

Automatic Allocation of Safety Requirements to Components

of a Software Product Line

André L. de Oliveira
*
, Yiannis Papadopoulos

**
, Luís S. Azevedo

**
, David Parker

**
, Rosana T. V. Braga*,

Paulo C. Masiero*, Ibrahim Habli

, Tim Kelly

*Mathematics and Computer Science Institute, University of São Paulo, São Carlos-SP, Brazil

**Department of Computer Science, University of Hull, Hull, United Kingdom

***Department of Computer Science, University of York, Deramore Lane, York, United Kingdom

{andre_luiz, rtvb, masiero}@icmc.usp.br, {y.i.papadopoulos, d.j.parker}@hull.ac.uk, l.p.azevedo@2012.hull.ac.uk,

{ibrahim.habli, tim.kelly}@york.ac.uk

Abstract: Safety critical systems developed as part of a product line must still comply with safety

standards. Standards use the concept of Safety Integrity Levels (SILs) to drive the assignment of system

safety requirements to components of a system under design. However, for a Software Product Line

(SPL), the safety requirements that need to be allocated to a component may vary in different products.

Variation in design can indeed change the possible hazards incurred in each product, their causes, and

can alter the safety requirements placed on individual components in different SPL products. Establishing

common SILs for components of a large scale SPL by considering all possible usage scenarios, is

desirable for economies of scale, but it also poses challenges to the safety engineering process. In this

paper, we propose a method for automatic allocation of SILs to components of a product line. The

approach is applied to a Hybrid Braking System SPL design.

Keywords: safety-critical product lines; safety requirements; SILs; requirements allocation.

1. INTRODUCTION

The term Software Product Line (SPL) refers to a software

development approach that enables software reuse by

allowing the creation of software applications through the

composition of common and variable features that address

the requirements of a particular domain (Clements and

Northrop, 2001). Features represent desired functionality

from the user point of view (Lee et al. 2002). Product line

design maximizes software reuse across products but must

still yield safe individual products and this poses research

challenges.

In general safety assessment processes in many industries

move into a direction where safety is addressed from the

early stages. Safety requirements for a system are captured

early on and are progressively allocated to subsystems and

components of the architecture. The process must guarantee

that, at the end, if the component requirements are met, the

system requirements are also met. This type of allocation of

requirements is seen as important because it provides a way

in which safety is controlled from early stages and is not left

to emerge or not at the end. Can we transfer this type of top-

down thinking about safety in SPL design? This is the

question that is addressed in this paper.

Safety standards use the concept of Safety Integrity Levels

(SILs) to assign safety requirements of different stringencies

to components of a system. They take the form of

Automotive Safety Integrity Levels (ASILs) in the ISO

26262 (ISO, 2011) standard for passenger cars, and

Development Assurance Levels (DALs) in aerospace safety

standards (EUROCAE, 2010). SILs are assigned early in the

system design process at system level, just after the system

hazards have been identified. These hazards are given more

or less stringent SILs depending on how high are the risks

they pose. As the system architecture is being refined, SILs

assigned to system-level hazards are iteratively allocated to

subsystems and components. ASIL Decomposition is a

process that allows for a safety-critical architecture to meet a

particular target ASIL assigned to a hazard without all

components contributing to the hazard having to meet that

target. For example, if a hazard can be caused only when two

independent components fail together, these components can

share the responsibility of meeting the ASIL allocated to that

hazard, rather than each one having to meet the original

ASIL.

ISO 26262 defines an integer algebra for ASIL

decomposition which is loosely derived from rules about

combining probabilities. Each ASIL is equivalent to an

integer value: QM (Quality Management) = 0, A = 1, B = 2,

C= 3, and D = 4. The ASIL algebra defines that if n

components must fail simultaneously to cause a given hazard,

the total ASIL assigned to these n components must add up to

the ASIL of the hazard they originate. So, two redundant

components assuring a function of ASIL D might

individually only be required to meet ASIL B because

together they produce the total required ASIL value (2 + 2 =

4). Higher ASILs mean higher costs, because meeting more

stringent safety requirements typically requires more safety

measures, more effort, and higher-quality components.

Therefore, component ASILs could significantly affect both

development and production costs. ASIL decomposition

allows to efficiently allocate requirements so that we can

meet the safety requirements without being unnecessarily

stringent or expensive.

More specifically, recent Model-Based Safety Assessment

(MSBA) techniques can potentially provide frameworks for

SILs allocation, by allowing us to automatically identify

combinations of component failures that lead to system

hazards, and therefore by locating opportunities for SIL

decomposition. HiP-HOPS (Hierarchically Performed Hazard

Origin & Propagation Studies) (Papadopoulos et al. 2011) is

an advanced MBSA technique that already provides such an

approach for ISO 26262. HiP-HOPS implements a

combination of model-based, automated Fault Tree Analysis

(FTA) process and a Tabu Search (TS) (Azevedo et al. 2013)

meta-heuristic optimization algorithm, allowing optimal

ASIL allocation and has shown to scale up to complex

systems.

Although application of the MBSA process to SPL design

would be beneficial, this is not straightforward. As safety is

context-dependent, hazards, their causes, and the

requirements allocated to SPL components may change

according to the selection of SPL variants in a particular

product (Habli, 2011). Such variation may change the safety

requirements (i.e., the SILs) placed on components in

different products of the SPL. Thereby, establishing safety

requirements for SPL components requires finding the SILs

allocated to those components in different products. If a

component is allocated different SILs in different products

then the highest requirement must be met for the component

to be used safely across SPL products. This type of allocation

would allow developers to meet their responsibilities in order

to assure the safety of the SPL architecture, and to comply

with safety standards, without incurring the unnecessary high

costs of complete reanalysis and reallocation of safety

requirements as traditionally demanded for each product.

However, the establishment of product line component

ASILs in a large scale SPL, like a family of automotive

powertrain controllers with potentially hundreds of members,

can be challenging.

Safety standards do not show how this can be done in large

scale, e.g. via automation, and no framework has yet been

developed to support the automatic allocation of SILs

compatible with, and useful in the context of, SPLs. Indeed,

although emerging SIL allocation tools and techniques

(Azevedo et al. 2014; Parker et al. 2013; Papadopoulos et al.

2010; Mader et al. 2012; Bieber et al. 2011; Zhang et al.

2010; Lee et al. 2009; Sallak et al. 2008; Dhouibi et al. 2014)

provide the capability of automatically allocate SILs to single

SPL products, they do not address product lines.

The novelty of this paper is precisely a concept for allocation

of SILs to components in product line design, and a method

and tool to provide the automated support to apply that

concept. The tool is tailored upon HiP-HOPS (Azevedo et al.

2014) and is applied to the automotive domain. The paper is

organized as follows. Section 2 provides an overview of HiP-

HOPS and its Tabu Search ASIL allocation approach. Section

3 describes the method and tool to automatically allocate

SILs to SPL components from the analysis of multi-product

SILs allocations. Section 4 presents the case study and

evaluation, and section 5 shows related work. Finally, section

6 presents the conclusion and future research.

2. HiP-HOPS AND TABU SEARCH

HiP-HOPS (Papadopoulos et al. 2011) is a method and tool

for Model-based Safety Analysis, in which system models

showing components and material energy, and data

transactions among them are augmented with local failure

logic. These models are then analyzed to create forms of

safety analysis such as fault trees and Failure Modes and

Effects Analysis (FMEAs). The HiP-HOPS tool receives the

system description as input in an XML schema, but the

various instantiations of the tool, e.g. its connection to

MATLAB/Simulink, also provide a failure editor that can be

used together with graphical interfaces to augment the model

with safety information. Using this editor it is possible to

specify hazards related to system malfunctions, and the

failure logic of components described mainly as sets of

output deviations and how they are caused by logical

combinations of internal component failures and deviations

of the component inputs. Once the system models have been

annotated with hazards and local failure logic, HiP-HOPS

synthesizes fault trees for each hazard, and then combines

them to create an FMEA for the system.

HiP-HOPS rationalizes allocation and decomposition of

ASILs to system components, by showing how combinations

of component failures lead to system hazards. For allocation

to happen, the potential fault propagation of the system must

be defined, to determine which component(s) potentially

contribute to each function failure. The rationale is that a

component that contributes to a system failure only in

conjunction with other components may receive a lower SIL

than a component which directly causes the system failure.

Thus the design intention of components, and specifically

their ability to detect, mask or propagate failures, influences

SIL allocation across the architecture; for example, some

components may be designed to fail silent in response to

failure, possibly transforming a severe failure mode into a

less severe failure mode. The contribution of components to

hazards can be established using the analysis capabilities of

HiP-HOPS and the synthesized fault trees produced by the

tool. A fault tree for instance provides the minimal cut sets

(i.e. combinations of basic events) that result in system-level

hazards, and therefore can be used to identify ASIL

Decomposition opportunities.

It is often the case that the failure of the same component is

present in multiple cut sets and all of them must be taken into

account when finding the most advantageous allocation

solutions. Furthermore, with the increase in the number of

components within a system, the number of ASIL allocation

possibilities increases exponentially. Early implementations

of exhaustive algorithms (Papadopoulos et al. 2010) for

allocation in HiP-HOPS were found inadequate in coping

with the complexity of realistic models. Investigations were,

therefore, directed towards meta-heuristics such as genetic

algorithms. These optimization algorithms are known to find

good solutions, through guided search of a small fraction of

the entire search space. In addition, they are known to be

robust in dealing with a variety of problems.

Meta-heuristics do not guarantee finding optimal solutions;

however, they are capable of providing near optimal

allocations within acceptable time spans. Many meta-

heuristics exist, and recent research has been testing some of

the most popular ones on the ASIL Allocation optimization

problem. Tabu Search (Azevedo et al. 2014) has shown

promising results in both the quality of the solutions found as

well as processing times. The TS extension of HiP-HOPS

draws from the work of Hansen and Lih (1996) for reliability

optimization and it goes by the name of Steepest Descent

Mildest Ascent (SDMA). The method consists of iteratively

finding the ASIL that by being decremented reduces the cost

of a solution (the steepest descent direction).

3. AUTOMATIC ALLOCATION OF SAFETY

INTEGRITY LEVELS TO PRODUCT LINE

COMPONENTS

In this work we extended the above capabilities to enable

allocation of safety requirements to components of a product

line. The concept extends the capabilities of the HiP-HOPS

method and tool for application in SPL design. The key idea

is the ability to automatically instantiate a large set of

products of an SPL from a variable SPL model augmented

with possible hazards and the local failure logic of

components. Products are then sent in a loop to HiP-HOPS,

which performs ASIL allocation for each product.

Components may receive different allocations in different

products, so the ability to use safely a component across a

range of products means selecting the highest allocation

given by this analysis.

The process was implemented in a prototype tool developed

using Java as a compliment to HiP-HOPS. The tool requires a

pre-processing step to support the augmentation of SPL

variability models with hazards and failure logic and the

enumeration of all products of an SPL via resolution of

variability (i.e. product derivation). The latter can be a

selective manual process or an automated process. The

automated implementation of this feature has been done in

MATLAB/Simulink using a range of mechanisms to specify

variability and with the support of the product line variability

management tool Hephaestus/Simulink (Steiner et al. 2013).

Alternative tools include the Common Variability Language

(CVL) implemented in Eclipse (Haugen et al. 2008).

Simulink variability patterns (Steiner et al. 2013; Botterweck

et al. 2010) representing optional (Enabler subsystems),

alternative (Switch blocks), and inclusive-or (Integration

blocks) features have been used for modelling variation in the

SPL architecture. The variability management tool

Hephaestus/Simulink was used in this approach to support

the variability modelling in Simulink models using these

patterns. The automated derivation of the enumerated SPL

product models augmented with hazards and failure logic

requires the specification of the configuration knowledge.

This provides a set of rules showing how SPL design assets,

hazards, and failure logic can be composed in a product.

Rules are specified according to feature model constraints.

The feature model captures structural or conceptual

relationships between common and variable functions of

products of a domain (Lee et al. 2002).

SPL configuration knowledge is specified by means of

Hephaestus/Simulink by applying the following steps: 1)

specify the feature expressions in the scope of the usage

scenarios described in the feature model. A feature

expression may include a single feature or a combination

between two or more features; 2) for each feature expression,

determine the SPL design elements to be included and

excluded; and 3) specify the hazards, the allocated safety

requirements, and the failure logic to be included/excluded in

each feature expression.

After performing these steps, the mapping between product

line features, design elements, hazards and the allocated

safety requirements, and component failure logic is obtained.

Additional details on how to use product line variability

management tools to specify the configuration knowledge

can be found in (Steiner et al. 2013). Finally, the variability

management tool was adapted by implementing an

instantiation script with the support of a feature model

reasoner, in this case the T-wise covering arrays algorithm

(Johansen et al. 2012), to automatically derive a set of SPL

products according to the constraints specified in the feature

model.

Once a range of SPL products have been enumerated from a

variable SPL model, the products (i.e., system models

annotated with failure information) are then provided to HiP-

HOPS for analysis. The ASIL allocations generated by

applying HiP-HOPS to the enumeration of the SPL products

are the inputs to the tool developed in this paper. HiP-HOPS

exports the ASIL allocation of each individual product in an

XML file. An extension tool parses each one of these files

and performs the analysis. Firstly, the tool analyses the XML

files one by one to obtain the ASILs allocated to SPL

components in each product. This is done by analysing the

ASILs allocated to the failure modes associated to each SPL

component in each individual product. The most stringent

ASIL allocated to a failure mode associated to a particular

component is the component ASIL in that product. For each

product, this is repeated for all components belonging to the

product. After obtaining the ASILs allocated to product line

components in each product, for each SPL component, the

analysis is performed as follows: the ASILs allocated to a

particular SPL component in different products are analysed

in order to verify the most stringent ASIL allocated to that

component across the SPL. Thus, we have obtained the ASIL

that each SPL component should meet, and the results, i.e.

ASILs allocated to all SPL components are exported in an

XML file.

4. EVALUATION

The method and tool was applied to a Hybrid Braking System

(De Castro et al. 2011) automotive product line (HBS-SPL).

Hazard analysis and the definition of local failure logic were

performed based on failure logic analysis technique

supported by HiP-HOPS, and taking into account the

interactions between HBS-SPL components expressed in the

feature model. Three HBS-SPL products (i.e., usage

scenarios) were considered in the evaluation of the proposed

method: HBS four wheels braking (HBS-4WB), HBS front

wheels braking (HBS-FWB), and HBS rear wheels braking

(HBS-RWB).

The HBS-SPL is a prototype automotive braking system SPL

designed in MATLAB/Simulink. HBS-SPL is meant for

electrical vehicles integration, in particular for propulsion

architectures that integrate one electrical motor per wheel.

The term hybrid comes from the fact that braking is achieved

throughout the combined action of the electrical In-Wheel

Motors (IWMs) and frictional Electromechanical Brakes

(EMBs). One of the most important features of this system is

that the integration of IWM in the braking process allows an

increase in the vehicle’s range: while braking, IWMs work as

generators and transform the vehicles kinetic energy into

electrical energy that is fed into the powertrain battery. IWMs

have, however, braking torque availability limitations at high

wheel speeds or when the powertrain battery is close to full

state of charge. EMBs are introduced to provide the torque

needed to match the total braking demand. HBS-SPL

components can be combined in different ways according to

the constraints specified in HBS-SPL feature model presented

in Fig. 1. The feature model was designed using the

cardinality-based notation (Czarnecki et al. 2004).

Fig. 1 HBS-SPL feature model.

The HBS-SPL feature model includes wheel braking

alternative features: Brake_Unit1_Front, Brake_Unit2_Front,

Brake_Unit3_Rear, and Brake_Unit4_Rear aimed to provide

the braking for each wheel. The three HBS products

described earlier have a common principle: a Mechanical

Pedal is responsible for capturing the driver’s braking

demands; an Electronic Pedal senses these actions and

transforms them into braking requests for each wheel that is

equipped with braking features; subsequently, it sends these

requests via a duplex bus communication system to the Brake

Units. Each Brake Unit integrates a Wheel Node Controller

that calculates the amount of braking torque to be produced

by each actuator. Commands are generated accordingly and

sent to the power converters to control the 2 braking devices.

While braking, power flows from the IWMs to the

Powertrain Battery and from the vehicle’s low voltage

Auxiliary Battery to the EMBs. The elements of the vehicle’s

power architecture should be regarded as subsystems that

include multiple components – the Powertrain Battery, for

example, integrates a Battery Management System (BMS)

which is composed by complex hardware and software

elements.

Hazards can arise in this system from the interaction between

design elements in a range of usage scenarios. Safety

requirements placed to a particular HBS-SPL hazard may

also change according to contextual elements such as

operational environment, safety standards, and regulations.

These elements can be represented in product line context

models (Lee et al. 2002). In this paper we have limited

ourselves to performing the HBS-SPL hazard analysis based

only on the SPL feature model. Product line features stand for

system functions implemented by design elements (e.g.

system, subsystems, components).

Performing a hazard analysis covering all possible scenarios

for HBS-SPL would yield voluminous results. Nevertheless,

scoping the hazard analysis to a set of products has shown

some degree of reuse for safety analysis assets (e.g. fault

trees, FMEA, ASIL allocation). Wheel Braking variation

point specified in the HBS-SPL feature model was

considered in the hazard analysis. From the analysis of Wheel

Braking variation point and mandatory elements of HBS-

SPL, as mentioned earlier, the following usage scenarios

were established: HBS-4WB; HBS-FWB; and HBS-RWB.

These scenarios were analysed from the safety perspective.

Table 1 presents the identified hazards, their causes, and the

allocated ASILs (Automotive Safety Integrity Levels). Table

1 also presents the association between the hazards and the

usage scenarios by means of the column “Scenario”.

Table 1. HBS-SPL hazards and ASIL allocation.

Scenario Hazard Causes ASIL

HBS-

4WB

No braking
four wheels

Omission of all brake unit
actuators outputs.

D

No braking

three wheels

Omission of brake unit1, and

brake unit2, and brake unit3
actuators outputs.

D

No braking

front

Omission of brake unit1 and

brake unit2 actuators outputs.

D

No braking
rear

Omission of brake unit3 and
brake_unit4 actuators outputs.

C

No braking

diagonal

Omission of brake unit1 and

brake unit4 actuators outputs or

Omission of brake unit2 and

brake unit4 actuators outputs.

C

Value
braking

Incorrect Value of all brake unit
actuators outputs

D

HBS-

FWB

No braking

front

Omission of brake unit1 and

brake unit2 actuators outputs.

D

Value
braking

Incorrect Value of brake unit1
and brake unit2 actuators outputs.

D

HBS-

RWB

No braking

rear

Omission of brake unit3 and

brake unit4 actuators outputs.

D

Value
braking

Incorrect Value of brake unit3
and brake unit4 actuators outputs.

D

It is considered that no braking is being produced in a wheel

whenever both braking devices of that wheel (an IWM and an

EMB) are omitting their outputs. Braking with an incorrect

value happens when at least one of the braking actuators is

providing braking torque that is higher or lower than the

values demanded. In order to simplify the case study, we

have only discussed the allocation of ASILs to product line

hazards on the basis of the severity (rather than the full ISO

26262 risk assessment process). In a product line hazard

analysis, different ASILs can be assigned to the same hazard

considering different usage scenarios for product line

components. For example, the ASIL allocated to the “No

braking rear” hazard is more stringent in HBS-RWB scenario

and less stringent in HBS-4WB. Causes for a particular

hazard can also change according to how product line

components can be composed in a product.

The causes for the “Value braking” hazard in HBS-FWB are

different from the causes for that hazard in HBS-RWB. HBS-

SPL hazards and ASIL allocation information are stored by

HiP-HOPS in the failure model. From analysis of HBS-SPL

hazards (Table 1), 77 failure logic expressions were added to

30 HBS-SPL components; through different fault

propagations, the causes described in these expressions

combine and give rise to hazards in different product

configurations. This process was automated as product

models augmented with hazards and local failure logic were

sent to HiP-HOPS which created fault trees, failure cut sets,

and FMEA results for each HBS-SPL product.

The fault trees generated for the HBS-SPL products provided

the input for the HiP-HOPS allocation algorithm. The

allocation was performed for each HBS-SPL product based

on the following example cost heuristic that expresses the

relative cost jumps of developing a component according to

the different ASILs: 0 (ASIL QM), 10 (ASIL A), 20 (ASIL

B), 40 (ASIL C), and 50 (ASIL D). This expression was used

for illustrative purposes, but any other that the system

designer finds more suitable can be used instead. We have set

the algorithm stopping criteria to 5000 iterations without

improvements. All algorithm executions were carried in a

computer equipped with an Intel i5 processor clocked at

2.5GHz and 6GB of RAM.

The HBS-4WB, HBS-FWB, and HBS-RWB ASIL

allocations provided by HiP-HOPS analysis were the inputs

for performing the analysis to allocate ASILs to components.

The analysis was also carried in the same computer. The

ASILs allocated to 30 HBS-SPL components in three

different products were analyzed and the process took 14

seconds to complete. Table 2 presents the ASILs allocated to

HBS-SPL components in each product, and the final ASILs

allocated to HBS-SPL components (column “ASIL”). Due to

space limitations, Table 2 presents ASILs allocated to 16

HBS-SPL components.

ASILs allocated to a particular HBS-SPL component may

change according to the product. For example, the ASILs

allocated to Brake_Unit1, Brake_Unit1.EMB, and

Brake_Unit1.EMB_Power_Converter components are

respectively “A”, “A”, and “A” in HBS-4WB, and “QM”,

“B”, and “B” in HBS-FWB. The ASIL costs related to each

HBS-SPL product ASIL allocation was also generated by the

tool. The tool also generated the ASIL cost for the HBS-SPL

(cell “Cost for the MAX ASIL” on Table 2). The HBS-SPL

ASIL cost is higher than the product costs as it represents the

worst case where any component of the SPL is designed to be

safely used across all products of the SPL.

Table 2. HBS-SPL products HIP-HOPS Tabu Search

ASIL decomposition results.

HBS-SPL

Component Name

HBS-

4WB

ASIL

HBS-

FWB

ASIL

HBS-

RWB

ASIL

MAX

ASIL

Auxiliary_Battery D (4) D (4) D (4) D (4)

Brake_Unit1 A (1) QM (0) - A (1)

Brake_Unit1.EMB A (1) B (2) - B (2)

Brake_Unit1.EMB_

Power_Converter

A (1) B (2) - B (2)

Brake_Unit1.IWM A (1) B (2) - B (2)

Brake_Unit1.IWM_
Power_Converter

A (1) B (2) - B (2)

… … … … …

Brake_Unit4 A (1) - B (2) B (2)

Brake_Unit4.EMB A (1) - B (2) B (2)

Brake_Unit4.EMB_

Power_Converter

D (4) - B (2) D (4)

Brake_Unit4.IWM QM (0) - B (2) B (2)

Brake_Unit4.IWM_

Power_Converter

B (2) - B (2) B (2)

Communication_Bus1 B (2) B (2) B (2) B (2)

Communication_Bus2 B (2) B (2) B (2) B (2)

Electronic_Pedal D (4) D (4) D (4) D (4)

Mechanical_Pedal D (4) D (4) D (4) D (4)

Electronic_Pedal D (4) D (4) D (4) D (4)

Cost 520 460 470 730

Analysis of these results about the implications on safety

requirements of possible usage of components provides

useful feedback to the SPL development process,

contributing to meeting safety requirements without incurring

unnecessary costs.

The tool developed for this work was tested against

performance requirements in this case study. The processing

time to analyze 72 hybrid braking system SPL products was

reasonable, about 4 minute and 40 seconds, considering that

the complexity of the analysis has increased substantially as

the numbers of the products increased.

5. RELATED WORK

In earlier work, Papadopoulos et al. (2010) proposed an
approach to automatically allocate ASILs to subsystems and
components of a hierarchical system model according to ISO
26262. The ASIL allocation and decomposition algorithm
was implemented in HiP-HOPS (Papadopoulos et al. 2011).
The HiP-HOPS ASIL allocation algorithm was further
improved with optimization heuristics to reach an optimal
allocation. Penalty-based (Parker et al. 2013) and Tabu
Search (Azevedo et al. 2014) algorithms were implemented
to improve the performance of ASIL allocation in large scale
systems.

Mader et al. (2012) proposed an approach for ASIL
allocation focused on finding optimal allocations; a linear
programming optimization problem is formulated to discover
a solution that minimizes the sum of ASILs assigned across
the system architecture. Zhang et al. (2010) proposed a
workflow for embedded system development, which includes
fault trees, FMEA, and ASIL allocation based on a qualitative
risk graph method. Dhouibi et al. (2014) introduced a method
for ASIL allocation which is based on interpreting the
allocation problem as a system of linear equations. Bieber et
al. (2011) presented a theory to formalize the ARP 4754a
DAL allocation rules (EUROCAE, 2010) and the

DALculator tool to support automatic DAL allocation. Lee et
al. (2009) presented an approach based on fault trees and
their top-events (i.e., probabilities for failure on demand) to
derive SILs for system functions according to IEC 61508. A
fuzzy probabilistic SILs allocation technique in compliance
with IEC 61508 was also proposed in (Sallak et al. 2008).

Existing tools and techniques for automatic allocation of SILs

were not designed to address product lines. These techniques

we hope can benefit from the concepts sketched in this paper.

6. CONCLUSION

We described a method for allocation of SILs to components

in product line design. A prototype tool was developed which

performs automatic ASIL allocation for product line

components taking into account their possible usage across

the product line. We have discussed, both in theory and

through an example, how the use of such a method and tool

can potentially reduce the cost of SPL development by

allocating less stringent ASILs to SPL components whilst

meeting safety requirements. Through this technique, it is

possible to specify safety requirements for components

anticipating their possible use in a number of products. This

work addresses an important issue and extends and automates

principles enshrined in modern safety standards to SPL

design.

Further work needs to be done to elucidate and explain the

preparation and automatic resolution of variable models

augmented with failure analyses that can be used in the frame

of this method. Additional research is also ongoing to

validate this approach in different industrial context.

REFERENCES

Azevedo, L. S., Parker, D., Walker, m., Papadopoulos, Y.,
Araujo, R. (2014). Assisted Assignment of Automotive
Safety Requirements. IEEE Software 31(1):62-68, IEEE.

Azevedo L. S., Parker D., Walker M., Papadopoulos Y.,
Esteves, A. R. (2013). Automatic Decomposition of
Safety Integrity Levels: Optimization by Tabu Search. In
Proc. of 2nd Workshop on Critical Automotive
applications : Robustness & Safety, of the 32nd
SAFECOMP, Toulouse, France.

Bieber, P., Delmas, R., Seguin, C. (2011). DALculus Theory
and Tool for Development Assurance Level Allocation.
In Computer Safety, Reliability, and Security. Springer
Berlin Heidelberg, 43-56.

Botterweck, G., Polzer, A., Kowalewski, S. (2009). Using
higher-order transformations to derive variability
mechanism for embedded systems. In 2nd Int. Workshop
on Model-Based Architecting of Embedded Systems,
MODELS, Denver, USA, pp. 68-82.

Clements, P., Northrop, L. (2001). Software Product Lines:
Practices and Patterns. Addison-Wesley.

Czarnecki, K., Helsen, S., Eisenecker, U. (2004). Staged

configuration using feature models. In 3rd Software

Product-Line Conf., v. 3154, Boston, USA, Springer-

Verlag, pp. 266-283.

De Castro, R., Araújo, R. E., Freitas, D., (2011). Hybrid
ABS with Electric motor and friction Brakes. In 22nd
International Symposium on Dynamics of Vehicles on
Roads and Tracks, Manchester, UK.

Dhouibi, M. S., Perquis, J. M., Saintis, L. Barreau, M.
(2014). Automatic Decomposition and Allocation of
Safety Integrity Level Using System of Linear
Equations. In Proc. of the 4th Int. Conf. on Performance,

Safety and Robustness in Complex Systems and
Applications, Nice, France.

EUROCAE. (2010). ARP4754A/ED-79A - Guidelines for
Development of Civil Aircraft and Systems.

Glover, F. (1989). Tabu search-part I. ORSA Journal of
Computing, vol. 1, no. 3, pp. 190-206.

Glover, F. (1990). Tabu Search-part II. ORSA Journal of
Computing, vol 2, pp. 4-32, 1990.

Habli, I. (2009). Model-Based Assurance of Safety-Critical
Product Lines. Ph.D thesis, Department of Computer
Science, The University of York, York, UK.

Habli, I., Kelly, T., Hopkins, I. (2007). Challenges of
Establishing a Software Product Line for an Aerospace
Engine Monitoring System. In Proc. of 11th
Int. Software Product Line Conference, pp.193-202.

Hansen, P., Lih, K. W. (1996). Heuristic reliability
optimization by tabu search. Annals of Operations
Research, vol. 63, pp. 321-336.

Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G. K.,
Svendsen, A. (2008). Adding Standardized Variability to
Domain Specific Languages. In Proc. 12th International
Software Product Line Conference, pp.139,148.

ISO. (2011). ISO 26262: Road Vehicles Functional Safety.

Johansen, M. F., Haugen, O., Fleurey, F. (2012). An
algorithm for generating t-wise covering arrays from
large feature models. In Proc. of the 16th Int. Software
Product Line Conf., vol. 1. ACM, NY, USA, 46-55.

Lee, K., Kang, K. C., Lee, J. (2002). Concepts and
Guidelines of Feature Modeling for Product Line
Software Engineering. In Proc. of the 7th Int. Conf. on
Software Reuse: Methods, Techniques, and Tools,
Springer-Verlag, London, UK, 62-77.

Lee, Y., Kim, J., Kim, J., Moon, I. (2009). A Verification of
Fault Tree for Safety Integrity Level Evaluation. In
Proceedings of the ICROS-SICE International Joint
Conference, pp 5548-5551.

Lin, M. H., Tsai, J. F., Yu, C. S. (2012). A Review of
Deterministic Optimization Methods in Engineering and
Management, Mathematical Problems in Engineering.

Mader, R., Armengaud, E., Leitner, A., Steger, C. (2012).
Automatic and optimal allocation of safety integrity
levels. In Reliability and Maintainability Symposium
(RAMS), Proceedings-Annual. IEEE, 1-6.

Papadopoulos, Y., Walker, M., Parker, D., Rüde, E.,
Hamann, R., Uhlig, A., Grätz, U., Lien, R. (2011).
Engineering failure analysis and design optimization
with HIP-HOPS. Journal of Engineering Failure
Analysis 18.2, 590-608.

Papadopoulos, Y., Walker, M., Reiser, M. O., Weber, M.,
Chen, D., Torngren, M., Servat, D., Abele, A., Stappert,
F., Lonn, H., Berntsson, L., Johansson, R., Tagliabo, F.,
Torchiato, S., Sandberg, A. (2010). Automatic allocation
of safety integrity levels. In 1st workshop on critical
automotive applications: robustness and safety, ACM.

Parker, D., Walker, M., Azevedo, L., Papadopoulos, Y.,
Araujo, R. (2013). Automatic Decomposition and
Allocation of Safety Integrity Levels Using a Penalty-
Based Genetic Algorithm. Recent Trends in Applied
Artificial Intelligence, Springer-Berlin, 449-459.

Sallak, M., Simon, C., Aubry, J. F. (2008). A Fuzzy
Probabilistic Approach for Determining Safety Integrity
Level. IEEE Transactions on Fuzzy Systems, vol. 16, pp
239-248.

Steiner, E. M., Masiero, P. C. (2013). Managing SPL
Variabilities in UAV Simulink Models with
Pure::variants and Hephaestus. CLEI Electronic Journal,
v. 16, n. 1.

Zhang, H., Li, W., Qin, J. (2010). Model-based Functional
Safety Analysis Method for Automotive Embedded
System Applications. In Proc. Int. Conf. on Intelligent
Control and Information Processing, pp 761-765.

