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Abstract 37 
 38 
Progressive degeneration and dysfunction of the nervous system because of oxidative stress, 39 
aggregations of misfolded proteins, and neuroinflammation are the key pathological features of 40 
neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by 41 
uncontrolled extracellular deposition of β-amyloid (Aβ) in the amyloid plaques and intracellular 42 
accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with 43 
noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. 44 
Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders. 45 
However, the clinical application of curcumin is limited due to its low aqueous solubility and 46 
bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these 47 
limitations effectively. This review article discusses the effects and potential mechanisms of 48 
curcumin-loaded PLGA nanoparticles in Alzheimer’s disease.  49 
 50 
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Introduction 79 
Central nervous system (CNS) disorders affect nearly 1.5 billion of the world's population 1. 80 
Neurodegenerative diseases cause chronic impairment of sensory, motor, behavioral and cognitive 81 
functions due to progressive loss of CNS neurons. Most forms are associated with increased age 82 
and are likely due to oxidative stress, aggregations of misfolded proteins 2, and neuroinflammation 83 
3. Neuroinflammation is the main contributor to the progression of neurodegenerative disorders 84 
and is characterized by the breakdown of the integrity of the blood-brain barrier (BBB), 85 
morphological changes in glial cells and extensive tissue destruction by invading leukocytes 4. The 86 
enhanced expression of cytokines by lymphocytes and myeloid cells initiates the inflammatory 87 
cascade. It is then mediated by secondary messengers (nitric oxide and prostaglandins), ROS and 88 
cytokines such as IL-1B, IL-6, IL-23, TNF-α, granulocyte/macrophage colony-stimulating factor 89 
(GM-CSF) and chemokines (like CCL2, CCL5, and CXCL1). The overproduction of the above 90 
inflammatory mediators results in neuronal damage and death. 5 Neuro-inflammaging refers to the 91 
correlation between aging and neuroinflammation. During this process, activated microglia and 92 
astrocytes enhance cyclooxygenase-2 (COX2), nuclear factor-KB (NF-KB), and inducible nitric 93 
oxide synthase (iNOS). Subsequently, iNOS induces proinflammatory cytokines (e.g., interleukin 94 
(IL)-6, IL-1B) and neurotoxic factors like reactive oxidative species (ROS) and tumor necrosis 95 
factor (TNF-B)) which contribute to neuronal damage 6, 7. Also, Toll-like receptors 4 (TLR4) and 96 
NF-KB activation by innate immune signal transduction adaptor (MYD88) induce 97 
proinflammatory factors (TNF-B, IL-1B, IL-6 and iNOS), which in turn potentiate various 98 
inflammatory pathways. A significant contributor to maintain a neuroprotective state against 99 
neuroinflammation is the heat shock response. 8, 9 The respective genes involved are known as 100 
vitagenes, which are involved in the production of antioxidant and anti-apoptotic molecules and 101 
activation of pro-survival pathways 10-12. The members of the heat shock protein family include 102 
heme oxygenase-1 (HO-1), heat shock protein (Hsp70), sirtuins (Sirt-1), γ-glutamyl cysteine 103 
synthetase (γ-GCS) and thioredoxin/thioredoxin reductase (Trx/TrxR) 13, 14.  104 

In addition, neurotoxicity could be due to proteotoxicity, which refers to the toxic effect of 105 
proteins/peptides misassemble and aggregation in several cell types. The proteotoxicity-associated 106 
neurotoxicity mechanisms are inadequately recognized; nevertheless, it is well known that protein 107 
aggregation is significantly associated with neurodegenerative disease development 15. The 108 
recognition of proteotoxic insults accompanied protective cellular stress response pathways and 109 
chaperone networks associated with preventing protein misfolding and aggregation are required 110 
for the adaptation and survival of cells and organisms 16. Cancer, metabolic and neurodegenerative 111 
diseases showed chronic proteotoxic stress where the cell's chaperones capacity and other 112 
homeostasis components seem poorly adapted 17. In this way, the nonnative protein species 113 
accumulate following the dysregulation of protein folding quality that can develop oligomers, 114 
aggregates, and compositions characteristic of neurodegenerative disease 18.  115 

Consequently, damage of proteome integrity due to reduction in biosynthetic and repair activities 116 
affects protecting genes (vitagenes) that regulate aging, thereby affecting the health and lifespan 117 
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of the organism 19, 20. The pharmacologic regulation of pathways involved in cellular-stress 118 
response is a potential target for some disease therapies like cancer, cardiovascular and 119 
neurodegenerative diseases 21.  120 

The achievement of the therapeutic dose is crucial for any successful medical intervention. 121 
Understanding the dose-response nature, especially in the low-dose zone 22-26 is vital for clinical 122 
success. However, it is reported that conventional dose-response models (commonly accepted 123 
threshold and linear dose-response models) were unsuccessful in accurately predicting responses 124 
in the low-dose zone. In contrast, the hormetic dose-response has been reported remarkably 125 
powerful 9, 27-33. Consequently, a hormetic dose-response consideration in the sketching, 126 
performance, and toxicological and pharmacological studies analyses has been proposed to 127 
improve the drug development process and chemical hazard/risk assessment 9. 128 

Adaptive stress responses/hormesis roles in the nervous system  129 
 130 
Hormesis is a common toxicologic term that refers to a dose-response phenomenon to a chemical 131 
agent or environmental factor identified by low-dose stimulation, zero dose and high-dose 132 
inhibition. Therefore, it may be graphically illustrated by a J-shaped or an inverted U-shaped dose- 133 
response (the "U" arms are inhibitory or toxic concentrations while the curve zone stimulates a 134 
beneficial response) 34, 35.The normal physiological function of cells and organisms and some natural and 135 
synthetic molecules (nutrition) follows a hormetic curve with deficient, homeostasis and toxicity regions. 136 
Homeostasis is a hormetic zone of physiological concentrations with a safe and beneficial dose and the 137 
therapeutic window, a synonym of the hormetic zone in pharmacology 34, 36.  138 

It is reported that a different type of oxidative and other stresses could induce hormesis as an 139 
adaptive response that contributes to the resistance of cells/organisms to higher (and normally 140 
toxic) doses of the same stressing agent 37. Studies have shown that reactive oxygen species (ROS) 141 
impair cellular homeostasis through complicated and irreversible damage to cellular components 142 
38. During oxidative damage, the high reactivity of molecular oxygen and its intermediates is 143 
produced, resulting in DNA, lipids and proteins oxidative modifications 39. Mitochondria is one of 144 
the main sources of ROS (superoxide anion radical) as unwanted by-products of oxidative 145 
phosphorylation. The excessive production of ROS has been involved in several pathological 146 
conditions, including inflammatory conditions such as arthritis, cardiovascular disease and cancers 147 
40-42.In addition, superoxide production by mitochondria is considered to participate in neuronal 148 
damage varying from chronic intermittent cerebral hypoxia 43 to Alzheimer's disease 149 
(AD)44.Besides the adverse effects of ROS on cell function and survival, it is now apparent that 150 
mitochondrial superoxide and hydrogen peroxide in lower subtoxic levels play critical roles in a 151 
variety of cellular functions and can also stimulate signalling pathways that improve cell survival 152 
and protect cells against injury and disease15.  153 
This neuroprotective impact of a subtoxic rise in cellular oxidative stress is known as 154 
‘‘preconditioning’’ 45, but generally named mitochondrial hormesis or mitohormesis 46. 155 
Based on the latest evidence, neuroprotective features of antioxidants, iron-chelating in addition 156 
to anti-inflammatory agents with distinct consideration to polyphenols have attracted particular 157 
attention 47, 48. According to the hormesis theory, a stressor agent (drugs, toxins and natural 158 
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substances), if administered at low doses,  may trigger a positive response in the duration of 159 
adjustment to or protection from the stressors. In contrast, at a higher dose, the toxic effect 160 
predominates 49-55. Based on in vitro evidence, polyphenols stimulate the heat shock protein (Hsp) 161 
pathway by applying this paradigm, which represents a critical role in the cellular stress response 162 
56, 57. Two members of the Hsp family, Heme oxygenase-1 (HO-1) and Hsp70, also remembered 163 
as vitagenes, because of their antioxidant activity, have attracted significant attention 56-58.  164 

The various studies in cancer 59, neurodegenerative disease 60 and cardiovascular disease 61in 165 
experimental models reported some phytochemicals through activating adaptive stress response 166 
signalling have favourable effects 62. These pathways generally involve the kinases and 167 
transcription factors activation, including the antioxidant response element (ARE), Nrf-2 (a 168 
transcription factor) and its genetic target activation by sulforaphane and curcumin 63; the transient 169 
receptor potential (TRP) calcium channels activation by capsaicin and allicin 64and histone 170 
deacetylases and their target FOXO transcription factors activation of by resveratrol 65. These 171 
events finally result in increased cytoprotective protein production, including antioxidant enzymes, 172 
phase 2 enzymes, heat-shock proteins, growth factors and proteins required for regulating cellular 173 
metabolism 60.  For example, it is reported that Hidrox (HD) is a polyphenol complex from organic 174 
olives containing 40–50% of Hydroxytyrosol, which could inhibit the activation of NF-κB and 175 
decrease the iNOS levels. This study showed that redox homeostasis regulation by Nrf2 176 
presumably leads to regulation of NF-kB activity and the inflammatory response characteristic of 177 
Parkinson's disease (PD) 66. Another similar study also revealed that hydroxytyrosol as 178 
polyphenols of the olive oil inhibits neurodegeneration (Parkinson’s-like phenotypes) in 179 
nematodes and rodents, presumably through the Nrf2 signalling pathway and hormesis response 180 
67. 181 

Consequently, from the viewpoint of hormesis response, the achievement to right doses of 182 
administrated agents like phytochemicals or chemical drugs is required to manage various 183 
conditions, particularly neurodegenerative disease effectively 68, 69. In recent preclinical studies, 184 
natural products derived from plants and herbs such as curcumin supplementation have alleviated 185 
neuroinflammation progression 70-72. 186 
 187 
Alzheimer’s disease (AD)  188 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease mainly seen in the elderly 189 
population 73-76. However, AD is a significant concern for the 21st century affecting more than 190 
24.3 million people worldwide 77, which is expected to affect around 120 million cases by 2050 78, 191 
79. The contributing factors in AD development include uncontrolled extracellular β-amyloid(Aβ) 192 
deposition in the amyloid plaques, intracellular tau protein hyperphosphorylation, which forms 193 
neurofibrillary tangles mitochondria dysfunction, inflammation and oxidative stress, and 194 
eventually cholinergic dysfunction due to progressive degeneration in the basal ganglia 80-85. 195 
Amyloid proteins (Aβ) are a 42 amino acid long cleavage product of amyloid precursor protein 196 
(APP), a transmembrane polypeptide with neurotrophic activity. Under non-physiological 197 
conditions, the APP processing via β and γ-secretases 86 results in extracellular aggregation of Aβ 198 
monomers, which are then modified through phosphorylation forming dimers, oligomers, 199 
protofibrils and mature fibrils 87. These end products can form toxic AGEs (Advanced Glycation 200 
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endproducts) or amyloid plaques in the parenchyma and blood vessels 88. These plaques inhibit 201 
mitochondrial activity, modify intracellular Ca2+ levels, increase oxidative stress, and stimulate 202 
neuroinflammation through impairing proteasome function. In addition, Aβ peptides can induce 203 
tau hyperphosphorylation (a microtubule-associated protein) through interaction with the signaling 204 
pathways that disrupt axonal transport and increase neurofibrillary tangles and soluble tau seen in 205 
AD. Also, Aβ restricts tau protein degradation 89, 90. Furthermore, it is demonstrated that Aβs 206 
stimulate microglia to secrete proinflammatory cytokines leading to neuronal damage in AD 91-93. 207 

Novel therapeutic strategies development in Alzheimer’s disease 208 
 209 
The current AD therapeutic approaches are categorized to mechanism-based strategies, including 210 
the Amyloid targeting (Suppressing Aβ Production, stimulating Aβ clearance and preventing Aβ 211 
aggregation), Tau targeting (Tau stabilizers and aggregation inhibitors, therapies targeted at Tau 212 
post-translational modifications and anti-tau immunotherapy), targeting of apolipoprotein-E 213 
(ApoE) function, neuroprotective therapies (neurotrophins and their receptor-based therapies, 214 
therapies targeted at neuroinflammation and oxidative stress). In addition, non-mechanism-based 215 
approaches in AD treatment included symptomatic cognitive enhancers, treatments and 216 
interventions for AD prevention (secondary AD prevention interventions and primary prevention). 217 
Ultimately, lifestyle modifications and risk factor management, including non-pharmacological 218 
interventions, have been examined in AD prevention trials 94. Besides, phytochemical’s efficacy 219 
in the treatment of neurodegenerative diseases, including AD and PD, have been investigated by 220 
numerous studies. Various studies investigated the probable efficacy of phytochemicals like 221 
berberine, epigallocatechin-3-gallate, curcumin, quercetin, resveratrol and limonoids against the 222 
most common neurodegenerative diseases, including AD and PD 95.  223 
Currently, nanomedicines for improving traditional therapy have entered the clinical practice of 224 
several diseases, especially allergy, cancer and cardiovascular disorders. There are several clinical 225 
studies on the use of liposomal, gold and polymeric nanoparticles 96-108 . In addition, a few nano- 226 
based products are already used by oncologists. Nanomedicines via loading and delivering drugs 227 
to the targeted site, specific release profiles (depot effects), preserve the loading drugs from 228 
enzymatic degradations and improve bioavailability, provide helpful information at the cellular 229 
and tissue scales for designing patient-specific therapeutic interventions in various diseases 109. As 230 
mentioned, curcumin as a phytochemical offer promising safe and inexpensive preventive options 231 
for neurodegenerative diseases, particularly AD, because of its actions on several molecular 232 
aspects of these diseases 95. 233 

 234 
Biologic effects of curcumin 235 
Curcumin is a hydrophobic polyphenol produced by Curcuma longa L. 110. It is dietary safe 111 236 
and has a wide variety of pharmacological activities, including wound healing 112-114, 237 
anticoagulant 115, antimicrobial 116, anticancer 117-121, anti-inflammatory 122-125, antioxidant 126, 238 
anti-diabetic 127, lipid-modifying 128, anti-amyloid 129, 130 and neuroprotective effects 131. 239 
Curcumin exerts its antioxidant effects through different mechanisms. It can directly scavenge 240 
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free radicals via its two phenolic sites and suppress ROS and reactive nitrogen species (RNS) 241 
production in the cellular environment. It also suppresses protein and DNA oxidation through the 242 
reduction of low-density lipoprotein (LDL). The expression of ROS-generating enzymes is 243 
inhibited, whereas antioxidant enzymes are upregulated by curcumin 132. Curcumin modulates 244 
neuroinflammation by downregulation of various inflammatory cytokines 133, 134.  245 
Curcumin has pleiotropic activities through its complex chemistry and its capacity to affect various 246 
signalling pathways, including angiogenic and metastatic pathways, survival pathways like those 247 
regulated by NF-kB, act and growth factors Nrf2-dependent cytoprotective pathways 135-140. It has 248 
been demonstrated that curcumin is a hormetic agent via biphasic dose–responses on cells. It is 249 
stimulatory at low doses (like activation of the mitogen‐activated protein kinase signalling 250 
pathway and an antioxidant function) and inhibitory at high doses (like autophagy and cell death 251 
induction). This means that several curcumin effects are dose-dependent, and some effects might 252 
be more prominent at lower doses, characteristic of a hormetic response. Curcumin has a 253 
modulatory effect in neurological diseases such as AD with a hormetic dose-response 141. 254 
 255 

Curcumin limitations 256 
Despite the promising effects of curcumin in numerous clinical trials, it is not yet certified for 257 
clinical application. The main obstacles include low oral bioavailability, with an extremely low 258 
plasma concentration of 1% 142. Low structural stability, limited absorption from the 259 
gastrointestinal (GI) tract, accelerated metabolism, and rapid systemic clearance is other reasons 260 
for curcumin's limited utility in the clinical setting 143, 144. Limited stability of curcumin at alkaline 261 
conditions and light sensitivity are other concerns associated with curcumin 145-149. 262 

Development of novel curcumin formulations 263 
To date, various formulations have been developed to improve curcumin bioavailability and drug 264 
delivery. Modifying the solid-state, formulating supersaturated solutions 150 and designing a more 265 
soluble compound like artificial analogs to resist in vivo removal and metabolism are some of the 266 
methods used to increase bioavailability. Other techniques include reducing particle size, 267 
combining curcumin with cellular metabolism and drug efflux suppressors 151. Addition of 268 
adjuvant molecules such as piperine‚ quercetin or silibinin‚ chemical combination of curcumin 269 
with polysaccharides, proteins or phospholipids and bio-conjugation of curcumin with turmeric oil 270 
or alanin152, 153. Despite the potential effects of these strategies in improving the solubility and 271 
bioavailability of curcumin, most of these formulations fail to target curcumin to specific sites of 272 
action and preserve its chemical structure resulting in its rapid metabolization and removal. 273 
Nowadays, nanotechnology-based methods are introduced as promising substitutes for 274 
conventional formulations 154. The main categories of nanoformulation-based strategies are the 275 
application of stabilizers, adjuvants or polymer conjugates, development of liposomes, 276 
hydro/micro/nano gels, micelles, and nanoparticles (NPs) are main categories of nanoformulation- 277 
based strategies 152, 155, 156 (Figure 1). Curcumin-nanoparticulated delivery methods represent 278 
potent carriers in treating neurodegenerative disorders since the desired size, chemical structure, 279 
surface zeta potential charge, and surface functionalization can be modified 156, 157. It is 280 
demonstrated that curcumin encapsulation into nanoparticles remarkably improves its 281 



8 
 

bioavailability, solubility, and chemical stability by protecting it from the outside environment's 282 
influence, such as enzymatic and pH degradation 110, 143, 158. Nanocarriers' toxicity potential is the 283 
primary concern of many researchers since their composition and size must be non-invasive for 284 
medical purposes. The size of NPs and their elimination and biodegradation determine their safety. 285 
The average size of nanoparticles for drug delivery systems is less than 200 nm for brain 286 
applications but is conceptually expandable up to 1000 nm. The nanoparticles were developed 287 
based on two original opinions from Paul Ehrlich 159 with the theory of magical bullets and Richard 288 
Feynman with the idea of miniaturization 160. The first investigation on drug transport to the brain 289 
by nanoparticles was performed in 1969 161. Afterwards, functionalized nanoparticles coated with 290 
polysorbate 80 facilitate their entry into the CNS. The same application was introduced by Müller 291 
et al., 162 using lipid nanoparticles. Subsequently, cellular pharmacokinetic and mechanistic studies 292 
were performed to improve vectorization. Recent studies focused on curcumin-loaded nanoparticle 293 
delivery systems, specific CNS targeting, and intranuclear levels in neurons 150. Initially, 294 
polymeric nanoparticles were applied for drug delivery to the CNS, which included poly (lactic- 295 
co-glycolic acid) (PLGA), chitosan, and poly (butyl cyanoacrylate) (PBCA) 163. Polymeric 296 
nanoparticles are approved by the Food and Drug Administration (FDA), and they are less toxic 297 
than the other compounds 164. PLGA nanoparticles as biodegradable and biocompatible polymers 298 
with characteristics such as the controlled release of various pharmacologically active groups 165, 299 
166 like curcumin 167, 168 are commonly used for drug delivery 169. The biodegradable and 300 
biocompatible properties of PLGA are due to their hydrolytic cleavage into natural metabolites 301 
(i.e., lactic acid and glycolic acid), metabolized through the Krebs cycle and are then discharged 302 
as carbon dioxide and water. 170 The hydrophobic nature of PLGA guarantees significant 303 
entrapment and sustained release of curcumin 170. It could also cross the lipophilic olfactory and 304 
trigeminal nerves 171. Herein, the current experimental and clinical literature on the effects of 305 
curcumin-loaded PLGA particles on Alzheimer’s disease (AD) is reviewed. 306 
 307 
Curcumin effects on AD 308 

Curcumin inhibits two major pathological changes in AD; it blocks the self-assembly of Aβ 309 
plaques 129, 172-174 when binding to them and hinders tau hyperphosphorylation 175. Also, curcumin 310 
has potent neuroprotective effects due to its anti-inflammatory and antioxidant effects. It inhibits 311 
the expression of inflammatory cytokines, cyclooxygenase enzyme (COX-2) 174, glycogen 312 
synthase-3 176, and iNOS, possibly through suppression of NF-κB and JNK/AP-1- mediated gene 313 
transcription 177, 178. An interesting feature of curcumin is its facilitated BBB penetration due to its 314 
unique charge and binding capabilities 179. It is demonstrated that neuronal signaling, membrane 315 
homeostasis and cognitive defects following a traumatic brain injury could be improved by 316 
curcumin 180 as shown in Figure 2.  317 

Experimental and clinical studies related to AD 318 

The in vitro/in vivo studies on curcumin-loaded PLGA NPs formulations and their application in 319 
AD are summarized in order of publication year (Table 1). Yin-Meng Tsai evaluated the 320 
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Curcumin-loaded PLGA NPs distribution and showed that Cur-NPs formulation significantly 321 
increased curcumin concentration in the spleen and lungs. Compared to free curcumin, Cur-Nps 322 
remarkably prolonged the maintenance time of curcumin in the cerebral cortex and hippocampus 323 
up to 96% and 83%, respectively 181. It has been shown that curcumin loaded PLGA NPs with 324 
highly water solubility induced potent anti-amyloid effects 182. Following intravenous injection, 325 
liposomes, acrylic polymer, and PLGA formulations could pass the BBB and preferentially 326 
concentrated in the hippocampus, striata, and brain stem to exert antioxidant, anti-inflammatory, 327 
positive neurogenesis, and neuroplasticity effects 183. In another study by the same authors, 328 
synthetic amyloid-binding aptamer (described as NN2) conjugated with curcumin loaded PLGA 329 
NPs reduced the plasma amyloid levels through its effective attachment to amyloid plaques and 330 
their disaggregation 184. Following this study, curcumin encapsulated-PLGA NPs decorated with 331 
Tet-1 peptide with a great affinity for neurons and retrograde transportation characteristics were 332 
developed. In vitro results showed that these NPs are non-cytotoxic, destroy amyloid aggregates 333 
and display antioxidative features 185. Another interesting approach to improve curcumin delivery 334 
was developed by Marrachea S et al. They synthesized mitochondria-targeted curcumin-PLGA-b- 335 
PEG-triphenylphosphonium (TPP) to facilitate curcumin entry into mitochondria. These targeted 336 
curcumin PLGA-b-PEG-TPP NPS notably enhance the therapeutic drug index for AD compared 337 
to nontargeted particles or their free forms 186. Doggie S et al. stated that Cur-PLGA NPs could 338 
protect human neuroblastoma SK-N-SH cells from oxidative injury, which is also seen in AD, by 339 
preventing H2O2-induced toxicity and inhibiting ROS elevation GSH reduction and activation of 340 
Nrf2. They suggested that this formulation is expected to have great potential for pharmaceutical 341 
application in neurodegenerative disorders such as AD 187. Also, Shashi Kant Tiwari reported that 342 
compared to free curcumin, Cur-PLGA-NPs induced endogenous neural stem cells (NSC) 343 
proliferation through increasing the expression of cell proliferation genes (reelin, Pax6, and nestin) 344 
and improved neuronal differentiation by upregulation of neuroligin, neurogenin, neuregulin, 345 
neuroD1, and Stat3 genes and in vitro activation of Wnt/β-catenin pathway (regulator of 346 
neurogenesis) in the rats. Besides, these nanoparticles reduced GSK-3β levels and enhanced 347 
TCF/LEF and cyclin-D1 promoter activity. They also improved training and memory impairments 348 
in beta-amyloid-induced rat models of AD-like phenotypes by stimulating neurogenesis via 349 
activating the canonical Wnt/β-catenin pathway and enhancing a brain self-repair mechanism 188. 350 
Srivastava A et al. also reported that Cur-encapsulated PLGA NPs are potential regulators of 351 
gelsolin amyloidogenesis. These NPs increased curcumin's solubility and reduced the effective 352 
concentration to modulate amyloid plaques by ~1000 fold compared to their free forms. 353 
Consequently, PLGA encapsulation promoted the therapeutic potential of curcumin against 354 
amyloid fibrillation and toxicity 189. Subsequently, Djiokeng Paka G et al. developed glutathione- 355 
functionalized PLGA-nanoparticles (GSH-NPs) loaded with curcumin, non-toxic, and the surface 356 
GSH presented a greater neuroprotective effect against acrolein. These GSH-Cur-NPs had a higher 357 
and easier neuronal internalization than free curcumin due to a modified internalization route that 358 
enabled them to escape uptake via macropinocytosis, thereby avoiding lysosomal degradation 190. 359 
Huang et al. designed NPs encapsulated with curcumin and Aβ generation inhibitor S1 (PQVGHL 360 
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peptide) to target the harmful factors in AD progression. These NPs were conjugated with brain 361 
targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin 362 
receptors (TfR), for advanced BBB penetration. They showed that these NPs significantly reduced 363 
Aβ level, reactive oxygen species (ROS), inflammatory cytokines (e.g., TNF-α and IL-6) and 364 
intensified the activity of superoxide dismutase (SOD) and the number of brain synapses resulting 365 
in improvement of spatial memory and recognition in transgenic AD mice. Consequently, co- 366 
delivery of an anti-inflammatory agent like curcumin and Aβ production inhibition (S1) 367 
conjugated with brain targeting peptide  (CRT) revealed the most favorable effects in which CRT 368 
facilitated the BBB permeability of Cur-PLGA NPs, and curcumin decreased Aβ formation, 369 
gliosis, and proinflammatory cytokine production in the treatment of AD mice 191. In a study by 370 
Barbara R et al., Cur-PLGA NPs conjugated with g7 ligand were formulated to improve BBB 371 
crossing. The primary hippocampal cell cultures subjected to these NPs showed no apparent 372 
toxicity, a significant reduction of Aβ aggregates and less inflammation, oxidative stress and 373 
amyloid plaque load. Hence, brain delivery of curcumin using NPs to cross BBB could be a 374 
promising approach in managing AD 192. Later, Ameruoso A et al. developed curcumin-loaded 375 
spherical polymeric nano constructs (SPNs) with a size of 200 nm and curcumin-loaded discoidal 376 
polymeric nano constructs (DPNs) with a size of 1000 nm using PLGA, polyethylene glycol (PEG) 377 
and lipid chains as building blocks. They evaluated specific curcumin delivery to macrophages, 378 
previously stimulated by incubation with Amyloid-β fibrils produced in vitro. The cytofluorimetric 379 
and confocal microscopic analyses demonstrated that Cur-SPNs is taken up more quickly by 380 
macrophages than Cur-DPNs. Also, Cur-SPNs diminished the production of proinflammatory 381 
cytokines ( IL-1β, IL-6, and TNF-α) in macrophages stimulated via amyloid-β fibers up to 6.5- 382 
fold 193. Xinlong Huo et al. reported that Cur loaded Selenium-PLGA nanospheres could reduce 383 
the amyloid-β load in AD mice's brain specimens and considerably improve their memory 384 
deficiency through specific attachments to Aβ plaques 194. It is demonstrated that other than the 385 
brain, peripheral organs like the liver can also produce amyloid proteins 195. It is safer and easier 386 
to reduce peripheral amyloid due to difficulty in BBB penetration of drugs targeted to the CNS 387 
and cerebral toxicity 196. In this regard, Takahashi et al. 197 initially developed amyloid-binding 388 
aptamers preventing the aggregation of amyloid fibrils. In another study, curcumin-loaded PLGA- 389 
PEG were conjugated with B6 peptide as a brain target which showed that these NPs possessed 390 
adequate blood compatibility and increased curcumin cellular uptake. Also, Cur-PLGA-PEG-B6 391 
could remarkably improve the spatial train the memory ability of APP/PS1 mice versus native Cur. 392 
Further experiments confirmed that Cur-PLGA-PEG-B6 could decrease hippocampal β-amyloid 393 
formation and deposition and also tau hyperphosphorylation 198. Recently, Kuo Y-C et al. 394 
developed polyacrylamide (PAAM)-cardiolipin (CL)-poly(lactide-co-glycolide) (PLGA) NPs 395 
grafted with surface 83-14 monoclonal antibody (MAb) to carry rosmarinic acid (RA) and 396 
curcumin (CUR), which was named as 83-14 MAb-RA-CUR-PAAM-CL-PLGA NPs. These NPs 397 
increased the permeability coefficient of curcumin across the BBB and improved SK-N-MC cells' 398 
viability irritated with β-amyloid (Aβ) deposits. Consequently, 83-14 MAb-RA-CUR-PAAM-CL- 399 
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PLGA NPs may have a great neuroprotective capacity in medication management of AD to prevent 400 
neurodegeneration 199. 401 

Conclusion and future prospects 402 
The pleiotropic functions of curcumin, including antioxidant and anti-inflammatory effects as well 403 
as protein aggregation inhibition, are the primary contributors to combat neurodegenerative 404 
diseases, particularly AD. The main properties of curcumin, which increased its application, are 405 
safety, low cost, easy accessibility and effective penetration into the BBB and neuronal 406 
membranes. Nevertheless, some curcumin characteristics limited its clinical application, including 407 
low water solubility, low bioavailability, and structural instability in the body fluids. Nano-based 408 
drug delivery systems are the emerging carriers to enhance medications' efficacy in a controlled 409 
target-oriented fashion. In the present review, we summarized the in vitro/in vivo studies and 410 
clinical trials on curcumin-loaded PLGA NPs to prevent and treat AD. However, most of the 411 
available results have been obtained from in vitro strategies using multiple nano- curcumin 412 
technologies that could promote curcumin delivery in the SNC.  413 

Other than multiple nano-curcumin implications, more studies are yet expected to evaluate the 414 
toxicity and efficacy of these NPs on a larger group of patients. The main concerns regarding 415 
nanomedicine-based delivery systems are the possible toxic effects of curcumin-loaded NPs, 416 
including neuroinflammation, DNA damage, excitotoxicity, and allergic responses. Some 417 
methods, such as combination therapy and specific targeting, can minimize these toxic effects by 418 
decreasing the main therapeutic agent's dose and functionalizing the NPs, respectively. 419 
Consequently, nano curcumin carriers' preparation and purification methods play a pivotal role in 420 
reducing the aggregation and mechanical properties of NPs to mitigate their toxicity. 421 
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Table1. Studies on the effects of curcumin-loaded-PLGA particles on AD 430 

Nanoparticle Animal 
models/Cell 
culture 

Clinical and experimental 
outcomes 

Ref 

Curcumin-loaded 
PLGA nanoparticles 

 

Male Sprague-
Dawley rats 

 

- Increased the 
concentration and 
retention time of 
curcumin in various 
organs 

 

1812011 

 

Curcumin-loaded 
PLGA nanoparticles 

 

 

Neuroblastoma cell 
line and glioma cell 
line 
 

- Anti-amyloid 
effects  

 

1822011 

 

Curcumin 
formulations 
composed of 
liposomes, acrylic 
polymer, and PLGA 

 

Sprague-Dawley 
rats 

 

- Preferential 
concentration in 
hippocampus, 
striata, and brain 
stem 

1832011 

 

amyloid-binding 
aptamer (described as 
NN2), which 
conjugated curcumin 
loaded PLGA NPs 

LAG cell line  - reduction in the size 
of protein 
aggregation after 
treating with 
aptamer bound 
curcumin 
nanoparticles 

1842012 

Tet-1 peptide 
conjugated-curcumin 
-encapsulated-PLGA 
NPs  

GI-1 glioma cells - destroy amyloid 
aggregates and 
display 
antioxidative 
features 

185 2012 

mitochondria-targeted 
curcumin-PLGA-b-
PEG-
triphenylphosphonium 
(TPP) 

HeLa model cell 
line,  

- The remarkable 
enhancement in 
drug management of 
AD 

186 2012 
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Cur-encapsulated 
PLGA NPs 

human 
neuroblastoma SK-
N-SH cells 

- preventing H2O2-
induced toxicity  

- inhibiting ROS 
elevation and GSH 
reduction, and 
activation of Nrf2 

1872012 

Curcumin-loaded 
PLGA nanoparticles 

Wistar rats - induced endogenous 
neural stem cells 
(NSC) proliferation 
through: 

- increasing the 
expression of cell 
proliferation genes 
(reelin, Pax6, and 
nestin)  

- - increasing 
neuronal 
differentiation 
through inducing 
the expression of 
neuroligin, 
neurogenin, 
neuregulin, 
neuroD1, and Stat3 
genes and activating 
the Wnt/β-catenin 
pathway (regulator 
of neurogenesis) in 
vitro and 
hippocampus and 
subventricular zone  

188 2013 

Cur-encapsulated 
PLGA NPs 

human SH-SY5Y 
cell line 

- promotes the 
therapeutic potential 
of curcumin against 
amyloid fibrillation 
and prevents 
toxicity 

189 2015 

Glutathione-
functionalized 
PLGAnanoparticles 
loaded with curcumin 

SK-N-SH cells, a 
human 
neuroblastoma cell 
line 

- Non-acrolein toxic 
-  higher and easier 
neuronal internalization - 

190 2016 
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avoiding lysosomal 
degradation 

curcumin and Aβ 
generation inhibitor 
S1 (PQVGHL 
peptide) encapsulated 
NPS to target the 
harmful factors in AD 
progress and 
conjugating with brain 
targeting peptide CRT  

Male AD model 
(APP/PS1dE9) 
mice (8-month-old) 
and human 
neuroblastoma SH-
SY5Y cells, mouse 
microglial BV2 
cells and mouse 
brain capillary 
endothelial bEnd.3 
cells 

- Significant 
reduction of Aβ 
level, ROS, 
inflammatory 
cytokines  

- – increase the 
activity of SOD and 
number of brain 
synapses in AD 
mice  

- spatial memory and 
recognition 
improvement in 
transgenic AD mice 

191 2017 

G7- curcumin- PLGA 
NPs  

Primary 
hippocampal 
cultures from rat 
brains (embryonic 
day 18) 

- Attenuated inflammation, 
oxidative stress, amyloid 
plaque load  

- - significant 
decrease of Ab 
aggregates 

192 2017 

Curcumin-loaded 
SPNs and Curcumin-
loaded DPNs 

RAW 264.7 cell 
line 

- Reduced production 
of proinflammatory 
cytokines  

193 2017 

Cur loaded Selenium-
PLGA nanospheres 

AD mice - improved memory 
deficiency of AD 
mice through 
reduction of 
amyloid-β load 

194 2018 

Cur-PLGA-PEG 
conjugated B6 peptide 

HT22 cell line and 
APP/PS1 Al 
transgenic mice 

- increasing curcumin 
cellular uptake  
- adequate blood 
compatibility 
- improving spatial training 
and memory ability of 
APP/PS1  
-decreasing hippocampal b-
amyloid formation and 

198 2018 
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deposition and inhibiting 
tau hyperphosphorylation 

Rosmarinic acid- and 
curcumin-loaded 
polyacrylamide-
cardiolipin-PLGA 
nanoparticles with 
conjugated 83-14 
monoclonal 
antibody 

SK-N-MC cells, 
HBMECs, and 
HAS cells 

- increasing the 
permeability 
coefficient of 
curcumin across the 
BBB and neural 
membranes 

- - improving the 
viability of SK-N-
MC cells irritated 
with (Aβ) deposits 

199 2018 

Abbreviations: PLGA, Poly (lactic-co-glycolic acid); NMPs: Nanomicro particles; PEG, Polyethylene glycol; 431 
TPP, Triphenylphosphonium; CRT, Cyclic CRTIGPSVC peptide; BBB, Blood-brain barrier; Aβ , β-amyloid; AD, 432 
Alzheimer’s disease 433 

 434 
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Fig 1. Different types of Curcumin-based Nano formulations and their therapeutic effects.  957 
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Fig 2. The main pleiotropic functions of curcumin in neurodegenerative diseases. Curcumin exerts 965 
neuroprotection effects through Nrf2 activation, MAPK inhibition and downregulating TLR-4 after binding to MD- 966 
2, leading to reduced expression of NF-KB and proinflammatory cytokines. Also, curcumin activates the protective 967 
vitagen systems and removes misfolded proteins through inhibiting ROS production. 968 
 969 
Abbreviation: MD-2, myeloid differentiation factor 2; TLR-4, Toll-like receptor 4; MAPK, A mitogen-activated 970 
protein kinase; Nf-KB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; ROS, reactive oxygen 971 
species; Nrf2, nuclear factor erythroid 2–related factor 2 ; HO-1, Heme oxygenase-1; ARE, antioxidant response 972 
element; COX-2, antioxidant response element; Hsp70,  heat shock protein; Sirt-1, sirtuins; Trx, 973 
thioredoxin/thioredoxin reductase; γ- γ-GCS, glutamyl cysteine synthetase.  974 
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