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Abstract 

Ionising radiotherapy is a well-established, effective cancer treatment modality, whose 

efficacy has improved with the application of newer technological modalities. However, 

patient outcomes are governed and potentially limited by aspects of tumour biology that are 

associated with radioresistance. Patients also still endure treatment associated toxicities owed 

to the action of ionising radiation in normoxic tissue adjacent to the tumour mass. Tumour 

hypoxia is recognised as key component of the tumour microenvironment and is well 

established as leading to therapy resistance and poor prognosis.  

In this review, we outline the current understanding of hypoxia-mediated radiotherapy 

resistance, before exploring targeting tumour hypoxia for radiotherapy sensitisation to 

improve treatment outcomes and increase the therapeutic window. This includes increasing 

oxygen availability in solid tumours, the use of hypoxia activated pro-drugs (HAPs), 

targeting of hypoxia-regulated or associated signalling pathways, as well as the use of high-

LET radiotherapy modalities. Ultimately, targeting hypoxic radiobiology combined with 

precise radiotherapy delivery modalities and modelling should be associated with 

improvement to patient outcomes. 
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1. Introduction: 

Ionising radiation is a type of high-energy electromagnetic wave that releases electrons from 

atoms and molecules generating highly reactive free radicals which can damage genomic 

DNA and result in cell death (1). Radiotherapy is one of the primary therapeutic strategies for 

many cancer types, either alone or in combination with surgery, chemotherapy, targeted 

therapy, and/or immunotherapy (2). For example, the standard treatment of nasopharyngeal 

carcinoma is radiotherapy, and early-stage laryngeal cancer patients are treated with 

radiotherapy as a primary therapy, with advanced laryngeal cancers also sensitive to 

chemoradiation (CRT) (3,4). More recently, radiotherapy has been explored with nwerer 

cancer treatment modalities, such as with immunotherapeutic agent pembrolizumab, which 

significantly increased responses in patients with metastatic non-small-cell lung cancer (5).  

Unfortunately, treatment resistance leads to poor outcomes for some patients. A key aspect of 

tumour biology that affects ionising radiotherapy efficacy is the tumour microenvironment, in 

particular tumour hypoxia, as the cellular responses to ionising radiation are dependent on 

how well oxygenated a tissue is (6).  In fact, 3-fold higher radiation doses are required in 

hypoxic conditions to achieve the same impact as in normoxic conditions, a factor noted as 

the oxygen enhancement ratio (OER) (7). Elevated hypoxic content in tumours has therefore 

been shown to be a factor of poor prognosis and therapy resistance in many tumour types (8-

10). The oxygen levels at which significant radioresistance is observed (<0.13% O2) are also 

known as radiobiological hypoxia (11). Hypoxia is therefore considered a significant 

challenge to ionising radiotherapy efficiency, so there is an expanding field of study looking 

at exploring strategies to radiosensitise hypoxic cells. This involves strategies such as 

increasing oxygen availability, hypoxia-activated pro-drugs (HAPs), or targeted therapies for 

hypoxia-regulated signalling. Interestingly, high-LET (linear energy transfer) radiotherapy 

modalities have been shown to be less dependent on oxygen levels than low-LET ionising 

radiation (7,12,13). 

The aim of this review is to discuss how hypoxic biology impacts radiotherapy response, how 

hypoxic radiobiology can be explored therapeutically to avoid radiotherapy resistance, and 



how high-LET modalities might be an alternative approach to hypoxia-induced ionising 

radiation resistance. 

 

2. Hypoxia-mediated radiotherapy resistance 

2.1. An overview of tumour hypoxia 

In normal tissue the oxygen supply matches the metabolic requirements of the cells, whereas 

in tumour tissue oxygen consumption increases significantly and exceeds the supply, 

resulting in a drop of normal oxygen levels (pO2) from about 20-80 mmHg to hypoxic levels 

< 5 mmHg, or even levels which can cause increased radioresistance (<1-10 mmHg or 0.13-

1.3% O2) (14). In particular, oxygen tensions of lower than 1 mmHg (<0.13% O2) are 

associated with significant radiotherapy resistance and are therefore called radiobiological 

hypoxia (11). 

Chronic hypoxia is caused by the long-term oxygen depletion, which can be derived from 

increased distance from blood vessels to the tissue, as well as permanent limitations in 

oxygen diffusion (15). Acute hypoxia occurs when a temporary disruption of blood flow to 

the tumour mass occurs because of the severely abnormal changes in the structure and 

function of tumour vasculatures, producing oxygen fluctuation in the tumour 

microenvironment (16). Because of this, solid tumours contain regions of cycling, or 

intermittent, hypoxia. The levels of hypoxia and proportion of the tumour that is hypoxic vary 

significantly due to the disorganized vessels with intermittent blood flow, which generate 

cyclic changes of oxygen concentrations, resulting in a dynamic microenvironment between 

hypoxic and reoxygenated states (17).  

Hypoxic adaptation is underpinned by dramatic changes in gene expression patterns, and 

these are primarily regulated by the hypoxia inducible factors (HIFs) (18). HIFs can 

transactivate the expression of genes involved in key tumour promoting hallmarks, such as 

tumour angiogenesis, energy metabolism adaptation, cell death and autophagy, cell cycle 

regulation, metastatic spread (including the epithelial-mesenchymal transition, EMT), and 

both chemo- and radio-therapy resistance (19) (Figure 1). HIF consists of an oxygen-

sensitive α subunit (HIF-α, which includes three isoforms: HIF-1α, HIF-2α and HIF-3α), and 

a constitutively expressed β subunit (HIF1-β). Under normoxic conditions, HIF-α is 



hydroxylated by both PHDs (prolyl hydroxylases) and FIH (factor inhibiting HIF) (20). 

Proline hydroxylation within HIF-α’s oxygen-dependent degradation domain (ODD) by 

PHDs allows HIF-α to be recognised and bound by the von Hippel-Lindau (VHL) E3 ligase, 

resulting poly-ubiquitination and subsequent degradation by the proteasome (21). However, 

under hypoxic conditions the PHDs are inhibited due to the lack of oxygen as a co-factor, 

leading to the rapid stabilisation of HIF-α protein levels and increased interaction with its co-

activators p300 and CBP (CREB binding protein) (22). HIF-α then heterodimerises with 

HIF1-β, and the heterodimeric transcription factor then binds to hypoxia response elements 

(HREs) located in target gene promoters and transactivates these targeted genes (Figure 1) 

(23). 

2.2. Hypoxia-mediated radiotherapy resistance 

There are primarily two aspects by which hypoxia leads to radiotherapy resistance based on 

the mechanism of action of ionising radiation. As stated by the oxygen fixation hypothesis, 

during treatment with ionising radiation DNA radicals are formed either by direct ionisation 

or indirectly by interaction with free radicals generated by water radiolysis (24). Molecular 

oxygen rapidly interacts with these indirect radiation-induced DNA radicals leading to the 

production of single strand breaks and oxidized bases, which can be resolved into lethal 

double strand breaks (DSBs), leading to cell death (25). Therefore, in the absence of 

sufficient oxygen this process is inhibited, and the amount of DNA damage produced by 

radiation and its impact on cell viability is reduced. Other mechanisms by which hypoxic 

biology decreases ionising radiation efficacy include changes in ROS (reactive oxygen 

species) levels, inflammation signalling, and HIF-regulated signalling such as induction of 

angiogenesis and other tumour promoting pathways (Figure 1) (26). HIF-1α and HIF-2α 

expression have been shown to have poor prognostic value for response to radiotherapy or 

CRT (27,28). Counterintuitively, HIF-1α levels have been shown to increase after ionising 

radiation treatment through a variety of molecular mechanisms (29). Importantly, hypoxia 

can also drive increased genomic instability phenotypes through the clonal loss of tumour 

suppressor p53, repression of the expression of other tumour suppressive factors such as 

E2F1 as well as key players of DNA repair pathways such as double strand break repair 

(homologous recombination) and mismatch repair, such as RAD51, BRCA1, MLH1, 

amongst others (30-32). It is important to note that these latter resistance mechanisms are 

characteristic of, but not exclusive to, radiobiological hypoxia and are associated with 



activation of DNA damage response signalling and DNA replication downregulation through 

decreased nucleotide signalling (11,33-35). 

 

3. Increasing sensitisation to ionising radiation via increased oxygen availability 

There are several approaches to target hypoxia-mediated radioresistance, and one of the 

longest established one is the direct or indirect modulation of oxygen levels in the tumour 

tissue to reduce hypoxic content and increase radiosensitisation. These utilise three main 

broad approaches: increasing oxygen diffusion to the tissue, reducing oxygen consumption, 

or using oxygen-mimetic molecules.  

3.1 Increased oxygen diffusion 

Hyperbaric oxygen (HBO) therapy has been used as a treatment for late radiation tissue 

injury by increasing the availability of oxygen in plasma, which improves oxygen tissue 

availability (36). A meta-analysis of several clinical trials to investigate the effect of 

hyperbaric oxygen as radiosensitisers in patients with squamous cell carcinoma of head and 

neck showed a significant improvement in overall radiation treatment response, as well as 

metastasis reduction (37). Radiotherapy after HBO breathing was found to be radiosensitised 

in a study using experimental models (38). However, this technique is not cost effective for 

broad clinical use in later study (37). 

A phase two clinical trial investigated the effect of the combination of nicotinamide and 

carbogen (CON) on radiotherapy outcome for patients with advanced bladder carcinoma (39). 

Nicotinamide is a vitamin modified to enhance blood flow in the tumours and administered 

two hours before radiotherapy while carbogen refers to a gaseous mixture of 2% carbon 

dioxide and 98% oxygen inhalant (40). This study demonstrated improvement in overall 

response of 50% for those administered with the CON combination therapy, whilst 

radiotherapy alone only had a 38% overall response (39). A report from a phase III trial for 

laryngeal cancer also reported positive outcome of accelerated radiotherapy combined with 

carbon inhalation and nicotinamide compared to radiotherapy alone with a 93% control rate 

seen in patients with hypoxic tumours treated with the combination therapy (41).  



Other approaches that enhance oxygen diffusion for reversing tumour hypoxia and improve 

radiotherapy are also under investigation. Trans sodium crocetinate (TSC) causes physical 

changes in blood plasma which results in rapid oxygen diffusion from the cell wall to the 

vascular wall (42). TSC was combined with temozolomide and radiotherapy on glioma cells 

and MRI imaging obtained before and after treatment showed a significant reduction in 

tumour size when compared with those treated with temozolomide and radiotherapy alone 

(43). TSC is being developed as a radiosensitiser for improving radiotherapy outcome in 

glioblastoma multiforme (GBM), pancreatic cancer, and brain metastases after a successful 

phase II clinical trial was completed (42).  

Oxygen transport agents are also being explored to meet the challenges of hypoxia to 

radiotherapy. Preclinical investigation of liposome-encapsulated haemoglobin were shown to 

effectively reverse hypoxia in tumours (44). Specifically, the results showed a remarkable 

reduction of HIF-1α and improved radiation therapy outcome, as tumour growth was 

significantly inhibited (44). OMX is a recent oxygen carrier developed to target hypoxia and 

improve radiotherapy (45). Preclinical studies showed OMX reduced hypoxia significantly, 

enhancing T cell localization, and increasing CD8 accumulation and other cytotoxic activity 

previously impaired by tumour hypoxia (45). Fluorocarbon-based agents, through their gas-

dissolving and chemically inert proprieties, can carry and diffuse oxygen at high 

concentrations (46). A phase II clinical trial (NCT03862430) in GBM, evaluating the 

combination of radiotherapy with NVX-108, a dodecafluoropentane-based perfluorocarbon 

(PFC) emulsion, is currently recruiting (47).  

3.2 Decreased oxygen consumption 

As well as increased oxygen delivery, suppressors of oxygen consumption have also been 

explored as radiosensitiser agents. 

Nitric oxide (NO) is a free radical that plays a vital role as a vasodilator, as well as inhibitor 

of tissue oxygen consumption (48). The mechanism of NO in radiosensitisation is similar to 

those of oxygen-induced oxidative stress by stabilising radiation-induced DNA damage via 

the nitrosative stress pathways (49). The radiosensitising effect of NO has been shown both 

in vitro and in patients, including a phase II study indicating that NO can palliate hypoxia-

induced progression in prostate cancer (50). 



More recently, the anti-microbial agent atovaquone was found to rapidly decrease hypoxic 

content of tumours, and was identified as a suppressor of oxygen consumption through a 

high-throughput analysis of FDA-approved drugs (51). One clinical study found that 

atovaquone can increase tumour oxygenation and suppress hypoxic gene expression, 

therefore improve treatment outcomes for NSCLC patients (52). 

Finally, papaverine, another FDA-approved agent, has also been shown as an ideal agent for 

radiosensitisation of hypoxic tumours as it reduces mitochondrial oxygen consumption (53). 

This anti-spasmodic drug was shown to increase oxygenation in tumour and enhanced 

radiation response directly by inhibiting mitochondrial metabolism with fewer side effects, 

which makes it a potential clinical radiosensitiser (53,54). 

 

3.3 Oxygen mimetics as radiosensitisers 

Oxygen mimetics, which are compounds developed with chemical properties of molecular 

oxygen with a better diffusion ability to low oxygen tissues, have also been explored for their 

radiosensitising proprieties (55). These include compounds such as misonidazole and 

nimorazole, which have been developed to mimic oxygen by promoting fixation of free 

radical damage during radiation (55). The use of misonidazole was halted at trial in 

combination with radiotherapy for treatment of inoperable squamous cell carcinoma of lung 

cancer due to its high toxicity, and a similar effect was observed in an investigation for 

treatment of advanced uterine carcinoma (56,57). Finally, the NIMRAD phase III trial 

explored the use of nimorazole in combination with Intensity-Modulated Radiotherapy 

(IMRT) in head and neck squamous cell carcinoma (HNSCC) (58) has been approved by the 

Centre for Clinical Practice (59). 

 

4. Hypoxia-activated prodrugs as radiosensitisers 

Hypoxia-activated prodrugs (HAPs) are compounds with high specificity for hypoxic tumours, 

as these are genotoxic compounds which are inactive in the presence of oxygen but are 

selectively activated under hypoxic conditions, and therefore can accurately target regions of 

tumour hypoxia (55). These HAPs have been identified and grouped into 5 main types: nitro 



compounds, aromatic N-oxides, aliphatic N-oxides, quinones, and molecularly targeted HAPs 

(60). Nitro compounds-based HAPs include Metronidazole, PR-104A and TH-302, etc. The 

most representative N-oxide based HAPs are Tirapazamine, AQ4N and SN30000. Quinone-

based HAPs, such as EO9 (Apaziquone), and Mitomycin C are the earliest developed hypoxia-

activated prodrugs (61). Despite promising preclinical data of classical HAPs, limited clinical 

therapeutic efficacy have been shown in several HAPs, which led to the development of novel 

molecularly targeted HAPs in recent years, including CH-01 (hypoxia-activated Chk1/Aurora 

A inhibitor), TH-4000 (hypoxia-activated tyrosine kinase inhibitor), and CH-03 (hypoxia-

activated KDAC inhibitor) (62-64). However, none of these have yet been evaluated in 

combination with radiotherapy. Details of HAPs being investigated in clinical trials as possible 

radiosensitisers of hypoxic cells as summarised in Table 1, with some examples detailed below.  

4.1 Evofosfamide (TH-302) 

TH-302 is an inactive compound of bromo-isophosphoramide which is released in hypoxic 

conditions and leads to alkylation of DNA (65). Interestingly, it has been shown that TH-302 

in combination with radiotherapy enhances therapeutic outcomes (66). A further study also 

found that TH-302 has radiosensitising effects when administered in combination with a 

VEGF-A inhibitor in preclinical models of sarcoma, increasing DNA damage and apoptosis 

and decreasing HIF-1α activity (67). Further studies combining TH-302 and radiotherapy in 

vivo and in vitro reported a mild effect of treatment with TH-302 and a significant increase of 

apoptosis in hypoxic cells (68). However, a phase III clinical trial of TH-302 reported non-

significant benefits and high toxicity, and therefore it has not been adopted clinically (69). 

There was a Phase I clinical trial using TH-302 with chemoradiotherapy in Oesophageal Cancer 

(NCT02598687) (70), however it was withdrawn as Phase II/III trials did not meet their 

primary endpoint, so further development and testing of TH-302 is uncertain. 

4.2 Tirapazamine 

Tirapazamine (TPZ) is an aromatic N-oxide which was first evaluated in 1986 and has been 

studied for its greater toxicity in anoxia when compared with aerobic conditions in vitro (71). 

TPZ specificity for hypoxic cells initially showed positive results in improving radiotherapy 

outcomes by using gene-directed enzyme prodrug therapy (GDEPT) in which hypoxia as a 

trigger for both enzyme expression and drug metabolism. (72). Preclinical in vivo studies in the 

early 90s had shown great promise. For example, a phase I clinical trial of TPZ in combination 



with cisplatin and radiotherapy in SCLC (small cell lung cancer) leading to improved survival 

rate among patients, and a phase II clinical trial carried out on patients with locally advanced 

head and neck cancer reporting improved 3-year survival (73-75). Unfortunately, a later phase 

III clinical trial in locally advanced head and neck cancer showed no significant increase of 

patient survival (76).  

4.3 AQ4N 

Banoxantrone (AQ4N) is a bioreductive hypoxia-activated prodrug, which is bioreduced in 

hypoxic cells by cytochrome P450s (CYPs) to the cytotoxin AQ4 (77). Study found that 

AQ4N can selectively kill hypoxic cells via an inducible nitric oxide synthase (iNOS)-

dependent mechanism when used in combination with radiation (78). Moreover, the use of 

AQ4N combined with radiotherapy and Temozolomide in glioblastoma entered a phase 2 

clinical trial (NCT00394628), but no results have been published to date (79). 

4.4 Mitomycin C (MMC) 

Mitomycin C (MMC) is also a HAPs that generates DNA-damaging species via DNA cross-

linking and has been shown to enhance toxicity against hypoxic compared to normoxic cells 

(60). Preclinical study revealed that MMC could enhance radio response and modulate 

hypoxic tumour microenvironment in combination with radiotherapy in rectal cancer (80). 

Clinical trials that used MMC combination with radiation are list in Table 1. Combined 

therapy includes 5-fluorouracil (5-FU), MMC and radiation has become current standard 

treatments of anal cancers and bladder cancers. RTOG-87-04 study Phase III randomized trial 

suggested that despite greater toxicity of MMC, the use of MMC can be beneficial, especially 

for those patients with large primary tumours (81). Long-term update of US GI intergroup 

RTOG 98-11 phase III trial compare chemoradiation therapy, replacing MMC with cisplatin 

due to the toxicity of MMC. However, cisplatin-based therapy failed to improve disease-free-

survival compared with mitomycin-based therapy, therefore suggested RT + FU5/MMC 

remains the preferred standard of care of anal cancers (82,83). 

 

5. Targeting of hypoxia-mediated signalling reprogramming as radiosensitising 

strategies 



Targeting hypoxia-regulated signalling including and beyond direct HIF targeting in cancer 

has been explored as a therapeutic approach to reduce its tumour-promoting characteristics, 

and below we explore how targeting various hypoxia-regulated pathways can lead to 

improvement in radiotherapy responses (Figure 2). 

5.1 HIF inhibition as a radiosensitiser strategy  

As mentioned earlier, HIF is a critical factor in adaptation to the hypoxic microenvironment 

and is therefore an obvious molecular target to overcome radioresistance of hypoxic tumour 

cells (84). Several compounds have been studied as inhibitors of HIF-α transcription, 

translation, and protein stabilisation (85). Of these, some, such as SN-38 (the active 

metabolite of irinotecan), alongside its well established radiosensitiser effect as a 

topoisomerase I inhibitor, can also lead to increased radiosensitivity through inhibiting 

radiation-induced HIF-1α in colorectal cancer (86). T-type Ca2+ channel blockers, such as 

Mibefradil, which can block HIF-1 activation by reducing mitochondrial ROS production and 

increase HIF-1α protein hydroxylation and degradation (87), have also been studied in a 

clinical trial using Mibefradil with hypofractionated irradiation in recurrent GBM (88), with 

results suggesting that mibefradil can be safely co-administered with RT. STAT3 plays an 

important role in the response of tumour cells to radiotherapy, and STAT3 inhibitors 

NSC74859 and Stattic have been found to increase radiosensitivity by downregulating HIF-

1α expression in oesophageal cancer (89-91). YC-1, a nitric oxide-independent activator of 

soluble guanylyl cyclase, was shown to enhance radiosensitivity across different types of 

cancer cells by inducing HIF-1α protein degradation and hence inhibition of HIF-1α function 

(92-94). More recently, other novel small-molecule inhibitors of HIF have been investigated. 

PX-478  decreases HIF-1α  levels by inhibiting HIF-1α translation, as well as inhibiting de-

ubiquitination leading to HIF-1α protein degradation (85). Palayoor and colleagues have 

shown a potential role for PX-478 as a clinical radiation enhancer in prostate carcinoma cells 

(95). HIF-2α inhibitors, including PT2399, PT2977, and PT2385, are also showing promise 

as single agents in ccRCC (clear cell renal cell carcinoma) in phase II clinical trials, but their 

combination with radiotherapy is not yet explored (96-98).  

5.2 Targeting DNA Damage Response 

Hypoxia can drive cancer progression and lead to radioresistance through its impact on 

genomic integrity by inhibiting DNA repair pathways (99). As outlined previously radiation 



kills cancer cells by damaging their DNA.  DNA repair dysregulation provide a promising 

opportunity to exploit this key vulnerability for overcoming radioresistance, specifically 

through targeting DSBs repair pathways (100). This is linked with the concept of ‘synthetic 

lethality’, which occurs when functional defects of complementary pathways can result in 

cell death, whereas the perturbation of either pathway does not impact cell survival   

Targeting one of the pathways using small molecule inhibitors in cells with a pre-existing 

defect in the complementary pathway (for example, use of PARP inhibitors in tumours 

defective for BRCA1/2) can be very effective, so other such pathway combinations have been 

explored (101-103). One of these is hypoxia-mediated repression of DNA repair in 

‘contextual synthetic lethality’ approaches, for example through combination with PARP 

inhibitors (104). Finally, targeting of DNA Damage Response (DDR) key factors in 

combination with radiotherapy have shown a lot of potential for overcoming hypoxic 

radioresistance (105). Details of DDR inhibitors investigated in clinical trials as possible 

radiosensitisers is summarised in Table 2, and examples of these strategies are detailed 

below. 

5.2.1 PARP1 inhibitors 

PARP inhibitors (PARPi), which can effectively prevent the repair of damaged DNA by 

blocking PARP enzyme activity and PARylation reactions, are the first clinically approved 

drugs based on the principle of synthetic lethality (106). BRCA1/2 are major components of 

the HR (Homologous Recombination) pathway for DSB repair, and deficiency in BRCA1/2 

genes leads to high susceptibility for breast and ovarian cancer (107). HR deficiency due to 

BRCA1/2 mutations leads to an exquisite sensitivity to PARPi through  synthetic lethality 

between these two pathways, a phenomenon also described as BRCAness (108).  Many clinical 

trials have been carried out in various BRCA-mutated tumours that have evaluated the benefits 

with the treatments of PARPi both as single agents and in combination with radiotherapy (109). 

Importantly, a study from 2010 reported that HR-defective hypoxic cells selectively died 

because of microenvironment-mediated "contextual synthetic lethality", where hypoxia-

mediated repression of HR represented a BRCAness-like phenotype, and also enhanced 

sensitivity to ionising radiation (104). Other studies have also shown that the combination of 

PARP1 inhibitor Olaparib with radiotherapy led to radiosensitising effects in hypoxia in 

NSCLC through this contextual synthetic lethality effect (110). Moreover, PARPi also 

improves the radiotherapy responses, as well as the efficacy of some chemotherapeutic agents, 



targeted therapy, and immunotherapy (111). This has led to a significant number of clinical 

trials focused on the combination with PARP1i and radiation to improve the response to 

radiotherapy (Table 2).  

5.2.2 DNA-PK inhibitors 

DNA DSBs generated by ionising radiation can also be repaired through NHEJ (Non-

Homologous End Joining), a more error-prone repair pathway than HR (112).  The KU 

heterodimers (KU70 and KU80) recognise the DNA DSBs, then activate and recruit DNA-

PKcs to the DNA break sites. This complex formed at the DSBs consisting of DNA, Ku70/80, 

and DNA-PKcs is referred to as DNA-PK (113). The expression and activity of DNA-PK in 

cancers is correlated with the response to anticancer therapy, including  radiotherapy (114). A 

study showed that DNA-PKcs inhibition led to increased sensitivity of gastric cancer cells to 

ionising radiation (115). Moreover, another study also found that DNA-PK inhibitor NU5455 

may preferentially sensitise chronically hypoxic tumour cells to radiotherapy  in vivo (116). 

Another study showed that DNA-PKcs inhibition potentially overcome hypoxia induced 

radioresistance in NSCLC by the combination of ionising radiation treatment with the DNA-

PK inhibitor M3814 (117). To our knowledge, M3814 is the only DNA-PK inhibitor currently 

in clinical development (see Table 2).  

5.2.3 ATM/ATR inhibitors 

Ataxia-telangiectasia mutated (ATM) is one of the central kinases of the DDR and has a critical 

role in cancer suppression and DNA DSBs repair (118). Like ATM, Ataxia telangiectasia and 

Rad3 related (ATR) is also a central kinase involved in the DDR (119). Inhibition of ATM or 

ATR has been shown to sensitise the cancer cells to radiation treatments. Moreover, ATR and 

ATM have a role to play in hypoxia/re-oxygenation (120-122), which led to the exploration of 

ATM/ATR inhibitor treatment in overcoming hypoxia-mediated radioresistance in cancer. 

Inhibition of ATM or ATR has been shown to be potential radiosensitisers under hypoxic 

condition in several studies. One study found ATM inhibition can increase the radiosensitising 

effect under hypoxic conditions in non-small cells lung cancer (117). ATR inhibitor VE-821 

has reported to increase sensitivity of pancreatic cancer cells to radiation and chemotherapy in 

pancreatic cancer under both normoxic and hypoxic conditions (120,123). Another ATR 

inhibitor from the same chemical series as VE-821, Berzosertib (formerly VE-822, M6620, 

and VX-970), has also been shown to sensitise response to chemo/radiotherapy, which could 



improve the treatment efficacy in oesophageal cancer (124). Clinical trials regarding 

combination of ATM or ATR inhibitors with radiation are ongoing, such as ATM inhibitors 

AZD1390 and AZD6738, and ATR inhibitor VX-970 (Table 2). ATM and ATR target kinases 

CHK1 and CHK2 also represent attractive targets to be combined with established cancer 

therapies, including radiotherapy, but to date only CHK1 inhibitor Prexasertib/LY2606368 

combined with radiation has entered clinical trial and suggest that this combination therapy 

may increase clinical benefit (125,126).  

5.2.4 WEE1 Kinase Inhibitor 

WEE1 kinase is a key regulator of the G2/M phase transition that allows DNA repair before 

mitotic entry (127). Amongst several WEE1 inhibitors evaluated in combination with 

radiotherapy (Table 2), combination of AZD1775 and ionising radiation has shown 

significantly increased apoptosis in cervical cancer cells (128). Another study also highlighted 

the radiosensitised effect of WEE1 Kinase inhibitor AZD1775 through inducing replication 

stress in hepatocellular carcinoma (129). Furthermore, another study investigated the impact 

of WEE1 inhibition using the MK-1775 on hypoxic cells in combination with radiation, 

showing MK-1775 sensitized radiation under normoxia, but not hypoxic conditions (130). 

5.2 Targeting Cell metabolism 

There are an increasing number of studies that conclude that metabolic alterations in cancer 

are one of the major reasons contributing to radioresistance (131). The PI3K/AKT/mTOR is a 

key signalling pathways that can stimulate glucose uptake, therefore controlling cell 

metabolism in cancer cells. The PI3K/AKT/mTOR pathway is involved in hypoxia-ischemia 

signalling, and HIF-1α is regulated by PI3K/Akt signalling pathway (132). PI3K inhibition 

by LY294002 radiosensitises human cervical cancer cell lines (133). Studies have also found 

that PI3K/Akt/mTOR pathway inhibitors (BEZ235 or PI103) enhance radiosensitivity in 

radioresistant tumour cells such as prostate cancer cells (134). A dual PI3K and mTOR 

inhibition NVP-BEZ235 have been shown to significantly reduce tumour hypoxia by 

normalizing tumour vasculature (135). PI3K/mTOR inhibitors BEZ235 and BKM120 were 

shown to significantly reduce oxygen consumption in cancer cell lines, with associated 

reduced mitochondrial respiration (136). Several clinical studies have now evaluated the 

efficacy of PI3K/Akt/mTOR inhibitors in combination with radiotherapy, and these are 

summarised in Table 3. Nelfinavir, which is AKT phosphorylation inhibitor, has entered 



clinical trial phrase III in Cervical Cancer (137). Another study using Nelfinavir with 

concurrent CT-RT is associated with acceptable toxicity. Moreover, the results from 

metabolic response and tumour response suggested the benefit of nelfinavir is promising in 

stage IIIA/IIIB NSCLC (138). 

Glucose transporter 1 (GLUT1) is an essential factor for glucose metabolism and is also a 

canonical HIF target gene (139). Studies found increased GLUT1 levels in radioresistant 

tumour cells, which indicates that GLUT1 expression may be used as an indicator of the 

sensitivity to radiation and prognosis of radiotherapy (140-142). Targeting GLUT1 and 

related signalling pathways may therefore represent an effective way to improve radiotherapy 

efficacy. A small molecule inhibitor of GLUT1, WZB117, can increase the sensitivity of 

radiation in breast cancer cells (143). Another study  found that modulating the glucose 

metabolism sensitised Glioblastoma cells to ionising radiation (144). However, there are no 

GLUT1 inhibitors combined with radiation entered in clinic trails yet.  

5.3 Combined Immunotherapy 

During radiotherapy treatment, radiation not only damages cancer cells directly, but also 

activates an immune response (145). Meanwhile, hypoxia also plays a pivotal role in the 

regulation of immunosuppressive molecules and participates in the activation of 

immunosuppressive cells (146). For example, IL10 and TGFβ are increased under hypoxia, 

which induce the differentiation of tumour-associated macrophages (TAM) into M2 

macrophages and therefore activates immune-suppressive activities (147). Hypoxia also 

regulates the differentiation and activation of dendritic cells (148). On the other hand, 

hypoxia activates immunosuppressive cells, such as myeloid-derived suppressor cells 

(MDSC), regulatory T cells and decreased infiltration and activation of cytotoxic T cells, 

which suggests  that targeting HIF in the immune system could be beneficial for anti-

tumour immune responses (149).  

Radiotherapy has both pro-immunogenic and immunosuppressive effects on immune 

response in various levels. This includes the induction of immunogenic cell death, 

promoting the recruitment and function of T cells within the tumour microenvironment, and 

improving the recognition and killing of cancer cells by CD8+ cytotoxic T cells (CTLs) 

(150). This is key to the synergistic effect of radiation with immune checkpoint inhibitors, 

antibodies targeting inhibitory receptors on T cells, including cytotoxic T lymphocyte 



antigen-4 (CTLA-4) and programmed death-1(PD-1), and has become an optimal partner 

for immune check point inhibitors (151). In fact, several completed clinical trials evaluated 

the efficacy of combining immunotherapy approaches using immune checkpoint inhibitors 

with radiotherapy, and the completed clinical trials are summarised in Table 4.  

Furthermore, studies also found that immunosuppressive macrophages were recruited by 

radiation, which induced upregulation of CSF‐1. Depletion of these macrophages by using 

anti‐CSF antibody (aCSF) significantly delays tumour regrowth following radiation. 

Moreover, the addition of an anti‐PD‐L1 antibody (aPD‐L1) to aCSF resulted in improved 

tumour suppression and even regression in a highly resistant murine pancreatic cancer model 

(152), therefore, macrophage depletion may play a role in immune checkpoint blockade‐

resistant tumours. Ultimately, as suggested by Franziska Eckert and colleagues, as hypoxia 

mediates radioresistance and immune escape, the combination of immune checkpoint 

inhibition and radiotherapy might be a promising strategy to improve outcome in tumours 

with high hypoxic content (153).  

5.4 Intensity modulated radiation therapy (IMRT) combination with radiosensitiser 

approaches 

IMRT is a radiotherapy modality that delivers highly conformal dose distributions (154). It is 

designed by inverse optimisation algorithms, with the following inputs: the dose required to 

the ‘tumour’ to gain control of the disease; and constraints or dose limitations for proximal 

tissues and ‘organs at risk’. The optimisation process is controlled by cost functions, these 

essentially compare dose distributions achieved by a set of x-ray beams, to the desired 

outcome; they then guide modulation of each beam in a systematic manner until a solution 

close to that originally specified is obtained. In simple terms the described process results in a 

set of beams, each consisting of a number of segments whose individual dose patterns 

superpose to create exquisite dose distributions that acknowledge the 3D nature of tumours 

and the discrete hypoxic and normoxic regions present in carcinogenic masses (155). 

Commonly, the degrees of freedom available to the optimiser is increased by using arc-based 

treatment beams rather than a discrete set of fixed directions. IMRT has had a clear impact on 

the success of modern radiotherapy strategies. However, given it typically is implemented 

with high energy x-rays which are low-LET (Linear Energy Transfer) radiation, further 



developments considering strategy modification related to hypoxia management may be 

limited, see section 6. 

Combining precise delivery via IMRT with radiosensitiser approaches such as DDR 

inhibitors (section 5.2) and immunotherapy (section 5.4) has the potential to improve patient 

outcomes. Furthermore, nanotechnology has potential to provide a new dimension to this 

strategy with metallic nanomaterials being developed as possible hypoxic radiosensitizers 

(156). Gold nanoparticles (GNP), for example, are gaining attention due to golds ability to 

readily donate electrons and thereby promote the production of reactive oxygen species, even 

in low oxygen environments. In a study of colon cancer, CT26 cells were incubated in 

hypoxia both with and without GNPs prior to radiotherapy application. Significantly 

improved responses were observed in the GNP group, suggesting dual IMRT-GNP 

therapeutics could improve the RBE and OER of low-LET modalities compared to x-ray 

application alone (157).  

 

6 High-LET modalities as alternatives to oxygen-dependent low-LET ionising radiation  

Linear energy transfer is the energy loss of a radioactive particle per unit of distance travelled 

and in radiotherapy, a measure of the amount of energy transferred from the radiation source 

to the patient. High-LET radiation sources include alpha particles, with high mass and positive 

charge, and low energy neutrons which have no charge and are approximately ¼ mass of an 

alpha particle (158). Low-LET radiation sources, most commonly x-rays or gamma-rays, are 

photons having no mass or charge and wavelengths below 10-8m (159). High-LET particles 

deposit their energy within a short distance from the radiation source, following a discrete 

pathway and causing significant cellular disruption localised to a smaller area close to the target 

(160). Low-LET waves however penetrate tissues more readily and are widely scattered as they 

transverse through the patient, causing less intense damage to a larger area of tissue (160). 

6.1 The radiobiology of high-LET RT modalities 

Tumours with oxygen-deficient areas experience increased radioresistance termed the oxygen 

enhancement ratio (OER), a comparison of the dose of radiation needed to cause the same 

damage in normoxic verses hypoxic tissue environments. Experimentally, the OER is 



inversely proportional to LET suggesting a potential clinical advantage of high-LET 

radiotherapy compared to low-LET irradiation (161). Relative biological effectiveness (RBE) 

is a comparison of biological efficacy of one type of ionising radiation compared to another 

(such as DNA damage and apoptosis levels), and indicates the dose of different ionisation 

sources that are needed to produce the same biological effect (159). High LET radiation has 

an increased biological effectiveness compared to photons of low LET, causing more 

extensive and clustered DNA damage (162). Specifically, application of high-LET 

radiotherapy causes closely interspaced DSBs leading to high local concentrations of repair 

proteins and perturbed DNA damage owed to its discrete pattern of energy deposition 

compared to low-LET X-ray irradiation (Figure 3) (163). Contemporary proton particle 

therapy utilises scanning beam technology which facilitate Intensity Modulated Proton 

Therapy, wherein the benefits afforded by Intensity Modulation and High-LET delivery are 

combined (164). 

6.2 FLASH  

FLASH radiotherapy is a treatment method that decreases the damage caused to the normal 

tissue (tissue sparing) whilst maintaining a tumour response compared with conventional low 

dose rate radiotherapy (165,166). The FLASH technique involves application of a single, 

ultra-high dose of radiation over a short time period. When compared to conventional 

radiotherapy in vitro, FLASH radiotherapy caused significantly less DNA damage to normal 

tissue than conventional radiation. The mechanisms underpinning the tissue sparing effect of 

FLASH is hypothesised to be diverse, including rapid radiochemical depletion of oxygen 

leading to transient hypoxia in normal tissue, radical too radical interaction, or inhibition of 

activation of genes that drive inflammation and proliferation of tumours (167). In the oxygen 

depletion/transient hypoxia hypothesis, normal tissue with physiological oxygen levels would 

experience rapid oxygen depletion after FLASH, leading to transient radioresistance which 

would in turn would lead to decreased damage and ultimately a tissue sparing effect. Further 

investigation on post irradiation effect showed that FLASH halted repopulation, whilst 

significantly reducing radio-induced senescence (168). Importantly, FLASH radiotherapy has 

increased RBE when delivered in high-LET modalities harnessing a proton beam radiation 

source compared to low-LET x-ray sources (169). Experiments to validate its efficacy in 

hypoxia however suggest FLASH radiotherapy has a high OER in vitro, with tissue oxygen 

concentrations above 4.4% needed for the technique to match the efficacy of conventional RT 



as hypoxic regions lack the oxygen availability to support the rapid oxygen consumption 

occurring in local tissues during FLASH therapy (170). The mechanism and biological nature 

of the FLASH effect is complex, but it is expected this will be an area of increased interest in 

the radiobiology field.   

6.3 Dose painting 

Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are 

functional, non-invasive imaging modalities utilised to identify hypoxic tissue regions in 

patient tumours (171). Such imaging allows clinicians to define areas likely to be resistant to 

radiotherapy, such as areas of tumour hypoxia. Therefore, strategic delivery of higher 

ionising doses to hypoxic areas while reducing the dose delivered to more oxygenated 

regions thereby limiting dose related side effects, a process also known as dose painting 

(172,173). 

In a study of twelve patients with locally advanced HNSCC, hypoxia specific tracer 18F-

Fluoroazomycin arabinoside was harnessed alongside positron emission tomography 

technology (18F-FAZA-PET) to assess the capabilities of hypoxia-guided dose painting. 

FAZA accumulation successfully identified hypoxic voxels in 80% of the cohort, while 

hypoxic volume made up to 54% of the patients’ total tumour masses. Subsequently, 86 Gy 

doses were delivered to hypoxic voxels while a 70 Gy mean dose was administered across 

other regions and results revealed that dose escalation had no impact on adjoining healthy 

tissues [167]. Another dose painting study involving 10 HNSCC patients harnessed hypoxic 

tracer 18F-Fluoromisonidazole in combination with PET (18F-FMISO-PET) to identify and 

image chronic hypoxic voxels. Post imaging, one sub-group received 35 fraction schedules of 

2Gy irradiation (70 Gy total) homogenously while a second sub-group received an escalated 

dose of 2.28 Gy to hypoxic regions (79.8 Gy total). Comparison of the two treatment plans 

demonstrated dose escalation to hypoxic regions can be delivered safely and efficaciously, 

without any increased delivery to at-risk organs [168]. Therefore, the literature suggests that 

combining dose-painting methodologies with high-LET radiation could therefore increase the 

benefit of hypoxia mapping as patients could benefit from the improved OER and RBE that 

high-LET therapies provide, accompanied by increased precision of application, allowing 

potent radiation doses to be delivered with minimal damage to healthy cells. However, a 

caveat of this approach is that it is based on a plan prior to treatment. A course of 



radiotherapy is delivered over a period of one and seven weeks and oxygen level distribution 

can change in response to the treatment, thus impacting on the efficacy of this approach. 

 

7 Concluding thoughts and future directions 

Radiotherapy remains one of the most effective non-invasive treatments for solid tumours, 

but the impact of tumour biology on response of tumour cells to radiation remains a 

fundamental limitation to what radiotherapy can ultimately achieve. Challenges associated 

with radiotherapy response include inherent radioresistance of cancer cells, lack of 

discrimination between normal tissue and tumour cells, and, pertinent to this review, tumour 

hypoxia-mediated radioresistance. State-of-the-art dual treatment modalities for cancer 

patients have previously relied upon radiotherapy accompanied by surgery, chemotherapy 

and more recently, immunotherapy. However, these combinations have been unable to 

abolish treatment-resistant hypoxic regions often resulting in poor survival rates and disease 

recurrence. Furthermore, radiotherapy technology (instrumentation and software) and 

delivery has improved significantly over last 15 years, but has potentially encountered an era 

of diminishing returns, where increased accuracy in radiotherapy delivery may not 

substantially improve outcomes alone.  

We suggest that hypoxia targeting in radiotherapy treatment strategies should encapsulate the 

mainstream treatment strategy for cancer, especially solid tumours, with experimental and 

clinical evidence suggesting some of these strategies even carry the benefit of reduced off-

target effects. Of particular interest are treatment plans that strategically exploit the hypoxic 

tumour microenvironment by targeting hypoxia mediated radioresistance signalling, such as 

HIF inhibition and targeting DNA damage response, as well as employment of HAPs. 

However, further studies using accurate evaluation of hypoxic content of tumours is needed 

to validate their efficacy in combination with radiotherapy and advance such strategies 

towards the clinic. 

Clinical validation of existing hypoxia targeted radiosensitisers should therefore continue to 

be a priority area in radiotherapy research, alongside prioritising treatment metrics that 

include hypoxic indices of tumours, capitalising on the disease-specific, druggable targets in 

the hypoxic microenvironment. This should include evaluating combination approaches of 



radiotherapy with relevant hypoxia signalling targeting small molecule inhibitors (such as 

HIF and DDR inhibitors) as well as immunotherapy. These strategies should be also 

combined with current radiotherapy delivery modalities, including developing the use of 

hypoxia content scores in increasing the effectiveness of fractionated radiotherapy strategies 

using machine-learning in in silico modelling. It will also involve a shift towards high-LET 

radiotherapeutics over low-LET options to provide relatively immediate benefits to the 

cancer patient group. 

Ultimately, the use of these various strategies targeting hypoxic radiobiology, combined with 

cutting-edge precise radiotherapy delivery and modelling, should lead to improvement in 

patient outcomes. 
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Figure 1. Mechanisms for HIF-α-mediated radiotherapy resistance 

This schematic illustrates the key mechanisms for HIF stabilisation in hypoxic conditions, 

and highlights key pathways up-regulated by HIF that contribute to hypoxia-mediated 

radiotherapy resistance  

HIF: Hypoxia-inducible factor; PHD: prolyl hydroxylases; FIH: Factor-inhibiting HIF; VHL: 

von Hippel-Lindau; OH: hydroxyl groups; CBP: CREB binding protein; HRE: hypoxia 

response elements. 

 

  



 
 

Figure 2. Targeting of hypoxia-mediated signalling reprogramming as radiosensitising 

strategies 

This schematic indicates the key hypoxia-regulated or associated signalling pathways 

targeted in radiosensitising approaches, as detailed in section 5.  

RT: Radiotherapy; HIF: Hypoxia-inducible factor; RTK: Receptor Tyrosine Kinases; DDR: 

DNA Damage Response; GLUT-1: Glucose Transporter 1; ATM: Ataxia Telangiectasia 

Mutated; ATR: Ataxia Telangiectasia and Rad3 related; CHK1: Checkpoint Kinase 1; 

PARP1: poly(ADP-ribose) polymerase. 

 

  



 
 

Figure 3. Water radiolysis in high vs low LET radiation 

Water radiolysis, propagated by ionising radiation, can follow numerable reaction pathways 

resulting in a snowballing mechanism that produces numerable ROS (oxygen containing 

radicals) that damage DNA, known as the indirect effect. Additionally, radiation treatment 

can damage DNA through impact alone and subsequently damage molecular structure, 

known as the direct effect. Application of high-LET radiotherapy sources induce a larger 

degree of the direct effect compared to low-LET sources, owed to the particles high mass and 

charge, while low-LET modalities rely more on the presence of sufficient oxygen to be 

efficacious. Figure created in ChemDraw 20.1.1 and adapted from (174,175). 

 

 

  



Table 1: Clinical trials evaluating combination of HAPs with radiotherapy 
Drug Name Cancer type ClinicalTrials.gov 

Identifier 
Clinical trial status 
(recruiting/active/co
mpleted) 

References 

Nitro 
Compounds 

    

Metronidazole Cervical Cancer NCT01937650 Phase II/III (176) 
Misonidazole Head and Neck Cancer NCT00606294 Not Applicable (177) 
Pimonidazole Oral tongue cancer NCT03181035 Phase I/II (178) 
Pimonidazole Rectal Cancer NCT02157246 Not Applicable (179) 
Etanidazole Breast Cancer Brain 

Metastasis 
NCT01985971 Not Applicable (180) 

Nimorazole HNSCC NCT01950689 Phase III (181) 
Nimorazole HNSCC  NCT02661152 Phase III (182) 
Nimorazole HNSCC  NCT01880359 Phase III (183) 
Nimorazole HNSCC  NCT01733823 Phase I/II (184) 
Nimorazole OSCC NCT04124198 Not Applicable (185) 
N-Oxides     
Tirapazamine SCCHN NCT00002774 Phase II (186) 
Tirapazamine Lung Cancer NCT00066742 Phase II (187) 
Tirapazamine Lung Cancer NCT00033410 Phase I (188) 
Tirapazamine Head and Neck cancer NCT00094081 Phase III (189) 
Tirapazamine Cervical Cancer NCT00262821 Phase III (190) 
Tirapazamine Cervical Cancer NCT00098995 Phase I (191) 
Tirapazamine HNSCC NCT00174837 Phase III (192) 
Tirapazamine Lung Cancer NCT00006487 Phase I (74) 
AQ4N Glioblastoma Multiforme NCT00394628 Phase I/II (193) 
Quinones     
Mitomycin Nasopharyngeal Carcinoma NCT00201396 Phase III (194) 
Mitomycin Pulmonary Neoplasm NCT00128037 Phase II (195) 
Mitomycin Bladder Cancer NCT00002490 Phase III (196) 
Mitomycin Bladder Cancer NCT00024349 Phase III (197,198) 
Mitomycin Bladder Cancer NCT00981656 Phase II (199) 
Mitomycin Head and Neck Cancer NCT00002507 Phase III (200) 
Mitomycin Anal Cancer NCT00025090 Phase III (201) 
Mitomycin Anal Cancer NCT00003596 Phase III (82,83) 
Mitomycin Anal Cancer NCT01621217 Phase I (202) 
Mitomycin Anal Cancer NCT01941966 Phase II (203) 
Mitomycin Anal Cancer NCT02701088 Phase II (204) 
Mitomycin Anal Cancer NCT00423293 Phase II (205) 
Porfiromycin Head and Neck Cancer NCT00003328 Phase III (206) 
Porfiromycin Head and Neck Cancer NCT00002507 Phase III (200) 

HNSCC (Head and Neck Squamous Cell Carcinoma); OSCC (Oropharyngeal Squamous Cell 
Carcinoma); SCCHN (Squamous Neck Carcinoma of the Head and Neck Cancer) 
  



Table 2. Clinical trials evaluating the combination of DDR inhibitors and radiotherapy 
Drug Name 
 

Cancer type ClinicalTrials.gov 
Identifier 

Clinical trial status 
(recruiting/active/
completed) 

Strategies for combination 
with radiotherapy 

References 

PARP-1 inhibitors 
Olaparib Inflammatory 

Breast Carcinoma 
NCT03598257 Phase II Radiation (207) 

Olaparib TNBC NCT03109080 Phase I Radiation (208) 
Olaparib GBM NCT03212742 Phase I/IIa IMRT, TMZ (209) 
Olaparib NSCLC, breast 

cancer, HNSCC  
NCT01562210 
NCT02227082 
NCT02229656 

Phase I  Radiation, Cisplatin (210) 

Olaparib NSCLC NCT04380636 Phase III Radiation, Etoposide, 
Carboplatin, Cisplatin, 
Paclitaxel, Pemetrexed, 
Durvalumab 

(211) 

Olaparib Head and Neck 
Cancer 

NCT02308072 Phase I IMRT, Cisplatin (212) 

Olaparib Prostate Cancer NCT03317392 Phase I/II Radium Ra 223 Dichloride (213) 
Olaparib Extensive-Stage 

Small Cell Lung 
Cancer 

NCT04728230 Phase I/II Radiation, Carboplatin 
Durvalumab, Etoposide,  

(214) 

Veliparib Peritoneal 
carcinomatosis  

NCT01264432 Phase I LDFWAR, (215) 

Veliparib Brain metastases 
from NSCLC 

NCT01657799 phase II WBRT, Placebo (216) 

Veliparib NSCLC NCT02412371 Phase I Radiation, Carboplatin, 
Paclitaxel 

(217) 

Veliparib Rectal cancer NCT01589419 phase I Radiation, Capecitabine (218) 
Veliparib Head and Neck 

Cancer 
NCT01711541 Phase I/II Radiation, Cisplatin, 

Carboplatin, Fluorouracil, 
Hydroxyurea 
 

(219) 

Veliparib Cancer Patients 
with Brain 
Metastases 

NCT00649207 Phase I  WBRT (220) 

Veliparib Pancreatic Cancer NCT01908478 Phase I Radiation, Gemcitabine (221) 
Veliparib Breast Cancer NCT01477489 Phase I Radiation (222) 
Veliparib GBM NCT01514201 Phase I/II 3D CRT, TMZ (223) 
Veliparib GBM NCT03581292 Phase II Radiation, TMZ  
Veliparib Lung 

Adenocarcinoma 
NCT01386385 Phase I/II 3D CRT, Carboplatin, 

Paclitaxel 
(224) 

Niraparib Prostate Cancer NCT04194554 Phase I SBRT, Leuprolide, 
Abiraterone Acetate 

(225) 

Niraparib 
Metastatic Invasive 
Carcinoma of the 
Cervix 

NCT03644342 Phase I/II Radiation (226) 

Niraparib TNBC NCT03945721 Phase I Radiation (227) 
Niraparib Breast cancer NCT04837209 Phase II Radiation, Dostarlimab  
DNA PK inhibitors 
M3814 Advanced Solid 

Tumours 
NCT02516813 Phase I Radiation, Cisplatin (228) 

M3814 Rectal Cancer NCT03770689 Phase I/II Radiation, Capecitabine, 
Placebo 

(229) 

M3814 Solid Tumours NCT03724890 Phase I Radiation, Avelumab (230) 
M3814 GBM NCT04555577 Phase I Radiation, TMZ (231) 



M3814 HNSCC NCT04533750 Phase I Radiation (232) 
ATM/ATR inhibitors 
AZD1390 Brain cancer NCT03423628 Phase I Radiation (233) 
AZD6738 Solid tumours NCT02223923 Phase I Radiation (234) 
VX-970 HNSCC NCT02567422 Phase I Radiation, Cisplatin (235) 
VX-970 NSCLC brain 

metastases 
NCT02589522 Phase I WBRT (236) 

VX-970 Oesophageal 
Adenocarcinoma 
Squamous Cell 
Carcinoma 
Solid Tumor 

NCT03641547 Phase I Radiation, Cisplatin, 
Capecitabine 

(237) 

Elimusertib Head and Neck 
Cancer 

NCT04576091 Phase I Radiation (238) 

WEE1 inhibitors 
AZD1775 Head and Neck 

Cancer 
ISRCTN76291951 
NCT03028766 

Phase I Radiation, Cisplatin (239) 

AZD1775 Adenocarcinoma of 
the Pancreas 

NCT02037230 
 

Phase I/II Radiation, Gemcitabine 
 

(240) 

AZD1775 Cervical, Upper 
Vaginal and 
Uterine Cancers 

NCT03345784 
 

Phase I Radiation, Cisplatin, 
Adavosertib 

(241) 
 

AZD1775 Cervical cancer NCT01958658 Phase I Radiation, Cisplatin (242) 
AZD1775 Head and Neck 

Cancer 
NCT02585973 Phase I Radiation, Cisplatin (243) 

AZD1775 GBM NCT01849146 
NCT01922076 

Phase I Radiation, TMZ (244) 

TNBC (Triple negative breast cancer); GBM (Glioblastoma); NSCLC (Non-small cell lung cancer); HNSCC 
(head and neck squamous cell carcinoma); IMRT(Intensity modulated radiotherapy), TMZ 
(Temozolomide); LDFWAR (low-dose fractionated whole abdominal radiation); WBRT (whole brain 
radiation therapy); 3D CRT (3-Dimensional Conformal Radiation Therapy); SBRT (Stereotactic body 
radiotherapy) 
  



Table 3: Clinical trials evaluating the combination of PI3K/AKT/mTOR inhibitors and radiotherapy 
Drug Name 
 

Cancer types ClinicalTrials.gov 
Identifier 

Clinical trial status 
(recruiting/active/
completed) 

Combination strategy  References 

GDC-0084 Brain 
Metastases 
Leptomeningeal 
Metastasis 

NCT04192981 Phase I WBRT (245) 

GDC-0084 Brain and 
Central Nervous 
System Tumors 

NCT03696355 Phase I Radiation (246) 

GDC-0084 Glioma NCT05009992 Phase II Radiation, ONC201, 
Panobinostat 

(247) 

BKM120 NSCLC NCT02128724 Phase I Radiation (135) 
BKM120 HNSCC NCT02113878 Phase I IMRT, Cisplatin (248) 
Nelfinavir Cervical Cancer NCT03256916 Phase III Radiation, Cisplatin (137) 
Nelfinavir Locally 

Advanced 
Pancreatic 
Cancer 

NCT03256916 Phase I Radiation, Cisplatin, 
gemcitabine 

(249) 

Nelfinavir NSCLC NCT03256916 Phase I Chemoradiotherapy (138) 
Nelfinavir locally advanced 

rectal cancer 
NCT03256916 Phase I Chemoradiotherapy (250) 

Nelfinavir Cervical Cancer NCT01485731 Phase I Radiation, Cisplatin (251) 
Nelfinavir GMB NCT00694837 Phase I Radiation (252) 
Nelfinavir Oligometastases NCT01728779 Phase II SBRT (253) 
Nelfinavir Pancreatic 

Cancer 
NCT01068327 Phase I Radiation (254) 

BYL719 HNSCC NCT02537223 Phase I IMRT, Cisplatin (255) 
XL765 GMB NCT00704080 Phase I Radiation, TMZ (256) 
Alpelisib Meningioma NCT03631953 Phase I MRI, Trametinib (257) 
Everolimus Cervical Cancer NCT01217177 Phase I Radiation (258) 
Everolimus Prostate Cancer NCT01548807 Phase I Radiation (259) 
Rapamycin 
 

Rectum Cancer 
 

NCT00409994 
 

Phase I/II Radiation  (260) 

Temsirolimus NSCLC NCT00796796 Phase I Radiation (261,262) 
GBM (Glioblastoma); NSCLC (Non-small cell lung cancer); HNSCC (head and neck squamous cell 
carcinoma); TMZ (Temozolomide); WBRT (whole brain radiation therapy); SBRT (Stereotactic body 
radiotherapy); IMRT (Intensity modulated radiotherapy) 
  



Table 4: Clinical trials evaluating the combination of immunotherapy therapeutics and radiotherapy 
Drug Name 
 

Cancer types ClinicalTrials.g
ov Identifier 

Clinical trial 
(completed) 

Combination with 
RT 

References 

Anti-PD-1/PD-L1 
SHR-1210 Oesophageal Cancer NCT03187314 Phase I Radiation (263) 
SHR-1210 Oesophageal Cancer NCT03222440 Not Applicable Radiation (264) 
Nivolumab NSCLC NCT02434081 Phase II Radiation (265) 
Nivolumab Small Cell Lung 

Cancer 
NCT03325816 Phase I/II Radiation (266) 

Nivolumab Hepatocellular 
Carcinoma 

NCT03380130 Phase II SIRT (267) 

Nivolumab Lung Cancer NCT03044626 Phase II Radiation (268) 
Pembrolizumab Renal Cell Carcinoma NCT02855203 Phase I/II SABR (269) 
Pembrolizumab Head and Neck 

Cancer 
NCT02759575 Phase I/II Radiation, Cisplatin (270) 

Pembrolizumab Follicular Lymphoma NCT02677155 Phase II Radiation (271) 
Pembrolizumab Metastatic Cancers NCT02303990 Phase I Radiation (272) 
Pembrolizumab Oligometastatic 

Breast Neoplasia 
NCT02303366 Phase I SABR (273) 

Pembrolizumab Esophageal Cancer NCT02642809 Phase I Radiation (274) 
Pembrolizumab Renal Cell Cancer NCT02599779 Phase II SBRT (275) 
Nivolumab 
/Pembrolizumab 

Lung cancer NCT03224871 Phase I Radiation, 
Intralesional IL-2 

(276) 

AMP-224 Colorectal Cancer NCT02298946 Phase I SBRT, 
Cyclophosphamide 

(277) 

Avelumab NSCLC NCT03158883 Phase I SABR (278) 
Avelumab GBM NCT02968940 Phase II HFRT (279) 
Cemiplimab Advanced 

Malignancies 
NCT02383212 Phase I Radiation (280,281) 

anti-CTLA-4      
Ipilimumab NSCLC NCT02221739 Phase I/II Radiation (282) 
Ipilimumab Lymphoma NCT02254772 Phase I/II Radiation, SD-101 (283) 
Ipilimumab Melanoma NCT01449279 Phase II Radiation (284) 
Ipilimumab Melanoma NCT02406183 Phase I SBRT (285) 
Ipilimumab Melanoma, Brain 

Metastases 
NCT02115139 Phase II Radiation (286) 

Ipilimumab Cervical Cancer NCT01711515 Phase I Radiation, Cisplatin (287) 
Tremelimumab Pancreatic Cancer NCT02311361 Phase I/II SBRT, Durvalumab (288) 
Tremelimumab Recurrent Small Cell 

Lung Carcinoma 
NCT02701400 Phase II SBRT, Durvalumab (289) 

GBM (Glioblastoma); NSCLC (Non-small cell lung cancer); IMRT(Intensity modulated radiotherapy), 
TMZ (Temozolomide); LDFWAR (low-dose fractionated whole abdominal radiation); WBRT (whole 
brain radiation therapy); 3D CRT (3-Dimensional Conformal Radiation Therapy); SBRT (Stereotactic 
body radiotherapy),SIRT (Selective internal radiation therapy); SABR (Stereotactic ablative 
radiotherapy); SBRT (Stereotactic Body Radiation Therapy); HFRT (Hypofractionated radiation therapy) 
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