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ABSTRACT 

Microalgae strain selection is a vital step in the production of biodiesel from microalgae. In this study, Multi-

Criteria Decision Analysis (MCDA) methodologies are adopted to resolve this problem. The aim of this 

study is to identify the best microalgae strain for viable biodiesel production. The microalgae strains 

considered here are Heynigia sp., Scenedesmus sp., Niracticinium sp., Chlorella vulgaris, Chlorella 

sorokiniana and Auxenochlorella protothecoides. The five MCDA methods used to evaluate different strains 

of microalgae are Analytic Hierarchy Process (AHP), Weighted Sum Method (WSM), Weighted Product 

Method (WPM), Discrete Compromise Programming (DCP) and Technique for the Order of Preference to 

the Ideal Solution (TOPSIS). Pairwise comparison matrices are used to determine the weights of the 

evaluation criteria and it is observed that the most important evaluation criteria are lipid content and growth 

rate. From the results, Scenedesmus sp. is selected as the best microalgae strain among the six 

alternatives due to its high lipid content and relatively fast growth rate. The AHP is the most comprehensive 

of the five MCDA methods because it considers the importance of each criterion and inconsistencies in the 

rankings are verified. The implementation of the MCDA methods and the results from this study provide an 

idea of how MCDA can be applied in microalgae strain selection.  

Keywords: Microalgae, Strain Selection, Biodiesel, Multi-Criteria Decision Analysis 

1.0  Introduction 

The interest in renewable energy sources such as biofuels is increasing due to unstable crude oil prices, 

possible dwindling of fossil fuel reserves, lingering concerns about the environment, and the need for 

energy security [1]. The conversion of biomass resources results in biofuels; these resources are energy 
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sources that can be replenished naturally at almost the same rate as they are used. Wood, crops, waste, 

animal residue and organic marine life (such as algae) are various forms of biomass. 

Biofuels have oxygen levels of 10 to 45wt% (dry), while fossil-based fuels have essentially none, making 

the chemical properties of biofuels very different from those of their fossil-based counterparts [2]. This high 

oxygen content leads to more efficient and “cleaner” combustion. Biofuels typically have very low sulphur 

and nitrogen levels, thus reducing the levels of sulphur and nitrogen oxide released upon combustion [3].  

CO2 neutrality is a primary advantage of biofuels [1]. This is based on the concept that during the growth 

phase of biomass, it consumes as much CO2 as is released when burnt as a biofuel (i.e. the same number 

of carbon atoms are recycled).  

Microalgae is a third generation biofuel source with several advantages over terrestrial crops owing to its 

high potential yield of biofuels and relatively faster growth rates [4]. CO2 can be captured and used in large 

scale cultivation of algae for biofuel production [2]. Fig. 1 illustrates CO2 mitigation (carbon neutrality) using 

microalgae as an energy resource.  

Microalgae can be grown on non-arable land or in large water bodies utilizing ocean or waste water; hence 

eliminating the competition for land and fresh water with food crops. With wastewater containing nutrients 

such as urea, nitrogen, phosphorus and potassium, the cultivation of microalgae can be mutually beneficial 

because the microalgae can utilize the nutrients for growth while the wastewater is treated by the algae [5]. 

The process of producing biodiesel from microalgae can be summarized in four major steps: 1) Microalgae 

cultivation; 2) Harvesting; 3) Algal oil extraction; 4) Transesterification to produce biodiesel. 

MCDA involves making decisions in the presence of multiple, potentially conflicting criteria. The goal of 

MCDA is the selection of the “best” alternative from pre-specified alternatives described in terms of multiple 

attributes [6, 7]. The first complete exposition of MCDA was given in 1976 by Keeney and Raiffa [8].  

Previous studies indicate that more than 50,000 species of microalgae exist, but only about 30,000 have 

been studied and analysed [5]. These strains have different physical, chemical and biological properties, 

and can affect the production process in different ways. These differences make microalgae strain selection 

an important task.  

There is insufficient information in literature about the application of MCDA in microalgae strain selection 

for biodiesel production. This study aims to address this insufficiency by evaluating six microalgae strains 
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using six MCDA methods to determine the best strain for biodiesel production. In the methodology adopted, 

the relative importance of the decision maker’s opinions of the criteria is determined by a pairwise 

comparison matrix using linguistic-to-numerical characterizations developed by Thomas Saaty in 1980 [9]. 

Table 1(a) shows a summary of the advantages and disadvantages of the common MCDA methods. 

. Table 1(a): Advantages and Disadvantages of MCDA methods 

 
 
2.   Properties of microalgae for biodiesel production 

 

The criteria that can influence microalgae strain selection can be grouped into the technical, environmental, 

economic and social aspects [3]. These are presented in Table 1(b). , The most important properties of 

microalgae for biodiesel production are growth rate, lipid content, fatty acid profile and ease of harvesting 

[4].  

Fig. 1 CO2 mitigation using algae [2] 
 

 

Table 1(b): Evaluation criteria used in MCDA for microalgae strain selection [3] 

 

2.1 Properties of microalgae and their effects on biodiesel 

2.1.1 Growth rate  

Microalgae can double their biomass yields in timeframes as short as 3.5 hours and the average harvesting 

cycle is about 1 – 10 days [1]. This rapid growth potential makes microalgae a viable feedstock for 

commercial biodiesel production [10]. 

2.1.2   Lipid content 

From various literature sources, the lipid content of microalgae biomass can range from 4.5 to 80% of its 

dry weight and these lipids are in the form of oils [11]. The lipid content of a microalgae strain is directly 

proportional to the quantity of biodiesel produced; therefore the use of high lipid – producing strains result 

in high yields of biodiesel. Microalgae oil contains neutral and polar lipids. Neutral lipids or Triglycerides 

(TAG) are the most desirable components for biodiesel production from microalgae [4, 10]. The quantity 

(by dry weight) and quality of the lipids contained in a microalgae strain are very important criteria for 

biodiesel production. Strains capable of producing more than 50% dry weight of extractable oils are viable 

for industrial biodiesel production [1]. 
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2.1.3   Fatty acid profile 

TAGs are esters of glycerol and three fatty acids. The fatty acids contained in microalgae oil are: Free Fatty 

Acids (FFA), Monounsaturated Fatty Acids (MUFA), Polyunsaturated Fatty Acids (PUFA), and Saturated 

Fatty Acids (SUFA) [12]. Higher percentages (by composition) of SUFA and MUFA result in biodiesel with 

enhanced energy yields, higher oxidative stability and higher cetane number; however, these high 

percentages will also lead to biodiesel with poor cold flow properties. Strains with high PUFA will result in 

biodiesel with higher oxidation rates but good cold flow properties [12, 13, and 14]. High FFA content causes 

saponification during the transesterification of microalgae oil resulting in poor yields of biodiesel [1].  The 

fatty acid profile of a good quality biodiesel – that strikes a balance between cold flow and other properties 

– should have a 5:4:1 mass ratio of C16:1, C18:1 and C14:0 [14]. 

2.1.4 Ease of harvesting 

Harvesting of microalgae biomass is one of the most challenging areas of biodiesel production from 

microalgae. The concentration of microalgae biomass relative to the volume of liquid in the culture medium 

is typically between 0.3 and 5 g/L,  this low biomass – to – liquid ratio has to be “concentrated” to about 

300 – 400 g/L (by dry weight) for industrial scale operations [15]. The small cell size (2 – 20 µm) of the 

microalgae cells in addition to the high water content of the culture medium, make the harvesting a costly 

and energy intensive process, taking up about 20 – 30% the total production cost [16]. Harvesting can be 

carried out by one or a combination of the following methods: centrifugation, filtration, flocculation, flotation, 

sedimentation and ultrasonic separation. The process to adopt is mostly determined by the physical 

properties of the microalgae strain (shape, cell size, specific gravity) and cultivation method (open ponds, 

bioreactors and hybrid production systems) [10, 11]. Microalgae species with the fastest growth rates are 

often very small in size and as a result are very difficult to harvest [11]. Filtration is a commonly used method 

and its use depends on the size of the microalgae being harvested, it is however an expensive process to 

operate because of the constant replacement of filters, low recovery rates, long processing times and 

energy consumed for pumping [15]. Centrifugation is the fastest method for microalgae biomass harvesting, 

the drawback however is the excessive energy consumption which can run as high as 3000kWh/t [15]. 

Flocculation is problematic and uneconomical due to the similarities in the specific gravities of the 
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microalgae cells and the culture medium; industrial quantities of flocculants are very expensive [15]. 

Sedimentation requires large areas of land for settling ponds and tanks. The high moisture content of the 

biomass recovered from sedimentation requires a secondary dewatering process, which further increases 

the cost of production [15, 5]. The harvesting method selected must be energy efficient and relatively 

inexpensive in order to contribute to the economic feasibility of the biodiesel production process.  

2.2 Microalgae strains 

The properties of microalgae-based biodiesel depend on the strain of microalgae from which it was 

produced. For instance Botryococcus braunii contains terpenoid hydrocarbons while Chlorella 

prothothecoides contains glyceryl lipids. In literature, there are several suggested approaches for screening 

microalgae strains for biofuels production:  

(a) Viswanath et.al noted that one of the ways of achieving best selection with productivity characteristics 

is by screening based on natural habitat. The important characteristics include growth rate, oil content, fatty 

acid profile, robustness and resistance to contamination [4, 13].  

(b) The approach employed by Doan et al. is similar and more elaborate by comparison. The focus of the 

selection was towards microalgae strains for biodiesel production. Growth rate, elevated biomass, 

intracellular lipid content (i.e. neutral and polar lipids) and fatty acid profile of the microalgae were the 

characteristics considered [13].  

(c) Maharajh and Harilal [13, 17] of the CSIRO algal team in Australia based their characterizations for 

identifying microalgae with high lipid content and rapid specific growth rate.  

Different growth and nutrient conditions can affect the chemical composition of microalgae strains. An 

example is with the Chlorella protothecoides strain – when grown under autotrophic conditions, its chemical 

composition was mainly protein (51%), lipids (14%), carbohydrate (10%), ash (7%) and moisture (11%); 

but under heterotrophic conditions, the lipid content increased to up to 55.2% and the protein content was 

reduced to about 10%. With further improved conditions, the lipid content can be as high as 58wt% [1].  

Environmental conditions also have a part to play in the selection of microalgae strains. A particular strain 

of microalgae cultivated in a tropical climate for instance may have markedly different properties (e.g. lipid 
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content, biomass quantity, growth rate) than the same strain grown in a colder climate. The lipid content of 

microalgae species will typically remain unchanged provided it is grown under the same conditions [18].  

The properties of the microalgae strain impacts the conversion process (microalgae to biodiesel). Strains 

with high FFA content, require acid pre-treatment before undergoing base-catalysed transesterification [1]. 

This additional step in the conversion process will have significant cost and energy implications.  

Micro algae is a very expensive raw material with the cost of production of microalgae biomass typically 

costing about $2.95 – 3.80/kg as reported by [16] and about $25,000/t as reported by [19]. This cost factor 

is a limiting factor in the development of microalgae as a potential source of energy. 

 

3.  MCDA methodology 

MCDA is based on deriving an overall score for the alternative being analysed. A primary advantage of 

MCDA is the provision of a highly structured decision-making technique. Goals, inputs, alternatives, criteria 

and weights serve as the core components of MCDA [20]. Within a decision-making problem, criteria are 

used to evaluate the performance of all the alternatives. Relative importance factors (weights) of the 

relevant criteria are defined by the decision maker and these factors are numerical representations of the 

preference of the decision maker based on background information and experience. MCDA provides a 

numerical score, or rating, assigned to a given alternative with respect to each criterion. Typically, one 

alternative does not satisfy all the important criteria; alternatives that are more beneficial for instance are 

usually more costly, hence some compromise or trade-off is usually evident amongst the goals [8]. 

 

 

3.1 Steps for MCDA 

The basic procedure applies to all MCDA techniques involving the numerical analysis of alternatives [21]. 

The main difference between the types of MCDA techniques is the scoring process as each process 

synthesizes information differently [7]. As illustrated in Fig. 2, the main stages of MCDA [22] are: 

3.1.1 Defining the problem (Goal) 
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The aims and features of the decision-making problem, characteristics of the proposed MCDA method and 

background information regarding the problem are addressed [6]. 

3.1.2 Determining the relevant criteria and alternatives 

The criteria are used to evaluate the alternatives. The use of too few criteria can lead to oversimplification 

of the decision problem and a large number of criteria can reduce the influence of any one criterion in 

determining the rank of an alternative. Sometimes the criteria of interest may not be determinable and 

hence proxies may be used [21].  

3.1.3 Identifying the inputs 

Inputs tailor the MCDA to the specific decision making situation. Inputs to an MCDA are in form of numbers 

or percentages based on the discretion/preference of the decision maker. Input values are obtained from 

background information and experience. 

3.1.4 Weighting  

Among the criteria, some are considered as more important (having more impact on the goal) than the 

others. Weighting involves assigning numerical measures to the criterion according to their relative 

importance, these numerical measures are the “Weights” [21]. Criteria weights have direct influences on 

MCDA results, therefore it is important to assign weights rationally to obtain accurate results.    

                                                       
Fig. 2 MCDA steps [22] 

 
Three factors are normally considered in assigning weights: the subjective preference of the decision 

maker, the variance degree and independence of the criteria [22].  

 

3.1.5 Final treatment and Aggregation 

The numerical values are processed to determine a ranking of each alternative. This step is dependent on 

the type of MCDA process involved [21]. In some cases, a sensitivity analysis of the results can be 

considered an additional step. This can be done in order to determine how changes in the weights or inputs 

of the criteria can affect the rankings of an alternative [6].  
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3.2 MCDA methods 

For a decision-making problem, one MCDA method can be selected based on available information and 

the nature of the problem. More than one method can also be used and the results compared. Usually the 

results of all MCDA methods will be similar with only minor differences in the alternative rankings [20]. 

MCDA methods are often grouped into two general categories: the Value-based methods and the 

Outranking methods [7, 20].  

Value based methods use a rating scale where the lower values represent the least desirable qualities and 

the higher values represent the more desirable qualities. The range of the rating scales is arbitrary and can 

be selected to meet the desires of the decision maker [20]. Value based methods include: AHP, DCP, 

WPM, WSM, Multi-attribute Utility Theory, Weighted Average method [20]. 

 Outranking models compare the performance of two or more alternatives in terms of each criterion, 

to identify the extent to which a preference for one over the other can be asserted [7]. The preferred 

alternative tends to be the one that has the highest performance in the largest number of criteria [20]. 

Outranking techniques are most appropriate when criteria metrics are not easily aggregated, measurement 

scales vary over wide ranges, and units are incommensurate or incomparable [7]. Outranking methods 

include: Multi-attribute Value Theory and PROMETHEE.   

3.2.1 AHP 

Developed by Thomas L. Saaty in the 1970’s, this method involves aggregating various facets of the 

decision problem into a single optimization function known as the “Objective Function”. The goal of the AHP 

is to select the alternative that results in the greatest value of the objective function. AHP uses a quantitative 

comparison method based on pairwise comparisons of criteria. All individual criterion must be paired 

against others and the results compiled in a matrix form. A numerical scale is used to compare the criteria 

and the AHP method moves systematically through all pairwise comparisons of criteria and alternatives [7]. 

3.2.2 WSM 

The earliest and probably most widely used method often called the “Weighted Scoring” or “Simple Additive 

Weighting” method [21, 23]. In this method, criteria area “weighted” according to importance or priority and 
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numerical values assigned to these priorities. The alternatives are accessed based on their ability to meet 

a specific criterion and a weighted product value is derived. By summing the weighted product values, the 

alternative most closely meeting the criteria can be determined as the best. The WSM is described by the 

equation: 

                             𝑆𝑖  =   ∑ 𝑤𝑗𝑠𝑖𝑗

𝑗

                                                                                   (1)            

                                  𝑤ℎ𝑒𝑟𝑒:   ∑ 𝑤𝑗

𝑚

𝑗=1

 =   1                           𝑓𝑜𝑟 𝑖 = 1,2,3,4, … … 𝑛                                  

Si = score of alternative i; the alternative with the highest score is the best; s ij = score of alternative i using 

criterion j; wj = weight for criterion j [23]. Criteria with different units of measure have to be normalized in 

order to make them non-dimensional and hence comparable on the same scale. The normalizing equations 

are [24]:  

For maximizing/positive/benefit criteria (gets better with increasing numerical value): 

                     �̅�𝑖𝑗  =  
𝑟𝑖𝑗

max 𝑟𝑖𝑗

                                                                                            (2) 

For minimizing/negative/cost criteria (gets worse with increasing numerical value): 

                     �̅�𝑖𝑗  =  
min 𝑟𝑖𝑗

𝑟𝑖𝑗

                                                                                              (3) 

Where max rij = maximum value of criterion j with respect to alternative i; min rij = minimum value of criterion 

j with respect to alternative i.  

The major drawback of this method is that it assumes linearity of preferences which may not reflect the 

decision maker’s preferences [25]. Another disadvantage is the lack of theoretical basis for calculating 

weights [23], hence the weights are usually calculated by pairwise comparisons from the AHP. 

3.2.3 WPM 

In this method, the weights become exponents associated with each attribute value: positive and negative 

powers for benefit and cost attributes respectively [26]. The criteria do not need to be transformed into 

dimensionless values by normalization due to the multiplicative nature of this method [27]. The equation for 

the WPM is: 
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        𝑅𝑖   =    
𝑉(𝐴𝑖)

𝑉(𝐴∗)
  =   

∏ 𝑥
𝑖𝑗

𝑤𝑗𝑛
𝑗=1

∏ (𝑥𝑗
∗)𝑤𝑗𝑛

𝑗=1

                   𝑓𝑜𝑟 𝑖 = 1,2,3,4, … … . . 𝑛                        (4) 

V (Ai) and V (A*) are the multi attribute utility functions of the ith and ideal alternatives respectively. The 

ideal alternative is the alternative with optimal performance attributes, when every attribute is optimized 

independently of each other while considering the constraints of the problem. This alternative is unfeasible 

in reality [28]. The use of V (A*) puts a numerical bound to the alternative values obtained by this method 

[27]. x*j is the ideal value of the jth attribute across all the alternatives; xij is the ith attribute of the jth 

alternative; and Ri is the score of the ith alternative. The WPM is sometimes called dimensionless analysis 

because its structure eliminates any units of measure. The WPM can be considered as modification of the 

WSM and has been proposed as a solution to overcome some of its weaknesses [21]. 

3.2.4 DCP 

A rating scale of 0 to 1 is used in this method, with a value of 1 representing the best rating and a value of 

0 the worst. For maximized criteria, DCP is described as: 

 

                 𝑅𝑖,𝑗  =  [∑ 𝑤𝑖
𝑝

𝑛

𝑖=1

[
𝑓𝑖

∗ −  𝑓𝑗(𝑥)

|𝑓𝑖
∗  −  𝑓∗𝑗|

]

𝑝

]

1

𝑝

                                                                             (5) 

For minimized criteria: 

   

                 𝑅𝑖,𝑗  =  [∑ 𝑤𝑖
𝑝

𝑛

𝑖=1

[
𝑓𝑗(𝑥) −  𝑓𝑖

∗

|𝑓𝑖
∗  −  𝑓∗𝑗|

]

𝑝

]

1

𝑝

                                                                            (6) 

Rij is the score of the ith alternative; the alternative with the lowest score is the best.  𝑓𝑖
∗is the ideal value of 

ith criteria; 𝑓𝑗(𝑥) is the value of the ith criteria with respect to the decision variables x (actual value of the 

criteria); 𝑓∗𝑗 is the anti-ideal value of the ith criteria; p is the exponent determining the distance function, it 

has a value of 1 or 2 [20].  

When other MCDA methods produce alternatives with equal ranks, DCP will provide more 

discrimination and result in a non-equal ranking [20].  
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3.2.5 TOPSIS 

This method selects the alternative closest to the positive ideal solution (ideal alternative) and farthest from 

the negative ideal solution (anti-ideal alternative) as the best [23]. TOPSIS is carried out in the following 

steps [23, 27]: 

Step 1:  The criteria are normalized using the vector normalization equation: 

                                     �̅�𝑖𝑗  =  
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑛

𝑗=1

                                                                                                  (7)              

Step 2:  The weighted normalized ratings are calculated as:  

                                           𝑣𝑖𝑗  =   𝑤𝑖 ∗   𝑟𝑖𝑗                                                                                                    (8)                 

Where x*ij is the ith criteria of the jth alternative; wi is the weight of the ith attribute and vij is the weighted 

normalized rating.  

Step 3: The separation measures are the distance of each alternative from the positive or negative ideal 

solutions. They are denoted by the n-dimensional Euclidean distance: 

 

                  𝑆𝑗
∗  =   √∑(𝑣𝑖𝑗 − 𝑣𝑖

∗)
2

𝑛

𝑖=1

                                       (9) 

 

                  𝑆𝑗
−  =   √∑(𝑣𝑖𝑗 − 𝑣𝑖

−)
2

𝑛

𝑖=1

                                       (10) 

Where 𝑆𝑗
∗ and 𝑆𝑗

− are the positive and negative separation measures.  

Step 4: The similarity index (𝐶𝑗
∗) which is the similarity to the positive ideal solution for all the alternatives 

and the alternative with the highest 𝐶𝑗
∗ value is selected as the best. 𝐶𝑗

∗ is calculated as: 

𝐶𝑗
∗  =   

𝑆𝑗
−

𝑆𝑗
∗ +  𝑆𝑗

−                      0 ≤ 𝐶𝑗
∗ ≤ 1                                  (11) 

 

 



 

 
© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International 
 

3.3 Assigning weights by pairwise comparisons 

With pairwise comparisons, criteria weights are determined by establishing the relative priority of each 

criterion against every other criterion in a matrix form [29]. The first row and column of the pairwise 

comparison matrix are filled with the criteria (i.e. each criterion appears in the first row and column of the 

matrix). The criteria in the columns are compared against the criteria in the rows and based on the judgment 

/preference of the decision maker, numerical ratings are assigned. The standard scale for assigning 

numerical ratings was developed by Thomas Saaty in 1980 and is shown in Table 2.  

The upper triangular matrix is filled with numerical ratings from the scale, while the values in the 

lower triangular matrix are the inverse of the corresponding values in the upper triangular matrix. Next, the 

matrix is synthesized by summing up the values in each column, dividing each element by its column “total” 

and computing the average of the elements in each row. These average values are the “Priority Vector 

(PV)” or “Weights”. To ensure consistency in the weightings, the Consistency Ratio (CR) is used. For CR ≤ 

0.10, the pairwise comparisons are relatively consistent and no corrective action is necessary; the reverse 

applies for CR ≥ 0.10 and the sources of inconsistency must be identified and resolved [29, 30]. The CR is 

calculated as: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐶𝑅) =  
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼)

𝑅𝑎𝑛𝑑𝑜𝑚 𝐼𝑛𝑑𝑒𝑥 (𝑅𝐼)
                                      (12) 

Table 2: Saaty’s scale of pairwise comparisons [30] 

 

The Consistency Index measures the degree of inconsistency in the pairwise comparisons [31]: 

                         𝐶𝐼 =  
(𝜆𝑚𝑎𝑥 − 𝑛)

(𝑛 − 1)
                                                                                   (13) 

Where “n” is the number of criteria and ƛmax = ∑ (“column total” x “corresponding PV”) for all the 

criteria. The RI is a direct function of the number of criteria or alternatives under evaluation and is obtained 

from a lookup table (Table 3) developed by Thomas Saaty in 1980 [29].  

Table 3: Table of random indices [29] 
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4. Application of MCDA for Microalgae Strain Selection: Procedures and Assumptions 

4.1 Procedure 

The core components of MCDA can be adapted to the microalgae strain selection problem. Fig. 3 shows 

the MCDA decision model for this MCDA problem. Six microalgae strains will be evaluated using six 

technical criteria (see table 1) in order to identify the best strain for biodiesel production. Table 4 shows a 

summary of the alternatives, criteria and input values used in this study; they are obtained from the work 

done by Anjorin [13] and Coward [15]. 

Fig. 3   Decision model for microalgae selection 

4.2 Assumptions 

The following assumptions are used in this study: 

i. All the microalgae strains evaluated are grown under the same conditions in the same location. 

ii. For simplicity, the cell size will be considered as the only determining factor for assigning the 

appropriate harvesting method for each microalgae strain. The cell sizes of the microalgae strains 

are presented in Table 5.  

iii. Ease of harvesting is assumed to be directly proportional to the energy consumption rates of the 

harvesting methods. Therefore, lower energy costs indicate easier harvesting. The energy 

consumption rates are presented in Table 6. 

Table 4: Criteria and alternatives 

 

 

 

Table 5: Microalgae strains and their cell sizes [13] 

 

Table 6: Energy consumption rates of harvesting methods [15] 
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5. Case Studies 

5.1 Assigning weights 

Tables 7 and 8 show the pairwise and synthesized comparison matrices as described in section 3.3. From 

Tables 7 and 8, ƛmax = 6.49 and for n = 6; applying equations (7) and (8), the CR = 0.079 < 0.1. Therefore, 

the pairwise comparisons are consistent and the criteria weights can be used for further decision making. 

The weights of the criteria from table 8 are: Growth rate (0.29); Lipid content (0.40); PUFA (0.08); C16:1 

(0.09); C18:1 (0.09); Ease of harvesting (0.04). Among the six criteria considered, the lipid content has the 

highest weight, followed by the growth rate. This implies that based on the decision maker’s judgment (with 

data from literature etc.), the best strain of microalgae for biodiesel production has to have very high lipid 

content and a fast growth rate.   

Table 7: Pairwise comparison matrix 

Table 8: Synthesized (normalized) pairwise comparison matrix 

5.2 AHP 

The AHP is performed in two steps: 

Step 1: First, every alternative is assessed based on an individual criterion to obtain PVs. One pair-wise 

comparison matrix is constructed for every criterion and within each matrix, one alternative is compared to 

every other alternative [47]. Table 9 is the pairwise comparison matrix for “Growth rate”. The matrices are 

normalized and the CR calculated to ensure consistency; Table 10 shows a collation of the PVs for the six 

criterion. 

Step 2: For every alternative, the PVs from Table 10 are multiplied by the individual criterion weights. The 

sum of these products are the scores for each alternative. The alternative with the highest score is the best.  

Table 9: Pairwise comparison matrix for “Growth rate” 

Table 10: Priority vectors for the AHP 

For ID001 the score is calculated as:  

(0.09 x 0.29) + (0.08 x 0.4) + (0.21 x 0.08) + (0.43 x 0.09) + (0.25 x 0.09) + (0.17 x 0.04)   =   0.14 
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The scores for the other alternatives are: 

ID002 = 0.28; ID003 = 0.12; ID004 = 0.1; ID005 = 0.11; ID006 = 0.25 

The best strain is ID002 (Scenedesmus sp.). 

5.3  WSM 

From Table 4, the positive criteria are growth rate, lipid content, C16:1 and C18:1; while the negative criteria 

are PUFA and energy consumption. First, the positive and negative criteria are transformed with equations 

2 and 3. Finally, the rankings are calculated with equation 1 using the weights derived in section 5.1. The 

weighted scores for the six microalgae strains are: 

ID001 = 0.728;  ID002 = 0.796;  ID003 = 0.638;   ID004 = 0.632;   ID005 = 0.731;    ID006 = 0.725 

The best strain is ID002 (Scenedesmus sp.). 

5.4  WPM 

Based on the six alternatives, the ideal strain of microalgae will have the following attributes:    

C1 = 0.492 C2 = 30.09 C3 = 4.91 C4 = 0.95 C5 = 37.42 C6 = 2.63 

Applying equation 4 to the data in Table 4, the scores are:   

ID001 = 0.642;  ID002 = 0.582;  ID003 = 0.558;   ID004 = 0.669;   ID005 = 0.651;    ID006 = 0.489 

The best strain of microalgae from this method is strain ID004 (Chlorella vulgaris). 

5.5   DCP 

Based on the six alternatives, the anti-ideal strain of microalgae will have the following attributes: 

C1 = 0.367 C2 = 18.41 C3 = 66.86 C4 = 0  C5 = 0  C6 = 7.57 

In this study, two scenarios will be considered in the DCP computation, “p = 1” and “p =2. Applying equations 

5 and 6 to the data in table 4, for p = 1, the scores (Rij) are: 

ID001 = 0.485;  ID002 = 0.223;  ID003 = 0.654;   ID004 = 0.718;   ID005 = 0.490;    ID006 = 0.293 

For p = 2, the scores (Rij) are: 

ID001 = 0.265;  ID002 = 0.122;  ID003 = 0.421;   ID004 = 0.400;   ID005 = 0.266;    ID006 = 0.147 

For p = 1 and p = 2, the best strain of microalgae is ID002 (Scenedesmus sp.). 
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5.6 TOPSIS 

The data in Table 4 are normalized and weighted by applying Equations 7 and 8, the results are shown in 

Tables 11 and 12. The positive and negative ideal solutions are: 

   𝐴∗  =   {𝑣1
∗, 𝑣2

∗, … , 𝑣𝑖
∗, … , 𝑣𝑛

∗}          =    {0.492, 30.09, 4.91, 0.95, 37.42, 2.63} 

𝐴−  =   {𝑣1
−, 𝑣2

−, … , 𝑣𝑖
−, … , 𝑣𝑛

−}              =   {0.367, 18.41, 66.86, 0, 0, 7.57} 

Applying equations 9, 10 and 11, the 𝐶𝑗
∗ values for the alternatives are: 

ID001 = 0.590982;  ID002 = 0.590976;  ID003 = 0.590876;  

ID004 = 0.591208;  ID005 = 0.591041;  ID006 = 0.590928 

The best microalgae strain is strain ID004 (Chlorella vulgaris). 

Table 11: Normalized criteria (�̅�𝑖𝑗) 

Table 12: Weighted normalized criteria (𝑣𝑖𝑗) 

5.7 Discussions 

Table 13 is a summary of the results from the five MCDA methods used in this study for microalgae strain 

selection. Four out of the six results agree that strain ID002 is the best strain and all six results agree that 

the 3rd best strain is strain ID001. The results are however not uniform for the second best strain. It is also 

worthy of note that no two methods have produced identical ratings. 

From the results, it is observed that ID002 has the best properties with respect to the lipid content and 

energy consumption. ID002 also has a fast growth rate compared to other strains. ID005 and ID006 (both 

second place) also have very high lipid contents, their energy consumption rates are the second best and 

the growth rate of ID006 is very high. ID001 has the 3rd highest lipid content and a low energy consumption 

rate, the growth rate is also comparatively high.  

From literature, it is noted that the strains with higher lipid contents and faster growth rates are good 

feedstock for biodiesel production. Comparing these results with the observations from literature, the strains 

with the higher lipid contents and growth rates ranked very highly in the results. The strains that were easier 
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to harvest (based on energy consumption) also ranked highly – ID002 has the least energy consumption 

value of all the strains.  

Table 13: Summary of results 

6. Conclusions and Recommendations for Future Work 

The selection of the best strain of microalgae is an important step in the microalgae-to-biodiesel production 

process, as this has a direct effect on the yield and properties of the biodiesel produced. Five MCDA 

methods have been used to select the best strain from six microalgae strains. The criteria used were growth 

rate, lipid content, fatty acid profile and ease of harvesting. The strain with the best properties as decided 

by three of the five methods is Scenedesmus sp. 

From this study, the lipid content is the most important factor to be considered in the selection of 

the best microalgae strain for biodiesel production because it has the highest relative importance factor 

(weight) among all the criteria. According to the results, the best strain has the highest lipid content; the 

second and third best strains also have the second and third highest lipid contents respectively. Therefore, 

increasing the lipid contents of microalgae strains should be a major research area for microalgae-based 

research.  

The growth rate is also a very important criterion in the selection of microalgae strains. The strains 

with comparatively high growth rates ranked among the first to third best. Energy consumption during 

harvesting also plays a very important role in the strain selection as the strains with the lowest energy 

consumption rates are ranked best among the alternatives.  

It is unclear from the results, how the fatty acid profile affects the strain selection. The relationship between 

the weights and input values of the PUFA, C16:1 and C18:1 do not follow any observed patterns. The fatty 

acid profile however has a very significant effect on the physical and chemical properties of the biodiesel 

produced and hence should be a very important part of the selection process.  

In light of the above conclusions, the following aspects are recommended for future work: 

 More criteria should be added to the decision models to expand the scope of the decision making 

process. 
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 In order to draw robust conclusions from the results, sensitivity analysis should be carried out. The 

sensitivity analysis will determine how variations in the criteria weights and inputs will influence the 

final scores and hence the final decisions. 

 The strengths and the weaknesses of the MCDA methods used in this study should be investigated. 

The characteristics of the MCDA methods may have a significant impact on the rankings of the 

alternatives.  

 The role of the fatty acid profile in microalgae strain selection should be further studied. Some work 

has been done on this subject [12, 32] but different approaches can be considered. 

 An evaluation tool can be developed using the MCDA methods analysed in this study to make the 

microalgae selection process easier and enable the comparison of a large number of strains 

simultaneously.   
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