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A strong optical nonlinearity arises when coherent light is scattered by a semiconductor quantum
dot (QD) coupled to a nano-photonic waveguide. We exploit the Fano effect in such a waveguide
to control the phase of the quantum interference underpinning the nonlinearity, experimentally
demonstrating a tunable quantum optical filter which converts a coherent input state into either a
bunched, or antibunched non-classical output state. We show theoretically that the generation of
non-classical light is predicated on the formation of a two-photon bound state due to the interaction
of the input coherent state with the QD. Our model demonstrates that the tunable photon statistics
arise from the dependence of the sign of two-photon interference (either constructive or destructive)
on the detuning of the input relative to the Fano resonance.

The generation of non-classical light is a fundamen-
tal requirement for the operation of quantum photonic
devices. For instance, a single photon input is a prereq-
uisite for linear optical quantum computation schemes
[1], while the use of NOON states may enable sensing
with Heisenberg-limited precision in the field of quan-
tum metrology [2, 3]. On-demand, single-photon emit-
ters such as quantum dots (QDs) are a proven resource
for non-classical light, enabling the generation of single-
[4, 5] and two-photon [6] states, as well as the creation of
entangled states on-chip [7].

A markedly different approach to generate non-
classical light (and to tune the photon statistics in gen-
eral), involves the manipulation of a coherent input state,
in such a way that the output state becomes either
bunched or antibunched. A coherent input state can be
considered as a weighted sum of different number-states
[8]. Number-state filtering, in which the weighting of
the individual number-states is controlled, can generate
a quantum output state from such a classical coherent in-
put (for instance via photon blockade [9–13]). The use of
interference has emerged as an extremely powerful tool
in this regard: it has been shown theoretically that it
can be used to realise complex photon statistics in cavity
[14–16] and waveguide [17, 18] quantum electrodynam-
ics (QED), and to generate single photons with simulta-
neous subnatural-linewidth using resonance fluorescence
[19]. Experimentally, the photon statistics of a coherent
input have been manipulated via quantum interference in
the weakly-coupled regime of cavity QED [20, 21], most
recently using the unconventional photon blockade [22].

An example of an interference phenomenon widely ob-
served in photonics is the Fano effect [23]. A Fano reso-
nance arises due to interference between a discrete transi-
tion and a background continuum, with the maxima and
minima of the resulting spectral lineshape arising from

constructive and destructive interference respectively. It
has been shown theoretically that the detuning relative
to the Fano resonance can be used to enable tunable
number-state filtering [17, 24, 25]. To demonstrate this,
we employ an integrated quantum photonic device com-
prising a single quantum two-level system, namely a QD,
coupled to a single-mode optical waveguide. An ideal
waveguide (with 100% transmission) supports a back-
ground continuum of modes which have constant phase.
Single photons resonant with the QD transition would
be fully reflected due to destructive interference in the
transmission direction between the continuum and pho-
tons scattered by the QD [26]. This would result in a
symmetric spectral profile in transmission, as shown in
Fig. 1a. However, in a real device, reflections within the
waveguide (see schematic in Fig. 1b) can lead to the for-
mation of Fabry-Pérot (F-P) modes, which modulate the
transmission and hence the phase of the continuum. The
spectral lineshape in transmission then depends on the
detuning of the QD transition relative to the F-P modes,
as shown in Fig. 1b. In particular, when the QD transi-
tion is detuned from a mode maximum, a characteristic
Fano lineshape is observed [27, 28].

For the output photon statistics of such a device, the
behaviour of two-photon states is of importance. It has
been predicted for an ideal waveguide that, on reso-
nance with the discrete transition, two-photon states are
preferentially transmitted (a manifestation of the nonlin-
ear interaction between photons and the emitter at the
single/few-photon level), and the output state is bunched
[26]. Similarly, bunching will occur when the input is de-
tuned to the destructive interference regime of a Fano
resonance. Notably however, when the input is detuned
to the constructive interference regime, the possibility
arises of the output state being antibunched [25]. Such
a non-classical output state, tunable across the Fano res-
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FIG. 1. (a) Calculated single photon transmission for a waveg-
uide containing a single QD (upper schematic), as a function
of the input detuning relative to the QD transition. δ is the
QD transition linewidth. (b) Calculated transmission for a
waveguide containing a single QD and supporting F-P modes
due to partially reflective interfaces (PRIs) in the waveg-
uide (upper schematic). The QD transition is either resonant
(dashed red line) or non-resonant (dotted blue line) with the
F-P mode. The transmission for the same waveguide without
a QD is shown by a black solid line for reference. FSR stands
for free spectral range.

onance, has yet to be demonstrated for an integrated
quantum photonic device.

In this Letter, we demonstrate a tunable quantum op-
tical filter using an integrated device comprising a sin-
gle QD coupled to a single-mode nano-photonic waveg-
uide. We inject a tunable, coherent laser field into
the waveguide, and observe a Fano resonance in trans-
mission. We show that the transmitted state photon
statistics are antibunched when resonant with the Fano
maximum and bunched at the Fano minimum, evidence
of tunable number-state filtering. The tuning can be
achieved either by changing the laser wavelength or by
electrically Stark-shifting the QD transition, demonstrat-
ing control of the photon statistics locally, on-chip. We
model the system and show that the formation of a two-
photon bound (frequency entangled) state is critical to
observe number-state filtering. Furthermore, antibunch-
ing is only achieved in the case of destructive interference
of two-photon product states and bound states, which
becomes possible due to the Fano resonance.

Fig. 2a shows a scanning electron microscope image of
our quantum optical filter, which was fabricated within
a 170nm thick, GaAs p-i-n membrane. InGaAs self-
assembled QDs were embedded in the intrinsic region
of the membrane and could be Stark tuned by applica-
tion of a bias to the diode. (Details of the wafer, de-
vice design and experimental procedures can be found
in the Supplemental Material [29].) The device consists
of a suspended single-mode photonic crystal waveguide
(PhCWG) with nanobeam waveguides attached to ei-
ther end. The waveguides are terminated with semi-
circular Bragg gratings which enable vertical in- and out-
coupling of light. The PhCWG has a photonic band

FIG. 2. (a) Scanning electron microscope image of the nano-
photonic device. The triangle shows the approximate location
of the QD studied here, situated in a slow light PhCWG. (b)
Device transmission probed using high power non-resonant
PL (500µW at 780nm). The black arrow indicates the lo-
cation of the photonic band edge. (c) Resonant photolumi-
nescence excitation spectrum for the trion state of the QD
located in the PhCWG (circles), with spectral position given
by the red dashed arrow in (b). The background laser scatter
has been subtracted. The line is a Voigt fit to the data.

edge at ∼916nm, which was measured using waveguide-
transmitted, non-resonant photoluminescence (PL) from
the ensemble of QDs. The PL was excited in one Bragg
coupler and detected from the other coupler, and is
shown in Fig. 2b. F-P modes are revealed through os-
cillations in the transmitted intensity. The mode spacing
of ∼2nm suggests that the dominant reflection occurs at
the two Bragg coupler-nanobeam waveguide interfaces.

QDs emitting in spectral proximity to the PhCWG
band edge experience a slow light-induced Purcell en-
hancement [30]. The Purcell enhancement increases the
QD exciton decay rate and consequently reduces the im-
pact of dephasing on the coherence of the exciton emis-
sion. It also increases the β-factor which characterises
the optical coupling strength between the QD and the
waveguide mode [31], with a value as large as 0.98 pre-
viously reported [32]. In this regime, the QD may be
considered as a ‘1D atom’, coupling almost uniquely to
the single mode of the waveguide.

Resonance fluorescence measurements, with excitation
from above the QD and collection from an outcoupler,
were used to locate a suitable single QD in the PhCWG.
Fig. 2c shows the resonant photoluminescence excitation
spectrum for such a QD, obtained by scanning a narrow-
band continuous wave laser across the QD transition. Its
wavelength of 915.045nm lies within 1nm of the PhCWG
band edge. The transition is likely to be a charged trion,
as we typically observe fine-structure splitting for the QD
neutral exciton in this sample [33]. In a separate mea-
surement using resonant pulsed excitation (not shown),
the lifetime of the trion state was found to be 150±30ps,
which corresponds to a radiatively-limited linewidth of
4-6µeV. We measured an ensemble lifetime of 750ps for
QDs in the bulk of the sample and therefore estimate a
Purcell factor of ∼5. The linewidth in Fig. 2c is broad-
ened to 15µeV due to spectral wandering. We note that
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FIG. 3. (a) Measured waveguide transmission as a function
of laser-trion detuning (circles), normalised to the transmis-
sion measured at large detuning. The solid line is a Breit-
Wigner-Fano fit to the data. (b,c) Second order autocorre-

lation function g(2)(τ) at a detuning of (b) +9µeV and (c)
–9µeV, as indicated in (a). The data has been normalised to

the value of g(2)(τ) at long time delay. Error bars correspond
to the square root of the coincidence counts in each time bin.
(d) g(2)(0) (red filled circles) and normalised waveguide trans-
mission (blue open circles) as a function of laser-trion detun-

ing. Error bars originate from fitting of the full g(2)(τ) data.
Solid and dashed lines represent the result of modelling (see

text for details). The axis for g(2)(0) is logarithmic.

the QD could be Stark-tuned over more than 100µeV, en-
abling full electrical control of the laser-trion detuning.

We next probe the effect of the same single QD on the
waveguide transmission. A weak, tunable, continuous-
wave laser was injected into the waveguide. The laser
power was chosen such that, on average, less than one
photon interacted with the QD within the trion lifetime.
The transmission is therefore largely determined by the
interaction of single photons with the QD. Fig. 3a shows
the transmission as a function of laser-trion detuning,
which was controlled by changing the laser wavelength
[34]. The transmission is normalised to the background
level measured in the absence of the laser-trion interac-
tion. (This was achieved by electrical tuning of the QD
transition far out of resonance with the laser.) A char-
acteristic dispersive Fano lineshape is observed, due to
interference between photons scattered from the QD and
the driving laser field. Note that the minimum transmis-
sion is as small as 40%, which is evidence for the strong
interaction between single photons and the QD.

Now we consider the photon statistics of the trans-
mitted field. Using a Hanbury Brown-Twiss setup, the
second order autocorrelation function g(2)(τ) was mea-
sured as a function of laser-trion detuning. The con-
volved instrument response time was 80ps. In Fig. 3b-c
we compare the normalised g(2)(τ) histograms for laser-

trion detunings of +9µeV and –9µeV, which correspond
to the Fano transmission minimum and maximum respec-
tively. At a detuning of +9µeV substantial bunching
is observed, with g(2)(0)=2.02±0.07. After deconvolu-
tion with the instrument response function, we obtain a
g(2)(0) value of 2.20±0.08, which is greater than the ther-
mal classical limit. In sharp contrast, clear antibunching
is measured at a detuning of –9µeV, demonstrating the
successful filtering out of two-photon states from the co-
herent input state. To demonstrate the tunability of our
device, Fig. 3d shows the measured g(2)(0) as a func-
tion of the laser-trion detuning, covering the full spectral
width of the Fano resonance. From negative to positive
detuning, a dispersive lineshape is seen in the photon
statistics, whilst at large detuning the photon statistics
are those of a coherent state, with g(2)(0) equal to unity.
Thus, we have demonstrated that the photon statistics
can be manipulated by means of number-state filtering
using the detuning as the single control parameter. (See
the Supplemental Material for measurements where the
Stark shift of the QD transition was used as the control
parameter.)

Understanding of the output photon statistics requires
consideration of two kinds of two-photon states, namely
(separable) product states and (frequency entangled)
bound states [35–37]. We note that for two-photon prod-
uct states, constructive or destructive interference at the
Fano resonance follows that of single-photon states. This
implies that in the absence of bound states, a coherent
input would always result in a coherent output. Obser-
vation of photon number-state filtering must therefore be
related to the formation of the bound states. Indeed, the
bound states have been shown to explain bunching [37].
However, their presence alone is insufficient to explain the
observed antibunching. To account for the antibunching,
it is also necessary to consider interference between two-
photon product states and bound states, as our following
analysis shows. In particular, we identify the conditions
under which antibunching becomes possible, and the role
of F-P modes in this.

To gain the necessary insight, we model the system
using the input-output formalism [25]. The g(1) and g(2)

two-time correlation functions are given by

g(1)(t, t′) =
1

t20
〈α|ĉ†out(t′)ĉout(t)|α〉, (1)

g(2)(t, t′) =
〈α|ĉ†out(t)ĉ

†
out(t

′)ĉout(t
′)ĉout(t)|α〉

g(1)(t, t)g(1)(t′, t′)
, (2)

where t0 is the bare waveguide transmission amplitude
in the absence of the QD, evaluated at the wavelength of
the QD transition. The input coherent state is |α〉, whilst
ĉout are the output field annihilation operators. In the
low power, stationary limit (t → ∞), with β = 1 and
neglecting QD dephasing, we find that
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FIG. 4. Theoretical transmission |t1|2 (upper panels) and

g(2)(0) (lower panels - solid black lines) as a function of the
detuning between the laser and the QD transition, for a bare
waveguide transmission of (a) T0 = 1 and (b) T0 = 0.15. An-
tibunching can clearly be seen at a detuning corresponding to
the Fano maximum, indicated by the arrows. Also shown are
the contributions to the g(2)(0) from the two-photon bound
state (red dotted lines) and the interference between two-
photon product and bound states (blue dashed lines). The

contribution to g(2)(0) from the two-photon product state is
equal to unity for all detunings (see Eq. 4).

g(1) =
(δ̃ + tanφ)2

(1 + δ̃2)
= |t1|2, (3)

g(2)(0) =
1

|t1|4

∣∣∣∣t1t1 +
e2iφ

T0(1 + δ̃2)

∣∣∣∣2 (4)

= 1 +
1

T02(δ̃ + tan(φ))4
+

2 cos 2φ

T0(δ̃ + tan(φ))2
, (5)

where δ̃ is the detuning of the laser from the QD tran-
sition. The detuning is normalized to γ/2, where γ
denotes the transition decay rate. The single photon
transmission amplitude is given by t1, T0 = t20 and
φ = tan−1(−

√
1− t20/t0). Note that φ is related to

the detuning of the QD transition from the F-P modes.
The full time-dependent expressions, also accounting for
QD dephasing and non-unity β-factor, can be found in
the Supplemental Material. We note that in the limit
of a weak pump, the expression for g(2)(0) can alter-
natively be derived by the scattering matrix (S-matrix)
method [25, 38]. Namely, in [25] an equation analogous to
Eq. (4) has been derived, where the first term comes from
the disconnected S-matrix corresponding to the product
state and the second term from the connected S-matrix
corresponding to the bound two-photon state.

We fit the model to the experimental g(2)(0) data, then
use the same best-fit parameters to evaluate the nor-
malised transmission using the equation for g(1). The re-
sulting fits are shown in Fig. 3d, showing very good agree-

ment with the experimental results for both the transmis-
sion and the g(2)(0). The model clearly reproduces the
most significant feature of the measured data, namely the
generation of an antibunched transmitted field at nega-
tive detuning in addition to bunching at positive detun-
ing. (See the Supplemental Material for more details of
the fitting procedure.)

We now consider the physical process underpinning the
quantum optical filter, using Eqs. (4) and (5). Eq. (4)
reveals interference between two-photon product states
and two-photon bound states [25] (the first and the sec-
ond term in the modulus squared, respectively). The
first two terms in Eq. (5), obtained after evaluation of
the modulus, represent the bare contributions to g(2)(0)
from the product states (the unity term) and the bound
states, respectively, and the third term describes interfer-
ence between the two-photon states. Analysis of Eqs. (4)
and (5) leads to several immediate conclusions. First, it
is clear that the formation of the bound state is critical
for the generation of non-classical light, as in its absence
g(2)(0) equals unity. Secondly, the bound state term in
Eq. 5 is positively valued, and the first two terms com-
bined would only lead to g(2)(0) ≥ 1, i.e. either a co-
herent or bunched output state. Evidently, antibunching
can only arise in the case of destructive two-photon in-
terference, for which the third term in Eq. 5 is negative.
The latter is possible in the case when φ < −π/4 and
hence for bare waveguide transmission T0 < 0.5. One
should note that access to this regime in an otherwise
ideal waveguide is enabled by the presence of F-P modes
(whose presence also gives rise to the Fano effect.)

This is illustrated in Fig. 4, in which we plot the trans-
mission |t1|2 = g(1) and g(2)(0), for representative values
of T0 = 1 and T0 = 0.15. T0 = 1 corresponds to a QD in
a perfectly transmissive waveguide, while at T0 = 0.15
a QD is significantly off-resonant with an F-P mode.
When T0 = 1, both the bound state contribution and
the interference term are positive, and bunching is pre-
dicted across the whole range of detuning in Fig. 4a, in
agreement with Ref. [25]. However, for T0 = 0.15 the
interference term is negative, and where it outweighs the
contribution from the bound state, antibunching occurs.
Notably, one expects antibunching at the Fano transmis-
sion maximum, as observed experimentally. (This is indi-
cated by arrows in Fig. 4b). In particular, for T0 = 0.15,
g(2)(0) is expected to be as low as 0.5 at the Fano max-
imum; furthermore, g(2)(0) → 0 as T0 → 0 in the ideal
case scenario. Physically, the Fano maximum favours
transmission of single photons from the coherent input.
At the same time, the contribution to the output from
the two-photon product states is suppressed due to de-
structive interference with the bound states, resulting in
antibunching.

The tunable number-state filtering effect, which we ob-
serve, is therefore critically dependent on two factors: the
formation of a two-photon bound state, which enables
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non-classical light to be generated in the first instance;
and the destructive interference of the two-photon prod-
uct state and bound state. The filter switches the out-
put between bunched and antibunched, dependent on the
strength of the destructive interference effect; this in turn
depends on the detuning relative to the Fano resonance.

In conclusion, we have demonstrated an integrated,
tunable quantum optical filter which exploits the Fano
effect to convert a coherent input state into either a
bunched, or antibunched non-classical output state, and
provided its theoretical analysis. The filter is formed
from a single QD coupled to a nano-photonic waveguide,
which supports Fabry-Pérot modes. A Fano resonance
is observed in the waveguide transmission as a coherent
input laser is tuned across the QD transition. Antibunch-
ing of the output state is observed when the laser is reso-
nant with the Fano maximum, and bunching at the Fano
minimum. Switching between the two states is achieved
by controlling the detuning of the laser relative to the
Fano resonance, either by changing the laser wavelength,
or locally, using the quantum-confined Stark effect. No-
tably, antibunching is only observed due to the presence
of the Fano resonance. We have shown theoretically that
the non-classical output state is critically dependent on
the formation of a two-photon bound state due to inter-
action of the coherent input with the QD, and that con-
trol over the photon statistics arises due to the change
between constructive and destructive two-photon inter-
ference at the extrema of the Fano resonance. Our results
offer a new direction for the use of quantum interference
effects in integrated photonic circuits; in particular, the
Fano resonance is of significant interest for applications
requiring fast optical switching [23, 39] and our work ex-
tend this capability to switching of photon statistics.

Data supporting this study are openly available from
the University of Sheffield repository [40].
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SUPPLEMENTAL MATERIAL FOR
“TUNABLE PHOTON STATISTICS EXPLOITING THE FANO EFFECT IN A WAVEGUIDE”

SAMPLE DESIGN AND EXPERIMENTAL DETAILS

Wafer structure

The epitaxial layer structure for our quantum optical filter is shown in Fig. S1. The 170nm thick p-i-n membrane
contains a layer of InGaAs self-assembled QDs emitting between 880nm and 940nm. To fabricate the device, an
80nm thick Si0x hard mask was first deposited on the wafer. The nano-photonic structure was then defined in the
membrane using electron beam lithography and reactive ion etching, after which the hard mask was removed using a
1% hydrofluoric acid wet etch. Ti/Au (20nm/200nm) electrical contacts were made to the p and n layers of the GaAs
membrane. Finally, the AlGaAs sacrificial layer was removed from beneath the structure using a 10% hydrofluoric
acid wet etch.

FIG. S1. Schematic of the epitaxial layer structure.

Waveguide design

For a complete description of the photonic crystal waveguide design see the Supporting Materials for Ref. [33].
Note that the 90 degree bend in one of the nanobeam waveguides (see Fig. 2a in the main text) allowed for the
use of a cross-polarised excitation and collection geometry, to minimise detection of undesirable laser scatter during
resonance fluorescence and resonant transmission experiments [27, 33].

Power dependence of the waveguide transmission

The transmission measurements in the main text were taken using a power of 1µW, just below the onset of saturation
of the QD. The power was measured before the objective lens above the sample, and the fraction of this power coupled
into the waveguide is dependent on the Bragg grating coupler efficiency. By comparison with Ref. [27] we conclude
that on average, less than one photon was incident on the QD per trion lifetime.

Hanbury Brown and Twiss (HBT) measurements

For HBT measurements, the transmitted light was split using a 50:50 fibre beam splitter, and detected using two
superconducting nanowire single-photon detectors (Single Quantum). Correlations between detection events were
evaluated using a time correlated single-photon counting card (Becker-Hickl SPC-130). The instrument response time
for the measurement was 80ps (full width half maximum).

Detuning-dependent HBT using the QD Stark shift

The detuning-dependent HBT measurements reported in the main text were undertaken using the laser wavelength
as the control parameter, with a fixed bias applied to the p-i-n diode. It is also possible to locally control the detuning
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via the Stark shift, whilst keeping the laser wavelength fixed. In Fig. S2 we show HBT measurements undertaken by
changing the diode bias. Bunching (antibunching) is seen at a detuning of +9µeV (–9µeV), in agreement with the
measurements in the main text. The measurement noise is larger here than for the equivalent measurements in the
main text, due to a shorter data collection time.

FIG. S2. Second order autocorrelation function g(2)(τ) at a detuning of (a) +9µeV and (b) –9µeV. The data has been

normalised to the value of g(2)(τ) at long time delay. Error bars correspond to the square root of the coincidence counts in
each time bin.

INPUT-OUTPUT MODEL

Relation between coupling coefficient, bare waveguide transmission and QD lifetime

We start with the equations of motion for the QD operator supplemented with the relation between the ingoing
and outgoing amplitude (see e.g. Ref. [25])

d

dt
σ̂− = −iω0σ̂− − (γ/2 + γde)σ̂− − σ̂zdT cin, (S1)

d

dt
σ̂z = −γσ̂z − γ + 2σ̂+d

T cin + 2c†ind
∗σ̂−, (S2)

cout(t) = Ccin + σ̂−(t)d, (S3)

where ω0 denotes the QD transition frequency. The radiative and pure dephasing decay rates for the transition are
γ and γde, respectively. The vectors cin and cout correspond to the ingoing and outgoing waves respectively in the
left/right propagation basis, C is the scattering matrix of the whole structure in the absence of the QD [25], d is the
coupling of the QD to the left and right moving waves, and σ̂l(t) with l = {±, z} are the QD raising and lowering
operators. In order to determine the connection between the experimentally measured lifetime 1/γ and the coupling
coefficient vector d, we employ the flux conservation condition. Specifically, we write the continuity equation

d

dt
N = c†incin − c†outcout − (1− β)γN, (S4)

where N = σ̂+σ̂− = (σ̂z + 1)/2 is the population operator for the QD. Eq. (S4) states that in equilibrium the change
in the population of the QD is proportional to the difference between the ingoing and outgoing energy flux. The
final term describes the energy decay channel corresponding to non-radiative decay of the QD or radiative decay into
modes other than the single mode of the waveguide (i.e. to the farfield). The parameter β is the probability of the
excited QD eventually decaying via emission of a photon into the waveguide mode (referred to as the β-factor in the
main text).

At the same time, we can write down another equation for N from the equation for σz, which reads

d

dt
N = −γN + σ̂+d

T cin + c†ind
∗σ̂−. (S5)



9

Substituting in Eq. (S3) for the outgoing amplitudes we obtain the equation:

0 = c†in[I−C†C]cin − (d†d− βγ)N − c†in[C†d + d∗]σ̂− − σ̂+[d†C + dT ]cin. (S6)

We then make the assumption that our non-resonant scattering matrix is a unitary one, hence C†C = I, i.e. we have
no scattering losses in the empty waveguide. C can now be represented in the form

C =

(
t0 ir0
ir0 t0

)
, (S7)

where t0 ∈ [0, 1] is the transmission of the structure in the absence of the QD, and r0 = −
√

1− t20 is the reflection
coefficient. The relations between C,d and γ are given by

d†d = βγ, (S8)

C†d = −d∗, (S9)

therefore the coupling d can be uniquely defined as

d = ieiφ/2
√
βγ/2

(
1
1

)
, (S10)

where φ = arctan(r0/t0). The value of γ can be directly measured experimentally. It should be noted that γ is
renormalized due to the cavity-induced Purcell effect. At the same time, r0 can be only roughly estimated and is a
fitting parameter in the simulations. In deriving expression (S10) we have implicitly assumed that the QD is placed
in the cavity centre.

Calculation of g(1) and g(2) correlation functions

The two-time correlation functions g(1) and g(2) by definition are

g(1)(t, t′) =
1

t20
〈α|ĉ†out(t′)ĉout(t)|α〉, (S11)

g(2)(t, t′) =
〈α|ĉ†out(t)ĉ

†
out(t

′)ĉout(t
′)ĉout(t)|α〉

g(1)(t, t)g(1)(t′, t′)
, (S12)

where |α〉 is the input coherent state and ĉout are the output field annihilation operators.
In the following equations, ĉin are the input field annihilation operators, ω is the input photon frequency and α is

the coherent field amplitude. The output annihilation operators obey the relationship

ĉout = t0ĉin(t) + σ̂−(t)d, (S13)

where ĉin(t) is defined as

ĉin(t)|α〉 = αe−iωt|α〉. (S14)

The output field function in Eq. (S12) can thus be expressed via the correlators of the QD raising and lowering
operators. These obey the set of differential equations

d

dt
σ̂− = −iω0σ̂− − (

γ

2
+ γde)σ̂− − σ̂zdαe−iωt, (S15)

d

dt
σ̂+ = iω0σ̂+ − (

γ

2
+ γde)σ̂+ − σ̂zd∗α∗eiωt, (S16)

d

dt
σ̂z = 2(dαe−iωtσ̂+ + d∗α∗e−ωtσ̂−)− γσ̂z − γ. (S17)

We seek solutions for the operator averages 〈σ̂l(t)〉, l = {±, z} and for the correlators 〈σ̂+(t)σ̂l(t+τ)〉, and 〈σ̂+(t)σ̂l(t+
τ)σ̂−(t)〉 which enter the expressions for the g(2) function. These correlators are found by using the quantum regression
theorem [41]. Namely, for the g(1) correlation function in the limit t = t′ →∞ we obtain

g(1) = 1− 2β(ζ − δ tanφ)

α̃ζ + ζ2 + δ2
+

β2

cos2 φ(ζα̃+ ζ2 + δ2)
, (S18)
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where ζ = 1 + 2γde/γ is the dimensionless measure of the QD decoherence, δ̃ = 2(ω − ω0)/γ is the dimensionless
detuning, and α̃ = 4β|α|2/γ is the dimensionless intensity of the coherent input state. In the limit β = 1, ζ = 1 and
vanishing intensity, Eq. (S18) coincides with the single photon transmission probability derived in Ref. [25] (Eq.[49]):

β = 1, ζ = 1 : g(1) =
(δ̃ + tanφ)2

δ̃2 + 1
. (S19)

The expression for the g(2) correlation function in the limit of a weak pump is given by

g(2)(τ) =
1

(g(1))2

[
(g(1))2 +Ae−2|τ | + (g(2)(0)− (g(1))2 −A) cos(δ̃τ)e−ζ|τ | +B sin(δ̃|τ |)e−ζ|τ |

]
, (S20)

where the dimensionless τ is normalized to γ/2, g(2)(0) = g(1)|β=2β ,

A =
β3(β − 4(ζ − 1) cos2 φ)

cos4 φ(ζ2 + δ̃2)(δ̃2 + (ζ − 2)2)
, (S21)

and

B = 2β4 (1− ζ)(ζ2 − 2ζ + δ̃2)

δ̃(ζ2 + δ̃2)2(δ̃2 + (ζ − 2)2) cos4 φ
+ 2β2 2ζδ̃ cos 2φ− (δ̃2 − ζ2) sin 2φ

cos2 φ(ζ2 + δ̃2)2

− 4β3
cosφ

[
δ̃2(δ̃2 + 2− ζ)− ζ2(ζ − 2)(ζ − 1)

]
+ sinφ

[
δ̃ζ(δ̃2 + (ζ − 2)2)

]
δ̃(ζ2 + δ̃2)2(δ̃2 + (ζ − 2)2) cos3 φ

. (S22)

Note that the decoherence affects the interference terms, as ζ enters the argument of the exponent for these terms
only. In the limit β = 1 and ζ = 1, Eq. (S20) coincides up to a constant prefactor with Eq.[51] in Ref. [25]. In this
case we can write the expression for g(2) as

g(2)(τ) =
1

(g(1))2

∣∣∣∣∣g(1) +

(
e−|τ |

t20(δ̃2 + 1)

)
ei(2φ+δ̃|τ |)

∣∣∣∣∣
2

. (S23)

At zero delay time we obtain

g(2)(0) = 1 +
1

t40(δ̃ + tanφ)4
+

2 cos 2φ

t20(δ̃ + tanφ)2
, (S24)

which is Eq. 5 within the main text.

FITTING PROCEDURE

In order to provide a fit for the experimental data, both g(1) and g(2) in Eqs. (S18), (S20) were first averaged over
the QD transition energy, which varies due to spectral wandering. We assume a Gaussian distribution for the spectral
wandering with standard deviation σ. Then, introducing the dimensionless σ̃ = 2σ/γ, we write the averaged g(1) as

〈g(1)〉(δ̃) =
1√
2πσ̃

∫
dxg(1)(δ̃ + x)e−x

2/2σ̃2

, (S25)

where 〈〉 denotes averaging over spectral wandering. In averaging the g(2) correlation function we first average
separately the numerator and denominator, and then divide:

〈g(2)〉(τ, δ) =
〈
[
(g(1))2 +Ae−2|τ | + (g(2)(0)− (g(1))2 −A) cos(δ̃τ)e−ζ|τ | +B sin(δ̃|τ |)e−ζ|τ |

]
〉

〈(g(1))2〉
. (S26)

The spectral averaging smears the sharp features in the theoretical transmission and g(2). For example, for β = 1
and in the absence of spectral wandering, arbitrarily small normalized transmission and thus g(1) is predicted, with a
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consequently huge increase in g(2). However, if spectral wandering is present the minimal transmission is limited by
σ̃/(σ̃ + 1).

Finally, the finite response time of the detectors should be taken into account. The response function of the detectors
is a Gaussian with a standard deviation of tresp = 34ps (80ps FWHM). Introducing the dimensionless t̃resp = 2tresp/γ,
we write down for the temporally convolved g(2)

〈〈g(2)(δ̃, τ)〉〉 =
1√

2πt̃resp

∫
dτ ′〈g(2)(δ̃, τ + τ ′)〉e−τ

′2/2t̃2resp (S27)

where 〈〈〉〉 denotes averaging over time after averaging over spectral wandering. We fit the experimental data using
Eqs. (S25) and (S27), with fitting parameters ω0, γ, γde, σ, t0 and β. We find that ω0 = 327.524THz, 1/γ = 125ps,
1/γde = 38ns, σ = 4.7µeV, t0 = 0.62 and β = 0.99. Reasonable agreement is found between the fitted values and those
parameters which were measured independently (the lifetime (150±30ps) and degree of spectral wandering (standard
deviation of 5.3µeV)).
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