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Abstract 

Diabetes mellitus (DM) is a complex metabolic disorder involving multiple deleterious 

molecular pathways and cellular defects leading to disturbance in the biologic milieu. It is 

currently a global health concern with growing incidence, especially among younger adults. 

There is an unmet need to find new therapeutic targets for the management of diabetes. Vitamin 

D is a promising target in the pathophysiology of DM, especially since vitamin D deficiency 

is common in patients with diabetes compared to people without diabetes.   Evidence suggests 

that it can play significant roles in improving peripheral insulin sensitivity and glucose 

metabolism, however, the exact pathophysiological mechanism is not clarified yet. In this 

current study, we have reviewed the evidence on the effect of vitamin D in improving insulin 

resistance via distinct molecular pathways.  

Keywords: diabetes mellitus, insulin resistance, insulin signal transduction, insulin sensitivity, 

calcitriol, vitamin D3, Colecalciferol.  
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Introduction  

The prevalence of diabetes mellitus (DM), primarily type 2 diabetes (T2DM) is growing in an 

epidemic proportion (Magliano et al. , 2019). This chronic disorder is now considered as the 

most prevalent metabolic disease worldwide (Piero et al. , 2015). It is predicted that the total 

diagnosed and undiagnosed cases of DM will rise from 14% in 2010 to about 33% by 2050 

among the US adult population (Boyle et al. , 2010). DM imposes a significant economic 

burden on individuals and health care systems (Bommer et al. , 2017). DM gives rise to various 

long-term complications (Forbes and Cooper, 2013). DM and its complications through various 

pathophysiological mechanisms result in significant morbidity and mortality (Forbes and 

Cooper, 2013). There is a growing need for better pharmacological agents to prevent and 

manage DM and its complications (Guthrie and Guthrie, 2004, Yaribeygi et al. , 2019b).  

Colecalciferol or vitamin D3 (vitD3), belongs to a class of steroid hormones known as vitamin 

D, is involved in many cellular and molecular mechanisms such as calcium and magnesium 

metabolism and thereby normal mineralization of bones (Duffy et al. , 2017, Martucci et al. , 

2017). There is growing evidence that vitamin D is associated with other metabolic disorders 

such as insulin resistance and DM (Chen et al. , 2016, Hosseini et al. , 2018, Park et al. , 2016, 

Savastio et al. , 2016). In view of this, vitamin D is widely consumed as a dietary supplement 

worldwide (Poolsup et al. , 2016). There is evidence demonstrating that vitamin D deficiency 

is more common among patients with diabetes compared to people without diabetes, suggesting 

that it may be involved in normal glucose homeostasis (Al-Shoumer and Al-Essa, 2015, Lu et 

al. , 2016, Nakashima et al. , 2016). However, the exact role of vitamin D in DM has not been 

completely elucidated yet (Nakashima et al., 2016). In this current study, we review about the 

possible interactions between the pharmacologic role of vitamin D and normal glucose 

homeostasis, insulin resistance and DM so as the develop new preventive and therapeutic 

strategies for management of DM.  
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Vitamin D3 physiology  

Vitamin D is a group of fat-soluble steroid hormones responsible for reabsorption of various 

ions such as calcium, magnesium, and phosphate (Feldman et al. , 2013). Vitamin D3 or 

colecalciferol is the most potent member of this family which is synthesised via various 

biochemical processes and ingestion (Feldman et al., 2013, Holick, 1999). In mammals, it is 

produced under the influence of ultraviolet light on certain provitamins as 7-dehydrocholesterol 

in the skin (Hall, 2015). This process involves the rapid formation of previtamin D3, which is 

then slowly converted to the active form of vitamin D3 (Fig1) (Hall, 2015). Subsequent steps 

are occurred in the liver and kidneys (Bikle, 2017). In the liver, vitamin D3 is converted to 25-

hydroxycolecalciferol (calcidiol) by 25- hydroxylase, which is then converted in the proximal 

renal tubules by 1α-hydroxylase enzyme to the more active metabolite as 1,25-

dihydroxycolecalciferol or calcitriol (Bikle, 2017). The less active metabolite as 24, 25-

dihydroxycolecalciferol is also produced by 24- hydroxylase in the kidneys (Fig 1) (Bikle, 

2017, Hall, 2015). Colecalciferol and its derivatives are transported in the plasma by binding 

to a specific globulin known as vitamin D-binding protein (DBP) (Bikle, 2017, Hall, 2015). 

 

Figure 1; Sequential steps in the formation of the active form of vitamin D3 

 

Vitamin D3 is also ingested through the diet (Bikle, 2017). Moreover, it can be made in other 

tissues such as the placenta, keratinocytes (skin), and macrophages (Bikle, 2017). The normal 



5 
 

plasma levels of calcidiol and calcitriol are about 30 ng/mL, and 0.03 ng/ml, respectively 

(Bikle, 2017). The synthesis of vitamin D3 is under delicate control of serum calcium, 

phosphorus, magnesium and PTH (parathyroid hormone) levels (Bikle, 2017). Calcitriol is 

metabolized by the cytochrome P450 (CYP) superfamily members (Bikle, 2017). Vitamin D 

exerts its effects via specific receptors known as vitamin D receptors (VDRs), which are 

nuclear receptors of transcription factors regulating a wide range of gene expression 

(Szymczak-Pajor and Śliwińska, 2019). VDR has also involved in the microRNA-dependent 

post-transcriptional processes (Lisse et al. , 2013). Thereby, calcitriol plays significant roles in 

transcriptional and post-transcriptional cellular events (Lisse et al., 2013).        

The classic role of calcitriol was initially detected as Ca2+ and PO4
3– ions reabsorption in the 

intestine and renal tissues (Holick, 1999). However, further studies demonstrated that it has 

other significant roles with immunosuppressive, anti-proliferative, pro-differentiating, anti-

oxidative and anti-inflammatory properties (Feldman et al., 2013). Also, it has physiologic 

roles in other organs such as kidney, skin, immune cells, pancreas, and parathyroid glands 

(Palomer et al. , 2008). It is also involved in gene expressions (Maestro et al. , 2002). For 

instance, its specific receptor was detected in the human insulin gene promotors (between −761 

and −732 base pairs), which enabled it to regulate insulin expression (Maestro et al. , 2003, 

Maestro et al., 2002). However, chronically taking higher dose of colecalciferol can result in 

undesirable side-effects such as nausea, vomiting, headache, hypercalcemia, kidney stones, 

arrhythmia and bone pathologies (Inzucchi, 2004, Roy et al. , 2016). Beyond its effects on bone 

homeostasis, vitamin D is now considered as an active biologic multi-potential compound 

(Feldman et al., 2013).    

Vitamin D3 and diabetes mellitus  
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There is strong evidence suggesting that normal levels of vitD3 is associated with normal 

insulin sensitivity and glucose homeostasis (Al-Shoumer and Al-Essa, 2015, Maghbooli et al. 

, 2008, Nakashima et al., 2016, Palomer et al., 2008, Szymczak-Pajor and Śliwińska, 2019). 

For instance, a recent clinical trial in T2DM patients demonstrated that 6 months of vitD3 

therapy significantly improved metabolic deterioration and glucose homeostasis (Lemieux et 

al. , 2019). Also, DM is more prevalent in vitD3 deficient subjects (Chiu et al. , 2001, Lu et al., 

2016). Moreover, the polymorphism of genes involved in calcitriol synthesis has been 

demonstrated to increase the risk of insulin resistance and DM (Al-Daghri et al. , 2017, Mauf 

et al. , 2015). This evidence suggests that vitD3 is involved in the pathophysiology of insulin 

resistance and DM (Al-Shoumer and Al-Essa, 2015, Maghbooli et al., 2008, Nakashima et al., 

2016, Palomer et al., 2008). In the following sections, we discuss the molecular interactions 

between vitamin D and pathways which maintains glucose homeostasis. A list of some 

experimental evidence is presented in table 1. The clinical evidence in humans is presented in 

table 2.     

1. VitD3 and beta-cell function   

A healthy and functional mass of pancreatic beta cells is necessary for maintaining the glucose 

homeostasis and normal metabolism (Thabit et al. , 2015). Patients with diabetes have a varying 

degree of beta-cell dysfunction and thereby, improving islets' function is one of the main targets 

in research studies (Matsuoka et al. , 2015, Pingitore et al. , 2017, Thabit et al., 2015). There is 

evidence suggesting that calcitriol preserves beta-cell mass and improves islets function via 

several pathways (Infante et al. , 2019, Kampmann et al. , 2014). As stated before, the active 

form of vitD3 participate in various molecular pathways and can play a significant modulatory 

role in different cellular events such as ion homeostasis (Hufnagl and Jensen-Jarolim, 2018, 

Infante et al., 2019, Santos et al. , 2018, Sergeev, 2016). As insulin secretion process is a 

calcium-dependent mechanism, it has suggested that active form of vitD3 in plasma is 
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correlated to normal insulin release by the beta cells (Björklund et al. , 2000). This suggestion 

is confirmed by the fact that serum PTH1 level is inversely related to insulin sensitivity (Chiu 

et al. , 2000, McCarty and Thomas, 2003).  

Since discovering its specific receptor (VDR) on pancreatic beta cells, the roles of active vitD3 

on beta cells' function was confirmed (Johnson et al. , 1994). Also, the active form of α-

hydroxylase enzyme responsible for the activation of vitD3 was detected in beta cells (Bland 

et al. , 2004). Moreover, specific response element for vitD3 has been detected in insulin gene 

promoter suggesting the important role of calcitriol on insulin production by the beta cells 

(Bland et al., 2004). Additionally, calcitriol is able to up-regulate the insulin gene in islets 

directly (Maestro et al., 2002). These findings strongly suggest that insulin secretion from 

pancreatic cells is dependent on plasma levels of calcitriol (Bland et al., 2004, Maestro et al., 

2002). This theory is confirmed by studies on VDR deficient animals in which, these animals 

are unable to secrete enough insulin in response to postprandial glucose (Cui et al. , 2017, 

Karadağ et al. , 2018, Maghbooli et al., 2008).    

It has also been demonstrated that calcitriol has adverse and inhibitory effects on various 

pathophysiologic mechanisms contributing to beta-cell dysfunction such as inflammation, 

apoptosis, autoimmune responses and oxidative stress (Infante et al., 2019). Al-Sofiani and 

coworkers in 2015 through a randomized controlled trial study reported that vitD3 supplement 

markedly improved beta-cells function in T2DM patients (Al-Sofiani et al. , 2015). Lemieux 

et al in 2019 conducted a clinical study suggesting that vitD3 supplement in prediabetic 

subjects improves beta-cell function and readjusts glucose homeostasis (Lemieux et al., 2019). 

Kayaniyil and coworkers in 2010, demonstrated that plasma levels of vitD3 are correlated to 

the efficiency of beta-cells and insulin sensitivity in non-diabetic population (Al-Sofiani et al., 

                                                           
11 Parathyroid hormone  
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2015). These findings suggest that calcitriol has positive effects on islets' functions and 

improves the efficiency of beta-cells and thereby, glucose homeostasis (Al-Sofiani et al., 2015, 

Infante et al., 2019).  

   

2. VitD3 and peripheral insulin sensitivity  

Emerging evidence suggests that calcitriol effectively improves insulin sensitivity (Gulseth et 

al. , 2017, Karadağ et al., 2018). This could be through several pathways as described below.  

a) VitD3 and insulin signal transduction  

Insulin signal transduction (IST) is a complex process involving sequential cellular signaling 

events (De Meyts, 2016, Langlais et al. , 2015). Briefly, IST is initiated by the binding of the 

insulin (as well as IGFs2), to the α chain of its specific receptor known as insulin receptor (IR), 

which promotes structural changes in β chain of IR and recruits different adaptor proteins such 

as insulin receptor substrates (IRSs), (and other adaptors such as Shc protein (SHC-

transforming) and APS protein (adapter protein with a PH and SH2 domain)) (De Meyts, 2016). 

These events provide a binding site for IRS-1 that in turn, links to the PI3K (phosphoinositide 

3-kinase) and activates it (De Meyts, 2016). In next step, activated PI3K catalyzes the 

conversion of PIP2 (phosphatidylinositol 4,5-bisphosphate) to PIP3 (phosphatidylinositol 

3,4,5-trisphosphate) (De Meyts, 2016). PIP3 is itself a potent activator for PKB (protein kinase 

B, also known as Akt), which facilitates glucose entering into the cells by localization of Glut-

4 (glucose transporter type 4) on the cell membrane (fig 2) (Langlais et al., 2015).  

                                                           
2 Insulin like growth factors 
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Fig 2; schematic representation of insulin signal transduction (IRSs= insulin receptor substrates, 

PI3K= Phosphoinositide 3-kinase, PIP2= Phosphatidylinositol 4, 5-bisphosphate, PIP3= 

Phosphatidylinositol 3, 4, 5-trisphosphate, Akt=protein kinase B, Glut-4= glucose transporter type 4)    

There are other types of insulin-dependent kinases as ERK1/2 (extracellular signal‐regulated 

kinase 1/2), S6K1 (ribosomal protein S6 kinase beta-1), mTOR (mammalian target of 

rapamycin), SIK2 (serine/threonine-protein kinase 2), atypical PKC (protein kinase C), 

ROCK1 (Rho-associated protein kinase 1), AMPK (AMP-activated protein kinase) and GSK3 

(Glycogen synthase kinase), which can also be activated by insulin, and then phosphorylate 

IRSs and promote IST (De Meyts, 2016).   

Therefore, normal peripheral insulin sensitivity is dependent on the appropriate expression and 

function of all the involved elements of IST (Dominici et al. , 2002, Langlais et al., 2015). For 

example, a proper profile of Glut-4 expression on the cell membrane of insulin-dependent 

tissues is critical for normal insulin sensitivity (Boden et al. , 2015, Pinto-Junior et al. , 2018, 

Yaribeygi et al. , 2019c). It has been shown that calcitriol up-regulates insulin receptors at 

mRNA and protein levels (Leal et al. , 1995, MAESTRO et al. , 2000, Maestro et al., 2002). 

Recent evidence demonstrated that calcitriol could up-regulate Glut-4 expression as well as its 

localization on cell membranes of adipocytes and myocytes (Manna and Jain, 2012, 

Tamilselvan et al. , 2013). Tamilselvan et al in 2013 reported that vitD3 increased glucose 
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uptake via up-regulating glucose transporters in myotubes (Tamilselvan et al., 2013). Also, 

Manna and coworkers in 2012 found that the active form of vitD3 directly upregulates Glut-4 

expression in 3T3L1 adipocyte cell lines (Manna and Jain, 2012). This effect was accompanied 

by improved insulin sensitivity in adipocytes (Manna and Jain, 2012).      

Other elements of IST are also under the influence of vitD3 (Manna et al. , 2017, 2018). Manna 

et al in 2018 found that vitD3 increases Glut-4 dependent glucose uptake by promoting IRS-1 

phosphorylation in murine C2C12 myotubes (Manna et al., 2018). Also, Manna and coworkers 

in 2017 reported that  vitD3 increased insulin sensitivity by promoting SIRT-1/AMPK 

signaling pathway and inducing Glut-4 localization in the diabetic mice (Manna et al., 2017). 

Moreover, Tamilselvan and coworkers in 2013 showed that calcitriol upregulates IRS in L6 

adipocytes (Tamilselvan et al., 2013). He et al in 2019 found that vitD3 is a potent inducer for 

PI3K/Akt pathway in the diabetic milieu (He et al. , 2019). This effect may explain some 

aspects of the insulin-sensitizing effects of vitD3 (He et al., 2019). Zhou et al in 2008 found 

that the active form of vitD3 improved IST by promoting Akt, IRS-1 and ERK signaling 

pathways (Zhou et al. , 2008). Benetti and colleagues in 2018 demonstrated that vitD3 

supplementation improves insulin signaling pathways in high-fat diet induced T2DM mice 

(Benetti et al. , 2018). It also promotes IRS-1 phosphorylation (Elseweidy et al. , 2017). 

Elseweidy and colleagues in 2017 reported that calcitriol intake in diabetic animals improved 

glucose homeostasis by inducing IRS-1 phosphorylation and promoting IST (Elseweidy et al., 

2017).  

Calcitriol also has interactions with molecular pathways involved in the activation of IST such 

as PPAR3 (Alimirah et al. , 2012, Liu et al. , 2019, Serizawa et al. , 2013). There is evidence 

suggesting that vitD3 may improve IST via PPAR-δ molecular pathway (Dunlop et al. , 2005). 

                                                           
3 Peroxisome Proliferator-activated Receptor  



11 
 

Dunlop et al in 2005 found that human PPAR-δ is a primary target for 1α,25(OH)2D3 and 

activates it (Dunlop et al., 2005). Hoseini and coworkers in 2017 demonstrated that the 

beneficial effects of vitD3 supplementation on glucose homeostasis and insulin sensitivity 

during physical activity are dependent on the activation of PPAR-γ molecular pathway 

(Hoseini et al. , 2017). Parker et al through a cohort study in 2016 found that activity levels of 

Akt and GSK are dependent on the plasma levels of calcitriol in healthy subjects (Parker et al. 

, 2016). They suggest that these main elements of IST work under the influence of calcitriol 

availability which further confirmed the essential roles of vitD3 in glucose homeostasis (Parker 

et al., 2016). In another study by Sciacqua et al in 2014, postprandial glucose tolerance was 

closely dependent on the plasma levels of vitD3 (Sciacqua et al. , 2014).  

 

b) vitD3 and systemic and local Inflammation 

Inflammatory responses have pivotal roles in insulin resistance and DM (Rehman and Akash, 

2016, Saad et al. , 2016). Systemic inflammation negatively modulates insulin signaling 

pathways and reduces insulin sensitivity in peripheral tissues (Rehman and Akash, 2016). Also, 

local inflammatory responses in pancreatic tissues disturb beta-cell function and reduce islets' 

ability for postprandial insulin secretion (Delgadillo-Silva et al. , 2019, Donath et al. , 2009, 

Singh, 2019). Therefore, lowering the levels of inflammatory resulted in improved insulin 

sensitivity (Donath et al., 2009, Kang et al. , 2010).  

Evidence suggests that calcitriol has potent anti-inflammatory effects and reduces systemic 

inflammation (Mousa et al. , 2016, Rodriguez et al. , 2018). For example, Meghil et al in 2019 

reported that vitD3 supplement markedly reduces systemic inflammation in periodontitis 

patients (Meghil et al. , 2019). Also, Pfeffer and coworkers in 2018 demonstrated that vitD3 

exerts anti-inflammatory potentials in human epithelial cells (Pfeffer et al. , 2018). Moreover, 
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some evidence suggested that insulin-sensitizing effects of vitD3 is related to its anti-

inflammatory potentials (Al-Sofiani et al., 2015, Benetti et al., 2018). Benetti et al in 2018 

reported that insulin sensitizing effects of vitD3 is dependent on its anti-inflammatory 

potentials via SCAP4/SREBP5 lipogenic pathway in diabetic mice (Benetti et al., 2018). Al-

Sofiani and coworkers in 2015 conducted a trial study on T2DM participants suggesting vitD3 

improves islets' efficiency by alleviating inflammatory markers (Al-Sofiani et al., 2015). The 

above evidence suggests that vitD3 improves insulin sensitivity at least partly via attenuating 

the inflammatory events (Meghil et al., 2019).  

VitD3 and redox state 

A balanced physiologic redox state is critical for normal insulin sensitivity, beta-cell function 

and glucose homeostasis (Hurrle and Hsu, 2017, Ježek et al. , 2012, Newsholme et al. , 2019). 

It has been well confirmed that oxidative stress; which refers to an imbalance between free 

radical species and antioxidant system potency favor to free radicals; has pivotal roles in the 

pathophysiology of insulin resistance and DM (Newsholme et al., 2019, Tangvarasittichai, 

2015). Oxidative stress induces insulin resistance via a variety of molecular mechanisms such 

as β-cell dysfunction, mitochondrial dysfunction, inflammatory responses, down-regulating 

IST elements and thereby impairing the normal insulin signaling pathways (Bloch-Damti and 

Bashan, 2005, Evans et al. , 2003, Keane et al. , 2015, Rains and Jain, 2011, Robertson, 2006, 

Talior et al. , 2003, Tangvarasittichai, 2015). Consequently, using antioxidative agents to 

prevent oxidative could be potentially beneficial in rising the insulin sensitivity in peripheral 

tissues (Yaribeygi et al. , 2019a, Yaribeygi et al. , 2018, Yaribeygi et al., 2019c).    

There is recent evidence on the antioxidative properties of calcitriol (Pfeffer et al., 2018, 

Sepidarkish et al. , 2019, Wimalawansa, 2019). It suggests that calcitriol has potent modulatory 

                                                           
4 SREBP cleavage activating protein 
5 Sterol regulatory element binding protein-1c 
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effects on the redox state and can normalize it (Garcia-Bailo et al. , 2011, George et al. , 2012, 

Manna et al., 2017, Salum et al. , 2013). Salum et al. (Manna et al., 2017) demonstrated that 

oral administration of vitD3 markedly improves glucose homeostasis in diabetic rats (Salum et 

al., 2013). They found that glucose-lowering effects of vitD3 are associated with its 

antioxidative properties since it potentiated antioxidative capacity in the serum and reduced 

oxidative damages in these animals (Salum et al., 2013). Manna and colleagues in 2017 

demonstrated that calcitriol improved insulin sensitivity by alleviating oxidative stress in high 

fat diet induced diabetic mice (Manna et al., 2017). They found that readjusting the redox state 

by calcitriol, promoted SIRT-16/AMPK signaling and increased Glut-4 localization in the 

adipocytes (Manna et al., 2017). In a randomized clinical trial in 2014, Asemi et al demonstrate 

that vitD3 supplement improved the metabolic profile and glucose homeostasis by lowering 

oxidative stress and MDA7 levels in women with gestational diabetes (Asemi et al. , 2014). In 

another clinical study by Gradinaru and coworkers in 2013, it has suggested that in elderly 

diabetic patients, vitD3 has inverse relationships with oxidative stress markers such as oxLDL8 

and AOPPs9 (Gradinaru et al. , 2012). This findings strongly suggest that some aspects of 

antidiabetic effects of vitD3 may be related to its antioxidative potentials which prevent 

oxidative stress-induced impairment in IST (Gradinaru et al., 2012, Manna et al., 2017) (Asemi 

et al., 2014).  

  

                                                           
6 Sirtuin-1  
7 Malondialdehyde  
8 Oxidized LDL 
9 advanced oxidation protein products  
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Treatment  Tissue  
Type of 

study  
Effects  Ref.  

Calcitriol/24 h L6 myotube cells In vitro Up-regulates Glut-4 
(Tamilselvan 

et al., 2013) 

Calcitriol/24 h 
3T3L1 

Adipocytes 
In vitro Up-regulates Glut-4 

(Manna and 

Jain, 2012) 

Calcitriol/2 h 
murine C2C12 

myoblasts  
In vitro  

Induces Glut-4 

expression  

(Manna et 

al., 2018) 

Colicalciferol/8 

weeks 

Adipose tissue of 

diabetic male 

C57BL/6J mice  

In vivo 

Alleviates oxidative 

stress, promotes AMPK 

signaling pathway and 

Glut-4 localization 

(Manna et 

al., 2017) 

vitD3/12 weeks 
Testicular tissues 

of diabetic rats 
In vivo 

Induces PI3K/Akt 

signaling  

(He et al., 

2019) 

vitD3/2 months 

Myocytes of 

high-fed diet 

induced T2DM 

mice 

In vivo 
Improves insulin 

signaling pathways  

(Benetti et 

al., 2018) 

- C2C12 myotubes  In vitro  

Improves IST by 

promoting Akt, IRS-1 

and ERK signaling 

pathways 

(Zhou et al., 

2008) 

vitD3/6 weeks Rats with T2DM  In vivo  
Promotes IRS-1 

phosphorylation  

(Elseweidy 

et al., 2017) 

vitD3/500 

IU/kg/10 weeks 

STZ-induced 

diabetic rats 
In vivo 

Alleviate oxidative 

damage and improve 

glucose homeostasis  

(Salum et 

al., 2013) 

Table 1: Experimental evidence confirming vitD3 induces insulin sensitivity  

 

Treatment Population of study Effects Ref. 

5000 IU/day/6 

months 

96 prediabetic 

patients  

Increased peripheral insulin 

sensitivity and β-cell function 

(Lemieux et 

al., 2019) 

5000 IU/day/12 

weeks  

22 patients with 

T2DM 

Improves beta-cell function 

accompany with lowering 

inflammatory cytokines   

(Al-Sofiani 

et al., 2015) 

- 712 healthy subjects  

Plasma levels of vitD3 is 

correlated to insulin sensitivity 

and islet function  

(Kayaniyil 

et al. , 2010) 

50,000 IU/week/8 

weeks  

100 patients with 

T2DM 
Improves insulin sensitivity  

(Talaei et al. 

, 2013) 

10,000 IU/daily/4 

weeks 

8 prediabetic 

subjects 

Improves FBS control and insulin 

sensitivity  

(Nazarian et 

al. , 2011) 

131 IU/3 days 
20 non-diabetic 

paraplegic patients  

Improves insulin sensitivity and 

glucose profile  

(Beal et al. , 

2018) 

- 
300 hypertensive 

non-diabetic patients  

Postprandial glucose tolerance is 

related to plasma levels of vitD3  

(Sciacqua et 

al., 2014) 



15 
 

1200 IU/day/16 

weeks  

130 prediabetic 

subjects  
Improves insulin sensitivity  

(Oosterwerff 

et al. , 2014) 

100,000 IU/2 

week/12 weeks 

200 patients with 

T2DM 
Improves insulin sensitivity  

(Hanafy and 

Elkatawy, 

2018) 

- 17 healthy subjects 

increased GSK-3 and Akt and 

induce insulin sensitivity in 

adipocytes  

(Parker et 

al., 2016) 

50,000 IU/3 

week/6 weeks  

25 women with 

gestational diabetes  

Improved metabolic profile and 

glucose homeostasis by lowering 

oxidative stress and MDA levels  

(Asemi et 

al., 2014) 

Table 2: Clinical trial evidence about insulin-sensitizing effects of calcitriol  

 

3. Other possible pathways  

Additionally, other pathways may be involved in vitD3-induced insulin sensitivity (Elseweidy 

et al., 2017). For instance, Elseweidy et al in 2017 provided evidence suggesting that vitD3 

may exerts regulatory roles on insulin degrading enzyme and suppress glucagon secretion 

(Elseweidy et al., 2017). They demonstrated that vitD3 alleviates insulin resistance by reducing 

the insulin degrading enzyme activity in high-fed diet diabetic rats (Elseweidy et al., 2017). 

More involved molecular mechanisms may be elucidated in the future. 
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Molecular mechanism  Effects  Ref.  

β-cell function  

Attenuates pathophysiologic 

mechanisms involved in beta-

cell dysfunction and improve 

islets' efficiency  

(Al-Sofiani et al., 2015, Infante et 

al., 2019, Lemieux et al., 2019) 

Peripheral 

insulin 

sensitivity  

Insulin Signal 

Transduction 

Up-regulates IST elements and 

promotes their functions such 

as PI3K/Akt and IRS-1 

pathways and Glut-4 

expression/localization, 

induces PPAR-δ pathways  

(Benetti et al., 2018, Dunlop et al., 

2005, Elseweidy et al., 2017, 

Hoseini et al., 2017, Manna et al., 

2017, 2018, Zhou et al., 2008) 

Systemic/local 

Inflammation 

Ameliorates inflammatory 

responses and inhibits 

inflammation dependent insulin 

resistance  

(Al-Sofiani et al., 2015, Benetti et 

al., 2018, Meghil et al., 2019, Mousa 

et al., 2016, Pfeffer et al., 2018, 

Rodriguez et al., 2018) 

Redox state  

Normalizes the redox state, 

prevent of oxidative stress-

induced insulin resistance and 

thereby, promotes islet' 

function and insulin signaling 

pathways as SIRT-1/AMPK 

and Glut-4 localization 

(Asemi et al., 2014, Gradinaru et al., 

2012, Manna et al., 2017) 

Table 3: Molecular mechanisms by which vitD3 induces insulin sensitivity  

 

 

Conclusion  

Calcitriol or activated vitamin D, which was initially recognized as an important component of 

ion homeostasis and bone metabolism regulator. But further studies demonstrated that it has 

pleiotropic potentials in a variety of other molecular pathways and cellular signalings. 

Calcitriol is now considered as a potent nuclear factor regulating transcriptional and post-

transcriptional processes of different genes. Emerging evidence suggests that the active form 

of vitamin D is also involved in glucose homeostasis and thereby contributes to the 

pathophysiology of insulin resistance and DM. but the exact mechanism is not elucidated yet. 

In this current review, we conclude that vitamin D improves glucose homeostasis and promote 

insulin sensitivity via at least two distinct molecular pathways. Calcitriol improves glucose 

homeostasis by promoting beta-cell function by ameliorating deleterious molecular 

mechanisms involved in the pathophysiology of beta-cell dysfunction. Also, it can increase 

peripheral insulin sensitivity by at least three separate pathways including lowering of the 

oxidative damages, suppressing inflammatory responses and by promoting IST expression and 

activity. Findings of preliminary clinical studies are in concordance with pre-clinical studies. 

However, more clinical studies are needed to confirm the beneficial role of vitamin D in 

diabetes mellitus.  
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