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On 22 May 2011 a massive tornado tore 

through Joplin, Mo., killing 158 people. With 

winds blowing faster than 200 miles per hour, 

the tornado was the most deadly in the 

United States since modern record keeping 

began in the 1950s.

As with any similar disaster, the event 

posed a number of questions: How and why 

did this happen? What forces caused the tor-

nado to form? What were the properties of the 

air and the land that spurred it to such great 

strengths? In many cases, researchers work to 

answer these questions not just for the disas-

ter in question but in a general sense.

 Ever-  advancing computing resources tempt 

researchers to simulate environmental sys-

tems in  ever-  increasing detail. An atmospheric 

model able to represent fine-scale turbulent 

eddies coupled to a land surface model, for 

instance, could be used to reproduce the 

Joplin tornado to try to figure out exactly why 

that storm grew so large. However, although 

such detailed simulations may be suitable for 

 scenario-  based predictions such as a specific 

historical event, they often are too contextu-

ally dependent to investigate fundamental 

 cause-  effect relationships. In short, advanced 

models may tell us how specifically but not 

why in general.

A major contemporary scientific challenge 

is to develop ways to resolve causality, not 

just correlation, in large-scale, nonlinear Earth 

systems. The goal is to answer the question of 

what makes a tornado stronger rather than 

what made the 2011 Joplin tornado so strong.

One way to attempt to resolve causality in 

a complex system is to adopt an exploratory 

modeling approach (see Figure 1). In such an 

approach, simple models are run repeatedly 

with different combinations of parameter 

values, governing mechanisms, or levels 

of mechanistic detail. At each stage of this 

iterative process, hypotheses are generated, 

tested, and refined in conjunction with field 

observations.

This approach has been refined in the past 

20 years in the geomorphological sciences. 

Here we explore the new opportunities af-

forded by increasing computing power and 

expanding sensor networks used in conjunc-

tion with exploratory modeling.

Appropriately Minimalist Modeling

Scientists who study nonlinear, dynamic 

systems have long been aware that complex 

phenomena may arise from simple processes. 

Simple sets of physical interactions within cer-

tain ranges of parameters can produce chaotic 

behavior, spatially periodic patterning, cata-

strophic shifts, phase transitions, or (multi)

fractal scaling [Schertzer and Lovejoy, 2011].

Exploratory modeling is, in essence, a 

philosophical approach to identifying these 

underlying processes. The reduced detail and 

complexity in exploratory models enable 

hypothesis testing over large spatial and time 

scales and enable rapid testing of many com-

binations of parameters and processes with-

out the need for an expensive supercomputer.

Exploratory modeling works by intention-

ally leaving out or simplifying physical details 

like turbulence or the role of nutrient trans-

port on detrital sediment production, not 

necessarily because those details are poorly 

understood or computationally demanding 

but because doing so helps elucidate the 

essential causative processes.

To ensure that essential processes are 

represented in a way sufficient to reproduce 

observed emergent processes, exploratory 

models may go far beyond so-called toy—or 

bare bones—models with the most minimal 

level of detail. However, they remain differ-

entiated from more figurative models in that 

secondary dynamics are absent or repre-

sented with very low levels of detail. Key to 

developing a successful exploratory model is 

selection of the appropriate level of detail, 

which should be just sufficient to reproduce 

the emergent phenomena of interest and any 

secondary details useful for selection between 

multiple models. Exploratory models gener-

ally work at the coarsest scale of process 

description commensurate with the problem 

being investigated.

Examples of Successful Exploratory Models

In geomorphology, the use of exploratory 

models to identify fundamental  cause-  effect 

relationships dates back 2 decades to the 

work of Murray and Paola [1994]. In their 

research the pair distilled braided stream 

dynamics down to an essential set of rules—

in this case, how riverbed slope guides dis-

crete parcels of water and sediment.

Using their simplified model, the authors 

were able to resolve a  long-  standing question 

in geomorphology. Namely, by using multiple 

model runs where different rules for sediment 

transport were switched on or off, Murray 

and Paola found that readily erodible banks 

unencumbered by topography are a key 

requirement for the formation of braided 

streams.

More recently, Rozier and Narteau [2014] 

used a few simple rules representing the mo-

tion of sand grains coupled to a model of air-

flow to elucidate the fundamental processes 

guiding barchan dune formation. The model’s 

ability to reproduce dune merging and calv-

ing behavior suggests that simple rules of 

sediment motion are sufficient for the devel-

opment of these behaviors in a broad sense.

As computational power increases, the 

tendency is to want to add complex physical 

processes into model simulations. In both of 

these examples, however, details such as 

spatially explicit turbulence would have been 

an unnecessary complication if the goal were 

to define  first-  order drivers and sensitivities.

Simple Models Facilitate Understanding 
Coupled Dynamics

Exploratory models are particularly pow-

erful for understanding coupled  physical- 

 human-  biological dynamics when there are 

many potential drivers or many spatiotemporal 

scales that are potentially important.

For example, to understand the critical 

drivers of landscape pattern formation in 

the Florida Everglades and its sensitivities to 

human stressors, Larsen and Harvey [2010] 

developed an exploratory model that coupled 

flow, vegetation, and sediment dynamics. So 

that the model could represent millennia of 

time, simplifications were made in how flow 

was simulated by obtaining approximate 

solutions to governing equations and decoupl-

ing the solution of vertical velocity profiles 

from that of horizontal flow. Phosphorus, a 

sensitive driver of Everglades vegetation but 

one hypothesized not to play a major role in 
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landscape patterning, was represented only 

indirectly in a term for a peat accretion rate.

Despite these simplifications, the authors 

used a detailed representation of how water 

flows through different vegetation communi-

ties that was developed in close association 

with field experiments and supported by data 

[Larsen and Harvey, 2010]. Consequently, res-

toration managers deemed the model trust-

worthy enough to use in simulating how flow 

affects sediment transport and landscape 

development, information that continues to 

influence subsequent restoration decisions.

In another recent example that combines 

paleoclimatology, hydrology, ecology, and 

archaeology, Coulthard et al. [2013] used an 

exploratory model to test the hypothesis that 

early humans were able to migrate out of 

Africa through the Sahara Desert by follow-

ing green corridors along rivers. Critically, a 

simplified exploratory flow model allowed full 

hydrodynamic simulations of river flow and 

flooding at continental scales. The research 

showed that in previous wetter climates there 

could have been enough water to permit 

migration along these corridors.

In these and other examples, the strategies 

used to simplify complex processes and in-

teractions to the appropriate level of detail are 

wide ranging. Strategies include rule-based 

cellular automata approaches, reduced spa-

tial dimensionality of governing equations, 

decoupling equations for dynamics that are 

only weakly linked, and hierarchical tech-

niques for representing cross-scale dynamics 

[Hewitson and Crane, 1996; Royle and Dorazio, 

2008].

Exploratory Modeling as a Research Guide

Although predicting emergent behavior 

from a set of known interactions can be 

straightforward, ascertaining the critical in-

teractions that explain observed emergent 

behavior is more challenging. The problem 

is that several different processes or param-

eter values can be combined to create the 

same emergent outcome, an issue known as 

equifinality.

Researchers using exploratory modeling 

address equifinality by constructing a variety 

of models that follow many potential path-

ways to produce an emergent phenomenon. 

Each of these different model constructions 

will behave slightly differently, and observa-

tions can be used to discriminate between 

alternate explanatory mechanisms. The ben-

efit of exploratory modeling is that these vari-

ous model constructions can guide specific 

observational research.

As an example, multiple mechanisms have 

been proposed to explain the maze-like 

 ridge-  hollow patterns ubiquitous in boreal 

peatlands. By turning simple formulations of 

these mechanisms on and off in a factorial 

design modeling experiment, Eppinga et al. 

[2009] showed that one of two mechanisms 

was responsible for the patterning: either a 

water stress feedback by itself or a water stress 

feedback coupled to a nutrient accumulation 

feedback. Further modeling research showed 

that nutrient concentrations would be lowest 

under ridges in the former scenario and high-

est under ridges in the latter.

Targeted sampling, motivated by the ex-

ploratory modeling, revealed that nutrient 

patterns in a continental peatland were con-

sistent with the nutrient accumulation feed-

back, whereas those in a maritime peatland 

were consistent with the water stress feedback 

[Eppinga et al., 2010]. Critically, the exploratory 

modeling provided recognition that nutrient 

patterns were mechanistically discriminatory 

and highlighted the most efficient strategy for 

field sampling.

Identifying New Causal Mechanisms

The models highlighted here were con-

structed on the basis of conceptual models 

and hypotheses developed from expert knowl-

edge or from the mechanisms known to drive 

similar systems. By necessity, the causal un-

derstanding that developed through the appli-

cation of these models was born out of trial 

and error through many iterative refinements. 

There is no guarantee that the exploratory 

modeling vetted all plausible hypotheses.

Fortunately, emerging statistical approaches 

in the geosciences may improve hypothesis 

generation and the efficiency with which 

models converge on plausible causal mecha-

nisms. Granger causality [Detto et al., 2012] 

and transfer entropy statistics [Ruddell and 

Kumar, 2009] resolve true causal relationships 

          Fig. 1. Exploratory modeling can play one part within a comprehensive approach to studying 

complex environmental systems. In this conception, models and field observations become pro-

gressively more refined toward the center. The iterative refinement is complete when the model is 

sufficient to meet specified objectives. ET means evapotranspiration.  
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between variables as well as their time scale 

of interaction. These analyses enable induc-

tive delineation of “process networks” from 

time series of multiple variables. Process 

networks constitute hypotheses of potential 

causal mechanisms, which would then be 

tested through, for example, an exploratory 

modeling process.

As the iterative process of model refine-

ment and field observations proceeds, ques-

tions and hypotheses become more specific. 

Thus, the level of detail in the later models 

may extend beyond what one would typically 

consider to be an “exploratory” model.

In their braided stream research, the ab-

stract exploratory models developed by Murray 

and Paola [1994] could replicate general 

channel dynamics yet exhibited scaling prob-

lems and failed to replicate observed braid-

ing intensity or  high-  sinuosity meanders 

[ Doeschl-  Wilson and Ashmore, 2005; Ziliani 

et al., 2013]. Later research that employed 

solutions to the full  shallow-  water equations 

with secondary circulation corrections (rather 

than Murray and Paola’s simplified version) 

fixed these problems but necessitated the use 

of a supercomputer [Nicholas, 2013].

In this way, the exploratory model may be 

perceived as a deductive counterpart to ex-

ploratory statistics. Like a principal compo-

nent analysis, it is useful as a way to identify the 

mechanisms responsible for the emergence of 

a large percentage of the coarse-scale stream 

behavior, but more detailed models may 

be needed to resolve the finer detail of that 

pattern.

A Foundation of Simplicity

Simplified models have flourished in the 

geosciences since the advent of computer 

programming. Yet progress on using simplified 

models to resolve causality in complex Earth 

and environmental systems has been uneven.

There seems to be an emerging recogni-

tion that exploratory models occupy a niche 

distinct from that of detailed simulation mod-

els, analogous to the way exploratory statis-

tics occupy a niche distinct from predictive 

statistics. Exploratory modeling and explora-

tory statistics both yield a coarse, fundamental 

understanding of primary drivers and sources 

of variability and may serve as an impor-

tant precursor to more detailed subsequent 

modeling.

Combined with continually advancing com-

puting power and the introduction of new 

statistical techniques, exploratory modeling 

will provide geoscientists with ever more 

opportunities to enhance their understanding 

of complex systems. In fact, they are rapidly 

emerging as a key foundation for any endeavor 

that seeks to test hypotheses to better under-

stand system drivers.
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