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Abstract

A heat pipe (HP) is a passive heat transfer device able to transmit heat a few meters or several hundred 

meters away from the heat source without use of external energy. This paper presents a critical review of the 

HP technologies. It is found that the heat transfer performance of a HP is highly dependent upon its 

geometrical and operational conditions, whilst the existing computerized analytical and numerical models 

for the HP require a huge number of parametrical data inputs, and therefore is extremely time-consuming 

and impractical. Furthermore, the measurement results of the HPs vary time by time and show certain 

disagreement with the simulation prediction, giving a high uncertainty in characterisation of the HP. 

Development of a machine learning algorithm and associated models based on the structured HP database is 

a solution to tackle these challenges, which is able to provide the dimensionless and multiple-factors-

considering solution for HP structural optimization and performance prediction. A review on big-

date/machine-learning technology for HP application was undertaken, indicating that a database covering 

the HP parametrical data, operational variables and associated performance results has not yet been 

established. Challenges for the HP structural optimization and performance prediction using the big-data-

trained machine learning technology lie in: (1) complex and unregulated HP data; (2) unidentified analytic 

algorithm for HP structural optimization; and (3) unidentified data-driven algorithm for HP performance 

prediction. This review-based study provides the potential future research directions for development of the 

big-data-trained machine learning technology for HP structural optimization and performance prediction.
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B bayesian network

b bias parameter

C regularization constant

G directed acyclic graphs

L latent heat

L loss function

M merit number

w connection weight

surface tension

liquid density

viscosity

1 Introduction

A heat pipe (HP) [1] is an efficient two-phase heat transfer device which can transport huge amounts of heat over long 

distances (up to several hundred meters) with a small temperature gradient using the latent heat of evaporation. In this 

regard, HP offers good prospects of use in electronic cooling and applications such as data centre cooling due to the 

high heat transport capacity. Several parameters have critical impact on HP’s thermal performance including filling 

ratio, working fluid, inclination angle, structure parameters, etc [2]. Previous studies have been conducted to improve 

their thermal performance by applying different approaches such as using nanofluids [3], changes in structure [4], etc. 

Vivek et al. [5] mainly studied seven geometric parameters of satellite heat pipe operated with ammonia and methanol 

for the multi-objective optimization. They found that lengths of condenser section, evaporator section, and vapour core 

diameter are the important geometrical parameters causing a strong conflict between the objective functions. Lurie et al. 

[6] proposed a topology optimization approach to determine an optimal geometry of a wick sintered inside a flat plat 

heat pipe. Utilizing the simplified 2D thermal and hydrodynamic models, they obtained the optimization results for HPs 

with different lengths and thicknesses, which could achieve the increased heat transfer capability up to twice. All 

studies indicate that the design and optimization of the HP under different circumstances are very difficult and time-

consuming. Previous relevant studies based on experiments, simulations and analysis have generated huge volumes of 

data associated with HPs, while combining these data with the advanced AI technology, e.g., machine learning, has 

potential to develop the accurate, multiple-factors-inclusive, and data-reflective HP structural optimization and 

performance prediction models, which would help design of the high performance HP to enable achieve the maximized 

heat transport capacity with the least capital cost.

Big data is usually described as the large volumes of high velocity, complex and variable data that require big data 

technology to enable the capture, storage, distribution, management, and analysis of the information [7,8]. Typically, 

big data is characterised with six aspects referred to as the 6 V’s, i.e., volume, velocity, variety, veracity, variability and 

value, which is shown in Fig. 1. Volume [9,10] refers to the massive amounts of data. The size of data typically ranges 

from petabytes to zettabytes. Velocity [8] refers to the rate at which data are generated and the speed at which it should 

be analysed and acted upon. The data velocity is positively associated with the data value and data veracity. Variety 

[11] refers to the structural heterogeneity in a dataset, and now data can be of many different forms, e.g., structured, 

semi-structured, and unstructured data. Veracity [12] refers to the quality and reliability of the data. Variability [7] refers 

to that the data can flow at different rates. Value [13] refers to the extraction of valuable insights and information from 

the data.

Fig. 1



Big data need efficient processes to turn high volumes of fast-moving and diverse data into meaningful insights, which 

usually involve big data management and analytic technology; this is viewed as a sub-process in the overall process of 

insight extraction from big data [14]. The current era of big data has witnessed a much broader spectrum of the 

application of big data technology in other industries such as manufacturing, services, financial, etc. Li et al. [15] 

proposed an energy economy model for guiding the future application of big data to modelling. They thought that the 

issues surrounding data collection costs, ownership and privacy need to be solved and modelers must look 

dispassionately at the basic dynamic assumptions, datasets and the big data collection and analysis tools underpinning 

the models. Arias et al. [16] presented an electric vehicle charging demand forecasting model, combining the historical 

traffic data and weather data with big data technology. The model could be the foundation for the research on the 

impact of charging electric vehicles on the power system. Walch et al. [17] developed a methodology that could 

estimate the technical photovoltaics potential for individual roof surfaces, combining Machine Learning algorithms, 

Geographic Information Systems and physical models. The uncertainty estimation could be applied to the large-scale 

assessment of future energy systems with decentralized electricity grids.

HPs experimental data like operational variables and performance parameters, as data sets or ‘samples’, could play a 

role in machine learning model training. Machine learning is defined as an approach to simulate human learning and 

allow computers to identify and acquire knowledge from the real world, and to improve the performance of some tasks 

based on this new knowledge [18]. The machine learning technology can handle high dimensional data, and extract 

hidden relationships within data in complex and dynamic environments [19]. It means that a successful machine 

learning model can identify the relationship between the input and output parameters from enough ‘samples’ which is 

almost impossible to represent by experimental or simulation methods.

Several popular machine learning algorithms involve linear regression, artificial neural networks, support vector 

machines and support vector regression, decision tree, etc [20]. In terms of the model establishment, many researchers 

would consider utilization of the machine learning algorithms, such as ANN, owing to its high efficiency [21]. As a 

new computational model, ANN [22] has rapid and large uses for handling various complex real world issues, and its 

popularity lies in information processing characteristics to learning power, high parallelism, fault tolerance, nonlinearity, 

noise tolerance, and capabilities of generalization [23,24].

In this paper, the following issues will be addressed: (1) Characterisation of the thermal performance parameters of the 

HPs; (2) The classification and management of the big data including acquisition, analysis and storing; (3) The 

classification of machine learning algorithms, and (4) Analysis of the previous research on HP structural optimization 

and performance prediction using machine learning technology.

2 Characterisation of the HP thermal performance

The heat transfer capacity of a HP is limited by the geometrical and operational parameters, including the filling ratio, 

properties of the working fluid, inclination angle, structural dimensions, as well as the application occasion of the HP. 

These parameters will be investigated, thus forming the foundation for establishment of the dedicated HP database.

Six V’s of Big Data.



2.1 Operation principle

HPs have the advantage of driving passively with the natural circulation of the working fluid, which changes between 

the liquid and vapour phases without any additional energy input. The schematic of a HP [24,25] is shown in Fig. 2, 

and its working mechanisms including evaporation, adiabatic transfer and condensation. Heat passes through the 

evaporator section and provides the required thermal energy for evaporation of working fluid. Then, the vapor moves 

towards the adiabatic section then the condenser section, where the vapor turns into liquid by emitting its thermal 

energy. The liquid then returns to the evaporator section via the capillary wick structure, and the cycle continues.

2.2 Performance parameters

The most relevant performance parameters of a HP include the type of a working fluid, filling ratio, inclination angle, 

as well as the geometrical sizes of the HP. These are illustrated as below:

2.2.1 Selection of the appropriate working fluids

With decades of research and development, a variety of working fluids ranging from cryogenic liquids to liquid metals 

[27] for the HPs have been identified and applied. The typical HP working fluids are pentane, acetone, methanol, 

ethanol, heptane, etc., and the selection of HP working fluids should take into account a number of factors, which 

including melting point, boiling point at atmospheric pressure and useful range [28,29].

During the fluid selection, a number of issues should be considered: (1) Compatibility with the wall and wick materials 

[30]; (2) Good thermal stability; (3) Wettability of the wall and wick materials; (4) Appropriate vapour pressures at the 

operational temperatures; (5) High latent heat; (6) High thermal conductivity; (7) Low liquid and vapour viscosities; (8) 

High surface tension; and (9) Acceptable freezing or pour point.

To ensure that the device starts at a minimum temperature difference between the evaporation zone and the 

compensation chamber, the pressure and temperature differences should be considered. The working fluid selection 

also should take into account the heat transfer limitations including sonic, capillary, viscous, entrainment and boiling 

limit. According to Reay [31], the convenient criteria to choose an acceptable working fluid in most cases is to compare 

the figure of merit number (M). The figure of merit is defined as a function of the surface tension , the latent heat L, 

the liquid density  and viscosity , which is expressed in Eq. (1). The larger merit number will lead to a higher heat 

transfer capacity.

2.2.2 Filling ratio of the working fluid

The thermal performance of a HP system could be highly affected by the refrigerant filling ratio [32], which is defined 

as the ratio of the working fluid volume to the evaporator volume. A lower filling ratio results in the dry-out 

phenomenon occurring in the evaporation part, while a high filling ratio results in the high flow resistance due to the 

mixture of the liquid and vapour from boiling [33].

Fig. 2

Schematic of a typical HP [25].

(1)



Researchers have studied the filling ratio of the working fluid for different HPs. The recommended filling ratio of a heat 

pipe system should be at least 50% of the volume of the evaporator [33]. Ling et al. [34] experimentally studied the 

impact of filling ratio on a closed-loop HP system with separated micro-channel evaporator and condenser as a cooling 

device, showing that the optimal filling ratio was in the range 88–101%. Babu et al. [35] studied the thermal 

performance of a pulsating heat pipe, by CFD simulation and experiments, showing that the filling ratio of 60% led to a 

smaller thermal resistance. Molan et al. [36] experimentally investigated the effect of the filling ratio on the thermal 

performance of a multi-turn pulsating heat pipe, indicating that the optimal filling ratio may be in the range 48.8–66.1%. 

Ding et al. [37] mainly studied the filling ratio and Freon types as the influence factors of the loop HP system used in 

data centre cooling and analysed the relationship between the heat transfer capacity and filling ratio varying from Freon 

types. Ling et al. [38] for the first time, applied smooth and rough porous copper fiber sintered sheets into a loop HP 

system. They investigated the influence of filling ratio, highlighting that a filling ratio at 30% of the deionized water 

was the optimal combination for their designed loop HP. Chang et al. [39] established a CFD model to simulate the 

evaporator of a micro-channel separated heat pipe. The simulation results showed that the optimal refrigerant filling 

ratio was in the range 68–100%. Li et al. [40] experimentally investigated the thermal and electrical performance of a 

solar photovoltaic/loop-heat-pipe water heating system with different refrigerant filling ratios, showing that filling ratio 

at 30% was conductive to improve solar thermal efficiency of this system and filling ratio at 40% was conductive to 

improve electrical efficiency. He et al. [41] theoretically and experimentally studied the operational performance of a 

novel heat pump assisted solar facade loop-heat-pipe water heating system, which was charged with R600a as working 

fluid at the filling ratio of 35%. Zhou et al. [42] presented a miniature loop HP employing deionized water as the 

working fluid. The filling ratio of 37% was selected owing to the consideration of the start-up characteristics. From the 

above references, it can be observed that the best filling ratio changes with type of working fluid and structure of HP, 

which is outlined in Table 1.

2.2.3 Inclination angle

The inclination angle of a heat pipe, defined as the angle between the heat pipe axis and the horizontal datum, is very 

important to the systems with spatial changes in position [43]. As the inclination angle increases from 0° to 60°, the 

evaporator section moves towards the ground, leading to an easy return of the refrigerant from the condenser to the 

evaporator, owing to the combined effect of the gravitational and capillary forces. As a result, the efficiency of the heat 

pipe would increase. However, further increase in the inclination angle would lead to the reduced heat transport 

Table 1

Comparison of the filling ratio of the working fluid in different HPs.

References Material/working fluid Filling ratio

Ling et al. [34] /R22 88%-101%

Babu et al. [35] copper tube/acetone 60%

Molan et al. [36] stainless steel/helium 48.8%- 66.1%

Ding et al. [37] copper tube/R134a 71%

Ling et al. [38] copper/deionized water 30%

Chang et al. [39] /R22 68%-100%

Li et al. [40] /refrigerant 30%-40%

He et al. [41] /R134a 35%

Zhou et al. [42] /deionized water 37%

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



capacity, which is because that the gravitational forces will oppose the movement of evaporated fluid from the 

evaporator section to the condenser section [44].

Researchers have studied the different inclination angle of the HPs. Aly et al. [43] investigated the performance of a 

helically-micro-grooved heat pipe working with water-based alumina nanofluid, showing that the inclination angle of 

60° leads to the best thermal performance of the heat pipe using water or nanofluid. ChNookaraju et al. [44] 

investigated the thermal performance of a sintered-wick heat pipe at various inclination angles with gravity-assisted tilt, 

showing that the maximum heat transport capacity takes place at 60° gravity-assisted tilt followed by 90°. Alammar et 

al. [45] used CFD simulation to investigate the performance of the two-phase closed thermosiphon at the five fill ratios 

of working fluid and five inclination angles. They found that the best fill ratio and inclination angle were 65% and 90° 

respectively. Reji et al. [46] tested the thermosyphon heat pipe under various angles of inclination with two working 

fluids, i.e., water and aluminium nanofluid. The results showed the peak efficiency of 88% was obtained at an 

inclination angle of 60°. Rahman et al. [47] investigated the heat transfer performance of an OLPHP. They found that 

using the OLPHP as an integrated structure would achieve higher thermal conductance to the host substrate, while the 

optimal inclination is 45°. Tharayil et al. [48] investigated the performance of cylindrical heat pipes at various 

inclinations (−90° to +90°). They found that for the cylindrical heat pipe at an inclination of −45°, the maximum heat 

transfer coefficients of the evaporator and condenser were 3876 W/m
2
 K and 1698 W/m

2
 K. Wang et al. [49] studied 

the effect of liquid filling ratio and inclination angle on the performance of a novel FPMHP. They found that when the 

inclination angle increased from 20° to 90°, FPMHP performance was considerably improved. Wang et al. [50] 

designed a novel concentric condenser heat pipe array and found that the array provided a better heat transfer 

performance and better maximum heat transport capacity, at the operating temperature of 80 °C and the inclination 

angle of 60°. Jahan et al. [51] studied the effect of inclination angle and working fluid on the heat transfer performance 

of a CLPHP and found that the inclination operating angle changes the internal flow patterns and the best performance 

of CLPHP is obtained at 75°. From the above references, it can be concluded that the best inclination angle for any heat 

pipe depends on many other factors such as geometry, heat input, type of liquid and operating conditions. These are 

outlined in Table 2.

2.2.4 Structural parameters

These heat pipes have different structures e.g. micro-channel, thermosyphon, and pulsating ones, different combination 

forms e.g. separated and integrated ones, different driving modes e.g. pump-driven, PCM-assisted and gravity-assisted 

[52]. All these brought about significant variation in heat transport capacity and operational condition.

Table 2

Best inclination angle of different HPs.

References Type of heat pipe Inclination angle

Aly et al. [43] Helically-micro-grooved heat pipe 60°

ChNookaraju et al. [44] Sintered-wick heat pipe 60°

Alammar et al. [45] Two-phase closed thermosiphon 90°

Reji et al. [46] Thermosiphon heat pipe 60°

Rahman et al. [47] Open-loop pulsating heat pipe 45°

Tharayil et al. [48] Cylindrical and Flattened hat pipe −45°

Wang et al. [49] Novel flat-plate micro heat pipe 90°

Wang et al. [50] Concentric condenser heat pipe array 60°

Jahan et al. [51] Closed-loop pulsating heat pipe 75°

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



Researchers have studied the wide application in various industrial and engineering practices. Ding et al. [53] analysed 

the components of a separated heat pipe system and found that the evaporator of the system can soon absorb heat, 

leading to little local hot spots inside the data centre room. The total entrant dissipation of the separated heat pipe 

system was 48.3% lower than the CRAC system. Zhou et al. [54] developed a pump-driven loop heat pipe for small-

sized data centre and it can save over 20% energy if the indoor temperature was maintained at 18–25 °C. If 74.2% of 

the Chinese cities adopted this technology, the annual energy saving rate will reach over 30% [55]. Tian et al. [56] 

designed a two-stage heat pipe loops that are combined with water loop and coupled with serially connected multi cold 

sources. This system can dynamically and effectively adjust the cooling load distribution and reduce cooling cost by 

around 46% compared to the CARC system. Liu et al. [57] developed a hybrid cooling system that combines the dew-

point evaporative coolers with heat pipes and the average annual COP of the ideal systems was around 34, leading to 

annual energy savings of nearly 90% compared to vapour compression cooling system. Wang et al. [58] designed the 

integrated heat pipe system which integrates the heat pipe cycle with the vapour compression cycle and operates 

simultaneously. The results showed that the power usage efficiency of the data centre using this system can be 0.3 

lower than that using the conventional air-cooling systems in cold areas. Behi et al. [59] designed the phase change 

material (PCM) assisted heat pipe for electronics cooling. The study revealed that the PCM assisted heat pipe provided 

up to 86.7% of the required cooling load in the working power ranging from 50 W to 80 W. Sun et al. [60] proposed 

the thermoelectric cooling system integrated with the gravity-assistant heat pipe for cooling electronic devices. This 

system increased the cooling capacity by approximately 73.54% and the electricity consumption was reduced by 

42.2%, compared to the thermoelectric cooling system. Singh et al. [61] studied the design and economics of the 

thermal control system for data centre using heat-pipe-based cold energy storage system, which is shown in Fig. 3. The 

results showed that this system can save around 3 million dollars each year for a data centre with heat capacity of 

8,800 kW. Ling et al. [62] proposed the water-cooled multi-split heat pipe system to cool the space in modular data 

centres and found that the optimum refrigerant filling rate was in the range 33–42% with cooling capacity ranging from 

6100 W to 6200 W. Dang et al. [63] proposed a closed rack cooling system with pulsating heat pipe and carried out the 

numerical study of its heat transfer performance, which is shown in Fig. 4. The results showed that the temperature of 

the CPU would decrease and the temperature distribution of the CPU would be uniform.

Fig. 3



Data centre facility with heat-pipe-based cold energy storage system [61].

Fig. 4



Utilizing different types or structures of HP could dynamically meet specific onsite requirements for material 

compatibility and temperature ranges and significantly save energy. From the above references, comparison of different 

structures of HP with different drive modes is presented in Table 3.

Schematic of the closed rack cooling system with pulsating heat pipe [63].

Table 3

Comparison of different HPs with different driving modes.

Reference Structure Driving mode

Ding et al. [53] Separated heat pipe Gravity

Zhou et al. [54] Pump-driven loop heat pipe Pump

Tian et al. [56] Two-stage heat pipe Gravity

Liu et al. [57] Micro-channel separated heat pipe Pump

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



3 A review-based study of big data technology

Big data technology has already widely used in other industries such as manufacturing, services, financial, etc. This 

section will review the multi-category big data technology and explore the possibility of utilizing big data technology to 

deal with the HP data.

3.1 Previous researches on big data technology and its application

The HP data usually comes from experiments or field testing. These massive amounts of tabular data often contain 

different types of parameters, representing different physical meanings. It is a challenge to find valuable information to 

form a complex and diverse dataset. Some previous researches are presented. Shafieian et al. [64] developed various 

data-based models to simulate the performance of the HPSCs. They found that the ANN was the best method to predict 

the performance of the HPSCs, and the highest difference between the experimental and theoretical thermal efficiencies 

was observed in autumn and winter, which are 3.56% and 3.55% respectively. Ayompe et al. [65] used the data 

obtained from a field trial installation to analyse the thermal performance of a solar water heating system with heat pipe. 

They found that the annual average solar fraction, collector efficiency and system efficiency were 33.8%, 63.2% and 

52.0% respectively. Nookaraju et al. [66] utilized the historical data to present the convective heat transfer coefficient of 

a hybrid wick heat pipe, and RSM was utilized to optimise the model. The result showed that the ideal working 

conditions were acquired at the mass flow rate of 0.04 kg/s, tilt angle of 15° and heat input of 176 W.

From the above references, the optimization of heat pipes mainly utilized the massive historical or experimental data, 

lacking more professional technology to sort out and analyse these huge amount of data [67]. This means that an 

appropriate big data technology should be identified and studied in order to provide the dimensionless and multiple-

factors-considering solution for HP structural optimization and performance prediction.

3.2 Comparison of different forms of big data

According to different varieties, the big data can be classified into three different forms, i.e., structured, unstructured 

data, and semi-structured. Structured data [7], which constitutes only 5% of all existing data, is usually defined with the 

fixed attributes, type, and format. Compared to unstructured or semi-structured data, the processing of structured data is 

relatively simpler and more straightforward.

Unstructured data [68] is any stored information that comes with different sizes, that contains information expressed as 

a single concept in many different ways, that is not neatly packaged into spreadsheet cells, that cannot be assigned a 

numeric value, or that does not conform in any way to a specific data standard.

Semi-structured data [69] is a continuum between the fully-structured and unstructured data, which does not conform to 

strict standards. The basic characteristic is that they are “self-describing”, which means that the information generally 

associated with the schema is specified directly within data. Different forms of big data are compared in Table 4 [70,71]

.

Wang et al. [58] Integrated heat pipe Gravity

Behi et al. [59] PCM-assisted heat pipe Capillary

Sun et al. [60] Gravity-assisted heat pipe Gravity

Singh et al. [61] Thermosyphon Gravity

Ling et al. [62] Multi-split heat pipe Gravity

Dang et al. [63] Pulsating heat pipe Pressure difference

Table 4

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 
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3.3 Comparison of different big data technologies

The big data technologies [72] represent the technologies to efficiently deal with huge data feeds, due to the capability 

to process data in a variety of environments, e.g., batch, and stream.

3.3.1 Technologies based on batch processing

The batch-based processing technologies [14], ideal for processing large, bounded, persistent and not-time-sensitive 

datasets requiring significant computation, including Apache Hadoop, Dryad, and Tableau.

Apache Hadoop [14,73] is a batch processing tool that provides scalability and fault-tolerance. This technology has the 

advantages of quick retrieval, searching log data and fast insertion. Thus, it becomes one of the most popular big data 

technologies. However, the disadvantages of the Apache Hadoop are the restrictive programming model, joint multiple 

datasets, hard cluster management, single master node and unobvious configuration of the nodes.

Dryad [11], based on the dataflow graph processing, is a popular programming model which consists of a cluster of 

computing nodes, and a computer cluster used to run the programs in a distributed manner. It has the advantages of 

graph generation, processing schedules, handling errors in a cluster, and handling user-defined policies. The 

programmers don’t need to know about parallel programming with the help of Dryad framework. However, the 

disadvantages of the Dryad are unsuitable for the iterative and nesting programme, and difficult to convert irregular 

computing into a data flow graph [14,74].

Tableau [75] is utilized to process large amounts of datasets, which consists of the Tableau Desktop, Tableau Public, 

and Tableau Server. Tableau Desktop is to visualise data. Tableau Server provides browser-based analytics, and 

Tableau Public creates interactive visuals. Tableau has the advantages of great data visualisation, low-cost solutions to 

upgrade, excellent mobile support and convenient to present big data analytic results. However, the disadvantages of 

the Tableau lie in the lack of predictive capabilities, risky security, and changing management issues [14,76].

3.3.2 Technologies based on stream processing

The technologies based on stream processing [74] are ideal to handle a large volume of real-time data. It could be very 

low latency while processing the data from a large volume of data and overcome the challenges when dealing with a 

huge volume of data, high speed of data and the time dimension. The stream-based technologies include Storm, SQL 

Stream s-Server, and Splunk.

Storm [11,77] is a free and open technology applied to real-time computation system, which makes it easy to reliably 

process unbounded streams of data. The Storm cluster is comprised of master and worker nodes which are 

implemented through nimbus and supervisor, two types of daemons. Storm has the advantages of easy to operate, 

which ensure that all the data will be processed, efficient, scalable and fault-tolerant. However, the disadvantages of the 

Storm are poor performances in reliability, efficiency, and manageability [14,74].

SQL Stream [78] is a big data platform that is designed for processing large-scale streaming data in real-time and 

focuses on intelligent and automatic operations of streaming big data. The new version of SQL Stream is SQL Stream 

s-Server that is developed to perform better in data gathering, conversion and sharing of real-time data. It has 

advantages of low cost, scalable for high-volume and high-velocity data, low latency, rich analytics and better 

Comparison of different forms of big data.

Type Advantage Disadvantage Examples

Structured
Simple, easy processing, and 

straightforward

Scarce
Tabular data found in spreadsheets or 

relational databases

Unstructured Easy to collect
Various types, and 

difficult to extract

Text, images, audio and video

Semi-

structured

Information can be represented by different 

types of data, and contain implied pattern 

information

Lacking strict type 

constraint of data, and 

irregular structure

Extensible Mark-up Language (XML), 

textual language for exchanging data 

on the Web



performances in real-time data collection, transformation and sharing. However, the disadvantage of the SQL Stream s-

Server is the high complexity [11,14,74].

Splunk [74] is an intelligent and real-time platform for exploiting information from machine-generated big data, which 

also gives users the facility to access, monitor and analyse data through the web interface. Splunk has the advantages of 

great performance from security to business analytics to infrastructure monitoring, indexing structured or unstructured 

machine-generated data, real-time searching, reporting analytical results and dashboards. However, the disadvantages 

of Splunk are high setup costs and high complexity [11,14].

In general, the batch-based processing technologies can be very efficient where data is collected, stored, and processed, 

and the results are produced in batches. But it has limitations in terms of resource utilisations and real-time processing 

capabilities. In contrast, stream-based processing technologies mostly focus on the velocity of data and help to process 

data in a very short time.

3.4 Big data management and analytics

The real challenge for big data is that the variety of sources makes it hard to deal with the information [79]. Thus, to 

turn high volumes of fast-moving and diverse data into meaningful insights, the data acquisition and processing 

contains two main parts [7]: data management referring to data acquiring, store, preparation and retrieval, and analytics 

referring to acquiring intelligence from big data.

There is a current approach for big data management and database design which could be divided into the following 

several steps [80]:

Utilizing the above big-data technology and HP database, the machine learning model could provide the multiple-

factors-considering solution, which would significantly reduce the computational time, simplify the calculation process, 

and improve the accuracy of the simulation results. Furthermore, it could provide a simpler, straight-forward and 

comprehensive mathematical relationship among the HP geometrical and operational variables and resultant parameters.

4 A comprehensive study of machine learning technologies

Machine learning technologies are considered as a suitable method for the HP design, structural optimization and 

performance prediction. Several popular machine learning algorithms would be presented in this section, but the most 

Data capture: Many data are recorded from diverse data generating sources. The principle of data 

capture [81] is the separation of data from author interpretations, extensive and flexible capabilities for 

phase identification, well-structured capture of metadata related to sample characterisation, and 

quantitatively defined uncertainties.

(1)

Data cleaning and storage: The objective in this phase is to store the data in a structured form suitable 

for analysis. The cloud database [82] may be a great solution to store and process data, residing on a 

private, public or hybrid cloud computing infrastructure platform. After collecting data in different 

databases of the physical layers, all the data will be hosted on a cloud platform.

(2)

Data integration and aggregation: The SQL or NoSQL database is a current approach for large and 

distributed data management and database design. SQL database is a logical choice for the management 

of data containing fixed or rarely changeable structure. NoSQL database is mainly to deal with the fast 

processing of vast quantities of unstructured data. Hybrid SQL/NoSQL database would be a popular 

solution for parallel use of different database types [83].

(3)

Query processing, data modelling and analysis: Data mining [84] is a set of techniques to extract 

precious information from data. However, most of the data mining-based methods are still not mature 

enough for practical applications, and it is therefore necessary to develop universal, automatic and 

domain knowledge-driven data mining-based methods.

(4)

Data interpretation and visualisation: Due to the complexity of data, it is crucial to choose proper data 

representation tools, e.g., graphical interfaces, to visualise big data. The use of data interpretation and 

visualisation tools [85] can help to consume, explore and understand complex data.

(5)



appropriate approach will be compared and finally selected.

4.1 Characteristics of machine learning

The machine learning algorithm is fed by a series of input/attribute ‘ ’ and related output/label ‘ ’. The purpose is to 

estimate a mapping relationship  which could minimise the value of loss function , and use the  as a 

data-driven model to map new attribute  to unknown .

Aiming at the overfitting problem in machine learning algorithms, the common operation for databases is divided into 

‘training set’ and ‘testing set’, and the model performance for both datasets is evaluated to remit the overfitting 

problems. There are four common strategies to confront overfitting problems, which are bias-variance relationship 

weight decay, learning rate decay, cross validation and regularization. The performance of the model could be 

evaluated by different metrics, such as mean bias error, coefficient of variation of root mean square error and mean 

absolute percentage error.

4.2 Comparison of different machine learning algorithms

Several popular machine learning algorithms will be presented including linear regression, artificial neural networks, 

support vector machines, and decision tree etc. Different machine learning algorithms are compared in Table 5.

The linear regression model (see Fig. 5) predicts the linear combination of attributes [86]. Its target function has a very 

simple basic vector form and the linear model has good comprehensibility that is not easily available in complex 

models. Classical linear regression models include logistic regression and linear discriminant analysis. Logistic 

regression is a type of generalised linear model. Linear discriminant analysis is a classic dimension reduction technique. 

The basic idea is to project the sample space into a low-dimensional space.

Table 5

Comparison of different machine learning algorithms.

Algorithm Advantage Disadvantage

Linear regression Good comprehensibility
More computation time in training 

phase

Artificial neural 

network

Conducting non-linear mapping and classification Analysis results cannot be ascertained

Support vector 

machine

Applicable to classification tasks More data to prove effectiveness

Decision tree
Enhance the prediction accuracy, Decrease the computational 

time

More nodes to test effectiveness

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

Fig. 5



Artificial Neural Networks (ANN) is widely cited in the prediction and calculation of complex systems due to its 

advantages in non-linear regression and classification [87]. Basically, ANN (see Fig. 6) is a black-box data-driven 

method enabling conducting non-linear mapping between the input and output variable sets without considering their 

physical interpretation. The error backpropagation learning algorithm is one of the most typical learning algorithms 

which is based on the gradient descent strategy. Other commonly-used neural networks include radial basis function 

neural network, adaptive resonance theory neural network, self-organizing map neural network, and recurrent neural 

network.

General schematic representation of linear regression model [86].

Fig. 6



Support Vector Machine (SVM) (see Fig. 7) is a kernel learning technique showing excellent performance in 

classification tasks [88,89]. The objective is to find a hyperplane in high-dimensional space, which represents the 

maximum margin between any two instances of two types of training data points or maximizes the correlation function 

when it cannot be separated. Support Vector Regression (SVR) is based on SVM and applied to resolve the regression 

problems.

Decision tree is a machine learning method for making decisions based on the tree structure and it partitions the dataset 

on the given attribute in order to calculate the information gain (see Fig. 8) [90]. Generally, a decision tree contains a 

root node, several internal nodes, and several leaf nodes. The root node contains the whole sample space, each internal 

point corresponds to an attribute test to select the sub-branch of the tree, and the leaf node corresponds to the decision 

result. The path from the root node to the leaf node corresponds to a decision test sequence [91]. According to the 

General structure of ANN [87].

Fig. 7

General structure of SVM [89].



method of selecting the best attribute of dividing nodes, the decision tree method can be divided into three main 

catalogues, i.e., ID3, C4.5, and classification regression decision tree.

5 Previous research in HP characterisation using machine learning 

technologies

Some researchers conducted the characterisation, structural optimization and performance prediction of HP using 

machine learning technologies including classification and regression techniques.

For the classification techniques, it is generally used to predict a discrete response that means the data can be 

categorized, labelled or separated into specific group or classes. Lee and Chang [92] used a nonlinear autoregressive 

model with exogenous neural networks (see Fig. 9) to predict the thermal dynamic performance of a pulsating heat 

pipe. The study was carried out in both the time and frequency domains, and the result showed the effect of the heating 

source on the condensation process by temperature responses. Chen et al. [93] developed a mathematical model for a 

CLPHP. The model, based on an approach of the nonlinear autoregressive moving average, provided the relationship 

between the response temperature differences between evaporator, adiabatic, and condenser. Jokar et al. [94] used a 

multilayer perceptron neural network (see Fig. 10) and genetic algorithm to investigate and optimise the pulsating heat 

pipes. The model was trained using the experimental data, and the results revealed that the optimum values of the inputs 

including the filling ratio, input heat flux to the evaporator and inclined angle were 38.25%, 39.93  W and 55° 

respectively. Malekan et al. [95] used multilayer feed-forward neural network, adaptive neuro-fuzzy inference system 

and group method of data handling type neural network to predict the thermal resistance of a closed-loop oscillating 

heat pipe. The root-mean-square error of the three methods was 0.05, 0.05, and 0.05 respectively. Ahmadi et al. [96] 

created four models, including multilayer perceptron, radial bias function, conjugated hybrid of particle swarm 

optimization and adaptive neuro-fuzzy inference system, to predict the thermal resistance of the pulsating heat pipes. 

The results indicated that the radial bias function model was able to predict the thermal resistance more accurately, and 

the R-squared and root mean squared error values for this model were 0.9892 and 0.0650, respectively. Qian et al. [97] 

proposed a heat transfer prediction model based on the extreme gradient boosting algorithm to choose the suitable 

geometry and cooling methods of the oscillating heat pipes for enhancing the heat transfer. The results showed that the 

mean absolute percentage error varied from 0.01% to 13.09% under the training set range of 4550–22,750  W/m
2
. 

Elghool et al. [98] used the response surface methodology to determine the optimum geometry of the heat pipe heat 

sink to improve the performance of the thermo-electric generator. The results showed that the efficiency after the 

optimization was 3% respectively, which was improved by 36.7% compared to the previous results.

Fig. 8

General structure of decision tree [90].

Fig. 9



For the regression techniques, it is generally used to predict continuous responses that means working with a data range 

or if the nature of the response is a real number such as temperature. E et al. [99] used the ANN and grey relational 

analysis to study the heat transfer performance of an oscillating heat pipe. It was identified that the developed model 

could predict the performance with the maximum error of 4%. Patel et al. [100] developed a model for a pulsating heat 

pipe based on feed-forward backpropagation neural network and regression/correction analysis approach. The dataset 

for the ANN development comprised 1652 experimental data which were collected from the literature (2003–2017). 

Linear and power-law regression correlations were developed for input heat flux in terms of dimensionless Kutateladze 

number. Wang et al. [101,102] used the ANN (see Fig. 11) to analyse the performance of the pulsating heat pipes with 

different working fluids under diverse operating conditions. The root-mean-square error and the correlation coefficient 

of the ANN model were 0.01 and 0.98 respectively. Maddah et al. [103] used the ANN for a heat pipe heat exchanger 

with CuO/water nanofluid as the working fluid. The thermal performance, filling ratio, the concentration of nanofluid 

and input power were predicted by the model with the maximum error of 0.99. Liang et al. [104] established a back-

propagation neural network model which was parameterized by genetic algorithm for thermal performance prediction 

of the miniature revolving heat pipes. The results showed that the established model could achieve the best prediction 

accuracy with the square of correlation coefficient of 0.92599. Qu et al. [105] used non-linear analysis to investigate the 

behaviour of the wall temperature oscillations in a closed-loop pulsating heat pipe. Results showed that all the 

calculated positive largest Lyapunov exponents were found to be less than 0.1, representing the weak chaos 

characteristics of the pulsating heat pipe. Shanbedi et al. [106] proposed an ANN (see Fig. 12) to estimate the thermal 

efficiency and resistance of thermosyphon with nanofluid. Combining neural networking and generic algorithm 

methods together, the R-values of MLP-ANN model were obtained over 0.99. Salehi et al. [107] designed an 

optimized ANN to predict the heat transfer of thermosyphon charged with silver/water nanofluid. They found that the 

thermal efficiency and resistance estimated by the multi-layer perception neural network were accurate. Kahani et al. 

Schematic view of a exogenous neural network [92].

Fig. 10

Schematic of a feed forward multi-layer neural network [94].



[108] designed an optimized ANN to predict the thermal performance of thermosyphon charged with Al
2
O

3
/water 

nanofluid. The R-squared value is 0.9822 which means that the output data of the model were sufficiently close to 

experimental data. Facao et al. [109] designed an ANN model to estimate two types of hybrid HPSCs (tube heat pipe 

type and plate heat pipe type) based on the results from mathematical models. The significant advantage of the model 

was that convergence was not an issue compared with mathematical models, and the outputs were obtained 

instantaneously.

The above-mentioned research works have been summarised in Table 6.

Fig. 11

Schematic of ANN model [101].

Fig. 12

Schematic of MLP structure [106].

Table 6

Summary of the research works.

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



6 Challenges – current status and deficiency

References Input parameters Machine learning algorithm Output parameters

Lee and 

Chang [92]

Structural geometry, heating source
Nonlinear autoregressive model with 

exogenous neural network

Temperature response

Chen et al. 

[93]

Structural geometry
Nonlinear autoregressive moving 

average model with exogenous inputs

Temperature differences 

in different sections

Jokar et al. 

[94]

Input heat flux to evaporator, filling ratio, 

inclination angle

Multilayer perceptron neural network 

and genetic algorithm

Thermal resistance

Malekan et 

al. [95]

Heat input, thermal conductivity of working 

fluids, ratio of inner diameter to length

Multilayer feed-forward neural network, 

adaptive neuro-fuzzy inference system, 

group method of data handling types 

neural network

Thermal resistance

Ahmadi et 

al. [96]

Filling ratio, thermal conductivity, 

inclination angle, lengths of adiabatic, 

condenser and evaporator sections, heat 

input, inner and outer diameters

Multilayer perceptron, radial bias 

function, conjugated hybrid of particle 

swarm optimization and adaptive neuro-

fuzzy inference system

Thermal resistance

Qian et al. 

[97]

Jakob number, Karman number, Prandtl 

number, Bond number, Morton number, heat 

flux, evaporator temperature, geometric 

parameters

Heat transfer prediction model based on 

the extreme gradient boosting algorithm

Effective heat transfer 

coefficient

Elghool A 

et al. [98]

Fin length and height Response surface methodology
Power output, 

efficiency, cost

E et al. [99]
Charge ratio, inner diameter, inclination 

angle

ANN and grey relational analysis Performance

Patel et al. 

[100]
Structural geometry

Feed-forward backpropagation neural 

network and regression/correction 

analysis

Input heat flux

Wang et al. 

[102,103]

Structural geometry, ratio of evaporation 

section length to diameter

ANN Performance

Maddah et 

al. [103]
Structural geometry ANN

Thermal performance, 

filling ratio, 

concentration of 

working fluid and input 

power

Liang et al. 

[104]

Jacob number, Bond number, Prandtl 

number, Froude number, filling ratio

Back-propagation neural network model 

and genetic algorithm

Thermal performance

Qu et al. 

[105]

Filling ratios, heating power, Jakob number, 

Karman number, inclination angle, Prandtl 

number

Non-linear analyses Thermal resistance

Shanbedi 

et al. [106]

Weight fraction of nanofluid, Input power ANN, Generic algorithm
Thermal efficiency and 

resistance

Salehi et al. 

[107]

Volume fraction of nanofluid, Inlet power ANN
Thermal efficiency and 

resistance

Kahani et 

al. [108]

Input power, Filling ratio, Volume 

concentration of nanofluid, Mass rate

ANN Thermal efficiency

Facao et al. 

[109]

Solar radiation, Inlet gas, water, ambient 

temperature, Evaporator and condenser 

length, Water and gas mass flow rate

ANN

Efficiency and heat 

output



This review-based study proposes the possibility of developing the big-data-trained machine learning approaches, 

which would be able to achieve better, faster and reliable simulation, optimization and performance prediction results 

for the HPs. To enable this, a number of identified scientific challenges need to be tackled. These are detailed below.

6.1 Lack of suitable sampling methods for complex and redundant HPs experimental data

There are many sources of HP experimental data, which can be measured from the field or derived from theoretical 

studies. With many different meanings and structures of these experimental data from different sources, selection of the 

suitable data resource, and integration and transformation of the HP data will be the priority issues to be tackled. 

Generally, HPs data is arranged in a form of tabular layout, which needs to be extracted and pre-processed to lay the 

foundation for subsequent works. However, the data extraction form is predefined, and some useful data might be 

missed likely in this extraction process. Different structures and types of HP’s data lead to different data characteristics 

which implies that the process of the data acquiring would lack the selection standards, sorting standards and suitable 

sampling methods.

6.2 No appropriate big data technology for processing HPs’ data

Big data technologies have been generally applied to the internet industry and now gradually applied to the 

manufacturing industry. However, no specific big data technology has been developed for processing the HPs data 

owing to the selection criteria for an appropriate big data technology is not in existence. It should also be noted that 

with different functions of big data technologies, the framework of data processing tools based on big data platform are 

different. Although many tool packages in popular programming languages like R and Python are in rapid 

development, it is still lack appropriate and stable development tools for non-professionals.

6.3 No appropriate standard for selecting machine learning algorithm to establish HP model

During the previous works, many researchers conducted the performance prediction of HP using a machine learning 

algorithm. However, big dataset establishment and associated machine learning training approaches were not well 

addressed, and the appropriate machine learning algorithms for HP structural optimization and performance prediction 

were not appropriately investigated, which are the essential research gaps in existence. At present, the ANN is a 

commonly used machine learning algorithm for HP simulation and optimization. However, comparison among the 

ANN and other algorithms have not yet been undertaken, and the most appropriate machine learning algorithm has not 

yet identified.

6.4 Lack of a suitable method to interface big data technology and machine learning technology

The works on applying big data technology and machine learning technology are substantial. However, careful 

consideration should be made on when and how to apply machine learning approaches to big data. Meanwhile, it is 

also urgent to solve the problem of how to find a suitable method to connect machine learning approach with big data 

technology and deal with the relationship between machine learning model and database. The number of samples 

required for machine learning model training needs to be confirmed, because using more samples is not always 

necessarily the best. Some machine learning approaches perform well under different sizes of training data, while the 

prediction performance of many others fluctuates largely with the training size.

7 Opportunities for future works

To tackle the above imminent challenges, further opportunities for future research and development are identified and 

these are outlined below:

7.1 Data munging for HPs experimental data

Most HP’s data (geometric structure parameters, experimental data, performance parameters, etc.), acquired by previous 

research work, are massive, heterogeneous and inconsistent. Hence, a new tool, based on big data technologies, should 

be explored which can capture, analyse and store HP’s experimental data according to the selection standards and 

sampling methods. It could achieve data munging, which commonly includes data exploration, transformation, 

enrichment exploiting metadata, cleaning or scrubbing the data which are not required for getting the underlying trends 



of data, and then data validation. So that the machine learning model, based on the structured HP database, could 

optimise the HP structure and predict its performance in both multi-variable and multi-objective optimisations.

7.2 Developing the way of combining multiple big data technologies for data analysis and 

processing

Most HP’s experimental data need to be pre-processed, but big data technology is diverse, with many overlap functions 

and has its advantages and disadvantages. Some processing technologies could be very efficient where data is 

collected, stored and processed, and results are produced in batches, while others mostly focus on the velocity of data 

and help to process data in a very short period. Thereby integrating the advantages of multiple big data technologies, 

the advanced technology with high computational efficiency and accuracy need to be developed in different application 

scenarios.

7.3 Selecting the best machine learning approach by horizontal comparison

More data per feature and balanced data can help improve the performance of the machine learning models. 

Meanwhile, an appropriate machine learning approach to establish the HP model is worthy to be further investigated, in 

respect to the reliable design and the stochastic uncertainty-based performance analysis. So it is necessary to 

horizontally compare the advantages and disadvantages of ANN and other machine learning approaches to choose the 

suitable approach. Attention should be paid to a number of issues including the fine tuning of the algorithm parameters 

and problem objectives, the modification of the governing equations, and the accurate uncertainty quantification of 

scenario parameters, etc.

7.4 Exploring how to design an integrated system connecting the machine learning model with 

HP database

It is needed to seriously consider the sampling size for the data training, because more data could carry errors that lead 

to overfitting issues and misleading biases. Using more is not necessarily the best and a certain number of 

representatives ‘samples’ from the HP database need to be extracted for training the model and optimizing the 

algorithm.

The future studies are suggested to focus on the development of integrated system, with the aim of configuring 

advanced learning algorithms for the accurate surrogate model with less training epochs and simpler neural network, 

accurate quantifications of multi-diversified scenario parameters, and generic HP multi-objective optimization 

methodologies. The further studies could work on novel systematic configurations with the flexible switch on operating 

modes, the advanced system structural design and the advanced optimization methodology flexibly integrating 

advanced optimization algorithms.

8 Conclusions

A critical review on the use of big-data/machine-learning technologies for HP structural optimization and performance 

prediction is presented. This study addresses several important issues, including (1) characterisation of the operational 

parameters of HP to evaluate the requirements of establishing HP database; (2) review of the big data technologies; (3) 

review of the machine learning technologies and the application of several popular machine learning algorithms in the 

HP sector; and (4) challenges and opportunities in developing big-data-trained machine learning model for the HP 

structural optimization and performance prediction.

Given the current development status and challenges, the opportunities for further development big-data trained 

machine learning model for HP structural optimization and performance prediction are outlined as: (1) data munging for 

HPs experimental data; (2) developing the way to combine multiple big data technologies for data analysis and 

processing; (3) selecting the best machine learning approach by horizontal comparisons; (4) exploring how to design an 

integrated system connecting the machine learning models with HP databases.

This review-based study will contribute to applying big-data/machine-learning technologies to the structure 

optimization and performance prediction of HP and identifying the current status and potential problems remaining in 

this regard, with practicality and relevance for researchers who wish to harness the power of big-data/machine-learning 

technologies, thus creating significant energy saving benefits.
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Highlights

• Critical review of the heat pipe (HP) technologies was undertaken.



• Existing HP simulation models are extremely time-consuming and impractical.

• A big-data-trained HP machine learning algorithm is a solution.

• Challenges for the big-data-trained HP machine learning technology was investigated.

• The future research directions of the HP machine learning were outlined.
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