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Abstract: Safety critical systems developed as part of a product line must still comply with safety 

standards. Standards use the concept of Safety Integrity Levels (SILs) to drive the assignment of system 

safety requirements to components of a system under design. However, for a Software Product Line 

(SPL), the safety requirements that need to be allocated to a component may vary in different products. 

Variation in design can indeed change the possible hazards incurred in each product, their causes, and 

can alter the safety requirements placed on individual components in different SPL products. Establishing 

common SILs for components of a large scale SPL by considering all possible usage scenarios, is 

desirable for economies of scale, but it also poses challenges to the safety engineering process. In this 

paper, we propose a method for automatic allocation of SILs to components of a product line. The 

approach is applied to a Hybrid Braking System SPL design. 
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1. INTRODUCTION 

The term Software Product Line (SPL) refers to a software 

development approach that enables software reuse by 

allowing the creation of software applications through the 

composition of common and variable features that address 

the requirements of a particular domain (Clements and 

Northrop, 2001). Features represent desired functionality 

from the user point of view (Lee et al. 2002).  Product line 

design maximizes software reuse across products but must 

still yield safe individual products and this poses research 

challenges.  

In general safety assessment processes in many industries 

move into a direction where safety is addressed from the 

early stages. Safety requirements for a system are captured 

early on and are progressively allocated to subsystems and 

components of the architecture. The process must guarantee 

that, at the end, if the component requirements are met, the 

system requirements are also met. This type of allocation of 

requirements is seen as important because it provides a way 

in which safety is controlled from early stages and is not left 

to emerge or not at the end. Can we transfer this type of top-

down thinking about safety in SPL design? This is the 

question that is addressed in this paper. 

Safety standards use the concept of Safety Integrity Levels 

(SILs) to assign safety requirements of different stringencies 

to components of a system. They take the form of 

Automotive Safety Integrity Levels (ASILs) in the ISO 

26262 (ISO, 2011) standard for passenger cars, and 

Development Assurance Levels (DALs) in aerospace safety 

standards (EUROCAE, 2010). SILs are assigned early in the 

system design process at system level, just after the system 

hazards have been identified. These hazards are given more 

or less stringent SILs depending on how high are the risks 

they pose. As the system architecture is being refined, SILs 

assigned to system-level hazards are iteratively allocated to 

subsystems and components. ASIL Decomposition is a 

process that allows for a safety-critical architecture to meet a 

particular target ASIL assigned to a hazard without all 

components contributing to the hazard having to meet that 

target. For example, if a hazard can be caused only when two 

independent components fail together, these components can 

share the responsibility of meeting the ASIL allocated to that 

hazard, rather than each one having to meet the original 

ASIL.  

ISO 26262 defines an integer algebra for ASIL 

decomposition which is loosely derived from rules about 

combining probabilities. Each ASIL is equivalent to an 

integer value: QM (Quality Management) = 0, A = 1, B = 2, 

C= 3, and D = 4. The ASIL algebra defines that if n 

components must fail simultaneously to cause a given hazard, 

the total ASIL assigned to these n components must add up to 

the ASIL of the hazard they originate. So, two redundant 

components assuring a function of ASIL D might 

individually only be required to meet ASIL B because 

together they produce the total required ASIL value (2 + 2 = 

4). Higher ASILs mean higher costs, because meeting more 

stringent safety requirements typically requires more safety 

measures, more effort, and higher-quality components. 



 

 

     

 

Therefore, component ASILs could significantly affect both 

development and production costs. ASIL decomposition 

allows to efficiently allocate requirements so that we can 

meet the safety requirements without being unnecessarily 

stringent or expensive.  

More specifically, recent Model-Based Safety Assessment 

(MSBA) techniques can potentially provide frameworks for 

SILs allocation, by allowing us to automatically identify 

combinations of component failures that lead to system 

hazards, and therefore by locating opportunities for SIL 

decomposition. HiP-HOPS (Hierarchically Performed Hazard 

Origin & Propagation Studies) (Papadopoulos et al. 2011) is 

an advanced MBSA technique that already provides such an 

approach for ISO 26262. HiP-HOPS implements a 

combination of model-based, automated Fault Tree Analysis 

(FTA) process and a Tabu Search (TS) (Azevedo et al. 2013) 

meta-heuristic optimization algorithm, allowing optimal 

ASIL allocation and has shown to scale up to complex 

systems.  

Although application of the MBSA process to SPL design 

would be beneficial, this is not straightforward. As safety is 

context-dependent, hazards, their causes, and the 

requirements allocated to SPL components may change 

according to the selection of SPL variants in a particular 

product (Habli, 2011). Such variation may change the safety 

requirements (i.e., the SILs) placed on components in 

different products of the SPL. Thereby, establishing safety 

requirements for SPL components requires finding the SILs 

allocated to those components in different products. If a 

component is allocated different SILs in different products 

then the highest requirement must be met for the component 

to be used safely across SPL products. This type of allocation 

would allow developers to meet their responsibilities in order 

to assure the safety of the SPL architecture, and to comply 

with safety standards, without incurring the unnecessary high 

costs of complete reanalysis and reallocation of safety 

requirements as traditionally demanded for each product. 

However, the establishment of product line component 

ASILs in a large scale SPL, like a family of automotive 

powertrain controllers with potentially hundreds of members, 

can be challenging.  

Safety standards do not show how this can be done in large 

scale, e.g. via automation, and no framework has yet been 

developed to support the automatic allocation of SILs 

compatible with, and useful in the context of, SPLs. Indeed, 

although emerging SIL allocation tools and techniques 

(Azevedo et al. 2014; Parker et al. 2013; Papadopoulos et al. 

2010; Mader et al. 2012; Bieber et al. 2011; Zhang et al. 

2010; Lee et al. 2009; Sallak et al. 2008; Dhouibi et al. 2014) 

provide the capability of automatically allocate SILs to single 

SPL products, they do not address product lines.  

The novelty of this paper is precisely a concept for allocation 

of SILs to components in product line design, and a method 

and tool to provide the automated support to apply that 

concept. The tool is tailored upon HiP-HOPS (Azevedo et al. 

2014) and is applied to the automotive domain. The paper is 

organized as follows. Section 2 provides an overview of HiP-

HOPS and its Tabu Search ASIL allocation approach. Section 

3 describes the method and tool to automatically allocate 

SILs to SPL components from the analysis of multi-product 

SILs allocations. Section 4 presents the case study and 

evaluation, and section 5 shows related work. Finally, section 

6 presents the conclusion and future research. 

2. HiP-HOPS AND TABU SEARCH 

HiP-HOPS (Papadopoulos et al. 2011) is a method and tool 

for Model-based Safety Analysis, in which system models 

showing components and material energy, and data 

transactions among them are augmented with local failure 

logic. These models are then analyzed to create forms of 

safety analysis such as fault trees and Failure Modes and 

Effects Analysis (FMEAs). The HiP-HOPS tool receives the 

system description as input in an XML schema, but the 

various instantiations of the tool, e.g. its connection to 

MATLAB/Simulink, also provide a failure editor that can be 

used together with graphical interfaces to augment the model 

with safety information. Using this editor it is possible to 

specify hazards related to system malfunctions, and the 

failure logic of components described mainly as sets of 

output deviations and how they are caused by logical 

combinations of internal component failures and deviations 

of the component inputs. Once the system models have been 

annotated with hazards and local failure logic, HiP-HOPS 

synthesizes fault trees for each hazard, and then combines 

them to create an FMEA for the system. 

HiP-HOPS rationalizes allocation and decomposition of 

ASILs to system components, by showing how combinations 

of component failures lead to system hazards. For allocation 

to happen, the potential fault propagation of the system must 

be defined, to determine which component(s) potentially 

contribute to each function failure. The rationale is that a 

component that contributes to a system failure only in 

conjunction with other components may receive a lower SIL 

than a component which directly causes the system failure. 

Thus the design intention of components, and specifically 

their ability to detect, mask or propagate failures, influences 

SIL allocation across the architecture; for example, some 

components may be designed to fail silent in response to 

failure, possibly transforming a severe failure mode into a 

less severe failure mode. The contribution of components to 

hazards can be established using the analysis capabilities of 

HiP-HOPS and the synthesized fault trees produced by the 

tool. A fault tree for instance provides the minimal cut sets 

(i.e. combinations of basic events) that result in system-level 

hazards, and therefore can be used to identify ASIL 

Decomposition opportunities. 

It is often the case that the failure of the same component is 

present in multiple cut sets and all of them must be taken into 

account when finding the most advantageous allocation 

solutions. Furthermore, with the increase in the number of 

components within a system, the number of ASIL allocation 

possibilities increases exponentially. Early implementations 

of exhaustive algorithms (Papadopoulos et al. 2010) for 

allocation in HiP-HOPS were found inadequate in coping 

with the complexity of realistic models. Investigations were, 

therefore, directed towards meta-heuristics such as genetic 

algorithms. These optimization algorithms are known to find 



 

 

     

 

good solutions, through guided search of a small fraction of 

the entire search space. In addition, they are known to be 

robust in dealing with a variety of problems.  

Meta-heuristics do not guarantee finding optimal solutions; 

however, they are capable of providing near optimal 

allocations within acceptable time spans. Many meta-

heuristics exist, and recent research has been testing some of 

the most popular ones on the ASIL Allocation optimization 

problem. Tabu Search (Azevedo et al. 2014) has shown 

promising results in both the quality of the solutions found as 

well as processing times. The TS extension of HiP-HOPS 

draws from the work of Hansen and Lih (1996) for reliability 

optimization and it goes by the name of Steepest Descent 

Mildest Ascent (SDMA). The method consists of iteratively 

finding the ASIL that by being decremented reduces the cost 

of a solution (the steepest descent direction).  

3. AUTOMATIC ALLOCATION OF SAFETY 

INTEGRITY LEVELS TO PRODUCT LINE 

COMPONENTS 

In this work we extended the above capabilities to enable 

allocation of safety requirements to components of a product 

line. The concept extends the capabilities of the HiP-HOPS 

method and tool for application in SPL design. The key idea 

is the ability to automatically instantiate a large set of 

products of an SPL from a variable SPL model augmented 

with possible hazards and the local failure logic of 

components. Products are then sent in a loop to HiP-HOPS, 

which performs ASIL allocation for each product. 

Components may receive different allocations in different 

products, so the ability to use safely a component across a 

range of products means selecting the highest allocation 

given by this analysis. 

The process was implemented in a prototype tool developed 

using Java as a compliment to HiP-HOPS. The tool requires a 

pre-processing step to support the augmentation of SPL 

variability models with hazards and failure logic and the 

enumeration of all products of an SPL via resolution of 

variability (i.e. product derivation). The latter can be a 

selective manual process or an automated process. The 

automated implementation of this feature has been done in 

MATLAB/Simulink using a range of mechanisms to specify 

variability and with the support of the product line variability 

management tool  Hephaestus/Simulink (Steiner et al. 2013). 

Alternative tools include the Common Variability Language 

(CVL) implemented in Eclipse (Haugen et al. 2008). 

Simulink variability patterns (Steiner et al. 2013; Botterweck 

et al. 2010) representing optional (Enabler subsystems), 

alternative (Switch blocks), and inclusive-or (Integration 

blocks) features have been used for modelling variation in the 

SPL architecture. The variability management tool 

Hephaestus/Simulink was used in this approach to support 

the variability modelling in Simulink models using these 

patterns. The automated derivation of the enumerated SPL 

product models augmented with hazards and failure logic 

requires the specification of the configuration knowledge. 

This provides a set of rules showing how SPL design assets, 

hazards, and failure logic can be composed in a product. 

Rules are specified according to feature model constraints. 

The feature model captures structural or conceptual 

relationships between common and variable functions of 

products of a domain (Lee et al. 2002). 

SPL configuration knowledge is specified by means of 

Hephaestus/Simulink by applying the following steps: 1) 

specify the feature expressions in the scope of the usage 

scenarios described in the feature model. A feature 

expression may include a single feature or a combination 

between two or more features; 2) for each feature expression, 

determine the SPL design elements to be included and 

excluded; and 3) specify the hazards, the allocated safety 

requirements, and the failure logic to be included/excluded in 

each feature expression.  

After performing these steps, the mapping between product 

line features, design elements, hazards and the allocated 

safety requirements, and component failure logic is obtained. 

Additional details on how to use product line variability 

management tools to specify the configuration knowledge 

can be found in (Steiner et al. 2013). Finally, the variability 

management tool was adapted by implementing an 

instantiation script with the support of a feature model 

reasoner, in this case the T-wise covering arrays algorithm 

(Johansen et al. 2012), to automatically derive a set of SPL 

products according to the constraints specified in the feature 

model. 

Once a range of SPL products have been enumerated from a 

variable SPL model, the products (i.e., system models 

annotated with failure information) are then provided to HiP-

HOPS for analysis. The ASIL allocations generated by 

applying HiP-HOPS to the enumeration of the SPL products 

are the inputs to the tool developed in this paper. HiP-HOPS 

exports the ASIL allocation of each individual product in an 

XML file. An extension tool parses each one of these files 

and performs the analysis. Firstly, the tool analyses the XML 

files one by one to obtain the ASILs allocated to SPL 

components in each product. This is done by analysing the 

ASILs allocated to the failure modes associated to each SPL 

component in each individual product. The most stringent 

ASIL allocated to a failure mode associated to a particular 

component is the component ASIL in that product. For each 

product, this is repeated for all components belonging to the 

product. After obtaining the ASILs allocated to product line 

components in each product, for each SPL component, the 

analysis is performed as follows: the ASILs allocated to a 

particular SPL component in different products are analysed 

in order to verify the most stringent ASIL allocated to that 

component across the SPL. Thus, we have obtained the ASIL 

that each SPL component should meet, and the results, i.e. 

ASILs allocated to all SPL components are exported in an 

XML file.  

4. EVALUATION 

The method and tool was applied to a Hybrid Braking System 

(De Castro et al. 2011) automotive product line (HBS-SPL). 

Hazard analysis and the definition of local failure logic were 

performed based on failure logic analysis technique 

supported by HiP-HOPS, and taking into account the 



 

 

     

 

interactions between HBS-SPL components expressed in the 

feature model. Three HBS-SPL products (i.e., usage 

scenarios) were considered in the evaluation of the proposed 

method: HBS four wheels braking (HBS-4WB), HBS front 

wheels braking (HBS-FWB), and HBS rear wheels braking 

(HBS-RWB). 

The HBS-SPL is a prototype automotive braking system SPL 

designed in MATLAB/Simulink. HBS-SPL is meant for 

electrical vehicles integration, in particular for propulsion 

architectures that integrate one electrical motor per wheel. 

The term hybrid comes from the fact that braking is achieved 

throughout the combined action of the electrical In-Wheel 

Motors (IWMs) and frictional Electromechanical Brakes 

(EMBs). One of the most important features of this system is 

that the integration of IWM in the braking process allows an 

increase in the vehicle’s range: while braking, IWMs work as 

generators and transform the vehicles kinetic energy into 

electrical energy that is fed into the powertrain battery. IWMs 

have, however, braking torque availability limitations at high 

wheel speeds or when the powertrain battery is close to full 

state of charge. EMBs are introduced to provide the torque 

needed to match the total braking demand. HBS-SPL 

components can be combined in different ways according to 

the constraints specified in HBS-SPL feature model presented 

in Fig. 1. The feature model was designed using the 

cardinality-based notation (Czarnecki et al. 2004).  

 
Fig. 1 HBS-SPL feature model. 

The HBS-SPL feature model includes wheel braking 

alternative features: Brake_Unit1_Front, Brake_Unit2_Front, 

Brake_Unit3_Rear, and Brake_Unit4_Rear aimed to provide 

the braking for each wheel. The three HBS products 

described earlier have a common principle: a Mechanical 

Pedal is responsible for capturing the driver’s braking 

demands; an Electronic Pedal senses these actions and 

transforms them into braking requests for each wheel that is 

equipped with braking features; subsequently, it sends these 

requests via a duplex bus communication system to the Brake 

Units. Each Brake Unit integrates a Wheel Node Controller 

that calculates the amount of braking torque to be produced 

by each actuator. Commands are generated accordingly and 

sent to the power converters to control the 2 braking devices. 

While braking, power flows from the IWMs to the 

Powertrain Battery and from the vehicle’s low voltage 

Auxiliary Battery to the EMBs. The elements of the vehicle’s 

power architecture should be regarded as subsystems that 

include multiple components – the Powertrain Battery, for 

example, integrates a Battery Management System (BMS) 

which is composed by complex hardware and software 

elements. 

Hazards can arise in this system from the interaction between 

design elements in a range of usage scenarios. Safety 

requirements placed to a particular HBS-SPL hazard may 

also change according to contextual elements such as 

operational environment, safety standards, and regulations. 

These elements can be represented in product line context 

models (Lee et al. 2002). In this paper we have limited 

ourselves to performing the HBS-SPL hazard analysis based 

only on the SPL feature model. Product line features stand for 

system functions implemented by design elements (e.g. 

system, subsystems, components). 

Performing a hazard analysis covering all possible scenarios 

for HBS-SPL would yield voluminous results. Nevertheless, 

scoping the hazard analysis to a set of products has shown 

some degree of reuse for safety analysis assets (e.g. fault 

trees, FMEA, ASIL allocation). Wheel Braking variation 

point specified in the HBS-SPL feature model was 

considered in the hazard analysis. From the analysis of Wheel 

Braking variation point and mandatory elements of HBS-

SPL, as mentioned earlier, the following usage scenarios 

were established: HBS-4WB; HBS-FWB; and HBS-RWB. 

These scenarios were analysed from the safety perspective. 

Table 1 presents the identified hazards, their causes, and the 

allocated ASILs (Automotive Safety Integrity Levels). Table 

1 also presents the association between the hazards and the 

usage scenarios by means of the column “Scenario”. 

Table 1. HBS-SPL hazards and ASIL allocation. 

Scenario Hazard Causes ASIL 

 
 

HBS-

4WB 

No braking 
four wheels 

Omission of all brake unit 
actuators outputs. 

D 

No braking 

three wheels 

Omission of brake unit1, and 

brake unit2, and brake unit3 
actuators outputs. 

D 

No braking 

front 

Omission of brake unit1 and 

brake unit2 actuators outputs. 

D 

No braking 
rear 

Omission of brake unit3 and 
brake_unit4 actuators outputs. 

C 

No braking 

diagonal 

Omission of brake unit1 and 

brake unit4 actuators outputs or 

Omission of brake unit2 and 

brake unit4 actuators outputs. 

C 

Value 
braking 

Incorrect Value of all brake unit 
actuators outputs 

D 

HBS-

FWB  

No braking 

front 

Omission of brake unit1 and 

brake unit2 actuators outputs. 

D 

Value 
braking 

Incorrect Value of brake unit1 
and brake unit2 actuators outputs. 

D 

HBS-

RWB  

No braking 

rear 

Omission of brake unit3 and 

brake unit4 actuators outputs. 

D 

Value 
braking 

Incorrect Value of brake unit3 
and brake unit4 actuators outputs. 

D 

It is considered that no braking is being produced in a wheel 

whenever both braking devices of that wheel (an IWM and an 

EMB) are omitting their outputs. Braking with an incorrect 

value happens when at least one of the braking actuators is 

providing braking torque that is higher or lower than the 

values demanded. In order to simplify the case study, we 



 

 

     

 

have only discussed the allocation of ASILs to product line 

hazards on the basis of the severity (rather than the full ISO 

26262 risk assessment process). In a product line hazard 

analysis, different ASILs can be assigned to the same hazard 

considering different usage scenarios for product line 

components. For example, the ASIL allocated to the “No 

braking rear” hazard is more stringent in HBS-RWB scenario 

and less stringent in HBS-4WB. Causes for a particular 

hazard can also change according to how product line 

components can be composed in a product.   

The causes for the “Value braking” hazard in HBS-FWB are 

different from the causes for that hazard in HBS-RWB. HBS-

SPL hazards and ASIL allocation information are stored by 

HiP-HOPS in the failure model. From analysis of HBS-SPL 

hazards (Table 1), 77 failure logic expressions were added to 

30 HBS-SPL components; through different fault 

propagations, the causes described in these expressions 

combine and give rise to hazards in different product 

configurations. This process was automated as product 

models augmented with hazards and local failure logic were 

sent to HiP-HOPS which created fault trees, failure cut sets, 

and FMEA results for each HBS-SPL product.   

The fault trees generated for the HBS-SPL products provided 

the input for the HiP-HOPS allocation algorithm. The 

allocation was performed for each HBS-SPL product based 

on the following example cost heuristic that expresses the 

relative cost jumps of developing a component according to 

the different ASILs: 0 (ASIL QM), 10 (ASIL A), 20 (ASIL 

B), 40 (ASIL C), and 50 (ASIL D). This expression was used 

for illustrative purposes, but any other that the system 

designer finds more suitable can be used instead. We have set 

the algorithm stopping criteria to 5000 iterations without 

improvements. All algorithm executions were carried in a 

computer equipped with an Intel i5 processor clocked at 

2.5GHz and 6GB of RAM.  

The HBS-4WB, HBS-FWB, and HBS-RWB ASIL 

allocations provided by HiP-HOPS analysis were the inputs 

for performing the analysis to allocate ASILs to components. 

The analysis was also carried in the same computer. The 

ASILs allocated to 30 HBS-SPL components in three 

different products were analyzed and the process took 14 

seconds to complete. Table 2 presents the ASILs allocated to 

HBS-SPL components in each product, and the final ASILs 

allocated to HBS-SPL components (column “ASIL”). Due to 

space limitations, Table 2 presents ASILs allocated to 16 

HBS-SPL components. 

ASILs allocated to a particular HBS-SPL component may 

change according to the product. For example, the ASILs 

allocated to Brake_Unit1, Brake_Unit1.EMB, and 

Brake_Unit1.EMB_Power_Converter components are 

respectively “A”, “A”, and “A” in HBS-4WB, and “QM”, 

“B”, and “B” in HBS-FWB. The ASIL costs related to each 

HBS-SPL product ASIL allocation was also generated by the 

tool. The tool also generated the ASIL cost for the HBS-SPL 

(cell “Cost for the MAX ASIL” on Table 2). The HBS-SPL 

ASIL cost is higher than the product costs as it represents the 

worst case where any component of the SPL is designed to be 

safely used across all products of the SPL.  

Table 2. HBS-SPL products HIP-HOPS Tabu Search 

ASIL decomposition results. 

HBS-SPL 

Component Name 

HBS-

4WB 

ASIL 

HBS-

FWB 

ASIL 

HBS-

RWB 

ASIL 

MAX 

ASIL 

Auxiliary_Battery D (4) D (4) D (4) D (4) 

Brake_Unit1 A (1) QM (0) - A (1) 

Brake_Unit1.EMB A (1) B (2) - B (2) 

Brake_Unit1.EMB_ 

Power_Converter 

A (1) B (2) - B (2) 

Brake_Unit1.IWM A (1) B (2) - B (2) 

Brake_Unit1.IWM_ 
Power_Converter 

A (1) B (2) - B (2) 

… … … … … 

Brake_Unit4 A (1) - B (2)  B (2)  

Brake_Unit4.EMB A (1) - B (2) B (2) 

Brake_Unit4.EMB_ 

Power_Converter 

D (4) - B (2) D (4) 

Brake_Unit4.IWM QM (0) - B (2) B (2) 

Brake_Unit4.IWM_ 

Power_Converter 

B (2) - B (2) B (2) 

Communication_Bus1 B (2) B (2) B (2) B (2) 

Communication_Bus2 B (2) B (2) B (2) B (2) 

Electronic_Pedal D (4) D (4)  D (4) D (4) 

Mechanical_Pedal D (4) D (4) D (4) D (4) 

Electronic_Pedal D (4) D (4) D (4) D (4) 

Cost 520 460 470 730 

Analysis of these results about the implications on safety 

requirements of possible usage of components provides 

useful feedback to the SPL development process, 

contributing to meeting safety requirements without incurring 

unnecessary costs.    

The tool developed for this work was tested against 

performance requirements in this case study. The processing 

time to analyze 72 hybrid braking system SPL products was 

reasonable, about 4 minute and 40 seconds, considering that 

the complexity of the analysis has increased substantially as 

the numbers of the products increased. 

5. RELATED WORK 

In earlier work, Papadopoulos et al. (2010) proposed an 
approach to automatically allocate ASILs to subsystems and 
components of a hierarchical system model according to ISO 
26262. The ASIL allocation and decomposition algorithm 
was implemented in HiP-HOPS (Papadopoulos et al. 2011). 
The HiP-HOPS ASIL allocation algorithm was further 
improved with optimization heuristics to reach an optimal 
allocation. Penalty-based (Parker et al. 2013) and Tabu 
Search (Azevedo et al. 2014) algorithms were implemented 
to improve the performance of ASIL allocation in large scale 
systems.  

Mader et al. (2012) proposed an approach for ASIL 
allocation focused on finding optimal allocations; a linear 
programming optimization problem is formulated to discover 
a solution that minimizes the sum of ASILs assigned across 
the system architecture. Zhang et al. (2010) proposed a 
workflow for embedded system development, which includes 
fault trees, FMEA, and ASIL allocation based on a qualitative 
risk graph method. Dhouibi et al. (2014) introduced a method 
for ASIL allocation which is based on interpreting the 
allocation problem as a system of linear equations. Bieber et 
al. (2011) presented a theory to formalize the ARP 4754a 
DAL allocation rules (EUROCAE, 2010) and the 



 

 

     

 

DALculator tool to support automatic DAL allocation. Lee et 
al. (2009) presented an approach based on fault trees and 
their top-events (i.e., probabilities for failure on demand) to 
derive SILs for system functions according to IEC 61508. A 
fuzzy probabilistic SILs allocation technique in compliance 
with IEC 61508 was also proposed in (Sallak et al. 2008).  

Existing tools and techniques for automatic allocation of SILs 

were not designed to address product lines. These techniques 

we hope can benefit from the concepts sketched in this paper. 

6. CONCLUSION 

We described a method for allocation of SILs to components 

in product line design. A prototype tool was developed which 

performs automatic ASIL allocation for product line 

components taking into account their possible usage across 

the product line. We have discussed, both in theory and 

through an example, how the use of such a method and tool 

can potentially reduce the cost of SPL development by 

allocating less stringent ASILs to SPL components whilst 

meeting safety requirements. Through this technique, it is 

possible to specify safety requirements for components 

anticipating their possible use in a number of products. This 

work addresses an important issue and extends and automates 

principles enshrined in modern safety standards to SPL 

design.  

Further work needs to be done to elucidate and explain the 

preparation and automatic resolution of variable models 

augmented with failure analyses that can be used in the frame 

of this method. Additional research is also ongoing to 

validate this approach in different industrial context. 
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