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Abstract

The problem of active fault tolerant control (FTC) of dynamical systems involves the process of fault detection and isola-
tion/fault estimation (FDI/FE) used to either make a decision as to when and how to change the control, based on FDI or
to compensate the fault in the control system via FE. The combination of the decision-making/estimation and control gives
rise to a bi-directional uncertainty in which the modelling and fault uncertainties and disturbances all affect the quality and
robustness of the FTC system. This leads to the FTC requirement for an integrated design of the FDI/FE and control sys-
tem reconfiguration. This paper focuses on the FTC approach using FE and fault compensation within the control system
in which the design is achieved by integrating together the FE and FTC controller modules. The FE is based on a modified
reduced-/full-order unknown input observer and the FTC system is constructed by sliding mode control using state/output
feedback. The integrated design is converted into an observer-based robust control problem solved via H∞ optimization with a
single-step LMI formulation. The performance effectiveness of the proposed integrated design approach is illustrated through
studying the control of an uncertain model of a DC motor.
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1 Introduction

Due to high demands on the reliability, safety, and ac-
ceptable performance of automatic systems, such as air-
craft, nuclear power plants, robotic systems, and chemi-
cal plants, fault detection and isolation(FDI) and fault-
tolerant control (FTC) have become important research
theory and application topics in the control community
(Patton, 1997; Blanke et al., 2006; Zhang & Jiang, 2008;
Ding, 2009; Isermann, 2011; Zhang et al., 2014; Feng &
Patton, 2014; Wang, 2015; Su et al., 2015).

1.1 Integration of FD/FTC

It has been known for some time that the FDI perfor-
mance for closed-loop systems is affected by the con-
troller when the system has modelling uncertainty (Nett
et al., 1988; Kilsgaard et al., 1996; Niemann& Stoustrup,
1997; Patton, 1997; Suzuki & Tomizuka, 1999; Zhou &
Ren, 2001; Khosrowjerdi et al., 2004; Henry & Zolghadri,
2005; Blanke et al., 2006; Zhang & Jiang, 2006; Weng
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et al., 2008; Davoodi et al., 2011, 2014a,b; Zhong&Yang,
2015). However, all these studies focus on the integration
of control and FDI and do not consider the integrated
design of FDI within an active FTC system. The term
active FTC here means that the controller changes in an
active way according to the effects that faults have on
the control reconfiguration. The passive form is just an
extension of robust control in which the faults are con-
sidered as an additional form of uncertainty affecting the
closed-loop system.

The design integration is a hard challenge since the re-
configuration and FDI roles have a bi-directional uncer-
tainty which is more complex when compared with in-
tegration of FDI within a closed-loop system i.e. with-
out an FTC function. The complexity arises from the
joint multi-objectives of robust closed-loop stability, ro-
bust residual performance (requiring optimal fault de-
tection thresholds), and robust fault tolerance with sta-
ble reconfiguration, generally operating in the presence
of variable time delay and uncertainty.

Furthermore, the FTC systems that use robust FDI are
exceedingly difficult to design and implement because of
(a) discrete-event structure with complex decision, (b)
variable and unknown time delay, and (c) a control re-
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Fig. 1. Integration of (a) FD/FTC and (b) FE/FTC

configuration that is very complex if not impossible in
some cases (Yang et al., 2009; Cieslak et al., 2015). This
approach to FTC is one of the most difficult problems of
adaptive control and in general is not suitable for prac-
tical application. As shown in Fig. 1, a systematic and
easily implementable integrated FTC design approach
based on FE rather than on the traditional residual-
based FDI is of interest in this paper.

1.2 Integration of FE/FTC

As a powerful alternative to using the traditional FDI
approach in FTC systems, it is attractive to consider a
direct reconstruction of the fault signal through FE, once
it occurs. The FE function intrinsically includes the fault
detection and fault isolation roles and the more complex
FDI role is thus obviated. In this approach the recon-
structed or estimated fault signals are used directly in
the control system to compensate for the effects of the
faults. Several approaches to FE design for FTC have
been proposed, e.g. based on: adaptive observer (Kaboré
& Wang, 2001; Jiang et al., 2006), sliding mode observer
(SMO) (Edwards & Tan, 2006), extended state observer
(ESO) (Gao & Ding, 2007), unknown input observer
(UIO) (Odgaard & Stoustrup, 2012), and moving hori-
zon estimation (Feng & Patton, 2014). A combination
of SMO and ESO was also proposed in Shi et al. (2015).

The direct use of FE without the need for a reconfig-
urable mechanism brings significant convenience and ap-
plication potential to the subject of FTC system design.
This approach can also facilitate the development of ro-
bust methods of truly integrated FE/FTC design, taking
account of the bi-directional uncertainty. However, the
available literature for the integrated design of FE/FTC
is limited. Jiang et al. (2006) dealt with the FE based
fault accommodation for non-linear systems with actua-
tor faults. Rodrigues et al. (2014) proposed an observer-
based FTC design for LPV descriptor systems with actu-
ator faults. Cheng et al. (2011) considered this problem
including disturbance and uncertainty, focusing on a re-

liable satellite attitude control system subject to sensor
faults. However, their approach used the so-called pas-
sive FTC without FE, i.e. based on robust control and
cannot be included in the active approach to FTC that
is important in this current study.

1.3 Contribution

Inspired by the above background, this paper devel-
ops a novel integrated FTC design for uncertain linear
systems with additive/multiplicative faults and distur-
bance. Compared to the relevant existing literature, the
main contributions of this paper are:

• Reduced-/full-order UIOs without rank condition are
proposed to achieve FE. Although there are many ex-
isting FE observers as listed above, in the adaptive ob-
server the faults are estimated with finite error, and for
the estimation of time-varying faults, the observer has
a proportional-integration (PI) structure with carefully
chosen learning rate. The canonical form SMO (Edwards
& Tan, 2006) requires several state transformations as
well as a priori knowledge of the upper bounds of the
faults and it is difficult to reconstruct sensor and ac-
tuator faults simultaneously. The ESO reconstructs the
faults in a polynomial form with a priori knowledge of
orders. The moving horizon estimation is a highly com-
plex on-line optimization problem. The existing UIOs
are obtained after satisfying a well-known rank condi-
tion (Chen & Patton, 1999). In this study, reduced-/full-
order UIOs without rank condition are modified from
Chen & Patton (1999) and Xiong & Saif (2003) and
combined with the ESO to achieve either (a) combined
state and fault estimation for time-varying faults, or (b)
simultaneous time-varying faults and system states for
the output feedback case. The proposed UIOs do not re-
quire state transformation and fault information (upper
bounds and fault characteristics), or on-line computa-
tion. Another new property of the reduced-order UIO
for FE is that the estimation of the system states is not
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necessary, leading to the design of an observer with re-
duced dimension.

• Both the cases of state/output feedback sliding mode
FTC are studied. Considering its potential robustness
to uncertainty and disturbance, SMC has recently been
used extensively for FTC design (e.g., Alwi & Edwards
(2008); Xiao et al. (2012); Zhao et al. (2014); Huang &
Patton (2015)). Few works consider unmatched norm-
bounded system uncertainty and FE design and little
attention has been paid to the output feedback case.
Here, sliding mode FTC designs for both state and out-
put feedback cases are developed for systems subject to
unmatched norm-bounded uncertainty.

•A novel integrated FE/FTC design strategy is proposed.
For systems with additive or multiplicative faults, an in-
tegrated FE/FTC strategy is developed by designing to-
gether the FE and FTC controller via H∞ optimization
with a single-step LMI formulation.

1.4 Structure and notation

The paper is organized as follows. Section 2 gives the
problem formulation. The integrated FE/FTC designs
with additive faults using state/output feedback are con-
sidered in Sections 3 and 4, respectively. The integrated
design for systems with multiplicative faults is outlined
in Section 5. Section 6 provides an illustrative example,
and Section 7 concludes the study. The symbol † repre-
sents the pseudo inverse, ∥ · ∥ represents the Euclidean
norm, He(X) = X +X⊤, and ⋆ represents the symmet-
ric part of a matrix.

2 Problem formulation

In order to illustrate the concept of FE/FTC integration
in a simple and effective way, the following class of linear
systems with system state uncertainty is considered

ẋ(t) = (A+∆A(t)) +Bu(t) + Fafa(t) +Dd(t)

y(t) =Cx(t) + Fsfs(t) (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp stand for the state,
control input, and system output, respectively. fa ∈ Rq

and fs ∈ Rq1 denote respectively the actuator and sensor
faults, which might be viewed as actuator/sensor offsets
in physical systems (Isermann, 2011). d ∈ Rl denotes the
external disturbance. ∆A(t) represents the unknown un-
matched system matrix uncertainty. The matrices A, B,
Fa, D, C, and Fs are known constant matrices of com-
patible dimensions. Without loss of generality, assume
that q ≤ m and q1 ≤ p.

Assumption 2.1 The pair (A,C) is observable, the pair
(A,B) is controllable, and rank(B,Fa) = rank(B) = m.

Assumption 2.2 The uncertainty matrix ∆A(t) is
norm-bounded (energy bounded) with the form

∆A(t) = M0F0(t)N0

where M0 and N0 are known matrices with appropriate
dimensions, and F0(t) is an unknown matrix satisfying
F⊤
0 (t)F0(t) ≤ I.

Assumption 2.3 The faults and disturbance satisfy
∥fa∥ ≤ f̄a, ∥fs∥ ≤ f̄s, and ∥d∥ ≤ d0 with unknown pos-
itive scalars f̄a, f̄s, and d0, respectively. Moreover, fa
and fs have norm-bounded first time derivatives.

Remark 2.1 Assumption 2.1 provides some standard
requirements of controlled systems, while rank(B,Fa) =
rank(B) ensures fa to be in the range space of the control
u so that the fault effect is compensated through the con-
trol action. Assumption 2.2 gives a general representa-
tion of a system unmatched uncertainty matrix usingH∞
optimization. Assumption 2.3 implies that the considered
faults and disturbance are norm-bounded with unknown
upper bounds, this is useful for practical application.

Augmenting the system (1) into

˙̄x= Āx̄+ B̄u+∆Āx̄+ D̄d̄

y = C̄x̄ (2)

where x̄ = [x⊤ f⊤
a f⊤

s ]⊤, d̄ = [d⊤ ḟ⊤
a ḟ⊤

s ]⊤, and

Ā =


A Fa 0

0 0 0

0 0 0

, ∆Ā =


∆A 0 0

0 0 0

0 0 0

, B̄ =


B

0

0

,

D̄ =


D 0 0

0 Iq 0

0 0 Iq1

 , C̄ = [C 0 Fs].

The following UIO is proposed to estimate the aug-
mented state x̄

ξ̇o =Moξo +Gou+ Loy
ˆ̄x= ξo +Hoy (3)

where ξo, ˆ̄x ∈ Rn+q+q1 denote respectively the observer
system state and the augmented state estimate. The de-
sign matrices Mo, Go, Lo, and Ho are of appropriate
dimensions.

Denote Ξ = In+q+q1 −HoC̄ and Lo = L1 + L2, so that

ėo = (ΞĀ− L1C̄)eo + (ΞĀ− L1C̄ −Mo)ξo
+(ΞB̄ −Go)u+ [(ΞĀ− L1C̄)Ho − L2]y + χa (4)

where χa = Ξ∆Āx̄+ ΞD̄d̄.
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Necessary conditions for the stability and unbiasedness
of the error system (4) are

Mo is Hurwitz (5)

ΞĀ− L1C̄ −Mo = 0 (6)

ΞB̄ −Go = 0 (7)

(ΞĀ− L1C̄)Ho − L2 = 0. (8)

With (6) - (8), (4) becomes

ėo = (ΞĀ− L1C̄)eo + χa. (9)

The disturbance and uncertainty can be totally decou-
pled when χa = 0. However, this decoupling is usu-
ally not possible in practice so that the term χa affects
the estimation performance. Define ex, efa , and efs as
the estimation errors of the state, actuator fault, and
sensor fault, respectively. Let eo = [e⊤x e⊤fa e⊤fs ]

⊤ and

Ho = [H1;H2;H3]. Note that

χa =


(In −H1C)(Dd+∆Ax)−H1Fsḟs

−H2C(Dd+∆Ax) + ḟa −H2Fsḟs

−H3C(Dd+∆Ax) + (Iq1 −H3Fs)ḟs

 . (10)

It is observed from (9) and (10) that the model mis-
match between the observer and the control system (i.e.,
system uncertainty ∆Ax, disturbance d, and fault mod-
elling errors ḟa and ḟs) affects the state and fault estima-
tion performance. If the actuator and sensor faults oc-
cur simultaneously, the sensor fault modelling error will
also affect the actuator fault estimation performance.

A general form of active FTC controller using FE is

u = Ka ˆ̄x (11)

where the compatible matrixKa = [Kx Kf ] includes the
nominal controller gain Kx and the fault compensation
gain Kf . According to Assumption 2.1, it can be chosen
that Kf = B†Fa.

Substituting (11) into (1) yields the closed-loop system

ẋ= (A+BKx)x−BKaeo +∆Ax+Dd. (12)

As shown in (12), the system uncertainty, disturbance,
and estimation errors all affect the FTC performance.

It follows from (9) and (12) that there exists a bi-
directional robustness interaction between the observer
and the control system, which is summarized in Fig. 2.
In most cases, the bi-directional interaction exists com-
monly in the designs of observer-based FE within FTC
systems due to the existence of the inevitable model mis-
match and estimation error. This bi-directional interac-
tion breaks down the well-known Separation Principle

Fig. 2. Bi-directional interaction within FTC systems

and thus puts forward the necessity and importance of
the integrated design of FE/FTC, which motives us to
study the following problem.

Problem 2.1 Given the system (1) with uncertainty,
disturbance, and faults, it is required to design together
the following FE and FTC modules to guarantee system
stability after the fault occurrence: (i) Observer: estimate
the faults for the state feedback case, and simultaneously
the faults and states for the output feedback case; (ii)
Sliding mode FTC controller: state/output feedback.

Note thatProblem 2.1 is an observer-based robust con-
trol problem, which for solution requires a bilinear ma-
trix inequality (BMI) that cannot be solved directly us-
ing the LMI toolbox. To obviate this BMI problem, Shi
& Patton (2015) proposed a two-step method for inte-
grated FE/FTC design for LPV descriptor systems with
actuator/sensor faults and disturbance. However, this
two-step approach can only obtain a suboptimal solution
of the integrated design, and the feasible controller gains
obtained in the first step cannot guarantee the solvabil-
ity of the observer designed in the second step.

A robust observer-based control design was proposed
in Lien (2004) for uncertain linear systems with equal-
ity constraint solved by a single-step LMI formulation.
More recently, a new observer-based control design ap-
proach was proposed in Kheloufi et al. (2013) without
equality constraint with the help of the Young relation.
However, as commented in Wang & Jiang (2014), this
new approach has no superiority over the one in Lien
(2004), which is thus used in this study.

3 Integrated FE/FTC design: state feedback

Provided that all the system states are available, then
only the fault estimation is needed for the FTC design.

3.1 FE design

Note that the observability of (2) is equivalent to that
of (1). The reduced-order UIO in Xiong & Saif (2003)
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is modified here to estimate the faults fa and fs, i.e.,
z = Lx̄ with L = [0 Iq+q1 ] ∈ R(q+q1)×(n+q+q1)

ξ̇s =Mξs +Gu+Ry

ẑ = ξs +Hy (13)

where ξs, ẑ ∈ Rq+q1 denote the observer state and the
estimate of z, respectively. The design matrices M , G,
R, and H are of appropriate dimensions.

Define ε = ξs − T x̄, it follows that

ε̇=Mε+ (MT +RC̄ − TĀ)x̄+ (G− TB̄)u− T∆Āx̄

−TD̄d̄

es = ε+ (T +HC̄ − L)x̄. (14)

Theorem 3.1 There exists a stable and unbiased gen-
eralized observer (13) for the system (2) when ∆Āx̄ = 0
and d̄ = 0, if it holds that

M is Hurwitz (15)

MT +RC̄ − TĀ= 0 (16)

T +HC̄ − L= 0 (17)

G− TB̄ = 0. (18)

Proof 3.1 With (16) - (18) and ∆Āx̄ = 0 and d̄ = 0,
the error system (14) becomes

ε̇=Mε

es = ε.

Since M is Hurwitz, limt→∞ es(t) = 0.

Define a full-row rank matrix: S = [L† (In+q+q1 −
L†L)] = [S1 S2] with the property that S2S1 = 0 and
rank(S) = rank(S1) + rank(S2) = n+ q + q1.

Lemma 3.1 The matrix equation

ΛΩ = Ψ (19)

with Ω =

[
C̄S2

C̄ĀS2

]
, Ψ = LĀS2, and the determined

matrix Λ, is solvable if it holds that

rank


LĀ

C̄

C̄Ā

L

 = rank


C̄

C̄Ā

L

 . (20)

Proof 3.2 Post-multiplying both sides of (20) with a full
row-rank matrix [S2 S1] gives

rank

[
Ψ

Ω

]
= rank(Ω).

Thus, the matrix equation (19) is solvable.

Lemma 3.2 The pair (M2,M1), where M1 = LĀS1 −

ΨΩ†Γ, M2 = (I2p − ΩΩ†)Γ, and Γ =

[
C̄S1

C̄ĀS1

]
, is de-

tectable, if it holds that, ∀s ∈ C, Re(s) ≥ 0,

rank


sL− LĀ

C̄

C̄Ā

 = rank


C̄

C̄Ā

L

 . (21)

Proof 3.3 See Appendix A.

It follows from (17) that T = L−HC̄, and substituting
this into (15) yields

M(L−HC̄) +RC̄ − (L−HC̄)Ā = 0.

Now denote T1 = R−MH, it follows that

LĀ−ML = [T1 H]

[
C̄

C̄Ā

]
. (22)

Post-multiplying both sides of (22) by S yields

M = LĀS1 − [T1 H]

[
C̄S1

C̄ĀS1

]
(23)

LĀS2 = [T1 H]

[
C̄S2

C̄ĀS2

]
. (24)

Rearranging (24) as [T1 H]Ω = Ψ, which is solvable
according to Lemma 3.1 with a general solution

[T1 H] = ΨΩ† + Z(I2p − ΩΩ†) (25)

where Z ∈ R(q+q1)×2p is an arbitrary matrix.

It follows from (23) and (25) that

M = M1 − ZM2, H = H1 + ZH2 (26)

where H1 = ΨΩ†Γ1, H2 = (I2p − ΩΩ†)Γ1, and Γ1 =
[0 Ip]

⊤.

The matricesM1 andM2 in (26) are known from Lemma
3.2. By designing Z to make M Hurwitz, H can be ob-
tained. Further using T1 = R −MH gives R and using
Theorem 3.1 gives G.
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However, since there exist uncertainty and disturbance
in the system (1), i.e., ∆Āx̄ ̸= 0 and d̄ ̸= 0, the er-
ror system (14) should be made robustly stable. Denote
H̄1 = H1C̄ − L and substitute M = M1 − ZM2 and
T = L−HC̄ into (19), it follows that

ės = (M1 − ZM2)es + (H̄1 + ZH2C̄)(∆Āx̄+ D̄d̄). (27)

Thus, by designing the arbitrary matrix Z to ensure (27)
to be robustly stable, the observer (13) for the system
(1) with uncertainty and disturbance can be obtained.

Remark 3.1 The proposed reduced-order UIO (with an
order of q + q1) is interesting in three respects: (i) The
traditional UIOs (Chen & Patton, 1999; Xiong & Saif,
2003; Odgaard & Stoustrup, 2012) decouple the dis-
turbance with the satisfaction of a rank condition, i.e.,
rank(C̄D̄) = rank(D̄), which is restrictive and often
cannot be satisfied. H∞ optimization is employed here
to attenuate the disturbance and the arbitrary matrix
Z is obtained using LMI tools; (ii) In contrast to the
majority of existing FE approaches (with an order of
n+q+q1), the fault estimation is achieved without extra
effort to estimate the system states which are available
for FTC design; (iii) Note that (20) and (21) are two
sufficient conditions for the existence of a solution to
Theorem 3.1 as well as the proposed reduced-order UIO.
However, since LĀ = 0 and s ∈ C, Re(s) ≥ 0, these two
conditions are always satisfied.

3.2 FTC design

The sliding surface for the system (1) is designed as

s1 = N1x (28)

where s1 ∈ Rm and N1 = B† − Y1(In − BB†) with
B† = (B⊤B)−1B⊤ and an arbitrary matrix Y1 ∈ Rm×n.
Differentiating s with respect to time gives

ṡ1 = N1(A+∆A)x+ u+N1Fafa +N1Dd. (29)

Design the control input as

u = ul1 + un1 (30)

where the linear feedback component is ul1 = −Ksx −
E1f̂a with a design matrix Ks ∈ Rm×n and E1 = B†Fa.
The nonlinear component un1 is

un1 =

{
−ρs1(t)

s1
∥s1∥ , s1 ̸= 0

0, s1 = 0

with ρs1(t) = η̂s1 + φs1 + εs1 . φs1 > 0 is a constant
scalar and εs1 > 0 is some small scalar. The scalar

η̂s1 is introduced to estimate the unknown scalar ηs1 =

∥N1D∥d0 + ∥E1∥(f̄a + ∥f̂a∥) using an update law

˙̂ηs1 = σ1∥s1∥, η̂s1(0) ≥ 0

with a learning rate σ1 > 0 to be designed.

Define the estimation error of ηs1 as η̃s1 = ηs1 − η̂s1 .
Consider a Lyapunov function

Vs1 =
1

2
(s⊤1 s1 +

1

σ1
η̃2s1).

It follows from (29) and (30) that

V̇s1 = s⊤1 ṡ1 −
1

σ1
η̃s1

˙̂ηs1

≤ (ωs1∥x∥+ ηs1 − ρs1(t))∥s1∥ − η̃s1∥s1∥
≤ (ωs1∥x∥ − φs1 − εs1)∥s1∥.

where ωs1 = ∥N1A − Ks∥ + ∥N1M0∥∥N0∥. By choos-
ing φs1 > ωs1ϕs1 with some scalar ϕs1 > 0, it follows
that the reaching and sliding conditions are satisfied, i.e.,
s⊤1 ṡ1 ≤ −εs1∥s1∥, in the subset Ωs1 = {x : ∥x∥ ≤ ϕs1}.
Thus, the controller (30) ensures that if x(0) ∈ Ωs1 , then
for all t > ∥s1(0)∥/εs1 , s1 = ṡ1 = 0.

Now consider the system stability analysis correspond-
ing to the sliding mode. Suppose that the system has al-
ready been controlled to remain within the sliding mode
(28). Substituting the equivalent control

ueq1 = −(N1Ax+N1Dd) + ul1 (31)

into (1) gives the closed-loop system

ẋ = (Θ1A−BKs)x+∆Ax+ F1es +Θ1Dd (32)

where Θ1 = In −BN1 and F1 = [Fa 0].

Thus, by designing Kx such that (32) is robustly stable,
then the system (1) is maintained on the sliding mode
with the equivalent control (31).

3.3 Integrated synthesis

The augmented closed-loop system consisting of (27)
and (32) is

ẋ= (Θ1A−BKs)x+∆Ax+ F1es +D1d̄

ės = (M1 − ZM2)es + (H̄1 + ZH2C̄)(∆Āx̄+ D̄d̄)

yc = y − Fsf̂s
zs =Csxx+ Csees (33)

where zs ∈ Rr is the measured output and D1 =
[Θ1D 0].
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Fig. 3. Integrated FE/FTC design: state feedback case

Theorem 3.2 Under Assumptions 2.1 - 2.3, given a
positive scalar γs, the augmented closed-loop system (33)
is stable with H∞ performance ∥Gzsd̄∥∞ < γs, if there
exist symmetric positive definite matrices P and Q, and
matrices P̂ , R1, and R2 such that

PB = BP̂ (34)

χ11 χ12 χ13 χ14 0 C⊤
sx

⋆ χ22 χ23 0 χ25 C⊤
se

⋆ ⋆ −γ2
sI 0 0 0

⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −I


< 0 (35)

where χ11 = He(PΘ1A− BR1) + 2N⊤
0 N0, χ12 = PF1,

χ13 = PD1, χ14 = PM0, χ22 = He(QM1−R2M2), and
χ23 = (QH̄1 + R2H2C̄)D̄, χ25 = (QH̄1 + R2H2C̄)M̄0,

then the gains are given by Ks = P̂−1R1 and Z =
Q−1R2.

Proof 3.4 See Appendix B.

Remark 3.2 Note that the equality constraint (34) is
difficult to solve using the LMI toolbox. However, by us-
ing the method presented in Corless & Tu (1998), for a
positive scalar βs, it can be converted into the following
optimization problem and solved using the LMI toolbox:

Minimize βs

subject to (35) and

[
βsI PB −BP̂

⋆ βsI

]
> 0.

The proposed state feedback based integrated FE/FTC
design is summarized in Fig. 3.

4 Integrated FE/FTC design: output feedback

Section 3 presents a state feedback based integrated
FE/FTC strategy with the assumption that the system
states are fully available. However, this is often not the
case in practical applications. This section considers an
output feedback based integrated FE/FTC strategy, for
which purpose one more assumption is made.

Assumption 4.1 rank(CB) = rank(B).

4.1 FE design

The observer (3) is proposed to estimate simultaneously
the state and faults, i.e., the augmented state x̄. It follows
from Section 2 that with (6) - (8) the error system is

ėo = (ΞĀ− L1C̄)eo + Ξ∆Āx̄+ ΞD̄d̄. (36)

Thus, by designingH0 and L1 such that the error system
(36) is robustly stable, the observer (3) can be obtained.

4.2 FTC design

A sliding surface using the output feedback information
for the system (1) is designed as

s2 = N2yc (37)

where s2 ∈ Rm, N2 = (CB)† − Y2(Ip − CB(CB)†)
with an arbitrary matrix Y2 ∈ Rm×p and (CB)† =

((CB)⊤CB)−1(CB)⊤. yc = y−Fsf̂s = Cx+Fsefs with
the sensor fault estimation error efs .

Differentiating s2 with respect to time gives

ṡ2 =N2C((A+∆A)x+ Fafa +Dd) +N2Fsėfs + u.

(38)

Design the control input as

u = ul2 + un2 (39)

where the linear component is ul2 = −Kox̂−E2f̂a with

a design matrix Ko ∈ Rm×n and E2 = B†Fa. x̂ and f̂a
are the estimates of the system state and actuator fault,
respectively. The nonlinear component un2 is

un2 =

{
−ρs2(t)

s2
∥s2∥ , s2 ̸= 0

0, s2 = 0

with ρs2(t) = η̂s2+φs2+εs2 . φs2 > 0 is a design constant
and εs2 > 0 is some small constant. The scalar η̂s2 is
used to estimate the unknown scalar ηs2 = ∥N2CD∥d0+
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∥E2∥(∥f̂a∥+ f̄a) + ∥Ko∥∥ex∥+ ∥N2∥(∥ ˙̂
fs∥+ ∥ḟs∥) with

an update law

˙̂ηs2 = σ2∥s2∥, η̂s2(0) ≥ 0

where σ2 > 0 is a given constant scalar.

Define the estimation error of ηs2 as η̃s2 = ηs2 − η̂s2 .
Consider a Lyapunov function

Vs2 =
1

2
(s⊤2 s2 +

1

σ2
η̃2s2).

It follows from (38) - (39) that

V̇s2 ≤ (ωs2∥x∥ − φs2 − εs2)∥s2∥.

where ωs2 = ∥N2CA −Ko∥ + ∥N2M0∥∥N0∥. Choosing
φs2 > ωs2ϕs2 with a given scalar ϕs2 > 0, then the
reaching and sliding condition is satisfied, i.e., s⊤2 ṡ2 ≤
−εs2∥s2∥, in the subset Ωs2 = {x : ∥x∥ ≤ ϕs2}. Thus,
the controller (39) ensures that if x(0) ∈ Ωs2 , then for
all t > ∥s2(0)∥/εs2 , s2 = ṡ2 = 0.

Consider the analysis of the system stability on the slid-
ing mode. Given the equivalent control

ueq2 = −(N2CAx+N2CDd) + ul2 (40)

and denote Θ2 = In − BN2C and F2 = [BKo Fa 0]. It
follows from (1) that (40) can maintain the system on
the sliding mode by designingKo such that the following
closed-loop system is robustly stable

ẋ = (Θ2A−BKo)x+ F2eo +∆Ax+Θ2Dd. (41)

4.3 Integrated synthesis

The augmented closed-loop system consisting of (36)
and (41) is

ẋ= (Θ2A−BKo)x+ F2eo +∆Ax+D2d̄

ėo = (ΞĀ− L1C̄)eo + Ξ∆Āx̄+ ΞD̄d̄

yc = y − Fsf̂s
zo =Coxx+ Coeeo (42)

where zo ∈ Rr is the measured output and D2 =
[Θ2D 0].

Theorem 4.1 Under Assumptions 2.1 - 2.3 and 4.1,
given a positive scalar γo, the augmented closed-loop sys-
tem (42) is stable with H∞ performance ∥Gzod̄∥∞ < γo,
if there exist symmetric positive definite matrices Po,Q1,

Fig. 4. Integrated FE/FTC design: output feedback case

Q2, and Q3, and matrices P̂o , X1, X2, X3, X4, X5, X6,
and X7 such that

PoB = BP̂o (43)[
Ξ̄
]
10×10

< 0 (44)

where Ξ̄ is a symmetric block matrix whose (i, j) block
element is represented by Ξ̄i,j. For 1 ≤ i ≤ j ≤ 10,
Ξ̄1,1 = He(PoΘ2A−BX1) + 2N⊤

0 N0, Ξ̄1,2 = BX1,
Ξ̄1,3 = PoFa, Ξ̄1,5 = PoΘ2D, Ξ̄1,8 = P0M0, Ξ̄1,10 = C⊤

ox,
Ξ̄2,2 = He(Q1A−X2CA−X3C),
Ξ̄2,3 = Q1Fa −X2CFa −A⊤C⊤X⊤

4 − C⊤X⊤
5 ,

Ξ̄2,4 = M3Fs −A⊤C⊤X⊤
6 − C⊤X⊤

7 ,
Ξ̄2,5 = Q1D −X2CD, Ξ̄2,7 = −X2Fs,
Ξ̄2,9 = (Q1 −X2C)M0, Ξ̄2,10 = C⊤

ex,
Ξ̄3,3 = He(−X4CFa), Ξ̄3,4 = −X5Fs − F⊤

a C⊤X⊤
6 ,

Ξ̄3,5 = −X4CD, Ξ̄3,6 = Q2, Ξ̄3,7 = −X4Fs,
Ξ̄3,9 = −X4CM0, Ξ̄3,10 = C⊤

efa,

Ξ̄4,4 = He(−X7Fs), Ξ̄4,5 = −X6CD, Ξ̄4,7 = Q3−X6Fs,
Ξ̄4,9 = −X6CM0, Ξ̄4,10 = C⊤

efs,

Ξ̄5,5 = Ξ̄6,6 = Ξ̄7,7 = −γ2
oI, Ξ̄8,8 = Ξ̄9,9 = Ξ̄10,10 = −I,

Ξ̄i,j are null for all the others.

Then the gains are given byKo = P̂−1
o X1,H1 = Q−1

1 X2,
H2 = Q−1

2 X4, H3 = Q−1
3 X6, L11 = Q−1

1 X3, L12 =
Q−1

2 X5, and L13 = Q−1
3 X7.

Proof 4.1 Denote Coe = [Cex Cefa Cefs], Qo =
diag(Q1(n×n), Q2(q×q), Q3(q1×q1)), L1 = [L11;L12;L13],
and Ho = [H1;H2;H3], and consider the Lyapunov
functions Vxo = x⊤Pox and Veo = e⊤o Qoeo. The proof is
similar to that of Theorem 3.2, and thus is omitted here.

According to Remark 3.2, Theorem 4.1 can be further
converted into an optimization problem with a positive
scalar βo. The proposed output feedback based inte-
grated FE/FTC design is summarized in Fig. 4.
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5 Integrated FE/FTC design: multiplicative
faults

The previous Sections focus on the integrated FE/FTC
designs for systems with actuator/sensor faults. The
considered faults are added to the system state and out-
put, i.e., additive faults, resulting in changes in the mean
values of the system states and outputs. Besides additive
faults, multiplicative faults which are defined as com-
ponent faults (even some kinds of actuator and sensor
faults are in the form of multiplicative faults, e.g., partial
loss of actuator effectiveness) also need to be discussed,
since they affect the stability and degrade the perfor-
mance of the post-fault system. Several works have been
published on some topics related to multiplicative faults,
e.g., multiplicative fault modelling and diagnosis (Ding,
2008), and multiplicative fault estimation (Wang & Da-
ley, 1996; Tan & Edwards, 2004; Gao & Duan, 2012).

Consider an uncertain linear systems in the form of

ẋ= (A+∆A(t))x+Bu+ Fmfm +Dd

y =Cx (45)

where Fm ∈ Rn×qm and other terms are defined in (1).
The fictitious multiplicative fault fm ∈ Rqm is

fm = Bm

qm∑
i=1

θiϕi(A,B, x, u) (46)

where Bm = F †
m − (F †

mFm − Iqm)W with an arbitrary
matrix W ∈ Rqm×n. θi ∈ R1, i = 1, 2, · · · , qm, are
time-varying scalar functions denoting the multiplica-
tive faults, and ϕi(A,B, x, u) ∈ Rn×1, i = 1, 2, · · · , qm
are known functions related to A, B, x, and u.

The formulation (46) represents a wide class of multi-
plicative faults, e.g.,

qA∑
i=1

θAiAix = FmA

(
BmA

qA∑
i=1

θAiAix

)
= FmA

fmA
,

qB∑
i=1

θBiBiu = FmB

(
BmB

qB∑
i=1

θBiBiu

)
= FmBfmB ,

qA∑
i=1

θAiAix+

qB∑
i=1

θBiBiu

= Fm

(
Bm

qA∑
i=1

θAiAix+Bm

qB∑
i=1

θBiBiu

)
= Fmfm

where Ai, i = 1, 2, · · · , qA, and Bi, i = 1, 2, · · · , qB ,
denote the known matrices related to A and B.

In the literature (Wang & Daley, 1996; Tan & Edwards,
2004; Ding, 2008; Gao & Duan, 2012), the effort was put

into the estimation of θi, i = 1, 2, · · · , qm. However, few
works have been published on FTC design for systems
with multiplicative faults. Provided that the aim is to
achieve acceptable closed-loop system performance, the
purpose of FTC design is to compensate for the effect of
the multiplicative faults, whatever their sources or size.
This can be achieved even if the fictitious multiplica-
tive fault fm cannot reflect the real fault location and
size. In this respect, the integrated FE/FTC design of
the system (45) along with multiplicative fault can be
achieved through the designs proposed in Sections 3 - 4
with minor modification, by estimating and compensat-
ing the fictitious multiplicative fault fm with the chosen
Fm satisfying rank(B,Fm) = rank(B) = m ≤ n.

Remark 5.1 The considered system (1) is required
to satisfy the matching condition, i.e., rank(B,Fa) =
rank(B). However, when rank(B,Fa) ̸= rank(B)
but rank(B) = m ≤ n, the actuator fault fa can
be handled in the following way: Denote Fafa =

(BB† + B⊥B⊥†
)Fafa where B⊥ ∈ Rn×(n−m) spans the

null space of B and BB† + B⊥B⊥†
= In. Using the

proposed design strategy, the matching part BB†Fafa
of the actuator fault can be estimated and compensated,

while the unmatched part B⊥B⊥†
Fafa can be treated as

a disturbance covered by H∞ optimization.

Remark 5.2 In this paper, the existing nonlinear con-
straints are converted into linear ones by introducing
equality constraints. Although this facilitates the solu-
tion of the formulated optimization problem, the equality
constraints impose restrictions on the controlled system
models. As discussed in Lien (2004) and Kheloufi et al.
(2013), necessary conditions for the feasibility of the ob-
tained LMIs are: (1) The system (1) is stabilizable and
detectable; and (2) The matrix B is full-column rank.
These two conditions are satisfied for most controlled sys-
tems. However, more conservativeness might be imposed
on the optimization problem in some special cases, e.g.,
for the DC motor model studied in Section 6, the sym-
metric positive definite matrices P and P0 are required
to be diagonal as the matrix B is of the form B = [B1; 0]
whereB1 is a none null matrix of appropriate dimension.

Remark 5.3 Recall that by using an adaptive law in
the proposed controller to estimate the unknown scalar
related to the faults and disturbance, of which a priori
knowledge of the upper bounds are not required. This
adaptive updating requires some on-line computation.
However, except for the adaptive gains all the other con-
troller and observer gains are pre-determined off-line,
mainly by solving single-step LMIs. Moreover, the pro-
posed design procedure is quite straightforward and easy
to follow. The proposed integrated design strategies are
with acceptable computational complexity and can be ap-
plicable in practice.

9

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



6 Case Study

Considering the stabilization control for a DC motor
with the state space model

ẋ= (A+∆A)x+Bu+Dd

y =Cx (47)

with states x = [ia w]⊤, control input u = va, distur-
bance d = −Tl

Ji
, output y, and

A =

[
−Ra

La
−Kv

La

Km

Ji
−B0

Ji

]
, B =

[
1
La

0

]
, D =

[
0

1

]
,

C =

[
1 0

0 1

]
, ∆A =

[
0 σv

σm 0

]
.

where ia, w, and va denote the armature current, the
angular velocity, and the armature voltage, respectively.
Ra is the armature resistance and La is the inductance.
Kv and Km are the voltage and motor constants which
are supposed to have parameter variations |σv| ≤ 0.06
and |σm| ≤ 0.06, respectively. Ji is the moment of inertia
and B0 is the friction coefficient. Tl is the unknown load
torque. Our purpose is to regulate the output y, i.e., the
armature current and angular velocity, to be zero.

Taken from Bélanger (1995) the parameters of the DC
motor: Ra = 1.2, La = 0.05, Kv = 0.6, Km = 0.6,
Ji = 0.1352, and B0 = 0.3. The parameter variations
and disturbance are assumed to be σv = σm = −0.01
and d = 0.01 sin(t), respectively. Denote |σv| ≤ αv and
|σm| ≤ αm with two positive scalars αv and αm. Accord-
ing to Assumption 2.2, it can be chosen that

M0 =

[
1 0

0 1

]
, F0 =

[
σv

αv
0

0 σm

αm

]
, N0 =

[
0 αv

αm 0

]

where αv = 0.01 and αm = 0.01.

6.1 Integrated FE/FTC design with additive faults

As considered by Isermann (2011), there might be addi-
tive faults during the operation of the DC motor system
(47). Consider here an offset fault of the armature cur-
rent and angular velocity sensors, i.e., sensor fault fs,
and a voltage sensor gain fault of va, i.e., actuator fault
fa. It follows from (1) that the model (47) now becomes

ẋ= (A+∆A)x+Bu+ Fafa +Dd

y =Cx+ Fsfs (48)

where

Fa =

[
1

10La

0

]
, fa =



0.5, 0 ≤ t ≤ 1.5

1, 1.5 < t ≤ 3

0.2, 3 < t ≤ 3.5

0.6, 3.5 < t ≤ 4

1, t > 4

,

Fs =

[
−1

2

]
, fs =

{
0, 0 ≤ t ≤ 1

0.1 sin(0.5(t− 1)), t > 1
.

6.1.1 State feedback case

Assumptions 2.1 - 2.3 are satisfied for the system (48).
Given Csx = Cse = I2 and Y1 = [0.5; 0.5]. Solving The-
orem 3.2 with βs = 0.001 and γs = 0.65 gives

Kx = [45.8131− 0.1965], M =

[
−5.0124 −7.2313

−0.5645 −4.8486

]
,

G =

[
−50.1241

−5.6447

]
, R =

[
41.9302 23.8482

1.5662 1.4904

]
,

H =

[
2.5062 0.8147

0.2822 0.5463

]
.

For comparison, closed-loop system simulations using
the separated design and the proposed integrated design
are performed with εs1 = 0.5, ϕs1 = 0.001, φs1 = 0.1,
σ1 = 2, x(0) = [0.5; 0.5], and η̂s1(0) = 0.

Figs. 5 and 6 show the simulation results for the fault
estimation and the time response of the closed-loop sys-
tem outputs, respectively. Using the proposed integrated
FTC design, the armature current and the angular ve-
locity of the DC motor are regulated to be asymptoti-
cally stable. Although the separated design can stabilize
the system, it suffers from worse estimation and con-
trol performance, i.e., larger overshoot and much longer
settling time. Moreover, the proposed integrated design
achieves better fault estimation performance.

6.1.2 Output feedback case

Assumptions 2.1 - 2.3 and 4.1 are satisfied for the sys-
tem (48). Given Cox = I2, Coe = [1 0 1 1; 0 1 1 1],
and Y2 = I2. Solving Theorem 4.1 with βo = 0.001 and
γo = 0.55 gives the gains

10
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Kx = [11.3306− 0.0097], G =


14.6394

−29.3091

−211.9200

14.1988

 ,

M =


−83.6656 76.0492 1.4639 235.4760

166.2354 −152.9879 −2.9309 −471.6437

12.8172 −16.9832 −21.1920 −84.2490

8.8649 −44.7627 1.4199 −98.7734

 ,

L =


3.3142 0.0505

−6.6387 −0.1019

36.5627 44.9315

−4.1485 −3.5423

 , H =


0.2680 0.0325

1.4655 0.9361

10.5960 4.2211

−0.7099 0.0431

 .

Simulations are performed with εs2 = 0.5, ϕs2 = 0.001,
φs2 = 0.1, σ2 = 1, x(0) = [0.5; 0.5], and η̂s2(0) = 0.
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Fig. 7. FE performance: output feedback case
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Figs. 7 and 8 show the simulation results for the fault
estimation and time responses of the closed-loop system
outputs, respectively. The phenomena observed from the
results are similar to those of the state feedback case.

6.2 Integrated FE/FTC design with multiplicative
faults

Suppose that there exists partial loss of actuator ef-
fectiveness (multiplicative actuator fault) in the system
(47), then the faulty model is represented as

ẋ= (A+∆A)x+B(1− θ)u+Dd

y =Cx (49)

where the scalar θ ∈ [0, 1] denotes the extent of the loss
of actuator effectiveness. If θ = 0, the actuator is healthy.
If θ = 1, the actuator is totally loss of effectiveness,
which cannot be handled by control design and is out of
the scope of this paper. If θ ∈ (0, 1), the actuator loses
a ratio of θ of its effectiveness. The matrices A, ∆A, B,
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D, and C are defined the same as those in (48) and

θ =



0, 0 ≤ t ≤ 0.1

−0.1(1− e−t) + 1, 0.1 < t ≤ 1

0.1, 1 < t ≤ 1.2

0.99, 1.2 < t ≤ 1.5

0.2, 1.5 < t ≤ 2

0.8, t > 2

.

According to Section 5, the partial loss of actuator ef-
fectiveness can be represented by a fictitious fault

B(−θ)u = Fmfm, Fm =

[
1

10La

0

]
, fm = −10θu.

Note that the integrated FE/FTC design of (49) is
similar to that of (48) with fs = 0 and by replacing
Fafa with Fmfm. Thus, the proposed design strategy
for the additive fault case is easily amenable to cover
this multiplicative case. Without loss of generality and
to consider a more practically realizable situation, only
the output feedback case is studied, for which the ob-
server/controller gains in Section 6.1.2 can be applied.

Simulations are performed with the same initial condi-
tions as those in Section 6.1.2, and similar results are
shown in Figs. 9 - 11. Depending on both the time-
varying multiplicative fault θ and the control inputs u,
the fictitious faults fm are different for the separated
and integrated FTC designs. However, as observed in
Fig. 9, the fictitious fault estimation performance of the
integrated FTC design is better than that of the sepa-
rated FTC design. For the FTC performance shown in
Figs. 10-11, the integrated FTC design also has quicker
response and smaller overshoot than the separated one.

Summing up, the simulation results for the DC model
example with system uncertainty, external disturbance,
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and faults, show that the proposed integrated design suc-
cessfully demonstrates superior FE/FTC performance
compared with the separated design by taking account
of the bi-directional robustness interaction between the
observer and the control system.

7 Conclusion

A new strategy of integration of FE within FTC for lin-
ear systems with unmatched uncertainty along with ad-
ditive/multiplicative faults and disturbance is proposed.
The presented approach is to design together the FE and
FTC, using an observer-based robust control method
achieved byH∞ optimization with a single-step LMI for-
mulation. Both the cases of state and output feedback
FTC are discussed.

Simulation and comparison of the stabilization control
for a DC model shows that the proposed integrated de-
sign approach leads to a better FE and FTCperformance
compared with the separated design approach.

The strategy developed is amenable to extension to
cover time-varying and uncertain nonlinear systems
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via multiple-model approaches (e.g. LPV or T-S fuzzy
modelling). The limitations of this paper are (1) The
proposed design for the multiplicative fault case cannot
obtain the estimate of the real multiplicative faults,
which are sometimes important and useful for system
maintenance and security, and (2) The uncertainties on
the other system matrices are not taken into account.
Thus, it remains an open question as to how to de-
velop alternative strategies to estimate and compensate
the real multiplicative faults and handle systems with
uncertainties on all the system matrices.
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A Proof of Lemma 3.2

Post-multiplying the left hand side of (21) by a full row-
rank matrix [S1 S2] gives

rank



sL− LĀ

C̄

C̄Ā

 [S1 S2]


= rank

[
sIq+q1 − LĀS1 −Ψ

Γ Ω

]

= rank



Iq+q1 ΨΩ†

0 (I2p − ΩΩ†)

0 ΩΩ†


×

[
sIq+q1 − LĀS1 −Ψ

Γ Ω

])

= rank


sIq+q1 −M1 0

M2 0

ΩΩ†Γ Ω


= rank

[
sIq+q1 −M1

M2

]
+ rank(Ω). (A.1)

Similarly, the right hand side of (21) is

rank




C̄

C̄Ā

L

 [S1 S2]

= rank


C̄S1 C̄S2

C̄ĀS1 C̄ĀS2

Iq+q1 0


= q + q1 + rank(Ω). (A.2)

By (A.1) and (A.2), it holds that

rank

[
sIq+q1 −M1

M2

]
= q + q1.

Thus, the pair (M2,M1) is detectable.

B Proof of Theorem 3.2

Consider a Lyapunov function Ves = e⊤s Qes with a sym-
metric positive definite matrix Q ∈ R(q+q1)×(q+q1). De-
noteW1 = H̄1+ZH2C̄ and χs1 = He(e⊤s QW∆Āx̄) and
M̄0 = [M⊤

0 0]⊤, so that

χs1 =−[M̄⊤
0 W⊤

1 Qes − F0N0x]
⊤[M̄⊤

0 W⊤
1 Qes − F0N0x]

+e⊤s QW1M̄0M̄
⊤
0 W⊤

1 Qes + x⊤N⊤
0 F⊤

0 F0N0x

≤ e⊤s QW1M̄0M̄
⊤
0 W⊤

1 Qes + x⊤N⊤
0 N0x.

Then it follows that

V̇es = e⊤s He(Q(M1 − ZM2))es +He(e⊤s QW1∆Āx̄)

+He(e⊤s QW1D̄d̄)

≤ e⊤s [He(Q(M1 − ZM2)) +QW1M̄0M̄
⊤
0 W⊤

1 Q)]es

+x⊤N⊤
0 N0x+He(e⊤s QW1D̄d̄). (B.1)

Further consider Vx = x⊤Px with a positive definite
matrix P ∈ Rn×n. Denote χs2 = He(x⊤P∆Ax), then

χs2 =−[M⊤
0 Px− F0N0x]

⊤[M⊤
0 Px− F0N0x]

+x⊤PM0M
⊤
0 Px+ x⊤N⊤

0 F⊤
0 F0N0x

≤ x⊤PM0M
⊤
0 Px+ x⊤N⊤

0 N0x.

Similarly, it can be shown that

V̇x = x⊤He[P (Θ1A−BKs) + PM0M
⊤
0 P +N⊤

0 N0]x

+He(x⊤PF1e+ x⊤PD1d̄). (B.2)

Let ξs = [x⊤ e⊤s ]
⊤, the H∞ performance ∥Gzsd̄∥ < γs is

J =

∫ ∞

0

(ξ⊤s ξs − γ2
s d̄

⊤d̄)dt < 0. (B.3)

Denote Vs = Vxs + Ves, then under zero initial condi-
tions, it follows that

J =

∫ ∞

0

(ξ⊤s ξs − γ2
s d̄

⊤d̄+ V̇s)dt−
∫ ∞

0

V̇sdt
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≤
∫ ∞

0

(ξ⊤s ξs − γ2
s d̄

⊤d̄+ V̇s)dt.

Now, a sufficient condition of (B.3) is

J1 = ξ⊤s ξs − γ2
s d̄

⊤d̄+ V̇s < 0. (B.4)

It follows from (B.4) with (B.1) and (B.2) that

J1 ≤

[
ξs

d̄

]⊤ 
J11 χ12 χ13

⋆ J22 χ23

⋆ ⋆ −γ2
sI


[
ξs

d̄

]
< 0 (B.5)

where J11 = χ11 + PM0M
⊤
0 P + C⊤

sxCsx, χ11 =
He(P (Θ1A−BKx))+2N⊤

0 N0, χ12 = PF1, χ13 = PD1,
J22 = χ22 + C⊤

seCse, χ22 = He(Q(M1 − ZM2)) +
QW1M̄0M̄

⊤
0 W⊤

1 Q, and χ23 = QW1D̄.

By the Schur complement, (B.5) holds if

χ11 χ12 χ13 PM0 0 C⊤
sx

⋆ χ22 χ23 0 QW1M̄0 C⊤
se

⋆ ⋆ −γ2
sI 0 0 0

⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −I


< 0. (B.6)

Note that the constraint (B.6) is non-linear and cannot
be solved directly using the LMI toolbox. However, it
can be further modified into linear constraints (34) and

(35) by denoting PB = BP̂ , R1 = P̂Ks, and R2 = QZ.
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