1 © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

2 https://creativecommons.org/licenses/by-nc-nd/4.0/

3	Host-Guest Synergy of
4	CH ₃ NH ₃ PbBr ₃ @Ln-MOFs Enabling
5	Tunable Green Luminescence and
6	Switchable Memory
7	
8	Liming Zhao ^a , Carl Redshaw ^b , Kuixing Ding ^c , Pengyue Zhang ^{a,*} , Bin Chen ^d ,
9	Zhirong Chen, ^d Jiugang Hu ^{c,*} and Haohong Li ^{d,*}
10	
11	^a College of Standardization, China Jiliang University, Hangzhou 310018, China.
12	^b Department of Chemistry & Biochemistry, University of Hull, Hull, HU6 7RX, UK.
13	° College of Chemistry and Chemical Engineering, Central South University, Changsha,
14	410083, China.
15	^d College of chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
16	
17	

18 Highlights

19

- New Ln-MOFs can serve as multifunctional platforms.
- Low cost CH₃NH₃PbBr₃@Ln-MOFs show tunable luminescence behaviour.
- CH₃NH₃PbBr₃@Sm-MOF exhibits excellent electrical bistability behaviour with
- high ON/OFF ratio of 10^4 .
- CH₃NH₃PbBr₃@Ln-MOFs can be utilized as a new generation of photovoltaic, light-
- 25 emitting, and switching memory devices.

Abstract: Perovskite CH₃NH₃PbBr₃ nanoparticles (NPs) can be intercalated into 27 diverse porous materials to expand the flexibility and versatility of the host-guest 28 composites due to their outstanding optical properties. Herein, by encapsulating 29 CH₃NH₃PbBr₃ NPs into lanthanide metal organic frameworks (Ln-MOFs), four 30 31 CH₃NH₃PbBr₃@Ln-MOFs composites, namely {[Ln(BTB)(H₂O)₂]·3(H₂O)}_n (Ln=La, Nd, Pr, Sm), have been fabricated and can serve as multifunctional platforms. The 32 temperature-dependent luminescence properties of the CH₃NH₃PbBr₃@Ln-MOFs with 33 different concentrations of CH₃NH₃PbBr₃ were explored and the results revealed 34 35 tuneable green luminescence. In particular, the CH3NH3PbBr3@Sm-MOF exhibits a variety of colours from green to blue to purple and an excellent quantum yield (0.987) 36 on addition of 1.0 mmol PbBr₂. The photocurrent responses of the CH₃NH₃PbBr₃@Ln-37 38 MOFs reveal the enhancement mechanism of CH₃NH₃PbBr₃ on charge-hole separation. Moreover, owing to its unique properties, the electrical bistability behaviour with a high 39 ON/OFF ratio of 10⁴ was observed for the CH₃NH₃PbBr₃@Sm-MOF. The electron 40 41 transfer mechanism was verified by theoretical calculations. Hence, the CH₃NH₃PbBr₃@Ln-MOFs composites are promising candidates for a new generation 42 of photovoltaic, light-emitting and switching memories devices. 43 **Keywords**: perovskite nanoparticles; host-guest composites; electrically bistability; 44

45 lanthanide metal-organic framework; switching memories devices

47 **1. Introduction**

Metal organic frameworks (MOFs) are a type of porous crystalline material that 48 49 are attracting much attention. Much of the interest stems from their adjustable pore sizes and high specific surface area, and they can be easily designed and self-assembled ^[1]. 50 The unique electronic structure and special properties of Lanthanide (Ln) metals 51 determine that they have important basic and applied research significance. These 52 properties are different from those of main group and transition metal species because 53 of their 4f sub-electron layer structures and outer 5s, 5p⁶ electron shielding, which can 54 produce specific physical and chemical properties after receiving energy radiation ^[2]. 55 Meanwhile, the Ln central ions could obtain more coordination field stabilization 56 energy and reduce the mutual repulsion between outer orbital and ligand electrons. 57 58 Therefore, lanthanide metal organic frameworks (Ln-MOFs) can achieve more stable complexes with oxygen-containing ligands through the energy transfer between ligands 59 and central ions, leading to special photoelectric properties. 60

As crystalline porous materials, MOFs contain ordered pores capable of 61 encapsulating varied types of guest, including metal NPs ^[3], dye molecules ^[4], 62 polyoxometalates ^[5], metal oxide ^[6] and quantum dots (QDs) ^[7]. In these systems, 63 MOFs can provide a platform for the stabilization of guests without reducing the wide 64 range of properties that traditional guests exhibit. Therefore, host-guest composites 65 have shown potential for various applications such as temperature sensing ^[8], 66 luminescent thermometers ^[9] and in second-order non-linear optics ^[10]. It is noteworthy 67 that inorganic QDs such as CdS, CdSe, CdTe, and ZnS have been successfully 68

encapsulated into MOFs to form QDs@MOFs, and a range of potential applications 69 have been investigated such as for energy production ^[11], light harvesting ^[12], light 70 emitting diode (LED)^[13], and supercapacitors^[14]. At present, research on QDs has 71 mainly focused on classical cadmium-based semiconductor materials, which generally 72 73 adopt a thick core-shell structure and are complicated to prepare. Any industrial use of these materials must overcome challenges such as cost and environmental issues to 74 become attractive. Among the large families of QDs available, the halide perovskites 75 MPbX₃ ($M = CH_3NH_3$; X = Cl, Br, I) NPs are attractive owing to their low cost, superior 76 77 photoelectronic properties and multifunctional applications, and have been widely considered as central to forming a new generation of luminescent ^[15], solar cells ^[16], 78 and memory storage materials ^[17]. 79

80 As we know, the luminescence performance of MOF encapsulated QDs at room temperature has widely been studied ^[18], but the dependence of the luminescence of 81 these composites under special/harsh environments, especially at extreme temperature 82 83 has rarely been reported. In general, hybrid CH₃NH₃PbX₃ NPs can exhibit excellent photoluminescence intensity and quantum yields with adjustable emission depending 84 on the halide anions. Moreover, these perovskite NPs exhibit thermal dependence, 85 emitting photoluminescence at room temperature and quenching as the temperature 86 rises to a certain temperature ^[18c]. Moreover, CH₃NH₃PbX₃ NPs have the advantage of 87 long lifetime of direct-band gap carriers. The low density of states and the sharp energy 88 level of nanoscale QDs can produce three-dimensional quantum confinement effects on 89 the carriers in them, and they can can be used as stable charge capture sites, which is 90

beneficial to prolonging the life of a memory device. However, for the pure perovskite, 91 it was found that the high resistance state of the memory device decreases and overlaps 92 with the low resistance state on increasing the number of cycles ^[19]. This phenomenon 93 is attributed to a space-charge-limited conduction mechanism predominantly of electric 94 95 bistable. Hence, encapsulating the perovskite NPs into a MOF can potentially prevent the formation of halogen vacancy and improve the cyclic stability of the device. In 96 addition, this method can improve the stability of perovskite films and enlarge the 97 switching window. 98

99 Based on the above, by encapsulating CH₃NH₃PbBr₃ NPs into Ln-MOFs, four CH₃NH₃PbBr₃@Ln-MOFs composites, namely {[Ln(BTB)(H₂O)₂]·3(H₂O)}_n (Ln=La, 100 Nd, Pr, Sm), have been fabricated and shown to serve as a multifunctional platform. 101 102 The temperature luminescence dependence of CH₃NH₃PbBr₃@Sm-MOF with different concentrations of CH3NH3PbBr3 was studied. The I-V characteristics of the 103 ITO/CH₃NH₃PbBr₃@Sm-MOF/Ag film at -5 V to 5 V under a DC voltage were also 104 analyzed. Moreover, the changes of the interface electron transfer and main structure 105 of the composites were analyzed with the assistance of theoretical simulations of the 106 properties of the composites. 107

108

2. Experimental section

110 2.1 Materials and Physical Measurements

All reagents were commercially purchased from Aladdin and were used withoutfurther purification. The diffraction intensity data of the single crystals were obtained

113	by using a Bruker APEX II CCD area diffractometer equipped with a fine focus, 2.0
114	kW sealed tube X-ray source (Mo K α radiation, $\lambda = 0.71073$ Å) operating at 177 K.
115	Infrared (IR) spectra were recorded on a Nicolet IS 50 FT-IR spectrometer using ATR
116	in the range 400-4000 cm ⁻¹ . Powder X-ray diffraction (PXRD) patterns were performed
117	on a Philips X'Pert-MPD diffractometer with CuK α radiation (λ = 1.54056 Å). Thermal
118	gravimetric analysis (TGA) data were obtained using a Mettler Toledo TGA/DSC 3+
119	thermal analyzer, heating from 30 to 800 °C at the constant rate 10 °C/min under a
120	nitrogen atmosphere. Transmission electron microscope (TEM) images were obtained
121	on a FEI Talos F200S G2 at 200 kv. HR-SEM10 of sandwich films were tested on a
122	Verios G4 UC. Fluorescence microscopic images were taken on MF-UV-LED-Y-3.
123	Optical diffuse reflectance spectra were measured on an Aglient Carry 5000
124	UV/Vis/near-IR spectrophotometer equipped with an integrating sphere at 293 K and a
125	BaSO ₄ plate was used as a reference over the range of 250-800 nm. Fluorescence
126	spectra were recorded on an Edinburgh FL-FS 920 TCSPC spectrometer.

127 **2.2 Synthetic Procedures**

128 The traditional precursor PbBr₂@MOFs were prepared in one-step by using 129 solvothermal methods ^[7a]. The newly synthesized Ln-MOFs were immersed in PbBr₂ 130 solution and were used as the precursor after subsequent washing and drying to prevent 131 Pb ions from participating by coordination during the solvothermal reaction (**Scheme1**).

Scheme1. Illustration of the fabrication process of CH₃NH₃PbBr₃@Ln-MOFs.

135 Synthesis of Lanthanide metal–organic frameworks (Ln-MOFs)

Synthesis of {[Ln(BTB)(H₂O)₂]·3(H₂O)}_n ((Ln=La, Nd, Sm, Er) The four Ln-MOFs
are isostructural, and were synthesized in the same way except that different lanthanide
salts were employed. Using La-MOF as an example:

139 {[La(BTB)(H₂O)₂]·3(H₂O)}_n (La-MOF): A mixture of H₃BTB(0.043 g, 0.1 mmol) 140 and La(NO₃)₃·6H₂O (0.065 g, 0.15 mmol) was dissolved in 8.0 ml DMF, and the system 141 was stirred for 4h at 80°C and then filtered. After two weeks, block crystals were 142 obtained, which were washed with DMF and dried under vacuum for 24 h (0.051 g, 143 yield 43.9% based on La). For C₂₇H₁₅LaO₁₂ (670.3): calculated C 48.38%, H 2.26 %; 144 determined C 48.80%, H 2.10 %. IR (cm⁻¹): 1643(m), 1582(s), 1520(s), 1396(s),

145 1245(w), 1178(w), 1108(m), 1010(w), 861(s), 815(m), 775(s), 704(m), 664(m), 553(w),

146 and 457(m).

147 ${[Pr(BTB)(H_2O)_2] \cdot 3(H_2O)}_n$ (Pr-MOF): Block greyish-green crystals were obtained

148 (0.055g, yield 46.8 % based on Pr). For C₂₇H₁₅PrO₁₂ (672.3): calculated C 48.24%, H

- 149 2.25 %; determined C 48.50%, H 2.18 %. IR (cm⁻¹): 1643(m), 1582(s), 1520(s), 1396(s),
- 150 1245(w), 1178(w), 1108(m), 1010(w), 861(s), 815(m), 775(s), 704(m), 664(m), 553(w),

151 and 457(m).

152 {[Nd(BTB)(H₂O)₂]·3(H₂O)}_n (Nd-MOF): Block light purple crystals, (0.05 g, yield: 153 43.2 % based on Nd). For C₂₇H₁₅NdO₁₂(675.63): calculated C 47.99%, H 2.24 %; 154 determined C 48.10%, H 2.20 %. IR (cm⁻¹): 1643(m), 1582(s), 1520(s), 1396(s), 155 1245(w), 1178(w), 1108(m), 1010(w), 861(s), 815(m), 775(s), 704(m), 664(m), 553(w), 156 and 457(m).

157 { $[Sm(BTB)(H_2O)_2]$ ·3(H₂O)}_n (Sm-MOF): Block colorless crystals, yield 0.059 g

158 47.2 %. For C₂₇H₁₅SmO₁₂ (681.75): calculated C 47.57%, H 2.24 %; determined C

159 47.82%, H 2.18 %. IR (cm⁻¹): 1643(m), 1582(s), 1520(s), 1396(s), 1245(w), 1178(w),

160 1108(m), 1010(w), 861(s), 815(m), 775(s), 704(m), 664(m), 553(w), and 457(m).

161 *Synthesis of* PbBr₂@Ln-MOFs Composites: The PbBr₂@Ln-MOFs composites were

initially synthesized as the precursor of CH₃NH₃PbBr₃@Ln-MOFs. 50 mg La-MOFs

were dispersed into different concentrations of PbBr₂ (0.1, 0.5 and 1.0 mmol dissolved

in 5 ml DMF), respectively. After half an hour of ultrasonic treatment, the suspension
was allowed to stand for 6 h, and was then centrifuged. The supernatant was filtered,
and the product was washed with DMF several times. Finally, the product was dried at
60°C for 12h.

Synthesis of CH₃NH₃PbBr₃@Ln-MOFs Composites: The PbBr₂@Ln-MOF
precursors were added into 5 mL deionized water containing CH₃NH₃Br (11.2 mg, 0.1
mmol), which after 30 min led to the formation of CH₃NH₃PbBr₃@MOFs composites.
The supernatant was filtered, and the product was washed with deionized water several
times. Finally, the products were dried at 60°C for 12 h.

174 **3. Results and Discussion**

175 **3.1 Structural Description of Ln-MOFs**

Crystallographic analysis confirmed that all the Ln-MOFs are isostructural and 176 crystalized in the Tetragonal system with space group 14122 (Table S1). Here, the 177 structure of $\{[Sm(BTB)(H_2O)_2] \cdot 3H_2O\}_n$ is described as an example. The 3D network 178 comprises Sm₂O₁₈ building blocks (Figure 1a) and BTB³⁻ ligands. The asymmetric unit 179 of Sm-MOF contains one Sm(III) ion, one BTB ligand, two coordinated H₂O molecules 180 and three isolated H₂O molecules. In each Sm₂O₁₈ building block, the 181 crystallographically independent Sm(III) center is coordinated by eight O donors which 182 formed a twisted single-capped square anti-prismatic polyhedron (SmO₉), including six 183 O atoms of BTB³⁻ ligands and two O atoms of coordinated H₂O molecules (Figure 1b). 184 The Sm-O bond distances are normal at 2.390(7) to 2.646(6) Å, while the O-Sm-O 185 angles ranging from 49.1(2) to 142.6(2)° account for the observed distorted (Table S2). 186 The Sm₂O₁₈ are connected via the same C atoms from the BTB³⁻ ligands, which results 187 in a 1D chain (Figure S1). The chains are further interlinked into a 3D structure via 188 bridging BTB³⁻, and there are two types of coordination modes exhibited by the 189 carboxylic groups of BTB³⁻, namely bidentate chelate and bridged, respectively (Figure 190 S2). Finally, the 3D network for Sm-MOF is displayed along both the c and b axes 191 (Figure 1c, d), revealing the pores in the cage-like structure with sizes of 8.0 Å, which 192 provides the possibility of encapsulating CH₃NH₃PbBr₃ perovskite nanoparticles into 193 these Ln-MOFs. In order to better understand the structure, a simplified 3-D network 194

of Sm-MOF based on bridging BTB ligand Sm₂O₁₈ nodes is presented in Figure 1e.

Figure 1. (a) Sm_2O_{18} building blocks; (b) Coordination environment at the Sm(III) ion; (c, d) View of 3-D network arrangements along the *c* axis and along the *b* axis; (e-g) Simplified 3-D network of **Sm-MOF** based on the bridging Sm_2O_{18} nodes and BTB ligand.

```
3.2 Characterization of the Ln-MOFs and CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>@Ln-MOFs composites
202
             The peaks observed in the PXRD for the as-synthesized Ln-MOFs match well with
203
        the simulated patterns (Figure S3a), which indicated that the crystalline frameworks of
204
        the Ln-MOFs were maintained. On this basis, the PXRD of CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> and
205
        CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>@Ln-MOFs composites were also tested. Figure S3b shows a
206
        comparison
                                       diffraction
                                                                          CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>,
207
                         of
                               the
                                                       patterns
                                                                   of
                                                                                               Ln-MOF,
        CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>@Ln-MOF, and CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>@Sm-MOF at different concentrations.
208
        The extra diffraction peak (circled by the dotted green line) for the
209
```

CH₃NH₃PbBr₃@Sm-MOF agrees well with the main peak of CH₃NH₃PbBr₃, which is 210 consistent with successful encapsulation. Moreover, the PXRD of Sm-MOF and 211 212 CH₃NH₃PbBr₃@Sm-MOF were also tested at different temperatures in order to explore the thermal stability. Sm-MOF is stable to about 200 °C (Figure 3a), which is 213 consistent with the TG curves (Figure 3b). Notably, CH₃NH₃PbBr₃@Sm-MOF can 214 also be stabilized to 200 °C and a peak shift (circled by the dotted yellow line) was 215 observed due to the breathing effect of the Sm-MOF after encapsulation of 216 CH₃NH₃PbBr₃ on increasing the temperature^[20] (Figure 3c). 217

218 The UV-Vis diffuse reflection spectra of H₃BTB, CH₃NH₃PbBr₃, Ln-MOFs, and CH₃NH₃PbBr₃@Ln-MOFs tested in the solid state at room temperature are shown in 219 Figure S4. For all except CH₃NH₃PbBr₃, the peaks at 340 nm are attributed to the π - π * 220 transitions of the triphenylbenzene of the BTB³⁻ ligand. Interestingly, the band edge at 221 about 500 nm of CH₃NH₃PbBr₃@Ln-MOFs are blue shifted compared with the 520 nm 222 of CH₃NH₃PbBr₃, which is thought to be due to the aggregation of CH₃NH₃PbBr₃NPs 223 in the solid state ^[21]. This provided further evidence for the successful encapsulation. 224 Finally, the TEM images and the elemental mapping diagrams of CH₃NH₃PbBr₃@Sm-225 MOF at different concentrations of PbBr₂ (0.1mmol, 0.5mmol, 1mmol) confirmed the 226 core-shell structures and good dispersity of CH₃NH₃PbBr₃ (Figure 3d-f). The size 227 distributions illustrate that the size of CH₃NH₃PbBr₃ in CH₃NH₃PbBr₃@Sm-MOF at 228 concentrations of PbBr₂ for 0.1, 0.5, and 1 mmol are in the ranges 0.2-1.0 nm, 0.3-1.2 229 nm and 0.2-1.3 nm, respectively (Figures S3c-e). 230

Figure 3. (a) PXRD patterns of Sm-MOF at variable temperature; (b)TG curves of Sm-232 MOF and after encapsulated CH₃NH₃PbBr₃; (c) PXRD patterns of 233 CH₃NH₃PbBr₃@Sm-MOF at variable temperature; TEM image, elemental mapping 234 diagrams of (d) CH₃NH₃PbBr₃ (0.1 mmol PbBr₂)@Sm-MOF; (e) CH₃NH₃PbBr₃ (0.5 235 mmol PbBr₂)@Sm-MOF; (f) CH₃NH₃PbBr₃ (1.0 mmol PbBr₂)@Sm-MOF. 236

238 **3.3 Theoretical simulations**

239 The stability and electron transfer of this host-guest composite can be verified by theoretical simulations based on density functional theory (DFT). The optimal 240 configuration of CH₃NH₃PbBr₃@Sm-MOF was obtained (Figure 4a), and the 241 242 differential charge density, energy band, as well as density of states (DOS) were calculated. It turns out that the band value of the composite coated with perovskite 243 decreases visibly from 2.280 to 1.523 eV (Figure 4b, c), which reveals the conductivity 244 of the complex material increases and the potential barrier of the MOF itself in 245 CH₃NH₃PbBr₃@Sm-MOF decreases. The Pb-6s, C-2p, Br-4p and Sm-4f orbitals near 246 the fermi level (0 eV) provide possibilities for electron storage and transition (Figure 247 **4d**). 248

Figure 4. (a) Configuration optimization diagram of CH₃NH₃PbBr₃@Sm-MOF; (b)
Band of Sm-MOF; (c) Band of CH₃NH₃PbBr₃@Sm-MOF; (d) DOS of
CH₃NH₃PbBr₃@Sm-MOF and Sm-MOF.

249

Moreover, the charge transfer between CH₃NH₃PbBr₃ and Sm-MOF has been 254 visualized by a differential charge density diagram (Figure 5a). Here, the blue areas of 255 electron dissipation represent negative electrons, and the yellow areas represent 256 positron aggregation. The N, Br in the CH₃NH₃PbBr₃ and the benzene ring in BTB form 257 a p- π conjugate (Figure 5b, 5c), making the mutual repulsion between electrons 258 decrease and the system energy reduces, and then the host-guest material becomes more 259 stable. The conductivity of the conjugated organic molecule will improve after the 260 HOMO or LUMO are partially filled ^[22]. Moreover, the electron rich behaviour of the 261 Pb²⁺ ions can be seen in the enlarged differential charge density image at the reduced 262 isosurface level (Figure 5d), which also proved the electron transfers from the ligand 263

in the host frame to the guest metal center.

265

Figure 5. (a) The optimized geometry and differential charge density of
CH₃NH₃PbBr₃@Sm-MOF; (b-d) Partially amplified charge density images.

268

269 **3.4 Optical Properties and Tunable Luminescence**

270 The room temperature luminescence of free CH₃NH₃PbBr₃, H₃BTB and Ln-MOFs were tested (Figure S5). For CH₃NH₃PbBr₃, there is a peak at 533 nm and green 271 emission in solid state, which agrees with the reported observations ^[18a]. For the Ln-272 MOFs, the peaks at about 370 nm excited at 320 nm are the π - π * transitions of 273 triphenylbenzene in the BTB ligands, and compare with free H₃BTB the shifts were 274 dictated by their aggregated difference ^[23]; no characteristic peaks for La³⁺, Pr³⁺ or Nd³⁺ 275 ions were observed. In other words, no metal-centered emissions were detected. 276 However, near IR adsorptions can be observed for Sm-MOF (Figure 6a), and these 277 absorptions stem from excitation from ground states to the corresponding excited states 278 of Sm^{3+[24]}. The characteristic peaks for Sm³⁺ at 561, 598, 643, and 703 nm correspond 279 to ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$, and ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$, respectively ^[25]. The 280

maintenance of this characteristic fluorescence of Sm³⁺ in the Sm-MOF system was 281 attributed to its excited state energy matching with the $3\pi\pi^*$ of the BTB³⁻ ligand ^[25-26]. 282 283 The photographs showing the colour changes associated with the Ln-MOFs and solid CH₃NH₃PbBr₃ at room temperature illustrate the original luminous colour of the Ln-284 MOFs and luminescence quenching of CH₃NH₃PbBr₃ in the solid state (Figure S6a). 285 It reveals that the temperature-dependent luminescence property of 286 CH₃NH₃PbBr₃@Ln-MOFs. The peaks at about 370 nm were almost unaffected on 287 reduction of the temperature. On the contrary, the characteristic emission peak of the 288 289 perovskite clearly changes, which likely originates from the change of structural order and disorder phase transition at different temperature ^[27]. The CH₃NH₃PbBr₃@La-290 MOF generates green emission in the solid state at room temperature, exhibiting two 291 292 peaks at 372 and 516 nm under excitation at 320 nm. On heating the temperature from 77 to 297 K, the intensity of the peak at 528 nm reduced gradually and blue shifted to 293 516 nm (Figure S6b). For CH₃NH₃PbBr₃@Pr-MOF at 77 K, green emission was 294 observed with a maximum peak at about 545 nm under excitation at 320 nm. The 295 intensity of this peak reduced gradually and blue shifted to 539 nm when the 296 temperature increased to 177 K. On further heating to 297 K, the intensity of this peak 297 gradually decreased and underwent a blue shift of 16 nm (Figure S6c). For 298 CH₃NH₃PbBr₃@Nd-MOF, an additional new peak was observed at about 428 nm 299 compared to the above two composites (Figure S6d). The intensity of this peak 300 increases to the maximum with a slight blue shift on heating from 77 to 297 K. 301 Furthermore, the intensity of the peak observed at ambient temperature at about 543 302

nm also decreases with a concomitant blue shift to 520 nm during the temperature 303 change to 297 K. The temperature-dependent luminescence of CH₃NH₃PbBr₃@Sm-304 MOF reveals different luminescent behaviour (Figure 6b, 6c). In particular, a peak at 305 436 nm appears, whilst the peak at about 545 nm exhibits a slight blue shift as the 306 307 temperature rises to 297 K, attributed to the main emission peak of CH₃NH₃PbBr₃ been more easily affected by temperature, and the characteristic emission peaks for Sm³⁺ at 308 598, 643 and 703 nm reveal slight intensity changes compared to the peaks of 309 CH₃NH₃PbBr₃. In general, electrons are concentrated at the bottom of the conduction 310 band, while holes are concentrated at the top of the valence band. The energy of emitting 311 electrons is basically equal to the width of the band gap, and the colour of the emission 312 depends on the width of the band gap^[28]. This above blue shift of CH₃NH₃PbBr₃ in the 313 314 host-guest system is attributed to the widening of the band gap caused by the thermal expansion of the CH₃NH₃PbBr₃ lattice, especially the lattice dilation term ^[29]. The 315 phase transition temperature (157 K) is similar to that reported in the literature (150 K) 316 ^[30]. Besides, the change of emission peak intensity of the same structure should be the 317 result of temperature dependent deformation of lattice ^[29b]. 318

Figure 6. (a) Fluorescence spectra of CH₃NH₃PbBr₃@Sm-MOF with different concentration of CH₃NH₃PbBr₃ at room temperature; (b, c) Fluorescence emission spectra and CIE chromaticity coordinates (numbers 1 through 13 represent each temperature from 77 to 297 K) of CH₃NH₃PbBr₃@Sm-MOF over the temperature range 77 to 297 K; (d) Photographs of CH₃NH₃PbBr₃@Sm-MOF with different concentration of CH₃NH₃PbBr₃ under the UV light.

Meanwhile, following the encapsulation of CH₃NH₃PbBr₃, on addition of 1.0 327 mmol PbBr2 as an example by the Ln-MOFs, there was a clear change in the 328 luminescence. Here, Sm-MOF was selected as a platform for limiting perovskite with 329 different concentrations because of its characteristic emission 330 peaks. CH₃NH₃PbBr₃@Sm-MOFs with addition of 0.1, 0.5, and 1.0 mmol PbBr₂ were studied 331 to explore the optical effects of concentrations of CH₃NH₃PbBr₃ encapsulation with 332 Sm-MOF. Photographs of CH₃NH₃PbBr₃@Sm-MOF with different concentration of 333

CH₃NH₃PbBr₃ under the UV light show clear differences (Figure 6d). The result shows 334 that the quantum yields (QY) improved upon increasing the concentration of 335 CH₃NH₃PbBr₃ to 0.50, 0.62 and 0.98, respectively, which is higher than that of pure 336 CH₃NH₃PbBr₃ (QY = 0.37) and Sm-MOF (QY = 0.42) in the solid state. The 337 luminescence spectra of Sm-MOF and CH3NH3PbBr3@Sm-MOF at different 338 concentrations of CH₃NH₃PbBr₃ at room temperature show that the peak at 524 nm has 339 blue shifted to 512 nm and increased, while the peaks at 370, 561, 598, 643 and 703 nm 340 reduced slightly on increasing the concentration. In addition, to study the effect of 341 higher temperatures on the luminescence, the CH₃NH₃PbBr₃@Ln-MOFs samples were 342 heated from 307 to 457 K. From Figure S7, it was seen that both the peaks at about 370 343 and 520 nm gradually reduce, which suggests typical thermal quenching behaviour. 344 345 However, the other characteristic emission peaks all relatively increase, due to the intensification of the energy transfer process consistent with the literature ^[31]. 346

Figure 7. Fluorescence emission spectra of (a) CH₃NH₃PbBr₃@**Sm-MOF** (0.1 mmol

- PbBr2); (b) CH3NH3PbBr3@Sm-MOF (0.5 mmol PbBr2); (c) CH3NH3PbBr3@SmMOF (1.0 mmol PbBr2) over the temperature range 307 to 457 K.
- 351

With the increase of temperature, the CH₃NH₃PbBr₃@Sm-MOFs with different 352 concentrations of PbBr₂ generate different emission spectra and different colours 353 (Figure 7). The colour of the materials changes from green to blue-green and then to 354 blue, green to purple and then to blue, green to yellow-green and then to purple for the 355 addition of 0.1, 0.5 and 1.0 mmol PbBr₂, respectively. Moreover, the decay times for 356 357 CH₃NH₃PbBr₃@Ln-MOFs are all longer than those observed for the Ln-MOFs, H₃BTB as well as CH₃NH₃PbBr₃ (Figure 8a), caused by the non-radiative charge transfer 358 between host and guest, which is a major problem in developing optoelectronic devices 359 because of its central role in their performance ^[32]. As the content of CH₃NH₃PbBr₃ 360 increases, the decay time extends (Figure 8b), which is attributed to the charge transfer 361 and defect state reduction as increasing content of CH₃NH₃PbBr₃^[32b]. 362

Figure 8. Time-resolved emission decay curves for (a) H3BTB, CH₃NH₃PbBr₃, LnMOF and CH₃NH₃PbBr₃@Ln-MOF; (b) at different concentrations.

3.5 Photocurrent Response Performances

Photocurrent properties have rarely been detected response in 368 CH₃NH₃PbBr₃@Ln-MOFs composites, but have frequently been observed in 369 composites such as Metal NPs@MOF^[33], viologen-based metal halide hybrids^[34] and 370 in most other semiconductor p-n heterojunction devices ^[35]. Herein, the performance 371 was recorded using a typical three-electrode system and the resulting photocurrent-time 372 (I-T) curves with ON-OFF switch are presented in Figure 9. From Figure 9a, it is 373 evident that the current intensity of Ln-MOFs is lower than that of corresponding 374 CH₃NH₃PbBr₃@Ln-MOFs. The CH₃NH₃PbBr₃@Sm-MOF containing different 375 amounts of CH₃NH₃PbBr₃ was also tested in order to explore the concentration 376 dependence of the photocurrent intensity. It reveals that the intensity of the current 377 378 increases as the concentration increases (Figure 9b). According to the recognized mechanism of photocurrent generation, irradiation can produce free radicals on organic 379 groups including Ln-MOFs and CH₃NH₃PbBr₃, and then the electrons on the organic 380 part move to the ITO substrate, generating a recyclable current. The increasing 381 photocurrents after limiting CH₃NH₃PbBr₃ can be explained by their ability to act as 382 efficient light absorbers and electron hole transport materials in photovoltaic devices 383 ^[36]. The electrical bistability of the CH₃NH₃PbBr₃@Sm-MOF also implies the 384 characteristics of charge hole separation. 385

Figure 9. Photocurrent response performance of (a) CH₃NH₃PbBr₃@Ln-MOFs and (b)
CH₃NH₃PbBr₃@Sm-MOF with different concentration of PbBr₂.

390 3.6 Electrical Bistability Behaviour

For the pure perovskite, it is found that the high resistance state of the device 391 decreases with the increase of the number of cycles, and finally ends up close to the 392 393 low resistance state, which leads to a small switch ratio. At the same time, the life cycle of the device depends on the erasing voltage. Moreover, the higher the voltage, the 394 lower the life cycle (Figure S8a). This can be attributed to the continuous proliferation 395 of halogen vacancies in the film during the cycle process. The activation energy of 396 halogen vacancies will also decrease, inducing the abnormal reverse opening 397 phenomenon of the device in the process of erasing. Finally, the overgrown halogen 398 vacancy conductive channel cannot be effectively burned off by the erasable voltage, 399 so that the device cannot return to the high resistance state and fail ^[19]. Similarly, 400 electrical bistability is not found in pure Sm-MOF because of its higher barrier (Figure 401 S8b). However, it is generally accepted that controlling the defect traps is an effective 402 way to improve memory performance ^[37]. Owing to a certain potential barrier of the 403

main frame material, the charge transfer on the surface of the QDs is relatively stable, 404 which avoids the defect of fast recombination of carriers when the applied electric field 405 is removed, and shows the storage function. Therefore, when the perovskite is coated 406 with the MOF, the formation of a halogen vacancy is prevented and the cyclic stability 407 of the device is promoted. As Figure 10a shows, the ITO/CH3NH3PbBr3@Sm-MOF 408 (addition of 1.0 mmol PbBr₂) film displays the typical electrical hysteresis behaviour 409 in a certain voltage sweep of $0V \rightarrow 5V \rightarrow 0V \rightarrow 5V \rightarrow 0V$, which is an essential feature 410 for bistable memory devices. The cross-sectional images of this sandwich device were 411 412 characterized by HR-SEM, and the thickness of the film was about 1.55 µm (Figure 10b). From the results (Figure 10c), it can be found that the film maintains high 413 resistance state (HRS, OFF state) during the sweep from 0 to -5 V. Then the current 414 suddenly converts to a low resistance state (LRS, ON state) at -5 V (ON: -5 V), which 415 can be maintained with the voltage reversing from -5 to 5 V. The switches turn back to 416 HRS when the voltage was reversed at 1.5 (OFF: 1.5 V), which can be maintained from 417 418 1.5→0 V. A similar I-V curve can be found in CH₃NH₃PbBr₃, the ON/OFF ratio is less than 1×10^2 and there is no electrical bistable signal for pure **Sm-MOF**. However, for 419 the CH₃NH₃PbBr₃@**Sm-MOF**, the ON/OFF ratio of this device is 1×10^4 , which 420 presents a higher ON/OFF ratio. Moreover, the cycle stability was verified by 100 I-V 421 cycle tests. It reveals that the ON/OFF ratio does not decrease significantly, confirming 422 their cyclic stability (Figure 10d). 423

424 Generally speaking, the memristor mechanism of materials is usually attributed to 425 the formation of a reversed space charge field within them ^[38]. Most of the previous

studies on the mechanism of electrical bistability were based on the resistance switching 426 mechanism such as a conductive wire, a metal oxide interface, and space charge limited 427 conduction (SCLC)^[39]. Especially, the SCLC mechanism of capture control is closely 428 related to the charge carrier trapping or detrapping in these host-guest composites. 429 Based on our research perspective, SCLC is suitable to the I-V characteristics of these 430 devices. The operating mechanism of these host-guest type electrical bistable storage 431 materials can be summarized as follows. When a certain applied electric field is applied, 432 the electric field shielding effect of the main frame is weakened, and the electrons 433 transfer from the main frame to the guest molecule. In the absence of an applied electric 434 field, because the ability of the guest molecule to release electrons changes, these 435 electrons are stored in the guest molecule due to the enrichment of central Pb²⁺ ion and 436 437 barrier in the host frame. However, when a reverse electric field is applied, the original equilibrium is broken and electrons tunnel from the guest molecule back to the host 438 frame, thus realizing the conversion between the two steric hindrance states. The peaks 439 of the Pb-6s and the C-2p orbital in the benzene ring proved the possibility of the 440 electronic transition. Based on these results, the CH₃NH₃PbBr₃@Ln-MOF host-guest 441 materials possesses stable memory storage capabilities. 442

Figure 10 (a) Schematic illustration of the ITO/ Sample /Ag memory device; (b) Crosssectional SEM images; (c) I-V characteristics of the ITO/CH₃NH₃PbBr₃@Sm-MOF;
(d) Cycle endurance of the ITO/CH₃NH₃PbBr₃@Sm-MOF.

443

448 4. Conclusions

449 In summary, CH₃NH₃PbBr₃ NPs were encapsulated into a family of Ln-MOFs, serving as potential tuneable luminescent, photovoltaic, and memory storage devices. 450 The results show that the luminescence behaviour was readily adjusted, the most 451 452 obvious feature was the modulation from blue to green and the fluorescence life was longer than that of the precursor materials. In the case of CH₃NH₃PbBr₃@Sm-MOF, it 453 has characteristics of variable lifetime and adjustable luminescence between green, blue 454 and purple controlled by either the temperature or loading concentration. Moreover, the 455 photocurrent test revealed the superiority of these host-guest materials by changing the 456

concentration of the encapsulated CH₃NH₃PbBr₃. Interestingly, 457 the CH₃NH₃PbBr₃@Sm-MOF shows electrical bistable behaviour. The ON/OFF ratio of 458 this device is up to 1×10^4 , which is attributed to the better electrical conductivity of the 459 perovskite and the structural characteristics of the outermost electrons of the lanthanide 460 metals. The encapsulated CH₃NH₃PbBr₃ NPs improves the electron tunnelling 461 efficiency, making it a potential memory storage device. 462

463

- 464 **Declaration of Competing Interest**
- 465 The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

467

468 Acknowledgements

469 This work was financially supported by National Natural Science Foundation of China

470 (NOS: 21771038), National Natural Science Foundation of Fujian Province

471 (2018J01684, 2017J01409) China scholarship council foundation. CR thanks the

472 University of Hull for support.

- 473
- 474 Appendix A. Supplementary data
- 475 Supplementary data to this article can be found online at XXX.
- 476

477 **References**

478 [1] a) A. Vartanian, *Nature Reviews Materials* **2022**, 7, 257; b) M. Bonneau, C. Lavenn,

- 479 J.-J. Zheng, A. Legrand, T. Ogawa, K. Sugimoto, F.-X. Coudert, R. Reau, S. Sakaki,
- 480 K.-i. Otake, S. Kitagawa, Nature Chemistry 2022, DOI: 10.1038/s41557-022-

- 481 00928-x; c) P. Peng, A. Anastasopoulou, K. Brooks, H. Furukawa, M. E. Bowden,
- 482 J. R. Long, T. Autrey, H. Breunig, *Nature Energy* **2022**, DOI: 10.1038/s41560-022-
- 483 01013-w; d) J. Fonseca, T. Gong, L. Jiao, H.-L. Jiang, Journal of Materials
- 484 Chemistry A 2021, 9, 10562; e) L. Yan, A. Gopal, S. Kashif, P. Hazelton, M. Lan,
- 485 W. Zhang, X. Chen, *Chemical Engineering Journal* **2022**, 435, 134975.
- 486 [2] Y. Zheng, C.-S. Cao, W. Ma, T. Chen, B. Wu, C. Yu, Z. Huang, J. Yin, H.-S. Hu, J.
- 487 Li, W.-X. Zhang, Z. Xi, *Journal of the American Chemical Society* 2020, 142,
 488 10705.
- 489 [3] a) W.-T. Koo, S.-J. Kim, J.-S. Jang, D.-H. Kim, I.-D. Kim, Advanced Science 2019,
- 490 6, 1970126; b) B. Gole, U. Sanyal, R. Banerjee, P. S. Mukherjee, *Inorganic*
- 491 *Chemistry* **2016**, 55, 2345; c) W.-T. Koo, S.-J. Kim, J.-S. Jang, D.-H. Kim, I.-D.
- 492 Kim, Advanced Science 2019, 6, 1900250; d) J. Li, Z. Xu, T. Wang, X. Xie, D. Li,
- J. Wang, H. Huang, Z. Ao, *Chemical Engineering Journal* 2022, DOI:
 https://doi.org/10.1016/j.cej.2022.136900136900.
- 495 [4] a) M. Li, G. Ren, W. Yang, Y. Yang, W. Yang, Y. Gao, P. Qiu, Q. Pan, Chemical
- 496 *Communications* **2021**, 57, 1340; b) Z. Wang, C.-Y. Zhu, J.-T. Mo, P.-Y. Fu, Y.-W.
- 497 Zhao, S.-Y. Yin, J.-J. Jiang, M. Pan, C.-Y. Su, *Angewandte Chemie International*
- *Edition* **2019**, 58, 9752.
- 499 [5] a) M. Duguet, A. Lemarchand, Y. Benseghir, P. Mialane, M. Gomez-Mingot, C.
- 500 Roch-Marchal, M. Haouas, M. Fontecave, C. Mellot-Draznieks, C. Sassoye, A.
- 501 Dolbecq, *Chemical Communications* **2020**, 56, 10143; b) C. T. Buru, O. K. Farha,
- 502 ACS Applied Materials & Interfaces 2020, 12, 5345; c) C. T. Buru, P. Li, B. L.

503	Mehdi, A. Dohnalkova, A. E. Platero-Prats, N. D. Browning, K. W. Chapman, J. T.
504	Hupp, O. K. Farha, Chemistry of Materials 2017, 29, 5174; d) D. Cao, Q. Sha, J.
505	Wang, J. Li, J. Ren, T. Shen, S. Bai, L. He, YF. Song, ACS Applied Materials &
506	Interfaces 2022, DOI: 10.1021/acsami.2c04077; e) P. Mialane, C. Mellot-
507	Draznieks, P. Gairola, M. Duguet, Y. Benseghir, O. Oms, A. Dolbecq, Chemical
508	Society Reviews 2021, 50, 6152; f) G. Ye, L. Hu, Y. Gu, C. Lancelot, A. Rives, C.
509	Lamonier, N. Nuns, M. Marinova, W. Xu, Y. Sun, Journal of Materials Chemistry
510	A 2020 , 8, 19396.

- [6] a) J. Yan, Y. Cui, M. Xie, G.-Z. Yang, D.-S. Bin, D. Li, *Angewandte Chemie International Edition* 2021, 60, 24467; b) S. Subudhi, S. P. Tripathy, K. Parida, *Inorganic Chemistry Frontiers* 2021, 8, 1619.
- 514 [7] a) D. Rambabu, S. Bhattacharyya, T. Singh, C. M. L, T. K. Maji, Inorganic
- 515 *Chemistry* **2020**, 59, 1436; b) L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M.
- 516 Zhang, M. Zhang, T.-B. Lu, *Angewandte Chemie International Edition* **2019**, 58,
- 517 9491; c) S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai, A. Pan, S. Liang, Journal of
- 518 *Materials Chemistry A* **2016**, 4, 17838; d) C. Ren, Z. Li, L. Huang, X. Xiong, Z.
- 519 Nie, Y. Yang, W. Zhu, W. Yang, L. Wang, *Nanoscale* **2022**, 14, 4216; e) A. E. B. S.
- Stone, S. Irgen-Gioro, R. López-Arteaga, J. T. Hupp, E. A. Weiss, *Chemistry of Materials* 2022, 34, 1921.
- 522 [8] T. Xia, Z. Shao, X. Yan, M. Liu, L. Yu, Y. Wan, D. Chang, J. Zhang, D. Zhao,
 523 *Chemical Communications* 2021, 57, 3143.
- 524 [9] Y. Zhang, M. Gutiérrez, A. K. Chaudhari, J.-C. Tan, ACS Applied Materials &

- 525 *Interfaces* **2020**, 12, 37477.
- [10] J. Yu, Y. Cui, C.-D. Wu, Y. Yang, B. Chen, G. Qian, *Journal of the American Chemical Society* 2015, 137, 4026.
- 528 [11] T. Wu, X. Liu, Y. Liu, M. Cheng, Z. Liu, G. Zeng, B. Shao, Q. Liang, W. Zhang,
- 529 Q. He, W. Zhang, *Coordination Chemistry Reviews* **2020**, 403, 213097.
- [12] K. Kumagai, T. Uematsu, T. Torimoto, S. Kuwabata, *Chemistry of Materials* 2021,
 33, 1607.
- 532 [13] J. Cuan, D. Zhang, W. Xing, J. Han, H. Zhou, Y. Zhou, Chemical Engineering
- *Journal* **2021**, 425, 131556.
- [14] Q. Yang, Q. Wang, Y. Long, F. Wang, L. Wu, J. Pan, J. Han, Y. Lei, W. Shi, S.
 Song, *Advanced Energy Materials* 2020, 10, 1903193.
- 536 [15] T. Xuan, X. Yang, S. Lou, J. Huang, Y. Liu, J. Yu, H. Li, K.-L. Wong, C. Wang, J.
 537 Wang, *Nanoscale* 2017, 9, 15286.
- 538 [16] L. Liu, A. Najar, K. Wang, M. Du, S. Liu, Advanced Science 2022, 9, 2104577.
- 539 [17] R. A. John, N. Yantara, S. E. Ng, M. I. B. Patdillah, M. R. Kulkarni, N. F.
- Jamaludin, J. Basu, Ankit, S. G. Mhaisalkar, A. Basu, N. Mathews, *Advanced Materials* 2021, 33, 2007851.
- 542 [18] a) D. Zhang, W. Zhou, Q. Liu, Z. Xia, ACS Applied Materials & Interfaces 2018,
- 543 10, 27875; b) D. Zhang, Y. Xu, Q. Liu, Z. Xia, *Inorganic Chemistry* 2018, 57,
- 4613; c) J. Ren, T. Li, X. Zhou, X. Dong, A. V. Shorokhov, M. B. Semenov, V. D.
- 545 Krevchik, Y. Wang, *Chemical Engineering Journal* **2019**, 358, 30.
- 546 [19] Y. Ren, H. Ma, W. Wang, Z. Wang, H. Xu, X. Zhao, W. Liu, J. Ma, Y. Liu,

- 547 *Advanced Materials Technologies* **2019**, 4, 1800238.
- 548 [20] C. Volkringer, T. Loiseau, N. Guillou, G. Férey, E. Elkaïm, A. Vimont, *Dalton* 549 *Transactions* 2009, DOI: 10.1039/B817563B2241.
- 550 [21] P. Bansal, P. Kar, *Journal of Luminescence* **2019**, 215, 116609.
- 551 [22] a) T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, C. Adachi, Applied Physics
- 552 *Letters* **2003**, 83, 1252; b) X. L. Mo, G. R. Chen, Q. J. Cai, Z. Y. Fan, H. H. Xu,
- 553 Y. Yan, J. Yang, H. H. Gu, Z. Y. Hua, *Thin Solid Films* **2003**, 436, 259.
- 554 [23] Y. He, Z. Bian, C. Kang, Y. Cheng, L. Gao, *Tetrahedron* **2010**, 66, 3553.
- 555 [24] L.-M. Zhao, X.-Q. Shen, Q. Liu, W. Wu, H.-H. Li, Z.-R. Chen, Y. Li, Chemistry –
- 556 *An Asian Journal* **2020**, 15, 136.
- 557 [25] R. Deng, J. Yu, H. Zhang, L. Zhou, Z. Peng, Z. Li, Z. Guo, *Chemical Physics*558 *Letters* 2007, 443, 258.
- [26] Q. Wang, L. Tao, X. Jiang, M. Wang, Y. Shen, *Applied Surface Science* 2019, 465,
 607.
- 561 [27] H. Yu, W. Wu, Q. Wang, J. Liu, D. Kong, Y. Gao, *Materials Today Physics* 2022,
 562 22, 100621.
- [28] M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang, Y. Qu, F. Raziq, L. Jing, *Applied Catalysis B: Environmental* 2016, 180, 219.
- 565 [29] a) R. Saxena, J. Kangsabanik, A. Kumar, A. Shahee, S. Singh, N. Jain, S. Ghorui,
- 566 V. Kumar, A. V. Mahajan, A. Alam, D. Kabra, *Physical Review B* 2020, 102,
- 567 081201; b) M. I. Dar, G. Jacopin, S. Meloni, A. Mattoni, N. Arora, A. Boziki, S.
- 568 M. Zakeeruddin, U. Rothlisberger, M. Grätzel, Science Advances 2016, 2,

569 e1601156.

- 570 [30] Y. Liu, H. Lu, J. Niu, H. Zhang, S. Lou, C. Gao, Y. Zhan, X. Zhang, Q. Jin, L.
 571 Zheng, *AIP Advances* 2018, 8, 095108.
- 572 [31] J. Liu, Y. Zhuang, L. Wang, T. Zhou, N. Hirosaki, R. J. Xie, Acs Appl Mater
- 573 *Interfaces* **2018**, acsami.7b13486.
- 574 [32] a) X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jie, *Advanced Materials* 2016, 28, 10409;
 575 b) I.-W. Cho, M.-Y. Ryu, *APL Materials* 2019, 7, 051112.
- 576 [33] L. Zhao, W. Wu, X. Shen, Q. Liu, Y. He, K. Song, H. Li, Z. Chen, ACS Applied
- 577 *Materials & Interfaces* **2019**, 11, 47073.
- 578 [34] a) X. Yang, M. Giorgi, H. Karoui, D. Gigmes, V. Hornebecq, O. Ouari, A.
- 579 Kermagoret, D. Bardelang, *Chemical Communications* **2019**, 55, 13824; b) S.
- 580 Chen, L. Zhao, J. Ma, Y. Wang, L. Dai, J. Zhang, *Nano Energy* **2019**, 60, 536.
- [35] a) M. Berdakin, E. A. Rodríguez-Mena, L. E. F. Foa Torres, Nano Letters 2021,
- 582 21, 3177; b) Y. Yang, *Nature Electronics* **2021**, 4, 631; c) D. Wang, X. Liu, Y.
- 583 Kang, X. Wang, Y. Wu, S. Fang, H. Yu, M. H. Memon, H. Zhang, W. Hu, Z. Mi,
- 584 L. Fu, H. Sun, S. Long, *Nature Electronics* **2021**, 4, 645.
- 585 [36] a) P. Cottingham, D. C. Wallace, K. Hu, G. Meyer, T. M. McQueen, Chemical
- *Communications* 2015, 51, 7309; b) T. Zhu, Y. Yang, K. Gu, C. Liu, J. Zheng, X.
 Gong, ACS Applied Materials & Interfaces 2020, 12, 51744.
- 588 [37] a) J.-S. Lee, Y.-M. Kim, J.-H. Kwon, H. Shin, B.-H. Sohn, J. Lee, Advanced
- 589 *Materials* 2009, 21, 178; b) D. Lee, B. Hwang, J.-S. Lee, ACS Applied Materials
- 590 & Interfaces **2019**, 11, 20225.

- 591 [38] Y.-R. Huang, X.-L. Lin, B. Chen, H.-D. Zheng, Z.-R. Chen, H.-H. Li, S.-T. Zheng,
- 592 *Angewandte Chemie International Edition* **2021**, 60, 16911.
- 593 [39] a) *Nature Communications*; b) F. Paul, S. Paul, *Small* n/a, 2106442.