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Abstract  

Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in females of the              

reproductive age. PCOS is commonly manifested as ovulatory dysfunction, clinical and           

biochemical excess androgen level, and polycystic ovaries. Metabolic sequelae associated          

with PCOS, including insulin resistance (IR), type 2 diabetes (T2DM), obesity and increased             

cardiometabolic risk. The underlying pathology of PCOS is not fully understood with various             

genetic and environmental factors have been proposed. MicroRNAs (miRNAs), are          

endogenously produced, small non-coding, single-stranded RNAs that capable of regulating          

gene expression at the post-transcriptional level. Altered miRNAs expression has been           

associated with various disorders, including T2DM, IR, lipid disorder, infertility,          

atherosclerosis, endometriosis, and cancer. 

Given that PCOS also present with similar features, there is an increasing interest to              

investigate the role of miRNAs in the diagnosis and management of PCOS. In recent years,               

studies have demonstrated that miRNAs are present in various body fluids, including            

follicular fluid of women with PCOS. Therefore, it may act as a potential biomarker and               

could serve as a novel therapeutic target for the diagnosis and treatment of PCOS. This               

review aims to summarise the up to date research on the relation between miRNAs and               

PCOS and explore its potential role in the diagnosis and the management of PCOS. 

Keywords: polycystic ovary syndrome, PCOS, microRNA, miRNAs, biomarkers, T2DM,         

infertility, follicular development, lipid metabolism, hyperandrogenism. 
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Introduction  

Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in women of             

reproductive age with a prevalence of approximately 10 - 20 % (1). It is a heterogeneous                

disorder with different phenotypes and characterised by clinical and biochemical evidence           

of hyperandrogenism, menstrual irregularities and polycystic ovarian morphology (2). The          

Rotterdam 2003 criteria are currently acceptable for the diagnosis of PCOS, where two out              

of the following three criteria are satisfied: anovulation/oligoovulation, clinical and          

biochemical sign of hyperandrogenism and polycystic ovaries, after excluding other          

aetiologies such as congenital adrenal hyperplasia and androgen-secreting tumours (3).          

PCOS also has its metabolic consequences such as insulin resistance (IR), hyperlipidaemia,            

obesity, oxidative stress, type 2 diabetes mellitus (T2DM) and increased risk of            

cardiovascular disease (CVD) (4). It also linked to an increase in pregnancy-related            

complications such as gestational diabetes, preterm birth, antepartum haemorrhage and          

pregnancy-induced hypertension (5). The aetiology of PCOS is unclear; however,          

environmental and genetic factors have been proposed as a potential cause of PCOS (6). In               

recent years, the association between regulatory miRNAs and various diseases has been an             

area of intensive research.  
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MicroRNAs (miRNAs) are a new class of endogenous, non-coding, single-stranded RNA           

molecules with 20-25 nucleotides that regulate post-transcriptional gene expression by          

binding to the 3' untranslated location of the target messenger RNA (mRNA), thus, lead to               

the inhibition of mRNA expression and block post-transcriptional protein translation (7, 8).            

miRNAs are widely presented in the human body and can be isolated from urine, plasma,               

semen and saliva or might be encapsulated in microvesicles (9-12). They have also been              

expressed in different organs, including the liver, adipose tissue and muscle (13)—figure 1.             

A piece of accumulative evidence has shown that miRNAs regulate various critical regulatory             

biological functions including cell growth and development, apoptosis, metabolism, stress          

response and hematopoietic differentiation (8, 14). A single miRNA has the potential to             

modulate the function and expression of various target genes, and amplification or            

inhibition of miRNA signal via the regulatory feedback mechanism may drive to a significant              

alteration of miRNA expression which contributes to different disease including ovarian           

cancer, endometriosis, cardiovascular disease and inadequate ovarian response (15-17).         

There is also growing evidence demonstrating the influence of miRNAs in the pathogenesis             

of diabetes mellitus, and they could potentially be a novel biomarker for diabetes (18).              

There is also data showing differential expression of circulating miRNAs in women with and              

without PCOS (19). Therefore, it has been proposed to be useful as a diagnostic biomarker               

or a potential therapeutic target for PCOS. However, our understanding of the exact             

relationship between miRNAs and PCOS is still preliminary, and the potential role of miRNAs              

in the diagnosis and the management of PCOS is yet to be clarified.  
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In line with these considerations, this review was conducted to summarise the existing data              

to establish the potential role of some miRNAs as a potential clinical biomarker and              

therapeutic targets for the diagnosis and the management of PCOS (Table 1). 

 

 

 

 

 miRNAs as a potential novel clinical biomarker for PCOS  

 miRNAs and ovarian dysfunction in PCOS  

In recent years, many attempts have been made trying to understand the exact mechanism              

of anovulation and abnormal folliculogenesis in women with PCOS. As a result, Increased             

plasm level of luteinising hormone (LH) and androgen with normal or low levels of the               

follicular stimulating hormone (FSH) has been suggested (20). Furthermore, abnormal          

steroidogenesis, excessive expression of anti-Mullerian hormone (AMH) and impaired         

follicular apoptosis have also been reported (21). 

MiRNAs increase expression of proliferating cell nuclear antigen protein (PCNA), a marker             

of proliferation (22). They also regulate follicular granulosa cells (FGCs) by modulating            

expression at the target organ (23), and they are differentially expressed amongst different             

follicular sizes during follicular atresia (24, 25). Among the most common miRNAs altered             

during follicular atresia is miR-1275, which is also known to regulate FGCs apoptosis (26). In               

several human studies, a vast array of miRNAs has been explored to determine their              
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functions in follicular atresia and FGCs apoptosis. The miR-15a has been found promotes             

steroidogenesis by increasing progesterone and testosterone synthesis (27). Figure 1. The           

miR-23a and miR-27a stimulate FGCs apoptosis by targeting SMAD5 protein, while miR-93            

promotes proliferation by targeting cyclin-dependent kinase inhibitor 1A (CDKN1A) protein          

(28-30). The Let-7 family of miRNAs which regulates cell proliferation, differentiation and            

tumour suppression was highly expressed among animal species (31). Further study has            

reported the transforming growth factorβ receptor (TGFBR), and the mitogenic-activated           

protein kinase 1 (MAP3K1) as a potential target for miR-let-7 and the suppression of              

MAP3K1 induces apoptosis (32). The miR-Let-7c, miR-23A, miR-27a and miR-22-3p were also            

expressed in patients with premature ovarian failure compared to the healthy population            

(33). Most recent studies have shown abnormal expression of miRNAs are often seen with              

follicular maturation in PCOS (14, 34, 35).  

In a study of rat model with PCOS exposed to dihydrotestosterone (DHT) found that 72               

miRNA was upregulated and the 17 miRNA were downregulated in DHT- exposed ovaries             

compared to control ovaries, with miR-32, miR-21, miR-182, miR-183, miR-184 and miR-96            

were primarily downregulated (36). Furthermore, most of these miRNAs were extensively           

expressed in granulosa cells (GCs) of the ovary compared to other ovarian cells. For              

example, miRNA-376 associated with primordial follicular development and it influences          

GCs proliferation through miRNA-376a, which directly binds to the targeted location 3'UTR            

mRNA of the PCNA (37). Table1. However, further study showed that increased expression             

of miRNA-143 inhibits primordial folliculogenesis by suppressing GCs proliferation (38).          

miR-224 also has been expressed in GCs of the ovaries; it induces GCs proliferation via               
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transforming growth factor-β (TGF-β), and induction of GCs proliferation mediated          

through TGF-β1 receptor facilitated by miR-224 upregulation (39). 

Furthermore, miR-145 found to target the transforming growth factor β 2 (TGF-β2)            

receptor and hence initiates and maintains the primordial follicular development (34).           

miR-224 has also been recognised targeting Pentraxin 3 (PTX3), a protein linked to cumulus              

expansion (40). In PCOS, a miRNA-PTX3 expression associated with the fertilisation process            

and therefore; it could potentially be used as a biomarker to assess the quality of oocyte                

(41). miR-182 and miR-15a play an essential role in the physiology of GCs of the ovaries by                 

regulating steroidogenesis, induce proliferation and apoptosis; however, their levels were          

significantly low in the ovarian cell of PCOS rat model (27, 36).Figure 1. Thus, the expression                

of these miRNAs might influence the timing of development and maturation of oocyte by              

targeting the gonadotropin-releasing hormone (GnRH) pathway (42). Therefore, these         

findings outlined the importance of miRNAs for controlling the process of proliferation and             

apoptosis of the ovarian GCs and subsequently folliculogenesis, which could be a potential             

target to assess for ovulation in PCOS.  

miRNAs and follicular fluid (FF) in PCOS 

Follicular fluid (FF) provides a suitable environment for oocyte development and           

maturation. Its proximity to the oocytes allows for efficient exchange of components            

between blood, granulosa and theca cells (TCs) (43). Additionally, FF contains various            

hormones such as androgen, oestrogen, LH, FSH, growth hormone, TGF-β, anti-Mullerian           

hormone (AMH), activin and metabolic and secretory products of the oocyte (44). The             

collection of FF is relatively easy during harvesting oocyte for assisted fertilisation, i.e.             
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in-vitro fertilisation (IVF). Thus, it serves as a less invasive procedure for obtaining miRNAs              

and to assessment for fertility outcomes. 

Furthermore, analysing FF compositions may also indicate the quality of oocyte and the             

functional status of GCs and CTs (45). The recent discovery of miRNAs in the human body                

has inspired researchers to study their functions in various biological processes. In a study              

by Butler et al., has detected 176 miRNAs, of which 29 were differentially expressed in the                

FF of women with PCOS and normal control women (46). As a result, miR-382-5p was               

correlated positively with age and free androgen index (FAI), miR-199b-5p linked with AMH             

and miR-127-3p was associated with insulin resistance, and further analysis revealed 12            

miRNAs correlated with reproductive pathways (46). In the previous study by Sathyapalan et             

al. has described the potential diagnostic significance of miR-93 as a novel biomarker for the               

diagnosis of PCOS after it was found relatively higher in women with PCOS compared to               

women without PCOS (47). A further study discovered over 100 differentially expressed            

miRNAs that potentially regulate steroidogenesis in FF of women with PCOS with two             

miRNAs (miR-132 and miR-320) has significantly reduced in FF of PCOS women (43). 

Moreover, downregulation of miR-29a, miR-24-3p and miR-574-3p were reported in women           

with PCOS compared with women without PCOS, and serum levels of total and free              

androgen were correlated positively with miR-518f-3p in subjects with PCOS (48). These            

alterations in miRNAs profiles might facilitate the phenotypic stratification in women with            

PCOS. The combination of miR-30a, Let-7b and miR-140 expression has a sensitivity of 70 %               

and specificity of over 83 % in discriminating between the normal ovarian reserve and PCOS,               

particularly during assisted fertilisation (49). Thus, this could potentially provide a novel            

biomarker to predict outcomes and to facilitate a personalised level of medical care for              
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women with PCOS. In a study in which 27 miRNAs were differentially expressed in women               

with PCOS, miR-92a and miR-92b were significantly downregulated (50). Another study           

reported expression of 235 miRNAs of which 29 miRNAs were differentially expressed in             

PCOS and control group, but miR-32, miR-34c, miR-135a, miR-18b and miR-9 have            

demonstrated a significantly increased expression in PCOS group (51). To sum, these            

findings confirm that there are differentially expressed miRNAs in the FF of women with              

PCOS. Thus, it is imperative to propose that examining different miRNAs present in the FF of                

women with PCOS may potentially provide a novel biomarker for the diagnosis of PCOS.              

Furthermore, it might aid with the classification of different phenotypes of PCOS. Moreover,             

the environment of FF also contains various hormones and metabolic products; adjusting            

this microenvironment could improve the reproductive outcomes in PCOS.  

 

 miRNAs and fertility in PCOS  

The role of miRNAs in the level of fertility has recently been studied extensively, particularly               

after the discovery of Dicer 1 a ribonuclease III enzyme essential for miRNAs production              

(52). The Knock-out of this enzyme in mice resulted in infertility by reducing the rate of                

ovulation and mitogenic progression due to defective spindle arrangement in an animal            

model (53). However, in a human study, blastocytes extraction from women with PCOS has              

shown significantly low expression of hsa-miR-19a, hsa-miR-19b, hsa-miR-24 and         

hsa-miR-93 compared to healthy control. Figure 1. Furthermore, heatmap analysis for the            

expression of these miRNAs showed expression of miR-19a and its target gene ARIH2             

(essential for cell differentiation) has significantly upregulated in women with PCOS           

compared to women without PCOS. 
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Similarly, NFAT5 and KHSRP genes targeted by miR-24 and encoding transcriptional and            

decaying factors for miRNAs were both upregulated in women with PCOS with a significant              

decrease in miR-24 expression (54). miR-290-295 have a pivotal role in the embryogenesis             

as demonstrated in a cluster of mutant mouse embryos, in the miR-290-295 deficient male              

mutant mice the fertility was restored later during their development, unlike the female             

mutant mice which remained infertile, indicating the role of defective miR-290-295 on the             

GCs (55). Moreover, transfection of GCs with miR-27a, miR-322 and Let-7c inhibitor has led              

to increased oocyte follicular maturation of mouse ovaries (56). 

Maternal age is another major factor for infertility. In a study, various differentially              

expressed miRNAs were expressed in women above the age of 40s compared to women in               

their 20s and miR-93 was exceptionally expressed only in blastocytes with chromosomal            

abnormalities in older women (57), this is a clear indication that maternal ageing is not only                

a risk factor for infertility but also associated with modification of miRNAs profiles (58).  

miRNAs and steroidogenesis in PCOS 

The reproductive cycle of the ovaries is coordinated by hormones released from the             

hypothalamic-pituitary-ovarian axis. Alterations in this pathway lead to abnormal hormone          

production, which has been observed in women with PCOS (59). Excess androgen level is a               

common presenting feature in PCOS, and it may be due to overstimulation of the ovarian               

TCs by LH to synthesise androgen or due to defects of androgen receptors at the target                

organs level (60). The majority of testosterone is bound to SHBG and albumin with the only                

small fraction is circulating freely as bioactive testosterone. Women with PCOS have low             

SHBG levels which increase the bioavailable testosterone level (61). There is a considerable             

amount of evidence proposed that excess androgen is the main drive for ovulatory and              
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metabolic dysfunction seen in PCOS (62). It facilitates visceral adiposity and IR with             

subsequent increase in ovarian androgen production and commonly present as hirsutism,           

acne and menstrual disturbances (63). Even though high androgen is a pathological feature             

of PCOS, recent evidence suggested that testosterone, dihydrotestosterone (DHT) and          

androstenedione (A4) play a vital role on ovulation by facilitating the follicular development             

and maturation (64). Androgen hormones apply their function by binding into the androgen             

receptor (AR) at their target tissues, and increased expression of AR has been shown in               

women with PCOS (65). AR can be expressed in various cells; however, it is predominantly               

found in the granulosa cells (GCs) of the growing ovarian follicle (66). The effects of miRNAs                

on steroidogenesis from the ovarian cells have been explored across a variety of the living               

animal species. 

The transfection of miR-24 resulted in a decreased level of oestradiol secretion. Conversely,             

overexpression of miR-520c-3p, miR-132 and miR-320 derived to increased oestradiol          

release and the transfection of miR-483-5p, miR-24 and miR-193b associated with           

decreased progesterone secretion (43). miR-513a-3p was negatively correlated with the          

luteinising hormone and gonadotropin receptor (LHCGR) (67). Furthermore, miR-107         

positively associated with testosterone secretion; on the other hand, miR-146a has           

significantly reduced testosterone secretion (19, 68). miR-103, miR-155 and miR-21 were           

also shown to correlate positively with free testosterone levels in women with PCOS (69).              

miR-320, miR-518 and miR-29a were positively associated with an increased level of serum             

testosterone, Figure 1. while miR-151 was negatively linked to serum testosterone (70).            

Recently, a study suggested that miR-155 and miR-29a are negatively associated with serum             

A4 in women with PCOS (71).  
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The synthesis of steroid hormones depends on different genes which regulate the signalling             

pathways, androgen metabolism and lipid transport. At the same time, LH and FSH control              

the androgen production and the testosterone conversion respectively by acting directly on            

the GCs of the ovarian follicles. Key enzymes and genes such as CYP19, CYP11A, StAR, CYP17                

CYP19A1 and 3-b HSD are involved in the steroid hormone production, and oestrogen             

synthesis depends on aromatase enzyme which regulated by CYP19 A1 gene (60). 

Overexpression of miR-181a and miR-378 downregulate aromatase enzyme and hence          

reduce oestrogen synthesis in GCs (72-74). Inversely, many miRNAs have shown to correlate             

positively with oestradiol synthesis. For instance, overexpression of miR-133b increase          

oestradiol synthesis with a simultaneous increase in CYP19A1 in the GCs of FSH-stimulated             

mice by targeting forkhead box L2 (fox12) (75, 76).Figure1. On the other hand,             

overexpression of miR-224 derived to increased oestrogen release by targeting SMAD4 of            

mouse GCs (39). miR-193a-5p and miR-199a-3p are negatively correlated with testosterone           

level and positively linked with SHBG and oestradiol in women with PCOS (69). In-depth              

understanding of the correlation between miRNAs and the synthesis of steroid hormones            

will potentially aid the diagnosis of PCOS and will help predict its metabolic consequences.  

miRNAs and the metabolic consequences of the PCOS  

miRNAs and insulin resistance in PCOS 

Insulin resistance (IR) is a common feature of PCOS with a prevalence of approximately 70 %                

of the cases have IR (77). It plays a significant role in the pathogenesis of PCOS and                 

associated with increased risk of metabolic syndrome, impaired glucose tolerance,          

dyslipidaemia, T2DM and cardiovascular disorders (78). Hyperinsulinemia is capable of          
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stimulating steroidogenesis and increase ovarian androgen secretion from the theca cells           

(TCs) mediated by the insulin growth factor-1 (IGF-1) receptors; high insulin level also             

potentiates LH effect on TCs to cause excess androgen (77). Figure2. IR is contributing to               

high androgen level by increased activity of CYP17 enzyme with synergetic action of LH on               

TCs. It increases cyclic adenosine monophosphate (cAMP) concentration, reduces SHBG and           

subsequent increase the free testosterone levels (79, 80). In an animal study by Ling et al.,                

3T3-L1 adipocyte cells were transformed into IR cells by administering high levels of insulin              

and glucose after a significant increase in expression of miR-320 (81). However, insulin             

sensitivity was restored shortly after treatment with anti-miR-320 oligos which alleviated IR            

by upregulating glucose transporter 4 (GLUT4) expression and improving insulin-mediated          

glucose uptake (82). miR-320 has been confirmed to exist in abundance in FF of women               

with PCOS, advocating that it could be a target for enhancing insulin sensitivity (43, 81). A                

study found that expression of miR-194,miR-193b and miR-122 was upregulated in women            

with PCOS particularly those with impaired glucose by targeting different signalling           

pathways, including insulin signalling pathway, glycometabolism pathway and follicular         

development pathway (83). The role of miRNAs in regulating GLUT4 has been recently             

investigated. Expression of miR-93 showed a strong correlation between GLUT4 and IR in             

adipose tissue of women with PCOS, and activating miR-93 downregulates GLUT4 by            

targeting GLUT4 3'UTR; however, suppressing miR-93 activity facilitated GLUT4 expression          

(84). Overexpression of miR-33b-5p was detected in the ovarian cells of PCOS rat model              

with IR, and it was negatively correlated with GLUT4, sterol regulatory element-binding            

protein 1 (SREBF1) and high mobility group A2 (HMGA2) expression. These findings            

demonstrated that miR-33b-5p plays a vital role in the development of IR in patients with               

PCOS through inhibition of GLUT4 expression. Additionally, it also has the potential to adjust              
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the expression of various protein cascades in insulin signalling pathways (85). For example,             

the expression of miR-143 inhibits insulin-regulated AKT-kinase activity a key enzyme in the             

insulin signalling pathway (86). Many miRNAs such as miR-126, miR-29, miR-1 and miR-19a             

have been proposed to regulate PI3K, which mediate insulin-facilitated glucose uptake           

(86).Figure2. 

Furthermore, the miR-483-5p reduces IR and facilitates cumulous cell proliferation by           

activating PI3K/AKT (87). In general, the expression of miRNAs plays an essential role in              

regulating glucose metabolism, insulin signalling pathway and the pathogenesis of IR in            

women with PCOS by determining the expression of GLUT4, proteins and enzymes of the              

glucose metabolism.  

miRNAs and lipid disorders in PCOS 

PCOS also associated with dyslipidaemia with around 70 % of women with PCOS have some               

sort of abnormal lipid profiles manifesting as high triglycerides, elevated low-density           

lipoprotein cholesterol (LDL-C) and decreased high-density lipoprotein cholesterol (HDL-C)         

levels (88, 89). These high lipid profiles are atherogenic and strongly associated with a high               

risk of CVD; therefore, women with PCOS are at increased risk of cardiovascular morbidities              

(90). Obesity also has a detrimental effect on the metabolic aspects of PCOS with              

approximately around 88 % of women with PCOS, either overweight or obese (89).  

It is well established that miRNAs have significant effects on lipid metabolism and             

cholesterol homeostasis. The miR-33 has been shown to target adenosine triphosphate           

(ATP) binding cascade transporter A1 (ABCA1) an important regulator which increases the            

level of HDL- C and facilitates cholesterol disposal by the liver (91-93). Moreover, miR-33              
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has also shown to regulates ABCG1, cholesterol 7-α hydroxylase (CYP7A1) and ABCB11            

genes involved in reverse cholesterol transport (RCT) (94, 95). Figure 1. The miR-122 and              

miR-30c play an essential role in controlling LDL-C by adjusting the cholesterol biosynthesis             

and VLDL-C secretion. Even more, they decrease Apo B lipoproteins by targeting the             

microsomal triglyceride transferase protein (MTP) (96). Targeting miR-122 in an animal           

model has demonstrated a significant reduction in cholesterol and triglyceride levels.           

However, this effect was overshadowed by the increased risk of hepatic cancer and fibrosis              

associated with miR-122 deletion (97)—figure 1. Besides, in animal model inhibition of            

miR-33 has shown to modify VLDL-C and triglyceride biosynthesis, and anti-miR-33 has            

significantly reduced VLDL-C and triglyceride (98). Expression of miR-33 shown to has a             

control on ABCA1 and ABCG1 through activation of SREBP-2, and inhibition of miR-33             

increases the hepatic expression of ABCA1 and subsequently increases HDL levels (91, 92).             

Furthermore, several miRNAs have demonstrated control over LDL-C metabolism. For          

instance, inhibition of miR-128-1, miR-185 and miR-148a has markedly reduced LDL-C levels            

(99-101). Furthermore, the expression of miR-148a has shown to alter the blood levels of              

LDL-C by targeting 3’UTR of the LDLR and other genes vital for lipid metabolisms such as                

ABCA1, AMPK, PGC1α and SIK1. Additionally, miR-148a expression increases HDL-C levels           

by regulating ABCA1 expression in the liver (99, 100, 102). miR-130 and miR-143 are              

strongly linked to adipogenesis, the expression of miR-143 is upregulated in the obese             

animal model, and inhibition of miR-143 reduced insulin activated AKT (103). Moreover,            

overexpression of miR-130a inhibits adipocytes differentiation by suppressing PPAR-γ         

activity (104). Conversely, expression of miR-375 shown to induce adipogenesis by           

increasing PPAR-γ, C/EBP-α and promoting 3T3-L1 (105). A study found that the            

expression of miR-103 and miR-27b is significantly higher in women with PCOS compared to              

15 
 



women without PCOS (21). The expression of miR-23a and miR-23b has been positively             

correlated with body mass index (BMI) despite its lower level in women with PCOS (106).               

However, on the other hand, miR-199a-5p and miR-199a-3p were negatively correlated with            

waist/hip ratio and BMI (69). These findings indicated the strong association between            

miRNAs, obesity and dyslipidaemia and laid down its potentiality as a therapeutic target in              

the management of the metabolic aspects of PCOS.  

miRNAs as a potential therapeutic target in PCOS  

According to the current guidelines, strategies for management of PCOS are merely focused             

on alleviating symptoms and improve the prognostic outcomes. Various pharmacological          

approaches are used including insulin sensitising agents which enhance the insulin           

sensitivity and subsequently reduce IR, fertility treatment such as letrozole and clomiphene            

citrate to induce ovulation, anti-androgen therapies for the treatment of high           

androgen-related symptoms (i.e. hirsutism and acne) and oral contraceptives to regulate the            

menstrual cycle. Insulin resistance (IR) is a main pathological feature of PCOS and improving              

insulin sensitivity might facilitate glucose metabolism, reduces androgen levels and          

augments fertility.  

Metformin is a drug that has been used for decades in the management of PCOS. It                

improves insulin sensitivity, impaired glucose tolerance (IGT) and consequently reduces          

androgen levels in women with PCOS (107, 108). Even though, its effect on induction of               

ovulation and improving fertility in women with PCOS still debatable, there is a considerable              

amount of evidence showed it has a significant impact in improving the rate of ovulation               

and the outcome of pregnancy (109-112). Recently, miRNAs have also attracted           

considerable interest as a potential target for therapeutic and prognosis of PCOS. 
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In a study; metformin administration decreased the expression of the pancreatic cancer             

stem cells (CSC) markers by increases the expression of miR-26a (113). Furthermore,            

metformin also downregulates miR-221 and miR-222 that promote intimal thickness in           

patients with T2DM (114).Figure1. Even more, evidence suggests that treatment with           

metformin upregulates DICER1 and enhances the stability of DICER1 mRNA and permitting            

DICER1 to accumulate, which may offer a new therapeutic approach for age-related health             

problems (115). Recently, the incretins-based treatment, including glucagon-like peptide 1          

agonist receptor agonist (GLP-1 RA) and dipeptidyl peptidase-4 (DPP-4) inhibitors, have           

inspired researcher to examine its potential benefits for managing the metabolic aspect of             

PCOS. A recent study has demonstrated that overexpression of miR-155-5p and miR-33            

stimulate insulin secretion by increasing the expression of GLP-1 on the β-cells of the              

pancreas (116). On the other hand, miR-197, miR-6356, miR-1197-3p, miR-875-5P and           

miR-6763 inhibit the incretin expression and therefore, reduce insulin secretion (117).           

GLP-1 RA increases the expression of miR-27a, miR-192, miR-132 but reduces miR-375 and             

miR-23 expression, which has a significant glycaemic effect by stimulating insulin secretion            

and thus, lowering blood glucose (117). Therefore, with the currently growing evidence on             

incretins-based therapies for T2DM management, and the newly emerging evidence about           

its influence on miRNAs expression. The incretins-miRNAs pathway might be a potential            

therapeutic target for PCOS; however, it is still a fertile ground for further scientific              

research. 

The metabolic comorbidities associated with PCOS are mostly due to the vicious cycle              

between IR and high androgen levels. Therefore, the treatment approach targeting excess            

androgen levels can significantly improve the clinical manifestations associated with PCOS.           
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Anti-androgen therapies are used to treat symptoms of high androgen levels, such as             

hirsutism and acne. miR-212 and miR-199 have shown to modulate androgen receptor (AR)             

and enhances its production by targeting CYP19A1(118). Furthermore, miR-155 is          

correlated negatively with A4 concentration (71). miR-838-p3, miR-9563a-p3 and         

miR-9563-p5 are targeting ACO32, GDL73 and MFPA a transcript that regulate the            

long-chain fatty acid synthesis, lipid transport and metabolism (119). 

Additionally, miR-27b also plays an essential role in regulating fatty acid and cholesterol             

metabolism (102), and miR-155 has a significant role in monitoring the effectiveness of             

anti-androgen therapy (71). These potential effects of miRNAs on androgen hormone might            

have a substantial role in improving PCOS related symptoms by augmenting anti-androgen            

treatments. 

Conclusion and future direction  

In conclusion, the diagnosis and the treatment of PCOS have emerged as one of the most                

significant challenges faced by clinicians and healthcare professionals. Over the last few            

years, several promising studies have been focused on the characterisation and           

identification of various miRNAs. Some PCOS-associated miRNAs are abundantly expressed          

in the ovaries, skeletal muscles, adipose tissues, and the pancreas. They regulate the             

follicular development and maturation, steroid hormone synthesis, adipogenesis, insulin         

signalling pathway. Given all these, miRNAs could potentially be clinical biomarkers for the             

diagnosis of PCOS and a therapeutic target in the treatment of PCOS. The potential miRNAs               

based therapeutic options will provide a new horizon and a compelling alternative for the              

treatment of PCOS and its related metabolic complications.  
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Limitation of miRNAs applied in clinical practice 

There are apparent promises, hopes, enthusiasm and significant efforts to promote           

miRNAs-based products. However, despite the advances in the diagnostic field and the            

thousands of scientific research in this area, miRNAs as a potential diagnostic tool is still in                

their infancy. On the other hands, despite the potentials, miRNAs-based therapeutics are            

yet to be developed. Therefore, the development of commercially available miRNAs-based           

diagnostics and therapeutic tools is a long way to go. 
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Table1: miRNAs detected in PCOS and their proposed functions 

miRNAs Detected in tissues Proposed functions       
Detected in PCOS                             References  

miR-376 GCs Increase GCs proliferation by        
Increased expression in PCOS                (37) 

                                                                                                  Increase expression of PCNA   

miR-224 GCs Increase fertilisation by increase         
Increased expression in PCOS                (41)  

                                                                                                 PTX-3 expression in GCs   

miR-182 /miR-15a GCs Regulate steroidogenesis and promote         
Decreased expression in PCOS               (27, 36) 

                                                                                                 GCs proliferation and apoptosis  

miR-132/miR-320 GCs Regulate steroidogenesis     
Decreased expression in PCOS                (43) 

miR-320 Adipocytes cells Increase IR by downregulate GLUT4          
Increased expression in PCOS                  (81)  

miR-33b-5p GCs Negatively correlate with GLUT4,        
Increased expression in PCOS                  (85)  

                                                                                                 SREBF1 and HMGA2 and promote IR 

miR-27b Blood Induce adipogenesis by increasing          
Increased expression in PCOS                  (21) 

                                                                                                 PPAR-γ and C/EBP-α  

miR-103/ miR-155 Blood/GCs Induce progesterone release and        
Increased expression in PCOS                  (69) 

inhibit oestradiol release    
and correlate with increased  

 
testosterone  

miR-155 GCs Inhibit testosterone release by inhibiting          
Increased expression in PCOS                  (71) 

                                                                                                 PCNA  

GCs; granulosa cells, PCNA; proliferating cell nuclear antigen protein, PTX-3; Pentraxin 3, GLUT4;              

Glucose transporter 4, SREBF1; sterol regulatory element-binding protein,HMGA2; high mobility          

group A2,IR; insulin resistance, PPAR-γ; peroxisome proliferator activating factor-γ, C/EBP-α;          

c/enhancer-binding protein-α.  These miRNAs are just an example, not the full list.  
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Figure 1: The expression of miRNAs in different organs and their cross talk in regulating               

follicular development, follicular maturation, steroidogenesis, glucose metabolism, insulin        

resistance, adipogenesis and lipid metabolism. 
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Figure2: Role of miRNAs in the insulin signalling pathway and insulin resistance.  
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