The published manuscript is available at EurekaSelect via	1
http://www.eurekaselect.com/10.2174/1570159X19666210823103020.	2
PLCA Resad Curaumin Delivery System: An Interesting Therenoutie Approach in	3
PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in Treatment of Alzheimer's Disease	4 5
reatment of Alzienner's Disease	6
	7
Sanaz Keshavarz Shahbaz ¹ , Khadijeh Koushki ¹ , Thozhukat Sathyapalan ² , Muhammed Majeed ³ ,	8
Amirhossein Sahebkar ^{4,5,6,7*}	9
	10
¹ Cellular and Molecular Research Center, Research Institute for prevention of Non-	11
Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran	12
² Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical	13
School, University of Hull, Hull HU3 2JZ, UK	14
³ Sabinsa Corporation, East Windsor, NJ 08520, USA	15
⁴ Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of	16
Medical Sciences, Mashhad, Iran ⁵ Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran	17
⁶ School of Medicine, The University of Western Australia, Perth, Australia	18 19
⁷ School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran	20
	21
*Corresponding Author	22
Corresponding Author	22
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad	23
University of Medical Sciences, Mashhad 9177948564, Iran. Tel: +985138002299; Fax: +985138002287;	24
E-mail: sahebkara@mums.ac.ir; amir_saheb2000@yahoo.com	25
	26
Running Title: PLGA-curcumin against Alzheimer's disease	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

Abstract

	38
Progressive degeneration and dysfunction of the nervous system because of oxidative stress,	39
aggregations of misfolded proteins, and neuroinflammation are the key pathological features of	40
neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by	41
uncontrolled extracellular deposition of β -amyloid (A β) in the amyloid plaques and intracellular	42
accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with	43
noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders.	44 45
However, the clinical application of curcumin is limited due to its low aqueous solubility and	45 46
bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these	40 47
limitations effectively. This review article discusses the effects and potential mechanisms of	48
curcumin-loaded PLGA nanoparticles in Alzheimer's disease.	49
	50
Keywords: Curcuminoids; Polymer; PLGA; Cognition; Inflammation	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	-
2	

Introduction

Central nervous system (CNS) disorders affect nearly 1.5 billion of the world's population ¹. 80 Neurodegenerative diseases cause chronic impairment of sensory, motor, behavioral and cognitive 81 functions due to progressive loss of CNS neurons. Most forms are associated with increased age 82 and are likely due to oxidative stress, aggregations of misfolded proteins², and neuroinflammation 83 ³. Neuroinflammation is the main contributor to the progression of neurodegenerative disorders 84 and is characterized by the breakdown of the integrity of the blood-brain barrier (BBB), 85 morphological changes in glial cells and extensive tissue destruction by invading leukocytes⁴. The 86 enhanced expression of cytokines by lymphocytes and myeloid cells initiates the inflammatory 87 cascade. It is then mediated by secondary messengers (nitric oxide and prostaglandins), ROS and 88 cytokines such as IL-1B, IL-6, IL-23, TNF-α, granulocyte/macrophage colony-stimulating factor 89 (GM-CSF) and chemokines (like CCL2, CCL5, and CXCL1). The overproduction of the above 90 inflammatory mediators results in neuronal damage and death. ⁵ Neuro-inflammaging refers to the 91 correlation between aging and neuroinflammation. During this process, activated microglia and 92 astrocytes enhance cyclooxygenase-2 (COX2), nuclear factor-KB (NF-KB), and inducible nitric 93 oxide synthase (iNOS). Subsequently, iNOS induces proinflammatory cytokines (e.g., interleukin 94 (IL)-6, IL-1B) and neurotoxic factors like reactive oxidative species (ROS) and tumor necrosis 95 factor (TNF-B)) which contribute to neuronal damage ^{6,7}. Also, Toll-like receptors 4 (TLR4) and 96 NF-KB activation by innate immune signal transduction adaptor (MYD88) induce 97 proinflammatory factors (TNF-B, IL-1B, IL-6 and iNOS), which in turn potentiate various 98 inflammatory pathways. A significant contributor to maintain a neuroprotective state against 99 neuroinflammation is the heat shock response.^{8,9} The respective genes involved are known as 100 vitagenes, which are involved in the production of antioxidant and anti-apoptotic molecules and 101 activation of pro-survival pathways ¹⁰⁻¹². The members of the heat shock protein family include 102 heme oxygenase-1 (HO-1), heat shock protein (Hsp70), sirtuins (Sirt-1), γ-glutamyl cysteine 103 synthetase (γ -GCS) and thioredoxin/thioredoxin reductase (Trx/TrxR)^{13, 14}. 104

79

In addition, neurotoxicity could be due to proteotoxicity, which refers to the toxic effect of 105 proteins/peptides misassemble and aggregation in several cell types. The proteotoxicity-associated 106 neurotoxicity mechanisms are inadequately recognized; nevertheless, it is well known that protein 107 aggregation is significantly associated with neurodegenerative disease development ¹⁵. The 108 recognition of proteotoxic insults accompanied protective cellular stress response pathways and 109 chaperone networks associated with preventing protein misfolding and aggregation are required 110 for the adaptation and survival of cells and organisms ¹⁶. Cancer, metabolic and neurodegenerative 111 diseases showed chronic proteotoxic stress where the cell's chaperones capacity and other 112 homeostasis components seem poorly adapted ¹⁷. In this way, the nonnative protein species 113 accumulate following the dysregulation of protein folding quality that can develop oligomers, 114 aggregates, and compositions characteristic of neurodegenerative disease ¹⁸. 115

Consequently, damage of proteome integrity due to reduction in biosynthetic and repair activities 116 affects protecting genes (vitagenes) that regulate aging, thereby affecting the health and lifespan 117

of the	or	gan	isn	n ^{19, 20} . '	The pha	irma	cologic	regulat	ion of pat	thway	<mark>s involv</mark>	ed in	cellular-s	tress	118
respons	se	is	a	potential	target	for	some	disease	therapies	like	cancer,	cardio	ovascular	and	119
neurod	ege	ener	rati	ve diseas	ses ²¹ .										120

The achievement of the therapeutic dose is crucial for any successful medical intervention. 121 Understanding the dose-response nature, especially in the low-dose zone ²²⁻²⁶ is vital for clinical 122 success. However, it is reported that conventional dose-response models (commonly accepted 123 threshold and linear dose-response models) were unsuccessful in accurately predicting responses 124 in the low-dose zone. In contrast, the hormetic dose-response has been reported remarkably 125 powerful ^{9, 27-33}. Consequently, a hormetic dose-response consideration in the sketching, 126 performance, and toxicological and pharmacological studies analyses has been proposed to 127 improve the drug development process and chemical hazard/risk assessment ⁹. 128

> 129 130

Adaptive stress responses/hormesis roles in the nervous system

Hormesis is a common toxicologic term that refers to a dose-response phenomenon to a chemical 131 agent or environmental factor identified by low-dose stimulation, zero dose and high-dose 132 inhibition. Therefore, it may be graphically illustrated by a J-shaped or an inverted U-shaped dose-133 response (the "U" arms are inhibitory or toxic concentrations while the curve zone stimulates a 134 beneficial response) ^{34, 35}. The normal physiological function of cells and organisms and some natural and 135 synthetic molecules (nutrition) follows a hormetic curve with deficient, homeostasis and toxicity regions. 136 Homeostasis is a hormetic zone of physiological concentrations with a safe and beneficial dose and the 137 therapeutic window, a synonym of the hormetic zone in pharmacology ^{34, 36}. 138

It is reported that a different type of oxidative and other stresses could induce hormesis as an 139 adaptive response that contributes to the resistance of cells/organisms to higher (and normally 140 toxic) doses of the same stressing agent ³⁷. Studies have shown that reactive oxygen species (ROS) 141 impair cellular homeostasis through complicated and irreversible damage to cellular components 142 ³⁸. During oxidative damage, the high reactivity of molecular oxygen and its intermediates is 143 produced, resulting in DNA, lipids and proteins oxidative modifications ³⁹. Mitochondria is one of 144 the main sources of ROS (superoxide anion radical) as unwanted by-products of oxidative 145 phosphorylation. The excessive production of ROS has been involved in several pathological 146 conditions, including inflammatory conditions such as arthritis, cardiovascular disease and cancers 147 ⁴⁰⁻⁴².In addition, superoxide production by mitochondria is considered to participate in neuronal 148 damage varying from chronic intermittent cerebral hypoxia 43 to Alzheimer's disease 149 $(AD)^{44}$. Besides the adverse effects of ROS on cell function and survival, it is now apparent that 150 mitochondrial superoxide and hydrogen peroxide in lower subtoxic levels play critical roles in a 151 variety of cellular functions and can also stimulate signalling pathways that improve cell survival 152 and protect cells against injury and disease¹⁵. 153

This neuroprotective impact of a subtoxic rise in cellular oxidative stress is known as154"preconditioning" ⁴⁵, but generally named mitochondrial hormesis or mitohormesis ⁴⁶.155Based on the latest evidence, neuroprotective features of antioxidants, iron-chelating in addition156to anti-inflammatory agents with distinct consideration to polyphenols have attracted particular157attention ^{47, 48}. According to the hormesis theory, a stressor agent (drugs, toxins and natural158

substances), if administered at low doses, may trigger a positive response in the duration of 159 adjustment to or protection from the stressors. In contrast, at a higher dose, the toxic effect 160 predominates ⁴⁹⁻⁵⁵. Based on in vitro evidence, polyphenols stimulate the heat shock protein (Hsp) 161 pathway by applying this paradigm, which represents a critical role in the cellular stress response 162 ^{56, 57}. Two members of the Hsp family, Heme oxygenase-1 (HO-1) and Hsp70, also remembered 163 as vitagenes, because of their antioxidant activity, have attracted significant attention ⁵⁶⁻⁵⁸.

The various studies in cancer ⁵⁹, neurodegenerative disease ⁶⁰ and cardiovascular disease ⁶¹in 165 experimental models reported some phytochemicals through activating adaptive stress response 166 signalling have favourable effects ⁶². These pathways generally involve the kinases and 167 transcription factors activation, including the antioxidant response element (ARE), Nrf-2 (a 168 transcription factor) and its genetic target activation by sulforaphane and curcumin ⁶³; the transient 169 receptor potential (TRP) calcium channels activation by capsaicin and allicin ⁶⁴ and histone 170 deacetylases and their target FOXO transcription factors activation of by resveratrol ⁶⁵. These 171 events finally result in increased cytoprotective protein production, including antioxidant enzymes, 172 phase 2 enzymes, heat-shock proteins, growth factors and proteins required for regulating cellular 173 metabolism ⁶⁰. For example, it is reported that Hidrox (HD) is a polyphenol complex from organic 174 olives containing 40–50% of Hydroxytyrosol, which could inhibit the activation of NF-κB and 175 decrease the iNOS levels. This study showed that redox homeostasis regulation by Nrf2 176 presumably leads to regulation of NF-kB activity and the inflammatory response characteristic of 177 Parkinson's disease (PD) ⁶⁶. Another similar study also revealed that hydroxytyrosol as 178 polyphenols of the olive oil inhibits neurodegeneration (Parkinson's-like phenotypes) in 179 nematodes and rodents, presumably through the Nrf2 signalling pathway and hormesis response 180 <mark>67</mark> 181

Consequently, from the viewpoint of hormesis response, the achievement to right doses of administrated agents like phytochemicals or chemical drugs is required to manage various conditions, particularly neurodegenerative disease effectively ^{68, 69}. In recent preclinical studies, natural products derived from plants and herbs such as curcumin supplementation have alleviated neuroinflammation progression ⁷⁰⁻⁷².

187

188

Alzheimer's disease (AD)

Alzheimer's disease (AD) is a progressive neurodegenerative disease mainly seen in the elderly 189 population ⁷³⁻⁷⁶. However, AD is a significant concern for the 21st century affecting more than 190 24.3 million people worldwide ⁷⁷, which is expected to affect around 120 million cases by 2050 ⁷⁸, 191 ⁷⁹. The contributing factors in AD development include uncontrolled extracellular β -amyloid(A β) 192 deposition in the amyloid plaques, intracellular tau protein hyperphosphorylation, which forms 193 neurofibrillary tangles mitochondria dysfunction, inflammation and oxidative stress, and 194 eventually cholinergic dysfunction due to progressive degeneration in the basal ganglia ⁸⁰⁻⁸⁵. 195 Amyloid proteins (AB) are a 42 amino acid long cleavage product of amyloid precursor protein 196 (APP), a transmembrane polypeptide with neurotrophic activity. Under non-physiological 197 conditions, the APP processing via β and γ -secretases ⁸⁶ results in extracellular aggregation of A β 198 monomers, which are then modified through phosphorylation forming dimers, oligomers, 199 protofibrils and mature fibrils⁸⁷. These end products can form toxic AGEs (Advanced Glycation 200 endproducts) or amyloid plaques in the parenchyma and blood vessels ⁸⁸. These plaques inhibit 201 mitochondrial activity, modify intracellular Ca2+ levels, increase oxidative stress, and stimulate 202 neuroinflammation through impairing proteasome function. In addition, A β peptides can induce 203 tau hyperphosphorylation (a microtubule-associated protein) through interaction with the signaling 204 pathways that disrupt axonal transport and increase neurofibrillary tangles and soluble tau seen in 205 AD. Also, A β restricts tau protein degradation ^{89, 90}. Furthermore, it is demonstrated that A β s 206 stimulate microglia to secrete proinflammatory cytokines leading to neuronal damage in AD ⁹¹⁻⁹³. 207

Novel therapeutic strategies development in Alzheimer's disease

208 209

The current AD therapeutic approaches are categorized to mechanism-based strategies, including 210 the Amyloid targeting (Suppressing Aß Production, stimulating Aß clearance and preventing Aß 211 aggregation), Tau targeting (Tau stabilizers and aggregation inhibitors, therapies targeted at Tau 212 post-translational modifications and anti-tau immunotherapy), targeting of apolipoprotein-E 213 (ApoE) function, neuroprotective therapies (neurotrophins and their receptor-based therapies, 214 therapies targeted at neuroinflammation and oxidative stress). In addition, non-mechanism-based 215 approaches in AD treatment included symptomatic cognitive enhancers, treatments and 216 interventions for AD prevention (secondary AD prevention interventions and primary prevention). 217 Ultimately, lifestyle modifications and risk factor management, including non-pharmacological 218 interventions, have been examined in AD prevention trials ⁹⁴. Besides, phytochemical's efficacy 219 in the treatment of neurodegenerative diseases, including AD and PD, have been investigated by 220 numerous studies. Various studies investigated the probable efficacy of phytochemicals like 221 berberine, epigallocatechin-3-gallate, curcumin, quercetin, resveratrol and limonoids against the 222 most common neurodegenerative diseases, including AD and PD 95. 223 Currently, nanomedicines for improving traditional therapy have entered the clinical practice of 224 several diseases, especially allergy, cancer and cardiovascular disorders. There are several clinical 225 studies on the use of liposomal, gold and polymeric nanoparticles ⁹⁶⁻¹⁰⁸. In addition, a few nano-226 based products are already used by oncologists. Nanomedicines via loading and delivering drugs 227 to the targeted site, specific release profiles (depot effects), preserve the loading drugs from 228 enzymatic degradations and improve bioavailability, provide helpful information at the cellular 229 and tissue scales for designing patient-specific therapeutic interventions in various diseases ¹⁰⁹. As 230 mentioned, curcumin as a phytochemical offer promising safe and inexpensive preventive options 231 for neurodegenerative diseases, particularly AD, because of its actions on several molecular 232 aspects of these diseases ⁹⁵. 233

234

235

Biologic effects of curcumin

Curcumin is a hydrophobic polyphenol produced by *Curcuma longa* L. ¹¹⁰. It is dietary safe ¹¹¹236and has a wide variety of pharmacological activities, including wound healing ¹¹²⁻¹¹⁴,237anticoagulant ¹¹⁵, antimicrobial ¹¹⁶, anticancer ¹¹⁷⁻¹²¹, anti-inflammatory ¹²²⁻¹²⁵, antioxidant ¹²⁶,238anti-diabetic ¹²⁷, lipid-modifying ¹²⁸, anti-amyloid ^{129, 130} and neuroprotective effects ¹³¹.239Curcumin exerts its antioxidant effects through different mechanisms. It can directly scavenge240

free radicals via its two phenolic sites and suppress ROS and reactive nitrogen species (RNS) 241 production in the cellular environment. It also suppresses protein and DNA oxidation through the 242 reduction of low-density lipoprotein (LDL). The expression of ROS-generating enzymes is 243 inhibited, whereas antioxidant enzymes are upregulated by curcumin ¹³². Curcumin modulates 244 neuroinflammation by downregulation of various inflammatory cytokines ^{133, 134}. 245 Curcumin has pleiotropic activities through its complex chemistry and its capacity to affect various 246 signalling pathways, including angiogenic and metastatic pathways, survival pathways like those 247 regulated by NF-kB, act and growth factors Nrf2-dependent cytoprotective pathways ¹³⁵⁻¹⁴⁰. It has 248 been demonstrated that curcumin is a hormetic agent via biphasic dose-responses on cells. It is 249 stimulatory at low doses (like activation of the mitogen-activated protein kinase signalling pathway and an antioxidant function) and inhibitory at high doses (like autophagy and cell death 251 induction). This means that several curcumin effects are dose-dependent, and some effects might 252 be more prominent at lower doses, characteristic of a hormetic response. Curcumin has a 253 modulatory effect in neurological diseases such as AD with a hormetic dose-response ¹⁴¹.

Curcumin limitations

Despite the promising effects of curcumin in numerous clinical trials, it is not yet certified for 257 clinical application. The main obstacles include low oral bioavailability, with an extremely low 258 plasma concentration of 1% 142. Low structural stability, limited absorption from the 259 gastrointestinal (GI) tract, accelerated metabolism, and rapid systemic clearance is other reasons 260 for curcumin's limited utility in the clinical setting ^{143, 144}. Limited stability of curcumin at alkaline 261 conditions and light sensitivity are other concerns associated with curcumin ¹⁴⁵⁻¹⁴⁹. 262

Development of novel curcumin formulations

To date, various formulations have been developed to improve curcumin bioavailability and drug 264 delivery. Modifying the solid-state, formulating supersaturated solutions ¹⁵⁰ and designing a more 265 soluble compound like artificial analogs to resist in vivo removal and metabolism are some of the 266 methods used to increase bioavailability. Other techniques include reducing particle size, 267 combining curcumin with cellular metabolism and drug efflux suppressors ¹⁵¹. Addition of 268 adjuvant molecules such as piperine, quercetin or silibinin, chemical combination of curcumin 269 with polysaccharides, proteins or phospholipids and bio-conjugation of curcumin with turmeric oil 270 or alanin^{152, 153}. Despite the potential effects of these strategies in improving the solubility and 271 bioavailability of curcumin, most of these formulations fail to target curcumin to specific sites of 272 action and preserve its chemical structure resulting in its rapid metabolization and removal. 273 Nowadays, nanotechnology-based methods are introduced as promising substitutes for 274 conventional formulations ¹⁵⁴. The main categories of nanoformulation-based strategies are the 275 application of stabilizers, adjuvants or polymer conjugates, development of liposomes, 276 hydro/micro/nano gels, micelles, and nanoparticles (NPs) are main categories of nanoformulation-277 based strategies ^{152, 155, 156} (Figure 1). Curcumin-nanoparticulated delivery methods represent 278 potent carriers in treating neurodegenerative disorders since the desired size, chemical structure, 279 surface zeta potential charge, and surface functionalization can be modified ^{156, 157}. It is 280 demonstrated that curcumin encapsulation into nanoparticles remarkably improves its 281

263

250

254 255

bioavailability, solubility, and chemical stability by protecting it from the outside environment's 282 influence, such as enzymatic and pH degradation ^{110, 143, 158}. Nanocarriers' toxicity potential is the 283 primary concern of many researchers since their composition and size must be non-invasive for 284 medical purposes. The size of NPs and their elimination and biodegradation determine their safety. 285 The average size of nanoparticles for drug delivery systems is less than 200 nm for brain 286 applications but is conceptually expandable up to 1000 nm. The nanoparticles were developed 287 based on two original opinions from Paul Ehrlich ¹⁵⁹ with the theory of magical bullets and Richard 288 Feynman with the idea of miniaturization ¹⁶⁰. The first investigation on drug transport to the brain 289 by nanoparticles was performed in 1969¹⁶¹. Afterwards, functionalized nanoparticles coated with 290 polysorbate 80 facilitate their entry into the CNS. The same application was introduced by Müller 291 et al., ¹⁶² using lipid nanoparticles. Subsequently, cellular pharmacokinetic and mechanistic studies 292 were performed to improve vectorization. Recent studies focused on curcumin-loaded nanoparticle 293 delivery systems, specific CNS targeting, and intranuclear levels in neurons ¹⁵⁰. Initially, 294 polymeric nanoparticles were applied for drug delivery to the CNS, which included poly (lactic-295 co-glycolic acid) (PLGA), chitosan, and poly (butyl cyanoacrylate) (PBCA) ¹⁶³. Polymeric 296 nanoparticles are approved by the Food and Drug Administration (FDA), and they are less toxic 297 than the other compounds ¹⁶⁴. PLGA nanoparticles as biodegradable and biocompatible polymers 298 with characteristics such as the controlled release of various pharmacologically active groups ^{165,} 299 ¹⁶⁶ like curcumin ^{167, 168} are commonly used for drug delivery ¹⁶⁹. The biodegradable and 300 biocompatible properties of PLGA are due to their hydrolytic cleavage into natural metabolites 301 (i.e., lactic acid and glycolic acid), metabolized through the Krebs cycle and are then discharged 302 as carbon dioxide and water. ¹⁷⁰ The hydrophobic nature of PLGA guarantees significant 303 entrapment and sustained release of curcumin ¹⁷⁰. It could also cross the lipophilic olfactory and 304 trigeminal nerves ¹⁷¹. Herein, the current experimental and clinical literature on the effects of 305 curcumin-loaded PLGA particles on Alzheimer's disease (AD) is reviewed. 306

Curcumin effects on AD

Curcumin inhibits two major pathological changes in AD; it blocks the self-assembly of $A\beta$ 309 plaques ^{129, 172-174} when binding to them and hinders tau hyperphosphorylation ¹⁷⁵. Also, curcumin 310 has potent neuroprotective effects due to its anti-inflammatory and antioxidant effects. It inhibits 311 the expression of inflammatory cytokines, cyclooxygenase enzyme (COX-2)¹⁷⁴, glycogen 312 synthase-3¹⁷⁶, and iNOS, possibly through suppression of NF-*k*B and JNK/AP-1- mediated gene 313 transcription ^{177, 178}. An interesting feature of curcumin is its facilitated BBB penetration due to its 314 unique charge and binding capabilities ¹⁷⁹. It is demonstrated that neuronal signaling, membrane 315 homeostasis and cognitive defects following a traumatic brain injury could be improved by 316 curcumin ¹⁸⁰ as shown in Figure 2. 317

Experimental and clinical studies related to AD

The in vitro/in vivo studies on curcumin-loaded PLGA NPs formulations and their application in 319 AD are summarized in order of publication year (Table 1). Yin-Meng Tsai evaluated the 320

308

307

Curcumin-loaded PLGA NPs distribution and showed that Cur-NPs formulation significantly 321 increased curcumin concentration in the spleen and lungs. Compared to free curcumin, Cur-Nps 322 remarkably prolonged the maintenance time of curcumin in the cerebral cortex and hippocampus 323 up to 96% and 83%, respectively ¹⁸¹. It has been shown that curcumin loaded PLGA NPs with 324 highly water solubility induced potent anti-amyloid effects ¹⁸². Following intravenous injection, 325 liposomes, acrylic polymer, and PLGA formulations could pass the BBB and preferentially 326 concentrated in the hippocampus, striata, and brain stem to exert antioxidant, anti-inflammatory, 327 positive neurogenesis, and neuroplasticity effects ¹⁸³. In another study by the same authors, 328 synthetic amyloid-binding aptamer (described as NN2) conjugated with curcumin loaded PLGA 329 NPs reduced the plasma amyloid levels through its effective attachment to amyloid plagues and 330 their disaggregation ¹⁸⁴. Following this study, curcumin encapsulated-PLGA NPs decorated with 331 Tet-1 peptide with a great affinity for neurons and retrograde transportation characteristics were 332 developed. In vitro results showed that these NPs are non-cytotoxic, destroy amyloid aggregates 333 and display antioxidative features ¹⁸⁵. Another interesting approach to improve curcumin delivery 334 was developed by Marrachea S et al. They synthesized mitochondria-targeted curcumin-PLGA-b-335 PEG-triphenylphosphonium (TPP) to facilitate curcumin entry into mitochondria. These targeted 336 curcumin PLGA-b-PEG-TPP NPS notably enhance the therapeutic drug index for AD compared 337 to nontargeted particles or their free forms ¹⁸⁶. Doggie S et al. stated that Cur-PLGA NPs could 338 protect human neuroblastoma SK-N-SH cells from oxidative injury, which is also seen in AD, by 339 preventing H2O2-induced toxicity and inhibiting ROS elevation GSH reduction and activation of 340 Nrf2. They suggested that this formulation is expected to have great potential for pharmaceutical 341 application in neurodegenerative disorders such as AD ¹⁸⁷. Also, Shashi Kant Tiwari reported that 342 compared to free curcumin, Cur-PLGA-NPs induced endogenous neural stem cells (NSC) 343 proliferation through increasing the expression of cell proliferation genes (reelin, Pax6, and nestin) 344 and improved neuronal differentiation by upregulation of neuroligin, neurogenin, neuregulin, 345 neuroD1, and Stat3 genes and in vitro activation of Wnt/β-catenin pathway (regulator of 346 neurogenesis) in the rats. Besides, these nanoparticles reduced GSK-3 β levels and enhanced 347 TCF/LEF and cyclin-D1 promoter activity. They also improved training and memory impairments 348 in beta-amyloid-induced rat models of AD-like phenotypes by stimulating neurogenesis via 349 activating the canonical Wnt/ β -catenin pathway and enhancing a brain self-repair mechanism ¹⁸⁸. 350 Srivastava A et al. also reported that Cur-encapsulated PLGA NPs are potential regulators of 351 gelsolin amyloidogenesis. These NPs increased curcumin's solubility and reduced the effective 352 concentration to modulate amyloid plaques by ~1000 fold compared to their free forms. 353 Consequently, PLGA encapsulation promoted the therapeutic potential of curcumin against 354 amyloid fibrillation and toxicity ¹⁸⁹. Subsequently, Djiokeng Paka G et al. developed glutathione-355 functionalized PLGA-nanoparticles (GSH-NPs) loaded with curcumin, non-toxic, and the surface 356 GSH presented a greater neuroprotective effect against acrolein. These GSH-Cur-NPs had a higher 357 and easier neuronal internalization than free curcumin due to a modified internalization route that 358 enabled them to escape uptake via macropinocytosis, thereby avoiding lysosomal degradation ¹⁹⁰. 359 Huang et al. designed NPs encapsulated with curcumin and Aß generation inhibitor S1 (PQVGHL 360

peptide) to target the harmful factors in AD progression. These NPs were conjugated with brain 361 targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin 362 receptors (TfR), for advanced BBB penetration. They showed that these NPs significantly reduced 363 Aβ level, reactive oxygen species (ROS), inflammatory cytokines (e.g., TNF-α and IL-6) and 364 intensified the activity of superoxide dismutase (SOD) and the number of brain synapses resulting 365 in improvement of spatial memory and recognition in transgenic AD mice. Consequently, co-366 delivery of an anti-inflammatory agent like curcumin and AB production inhibition (S1) 367 conjugated with brain targeting peptide (CRT) revealed the most favorable effects in which CRT 368 facilitated the BBB permeability of Cur-PLGA NPs, and curcumin decreased Aß formation, 369 gliosis, and proinflammatory cytokine production in the treatment of AD mice ¹⁹¹. In a study by 370 Barbara R et al., Cur-PLGA NPs conjugated with g7 ligand were formulated to improve BBB 371 crossing. The primary hippocampal cell cultures subjected to these NPs showed no apparent 372 toxicity, a significant reduction of AB aggregates and less inflammation, oxidative stress and 373 amyloid plaque load. Hence, brain delivery of curcumin using NPs to cross BBB could be a 374 promising approach in managing AD 192. Later, Ameruoso A et al. developed curcumin-loaded 375 spherical polymeric nano constructs (SPNs) with a size of 200 nm and curcumin-loaded discoidal 376 polymeric nano constructs (DPNs) with a size of 1000 nm using PLGA, polyethylene glycol (PEG) 377 and lipid chains as building blocks. They evaluated specific curcumin delivery to macrophages, 378 previously stimulated by incubation with Amyloid-β fibrils produced in vitro. The cytofluorimetric 379 and confocal microscopic analyses demonstrated that Cur-SPNs is taken up more quickly by 380 macrophages than Cur-DPNs. Also, Cur-SPNs diminished the production of proinflammatory 381 cytokines (IL-1 β , IL-6, and TNF- α) in macrophages stimulated via amyloid- β fibers up to 6.5-382 fold ¹⁹³. Xinlong Huo et al. reported that Cur loaded Selenium-PLGA nanospheres could reduce 383 the amyloid- β load in AD mice's brain specimens and considerably improve their memory 384 deficiency through specific attachments to A β plaques ¹⁹⁴. It is demonstrated that other than the 385 brain, peripheral organs like the liver can also produce amyloid proteins ¹⁹⁵. It is safer and easier 386 to reduce peripheral amyloid due to difficulty in BBB penetration of drugs targeted to the CNS 387 and cerebral toxicity ¹⁹⁶. In this regard, Takahashi et al. ¹⁹⁷ initially developed amyloid-binding 388 aptamers preventing the aggregation of amyloid fibrils. In another study, curcumin-loaded PLGA-389 PEG were conjugated with B6 peptide as a brain target which showed that these NPs possessed 390 adequate blood compatibility and increased curcumin cellular uptake. Also, Cur-PLGA-PEG-B6 391 could remarkably improve the spatial train the memory ability of APP/PS1 mice versus native Cur. 392 Further experiments confirmed that Cur-PLGA-PEG-B6 could decrease hippocampal β-amyloid 393 formation and deposition and also tau hyperphosphorylation ¹⁹⁸. Recently, Kuo Y-C et al. 394 developed polyacrylamide (PAAM)-cardiolipin (CL)-poly(lactide-co-glycolide) (PLGA) NPs 395 grafted with surface 83-14 monoclonal antibody (MAb) to carry rosmarinic acid (RA) and 396 curcumin (CUR), which was named as 83-14 MAb-RA-CUR-PAAM-CL-PLGA NPs. These NPs 397 increased the permeability coefficient of curcumin across the BBB and improved SK-N-MC cells' 398 viability irritated with β-amyloid (Aβ) deposits. Consequently, 83-14 MAb-RA-CUR-PAAM-CL-399 PLGA NPs may have a great neuroprotective capacity in medication management of AD to prevent 400 neurodegeneration ¹⁹⁹. 401

Conclusion and future prospects

402

The pleiotropic functions of curcumin, including antioxidant and anti-inflammatory effects as well 403 as protein aggregation inhibition, are the primary contributors to combat neurodegenerative 404 diseases, particularly AD. The main properties of curcumin, which increased its application, are 405 safety, low cost, easy accessibility and effective penetration into the BBB and neuronal 406 membranes. Nevertheless, some curcumin characteristics limited its clinical application, including 407 low water solubility, low bioavailability, and structural instability in the body fluids. Nano-based 408 drug delivery systems are the emerging carriers to enhance medications' efficacy in a controlled 409 target-oriented fashion. In the present review, we summarized the in vitro/in vivo studies and 410 clinical trials on curcumin-loaded PLGA NPs to prevent and treat AD. However, most of the 411 available results have been obtained from in vitro strategies using multiple nano- curcumin 412 technologies that could promote curcumin delivery in the SNC. 413

Other than multiple nano-curcumin implications, more studies are yet expected to evaluate the 414 toxicity and efficacy of these NPs on a larger group of patients. The main concerns regarding 415 nanomedicine-based delivery systems are the possible toxic effects of curcumin-loaded NPs, 416 including neuroinflammation, DNA damage, excitotoxicity, and allergic responses. Some 417 methods, such as combination therapy and specific targeting, can minimize these toxic effects by 418 decreasing the main therapeutic agent's dose and functionalizing the NPs, respectively. 419 Consequently, nano curcumin carriers' preparation and purification methods play a pivotal role in 420 reducing the aggregation and mechanical properties of NPs to mitigate their toxicity. 421

Acknowledgment

The authors are grateful to Omid Izadi (Department of Industrial Engineering, ACECR Institute423of Higher Education of Kermanshah, Kermanshah, Iran) for drawing the graphical images.424

Competing interests

Muhammed Majeed is the founder of Sami Labs Ltd and Sabinsa Corporation, involved in the426production and sale of phytonutrients and standardized herbal extracts, including curcumin. The427authors have no other conflicting interests to disclose.428

429

422

Nanoparticle	Animal models/Cell culture	Clinical and experimental outcomes	Ref
Curcumin-loaded PLGA nanoparticles	Male Sprague- Dawley rats	- Increased the concentration and retention time of curcumin in various organs	¹⁸¹ 2011
Curcumin-loaded PLGA nanoparticles	Neuroblastoma cell line and glioma cell line	- Anti-amyloid effects	¹⁸² 2011
Curcumin formulations composed of liposomes, acrylic polymer, and PLGA	Sprague-Dawley rats	- Preferential concentration in hippocampus, striata, and brain stem	1832011
amyloid-binding aptamer (described as NN2), which conjugated curcumin loaded PLGA NPs	LAG cell line	- reduction in the size of protein aggregation after treating with aptamer bound curcumin nanoparticles	¹⁸⁴ 2012
Tet-1 peptide conjugated-curcumin -encapsulated-PLGA NPs	GI-1 glioma cells	 destroy amyloid aggregates and display antioxidative features 	¹⁸⁵ 2012
mitochondria-targeted curcumin-PLGA-b- PEG- triphenylphosphonium (TPP)	HeLa model cell line,	- The remarkable enhancement in drug management of AD	186 2012

Cur-encapsulated	human	- preventing H2O2-	1872012
-			2012
PLGA NPs	neuroblastoma SK-	induced toxicity	
	N-SH cells	- inhibiting ROS	
		elevation and GSH	
		reduction, and	
		activation of Nrf2	100
Curcumin-loaded	Wistar rats	- induced endogenous	¹⁸⁸ 2013
PLGA nanoparticles		neural stem cells	
		(NSC) proliferation	
		through:	
		- increasing the	
		expression of cell	
		proliferation genes	
		(reelin, Pax6, and	
		nestin)	
		increasing	
		neuronal	
		differentiation	
		through inducing	
		the expression of	
		neuroligin,	
		neurogenin,	
		neuregulin,	
		neuroD1, and Stat3	
		genes and activating	
		the Wnt/β-catenin	
		pathway (regulator	
		of neurogenesis) in	
		vitro and	
		hippocampus and	
		subventricular zone	
Cur-encapsulated	human SH-SY5Y	- promotes the	¹⁸⁹ 2015
PLGA NPs	cell line	therapeutic potential	2015
		of curcumin against	
		amyloid fibrillation	
		and prevents	
		toxicity	
Glutathione-	SK-N-SH cells, a	- Non-acrolein toxic	¹⁹⁰ 2016
functionalized	human	- higher and easier	
PLGAnanoparticles	neuroblastoma cell	neuronal internalization -	
loaded with curcumin	line	and an and an	
	inte		

		avoiding lysosomal	
		degradation	
curcumin and Aß	Male AD model	- Significant	¹⁹¹ 2017
generation inhibitor	(APP/PS1dE9)	reduction of A ^β	2017
S1 (PQVGHL	mice (8-month-old)	level, ROS,	
peptide) encapsulated	and human	inflammatory	
NPS to target the	neuroblastoma SH-	cytokines	
harmful factors in AD		2	
	SY5Y cells, mouse	- – increase the	
progress and	microglial BV2	activity of SOD and	
conjugating with brain	cells and mouse	number of brain	
targeting peptide CRT	brain capillary	synapses in AD	
	endothelial bEnd.3	mice	
	cells	- spatial memory and	
		recognition	
		improvement in	
		transgenic AD mice	
<mark>G7- curcumin- PLGA</mark>	Primary	- Attenuated inflammation,	¹⁹² 2017
NPs	hippocampal	oxidative stress, amyloid	
	cultures from rat	plaque load	
	brains (embryonic	significant	
	day 18)	decrease of Ab	
		aggregates	
Curcumin-loaded	RAW 264.7 cell	- Reduced production	¹⁹³ 2017
SPNs and Curcumin-	<mark>line</mark>	of proinflammatory	
loaded DPNs		cytokines	
Cur loaded Selenium-	AD mice	- improved memory	¹⁹⁴ 2018
PLGA nanospheres		deficiency of AD	
		mice through	
		reduction of	
		amyloid-β load	
Cur-PLGA-PEG	HT22 cell line and	- increasing curcumin	¹⁹⁸ 2018
conjugated B6 peptide	APP/PS1 A1	cellular uptake	
	transgenic mice	- adequate blood	
		compatibility	
		- improving spatial training	
		and memory ability of	
		APP/PS1	
		-decreasing hippocampal b-	
		amyloid formation and	
		any for formation and	

	1	deposition and inhibiting		1
Rosmarinic acid- and	SV N MC aslls	tau hyperphosphorylation	¹⁹⁹ 2018	
	SK-N-MC cells,	- increasing the	2018	
curcumin-loaded	HBMECs, and	permeability		
polyacrylamide-	HAS cells	coefficient of		
cardiolipin-PLGA		curcumin across the		
nanoparticles with		BBB and neural		
conjugated 83-14		membranes		
monoclonal		improving the		
antibody		viability of SK-N-		
		MC cells irritated		
		with $(A\beta)$ deposits		j
		NMPs: Nanomicro particles; PEG, F C peptide; BBB, Blood-brain barrier;		431 432
Alzheimer's disease	, CKI, Cyclic CKIIOI 5 W	c peptide, BBB, Blood-brain barrier,	Ap, p-aniyioid, AD,	432
				434
				435
				436
				437
				438
				439
				440
				441
				442
				443
				444
				445
				446
				447
				448
				449

Reference

1.	Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. <i>Biomedicine &</i>	451
•	acotherapy. 2004;58(1):39-46.	452
2.	Koo EH, Lansbury PT, Kelly JW. Amyloid diseases: abnormal protein aggregation in	453
	legeneration. Proceedings of the National Academy of Sciences. 1999;96(18):9989-9990.	454
3.	Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases.	455
Immun	nology. 2010;129(2):154-169.	456
4.	Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nature Reviews	457
Immun	nology. 2017;17(1):49.	458
5.	DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of	459
neuroc	hemistry. 2016;139:136-153.	460
6.	Agostinho P, A Cunha R, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of	461
Alzheir	ner's disease. Current pharmaceutical design. 2010;16(25):2766-2778.	462
7.	Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and	463
depres	sion: when the immune system subjugates the brain. <i>Nature reviews neuroscience</i> . 2008;9(1):46-	464
56.		465
8.	Trovato Salinaro A, Cornelius C, Koverech G, et al. Cellular stress response, redox status, and	466
vitager	nes in glaucoma: a systemic oxidant disorder linked to Alzheimer's disease. Frontiers in	467
-	acology. 2014;5:129.	468
, 9.	Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress	469
respon	ises, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in	470
•	degenerative disorders. Antioxidants & redox signaling. 2010;13(11):1763-1811.	471
10.	Salinaro AT, Pennisi M, Di Paola R, et al. Neuroinflammation and neurohormesis in the	472
	genesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional	473
	poms. Immunity & Ageing. 2018;15(1):8.	474
11.	Calabrese V, Cornelius C, Mancuso C, et al. Vitagenes, dietary antioxidants and neuroprotection	475
	rodegenerative diseases. Frontiers in bioscience (Landmark edition). 2009;14:376-397.	476
12.	Cornelius C, Salinaro AT, Scuto M, et al. Cellular stress response, sirtuins and UCP proteins in	477
	ner disease: role of vitagenes. <i>Immunity & Ageing</i> . 2013;10(1):41.	478
13.	Trovato A, Siracusa R, Di Paola R, et al. Redox modulation of cellular stress response and lipoxin	479
	ression by Coriolus versicolor in rat brain: relevance to Alzheimer's disease pathogenesis.	480
-	toxicology. 2016;53:350-358.	481
14.	Calabrese V, Scapagnini G, Davinelli S, et al. Sex hormonal regulation and hormesis in aging and	482
	ity: role of vitagenes. Journal of cell communication and signaling. 2014;8(4):369-384.	483
15.	Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress	484
	ises, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in	484
•	degenerative disorders. Antioxid Redox Signal. Dec 1 2010;13(11):1763-811.	485
	1089/ars.2009.3074	487
16.	Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family	487
	t shock factors, molecular chaperones, and negative regulators. <i>Genes & development</i> . Dec 15	489
	2(24):3788-96. doi:10.1101/gad.12.24.3788	490
17.	Morimoto RI. Stress, Aging, and Neurodegenerative Disease. <i>Mol Biol Cell</i> . 2004;15:657-64.	491
18.	Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative	492
	e and aging. <i>Genes & development</i> . Jun 1 2008;22(11):1427-38. doi:10.1101/gad.1657108	493
19.	Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG. Nitric oxide in the	494
	I nervous system: neuroprotection versus neurotoxicity. <i>Nature Reviews Neuroscience</i> .	495
2007;8	(10):766-775.	496

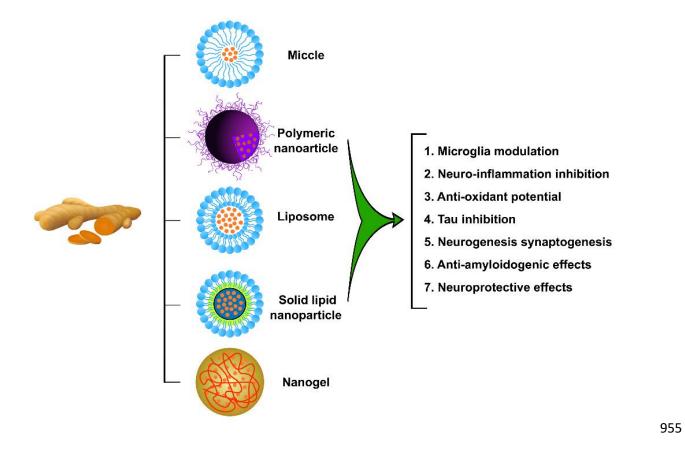
20. Calabr	ese V, Cornelius C, Mancuso C, et al. Cellular stress response: a novel target for	497
chemoprevent	ion and nutritional neuroprotection in aging, neurodegenerative disorders and longevity.	498
Neurochemica	l research. 2008;33(12):2444-2471.	499
21. Calabr	ese V, Bates TE, Mancuso C, et al. Curcumin and the cellular stress response in free	500
radical-related	diseases. Molecular nutrition & food research. 2008;52(9):1062-1073.	501
	ese EJ. Hormesis and medicine. British journal of clinical pharmacology. 2008;66(5):594-	502
617.		503
23. Cederg	green N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO. The occurrence of hormesis in	504
plants and alga	ae. Dose-response. 2007;5(2):dose-response. 06-008. Cedergreen.	505
24. Hoffm	ann GR. A perspective on the scientific, philosophical, and policy dimensions of hormesis.	506
Dose-Response	e. 2009;7(1):dose-response. 08-023. Hoffmann.	507
	o EJ. Role of hormesis in life extension by caloric restriction. <i>Dose-Response</i> .	508
2007;5(2):dose	e-response. 06-005. Masoro.	509
26. Scott E	3R. It's time for a new low-dose-radiation risk assessment paradigm—one that	510
acknowledges	hormesis. Dose-Response. 2008;6(4):dose-response. 07-005. Scott.	511
27. Calabr	ese EJ, Baldwin LA. Hormesis: U-shaped dose responses and their centrality in toxicology.	512
Trends in phar	macological sciences. 2001;22(6):285-291.	513
28. Calabr	ese EJ, Baldwin LA. U-shaped dose-responses in biology, toxicology, and public health.	514
Annual review	of public health. 2001;22(1):15-33.	515
29. Calabr	ese E. Historical blunders: how toxicology got the dose-response relationship half right.	516
Cell Mol Biol. 2	2005;51(7):643-654.	517
30. Calabr	ese EJ. Hormetic dose-response relationships in immunology: occurrence, quantitative	518
features of the	e dose response, mechanistic foundations, and clinical implications. Critical reviews in	519
toxicology. 200	05;35(2-3):89-295.	520
31. Calabr	ese EJ. Getting the dose–response wrong: why hormesis became marginalized and the	521
threshold mod	lel accepted. Archives of toxicology. 2009;83(3):227-247.	522
32. Calabr	ese EJ. Neuroscience and hormesis: overview and general findings. Critical Reviews in	523
Toxicology. 20	08;38(4):249-252.	524
33. Calabr	ese EJ. Dose-response features of neuroprotective agents: an integrative summary.	525
Critical reviews	s in toxicology. 2008;38(4):253-348.	526
	on MP. Hormesis defined. Ageing research reviews. Jan 2008;7(1):1-7.	527
	arr.2007.08.007	528
35. Calabr	ese EJ, Bachmann KA, Bailer AJ, et al. Biological stress response terminology: integrating	529
the concepts o	of adaptive response and preconditioning stress within a hormetic dose-response	530
framework. To	xicology and applied pharmacology. 2007;222(1):122-128.	531
	DP. Nutritional hormesis. <i>European journal of clinical nutrition</i> . Feb 2007;61(2):147-59.	532
doi:10.1038/sj	•	533
	ns I, Galluzzi L, Kroemer G. Hormesis, cell death and aging. <i>Aging</i> . Sep 2011;3(9):821-8.	534
doi:10.18632/a		535
	ey AD. Free radicals in aging: causal complexity and its biomedical implications. Free	536
	h. Dec 2006;40(12):1244-9. doi:10.1080/10715760600913176	537
	ico P, Burhans WC. Reactive oxygen species, ageing and the hormesis police. FEMS yeast	538
	2014;14(1):33-9. doi:10.1111/1567-1364.12070	539
	I, Blair IA. Oxidative DNA damage and cardiovascular disease. Trends in cardiovascular	540
	May 2001;11(3-4):148-55. doi:10.1016/s1050-1738(01)00094-9	541
	o V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide	542
	le in joint diseases. Joint bone spine. Jul 2007;74(4):324-9.	543
doi:10.1016/j.j	jbspin.2007.02.002	544

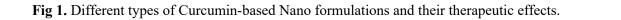
42. McCord JM. Superoxide dismutase in aging and disease: An overview. <i>Methods in Enzymology</i> .	545
Academic Press; 2002:331-341.	546
43. Shan X, Chi L, Ke Y, et al. Manganese superoxide dismutase protects mouse cortical neurons	547
from chronic intermittent hypoxia-mediated oxidative damage. Neurobiology of disease. Nov	548
2007;28(2):206-15. doi:10.1016/j.nbd.2007.07.013	549
44. Keller JN, Kindy MS, Holtsberg FW, et al. Mitochondrial manganese superoxide dismutase	550
prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production,	551
lipid peroxidation, and mitochondrial dysfunction. The Journal of neuroscience : the official journal of the	552
Society for Neuroscience. Jan 15 1998;18(2):687-97. doi:10.1523/jneurosci.18-02-00687.1998	553
45. Dirnagl U, Meisel A. Endogenous neuroprotection: mitochondria as gateways to cerebral	554
preconditioning? Neuropharmacology. Sep 2008;55(3):334-44. doi:10.1016/j.neuropharm.2008.02.017	555
46. Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The	556
concept of mitochondrial hormesis (mitohormesis). <i>Experimental gerontology</i> . Jun 2010;45(6):410-8.	557
doi:10.1016/j.exger.2010.03.014	558
47. Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB. Green tea catechins as brain-	559
permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. <i>Mol</i>	560
Nutr Food Res. Feb 2006;50(2):229-34. doi:10.1002/mnfr.200500156	561
48. Mandel S, Weinreb O, Reznichenko L, Kalfon L, Amit T. Green tea catechins as brain-permeable,	562
non toxic iron chelators to "iron out iron" from the brain. <i>Journal of neural transmission Supplementum</i> .	563
2006;(71):249-57. doi:10.1007/978-3-211-33328-0_26	564
49. Rattan SI. Hormesis in aging. <i>Ageing research reviews</i> . Jan 2008;7(1):63-78.	565
doi:10.1016/j.arr.2007.03.002	566
50. Calabrese EJ. Astrocytes: adaptive responses to low doses of neurotoxins. <i>Crit Rev Toxicol</i> .	567
2008;38(5):463-71. doi:10.1080/10408440802004023	568
51. Calabrese EJ. Pharmacological enhancement of neuronal survival. <i>Crit Rev Toxicol</i> .	569
2008;38(4):349-89. doi:10.1080/10408440801981973	570
52. Calabrese EJ. Neuroscience and hormesis: overview and general findings. <i>Crit Rev Toxicol</i> .	571
2008;38(4):249-52. doi:10.1080/10408440801981957	572
53. Cook R, Calabrese EJ. The importance of hormesis to public health. <i>Environmental health</i>	573
perspectives. Nov 2006;114(11):1631-5. doi:10.1289/ehp.8606	574
54. Calabrese EJ. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson	575
Law are manifestations of hormesis. Ageing research reviews. Jan 2008;7(1):8-20.	576
doi:10.1016/j.arr.2007.07.001	577
55. Calabrese V, Renis M, Calderone A, et al. Stress proteins and SH-groups in oxidant-induced	578
cellular injury after chronic ethanol administration in rat. <i>Free radical biology & medicine</i> . May	579
1998;24(7-8):1159-67. doi:10.1016/s0891-5849(97)00441-3	580
56. Mancuso C, Scapagini G, Currò D, et al. Mitochondrial dysfunction, free radical generation and	581
cellular stress response in neurodegenerative disorders. <i>Frontiers in bioscience : a journal and virtual</i>	582
<i>library</i> . Jan 1 2007;12:1107-23. doi:10.2741/2130	583
57. Calabrese V, Guagliano E, Sapienza M, et al. Redox regulation of cellular stress response in aging	584
and neurodegenerative disorders: role of vitagenes. <i>Neurochem Res</i> . Apr-May 2007;32(4-5):757-73.	585
doi:10.1007/s11064-006-9203-y	586
58. Mancuso C, Perluigi M, Cini C, De Marco C, Giuffrida Stella AM, Calabrese V. Heme oxygenase	587
and cyclooxygenase in the central nervous system: A functional interplay. <i>Journal of Neuroscience</i>	588
<i>Research</i> . 2006;84(7):1385-1391. doi: <u>https://doi.org/10.1002/jnr.21049</u>	589
59. Soobrattee MA, Bahorun T, Aruoma OI. Chemopreventive actions of polyphenolic compounds in	590
cancer. BioFactors (Oxford, England). 2006;27(1-4):19-35. doi:10.1002/biof.5520270103	591

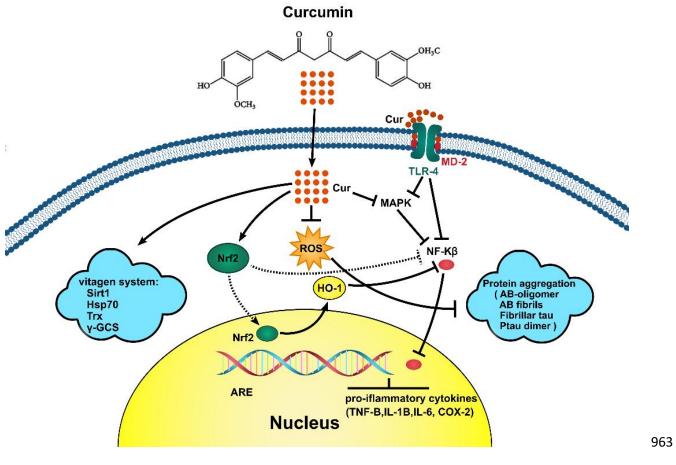
60. Mattson MP, Cheng A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive	592
neuronal stress responses. Trends in neurosciences. Nov 2006;29(11):632-9.	593
doi:10.1016/j.tins.2006.09.001	594
61. Wu L, Noyan Ashraf MH, Facci M, et al. Dietary approach to attenuate oxidative stress,	595
hypertension, and inflammation in the cardiovascular system. Proceedings of the National Academy of	596
Sciences of the United States of America. May 4 2004;101(18):7094-9. doi:10.1073/pnas.0402004101	597
62. Miquel S, Champ C, Day J, et al. Poor cognitive ageing: Vulnerabilities, mechanisms and the	598
impact of nutritional interventions. Ageing research reviews. 2018/03/01/ 2018;42:40-55.	599
doi: <u>https://doi.org/10.1016/j.arr.2017.12.004</u>	600
63. Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. <i>Cancer letters</i> . Jun 28	601
2005;224(2):171-84. doi:10.1016/j.canlet.2004.09.042	602
64. Bautista DM, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion	603
channel TRPA1. Proceedings of the National Academy of Sciences of the United States of America.	604
2005;102(34):12248-12252. doi:10.1073/pnas.0505356102	605
65. Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-	606
dependent deacetylation promotes expression of glucogenetic genes. The Journal of biological	607
<i>chemistry</i> . May 27 2005;280(21):20589-95. doi:10.1074/jbc.M412357200	608
66. Siracusa R, Scuto M, Fusco R, et al. Anti-inflammatory and Anti-oxidant Activity of Hidrox [®] in	609
Rotenone-Induced Parkinson's Disease in Mice. Antioxidants. 2020;9(9):824.	610
67. Brunetti G, Di Rosa G, Scuto M, et al. Healthspan Maintenance and Prevention of Parkinson's-	611
like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in C. elegans. International journal of	612
molecular sciences. Apr 8 2020;21(7)doi:10.3390/ijms21072588	613
68. Calabrese EJ, Mattson MP, Dhawan G, Kapoor R, Calabrese V, Giordano J. Chapter Ten -	614
Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. In: Söderbom	615
G, Esterline R, Oscarsson J, Mattson MP, eds. International Review of Neurobiology. Academic Press;	616
2020:271-301.	617
69. Calabrese EJ, Calabrese V, Giordano J. Demonstrated hormetic mechanisms putatively subserve	618
riluzole-induced effects in neuroprotection against amyotrophic lateral sclerosis (ALS): Implications for	619
research and clinical practice. Ageing research reviews. 2021/05/01/ 2021;67:101273.	620
doi: <u>https://doi.org/10.1016/j.arr.2021.101273</u>	621
70. Bassani TB, Turnes JM, Moura EL, et al. Effects of curcumin on short-term spatial and	622
recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model	623
of dementia of Alzheimer's type. Behavioural brain research. 2017;335:41-54.	624
71. Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: different molecular targets and	625
potential therapeutic agents including curcumin. <i>Current opinion in pharmacology</i> . 2009;9(4):434-444.	626
72. Xiao L, Ding M, Fernandez A, Zhao P, Jin L, Li X. Curcumin alleviates lumbar radiculopathy by	627
reducing neuroinflammation, oxidative stress and nociceptive factors. European cells & materials.	628
2017;33:279.	629
73. Pardridge WM. Re-engineering therapeutic antibodies for Alzheimer's disease as blood-brain	630
barrier penetrating bi-specific antibodies. <i>Expert opinion on biological therapy</i> . 2016;16(12):1455-1468.	631
74. Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based	632
H2O2-responsive controlled release system for Alzheimer's disease treatment. Acta biomaterialia.	633
2016;46:177-190.	634
75. Amiri H, Saeidi K, Borhani P, Manafirad A, Ghavami M, Zerbi V. Alzheimer's disease:	635
pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS chemical	636
neuroscience. 2013;4(11):1417-1429.	637
76. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in	638
biomedical engineering. Biomaterials. 2010;31(24):6121-6130.	639

77. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. <i>The</i>	640
lancet. 2005;366(9503):2112-2117.	641
78. Qin J, Park JS, Jo DG, Cho M, Lee Y. Curcumin-based electrochemical sensor of amyloid-β	642
oligomer for the early detection of Alzheimer's disease. Sensors and Actuators B: Chemical.	643
2018;273:1593-1599.	644
79. Yang C-C, Yang S-Y, Chieh J-J, et al. Biofunctionalized magnetic nanoparticles for specifically	645
detecting biomarkers of Alzheimer's disease in vitro. ACS chemical neuroscience. 2011;2(9):500-505.	646
80. Cheng KK, Chan PS, Fan S, et al. Curcumin-conjugated magnetic nanoparticles for detecting	647
amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials.	648
2015;44:155-172.	649
81. Cheng KK, Wang YX, Chow AH, Baum L. Amyloid plaques binding curcumin conjugated magnetic	650
nanoparticles for diagnosis in Alzheimer's disease Tg2576 mice. Alzheimer's & Dementia: The Journal of	651
the Alzheimer's Association. 2014;10(4):P152-P153.	652
82. Sehlin D, Fang XT, Cato L, Antoni G, Lannfelt L, Syvänen S. Antibody-based PET imaging of	653
amyloid beta in mouse models of Alzheimer's disease. Nature communications. 2016;7:10759.	654
83. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of	655
Alzheimer's disease pathophysiology. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease.	656
2010;1802(1):2-10.	657
84. Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. <i>Free Radical Biology and</i>	658
Medicine. 1997;23(1):134-147.	659
85. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain	660
cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. <i>Progress in</i>	661
neurobiology. 2002;68(3):209-245.	662
86. Vassar R, Bennett BD, Babu-Khan S, et al. β-Secretase cleavage of Alzheimer's amyloid precursor	663
protein by the transmembrane aspartic protease BACE. <i>science</i> . 1999;286(5440):735-741.	664
87. Kumar S, Walter J. Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of	665
toxic aggregates in Alzheimer's disease. <i>Aging</i> . 2011;3(8):803.	666
88. Butterfield DA. β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications	667
for Alzheimer's disease. Chemical research in toxicology. 1997;10(5):495-506.	668
89. Mathew A, Yoshida Y, Maekawa T, Kumar DS. Alzheimer's disease: Cholesterol a menace? <i>Brain</i>	669
Research Bulletin. 2011;86(1-2):1-12.	670
90. Ghiso J, Frangione B. Amyloidosis and Alzheimer's disease. Advanced drug delivery reviews.	671
2002;54(12):1539-1551.	672
91. HeppnerFL R. BecherB. Immune attack: theroleofinflammationinAlzheimerdisease.	673
2015;16(6):358r372.	674
92. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. <i>Neurobiology of</i>	675
aging. 2000;21(3):383-421.	676
93. Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer's disease. CNS &	677
Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders).	678
2010;9(2):156-167.	679
94. Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer's	680
disease. Molecular Neurodegeneration. 2018/12/12 2018;13(1):64. doi:10.1186/s13024-018-0299-8	681
95. Velmurugan BK, Rathinasamy B, Lohanathan BP, Thiyagarajan V, Weng CF. Neuroprotective Role	682
of Phytochemicals. <i>Molecules (Basel, Switzerland)</i> . Sep 27 2018;23(10)doi:10.3390/molecules23102485	683
96. Keshavarz Shahbaz S, Varasteh A-R, Koushki K, et al. Sublingual dendritic cells targeting by	684
aptamer: Possible approach for improvement of sublingual immunotherapy efficacy. International	685
Immunopharmacology. 2020/08/01/ 2020;85:106603.	686
doi: <u>https://doi.org/10.1016/j.intimp.2020.106603</u>	687

97. Koushki K, Varasteh A-R, Shahbaz SK, et al. Dc-specific aptamer decorated gold nanoparticles: A	688
new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. International	689
Journal of Pharmaceutics. 2020/06/30/ 2020;584:119403.	690
doi:https://doi.org/10.1016/j.ijpharm.2020.119403	691
98. Xiao Z, Ji C, Shi J, et al. DNA self-assembly of targeted near-infrared-responsive gold	692
nanoparticles for cancer thermo-chemotherapy. Angewandte Chemie. 2012;124(47):12023-12027.	693
99. Wang X, Cheng R, Zhong Z. Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-	694
crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta	695
Biomaterialia. 2021;125:280-289.	696
100. Deng W, Kautzka Z, Chen W, Goldys EM. PLGA nanocomposites loaded with verteporfin and gold	697
nanoparticles for enhanced photodynamic therapy of cancer cells. RSC advances. 2016;6(113):112393-	698
112402.	699
101. Khan NH, Mir M, Ngowi EE, et al. Nanomedicine: A Promising Way to Manage Alzheimer's	700
Disease. Frontiers in Bioengineering and Biotechnology. 2021;9	701
102. Jia L, Nie X-q, Ji H-m, Yuan Z-x, Li R-s. Multiple-Coated PLGA Nanoparticles Loading Triptolide	702
Attenuate Injury of a Cellular Model of Alzheimer's Disease. BioMed Research International. 2021;2021	703
103. Abbas M. Potential Role of Nanoparticles in Treating the Accumulation of Amyloid-Beta Peptide	704
in Alzheimer's Patients. Polymers. 2021;13(7):1051.	705
104. Del Amo L, Cano A, Ettcheto M, et al. Surface Functionalization of PLGA Nanoparticles to	706
Increase Transport across the BBB for Alzheimer's Disease. Applied Sciences. 2021;11(9):4305.	707
105. Gao C, Chu X, Gong W, et al. Neuron tau-targeting biomimetic nanoparticles for curcumin	708
delivery to delay progression of Alzheimer's disease. Journal of nanobiotechnology. 2020;18:1-23.	709
106. Sadeghi M, Koushki K, Mashayekhi K, et al. DC-targeted gold nanoparticles as an efficient and	710
biocompatible carrier for modulating allergic responses in sublingual immunotherapy. International	711
Immunopharmacology. 2020/09/01/ 2020;86:106690.	712
doi:https://doi.org/10.1016/j.intimp.2020.106690	713
107. Hasanpour A, Esmaeili F, Hosseini H, Amani A. Use of mPEG-PLGA nanoparticles to improve	714
bioactivity and hemocompatibility of streptokinase: In-vitro and in-vivo studies. Materials Science and	715
Engineering: C. 2021/01/01/ 2021;118:111427. doi: <u>https://doi.org/10.1016/j.msec.2020.111427</u>	716
108. Esfandyari-Manesh M, Abdi M, Talasaz AH, Ebrahimi SM, Atyabi F, Dinarvand R. S2P peptide-	717
conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to	718
atherosclerotic plaques. DARU Journal of Pharmaceutical Sciences. 2020/06/01 2020;28(1):131-138.	719
doi:10.1007/s40199-019-00324-w	720
109. Ameruoso A, Palomba R, Palange AL, et al. Ameliorating Amyloid-β Fibrils Triggered	721
Inflammation via Curcumin-Loaded Polymeric Nanoconstructs. Original Research. Frontiers in	722
Immunology. 2017-October-31 2017;8(1411)doi:10.3389/fimmu.2017.01411	723
110. Maiti P, Dunbar GL. Use of curcumin, a natural polyphenol for targeting molecular pathways in	724
treating age-related neurodegenerative diseases. International journal of molecular sciences.	725
2018;19(6):1637.	726
111. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent	727
(curcumin) as nontoxic and safe substances: Review. Review. Phytotherapy Research. 2018;32(6):985-	728
995. doi:10.1002/ptr.6054	729
112. Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal P, Jayakumar R. Dermal wound healing	730
processes with curcumin incorporated collagen films. <i>Biomaterials</i> . 2004;25(10):1911-1917.	731
113. Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid	732
based polymeric bandage in a rat model. <i>Molecular pharmaceutics</i> . 2012;9(10):2801-2811.	733


114. Tummalapalli M, Berthet M, Verrier B, Deopura B, Alam M, Gupta B. Composite wound	734
dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International journal of	735
biological macromolecules. 2016;82:104-113.	736
115. Shah BH, Nawaz Z, Pertani SA, et al. Inhibitory effect of curcumin, a food spice from turmeric, on	737
platelet-activating factor-and arachidonic acid-mediated platelet aggregation through inhibition of	738
thromboxane formation and Ca2+ signaling. <i>Biochemical pharmacology</i> . 1999;58(7):1167-1172.	739
116. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A	740
review on antibacterial, antiviral, and antifungal activity of curcumin. <i>BioMed research international</i> .	741
2014;2014	742
117. Shanmugam MK, Rane G, Kanchi MM, et al. The multifaceted role of curcumin in cancer	743
prevention and treatment. <i>Molecules (Basel, Switzerland</i>). 2015;20(2):2728-2769.	744
	745
ultrasonic-mediated synthesis of curcumin-loaded chitosan–alginate–sTPP nanoparticles. International	746
journal of nanomedicine. 2017;12:8545.	747
119. Moustapha A, Pérétout P, Rainey N, et al. Curcumin induces crosstalk between autophagy and	748
apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and	749
mitochondrial events. Cell Death Discovery. 2015;1(1):1-15.	750
120. Teymouri M, Pirro M, Johnston TP, Sahebkar A. Curcumin as a multifaceted compound against	751
human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and	752
preclinical features. Review. BioFactors (Oxford, England). 2017;43(3):331-346. doi:10.1002/biof.1344	753
121. Mohajeri M, Bianconi V, Ávila-Rodriguez MF, et al. Curcumin: a phytochemical modulator of	754
estrogens and androgens in tumors of the reproductive system. <i>Pharmacological Research</i> .	755
2020;156104765. doi:10.1016/j.phrs.2020.104765	756
122. Mukhopadhyay A, Basu N, Ghatak N, Gujral P. Anti-inflammatory and irritant activities of	757
curcumin analogues in rats. Agents and actions. 1982;12(4):508-515.	758
123. Bianconi V, Sahebkar A, Atkin SL, Pirro M. The regulation and importance of monocyte	759
chemoattractant protein-1. Review. Current Opinion in Hematology. 2018;25(1):44-51.	760
doi:10.1097/MOH.000000000000389	761
124. Ghandadi M, Sahebkar A. Curcumin: An effective inhibitor of interleukin-6. Review. <i>Current</i>	762
Pharmaceutical Design. 2017;23(6):921-931. doi:10.2174/1381612822666161006151605	763
125. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by	764
curcumin: The role of interleukin-10. Review. Critical Reviews in Food Science and Nutrition.	765
2019;59(1):89-101. doi:10.1080/10408398.2017.1358139	766
126. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. <i>The</i>	767
molecular targets and therapeutic uses of curcumin in health and disease. Springer; 2007:105-125.	768
127. Panahi Y, Khalili N, Sahebi E, et al. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic	769
and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind	770
Placebo-Controlled Trial. Article. Drug Research. 2018;68(7):403-409. doi:10.1055/s-0044-101752	771
128. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate	772
for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Review. Journal of Cellular	773
<i>Physiology</i> . 2018;233(1):141-152. doi:10.1002/jcp.25756	774
129. Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils,	775
binds plaques, and reduces amyloid in vivo. <i>Journal of Biological Chemistry</i> . 2005;280(7):5892-5901.	776
130. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. <i>The molecular</i>	777
targets and therapeutic uses of curcumin in health and disease. Springer; 2007:1-75.	778
131. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery	779
occlusion induced focal cerebral ischemia in rats. <i>Life sciences</i> . 2004;74(8):969-985.	780
olliusion muuleu iolai leiebiai isliienna in rais. Lije Slienles. 2004,74(0).707-705.	700


132. Shen L, Ji H-F. The pharmacology of curcumin: is it the degradation products? <i>Trends in</i>	781
molecular medicine. 2012;18(3):138-144.	782
133. Karlstetter M, Lippe E, Walczak Y, et al. Curcumin is a potent modulator of microglial gene	783
expression and migration. Journal of neuroinflammation. 2011;8(1):125.	784
134. Tizabi Y, Hurley LL, Qualls Z, Akinfiresoye L. Relevance of the anti-inflammatory properties of	785
curcumin in neurodegenerative diseases and depression. <i>Molecules (Basel, Switzerland)</i> .	786
2014;19(12):20864-20879.	787
135. Chen J, Tang XQ, Zhi JL, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium	
ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis : an international journal on	
programmed cell death. Jun 2006;11(6):943-53. doi:10.1007/s10495-006-6715-5	790
136. Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells	791
involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation	
of apoptosis. Molecular carcinogenesis. May 2006;45(5):320-32. doi:10.1002/mc.20170	793
137. Pérez-Arriaga L, Mendoza-Magaña ML, Cortés-Zárate R, et al. Cytotoxic effect of curcumin on	794
Giardia lamblia trophozoites. <i>Acta tropica</i> . May 2006;98(2):152-61.	795
doi:10.1016/j.actatropica.2006.03.005	796
138. Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti-inflammatory activities of	
curcumins I-III from Curcuma longa. <i>Phytomedicine : international journal of phytotherapy and</i>	798
phytopharmacology. Jul 2000;7(4):303-8. doi:10.1016/s0944-7113(00)80048-3	799
139. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic.	800
Biochem Pharmacol. Feb 15 2008;75(4):787-809. doi:10.1016/j.bcp.2007.08.016	801
140. Calabrese V, Cornelius C, Trovato A, et al. The hormetic role of dietary antioxidants in free	802
radical-related diseases. <i>Curr Pharm Des</i> . 2010;16(7):877-83. doi:10.2174/138161210790883615	803
141. Moghaddam NSA, Oskouie MN, Butler AE, Petit PX, Barreto GE, Sahebkar A. Hormetic effects of	
curcumin: What is the evidence? <i>J Cell Physiol</i> . Jul 2019;234(7):10060-10071. doi:10.1002/jcp.27880	805
142. Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the	806
herbal analysis from Curcuma longa by LC–MS/MS. <i>Journal of chromatography B</i> . 2007;853(1-2):183-	807
189.	808
143. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems	809 810
 and promises. <i>Molecular pharmaceutics</i>. 2007;4(6):807-818. 144. Lopresti AL. The problem of curcumin and its bioavailability: could its gastrointestinal influence 	810
contribute to its overall health-enhancing effects? Advances in Nutrition. 2018;9(1):41-50.	811
145. Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological	812
efficacy of curcumin by heat treatment. Assay and drug development technologies. 2007;5(4):567-576.	813
146. Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin	
complexation: solubility, chemical and photochemical stability. <i>International journal of pharmaceutics</i> .	816
2002;244(1-2):127-135.	810
147. Wang Y-J, Pan M-H, Cheng A-L, et al. Stability of curcumin in buffer solutions and	818
characterization of its degradation products. <i>Journal of pharmaceutical and biomedical analysis</i> .	818
1997;15(12):1867-1876.	820
148. Aggarwal BB, Surh Y-J, Shishodia S. <i>The molecular targets and therapeutic uses of curcumin in</i>	821
health and disease. vol 595. Springer Science & Business Media; 2007.	822
149. Souza CR, Osme SF, Glória MBA. Stability of Curcuminoib Pigments in Model Systems. <i>Journal of</i>	
food processing and preservation. 1997;21(5):353-363.	824
150. Prado-Audelo D, María L, Caballero-Florán IH, et al. Formulations of curcumin nanoparticles for	825
brain diseases. <i>Biomolecules</i> . 2019;9(2):56.	826
151. Mahran RI, Hagras MM, Sun D, Brenner DE. Bringing curcumin to the clinic in cancer prevention	
a review of strategies to enhance bioavailability and efficacy. <i>The AAPS journal</i> . 2017;19(1):54-81.	. <u>82</u> 7 828


152. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of	829
pharmaceutical properties and preclinical studies and clinical data related to cancer treatment.	830
Biomaterials. 2014;35(10):3365-3383.	831
153. Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin	832
nanoformulations. The AAPS journal. 2015;17(6):1341-1356.	833
154. Mouhieddine TH, Itani MM, Nokkari A, et al. Nanotheragnostic applications for ischemic and	834
hemorrhagic strokes: improved delivery for a better prognosis. Current neurology and neuroscience	835
reports. 2015;15(1):505.	836
155. Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for	837
different diseases therapy. BioMed research international. 2014;2014	838
156. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for	839
cancer. Drug discovery today. 2012;17(1-2):71-80.	840
157. Sun M, Su X, Ding B, et al. Advances in nanotechnology-based delivery systems for curcumin.	841
Nanomedicine. 2012;7(7):1085-1100.	842
158. Szymusiak M, Hu X, Plata PAL, Ciupinski P, Wang ZJ, Liu Y. Bioavailability of curcumin and	843
curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.	844
International journal of pharmaceutics. 2016;511(1):415-423.	845
159. Kreuter J. Nanoparticles—a historical perspective. <i>International journal of pharmaceutics</i> .	846
2007;331(1):1-10.	847
160. Leson A. "There is plenty of room at the Bottom". <i>Vakuum in Forschung und Praxis</i> .	848
2005;17(3):123-123. doi:10.1002/vipr.200590035	849
161. Khanna S, Soliva M, Speiser P. Epoxy resin beads as a pharmaceutical dosage form II: Dissolution	850
studies of epoxy-amine beads and release of drug. Journal of pharmaceutical sciences.	851
1969;58(11):1385-1388.	852
162. Müller R, Maaben S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid	853
nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. Journal of drug	854
targeting. 1996;4(3):161-170.	855
163. Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug–	856
polymer applications: A review of experiments and theories. <i>Journal of Biomedical Materials Research</i> <i>Part B: Applied Biomaterials</i> . 2017;105(6):1692-1716.	857 858
164. Chen Y, Lin X, Park H, Greever R. Study of artemisinin nanocapsules as anticancer drug delivery	859
systems. Nanomedicine: nanotechnology, biology and medicine. 2009;5(3):316-322.	860
165. Nguyen HT, Tran TH, Kim JO, Yong CS, Nguyen CN. Enhancing the in vitro anti-cancer efficacy of	861
artesunate by loading into poly-D, L-lactide-co-glycolide (PLGA) nanoparticles. Archives of pharmacal	862
research. 2015;38(5):716-724.	863
166. Keshavarz Shahbaz S, Foroughi F, Soltaninezhad E, Jamialahmadi T, Penson PE, Sahebkar A.	864
Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of	865
allotransplant rejection. Expert Opinion on Drug Delivery. 2020/06/02 2020;17(6):767-780.	866
doi:10.1080/17425247.2020.1748006	867
167. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA	868
nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of colloid and interface	869
science. 2010;351(1):19-29.	870
168. Luz PP, Magalhães LG, Pereira AC, Cunha WR, Rodrigues V, e Silva MLA. Curcumin-loaded into	871
PLGA nanoparticles. Parasitology research. 2012;110(2):593-598.	872
169. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an	873
overview of biomedical applications. Journal of controlled release : official journal of the Controlled	874
Release Society. Jul 20 2012;161(2):505-522. doi:10.1016/j.jconrel.2012.01.043	875

170. Arshad A, Yang B, Bienemann AS, et al. Convection-enhanced delivery of carboplatin PLGA	876
nanoparticles for the treatment of glioblastoma. <i>PloS one</i> . 2015;10(7):e0132266.	877
171. Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG. Multifunctional nanoliposomes	878
with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer	879
disease. European journal of medicinal chemistry. 2014;80:175-183.	880
172. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. A potential role of the curry	881
spice curcumin in Alzheimer's disease. <i>Current Alzheimer Research</i> . 2005;2(2):131-136.	882
173. Garcia-Alloza M, Borrelli L, Rozkalne A, Hyman B, Bacskai B. Curcumin labels amyloid pathology	883
in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model.	884
Journal of neurochemistry. 2007;102(4):1095-1104.	885
174. Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer's disease: An overview.	886
Annals of Indian Academy of Neurology. 2008;11(1):13.	887
175. Park S-Y, Kim H-S, Cho E-K, et al. Curcumin protected PC12 cells against beta-amyloid-induced	888
toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food and Chemical	889
Toxicology. 2008;46(8):2881-2887.	890
176. Bustanji Y, Taha MO, Almasri IM, Al-Ghussein MA, Mohammad MK, Alkhatib HS. Inhibition of	891
glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in	892
vitro/in vivo evaluation. Journal of enzyme inhibition and medicinal chemistry. 2009;24(3):771-778.	893
177. Wang H-M, Zhao Y-X, Zhang S, et al. PPARγ agonist curcumin reduces the amyloid-β-stimulated	894
inflammatory responses in primary astrocytes. Journal of Alzheimer's Disease. 2010;20(4):1189-1199.	895
178. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical	896
studies. Anticancer research. 2003;23(1/A):363-398.	897
179. Balasubramanian K. Molecular orbital basis for yellow curry spice curcumin's prevention of	898
Alzheimer's disease. Journal of agricultural and food chemistry. 2006;54(10):3512-3520.	899
180. Sharma S, Ying Z, Gomez-Pinilla F. A pyrazole curcumin derivative restores membrane	900
homeostasis disrupted after brain trauma. <i>Experimental neurology</i> . 2010;226(1):191-199.	901
181. Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H. Curcumin and its nano-formulation: the kinetics of tissue	902
distribution and blood-brain barrier penetration. International journal of pharmaceutics.	903
2011;416(1):331-338.	904
182. Mathew A, Aravind A, Fukuda T, et al. Curcumin nanoparticles-a gateway for multifaceted	905
approach to tackle Alzheimer's disease. IEEE; 2011:833-836.	906
183. Chiu SS, Lui E, Majeed M, et al. Differential distribution of intravenous curcumin formulations in	907
the rat brain. Anticancer research. 2011;31(3):907-911.	908
184. Mathew A, Aravind A, Brahatheeswaran D, et al. Amyloid-binding aptamer conjugated	909
	910
curcumin–PLGA nanoparticle for potential use in Alzheimer's disease. <i>BioNanoScience</i> . 2012;2(2):83-93.	
185. Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with	911
Tet-1 peptide for potential use in Alzheimer's disease. <i>PLoS one</i> . 2012;7(3):e32616.	912
186. Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-	913
acting therapeutics. Proceedings of the National Academy of Sciences. 2012;109(40):16288-16293.	914
187. Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C. Neuronal uptake and neuroprotective	915
effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. Journal of Alzheimer's	916
Disease. 2012;30(2):377-392.	917
188. Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult	918
neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin	919
pathway. ACS nano. 2013;8(1):76-103.	920
189. Srivastava A, Arya P, Goel S, Kundu B, Mishra P, Fnu A. Gelsolin amyloidogenesis is effectively	921
modulated by curcumin and emetine conjugated PLGA nanoparticles. <i>PloS one</i> . 2015;10(5):e0127011.	922

190. Paka GD, Ramassamy C. Optimization of curcumin-loaded PEG-PLGA nanoparticles by GSH functionalization: investigation of the internalization pathway in neuronal cells. <i>Molecular</i>	923 924
pharmaceutics. 2016;14(1):93-106.	924 925
191. Huang N, Lu S, Liu X-G, Zhu J, Wang Y-J, Liu R-T. PLGA nanoparticles modified with a BBB-	926
penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and	927
neuropathology in Alzheimer's disease mice. Oncotarget. 2017;8(46):81001.	928
192. Barbara R, Belletti D, Pederzoli F, et al. Novel Curcumin loaded nanoparticles engineered for	929
Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. International journal of	930
pharmaceutics. 2017;526(1-2):413-424.	931
193. Ameruoso A, Palomba R, Palange AL, et al. Ameliorating amyloid-β fibrils triggered inflammation	932
via curcumin-loaded polymeric nanoconstructs. <i>Frontiers in immunology</i> . 2017;8:1411.	933
194. Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated	934 025
PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. <i>Journal of Photochemistry and Photobiology B: Biology</i> . 2019;190:98-102.	935 936
195. Sutcliffe JG, Hedlund PB, Thomas EA, Bloom FE, Hilbush BS. Peripheral reduction of β-amyloid is	930 937
sufficient to reduce brain β -amyloid: Implications for Alzheimer's disease. <i>Journal of neuroscience</i>	938
research. 2011;89(6):808-814.	939
196. Matsuoka Y, Saito M, LaFrancois J, et al. Novel therapeutic approach for the treatment of	940
Alzheimer's disease by peripheral administration of agents with an affinity to β -amyloid. Journal of	941
Neuroscience. 2003;23(1):29-33.	942
197. Takahashi T, Tada K, Mihara H. RNA aptamers selected against amyloid β-peptide (Aβ) inhibit	943
the aggregation of Aβ. <i>Molecular Biosystems</i> . 2009;5(9):986-991.	944
198. Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6	945
peptide for potential use in Alzheimer's disease. Drug delivery. 2018;25(1):1091-1102.	946
199. Kuo Y-C, Tsai H-C. Rosmarinic acid-and curcumin-loaded polyacrylamide-cardiolipin-poly	947
(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β -amyloid-	948
insulted neurons. Materials Science and Engineering: C. 2018;91:445-457.	949
	950
	951
	952

Fig 2. The main pleiotropic functions of curcumin in neurodegenerative diseases. Curcumin exerts	965
neuroprotection effects through Nrf2 activation, MAPK inhibition and downregulating TLR-4 after binding to MD	966
2, leading to reduced expression of NF-KB and proinflammatory cytokines. Also, curcumin activates the protective	967
vitagen systems and removes misfolded proteins through inhibiting ROS production.	968
	969
Abbreviation: MD-2, myeloid differentiation factor 2; TLR-4, Toll-like receptor 4; MAPK, A mitogen-activated	970
protein kinase; Nf-KB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; ROS, reactive oxygen	971
species; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, Heme oxygenase-1; ARE, antioxidant response	972
element; COX-2, antioxidant response element; Hsp70, heat shock protein; Sirt-1, sirtuins; Trx,	973
thioredoxin/thioredoxin reductase; γ - γ -GCS, glutamyl cysteine synthetase.	974
	975