The contribution of Anatolia to European phylogeography: the centre of origin for the meadow grasshopper *Chorthippus parallelus*

E. Mahir Korkmaz1*, David H. Lunt2, Battal Çıplak3 Naci Değerli1 and Hasan H. Başibüyük4

1Department of Molecular Biology and Genetics, Faculty of Science, Cumhuriyet University, Sivas, 58140, Turkey.
2Department of Biological, Biomiomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK.
3Department of Biology, Faculty of Science, Akdeniz University, Antalya, 07058, Turkey.
4Department of Biology, Faculty of Science, Cumhuriyet University Sivas, 58140, Turkey.

*Correspondence: E. Mahir Korkmaz
Department of Molecular Biology and Genetics, Faculty of Science, Cumhuriyet University, Sivas, 58140, Turkey.
E-mail: ekorkmaz@cumhuriyet.edu.tr

Short running header Phylogeography of the meadow grasshopper *Chorthippus parallelus*

Abstract

Aim *Chorthippus parallelus* is one of the classic model systems for studying genetic structure and phylogeography of the Western Palaearctic. Here, we investigate the regional genetic differentiation of *C. parallelus* and evaluate historical and evolutionary processes responsible for such genetic structuring; test the nature of the Marmara water body as barriers to dispersal, and explore the contribution of Anatolian populations to the biodiversity of the West Palaearctic including its likely expansion routes.

Location West Palaearctic.
Methods We have incorporated sequence data from detailed sampling of the phylogeographically important Anatolian region using both previous and newly obtained sequence data of the nuclear *cpnl-1* and the mitochondrial *COI-tRNAleu-COII*. A total of 1049 sequences of *cpnl-1* from 33 regions were analysed to investigate the genetic diversity, genetic structuring and phylogeography of *C. parallelus* across its distribution range. The mtDNA region was additionally utilised to test the barrier position of the Marmara water body.

Results The analyses revealed that not all southern refugial populations of *C. parallelus* have contributed equally to the postglacial recolonization of Europe. Four genetic clusters across the species range were recovered: Cluster A (east part of the Anatolian Diagonal), Cluster B (west part of the Anatolian Diagonal), Cluster C (Spain, Italy, Southern Balkans, west part of Anatolia and Russia), and Cluster D (current distribution range of the species). The Marmara water body has been a weak barrier to dispersal by *C. parallelus*, allowing gene flow from Anatolia to the Balkans.

Main conclusions The current patterns of genetic structuring of *C. parallelus* were best explained by multiple expansion and contraction events. Anatolia has been well connected to the Balkans, contributing genetically to the establishment of central and northern European populations, and its expansion prior to the Holocene will have extended as far north as Scandinavia. The Anatolian refugium is suggested to be the centre of origin for west Palaeoarctic *C. parallelus* diversity rather than a Balkan refugium.

Keywords Anatolia, *Chorthippus parallelus*, genetic diversity, genetic structuring, glacial refugia, Marmara Sea, phylogeography, range expansion waves, West Palaearctic.
Introduction

Phylogeographic studies of Western Palaearctic lineages have allowed several important generalisations concerning the history of temperate species (Hewitt, 1996, 2000; Taberlet *et al.*, 1998). One such is that the Pleistocene glacial cycles have had significant effects on the present distribution of many species as the biodiversity of northern areas are largely removed during glacial periods and re-established by founder populations from southern refugia during the warmer interglacials (Hewitt, 1996, 1999, 2000; Taberlet *et al.*, 1998; Schmitt, 2007). Iberia, Italy, and the Balkans have been identified as the likely glacial refugia of the Western Palaearctic (Hewitt, 1996; Atkinson *et al.*, 2007; Médail & Diadema, 2009; Çıplak *et al.*, 2010). Three common routes of recolonization from southern refugia to northern areas have been recognized (Hewitt, 1999); however additional routes may also have played a role (Taberlet *et al.*, 1998; Rokas *et al.*, 2003; Schmitt, 2007).

Although not rigorously tested, Anatolia has also been suggested as an important glacial refugium (Hewitt, 1996; Rokas *et al.*, 2003; Çıplak, 2004, 2008; Korkmaz *et al.*, 2010; Ansell *et al.*, 2011). The geographic location of Anatolia together with its complex paleogeographic history, heterogeneous topography and climate contributes to the high levels of endemism and global importance of its biodiversity (Şekerçioğlu *et al.*, 2010). Albeit data is still limited, studies focusing on several lineages reveal that Anatolia harbours a high level of genetic diversity (Rokas *et al.*, 2003; Gündüz *et al.*, 2007; Dubey *et al.*, 2007; Fritz *et al.*, 2009; Stamatis *et al.*, 2009; Akın *et al.*, 2010; Çıplak *et al.*, 2010; Mutun, 2011). Anatolia, however, has been underrepresented in regional phylogeographic studies with specifically Anatolian lineages, or representatives of Anatolian populations for wide-ranging forms, rarely, inadequately, or only recently being included. With the effects of the climatic shifts of Pliocene/Pleistocene, vertical range changes may be expected depending on the heterogeneous topography. In particular during the warm interglacials the populations
preferring cold conditions would have been isolated and possibly diverged on top of high
mountains or ‘sky islands’ and this feature may suggest a complex refugial system for

The meadow grasshopper Chorthippus parallelus (Zetterstedt, 1821) has been a key example
of phylogeographic structuring and indeed gives its name to one of Hewitt's three refugial
expansion models (Hewitt, 1999). Phylogeographic studies of C. parallelus have utilized both
mitochondrial DNA and nuclear loci and suggest three major genomic units in Iberia,
Calabria (Southern Italy), and the populations in remaining range of the species (Cooper et
al., 1995; Lunt et al., 1998). Besides the acceptance that the present European range has
originated by postglacial expansion from the Balkans, Hewitt (1996) also suggested that
Anatolian populations may have survived the glacial cycles and contributed to the
repopulation of Europe. Some Anatolian specimens were included in the study by Cooper et
al. (1995), but this sampling was insufficient to properly represent either genetic diversity or
geographic fragmentation of the species within Anatolia (Korkmaz et al., 2010). The
implication of Hewitt (1996) that Anatolia could be the ultimate origin of the species has
remained therefore largely untested. An investigation of the relationship among Anatolian
populations may contribute to our understanding of the origins of C. parallelus diversity
during the expansion periods. The other issue to be considered is the direction of range
change during either cold or warm periods. It is generally accepted that during interglacial
periods the northern edge of the population was the leading or expanding edge and the
southern edge was the eroding or rear edge, while the reverse directions were the case in cold
periods (Çıplak, 2004; Hampe & Petit, 2005). However some assumptions of the rear
ged/leading edge hypothesis appear to be in conflict with the characteristics of a complex
refugial system (Médail & Diadema, 2009; Korkmaz et al., 2010). Therefore, determining the
characteristics of leading edge populations and gene flow between different regions within the
refugial system requires particular attention.

We note that since the preparation of this paper, *C. parallelus* has been transferred to a newly
established genus *Pseudochothippus* (Defaut, 2012) to maintain consistency we use the
traditional name *Chorthippus parallelus* until the whole Gomphocerini lineage can be
reconsidered on the basis of a larger dataset.

Here we revisited the *C. parallelus* phylogeographic system, using both previous and newly
obtained sequence data of the nuclear *cpnl-1* region, and with particular attention to expand
the sampling and analysis of its Anatolian populations. Our first objective is to examine the
structure of diversity and differentiation between this region and the others and to investigate
the historical and evolutionary processes responsible for such genetic structuring. Second, we
aim to examine the potential role of Anatolia as a centre of origin for diversity within *C.
parallelus* by including a larger and more geographically diverse collection of Anatolian
samples. Thirdly, we investigate patterns of gene flow and likely expansion routes connecting
Anatolia with the rest of the current distribution. In particular, we investigate whether the
Bosphorus and Dardanelles, and Marmara Sea (hereafter is called the Marmara water body)
acts as a barrier using a large dataset of both nuclear DNA (*cpnl-1*) and newly generated
mtDNA (*COI-tRNAleu-COII*) sequences. Finally, we aim to explore the contribution of
Anatolian forms to biodiversity of West Palaearctic more generally based on the evolutionary
history of *C. parallelus*.

Materials and Methods

Sampling

The species used in this study is not endangered or protected, nor are the sampling locations;
therefore no specific permits were required. Specimens were collected from June to August
between 2005 and 2009, using several keys to check identification (Bei-Bienko & Mistshenko, 1951). The number of individuals per locality varied due to availability of specimens and those collected were preserved in EtOH for DNA extraction (see Fig. 1 & Appendix S1 in Supporting Information for sampling localities of both previous and new datasets).

Two different datasets were generated from both nuclear and mitochondrial genes. The nuclear data included *cpnl-1* sequences of 248 individuals primarily from W. Europe and Russia from published studies (Cooper & Hewitt, 1993; Cooper *et al.*, 1995); and that of 558 individuals representing 33 populations from Anatolia, three from Thracian Turkey and two from Bulgaria generated in this work (Appendix S1). The mitochondrial data set generated in this study was used in testing the barrier statues of the Marmara water body and investigating expansion patterns and times of Anatolian and Thracian populations. It comprised of *COI-tRNAleu-COII* sequences from 201 individuals representing eight populations from northwest Anatolia and five populations from Thracia (Appendix S1). The mtDNA region utilised in this study is not comparable with the region that was used in previous studies (Lunt *et al.*, 1998).

DNA extraction, PCR and sequencing

Total genomic DNA was extracted from the hind leg of specimens using the Chelex-100 method described by Walsh *et al.* (1991). The amplification and single strand conformation polymorphism (SSCP) analysis of *cpnl-1* (410 bp) were carried out by the method outlined in Korkmaz *et al.* (2010). The mitochondrial *COI-tRNAleu-COII* gene fragment (1433 bp) was amplified using newly designed primers: COIMF (5'-TTGACCCAGCTGGAGGTGGAGAC-3') and COIIMR (5'-TGATTCCAATAGCAGGAAGCCTGCTC-3'). Amplification was carried out in 50-µL volumes containing 0.5 U of *Taq* polymerase, 5 µL of 10 × reaction buffer (100 mM Tris-HCl, pH 8.8, 500 mM KCl, and 0.8% Nonidet P-40), 10 pmol of each of the primers, 0.2 mM of each of the four dNTPs, 1.5 mM MgCl₂, and 1 µL of DNA template (50-100 ng).
PCR cycle conditions were: 94 °C, 5 min; 35 × (94 °C, 1 min; 60.5 °C, 1 min; 72 °C, 30 s); 72 °C, 5 min. Sequencing reactions were carried out in both directions using the same primers as in PCR reactions. The forward and reverse nucleotide sequences were assembled, edited and aligned by eye using the CODONCODE ALIGNER 3.5.6 (CodonCode Corporation).

Data analysis

Genetic diversity

The sampling locations of *C. parallelus* were divided into 33 regions, based on the geographic proximity of populations and the location of geographic barriers, in Europe (including three Thracian regions), Russia and Anatolia (Fig. 1 & Appendix S1). Anatolia was also divided into four regions (including a total 33 of populations) considering the positions of the Anatolian Diagonal as well as Taurus and Pontids Mts ranges. The distribution of genetic diversity across the study area was evaluated in order to detect signals for refugial position. Nucleotide diversity (π), haplotype diversity (h), number of segregating/indel sites (S), number of unique haplotypes and average number of nucleotide differences (k) were calculated using DNASP 5 (Librado & Rozas, 2009) and ARLEQUIN 3.5 (Excoffier *et al.*, 2005). We also compared and characterised the distribution of haplotypes containing indel positions. The components of genetic diversity (Cₘ) and differentiation (Cₛ) were also calculated using the computer software CONTRIBUT 1.02 (Petit *et al.*, 1998), to estimate the contribution of each region to genetic diversity and genetic divergence.

Genetic structure

The levels of genetic subdivision and gene flow among regions were quantified and tested applying the sequence statistic, Kₛₑ (Hudson *et al.*, 1992). Kₛₑ was computed as Kₛₑ = 1 – (Kₛ/Kₚ); where Kₛ = weighted average number of differences among sequences in a region and Kₚ = average number of differences between two sequences in the dataset. The pairwise Kₛₑ values against Euclidian geographic distances of regions (Hutchison & Templeton, 1999).
was tested using the Mantel option with 10,000 random permutations of genetic distance matrix in the GENALEX 6.3 (Peakall & Smouse, 2006).

In order to detect global genetic structure and to define the most divergent region(s) within the species range without prior region boundary assumptions, a spatial analysis of molecular variance (SAMOVA) based on the proportion of total genetic variance (Φ-statistics) was carried out by SAMOVA 1.0 (Dupanloup et al., 2002). This program requires the number of K and we ran SAMOVA on our datasets on different K, ranging from 2 to 7, with 250 simulated annealing processes. Significance levels of Φ-statistics were estimated by 1000 random permutations. To establish spatial genetic structure in *C. parallelus*, we also performed a discriminant analysis of principal components (DAPC) (Jombart et al., 2010). See Appendix S2 for a more detailed explanation of the DAPC analysis using the R package ADEGENET 1.3-1 (Jombart, 2008). Twenty nine indel positions were also observed with many consisting of two or more sites. We therefore defined a total of 13 indel events (see Appendix S1). The distribution of the indel events were superimposed on the clusters generated by the DAPC analysis.

Phylogeography and demographic history

Three datasets were generated: (i) sequence data of all haplotypes; (ii) sequence data of the unique haplotypes; and (iii) presence and absence of haplotypes which were coded as (1) and (0) respectively and analysed under different assumptions by application of maximum likelihood, maximum parsimony, Bayesian inference and minimum evolution (NJ) approaches. We also carried out network analyses to investigate the genealogical relationship between regions. We constructed a haplotype network using NETWORK 4.5.1.6 (available at http://www.fluxux-technology.com). Network was calculated by the median-joining (MJ) method ($ε = 0$) (Bandelt *et al.*, 1999) and a subsequent maximum parsimony calculation was applied. To reduce complexity and evaluate historic demographic expansion events in the
network, we also performed an additional analysis using star contraction algorithm implemented in the same program.

We then investigated the demographic history of the clusters defined by the DPCA. We firstly examined Tajima's D (Tajima, 1989), Fu’s Fs (Fu, 1997) and the raggedness index (based on the mismatch distribution) (Harpending, 1994), using DNASP, with 10,000 coalescent simulations, to detect population growth and infer population demographic events. Second, the mismatch distributions and the likely expansion times of the clusters were estimated from demographic expansion factor static Tau ($\tau = 2\mu kt$) with 95% confidence intervals by using ARLEQUIN 3.5, where k is the length of sequences and μ is the mutation rate per nucleotide. Because there is no estimate on mutation rate of the non-coding $cpnl-1$, we utilised the same mutation rate used in mtDNA which is the proposed average rate of neutral single copy nuclear DNA in insect (Papadopoulou et al., 2010).

The barrier position of the Marmara water body

We used three complementary approaches to test the barrier position of the Marmara water body. Thracian and North-West Anatolian groups were created by inclusion of five and eight populations respectively (Appendix S1). The COI-tRNALeu-COII (1433 bp) (GenBank accession numbers: KC107629 - KC107654, see Appendix S1 for haplotypes) and $cpnl-1$ sequences were utilised in the analyses. First, the relationships among both mtDNA and $cpnl-1$ haplotypes belonging to Thracian and North-West Anatolian groups were separately constructed using NETWORK 4.5.1.6. Second, we estimated the likely expansion times of these two groups. Third, Markov Chain Monte Carlo (MCMC) simulations of the Isolation with Migration model using the IMA2 software (Hey, 2010) were carried out to assess the potential barrier status of the water body, splitting time, and rate of gene flow to each direction. See Appendix S3 for a more detailed explanation of the IMA2 analysis.
Results

Spatial distribution of genetic diversity

The 1049 cpnl-1 sequences represented 33 regions across the species range in Europe, Russia and Anatolia (Fig. 1 & Appendix S1). After alignment and trimming, the remaining length of sequences was 314 bp. Overall, 116 variable positions, composed of 87 single bp substitutions, 29 indels, and 40 parsimony informative sites were observed defining a total of 188 cpnl-1 haplotypes (GenBank accession numbers were given in Appendix S1). h was 0.848 ± 0.011 and generally higher than 0.50 in all regions ranging from 0.53 to 0.94 except in three regions (SSpn, Blg2 and Blg3) (Table 1). π was 0.0090 ± 0.0003 and k was 2.512. π, in contrast, was relatively low for many regions, ranging between 0.000 (SSpn) and 0.039 (ERs) with Blg2 and Blg3 having a score of 0.002 (Table 1). The most common haplotype was Hap_2 (found in 18.7% of sequences). The 136 haplotypes (72.3% of the overall haplotypes, Table 1) were definable with a singleton mutation difference and were unique to a single region (Appendix S1). Each region of Anatolia, Thracia, Bulgaria and Greece had unique haplotypes in varying frequencies (Appendix S1). The frequencies of the shared haplotypes were presented in Appendix S1.

The variability levels of genetic divergence among regions were based mostly on the number of haplotypes detected per region. The contribution of those regions to total diversity is due to possession of both unique and divergent haplotypes (Fig. 2). Haplotypes found in all Anatolian, Thracian, Russian, and most northern European regions provided relatively low positive contribution to total diversity while negative contribution of the diversity components was mostly due to Spanish and Balkans haplotypes (Fig. 2).

Genetic structure

Average genetic differentiation (K_{ST}) of all regions was 0.28 and ranged from -0.35 to 0.97 indicating a variable genetic differentiation among regions (Table 2). Pairwise K_{ST} values
between regions showed that the high levels of differentiation were mainly due to remarkably
divergent regions of Spain, Italy and Russia. On the other hand, low levels of differentiation
(< 0.1) were commonly observed among Anatolian, Thracian, Balkans and northern European
regions as well as some regions having significant P values (Table 2). The Mantel test
indicated no significant correlation between \(K_{ST} \) and geographic distances of the species range
\((R^2 = 0.005, P > 0.05)\).

We applied successive SAMOVA analyses to the data matrix of regions to see possible
structuring in a geographic basis (Fig. 3). The results showed that \(F_{CT} \) value was the highest
when all regions were subdivided into two groups; two Spanish regions (SSpn-PSpn) and all
other remaining regions (\(F_{CT} = 0.491 \), Fig. 3). When five groups were included in SAMOVA,
\(F_{CT} \) and \(F_{ST} \) values overlapped and PSpn, SSpn, CSpn, SIt were separated from all remaining
(Fig. 3). A similar pattern was observed in the pairwise \(K_{ST} \) values [from 0.21 (SSpn-CSpn) to
0.97 (SSpn-Blg2) for SSpn, from 0.23 (PSpn-CSpn) to 0.77 (PSpn-PFrc) for PSpn, from 0.12
(CSpn-NWIt) to 0.69 (CSpn-PFrc) for CSpn and from 0.07 (SIt-NSpn) to 0.72 (SIt-PFrc) for
SIt, but not among them (Table 2)].

The result of DAPC analyses indicated a more complex history of the species. The retained
PCA components explained 79.9% of the total variance observed. The DAPC analysis
partitioned the all individuals of \(C. \) parallelus into four clusters (Fig. 4 & see Appendix S2 for
a scatterplot graph). Moreover, the posterior probability of assignment for each individual to
the correct genetic cluster was 99%, indicating a high robustness of the analysis (Appendix
S2). The Cluster A and B divided Anatolia into two parts, of which one corresponded to
individuals from east part of the Anatolian Diagonal (58 individuals, 5 haplotypes; Fig. 4a);
the other corresponded to west part of Anatolian Diagonal (103 individuals, 32 haplotypes;
Fig. 4b). On the other hand, the remaining two clusters displayed relatively a broad
distribution. Cluster C (152 individuals; 25 haplotypes) was comprised a mixture of
individuals mostly from southern range of the species (Spain, Italy, Balkans, Russia and western Anatolia) (Fig. 4c); while Cluster D (736 individuals, 127 haplotypes) corresponded to the current distribution of the species with individuals mostly from Anatolian, Thracian, Balkans, and northern European regions (Fig. 4d).

Phylogeography and demographic history

None of our diverse phylogenetic analyses of the three sets of cpnl-1 haplotype alignments resulted in a well-resolved phylogenetic tree, which is not unusual for population level diversity. The length of indels exhibited a great variation from one to 10 bp in the fragment (Appendix S1). Number of indels per sequence showed a clinal tendency from east to west across the species range. The highest numbers of total indel positions per sequence was observed in the SEAnt and NEAnt (with total of 21 indel positions) (Appendix S1). The presence of two indel events at site 257 (GAGA), and at site 260 (A) was observed in all individuals of Cluster A, while an event including three nucleotides at sites 8 (ACT) was detected in all individuals of Cluster B (Fig. 4ab). The most common indel event at site 217 (AACTT) was found in all individuals belong to Cluster C indicating mostly a southern refugial distribution (Fig. 4c). Cluster C also contained two indel events at site 217 (AACGT) in Russia and at site 230 in NSpn. On the other hand, the remaining seven indel events were observed only in certain individuals of Cluster D (Fig. 4d). Moreover, five indel events (at sites 6 (A; from NEAnt), 127 (TAT; from NWAnt and SWAnt), 130 (from NEAnt and SEAnt), 219 (CTT; from NWAnt and SWAnt) and 261 (CAGAGA; from SEAnt) were only from Anatolia, and two indel events were from Thracia [at site 209 (from Thr2 and Thr3)] and Balkans [at sites 178 (from PeGrc) and 209 (A; from Blg2)].

We also investigated network approaches to the data and present a median-joining haplotype network in Fig. 5. The figure shows the high diversity of cpnl-1 haplotypes recovered, and reveals that the network is not dominated either by high-frequency alleles nor structured by
large divergences between haplotype groups. The main geographic ranges, illustrated in the figure by separate colours, do not fall into single sections of the network indicating inheritance of haplotypes that are not necessarily each others’ closest relatives. Anatolian haplotypes (red) are found throughout the network, closely related to almost all other haplotypes, and most of the low-frequency haplotypes have only been recovered from Anatolia. Results of neutrality tests and output from the mismatch distribution analysis including expansion time estimates based on *cpnl-1* sequences for all clusters are provided in of Appendix S3. With a generation time of one year, the estimated times using τ statistic of expansion for Cluster A-D respectively were 0.041, 0.259, 0.234 and 0.067 mya (Appendix S3).

The barrier position of the Marmara water body

Prior to the analyses, we investigated several features of the mtDNA in order to eliminate the possibility that the data may have included nuclear copies of mitochondrial DNA (numts). The presence of single peaks in each chromatograph, typical A+T bias observed for insect mtDNA, and the absence of indel and premature stop codons provide good evidence that the aligned sequences correspond to a functional mitochondrial region.

All of the findings of network analyses and demographic statistic tests indicated an undifferentiated population pattern across both sides of the Marmara water body indicating a recent expansion event or gene flow (See Appendix S3 for a more detailed comparison of the findings of network analyses and demographic statistic tests). The three IMA simulations produced similar results and all multidimensional peak locations fell within the 95% confidence intervals of the marginal posterior density distributions (Table 3). The estimates of divergence time for the Thracia-NWAnt were $\tau_{\text{Thracia-NWAnt}} = 0.039$ mya (0.024-0.178) (Table 3 & Fig. 6). In addition to the divergence time, we estimated the effective population size and the rate of gene flow between groups to test the possible effects of the current barrier
to population parameters. The effective population size of the NWAnt \(\theta_2 = 281650 \) (146737-519112)] was greater than that of the Thracian group \(\theta_1 = 158025 \) (28700-315237)], whereas the ancestral population was significantly smaller \(\theta_A = 58025 \) (100-325200); Table 3]. The rate of gene flow from the NWAnt to the Thracia was approximately 20 times greater \(m_2 = 2.245 \) than that in the opposite direction \(m_1 = 0.115 \) (Table 3 & Fig. 6).

Discussion

We observe a remarkable genetic diversity and genetic structuring of *C. parallelus* in Anatolia. This supports previous studies suggesting Anatolia either as a centre of diversity or a glacial refugium (Hewitt, 1999; Çiplak, 2008; Çiplak *et al.*, 2010; Ansell *et al.*, 2011; Sekercioğlu *et al.*, 2011). The evidences presented here are consistent with Anatolia as the most diverse of all European regions in terms of haplotype and nucleotide diversity (Table 1) as well as indel events (Fig. 4 & Appendix S1); although increased sampling of the whole distribution range is needed for more quantitative comparisons. Multiple expansion and contraction events during the Pleistocene glacial cycles appear to be responsible for the present structuring and distribution of the species, with the formation of the differentiated genetic clusters (Fig. 4). Our data also reveals that Anatolian populations have had persistent contact and interaction with European populations, specifically with exchange between Balkans populations via Thracia and western Anatolia. These exchanges were also supported by confirmation that the Marmara water body was not a significant barrier to *C. parallelus* until the Holocene allowing a high level of gene flow from Anatolia to the Balkans (Table 3 & Fig. 6). The implications of our results are discussed in detail below.

Spatial distribution of genetic diversity
According to the rear/leading edge concept, within/between population diversity in glacial ancestral resource regions (or rear edge) are expected to be higher than that of expanding edge (or leading edge) (Hampe & Petit, 2005; Diekman & Serrão, 2012). The findings of the present study are not consistent with the main hypothesis that small populations isolated in the rear edge are genetically depleted. The meadow grasshopper regions studied here were characterized by high genetic diversity at the regional levels especially in refugia (Table 1) and the results also indicated that most of the total genetic diversity was present within regions (Table 1 & Appendix S1). Although haplotype diversity was high, low nucleotide diversity values indicated only small differences between haplotypes (Table 1 & Fig. 5). The locations of the regions across the species range might have triggered the variability of unique haplotypes at regional levels. Indeed, the percent of unique haplotypes was highest in the southern locations—Anatolia (78.29% of all detected haplotypes), Thracia (62.5%) and Spain (54.55%) (Table 1). We also recorded a relatively high level of nucleotide diversity and average number of nucleotide differences in southern regions (Table 1). The findings suggested that while rear edge regions of *C. parallelus* are reservoirs of unique genetic variation, this is not the case for the corresponding leading edge regions.

The spatial distribution of genetic diversity can also provide valuable insights into how rear edge regions have contributed to postglacial recolonizations (Cooper *et al.*, 1995; Hewitt, 1996, 2000; Provan & Maggs, 2012). Italian and Iberian refugial populations of *C. parallelus* have not contributed to the postglacial recolonization of Europe, probably because of the Pyrenees and Alps acting as significant barriers to dispersal (Cooper & Hewitt, 1993; Lunt *et al.*, 1998). The occurrence of low diversity values in some Spanish (Sspn, PSpn) and Balkan (Blg2 and Blg3) regions (Table 1 & Fig. 2) might be explained by being separated from nearby populations by unsuitable habitat; therefore high genetic drift and low gene flow are likely drivers of their higher genetic differentiation (Diekmann & Serrão, 2012). Anatolian
regions show a more complex scenario however, exhibiting the highest level of genetic diversity (Table 1), and the presence of a high number of indel positions (Fig. 4 & Appendix 1). The occurrence of a high nucleotide and haplotype diversity, as well as high number of indels, in Anatolia represents a stable rear edge that has not become genetically depauperate (Cooper *et al.*, 1995; Hewitt, 1996; Dubey *et al.*, 2007; Korkmaz *et al.*, 2010). Similar conclusions were also reported for several other organisms from Anatolia (Moghaddam *et al.*, 2000; Rokas *et al.*, 2003; Dubey *et al.*, 2007).

Geographical structure of genetic differentiation

It is likely that the genetic patterns observed have been greatly influenced by climatic changes associated with the Pleistocene glacial periods as these are known to influence drift and gene flow, which will combine particularly strongly in the postglacial recolonization phase (Hewitt, 1999). For wide-ranging species, climate fluctuations may have caused range contractions in some parts of the range and expansions in others (Çiplak, 2004, 2008), which together may have formed the distinct genetic lineages that we know today (Hewitt, 2004; Ehrich *et al.*, 2007). In addition to the possible effect of climatic changes, topographic structure and mountain chains of a certain region may have led to genetic differentiation. These are consistent with our findings as the analyses related with genetic structuring indicate that populations of *C. parallelus* are not genetically homogenous across distribution ranges (Table 2 & Figs. 3-4). The formations of the cluster A and B suggest that the Anatolian Diagonal acts as an effective barrier to gene flow between the west and east regions of Anatolia (Fig. 4ab). This is also supported by the presence of indel positions specific to both clusters (Fig. 4ab & Appendix S1). The barrier position of Anatolian Diagonal was also observed in many taxa in Anatolia (Gündüz *et al.*, 2007 and references therein). On the other hand, the mainly southern distribution of the species together with some Russian individuals appears to represent a relatively old genetic unit (Cluster C; Fig. 4c & Appendix S3). This
structuring possibly has been formed by the direct effect of glacial periods rather than the geographical relationships among regions. This is further supported by presence of the most common indel at site 217 in the cluster C and again could be attributed to its old age, possibly resulting from a dispersal wave out of Anatolia (Fig. 4c). Moreover, this conclusion is consistent with the primary distinction of some southern refugial regions from all other in SAMOVA (Fig. 3) and also the component contributions (Fig. 2). At the same time, the geographic position of the Cluster C may point out to a historical connection among Spain, Italy, Balkans and Anatolia (Fig. 4c). Finally, the Cluster D consists of the current distribution area of the species and the absence of any indel events except in some Anatolian individuals suggests a relatively new dispersal wave out of Anatolia/Balkans (Fig. 4d).

Phylogeography, demographic history and the barrier position of the Marmara water body

Thanks to the studies of Hewitt and his colleagues, we already have considerable knowledge of the phylogeography of *C. parallelus* (Butlin *et al.*, 1991; Cooper & Hewitt, 1993; Cooper *et al.*, 1995; Hewitt, 1996, 1999, 2000; Lunt *et al.*, 1998). In these studies it is assumed that the present population in Europe, excluding Spain and southern Italy, is founded by a population dispersing from a Balkans refugium during the last interglacial period. The Spanish and Italian populations are thought to be separate units, originating from their own refugial stocks, arriving to these two peninsulas in an earlier interglacial.

Our data is partly consistent with these findings but add more details (see Tables 1-2 & Appendix S1). Our results support that the Iberia is structured into multiple groups as suggested earlier (Figs. 3-4; Gomez & Lunt, 2007). A reported relationship between some Spanish and Italian forms by Bella *et al.* (2007) is also accord with our findings. One of our striking results is the presence of some Russian individuals within the cluster C (Fig. 4c). This
may be attributed to a contraction and isolation event after an old dispersal wave since there is no indication of a recent expansion (Appendix S3).

Although a detailed discussion of the interrelationships of the populations within Anatolia is out of the scope of this current study our data shows the presence of Anatolian individuals in all clusters and indicates multiple expansion events from Anatolia (Fig. 4). The hypothesis of gene flow between western Anatolia and the Balkans is tested by the IMA analysis, with the results indicating that substantial gene flow between the Balkans and Anatolia has indeed continued since the establishment of these populations. Additional mitochondrial DNA data also appear to support this conclusion (Korkmaz et al., 2011), and suggest that the populations of SEAnt are a source of genotypes involved in this expansion. The high rate of gene flow from Anatolia to Thracia indicated that Anatolia has consistently acted as an important source of diversity for European regions until the Holocene (Table 3 & Fig. 6). The marine barrier presented to *C. parallelus* by the Bosphorus, Dardanelles and Marmara Sea has of course been influenced greatly by climate cycles. A significant decrease in sea level during the last glacial maximum (Ergin et al., 2007) would have led to a large part of the Marmara Sea becoming a land mass across which grasshoppers may have dispersed. These results are in agreement with the above suggestions that the Anatolian population contributed to the establishment of central and northern European populations and in this way the genetic signatures of Anatolia may have extended before the Holocene as far north as Scandinavia (Fig. 4d). This conclusion is fully accord with indels distributions (Fig. 4).

Comprehensive data for Anatolian regions has now brought the classic model to a new stage. Hewitt (1996) has previously suggested that the ultimate ancestral region is probably in Anatolia, and indeed our results suggest very strongly that Anatolia is the original source of European populations. We add a number of novel aspects to the classic model of *C. parallelus* phylogeography including the connectedness of the Balkans and Anatolia despite the apparent
marine barrier. The presence of a high number of indels in Anatolia with a clinal decline from Anatolia to Balkan and Europe is in support of these assumptions (Fig. 4 & Appendix 1). Thus, rather than a simple, small, bottlenecked Balkans refugium we have shown that a larger, more permeable Anatolian centre of origin is a much more realistic model for west Palaeoarctic diversity of *C. parallelus*.

Acknowledgements

This study is dedicated to the memory of Professor Godfrey Hewitt (1940-2013) who first advocated *C. parallelus* as a study system, spoke often of the likely importance of Anatolia to European biota, and through mentoring, encouragement, and research greatly advanced the study of Eurasian phylogeography as a discipline. The financial support of this study was provided by Cumhuriyet University via a research project numbered as CUBAP, F-245. A part of this project was presented as a PhD thesis of the first author (EMK). We are also grateful to The Council of Higher Education (Turkey) for providing a bursary of six months to EMK to carry out a part of his PhD research project in the Bioinformatics laboratory of Dr. Dave Lunt (University of Hull, UK). We are also grateful to Prof. Dr. Günter Köhler (Friedrich Schiller University, Germany) and Dr. Dragan Chobanov (Bulgarian Academy of Science, Bulgaria) for supplying some of the specimens studied. Thank to Sarp Kaya, Mahir Budak and Mahir Yıldırım for their help and companionships during field studies.

References

Çıplak, B. (2008) The analogy between glacial cycles and global warming for the glacial
relicts in a refugium: a biogeographic perspective for conservation of Anatolian Orthoptera.

Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 183-195.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Sampling data information, accession numbers and indel variants of *cpnl-1* haplotypes and shared *cpnl-1* haplotypes between regions of *Chorthippus parallelus*.

Appendix S2 DAPC on R package to identify and describe all possible genetic structuring across the distribution area of *C. parallelus*.

Appendix S3 The results of demographic history of the clusters, IMA and the network and demographic analyses of Thracian and North West Anatolian groups to investigate the barrier position of the Straits;

Biosketch

Dr. E. Mahir Korkmaz an Assistant Professor at the Cumhuriyet University is interested in systematics and molecular evolution of Western Palaearctic species. In particularly, he is focused on Anatolian historical biogeography and mitochondrial genome evolution in insects.
Research interests of the co-authors include molecular phylogeny, phylogeography, bioinformatics and biogeography. For further information please see: www.cumsag.com; http://biyo.fen.akdeniz.edu.tr/tr.i54.prof-dr-battal-ciplak; http://davelunt.net/

Author contributions: A core team (E.M.K., B.Ç., H.H.B.) conceived the principal ideas and the main structure of the manuscript and led the writing; E.M.K., B.Ç. and N.D. collected the specimens and data; D.L. helped with the analyses and writing.