and pseudofeces ase@ with the increase of nano PS (30 nm,
Wegner et al., 2012). Furthermore, PS-NH2 partistesulated increase in extracellular reactive
oxygen species and nitric oxide production and eéeduapoptotic process of hemocytes (Canesi
et al., 2015). FinallyGandara e Silva et al. (2016) showed the toxicetieéleachates of virgin
PP and beached plastics pellets caused mortalityalamormal embryos &f. perna

In summary, the reported effects of microplastitalp include histological changes,
inflammatory response, lysosomal membrane destabon, reduced filtering activity,
neurotoxic effects, alterations of antioxidant eystincrease in hemocyte mortality, dysplasia,
genotoxicity and transcriptional responses (Talile Bhese research results lay a good

foundation for the exploration of specific biomanké&or microplastic pollution.

3.3 Optimization of laboratory exposures

It should be highlighted that in many laboratonyds¢s, organisms are exposed to
unrealistically high doses of microplastics withifarm size or shape, in virgin condition, and
for relatively short time frames (Rochman et al1@; Koelmans et al., 2017; Lambert et al.,
2017). Whereas, environmentally exposed plastiesalbject to weathering, abrasion and
photodegradation, therefore comprising of a brozel distribution and various shapes (Phuong

et al., 2016; Lambert et al., 2017). In additioeathering processes may weaken the plastic
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surfaceenhance chemical leaching and change the outcomogioblogical investigations of
microplastic particles (Ogonowski et al.20L&mbert et al., 2017; Potthoff et al., 2017).

In some studies, mussels were caged in specifasdoe extended periods to investigate the
microplastic pollution related to specific anthrgeaic activity, such as the removal of wreck or
to assess seasonal changes in plastic polluticari@a et al., 2018; Avio et al., 2017). To
mimic environmental weathering, some studies exghosganisms to microplastics collected
from beaches or deployed in a bay for a period (@endara e Silva et al., 2016; Nobre et al.,
2015; Rochman et al., 201Rrate et al., 2018a). Furthermore, a photo-oxidatiggradation of
plastic pellets incubated in seawater, ultrapuremand air with UV irradiation over a three-
month period observed some changes in hydroxylggotarbonyl groups and surface textures
which provides a good foundation for making envinemtal microplastics under laboratory
conditions (Cai et al., 2018).

A recent study using weathered PE patrticles froothigaste showed that following a
chronic exposure (21 days) with lower dose thamadly tested (~ 1 particle per ml), still
induces tissue alterations in mussels (Brate £2@1.8a). In contrast, a relative longterm
exposure (90 days) &f. pernato a less extreme concentration compared withipue\studies
(0.125 g/L) indicated no behavioral and physiolageffects of microplastics (Santana et al.,
2018). Calls for more testing on toxicological etieof long-term exposure to environmentally
realistic concentrations and shapes are repeateatie by the scientific community (Van
Cauwenberghe et al., 2015; Phuong et al., 2016lnkares et al., 2017). Furthermore, Connors et
al. (2017) and Karami (2017) provide guidance wlsicbuld be considered to improve the
quality and reliability of ecotoxicological studie§microplastics. This includes the

characterization (physical and chemical proper@es) quantification of microparticles in future
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laboratory exposure studies to facilitate a comgmeive understanding of the causal links
between physical-chemical properties of microptagsérticles and toxic effects (Connors et al.,

2017).

4. Scope of mussels as global bioindicators of microplastic

4.1 Advantages of utilizing mussel

There is a consensus that mussels make good lbalogdicators for monitoring many
anthropogenic pollutants (Beyer et al., 2017). 8esithe advantages discussed above, mussels
also have specific advantages as sentinel orgari@msicroplastic pollution. Feeding type
affects microplastic ingestion, for example, filfeeding makes bivalves ingest more
microplastics (Setala et al., 2016). Mussels asispasusceptible to microplastic uptake have
been documented widely (e.g., Browne et al., 20@8; Moos et al., 2012; Mathalon and Hill,
2014, Santana et al., 2016; Li et al., 2016). Farrtiore, potential contamination during
sampling and laboratory processing is a key prolemicroplastic research, mussel’s hard
shells and easy handling minimize contaminatiok (eyer et al., 2017; Setéla et al., 2016).
Bivalves are likely the largest source of microptasfrom seafood to humans because they are
consumed whole (Lusher et al., 2017c). This addkdiv selection as ideal indicators for
microplastic pollution monitoring.

Furthermore, a vast amount of field data showsrthetoplastics are widespread in mussels
around the world, and laboratory exposure studéee ldemonstrated that mussels can be good
model organisms in understanding uptake, accunoulatnd toxicity of microplastic (Tables 1, 2,
S1). This highlights the feasibility and advantagesiussels as indicator species for monitoring
of microplastics from an implementation perspective
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Practically, the quantification of pollutant levétsbioaccumulator organisms and a specific
response to a toxic substance by an organism prdwid frequently employed pathways for
monitoring environmental quality (Reguera et @.18). The suitability of the first approach
relies on the relationship of pollutant level betnwehe organism and ambient environment.
Based on laboratory studies, mussels show selectigrarticles including microplastics (Ward
and Shumway, 2004). Nevertheless, there are diveage for mussels to take microplastics
(Kolandhasamy et al., 2018), and various micropaxist in real environments. Though not
all the properties of microplastics in mussles egactly match those in their environment,
guantitative correlations of abundance betweenaplestics in mussels and in surrounding
seawaters makes it practicable to deduce envirotainicroplastic pollution levels from that in
mussels (Qu et al., 2018). Since the concentratigollutants including microplastics in
mussels tend to remain stable after obtaining angal between intake, assimilation in tissues
and defecation/eggestion, this method can effdgtivitigate or avoid error rates and
misinterpretation stemming from contingency in eornimental medium (Setéla et al., 2016;
Beyer et al., 2017).

As for the other pathway, efforts have been takenreveal the toxic effects resulting from
microplastic intake, translocation and accumulaitomussels. Most biomarkers such as
lysosomal membrane stability, inflammatory respoas¢ioxidant enzymes are sensitive to other
pollutants as well (Brooks et al., 2011; GonzéalerAndez et al., 2016; Burgeot et al., 2017).
Utilising these toxicological studies will provideidence and scientific basis for the selection of
specific biomarkers for the early warning and maitg of microplastic pollution and related

ecological risk assessment.
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Recently, Fossi et al. (2018) proposed to useeetbid monitoring approach to assess the
impact of ingested marine litter including micragtias on marine organisms. It combines an
accurate measure of microplastic levels in targgamisms, the concentrations of plastic
additives and other persistent organic pollutaR@Hs) in tissues and the corresponding
toxicological effects. According to this new contepussels correspond to ideal biological
models beacause they have been widely used aslizators of POPs in coastal environments
(Aznar-Alemany et al., 2017; Martindvet al., 2016; Liu et al., 2014; Chiesa et al.,203agné

et al., 2017; Chiu et al., 2018; Cunha et al., 2@0litakis et al., 2018).

4.2 Current regional and national proposals

Recently, mussels have been proposed as suitatitator organisms of microplastic
pollution by research groups from several geog@jddations (Van Cauwenberghe et al., 2015;
Wesch et al., 2016; Li et al., 2016; Lusher et2017b; Qu et al., 2018). Uptake and
accumulation of microplastics in mussels from Baigihas been selected as a marine health
status parameter, and microplastic levels in mads®le been included in European databases
regarding contaminants of emerging concern in @ebfbe Witte et al., 2014, Vandermeersch
et al., 2015a). The possibilities of using musaslsnonitoring species for microplastics in
Norway and the Nordic marine environment is alsapsuted (Brate et al., 2017; Lusher et al.,
2017b) since they have been used in other reginatibnal and international monitoring
programmes. Lusher et al (2017b) suggests thatah(Mgtilus spp.) can be a promising
bioindicator of the smallest sized microplastic (afn) in the water column.

In a recent workshop orDistribution, source, fate and impact of marine ropastics in
Asia and the Pacificorganized by the IOC Sub-Commission for the Westacific

(WESTPAC), mussels were recommended as bioindisgiceies to monitor marine
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microplastic pollution (WESTPAC., 2017). At the Bpean level, the MSFD has defined marine
litter and microplastics as a full descriptor o tBood Environmental Status (Galgani et al.,
2014). OSPAR have recommended blue mussels ablsuit@nitoring species because of their
large stocks for repeated sampling and the altditgflect the local conditions (OSPAR, 2012).
Due to advantages of mussels as traditional bicédgndicators and mounting evidence of
microplastics in mussels, ICES have advised tamsgsel as a indicator of microplastic
pollution (Vandermeersch et al., 2015b; Beyer et2417; ICES, 2015). However, there are
currently no standard monitoring procedures oudlibg any of the regulatory bodies (inc.
OSPAR, MSFD, NOAA, UNEP). These monitoring protacshould follow recommendations
from international experts and are expected torbdyced in the near future, as the GESAMP
Working Group 40 is currently formulating a reptmrtharmonise monitoring and assessmemnt

of plastics and microplastics globally.

4.3 Future developments

Based on the analysis above, we propose to useefawassbioindicator species for
monitoring microplastics in marine environmentsvBigheless, some questions require further
clarification, and additional factors should beemknto consideration when it comes to building
an efficient and economical approach suitable diture large-scale monitoring program using
mussels.

Firstly, it is necessary to develop a global wogkgroup investigating microplastics in
mussels under some international organization asdiNEP, including underlying
physiological and behavioral processes and respdnsaicroplastics. Already, mussels have
been proposed to be used as bioindicators in socaé dr regional areas. It is time to form a

working group globally so that researchers fronfedént areas share and discuss the protocol of
30



608  monitoring as well as future plans. One possibémaro advertise and promote this discussion is
609 the Ad Hoc Open-Ended Expert Group on Marine Litted Microplastics composed by

610 representatives from member states to supportitpkementation of the United Nations

611  Environmental Assembly resolution on marine likad microplastics (UNEP/EA.3/L.20).

612 Secondly, a uniform protocol should be developetiadopted, at least on a comparable

613  regional monitoring basis. Uniform protocols andrhanized monitoring methods are need to
614  allow spatial and temporal comparisons and to enafdessment of the presence of

615  microplastics and their effects in mussels at daltevel (Fossi et al., 2018). Such a detailed

616  methodology for measuring microplastics in blue sels has also been described by Lusher et al.
617  (2017b) which supplies a potential baseline stathttaconform too. Future inter-calibration

618  exercises will help validate and harmonize methaasd across different research groups. The
619 development and use of an internal reference sds)ptme for each matrices, might also help
620 facilitate inter-laboratory and global validatiohresults.

621 Finally, monitoring should be practicely conductedionally or globally. To date,

622  comparable data of microplastic pollution charasties in mussels from different parts of the

623  world is scarce. Ideally, researchers should bewaged to combine microplastic monitoring

624  into the existing monitoring projects using mussalglobal picture of microplastic should be

625 obtained, and the potential ecological and he@thghould be assessed.

626 5. Conclusions

627 Current evidence on microplastic abundance inalispof the marine environment
628 including wild biota call for establishing a suitabndicator species for microplastic pollution, to
629  monitor spatial and temporal trends internationdyssels have been widely used as

630 bioindicators for monitoring of coastal water ptillun and their susceptibility to microplastic
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uptake and assimilation has been well documeniettl Fvestigations have shown that
microplastic abundance in mussels is closely réladdhuman activity and, in some studies, there
has been a positive and quantitative correlatiomiofoplastics in mussels and their surrounding
waters. Laboratory exposure studies demonstraterthssels can be good model organisms
when investigating uptake, accumulation and toxicftmicroplastics. Therefore, we strongly
propose the use of mussels as indicator specigsdnitoring of microplastics in the marine
environment. We also urge the international orgations (e.g., UNEP) to facilitate the

formation of an international workgroup of microgtias in mussels to develop an internationally
accepted protocol to monitor and collect prelimyndata comparing coastal mussels from

around the world.
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L egend of figures and tables

Table 1. Summary of global field investigationsmitroplastics in mussel&The microplastic
level was transferred by dividing total microplastper individual by the shelled weighthe
abundance of microplastics in intestih®he abundance of microplastics in hepatopancreds an
gills. “The abundance of microplastics in digestive glamtbgills °Scanning Electron

Microscopy/ Electron Dispersive X-Ray.

Table 2. Uptake and accumulation of microplasticsnuissels in laboratory exposures.
Abbreviations: PS, polystyrene; PE, polyethylenBRE, high-density polyethylene; LDPE,

low-density polyethylene; PP, polypropylene; PVGlypinyl chloride.

Supplementary materials

Figure S1. Area of field investigations on micraies in mussels around the world. Roundness,
5-point star and triangle represent the investgategion. Each of them include one or more

sampling sites.
Table S1.The effects of microplastics on mussels in labayatxposuresAbbreviations: PS,

polystyrene; PE, polyethylene; PP, polypropylen®PH, high-density polyethylene; LDPE,
low-density polyethylene; PVC, polyvinyl chlorideLA, polylactic acid.
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Highlights
> Microplastics have been investigated and found in mussels around the world.
> Mussel can be a good organism to study the toxicity of microplastic in the laboratory.
> Mussel is proposed as a global bioindicator of microplastic pollution.

> |t is necessary to develop a uniform protocol for microplastic monitoring in mussels.



