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Abstract 

Platelet-based applications such as platelet-rich plasma and platelet releasate have gained 

unprecedented attention in regenerative medicine across a variety of tissues as of late. The 

rationale behind utilising platelet-rich plasma originates in the delivery of key cytokines and 

growth factors from α–granules to the targeted area, which in turn act as cell cycle regulators 

and promote the healing process across a variety of tissues. The aim of the present review is 

to assimilate current experimental evidence on the role of platelets as biomaterials in tissue 

regeneration, particularly in skeletal muscle, by integrating findings from human, animal and 

cell studies. This review is composed of three parts: firstly, we review key aspects of platelet 

biology that precede the preparation and use of platelet-related applications for tissue 

regeneration. Secondly, we critically discuss relevant evidence on platelet-mediated 

regeneration in skeletal muscle focusing on findings from a) clinical trials, b) experimental 

animal studies and c) cell culture studies; and thirdly, we discuss the application of platelets 

in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. 

Finally, we review key technical variations in platelet preparation that may account for the 

large discrepancy in outcomes from different studies. This review provides an up-to-date 

reference tool for biomedical and clinical scientists involved in platelet-mediated tissue 

regenerative applications. 

  

Key words: growth factors, platelet releasate, platelet-rich plasma, regeneration, skeletal 
muscle  
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Introduction  
Platelets, also called thrombocytes, are produced from megakaryocyte projections into micro-

vessels in mammalian bone marrow. Freely circulating platelets are the first cellular response 

following damage to vascular or tissue integrity and play a crucial role in haemostasis, innate 

immunity, angiogenesis and wound healing 1. The latter aspect is receiving increased attention 

since the wound healing effects suggest a regenerative ability for maintaining whole body 

integrity and homeostasis 2-4. Until recently, platelet-rich plasma (PRP; defined as a 

biologically active, autologous concentration of platelets re-suspended in plasma), was 

extensively used in the medical fields of connective tissue regeneration and thrombosis 

research, while the study of the regenerative potential of PRP in a clinical context attracted 

less attention. Although our understanding on the mechanisms linking platelet biology to tissue 

regeneration is still evolving, at this stage many aspects remain to be established due to 

inconsistent and conflicting scientific evidence 5.  

Data from clinical studies on the effectiveness of platelet-rich plasma applications appear to 

be conflicting or limited to outcomes such as improvement of quality of life, reduction of post-

operative pain, improved healing or absence of any beneficial effect. This has been attributed 

to possible methodological differences of preparation, PRP composition, medical condition of 

the patients, anatomical location of the lesions as well as type of injured tissue and has been 

discussed in relevant reviews of clinical interest 6-8. Growth factors and cytokines have a 

crucial role in the healing process with regards to early inflammation in tissue regeneration 9. 

Therefore, the rationale for utilising autologous PRP originates in the easy availability of 

numerous cytokines and growth factors to the targeted area, acting as biomaterials to promote 

regeneration (Figure 1) 10-14. These factors in turn upregulate proliferation, differentiation and 

migration of necessary cells in the area of regenerating tissue 4. Over the past decade, there 

have been amounting articles contributing to the knowledge surrounding the mechanisms of 

growth factors in the regeneration of wounded or dysfunctional tissue 2, 15-17. Due to increasing 

understanding in cell signalling and growth factor biology, research and clinical attention has 

been drawn to the use of autologous PRP as a novel means of delivering growth factors to 

injured tissue such as liver, bone and skeletal muscle (See Table 1: muscle tissue 

regeneration, Table 2: other tissue regeneration and Table 3: in vitro cell studies).  

Skeletal muscle is a highly plastic tissue with remarkable capacity to regenerate in response 

to injury and trauma. The early acceleration of muscle regeneration, specifically within the first 

week, is a crucial time point to implement a clinical intervention due to the early inflammatory 

response as well as the regeneration phase taking place 2, 9, 18. Therefore, understanding the 

molecular and physiological mechanisms that link platelet biology to tissue regeneration has 

the potential to identify novel opportunities in regenerative medicine in the near future.  
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Readers interested in the clinical aspects of platelet-based applications for orthopaedic 

regeneration, in muscle, ligaments and tendons are directed to recent relevant reviews 6, 8, 19, 

20. In the present review we assimilate current experimental evidence on the role of platelets 

as biomaterials in tissue regeneration, particularly in skeletal muscle.  Firstly, we review key 

aspects of platelet biology that precede the preparation and use of platelet-related applications 

for tissue regeneration. Secondly, we provide a critique of the evidence for platelet-mediated 

regeneration in skeletal muscle focusing on findings from a) clinical trials, b) experimental 

animal studies as well as c) cell culture studies. Thirdly, we discuss the application of platelets 

in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. 

 

1.  Overview of Platelet Biology 

The use of autologous PRP in clinical research has grown exponentially over recent years 

due to the gradually increasing understanding in the role of PRP’s growth factors in tissue 

regeneration 5 (Figure 2). The first publication on PRP was issued in 1954 21. Ten years later, 

the first study of PRP being utilised in a therapeutic scenario was published 22. This 

increasingly attractive therapeutic tool has made considerable advancements in many areas 

of regenerative medicine, particularly in the wound healing and skin regeneration, dentistry, 

plastic and cosmetic surgery, minor wounds, fat grafting, bone regeneration, tendinopathies, 

ophthalmology, hepatocyte recovery, aesthetic surgery, orthopaedics, veterinary, spinal 

fusion, treatment of soft-tissue ulcers, heart bypass surgery and at last but not least in skeletal 

muscle injuries 2, 17, 23-34. Before we embark into the discussion of current evidence on the role 

of platelets in tissue regeneration, we briefly review key aspects of platelet biology such as 

platelet formation, activation and aggregation that precede the release of growth factors and 

the preparation of PRP. 

A. Platelet formation and activation: Hematopoietic stem cells in the red bone marrow give 

rise to common myeloid progenitor cells which further differentiate to megakaryocytes 35. 

Platelets are anucleated products formed from long extensions into vascular sinusoids after 

migration of the megakaryocytes to the vascular niche 35, 36. Vascular injury leads to exposure 

of prothrombotic extracellular matrix proteins, which facilitate platelet adhesion and activation.  

In addition to minimising blood loss, a major function of platelets is to promote healing of the 

damaged tissue. This is achieved through the release of cytokines, chemokines and growth 

factors from platelet granules. There are three major types of secretory granules in platelets 

including: i) α-granules, containing many growth factors and cytokines ii) dense γ-granules, 

which release calcium, serotonin, polyphosphates, pyrophosphates, adenosine diphosphate 

(ADP) and adenosine triphosphate (ATP) and iii) lysosomes, which contain a number of 

hydrolytic enzymes 13.  
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In particular, there are approximately 50-80 α-granules per platelet with a typical diameter of 

200–500 nanometres that can be released intracellularly or extracellularly 1, 37. Alpha-granule 

contents secreted by activated platelets release growth factors such as: platelet-derived 

growth factor (PDGF), vascular endothelial growth factor (VEGF), transforming growth factor 

beta (TGFβ), insulin-like growth factor (IGF), epithelial growth factor (EGF), endothelial cell 

growth factor (ECGF), and fibroblast growth factor (FGF) 38.  Upon platelet activation, 

degranulation follows and release of trophic factors occurs 39 (Figure 1). It has been 

suggested that interaction of these factors with the hampered tissue structures causes an 

ameliorated and accelerated healing response 9.  

B. Platelet aggregation: It is important to understand the mechanisms that govern platelet 

aggregation, as variations in aggregation strength will cause deviations in growth factor 

release 40. Differing aggregation procedures in clinical trials may be one of the reasons for 

conflicting results. Damaged cells or injured tissue release soluble platelet agonists such as 

ADP and thrombin, which act as platelet-activating factors. These signalling events then allow 

processes such as platelet spreading, consistent adhesion, granule secretion and clot 

retraction to occur 34. In order to exocytose contents, α-granule’s vesicle-associated 

membrane protein 8 (VAMP-8), synaptosomal-associated protein 23 (SNAP-23) and syntaxin 

2 (a Q-SNARE proteins participating in exocytosis) are involved (Figure 1). After an agonist 

binds to its receptor, platelet shape-change occurs, followed by aggregation and granule 

content release. 

C. The biological role of platelet releasate: Several studies have focused on releasate, 

which is a refined, centrifuged and purified sample of growth factors released from aggregated 

platelets when the supernatant is collected, and cellular debris removed (Jiang 14, 41, 42. Soluble 

bioactive molecules in the releasate secreted by the α-granules of platelets are known to 

enhance matrix synthesis (e.g. TGF- β), upregulate chemo-attraction and proliferation in 

several cell types (e.g. PDGF, VEGF, IGF-I and II, EGF and ECGF) (Figure 3) and 

angiogenesis (e.g. VEGF, FGF and ECGF) 4, 43. It is interesting to note that proteins released 

by the α-granules, such as platelet factor 4, are inhibitors of angiogenesis, additionally; 

endostatins are inhibitors of endothelial cell migration. These bioactive molecules may be 

involved in negative feedback mechanisms to fine tune the main growth factors such as VEGF 

which upregulates angiogenesis, or adhesive proteins such as fibronectin that promotes cell 

migration and differentiation 40. This opposing effect is essential to create the ability for 

homeostasis within the injured area capable to react to the surrounding environment. 
Growth factors found in releasate are involved in promoting tissue regeneration, such as EGF 

which causes cell growth, recruitment and differentiation as well as cytokine exocytosis and 

secretion. Similarly, the growth factor PDGF-BB (homodimers PDGF -AA, -BB, -CC, and –DD 

and the heterodimer PDGF-AB) has a physiological effect such that causes significant cell 
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growth, cell migration, blood vessel growth, granulation, growth factor secretion and matrix 

formation with bone morphogenetic proteins (BMPs) 43. The role of PDGF-BB following muscle 

damage is still yet to be determined 44. It has been shown, however, that PDGF-BB 

upregulates the proliferation of satellite cells (i.e. skeletal muscle stem cells) and may affect 

differentiation negatively 45, 46. Conversely, PRP application on satellite cells was shown to 

improve differentiation, indicating that the role of PRP on muscle progenitor cell differentiation 

has yet to be elucidated 47, 48. Additionally, the VEGF and PDGF pathways both interact 

through the Phosphoinositide 3-kinase (PI3K)/Protein Kinase B (AKT)/mammalian target of 

rapamycin (mTOR) pathway to induce proliferation of satellite cells (Figure 3)45, 49-51. Another 

growth factor associated with releasate is TGF –β1, this factor is known to stimulate collagen 

synthesis, growth inhibition, apoptosis, differentiation and activation 27. TGF- β1 acts in both 

an autocrine and paracrine fashion, inhibiting macrophage and lymphocyte proliferation, 

stimulating mesenchymal stem cell proliferation, while also regulating endothelial fibroblastic 

and osteoblastic cell mutagenesis, collagenase secretion and collagen synthesis. Additionally, 

releasate contains IGF-I and II, which is commonly known to cause cell growth, differentiation, 

recruitment and collagen synthesis when recruited with PDGF. VEGF and ECGF both target 

endothelial cells to cause cell growth, migration, new blood vessel growth as well as anti-

necrotic properties. Finally, FGF in releasate has been shown to cause cell growth of blood 

vessels, smooth muscle, fibroblasts and endothelial cells as well as cell migration and blood 

vessel growth 3, 4, 40. The combination of these growth factors has been shown to be beneficial 

for many types of tissue regeneration (Table 2). However, there is lacking evidence 

surrounding the role of these growth factors from platelet-based applications in muscle 

regeneration 8. 

It has been previously argued that discrepancies in releasate content may be accounted for 

by the varying methods used for activating platelets. In this context, four main types of platelet 

activation (i.e. 10% of either collagen type I, CaCl2, autologous thrombin, or a mixture of CaCl2 

+ thrombin), may have an impact in the amount of growth factors and cytokines (e.g. TGF𝛽𝛽1, 

TNF-𝛼𝛼, IL-1𝛽𝛽, PDGF-AB, and VEGF) released by activated platelets, when collecting 

releasate specifically for regenerative applications 40. Other methods such as freeze-thaw for 

activation of platelets have provided insights regarding the shelf-life of platelet products. It has 

been reported that human platelet releasate can be stored for 21 days and retain its 

proliferative properties in fibroblasts as much as 2-day-old platelets 42. Standardisation of 

platelet activation is a crucial step in order to optimise the various growth factors and cytokines 

released and implemented in experimental procedures. Different protocols for different tissue 

or cell types have been outlined (Table 3). Other experimental variables such as platelet count 

and centrifugation speed have also been recognised and are schematically represented in 

Figure 4. 52. In terms of platelet count, the variation is donor-specific, which is why re-
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suspending platelets to a standardised concentration is important. Moreover, the release of 

PDGF and TGF-𝛽𝛽 from platelet concentrates is pH-dependent an therefore standardisation of 

platelet preparation is critical, given that TGF-𝛽𝛽1 is one of the growth factors involved in 

deterring stimulation of differentiation of myoblasts 48.  

Current preparation methods of platelet-based applications are outlined in Table 3. There 

seems to be significant variations between preparation methods from different laboratories, 

even when producing the same product such as PRP. Typically, either the whole blood is 

inhibited with an anticoagulant such as citrate dextrose solution (ACD) or sodium citrate and 

then either centrifuged or processed using a kit. The first centrifugation step can be processed 

at a speed between 160 to 1800 x g and between 4 to 30 minutes 11, 53, 54. The resultant 

platelet-rich plasma is then either isolated and used as it is, or inhibited with further 

anticoagulants such as prostaglandin or prostacyclin and centrifuged between 5 to 20 minutes 

at 250 to 3000 x g in order to pellet the platelets 48, 54, 55. Pelleted platelets are then 

resuspended in either a buffer or platelet-poor plasma (PPP) to a standardised concentration, 

varying between physiological levels (2 x 105 platelets μL-1) to 3 x 106 platelets μL-1. This 

resuspension is then aggregated using many methods including thrombin and calcium 

chloride, thrombin protease- activated receptor (PAR)-1, PAR-4, freeze-thaw cycles, zeolite, 

calcium, calcium gluconate/ batroxobine, ADP, thromboxane A2 or exposure to cells 25-27, 42, 56, 

57. Thrombin is very frequently used in PRP preparations; however, one characteristic of 

thrombin is that it is a protease and may cleave or damage proteins in the releasate sample. 

For this reason, using a thrombin protease- activated receptor -1, or -4 (PAR-1) or (PAR-4) 

peptide may be an appropriate method for releasate preparation, activating the thrombin 

receptors without the potential of damaging the sample’s contents enzymatically 56. Finally, 

the releasate can be spun down to remove cellular debris. Expectedly, there is a large variation 

between publications for this final centrifugation step. In fact, the final centrifugation, excluding 

platelet exosome isolation, varies from 1400 to 100,000 x g between 10 and 30 minutes. Such 

discrepancies in the preparation methods are illustrated in Figure 4. At present, it cannot be 

ruled out that technical inconsistencies such the ones mentioned above may possibly account 

for the variable outcomes reported in several studies. 

D. PRP Alternatives: It is essential to characterise the current forms of platelet-based 

applications that are derived from PRP methods in order to cope with the current 

methodological limitations (Table 3). One alternative to PRP that is noteworthy to mention is 

platelet mediator concentrate (PMC). PMC contains similar factors as PRP such as PDGF-

BB, TGF-β1, VEGF, BMP-2, BMP-4, TNF-α BMP-7, and IL-6 29. However, it has been reported 

that low levels of TNF-α and IL-6 in PMC are suitable for tendon healing and reduced scar 

formation 29. Platelet-rich fibrin (PRF; a fibrin clot in which contains the platelet cellular debris 

with their cytokines) also contains many of the above-mentioned growth factors such as 
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PDGF, TGF-β, VEGF, EGF and IGF-1 58, 59. These alternatives may be particularly useful in 

patient-dependent cases where local injection may not be applicable. Several alternatives to 

PRP could also be implemented such as advanced platelet-rich fibrin (A-PRF) as well as a 

concentrated growth factor (CGF) which have higher levels of TGF-β1, PDGF-BB and VEGF 

as well as higher platelet counts 11. Leukocyte-rich PRP and pure PRP (leukocyte-poor PRP) 

is an emerging new delineation in platelet-based applications in which describes the 

hampering effects of having white blood cell contamination in PRP preparations 55. Other novel 

platelet therapy methods could be implemented if PRP continues to show promising results in 

terms of skeletal muscle regeneration. One may speculate that delivering higher 

concentrations of these factors to the localised injury site may cause further recovery, however 

an undesirable ratio of growth factors and cytokines may cause an imbalance in homeostasis 

which may be detrimental. Attempting to get this ratio correct results in many variations and 

alternatives in the platelet preparation methods. Novel platelet-based applications such as 

CGF or A-PRF would have to be a localised implantation 58. These physical manipulations, as 

well as leaving the injury site open for minor surgery, may cause dissimilar factor releasate 

from the platelets, resulting in non-comparable results to PRP 40, 60. It is important to outline 

the role of platelet aggregation when we are denoting the ratio of the release of growth factors 

that are crucial in relation to tissue regeneration, and choosing the correct method of platelet-

based application.  

 

2. Platelet-mediated skeletal muscle regeneration 
Current evidence on the role of platelet-based applications in skeletal muscle regeneration 

derives mainly from: a) human clinical trials, b) experimental animal studies, as well as c) in 

vitro cell studies.  

A. Clinical trials with platelet-based applications targeting skeletal muscle: Given the 

recent development of platelet-based applications, the number of studies in this area has 

increased exponentially, with more than 1000 articles being published in the last two years 

(Figure 2). The studies reviewed in this article were identified through a PubMed search using 

combinations of the following key words: platelet-rich plasma, regeneration, skeletal muscle 

or any other tissue as discussed. Relevant references were reviewed to identify further original 

research on platelet-based applications and regeneration, focusing on cellular, animal and 

human studies. There have been several clinical trials examining the use of PRP for muscle 

regeneration (see Table 1). Human athletes with muscle lesions (partially torn) were injected 

locally with autologous PRP every 7 days for 21 days. Despite not having a control group, this 

study determined that the autologous PRP injections remained a safe and effective treatment 

for varying muscle lesions 61. Ultrasound-guided injections of PRP in professional athletes had 

an augmented pain relief score as well as increased pain on resisted flexion, strength and 
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range of motion after only 7 days versus conventional treatment 62. Similarly, pre- and post-

treatment of proximal hamstring injuries with PRP was carried out using the Nirschl Phase 

Rating Scale and Visual Analogue Scale for pain rating 63. The results of this clinical study 

showed that pain reduction was augmented in the PRP group over the conventional 

treatments. A recent study analysed hamstring injuries in professional football players over a 

31-month period 64. This study conversely reported that lesions showed a non-significant 

healing rate over patients treated with Actovegin; however it reported the safety in use of PRP 

in human patients. 

It has been previously argued that the conclusion of several trials against the use of PRP in 

sport injuries may be attributed to technical inconsistencies and methodological limitations of 

the studies 8. Such limitations are poor sample sizes, non-blinded studies, lack of control 

studies, inconsistency in PRP preparation methods, platelet concentration and growth factor 

levels are inconsistent, selection bias in clinical studies as well as a specific demographic 

used, such as healthy and fit male athletes as opposed to the general population or patients 
8, 61, 63, 65. One of the major flaws in PRP studies for muscle healing in human subjects is the 

lack of physiological data and mechanistic insights as an outcome measure, rather, pain 

scores and return to respective sporting fields have been used.  

There have been many speculations made in recent scientific reviews upon the beneficial use 

of platelet-based applications in musculoskeletal injuries 6-8, 19, 20, 66-68. These previous reviews 

of clinical trials using PRP in orthopaedic injuries seem to consistently indicate insufficient 

results while they recognise that platelet-based applications may hold promise in future 

applications. A systematic review covering the effects of PRP on muscle lesions in both 

humans and horses showed that PRP has positive results in 46.7% of the clinical studies 68. 

Further to this, Sanchez et al. delineate a common protocol used for PRP in muscle injuries 

in clinical settings as well as the post-infiltration protocol for follow up potential complications 
7. The protocol here for human patients seems thought out, thorough and effective in follow 

up treatment. In fact, this may be a promising approach to go forward for optimisation in clinical 

trials. With the gathered evidence over recent years, one may surmise that there is an effect 

between platelet-based applications and in the early stages of inflammation with and 

increased skeletal muscle healing rate 2, 9.  

Experimental evidence from animal and cell studies remains to be applied to clinical practice. 

Optimisation of platelet preparation is essential to be standardised or tailored for individual 

patients, such as depletion of deleterious cytokines 17. Additionally, the timing of PRP 

application is pertinent. For example, addition of PRP on days 1 and 4 post-injury hinder 

skeletal muscle regeneration, but on day 7 has been shown to be beneficial in a rat model 69. 

Of note, inconsistencies between clinical and experimental data need to be narrowed, given 
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the current diverse methodologies in platelet preparation among different laboratories as listed 

in Table 3. 

B. Animal Studies with platelet-based applications targeting Skeletal Muscle:  
Despite the limitations in human trials, with respect to PRP, there have been numerous 

progressions in the field of skeletal muscle regeneration in rodent models 2, 9, 16, 70. 

Accumulating data from animal studies on the role of PRP on skeletal muscle recovery after 

varying types of injury has emerged (Table 1). Dimauro et al. showed promising data on the 

delivery of PRP on cell proliferation and differentiation as well as satellite cell recruitment that 

resulted in improved skeletal muscle regeneration 2. They propose that PRP downregulated 

myo-miR-133 and increased Pax7 and other MRFs involved in both myoblast proliferation and 

differentiation in vivo. Myo-miR-133 upregulates myoblast proliferation through the 

suppression of serum response factor (SRF) and impede myotube differentiation 71, 72. 

Conversely, myotube differentiation was upregulated with the application of 20 nM of double-

stranded miRNA for myo-miR-1, 133 and 206 73. The conflicting data suggest that the role of 

miRNAs on muscle regeneration remains to be fully elucidated. It has been reported that the 

concentrations of the specific growth factors TGF- β1, PDGF-AA, PDGF-AB, and PDGF-BB 

in human PRP are highly elevated over goat and rat growth factors per platelet 74. Interestingly, 

TGF- β1 was found to be the highest growth factor concentration across all 3 species’ PRP. 

Both b-FGF and IGF-1 have been found in the α-granules of platelets; these factors are known 

to independently promote regeneration in vivo in a murine model. For example, gastrocnemius 

muscles of mice injected with (100ng ml-1) IGF-1 or with (100ng) b-FGF on days 1, 3 and 5  

showed faster muscle healing and tetanic strength recovery 75. An influential study addressing 

the effect of TGF- β1 neutralisation in PRP on a rat muscle injury, reported that modified PRP 

with depleted TGF- β1 boosted myofibre regeneration and decreased fibrosis 17. The study 

also reported an increase in angiogenesis and greater M2 macrophage localisation in the 

injury site, which are known to have an anti-inflammatory function and regulate wound healing. 

Additionally, satellite cell number was increased in response to TGF- β1-depleted PRP 2 

weeks post-injury. This finding indicates that PRP composition may be modified in order to 

optimise benefits towards skeletal muscle regeneration. In a previous mouse study from the 

same group, it was shown that human muscle-derived progenitor cells cultured in either PRP 

or foetal bovine serum (FBS) had the same capacity to regenerate myofibres in vivo upon 

transplantation into injured gastrocnemius muscle 34. 

Interestingly, local delivery of PRP can shorten recovery time after a muscle strain or multiple 

muscle strain injuries in rat models leading to faster functional recovery of the tibialis anterior 

muscle 70. Additional evidence from a mouse injury model suggests that the optimal time point 

for a platelet-pure PRP (i.e. a leukocyte-poor PRP) injection was 7 days post-injury, leading 

to reduced fibrosis and better exercise tolerance. However addition of PRP on 1 or 4 days 
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post-injury that coincide with the period of myoblast fusion and commitment to differentiation 

causes fibrosis and shortens exercise tolerance 69. The mechanistic insights of this finding 

remain to be determined. One possibility is that platelet releasate has a more potent effect on 

myoblast proliferation, while its use during the early phases of regeneration or cell 

differentiation may be compromised by inflammatory pathways 9, 17. This notion is supported 

by in vitro data, where PRP releasate upregulated myoblast proliferation but inhibited myoblast 

fusion 48.   

Two recent articles relate the role of reactive oxygen species (ROS) and muscle regenerative 

capacity 15, 76. The role of ROS in myogenic differentiation is multifaceted as cellular responses 

alter acutely to minute changes in ROS stress levels. Martins et al. showed that PRP is 

capable of modulating the oxidative impairment determined by muscle contusion, defined as 

a section of damaged tissue where capillaries have been ruptured 15. The prevalence of 

contusions is very common both in the general population and in sporting athletes affecting 

the function of the musculoskeletal system 8. Contusion, by dropping a 200g mass directly 

onto the gastrocnemius muscle, was shown to increase the levels of oxidative stress markers 

(i.e. thiobarbituric acid and oxidized dichlorofluorescein) in both muscle tissue and in 

erythrocyte preparations 15. Application of PRP was able to attenuate oxidative stress and 

increase enzymatic antioxidant defence in injured skeletal muscle. These data suggest that 

the beneficial effects of PRP on muscle regeneration may, at least in part, be brought about 

by lower levels of oxidative stress.  

It is evident that both animal and human studies have revealed largely dissimilar results when 

analysing the impact of PRP in various tissues and treatments. The supportive evidence on 

platelet-based applications from experimental animal studies remains to be validated and 

extrapolated into human studies with a more thorough experimental design and biological or 

functional end-point measures. Identification and in depth assimilation of the mechanisms 

behind the effect of platelet releasate on these tissues is crucial in order to design and conduct 

better human trials.  

C. Cell Studies with platelet-based applications: Studies now emerging are finding 

beneficial results with platelet releasate in muscle regeneration similar to PRP treatments 34, 

54, 77, 78. One crucial and recent study added platelet releasate to a primary culture of rat 

gastrocnemius muscle cells with the aim of investigating the impact of releasate on cell 

proliferation 54. It was revealed that releasate increases the proliferative potential of the cells 

in a dose-dependent manner. This finding was attributed to a continuation of the cell cycle 

from the G1 phase to the S phase, driving progression through expressions of cyclin and 

cyclin-dependent kinase (cdk) protein 54. 
One recent study examined the role of releasate on both myogenesis and adipogenesis in 

rats as well as in a C2C12 in vitro cell line 78. C2C12 cells are a mouse myoblast cell line 
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capable of differentiation. The localised sub-acromial injection of PRP proved significantly 

effective in reducing the instance of adipogenic gene expression as well as supressing 

adipogenic differentiation. In the C2C12 cells, there was substantial proliferation when PRP 

was administered as well as inhibiting muscle and adipocyte differentiation. This finding 

mirrors the effect of PRP on myoblasts, namely an upregulation in proliferation but presumably 

an inhibitory role in differentiation 48. Thrombin-activated PRP has been reported to be 

detrimental in both Saos-2 cells (Sarcoma osteogenic cell line) and marrow stromal cells when 

activated with thrombin in terms of cell viability through a 48-hour MTT assay 79. However, a 

recent study has shown that co-cultures of adipose-derived stem cells (ASCs) or PRP with 

myogenic progenitor cells had an augmented effect on myogenic proliferation 80. Notably, this 

study reported that the ASCs promoted both myogenic progenitor and C2C12 cell proliferation 

with PRP. An interesting tissue engineering study looked at C2C12 cells in a PRP treatment 

embedded in fibres of polydioxanone and polycaprolactone which were electro-spun 81. This 

study showed proliferative benefits using the electro-spun scaffold in myoblasts. Co-culturing 

myoblasts with a micro-environmental niche such as with ASCs or with a fibrous scaffold may 

be a more accurate representation of myogenesis in vivo than single cell culture. Conclusively, 

myoblast cell lines proliferate in response to platelet releasate; however the role of releasate 

in cell differentiation is still being discussed. 

In order to determine if there is any merit to using platelet-based applications as an effective 

form of regulating cell proliferation and differentiation with an ultimate goal to support 

regeneration, key cell culture studies were analysed as outlined in Table 3. With the exception 

of endothelial progenitor cells in one study 56, platelet preparations seemed to produce a 

positive proliferative effect on various cell types across species. Some of the cell types in 

Table 3 include myogenic progenitor cells, bone-derived periosteal cells, osteosarcoma, 

endothelial, trabecular bone cells, human adipose-derived mesenchymal stem cells, 

fibroblasts, tenocytes, myo-endothelial cells, pericytes, C2C12 cells, adipose-derived stem 

cells and muscle satellite cells. Variable levels of differentiation have been reported for 

different cell types; e.g. increased differentiation for rat bone marrow cells, human skeletal 

muscle myoblasts, rat muscle satellite cells, rabbit bone marrow mesenchymal stem cells, and 

C2C12 myoblasts or maintained effect with hMDPCs, myo-endothelial cells and pericytes 

compared to control conditions 34, 47, 48, 55, 74, 81-84. Conversely, some studies reported that 

platelets inhibited differentiation of C2C12 myoblasts 48, 78. This discrepancy in the current 

literature may provide the basis for a thorough consideration of the technical aspects in platelet 

applications that may affect the final outcome in a study. For example, despite the majority of 

studies applying 10% PRP, a recent study used higher concentrations of platelets in smaller 

volumes (i.e. 1-2%) to induce differentiation, assuming that the concentration of growth factors 

was not altered 47. Finally, an interesting study carried out by Miroshnychenko et al. has led 
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to a new insight in PRP and PPP effects in vitro on human skeletal muscle myoblast cells 48. 

This study looked at PRP, PRP with depleted TGF-β1 and myostatin and PPP in culture with 

the myoblasts. TGF-β1 and myostatin were depleted due to their detrimental effects on muscle 

regeneration 2. The study has reported that PPP and leukocyte-poor PRP with a second 

centrifugation to remove whole platelets induced myoblast differentiation, however unmodified 

leukocyte-poor PRP increased myoblast proliferation 48. An interesting aspect of this study is 

that PRP did not seem to induce muscle differentiation; rather it was more inclined to induce 

a proliferative property. This study is pertinent due to the method of removing unwanted growth 

factors from the PRP in which resulted in altered biological properties on the myoblast cell line 

used. Further studies to eliminate additional releasate factors could be implemented to 

optimise skeletal muscle regeneration and possibly expand in a clinical application in the near 

future.  

 

3. Current evidence on platelet-mediated regeneration in other tissues 
There has been an intense interest in determining the effect of platelets and platelet-related 

application on the regeneration of several other tissues such as tendon, adipose tissue, bone, 

liver, nerve, vascular tissue, wound healing etc. 

Tendon regeneration: One recent study analysed PMC, a centrifugation-free method of 

preparing human platelet releasate, co-cultured with Achilles tenocytes in vitro from both 

human and murine tendons 29. This study reported that PMC concentrations caused an 

elevation for important growth factors and markers for cell viability in tenocytes, suggesting 

that autologous PMC may be a future useful therapy in tendon recovery. However, a cross-

comparison with PRP or releasate would be useful in determining which treatment at what 

dose would be optimal for tendon recovery in vivo. An in vivo study looked at platelet gel; a 

resuspended pellet of platelets activated with thrombin and calcium, in relation to the effect on 

the transected Achilles tendon of female rats after 14 days 28. The results, when compared to 

a saline injection, showed a 42% increase in the force at tendon failure when subject to being 

pulled at a consistent speed of 1mm second-1. There was also a 61% increase in ultimate 

stress (MPa) observed in the tendons when compared to the saline injections, suggesting an 

increased tendon recovery time. Notably, the platelet gel seemed to have a significantly lower 

force at failure score than the platelet gel, 24% and 42% respectively. This suggests that the 

activated PRP with thrombin and calcium is required for optimised tendon recovery. Currently, 

leukocyte-poor PRP progresses tendon healing and is considered a more viable option for the 

clinical treatment of tendinopathy after a comparative use in a rabbit model 85. In general, the 

current consensus on platelet-based applications on tendon regeneration is a positive one 

with tenocyte proliferation reported in vivo, as well as structural optimisation of the tissue being 

upregulated. 
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Adipose and Endothelial tissue regeneration: A clinical and in vitro study analysing the 

application of PRP in terms of tissue engineering, specifically fat grafting, for the purpose of 

plastic surgery, reports an accelerated chronic skin ulcer re-epithelisation 25. Co-culture of 

adipose tissue-derived stem cells (ADSCs) with PRP show a proliferative effect. The clinical 

application of fat grafting with PRP showed consistently higher re-epithelisation from 3 weeks 

until 18 months over a control group. Fat grafts were maintained with PRP up to 69% 

restoration rate when compared to a 31% control. In an earlier study, activated PRP co-

cultured with human umbilical vein endothelial cells or with transformed human osteoblasts 

showed increased endothelial proliferation 26. Interestingly, the non-activated PRP group in 

the osteoblast cells were more proliferative than in the activated group, suggesting that PRP 

secretions gave no supplementary benefit on osteoblast proliferation over the 3 groups. 

However, when compared to the minimal medium group there was a substantial increase in 

all PRP conditions showing that platelet extracellular growth factors were expressed in 

adequate quantities to induce substantial proliferation. These results indicate towards an 

increased proliferative rate of ADSCs with platelet-based applications, with a possible benefit 

for cosmetic utilisation. 

Osteoblast and Chondrocytic tissue regeneration: Many studies now see the potential 

mechanisms of PRP acting on osteoblast proliferation and migration 26, 27, 31, 86. Using the 

SaOS-2 osteoblast line, both TGF-β and PDGF were analysed for both cell proliferation and 

cell migration. Notably, TGF-β appeared to have an inhibitory effect on proliferation, while 

PDGF was reported to upregulate migration. Similarly, Kanno et al., have shown the link 

between a PRP treatment and osteogenesis in vitro in a dose-dependent method 31. This study 

suggests that growth factors in PRP, such as TGF-β, prompt pre-osteoblasts to undergo 

division increasing their quantities through chemotaxis, stimulating differentiation into mature 

osteoblasts. In connection to osteogenesis, a study makes the connection to bone and 

cartilage regeneration 38. In this study, the mechanisms connecting PRP to chondrocyte 

differentiation and regeneration were assessed by the means of regulating local inflammation 

in cartilage through decreasing chemotaxis of anti-inflammatory agents such as HGF. 

Releasate from the PRP was found to be accountable for the inhibition of NF-kB-

transactivating activity due to the upregulation of HGF 38. It is still unclear whether the 

stimulatory effects of PRP, in osteoblast proliferation for example, are connected to the growth 

factors present or to other factors present in the cytoplasm or cell membranous structures 

from activated platelets 87. This study also stated that cell-to-cell contact was not reportedly 

required for upregulated osteoblastic proliferative effects of platelets. In summary, recent 

studies indicate that there is a positive proliferative and differentiative effect of platelet-based 

applications in osteogenesis. PRP also promoted growth and proliferation in chondrogenesis 

and may be beneficially applicable in cartilage repair. 
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Hepatocyte tissue regeneration: A study evaluated the in vivo effect of platelet-rich plasma 

on carbon tetrachloride-induced hepatotoxicity in male rats. Animals received PRP treatment 

twice a week for 8 weeks 30. After the 8 weeks, the rats were bled and their livers were 

analysed histopathologically, showing a hepatocytic protection of the PRP as well as showing 

that PRP itself is not toxic for at least a 3-week period. Further to this, a recent review 

highlighted the factors released by PRP such as VEGF, HGF and IGF-1 to promote hepatocyte 

proliferation 88. It has been hypothesised that an unidentified receptor on the liver sinusoidal 

endothelial cells interacts directly with the platelets in PRP in which stimulate proliferation in 

the hepatocytes. Similarly, a recent study followed up from this, analysing patients who 

underwent hepatic resection 89. It was shown that a rapid accumulation of platelets to the 

resection was correlated to regeneration of the liver. Interestingly, an unfavourable ratio of 

growth factors such as an increased TSP-1 level as well as a lower VEGF level displayed 

hampered regenerative properties. These studies reveal a proliferative effect in hepatocytes 

when using platelet-based applications.  

Nerve tissue regeneration: One of the first experimental uses of platelet-based applications 

was the use of PPP in a rabbit model in 1973 90. This study analysed a plasma clot welding of 

nerves with regained myoneural function and no sign of substance rejection. A more recent 

study performed a bilateral sciatic neurotomy in rats, followed by being promptly re-

anastomosed with a cyanoacrylate glue used in order to study the regenerative properties of 

PRP in relation to nerve regeneration 32. The biopsies were harvested 12-weeks post-

operation with the aim to see if the PRP treatment promoted peripheral nerve healing. The 

article suggests that through distal axon counts, neurotisation indexing and density analysis, 

a PRP-treated group has potential in enhancing peripheral nerve regeneration. In terms of 

facial nerve regeneration, a study analysing the effect of PRP and fibrin sealant in a rat model 

was conducted 91. Male rats were subject to transection in survival and non-survival surgery 

groups of the left facial nerve and treated with either PPP, PRP or fibrin sealant using the right 

facial side as the control. Axon counts and facial nerve motor action potentials were analysed 

resulting in a faster recovery in the PRP group, the study reported overall that PRP was 

notably the better option when sutured compared to the other two interventions. A more recent 

study explored the benefit of PRP lysate on an ischemic stroke in rats 92. The outcomes were 

measured by means of analysing neurological deficit score and infarct volume. One of the 

more interesting points that this article tackles is the use of human PRP lysate in a rat model 

and how it shows a significant benefit in recovery after an induced stroke. Overall, platelet-

based applications show a beneficial effect on nerve regeneration in animal models. 

Angiogenesis: In a recent study to analyse angiogenesis on a PRP-seeded poly(ε-

caprolactone) scaffold, it was reported that this PRP application method may be beneficial for 

tissue engineering due to the consistent delivery of growth factors without loss of activity 57. 
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Not only was there an increase in angiogenesis, the chicken chorioallantoic membrane (CAM) 

model also increased the hydrophilicity, attachment of mesenchymal stem cells and cell 

proliferation on the scaffold. PRP-seeding is looking like a promising tissue engineering 

method for integration into a host. The therapeutic value of PRP in angiogenesis can be seen 

in a study aiming to evaluate the application of platelet-enriched plasma in oral mucosal 

healing in terms of capillary count and density in a randomised split-mouth design in patients 
93. The results showed that for the initial two weeks, capillary density and capillary count was 

higher in the PRP treatment over the placebo treatment administered to the contralateral side. 

A gelatin hydrogel was used with releasate in a recent study to analyse the aspect of 

angiogenesis in wound healing 94. This study used male mice to demonstrate that capillary 

formation was enhanced after 2 weeks in the gelatin hydrogel with PRP group, supporting 

angiogenesis when compared to a control saline group and a single PRP injection group. The 

article also reported that augmented wound healing through wound area analysis and 

angiogenesis using anti-vWF immunohistochemical staining was significantly higher in the 

treatment group. This study suggests a more specified application of PRP through a hydrogel 

with releasate can steadily release the growth factors over a period of time being more 

beneficial than a single PRP injection. It would be interesting to see if the beneficial effects of 

platelet-based applications on angiogenesis were directly due to the concentration of VEGF 

released from the α-granules in platelets, or due to the ratio of growth factors released. Taking 

these studies into consideration, platelet-based applications are seen to increase 

angiogenesis. 

Cutaneous wound healing: PRP has been shown to be increasingly used in wounds that 

are difficult to heal such as tissue injuries. In order to address if PRP was beneficial for acute 

cutaneous trauma wounds such as open and closed fractures as well as epithelial necrosis 

and friction injuries, a study looked at patients receiving a local injection of PRP 23. With 

conventional treatments given to patients as a control group, the PRP group showed a faster 

rate of recovery in comparison; measured by the time taken for the wound to heal to such a 

degree that plastic surgery is applicable. This trend of a faster regenerative rate can also be 

seen in chronic cutaneous ulcers. A study has shown that a localised 100-200 μl injection of 

autologous platelet-enriched plasma in patients proved that the percentage area of healed 

cutaneous ulcer over a standard-care group between 4 and 8 weeks was highly significant 95. 

This study suggests that topical application of platelet-enriched plasma is cheap and effective 

treatment at tackling chronic ulcers in modern healthcare.  

 

Conclusions 
In conclusion, there is mounting evidence on the use of platelet-based applications in tissue 

regeneration. Inevitably, there is currently a large discrepancy in the effectiveness of platelet-
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based applications in the scientific literature, especially between human and experimental 

animal studies. This may be attributed to methodological differences in platelet preparation 

and platelet releasate composition among different research groups. At present, there is an 

intense interest in the field worldwide with tremendous possibilities for exploitation in 

regenerative medicine. The current consensus with the use of PRP and especially modified 

PRP (where individual factors are depleted) in skeletal muscle regeneration remains 

promising, despite an incomplete understanding of mechanistic insights in both knowledge of 

platelet-satellite cell interactions, as well as PRP preparation optimisation. Most importantly, 

the molecular mechanisms linking platelet biology to skeletal muscle, or other tissue 

regeneration, have just begun to unravel and are expected to transform our understanding in 

using platelets as a biomaterial for tissue healing. 
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Table 1. Platelets and skeletal muscle regeneration  
Reference Species Intervention Findings 
9  Rat PRP on a flexor sublimis lesion ↑ leucocyte infiltration; ↑ early inflammatory 

response post muscle injury 
2 Rat PRP on flexor sublimis incision ↑ mRNA of pro-inflammatory cytokines, 

MRFs & IGF-1Eb; ↓ myo-miR-133a 
70 Rat 

 
PRP on tibialis anterior under 
muscle strains 

↑ myogenesis 
↓ time-to-recovery after a muscle strain 

16 Rat PRP on gastrocnemius muscle 
injury 

↓ pain/claudication score 

15 Rat  PRP in gastrocnemius contusion ↓ oxidative stress and ↑ enzymatic 
antioxidants in injured skeletal muscle  

82 Rat  PRP-derived growth factors on rat 
muscle satellite cells 

↑ proliferation & osteogenic differentiation 
ability of satellite cells from rat masticatory 
muscle. 

54 Rat Rat releasate on rat gastrocnemius 
muscle cells in vitro. 

↑ proliferation; ↑ Cyclin A2, B1, cdk1, cdk2 
and PCNA of protein expression (dose 
dependently) 

17 Rat TGF- β1 neutralisation in PRP on a 
cardiotoxin-induced muscle injury 
model 

↑ muscle regeneration; ↓ fibrosis; ↑ 
angiogenesis; prolonged satellite cell 
activation; ↑ M2 macrophages to the injury 
site 

78 C2C12 
myoblas
ts and 
Rat 

A. Human releasate on C2C12 
murine myoblasts. B. Rat PRP on 
rat rotator cuff tear  

↑ Proliferation; Inhibited myogenic 
differentiation; ↓ expression of adipogenic 
genes & lipid droplet formation in vivo 

69 Mouse Muscle contusion injury & PRP at 
different time points 

PRP injection 7 days after injury ↑ exercise 
time; ↓ fibrotic tissue; PRP at 1 and 4 days 
after injury ↓ exercise time; ↑ fibrotic tissue 

94 Mouse  Gelatin hydrogel with platelet 
releasate in wound healing 

↑ levels of angiogenesis  
↑ wound healing rate 

34 Mouse  Human releasate on muscle-
derived progenitor cells 

↑ Proliferation of hMDPCs; PDGF further 
increases the proliferative effects of PRP 

80 Rabbit  Rabbit PRP with ASC extracts on 
rabbit myogenic progenitors and 
Human fibroblast culture 

ASCs extracts had a stronger effect on 
proliferation of MPCs than PRP 

61 Human 
athletes 

PRP in grade II muscle lesions ↓ pain in all patients and improved muscle 
function in 85% of patients after first 
injection. 
↓ VAS two weeks post-treatment. 100% 
return to sport activities after 35 days (Non-
controlled study) 

62 Human 
athletes 

PRP in acute muscle injury  93% ↓ pain after 28 days versus 80% in 
control; ↑ range of motion and strength 

63 Human 
Patients 

PRP in proximal hamstring injuries ↓ VAS and NPRS scores 

96 C2C12 
myoblas
ts 

Human PRP lysate on C2C12 
murine myoblasts 

↑ C2C12 proliferation up to 20% PL but 
mildly cytotoxic at 100%; ↑ C2C12 scratch 
wound closure 

48 Human 
(Ex 
Vivo) 

1) PRP 2) Releasate with depleted 
TGF-β1 and myostatin 3) PPP; in 
human skeletal muscle myoblasts 

PPP and Releasate with depleted TGF-β1 
and myostatin induced myoblast 
differentiation; ↑ myoblast proliferation with 
PRP 

47 C2C12 
myoblas
ts and 
murine 
satellite 
cells 

PRP + BM-MSC ↑ proliferation & differentiation 
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Table 2. Platelets and other tissue regeneration 
Reference Intervention Tissue Type Findings 
29 PMC  Tendon Human & 

murine tenocytes 
↑ proliferation 
 

28 Thrombin and 
platelet gel 

Tendon Rat ↑ tendon repair (↑ in force at failure & 
ultimate stress) 

18 PRP Tendon equine flexor 
digitorum superficialis 
tenocytes 

↑ TGF- β1 and PDGF-BB; ↑ expression of 
matrix molecules in 100% PRP; no effect on 
catabolic molecules (MMP-3 and MMP-13) 

25 PRP suspended 
on collagen 

Adipose (Fat grafting) Chronic lower-extremity ulcers: 100% re-
epithelisation, versus 40- 60% of controls  

86 Human PMC  Osteoblast (CAL-72) & 
fibroblast (NIH-3T3) 

↑ proliferation both cell line; osteoblast 
secretion of IL-6; ↑ differentiation of 
fibroblasts  

26 Calcium & 
thrombintreated 
PRP 

Osteoblast and 
endothelial cells 

↑ proliferation 

27 PRP  Osteoblast cell line 
SaOS-2 

↑ chemotaxis & proliferation dose-
dependently; PDGF from PRP involved in 
stimulating cell migration; TGF- β from PRP 
inhibited cell proliferation. 

31 PRP  Osteoblast HOS & 
SaOS-2 cell lines 

↑ mRNA: Procollagen type I, 
osteoprotegerin, osteopontin, and cbfa1; ↑ 
bone regeneration 

87 Platelet 
concentrates 

Human Trabecular Bone 
Cells 

↑ proliferation of bone cells independent of 
cell-to-cell contact 

74 Goat, Rat and 
Human PRP-
coated wells 

Rat Bone Marrow Cells ↑ initial cell growth; Human PRP had the 
most growth factors per platelet; TGF- β1 
was the highest growth factor in all PRPs 

97 PRP & BMSCs Bone marrow stromal 
cells in Rat femoral 
defect 

↑ BMSC proliferation; a concentration of 
platelets at 100 x 104 μl-1 with BMSCs in a 
collagen mixture: ↑ newly formed bone. 

98 Platelet Lysates 
and Platelet 
exosomes  

Bone marrow stromal 
cells 

↑ proliferation & migration dose-dependently  
 

99 PRP in a 
polylactic-
glycolic acid  

Osteochondral articular 
cartilage defects in 
rabbits 

↑ osteochondral formation  
 

38 PRP  Chondrocyte lbpva55 
cells 

↓ activity of NF-kB, regulating the 
inflammatory process; ↓ COX-2 and CXCR4 
target genes; ↑ HGF, IL-4 & TNF- α 

55 Leukocyte- and 
(L-PRP) and 
pure (P-PRP) 
PRP 

Chondrogenesis of 
rabbit bone marrow 
mesenchymal stem 
cells 

P-PRP ↑ both proliferation and differentiation 
over L-PRP group 

88 (Review) Hepatocyte Proliferation PRP stimulates hepatocyte proliferation by 
activating the Akt and ERK1/2 signalling 
pathways in hepatocytes.  

30 PRP  Hepatocyte (rat hepatic 
injury) 

Hepatoprotective effects of PRP counteract 
the effects of CCl4 on liver fibrosis 

89 Platelet 
releasate  

Hepatocyte (post-
operative patients) 

Patients with high TSP-1 and a low VEGF 
release profile have ↓ liver regenerative 
capacity 

90 PPP & 
fibrinogen, 
thrombin or 
CaCl2- 

Sciatic Nerve Rabbit 
Model 

Presence of functional nerve regenerates 
when fibrinogen, in high concentrations, plus 
factor XIII were used 

32 PRP Peripheral Nerve (rat) ↑ number of regenerating nerve fibres 
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91 PRP and Fibrin 
Sealant 

Facial rat Nerve 
Regeneration 

PRP with a suture established an increase in 
axon counts and neurotrophic effects 

92 Human PRP Brain Reperfusion Decreases brain injury after focal ischemia; 
Significantly reduces infarct volume 

100 PRP Nerve-grafted defects 
(rat) 

↑ nerve gap reconstruction with a 1-cm long 
nerve graft 

57 PRP-PCL 
Scaffold   

Angiogenesis in a CAM 
model 

↑ mesenchymal stem cell attachment and 
proliferation on scaffold; ↓ differentiation 

93 PRP (human 
patients) 

Oral mucosal wound 
healing 

↑ capillary regeneration in mucosal wound 
healing  

23 PRP (human) Cutaneous wound 
healing 

↑ rate of wound healing 

94 Gelatin hydrogel 
& releasate 

cutaneous murine 
wound healing 

↑ wound area epithelialisation rate 
↑ capillary formation 

95 Preparation 
PRGF 

Cutaneous ulcers  ↑ healed surface area in PRGF group 

53 PRP-Exos (Rat) 
 

Cutaneous wound 
healing, Endothelial  & 
Fibroblast cell 

↑ proliferation and migration of endothelial 
cells and fibroblasts 
↑ cutaneous wound healing  

42 1-21 day-old 
Human platelets  

Fibroblast  ↑ proliferation; retention of proliferative 
activity with old platelets 

56 PAR1-PR & 
PAR4-PR  

Endothelial progenitor 
cells 

No effect on EPC proliferation; both ↑ cell 
migration; PAR1-PR ↑ vasculogenesis 
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Table 3. Platelet-based applications on cell culture studies 

Reference Cell type Findings (Proliferation/ 
Differentiation) 

Platelet preparation 
method 

Sera (e.g. FBS%) in 
culture conditions 

74 Rat bone 
marrow 
cells  

↑ proliferation between 
days 0 and 4; ↑ 
differentiation between 
days 8 and 12 

3.8% SC @800 rpm for 
15 min @25°C activated 
with thrombin (300 IU) & 
10% CaCl2. 

10% FCS 10,000 
cells/well (24-well) pre-
coated with a PRP gel 

97  Rat bone 
marrow 
stromal 
cells 
(BMSCs) 

Higher PRP 
concentration ↑ cell 
proliferation; ↑ newly 
formed bone with 100 x 
104 platelets μl-1 & 
BMSCs in a collagen 
mixture @ 8 week 

Whole blood @ 600xg for 
10 mins, then 2,840xg for 
15 minutes; activated with 
2% CaCl2 & thrombin.  

α-MEM with 15% FBS; 
Cells were seeded on 
a 100-mm dish 

11 Human 
alveolar 
bone-
derived 
periostea
l cells 

A-PRF and CGF 
extracts ↑ proliferation; 
PRP @ 2.5% showed 
the most proliferative 
properties with ↓ @ 
higher doses 

PRP: Whole blood & ACD 
@ 1800g for 4 min then 
stored @ −80 °C; PRGF: 
whole blood & SC @ 
580g for 8 min; A-PRF & 
CGF clots: whole blood 
without anticoagulants @  
198g and  692g  
respectively, frozen, 
minced, homogenised @ 
3000 rpm for 10 min 

Human periodontal 
tissues in 10% FBS for 
single cells; cells were 
seeded at 1 × 104 in 6-
well plates for 24 h in 
1% FBS; PRP, PRGF, 
A-PRF extract or CGF 
extract and the cells 
were further incubated 
for 48 h 

86 NIH-3T3 
cells & 
CAL-72 
cells 

PMC ↑ proliferation of 
murine fibroblasts and 
human osteoblasts; ↑ 
NIH-3T3 angiogenesis 

Platelet mediator 
concentrate (PMC) using 
an ATR system kit: 
human whole blood & 
anti-coagulant & 
sedimentation accelerator 
and aggregator 

NIH-3T3 culture: 
DMEM with 10% FCS; 
CAL-72 culture: 10% 
FCS over-night, then 
2% FCS for 24 hours 
followed by 10% PMC 
or 10% FCS 

98 Bone 
mesench
ymal 
stem 
cells 

Bone marrow stromal 
cells treated with platelet 
exosome concentrations 
↑ proliferation and 
migration; ↑ bFGF, 
VEGF, PDGF-BB & 
TGF-β1 in platelet 
exosomes than in PL. 

Whole blood & heparin @ 
1000 rpm for 5 mins, then 
1900 rpm for 15 mins; 
Human PL: PRP was 
frozen and thawed then 
@ 2600xg for 30 mins; & 
heparin for exosome 
isolation; PL @ 2000xg 
for 10 mins & heparin; 
Exosome isolation:  PL @ 
500xg for a series of spins 
then @ 30000 rpm for 1h 
with repeats. 

αMEM & 10% FBS; 4 
days of culture; 
adherent 
mesenchymal stem 
cells in αMEM & 10 % 
FBS. 

87 Human 
trabecula
r bone 
cells 

↑ mitogenic activity of 
BC, independent of cell-
to-cell contact.  

Whole blood & ACD spun 
to concentrate platelets 
(3x109); then leuco-
depleted by a pall filter; 
washed in Tyrode’s 
buffer, @ 1400g for 10min 
and resuspended in 
serum-free medium; 

DMEM/F12 with 10% 
FCS 
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activated with thrombin; 
@ 1400xg; supernatant 
@ 100,000xg 

55 Rabbit 
bone 
marrow 
mesench
ymal 
stem 
cells 
(rBMSC) 

P-PRP ↓ concentrations 
of leukocytes and pro-
inflammatory cytokines, 
↑ proliferation & 
chondrogenesis of 
rBMSCs when 
compared to L-PRP 

Whole blood & ACD-A; L-
PRP:  250xg for 10 mins 
then @ 1000xg for 10 
mins, re-suspended PPP; 
P-PRP:  160xg for 10 
mins then 250xg for 15 
mins resuspended in PPP 

α–MEM 10% FBS; 96-
well plates, 4,000 
cells/well, then 10% of 
FBS, L-PRP, or P-PRP 

31 Human 
osteosar
coma 
cells & 
SaOS-2  

↑ viability of HOS and 
SaOS-2 cells dose-
dependently; ↑ levels of 
procollagen type I, 
osteopontin,  
osteoprotegerin and 
core binding factor alpha 
1 (cbfa1) mRNA. 

Human whole blood & 
SC.  Centrifuged at 2,000 
rpm for 5 minutes.  PRP 
Centrifuged again at 
2,000 rpm for 20 minutes. 

SaOS- 2 were cultured 
in RPMI-1640 medium 
10% FCS 

26 HUVECs 
hFOB 

Growth factor 
concentration variations 
between individuals. ↑ 
osteoblast and 
endothelial cell 
divisions.  

PRP & Thrombin and 
CaCl2·2H2O x 1, x 5 and x 
25; @ 4000xg for 10 min 

10% FBS with 
endothelial cell growth 
supplement; hFOB 
cells in DMEM/F12 
with 10% FBS, 
glutamine, and G-418 

27 SaOS-2 
(Sarcom
a 
osteogen
ic) 

PRP ↑ chemotaxis & cell 
proliferation; PDGF ↑ 
cell migration & TGF- β 
↓ proliferation 

Whole blood & Citrate 
phosphate dextrose @ 
180xg for 20 mins, then   
580xg for 15 mins; 
resuspended in PPP; 
Jellified with calcium 
gluconate/batroxobine; 
then @ 1400 x g for 10 
mins 

DMEM with 10% FCS
  

38 Ibpva55 
& U937 
cells 

PRP in chondrocytes ↓ 
activity of NF-kB & ↓ 
expression of COX-2 & 
CXCR4 target genes; ↑ 
HGF, IL4 & TNF-a; PRP 
in U937-monocytic cells 
↓ chemokine 
transactivation & 
CXCR4-receptor 
expression  

Whole-blood prepared 
using the platelet 
concentrate collector 
system GPS II; activated 
with thrombin and 
CaCl2∙2H2O; then 
centrifuged for 10 min at 
4,000xg. 

DMEM & 20% FBS for 
Ibpva55 cells; RPMI-
1640 medium & 10% 
FBS for U937 cells  

56 EPCs No benefit on 
proliferation; ↑ EPC 
migration; ↑ 
vasculogenesis 

Whole blood @ 190xg for 
20 min; then @ 900xg for 
10 min & PGE1; 
resuspended in Tyrode’s 
HEPES buffer @ 2 x 109 
mL–1; PAR1-AP or PAR4-
AP for 10 min; @ 
15000xg for 10 min 

EGM-2 SingleQuots 
complete medium 10% 
FBS 

101 MCF-7 
breast 
cancer 

Platelet releasates 
activated with 1) ADP: ↑ 
migration & formation of 

Human platelets @ 2x108 
mL-1 activated by ADP, 
Thromboxane A2, PAR4, 

HUVECs (1 x 104 mL-1) 

in serum free media on 
0.5% gelatin pre-
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cells & 
HUVECs 

capillary structures by 
HUVECs; 2) TXA2: 
inhibited migration & 
formation of capillary 
structures 

or exposure to MCF-7 
cells @ 3 x 106 mL-1 

coated/ transwell plate 
with 2 x 108 mL-1 
platelets in the bottom 
chamber 

57 Human 
adipose-
derived 
MSCs 

MSC seeded on the 
PRP–PCL nanofibers 
showed an increased 
adhesion and 
proliferation compared 
to pristine PCL fibres. 

The buffy coat was 
centrifuged @ 400xg for 
15 min; 3x106 platelets 
μL-1 activated by freeze–
thaw cycles; @ 12000xg 
for 10min  

Human MSCs (2x104 
cells) were seeded in 
24-well plates with 1 
mL of MSC medium or 
1 mL of PRP-rich 
medium. 

25 Adipose 
tissue- 
derived 
stem 
cells 

PRP accelerates chronic 
skin ulcer 
reepithelization; ↑ 
proliferation 

SC as an anticoagulant 
with a 1100xg for 10 min 
spin; Ca2+ for activation  

DMEM with 10% FBS 
@ 2500–5000 
cell/cm2. 

80 Rabbit 
Myogeni
c 
progenito
rs & 
ASCs & 
Human 
fibroblast
s 

ASCs had an anabolic 
paracrine effect on 
proliferation of MPCs; 
PRP ↑ proliferation of 
MPCs; ASC-extracts ↑ 
proliferation more than 
PRP 

Rabbit whole blood & SC; 
@ 400×g for 10 mins; 
then PRP @ 800×g for 10 
mins. 

Rabbit MPCs & ASCs 
cultured in EGM-2MV 
containing 5% FBS; 
Human fibroblasts in 
DMEM with 10% FBS 

54 Rat 
gastrocn
emius 
muscle 
cells 

Releasate ↑ proliferation 
of skeletal muscle cells 
by transitioning cells 
from G1 phase to S 
phase and G2/M phases 

Whole blood & ACD @ 
800xg for 30 mins then @ 
3000xg for 20 mins; 10% 
thrombin with CaCl2; Then 
@ 5500xg for 15 mins 
and filtered 

DMEM with 10% FBS 
& 5% chick embryo 
extract 

78 Murine 
C2C12 
myoblast
s 

PRP ↑ proliferation & 
inhibited both myogenic 
and adipogenic 
differentiation 

Whole blood & SC @ 
2400 rpm for 10 mins; 
then @ 3600 rpm for 15 
mins; activated by freeze-
thawing then @ 10000 
rpm for 10 mins  

DMEM with 10% FBS; 
for myogenesis, 
DMEM without FBS 
was used @ 5.0×104 

cells/well 

81 Murine 
C2C12 
myoblast
s 

PRP ↑ both myogenic 
proliferation & 
differentiation 

PRGF: human whole 
blood in SmartPRePW 2 
centrifugation system; 
Then a freeze–thaw–
freeze process to lyse 
platelets and release their 
granule contents 

High-glucose DMEM 
with 10% FBS for 
Proliferation; High-
glucose DMEM with 
2% horse serum for 
Differentiation 
 

96 Murine 
C2C12 
myoblast
s 

PL ↑ C2C12 proliferation 
and motility 

Platelet lysates; 
centrifuged, washed, 
repeatedly frozen and 
thawed & centrifuged to 
eliminate debris 

DMEM with 10% FBS 

48 Human 
myoblast
s 

↑ in proliferation; both 
PPP & MSTN and TGF- 
β1 depletion in PRP ↑ 
myoblast differentiation 

Pure PRP kit; 1. PPP 2. 
PRP 3. Mod-PRP with 
TGF- β1 and MSTN 
depletion 4. PRP second 
spin 550g 5 mins 5.  

10,000 cells/cm2; 2% 
horse serum for 
differentiation; 10% 
FBS for proliferation 
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Abbreviations for tables 1, 2 & 3: %; percentage, °C; degree celcius, ↑; an increase, ↓; a 

decrease, A-PRF; advanced-platelet-rich fibrin, ACD; anticoagulant citrate dextrose solution, 

Akt; protein kinase B, ASC; adipose derived stem cell, BC; bone cell, bFGF; basic fibroblast 

growth factor, BMSCs; bone marrow stromal cells, C2C12; mouse myoblast cell line, 

C57bl6/J; C57 black 6 mouse, CAL-72; human osteoblast cell line, CAM model; chicken 

chorioallantoic membrane model, cbfa1; core binding factor alpha 1, CCl4; chemokine (C-C 

motif) ligand 4, cdk1,2; cyclin-dependent kinase 1,2, CGF; concentrated growth factors, COX-
2; prostaglandin-endoperoxide synthase 2, CXCR4; C-X-C chemokine receptor type 4, 

DMEM; dulbecco's modified eagle's medium, DMEM/F-12; dulbecco's modified eagle 

medium: nutrient mixture F-12, EGF; Epidermal growth factor, EGM-2 SingleQuots complete 
medium; endothelial cell growth medium, EGM2-MV; endothelial cell growth medium, ELISA; 

82  Rat 
MSCs 
(Muscle 
satellite 
cells) 

PRP-derived growth 
factors ↑ proliferation on 
rMSCs & ↑ osteogenic 
differentiation potential 
with scaffolds 
subcutaneously in nude 
mice 

Rat whole blood platelet 
pellet; re-suspended in 
plasma snap frozen & 
thawed then repeated; 
Plasma was separately 
spun @ 3000xg for 15 
mins after clotting 

rMSCs cultured in 1) 
DMEM with 10% FBS, 
2) serum or 3) PRP-
derived growth factors 
with NHA/PLGA 
scaffolds in 10% FBS; 
Osteogenic 
differentiation: DMEM 
with 10% FBS, b-
glyceraldehyde-3-
phosphate, L-ascorbic 
acid & dexamethasone 

34 hMDPC;
Myo-
endotheli
al cells; 
Pericytes 

PRP ↑ proliferation; 
antibody neutralisation 
of PDGF ↓ proliferative 
effects of PRP and 
maintained 
differentiation of 
hMDPCs 

PRP @ 3000xg for 10 
mins re-suspended in 
PPP; activated with 
thrombin then @ 3000xg 
spin for 30 mins and 
filtered 

hMDPCs, myo-
endothelial cells & 
pericytes: 20% FBS  
 

53 HMEC-1 
& 
Primary 
dermal 
fibroblast
s 

↑ proliferation and 
migration of endothelial 
cells and fibroblasts 

Whole blood in ACD-A; A 
series of centrifuges from 
160×g for 10 min; to 
100,000×g for 70 min to 
pellet the exosomes; with 
washes in PBS 

HMEC-1 cells and 
primary dermal 
fibroblasts were 
cultured with 10% FBS 

42 Human 
dermal 
fibroblast
s 

21-day-old platelets 
were as stimulatory as 
2-day-old platelets on 
fibroblast proliferation; 
Total protein, PDGF & 
TGF-concentrations  

Platelet activation using 
zeolite (1 g 10 mL-1) and 1 
mL of a 10% calcium 
chloride; Spun at 48000xg 

DMEM with 10% FBS; 
1x104 Cells in a 24 
well plate; adhere for 
6h; incubating in 10% 
platelet extract in 
media without FBS. 

29 Human & 
Murine 
Achilles 
tenocyte
s 

PMC ↑ human tendon 
cell growth and viability 
in a dose-dependent 
manner 

An ATR kit was used to 
prepare PMC in which 
collected the platelets and 
activated them; then 
frozen at –80°C. 

Human tenocytes -  
DMEM + 10 % FCS; 
Murine tenocytes - 
50% FCS; reduced to 
10 % after 1 week 
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enzyme-linked immunosorbent assay, EPC; endothelial progenitor cell, ERK1/2;
 extracellular signal–regulated kinases, FBS; foetal bovine serum, FCS; foetal calf 

serum, HEPES; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, hFOB; transformed 

human osteoblasts, HGF; hepatocyte growth factor, hMDPCs; human muscle-derived 

progenitor cells, HMEC-1; human microvascular endothelial cell line, HOS; human 

osteosarcoma cells, HSMM; human skeletal muscle myoblast, HSP; heat shock protein, 

HUVECs; human umbilical vein endothelial cells, Ibpva55; normal human articular 

chondrocytes, IGF-1Eb; insulin-like growth factor-1 isoform-Eb, IL-4; interleukin 4, IL-6; 
interleukin 6, IU; international unit, L-PRP; leukocyte- and platelet-rich plasma, MCF-7; breast 

cancer cell line, mL; millilitres, mM; millimolar, MMP-13; matrix metalloproteinase-13, MMP-
3; matrix metalloproteinase-3, Mod-PRP; modified PRP, MPCs; muscle progenitor cells, 

MRFs; myogenic regulatory factors, mRNA; messenger ribonucleic acid, MSTN; myostatin, 

Myf5; myogenic factor 5, MyoD1; myogenic differentiation 1, myomiRNAs; myo-micro 

ribonucleic acids, NF-kB; nuclear factor kappa-light-chain-enhancer of activated B cells, NIH-
3T3; mouse fibroblast cell line, NPRS; Nirschl Phase Rating Scale, P-PRP; pure platelet-rich 

plasma, PAR1; thrombin protease- activated receptor 1, PAR1-PR; PAR1-protein releasate, 

PAR4; thrombin protease- activated receptor 4, PAR4-PR; PAR4-protein releasate, Pax7; 
paired box protein 7, PBS; phosphate-buffered saline, PCL; poly(ε-caprolactone), PCNA; 
proliferating cell nuclear antigen, PDGF; platelet-derived growth factor, PL; platelet Lysate, 

PMC; platelet mediator concentrate, PPP; platelet-poor plasma, PRGF; plasma rich in growth 

factors, PRGF; Platelet Rich in Growth Factors, PRP; platelet-rich plasma, PRP-Exos; 

platelet-rich plasma-exosomes, PRS; platelet-released supernatant, rMSCs; rat muscle stem 

cells, rpm; rotations per minute, RPMI-1640; Roswell Park Memorial Institute 1640 medium, 

SaOS-2; Sarcoma osteogenic cell line, SC; Sodium Citrate, SkBM-2; skeletal muscle growth 

basal medium 2, TGF-β; transforming growth factor beta, TGF- β1; transforming growth factor-

beta1, TNF-α; tumour necrosis factor-alpha, TSP-1; thrombospondin 1, TXA2; thromboxane 

A2, U937 cells; myeloid lineage cell line, uL; microliters, VAS; visual analogue scale, VEGF; 

vascular endothelial growth factor, αMEM; α-modification of minimum essential medium, μg; 

micrograms 
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Figure legends 

Figure 1. Schematic of a platelet together with organelles, highlighting key surface 

receptors, aggregation factors and an overview of known α-granule releasate factors. These 

contain: adhesive proteins, clotting factors and their inhibitors, fibrinolytic factors and their 

inhibitors, proteases and antiproteases, growth and mitogenic factors, chemokines, 

cytokines, membrane glycoproteins and anti-microbial proteins. The platelet releasate may 

be further used as a biomaterial in numerous applications of regenerative medicine. 

Figure 2. PubMed search for publications on a) “platelet-rich plasma”; b) “platelet-rich 

plasma” AND regeneration; and c) “platelet-rich plasma” AND regeneration AND muscle 

between 1954 and 2017. The diagram reveals that the publication of articles on platelet-rich 

plasma (PRP) have increased exponentially in the last two decades (white bars), while 

concomitantly scientific interest emerged for exploiting PRP in regenerative applications (red 

bars). Additional interest to use PRP for skeletal muscle regeneration has developed over 

the last decade (black bars). 

Figure 3. A schematic diagram showing a skeletal muscle stem cell’s (i.e. satellite cell) 

possible response to growth factors, based on current published evidence 2, 17, 34, 47, 48, 51, 54, 83. 

Located between the basal lamina and the sarcolemma of the muscle fibre, the satellite cell 

may come into contact with hundreds of growth factors and cytokines in response to platelet-

rich plasma (PRP) administration. For simplicity we are presenting platelet-derived growth 

factor (PDGF) and vascular endothelial growth factor (VEGF), which are known to be 

contained in PRP. PDGF and VEGF interact with tyrosine kinase receptors and induce the 

Phosphoinositide 3-kinase (PI3K)/Protein Kinase B (AKT)/mammalian target of rapamycin 

(mTOR) pathway to drive cell proliferation through transcription factors such as Cyclin D1 45, 

49-51, 102, 103. The impact of PRP on muscle progenitor cell differentiation is currently debated 

and remains to be established.  

Figure 4. A schematic diagram showing the different stages in preparation of platelet-based 

applications, highlighting possible steps for experimental variations based on published 

evidence (see Table 3). Variations may include; donor-specific variability, variability in 

centrifugations, use of different platelet-based applications (e.g. PRP or leucocyte-rich PRP 

or platelet releasate), platelet concentration, buffer of resuspension, platelet agonists used 

for activation and the storage conditions. 
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