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Nomenclature 
a Amplitude (m) / acceleration (ms-1) 

aw Weighted acceleration (ms-1) 

A Cross-sectional area of moving fluid / Turbine swept area (m2)/ amplitude 

Cp Power coefficient (%) 

E Energy (kW) 

F Frequency (Hz) 

ω Angular velocity (radians per second) 

g Gravitational acceleration (ms-2) 

h Water depth (m) 

H Wave height (m) 

Hs Significant wave height (m) 

𝐻 Mean wave height 

KE Kinetic energy (J) 

m Mass (kg) 

P Potential power in a fluid (kW) 

Po Turbine power output (kW) 

t Time (s) 

T Wave period (s) 

Tp Peak wave period (s) 

T0 Zero-crossing period (s) 

u, v, w Streamwise, transverse and vertical flow directions 

U Velocity (ms-1) 
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Ū Mean velocity (ms-1) 

Η Surface elevation (m) 

λ Wavelength (m) 

ρ Fluid density (kg/m3) 

Vcut-in Cut-in speed of a turbine (ms-1) 

Vcut-out Cut-out speed of a turbine (ms-1) 

Vrated Rated speed of a turbine (ms-1) 

 

Acronyms 
IRENA International Renewable Energy Agency 

IEA International Energy Agency 

O&M Operations and Maintenance 

Co Operational Costs 

Cm Maintenance Costs 

Co&m Operations and Maintenance Costs 

VDV Vibration Dose Value 

MSDV Motion Sickness Dose Value 

MSI Motion Sickness Incidence 

GPS Global Positioning System 

RMS Root Mean Square 

VMMS Vessel Motion Monitoring System 

ISO International Organization for Standardization 
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Abstract 
Current maintenance planning strategies and decision support tools used in the operations 

and maintenance of offshore wind farms rarely account for the welfare of technicians and 

their ability to do work upon arrival. This creates uncertainties especially since current 

operational limits might make a wind farm accessible but vibrations from transits might be 

unacceptable to technicians. 

The welfare of technicians is expressed by levels of discomfort and the likelihood of 

seasickness occurring from the vibrations felt on Crew Transfer Vessels (CTVs) in transit. 

To explore technician exposure to vibration in transit, acceleration data from vessel motion 

monitoring systems deployed on CTVs operating in the North Sea was synchronised with sea-

state data from an operational oceanographic data service (Copernicus Marine Service). 

Processes of dimensionality reduction and machine learning were used to model the welfare 

of technicians from operational limits applied to modelled proxy variables including  

Composite Weighted RMS Acceleration (aRMS) and Motion Sickness Incidence (MSI). 

Model results revealed both satisfactory and moderate performance in predicting aRMS and 

MSI based on model evaluation criteria of R2 (0.69 and 0.49) and root mean square error 

(0.06ms-2 and 4%). The results of the models raise the possibility of more relevant variables 

needed to capture all of the information needed to achieve high predictive accuracy. 

The proposed model will have applications in maintenance planning for offshore wind farms, 

able to account for the well-being  and the ability to work in technicians in sailing decisions. 
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1  Introduction 

1.1  Overview 

The most recent report by the Intergovernmental Panel on Climate Change (IPCC), states that 

human-induced climate change is affecting every inhabited region across the globe, by 

contributing to weather and climate extremes (IPCC, 2021). This report further highlighted 

the need to achieve the targets set at the 2015 United Nations Climate Change Conference 

which aims to limit global warming below two degrees Celsius (2ᵒC) above pre-industrial 

temperature levels (IPCC, 2021). More recently, the COP26 Glasgow summit set more 

ambitious targets towards accelerating actions towards the goals of the 2015 agreement by 

limiting temperature increases to 1.5ᵒC (Arora and Mishra, 2021). To deliver on this goal, 

countries will need to encourage investments in renewables, accelerate the switch to electric 

vehicles, reduce deforestation, and accelerate the phase-out of coal, to reduce global 

emissions by 45% in 2030 (Masood and Tollefson, 2021). In the last two decades, wind energy 

has been one of the fastest-growing renewable energy solutions, with electricity generation 

growing by 17% (273 TWh) in 2021 (IEA and Bojek, 2022). According to the International 

Energy Agency, this growth was possible due to increases in wind capacity additions, 

however, to maintain this level of growth, one of the most important areas for improvement 

is cost reductions for offshore wind energy. 

The UK is one of the world leaders in offshore wind energy by capacity (IEA, 2021)  due to its 

large area of shallow seas with a high wind energy potential, the potential for expansion, and 

the greater potential for energy generation offshore (Díaz and Guedes Soares, 2020). The UK 

has invested about £19 billion between 2016 and 2021 alone to support the growth of the 

offshore wind sector and this trend is expected to continue as generation from wind energy 

in the UK is central to the transition to a carbon-neutral economy (RenewableUK, 2022). 

However, research has shown that about a third of the entire life-cycle cost of an offshore 

wind farm is attributed to the operation and maintenance phase (Seyr and Muskulus, 2019). 

This presents a major barrier for the industry as the current trend in offshore wind energy 
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shows that bigger offshore wind turbines are being built and these turbines are being built 

further offshore (Soares-Ramos et al., 2020). This has the potential to increase the costs and 

risks associated with operating in harsher weather conditions and as stated by Newman, 

(2015), the associated costs and risks involved need to reduce if offshore wind energy is to 

compete with other means of energy generation. The next section presents the thesis 

rationale which highlights gaps in available research. 

1.2  Thesis Rationale 

Current research shows that the costs and risks associated with the maintenance of offshore 

wind farms need to reduce for the industry to compete with other energy sources. In most 

cases, offshore wind farms are maintained by technicians travelling out on crew transfer 

vessels (CTVs) to perform maintenance activities. For the technicians on board crew transfer 

vessels, the main concern is their comfort, safety, and their ability to do work upon arrival at 

offshore wind turbines (Phillips et al., 2015). However, literature on current maintenance 

strategies as well as literature on available operations and maintenance decision support 

tools shows that the sail and not-sail decisions associated with maintenance planning are 

mostly dependent on factors such as weather, sea-state, and the availability of maintenance 

resources (Stock-Williams and Swamy, 2019). This exposes some uncertainties in 

maintenance scheduling as research shows the welfare of technicians in transit is rarely 

considered and where accounted for in maintenance strategies, it is usually with regard to 

the number of technicians (Scheu et al., 2012; Besnard et al., 2013; Endrerud and Liyanage, 

2015; Dalgic, Lazakis, Dinwoodie, et al., 2015), the length of shifts (Scheu et al., 2012; Besnard 

et al., 2013; Dalgic, Lazakis, Dinwoodie, et al., 2015), the number of technicians per service 

order (Tan et al., 2016), number of service orders per technician (Dawid et al., 2016), the 

technician types (Irawan et al., 2017), and technician availability (Tan et al., 2016; Dawid et 

al., 2016; Irawan et al., 2017). This raises additional concerns as research shows that vessel 

motions during transits to offshore wind farms can cause discomfort (Mansfield, 2005; Scheu 

et al., 2018) and seasickness (Matsangas et al., 2014) to the technicians on board which can 

affect the ability of technicians to perform complex tasks. Additionally, the current guidance 

on seasickness-related issues states that individuals feeling the effects of seasickness are to 
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stay on board the vessel until the effects subside (G+, 2020), and the available guidance on 

the exposure of workers to accelerations applies thresholds to the magnitude of acceleration 

experienced in a workday. This creates further uncertainties such as increased waiting times 

from exposure to seasickness, and uncertainties where offshore wind farms are assessable 

based on typical crew transfer vessel limits of operation of 1.5 m of significant wave height, 

but exposure to vessel motion is unacceptable (Scheu et al., 2018). Therefore, there is a need 

to account for the comfort and health of technicians in maintenance planning in order to 

optimise the sail and not-sail decision-making process associated with maintenance 

scheduling in offshore wind farms. . The next section outlines the thesis aim, the thesis 

objectives, and the benefits of this research. 

1.3  Aims, Objectives, and Benefits 

This research aims to improve the decision-making process of operation and maintenance in 

offshore wind farms by accounting for the welfare of technicians in maintenance procedures 

in terms of their comfort, health, and their ability to do work upon arrival at offshore wind 

farms for maintenance. Simply put, this thesis aims to develop a risk-based decision support 

tool that predicts sail or not sail decisions based on the comfort level and the percentage of 

technicians likely to be seasick during a transit. To achieve the thesis aim, this thesis achieves 

some major objectives. 

1.3.1  Objectives 

The research objectives are: 

• Objective 1: Model the comfort of technicians during transits on Crew Transfer Vessels 

using whole-body accelerations. 

• Objective 2: Model the health of technicians during transits on Crew Transfer Vessels 

using the estimated incidence of motion sickness. 

• Objective 3: Develop a criterion-based decision-making model for maintenance 

scheduling based on technician welfare in order to aid the sail or not-sail decision-

making process of maintenance scheduling. 
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• Objective 4: To explore the potential of near-real-time metocean data for decision-

making in the management of offshore wind-farm maintenance. 

 

1.3.2  Benefits 

In research, the application of human exposure to vibrations in operation and maintenance 

planning for offshore wind farms is rare, as most models are largely dependent on weather 

and sea state. However, research shows that vessel motions can have negative effects on 

technicians (Mansfield, 2005) which in turn can affect the performance, the ability to do work, 

and the health of technicians. As such, this research can improve planning practices and add 

knowledge to the existing literature by exploring risk-based decision-making in maintenance 

planning using the comfort and the likelihood of seasickness in transit as deciding factors. This 

is particularly relevant as traditional operating limits can make access to an offshore wind 

turbine possible but exposure to vibration might make transits uncomfortable and increase 

the possibility of technicians getting seasick. As such this research not only takes the well-

being of technicians into consideration but also their safety and effectiveness as the 

symptoms of discomfort and seasickness caused by vessel motions can lead to work being 

done incorrectly or inefficiently or lead to workplace incidents. In addition to the effect on 

the well-being of technicians, symptoms of discomfort and seasickness can lead to the 

inability of affected technicians to do work or result in increased waiting times (Scheu et al., 

2018). Therefore, by implementing comfort and motion sickness-based limitations in the sail 

or not sail decision-making, the model developed in this thesis can allow wind farm operators 

to apply more holistic decision-making to cater to human welfare and by so doing create a 

positive environment for technicians which can have an effect on employee job satisfaction 

and a multiplying effect on productivity (Natasha Fogaça and Francisco Antônio Coelho Junior, 

2016; Salas-Vallina et al., 2020). In terms of cost, the developed model can reduce the risk of 

long waiting times in cases where Crew Transfer Vessel operational limits make a wind farm 

assessable but the experienced motions cause seasickness or discomfort-related incidents 

and result in missed work objectives. Additionally, in exploring human response to vessel 

motions, this research adds to the existing literature by exploring the use of near-real-time 

metocean data for decision-making. As such, this research provides a framework for assessing 
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technician comfort and health using near-real-time metocean data which can have further 

applications in other operations and maintenance activities. The next section presents an 

outline of the chapters contained in the thesis with a brief description of the chapter contents. 

1.4  Background Overview of Methods 

To explore human response to vessel motions at sea, this research uses data from vessel 

motion monitoring systems (VMMS) that have been deployed on twelve (12) participating 

crew transfer vessels of different sizes, operating across four (4) different wind farms in the 

North Sea. The vessel motion monitoring systems were each fitted with six-directional motion 

sensors that recorded translational and angular accelerations, Global Positioning Systems 

(GPS) that recorded the vessel's longitude and latitude positions during transits, an automatic 

identification system that recorded the vessel’s information, and a 4G antenna. The data from 

the vessel motion monitoring systems were made available to this research from the SPOWTT 

project which was aimed at improving the safety and productivity of offshore turbine 

technicians (Earle et al., 2021). To describe the sea state during transits, this research explores 

the use of open-source oceanographic data synchronised with GPS data from the vessel 

motion monitoring systems to describe the sea state following the transit routes of the 

participating crew transfer vessels. The environmental data used in this study included 

significant wave height, peak wave period, wave direction, current velocities, sea surface 

height, and wind velocities. Following guidelines from the ISO 2631-1 (ISO 2631-1, 1997), 

mathematical signal processing was used to estimate variables of composite weighted vertical 

acceleration and Motion Sickness Incidence used to define the comfort and health of 

technicians in transit. An exploratory analysis process is used to determine the input variables 

from the vessel motion monitoring system data and the environmental data most relevant to 

the prediction of estimated composite weighted acceleration and Motion Sickness Incidence. 

The relevant variables are then used to model the comfort and health of technicians during 

transits. Operational limits were applied to the model outputs from the comfort and heath-

based models which were then used as input variables for a welfare model which delivers sail 

or not sail decisions based on the comfort level and the percentage of technicians likely to be 

seasick during transits to offshore wind farms.  The welfare model is shown to have the 



 

6 
 

potential of improving the decision-making process in maintenance planning by providing 

estimations of the welfare of offshore wind farm technicians. 

The image in Figure 1.1 presents an overview of the methodology used in this research to 

achieve the thesis aim and objectives. 

 

Figure 1. 1 Thesis workflow for assessing the welfare of technicians  

Figure 1.1 shows the research workflow for assessing the welfare of technicians on crew 

transfer vessels. The initial phases of the workflow involve the measurement of vessel 

motions from vessel motion monitoring systems deployed on crew transfer vessels from 

which acceleration data can be extracted and analysed. The acceleration data is used to 

define health and comfort variables from Motion Sickness Incidence and Composite Weighted 

Acceleration parameters, respectively, with appropriate frequency weightings, applied 

following the guidelines of the ISO 2631-1, (1997). Following this, sea-state variables are 

defined using open-source oceanographic data products able to be used for hindcast analysis 

and forecast predictions. The defined sea-state variables are extracted and synchronised with 
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vessel operational variables which create a dataset for analysis and modelling. Significant 

relationships between variables are explored to identify the variables most relevant to the 

prediction of Composite Weighted Acceleration and Motion Sickness Incidence and 

Composite Weighted Acceleration and Motion Sickness Incidence are both modelled from the 

relevant input variables explored. Operational limits were applied to the outputs from the 

comfort-based model, which predicted Composite Weighted Acceleration, and the health-

based model which predicted Motion Sickness Incidence and used as model inputs for the 

welfare model which predicts sail or not sail decisions based on the magnitude of Composite 

Weighted Acceleration and the percentage of Motion Sickness Incidence from the predictions 

of the comfort and health-based model, respectively. The next section presents an outline of 

the chapters contained in the thesis with a brief description of the chapter contents. 

1.5 Thesis Structure 

This thesis is divided into six chapters which have been arranged logically to promote 

understanding. This first chapter provides an overview of the research, the research rationale, 

the aims and objectives of the project, the benefits of this research in operation and 

maintenance, and a thesis structure. The second chapter provides a critical review of relevant 

literature relating to the thesis aims and objectives. This chapter describes the operation and 

maintenance of offshore wind farms, outlines uncertainties in operation and maintenance, 

provides an introduction to offshore wind energy as a way of introducing vessel response to 

sea-state, and presents a review of human response to vessel motions brought about by sea-

state. The third chapter describes the methodology applied in this research in achieving the 

thesis aims and objectives. This chapter describes the limitations encountered during the 

course of the project, describes the instruments used for data collection and data used 

analysis, describes the project sites and timescales, and presents the data processing, data 

analysis, data visualization, and modelling processes used. Chapter four presents the results 

of the project analysis. This chapter includes a presentation of the results from meteorological 

data, a presentation of the results from the in-situ data, a presentation of the results from the 

instantaneous descriptive analysis, a presentation of the results from the daily descriptive 

analysis, and the results from the best-fit modelling of comfort using Composite Weighted 
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Acceleration, health using Motion Sickness Incidence, and welfare using Composite Weighted 

Acceleration and Motion Sickness Incidence. Chapter five provides the analysis and discussion 

of the results from the fourth chapter. This includes an analysis and discussion of objective 

one of this thesis, an analysis and discussion of objective two, an analysis and discussion of 

objective three, and an analysis and discussion of objective four. Finally, the sixth chapter 

includes a summary of the thesis findings and concluding remarks on the thesis. Following 

this, a reference list is provided with all the references used in this thesis. The next chapter 

presents a review of relevant literature relating to offshore wind farms, their maintenance, 

an introduction to wave theory, and literature on the vessel and human response to the sea 

state. 
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2  Background and Literature Review 

2.1  Introduction 

This chapter provides an overview of the available literature in the areas concerning the 

operation and maintenance of offshore wind farms as they relate to the human response to 

accelerations caused by sea state. A critical analysis of the most relevant studies and 

publications in this research area is presented with an exploration of available methodologies 

and their results in order to highlight the relevant gaps in research and establish a framework 

to achieve the thesis research aims and objectives. 

This chapter is separated into sections. This first section of this chapter presents a brief 

introduction and outlines the sections contained within this chapter. The second section 

presents an introduction to offshore wind energy by discussing its role as a viable source of 

renewable energy that could mitigate the effects of climate change and presents a description 

of the mechanism for generating energy from the wind. The third section of this chapter 

describes operation and maintenance in offshore wind energy, describes the different types 

of maintenance operations, the resources required, and the main influential factors affecting 

offshore wind operations. This section also explores available research in maintenance 

strategies for offshore wind farms and highlights some uncertainties that exist in maintenance 

operations, thereby, expressing the need to improve maintenance scheduling as a way of 

optimising operations and maintenance in offshore wind farms. The fourth section presents 

an introduction to wave theory to lay the foundation for exploring the response of vessels to 

sea states during maintenance transits. The fifth section of this chapter explores the literature 

on vessel responses to accelerations caused by sea-state while section six explores the 

literature on the human response to accelerations including the effect on the comfort of 

humans and the effect on the health of humans. This section also explores relevant 

methodologies for assessing the comfort and health of humans exposed to accelerations 

during transits. Here relevant gaps are addressed, and section seven provides a summary of 

the key findings from the literature review. The image in Figure 2.1 below presents the 

described sections above for this chapter  
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Figure 2. 1 Chapter structure by sections 

2.2  Introduction to Offshore Wind Energy   

This section introduces offshore wind energy as a viable renewable energy source capable of 

meeting global energy demands. It describes wind turbines, the main components of wind 

turbines, and how power can be generated from the wind using wind turbines. 

In recent years, the need to reduce the impact of climate change has become more apparent 

with current targets for emissions reduction set at limiting the increase in average global 

temperature to below 2˚C above the pre-industrial levels (IPCC, 2020). The International 

Renewable Energy Agency (IRENA, 2019) states that coupled with energy efficiency, 

renewable energy is a key contributor to mitigating the effects of climate change and can 

provide 90% of the carbon dioxide emission reductions needed by 2050. According to the 

International Energy Agency (IEA), however, renewable energy only accounted for 23.2% of 

global power generation in 2019 (IEA, 2020). There is, therefore, a need for more research 

and development into renewable energy sources and into improving energy generation from 

these sources. 

The most promising renewable energy sources in recent years have been wind and solar 

photovoltaic technologies which in 2019 accounted for 64% of the 6% increase in renewable 

energy generation (IEA, 2020). This trend is projected to continue as cost reductions and 

advances in technologies in wind and solar PV make both technologies viable replacements 

for traditional means of energy generation (IEA, 2020). Wind energy is one of the most cost-

• IntroductionSection 2.1

• Introduction to offshore wind energySection 2.2

• Operations and maintenance of offshore windSection 2.3

• An introduction to wave theorySection 2.4

• Vessel response to sea-state cause accelerationsSection 2.5

• Human response to sea-state caused accelerationsSection 2.6

• SummarySection 2.7
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efficient renewable technologies (Hevia-Koch and Klinge Jacobsen, 2019; IEA, 2020), with the 

technically accessible amount of energy reaching up to 300 million GWh per year, according 

to Ehrlich, (2013). Modern wind energy is generated either onshore, where wind energy is 

generated on land, or offshore, where wind energy is generated at sea. As one of the cheapest 

sources of energy, onshore wind energy can compete with conventional forms of energy 

generation, however, some disadvantages this form of energy generation has over offshore 

wind energy generation include land use, visual impacts, and noise pollution as highlighted 

by Hevia-Koch and Klinge Jacobsen, (2019). On the other hand, offshore wind energy is 

considerably more expensive with high capital costs, however, according to Díaz and Guedes 

Soares, (2020) in their review of the status of offshore wind farms, the major reasons for the 

interest in offshore wind energy over onshore wind energy are higher wind speeds, reduced 

noise pollution, and reduced visual impacts. Due to the United Kingdom’s large wind resource, 

investments into wind energy have continued to grow with more investments going into 

offshore wind recently, recording a sustainable growth of 10,383 MW in 2020 - a 4.1% 

increase from the previous year (IRENA, 2021). Similarly, the global offshore wind industry is 

projected to grow from 14 GW, recorded in 2016, to 41 GW in 2022 with no signs of slowing 

down (IRENA, 2021). 

2.2.1  Power from Wind 

Electricity from wind energy is usually generated using wind turbines. Wind turbines extract 

energy from the wind by converting the kinetic energy in the wind to electrical energy as air 

flows around the blades of a wind turbine and lift and drag forces from the wind act upon the 

blades turning the rotor which generates electricity through a generator. Current turbines are 

usually classified by the orientation of their rotors to the ground including vertical axis wind 

turbines (VAWTs) with rotors parallel to the ground, and horizontal axis wind turbines 

(HAWTs), which have rotors perpendicular to the ground (Andrews and Jelley, 2007). 
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Figure 2. 2 From left to right: i. Horizontal and vertical axis wind turbine; ii. The main 
components of a wind turbine (Salem, 2016). 

Figure 2.2 presents an illustration of a horizontal-axis wind turbine and a vertical-axis wind 

turbine on the left, and an illustration of the main components of a typical wind turbine on 

the right. 

The mechanism of operation for both classifications of wind turbines is such that the blades 

of the wind turbine capture the power from the wind in form of lift or drag forces to turn the 

rotor which transfers rotational energy to the turbine shafts. Connected to the rotor, the low-

speed shaft transfers the rotational energy from the rotor to the gearbox which increases the 

speed of rotation from the low-speed shaft and transfers the rotational energy to the high-

speed shaft. The energy from the gearbox to then transferred to the generator from the high-

speed shaft which converts the rotational energy to electrical energy. The components of the 

turbine are housed in the nacelle and the yaw mechanism turns the nacelle in the direction 

of the wind using electrical motors and information from an anemometer or wind vane which 

measures wind speed and direction. The nacelle, rotor and blades of the turbine are carried 

at height by the tower, and the electricity generated from the generator is transported 

through cables to a local substation for use in the electricity grid. Therefore, the kinetic 

energy, KE, of a mass of air, m, and moving through the blades of a wind turbine with a velocity 

U can be expressed by: 

𝐾𝐸 =
1

2
× 𝑚 × 𝑈2 

2. 1 



 

13 
 

The mass of air passing through the blades of the turbine, m, is determined by the density of 

air, ρ, the cross-sectional area of the rotor, A, and the velocity of air, U, expressed as:   

𝑚 = 𝜌 × 𝐴 × 𝑈 2. 2 

 

Substituting equation 2.2 into equation 2.1 results in an expression for the potential power 

from the wind, P, expressed as: 

𝑃 =
1

2
× 𝜌 × 𝐴 × 𝑈3 

2. 3 

However, not all wind power incident on a wind turbine is converted to energy. The fraction 

of power extracted by the turbine is determined by the type, size, and efficiency of the 

turbine. As such a power coefficient or a turbine’s coefficient of performance, Cp is introduced 

to consider power output depending on a turbine’s average efficiency. (Andrews and Jelley, 

2007). The expression for the coefficient of power is the ratio between the power output, PO, 

and the available power, P, shown as: 

𝐶𝑃 =
𝑃𝑂

𝑃
 

2. 4 

Therefore, power P, extracted from a wind turbine can be written as: 

𝑃𝑂 =
1

2
× 𝐶𝑃 × 𝜌 × 𝐴 × 𝑈3 

2. 5 

The German scientist Albert Betz provides an estimate for the amount of energy a wind 

turbine can convert from the kinetic energy of the wind was given by 59.3%. This is a 

theoretical upper limit known today as the Betz Limit. In practice, a wind turbine is only able 

to extract between 35% to 45% of energy from the wind, and this percentage varies between 

wind velocities and the specific type and size of wind turbine (Salem, 2016). To express the 

output power from a wind turbine, wind turbine manufacturers use a power curve to show a 

turbine's performance. The power curve shows the output power of a specific wind turbine 

at various wind speeds. Figure 2.3 below is an image of a wind turbine's power curve.  
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Figure 2. 3 Power curve with regions of operation (Salem, 2016) 

The image shows a plot of the generator power from a modern wind turbine against the wind 

speed incident on the wind turbine. The power curve is divided into four sections, each 

representing a phase in a wind turbine’s power generation. The cut-in speed, Vcut-in, is the 

minimum velocity at which a wind turbine will generate power. The rated speed, Vrated, is the 

speed at which a wind turbine reaches its designed rated power. The cut-out speed, Vcut-out, 

is the speed at which a wind turbine exceeds safe operations and is shut down. In Figure 2.3 

above, the operating regions of a modern wind turbine are given. In section (I), no power is 

produced before the cut-in speed. The second section of Figure 2.3 (II) shows the region 

where the cut-in speed is reached, and power is generated but not at the wind turbine’s 

designed rated power. In section (III), full power production is achieved when the wind speed 

reaches the rated speed of the wind turbine, and the desired power is generated labelled Pg-

rated in the figure above. In section (IV), no power is produced due to dangerously high wind 

speeds called cut-out speeds, and the turbine is shut down (Salem, 2016). While a wind 

turbine’s power curve is an estimate of the performance of that wind turbine, the inevitable 

nature of machines means that wind turbines are prone to breakdowns which as a result, 

affect the overall performance of a wind turbine. The frequency of breakdowns as well as the 

downtime of wind turbines define the operational period of a wind turbine – referred to as 

the availability of a wind farm. This is exacerbated in the case of offshore wind farms where 

access to offshore wind farms in harsh marine conditions could also extend the downtimes of 

offshore wind turbines, which in turn increases the cost associated with maintaining offshore 

wind turbines and farms. This is highlighted by Díaz and Guedes Soares, (2020) who state that 

the challenge the offshore wind industry faces is in improving efficiency and reducing costs, 
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and Feng et al., (2010) in their publication on the early experiences with UK offshore wind 

farms, who state that the limitations of offshore wind energy generation were in the lack of 

operating experience on large-scale offshore wind farms and more importantly, the possible 

risks of energy capture owing to low reliability and availability. Further publications have 

examined the operation and maintenance phase of wind farms (e.g., Röckmann et al., (2017)), 

pointing to the greater logistical and health & safety challenges related to the harsh marine 

environments of offshore wind farms and the need for better and more informed operational 

strategies for offshore wind energy generation. Therefore, it is important to explore the 

operation and maintenance of offshore wind farms to understand the costs and risks 

associated. The next section of this chapter explores the operation and maintenance of 

offshore wind farms. 

2.3  Operation and Maintenance of Offshore Wind 

Farms 

This section provides a description of operation and maintenance in offshore wind farms, the 

types of maintenance, resources used in maintenance activities, the uncertainties involved in 

operation and maintenance, and the influential factors affecting maintenance activities to 

highlight the areas that can be improved through the objectives of this thesis. 

2.3.1  Introduction 

The offshore wind industry is relatively new compared to other conventional forms of energy 

generation and is one of the more promising renewable energy sources. However, due to the 

risks of performing maintenance in rougher weather conditions offshore and the current 

trend of building new offshore wind farms further offshore (Soares-Ramos et al., 2020), the 

operations and maintenance (O&M) costs of offshore wind farms are higher than most other 

renewable energy sources (Xia and Zou, 2023). Apart from an increase in operational 

expenditure, the challenges resulting from the current trend in the offshore wind industry 

could include the availability of wind farms as well as the safety of O&M personnel (Xia and 

Zou, 2023). The next section describes operation and maintenance in the context of offshore 

wind farms. 
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2.3.2  Operation and Maintenance 

Wind turbines require regular maintenance for component deterioration due to fatigue, wear 

and tear, failed or failing components, corrosion, and erosion. (Asgarpour and van de 

Pieterman, 2014). This process is often referred to as operation and maintenance (O&M) - a 

combined term that refers to activities that support the continuous operation of a wind 

turbine or wind farm and its assets. It can then be concluded that the main purpose of 

maintenance operations is to maintain the physical integrity of a wind farm and its assets, 

minimize turbine downtimes, optimise electricity generation, and increase the overall 

availability of the wind farm. These processes usually begin after the commissioning of a wind 

farm project and continue until its decommissioning at the end of its lifecycle (BVG Associates, 

2019). The aspects referred to as operations in a wind farm usually refer to high-level asset 

management activities such as planning, administration, and environmental and remote 

monitoring (Hassan et al., 2013), while the aspects of O&M referred to as maintenance, 

involve the repair and upkeep of wind turbines within a wind farm as well as wind farm assets. 

These activities could include continuous monitoring of the wind turbines, inspections, 

servicing, and repair of critical components over the wind farm's lifetime (Sørensen, 2009). 

The operations and maintenance phase of an offshore wind farm life cycle in itself consists of 

phases which define the way maintenance is carried out. Medina-Lopez et al., (2021) describe 

these phases to include in-warranty operation, post-warranty operation and late-life 

operation. The definition of these phases is related to the entity in control of the site’s 

running. For instance, depending on contract agreements, the in-warranty operation phase 

or the first 3–5 years of energy production sees the wind farm owner with limited control, the 

post-warranty phase allows the wind farm owner to either bring operations in-house or sign 

new contracts and as such, the wind farm owner needs to understand the risk associated with 

operations, reliability, and access. (Medina-Lopez et al., 2021). Therefore, this is a crucial 

phase in the life cycle of an offshore wind farm often accounting for up to a third of the cost 

of an offshore wind farm (Scheu et al., 2012), and according to Hassan et al., (2013), this 

aspect of O&M by far accounts for the largest cost, risk, and effort.  
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2.3.2.1  Types of Maintenance 

The various activities that are described as maintenance activities for offshore wind farms are 

usually grouped across publications into preventive/proactive maintenance and corrective 

maintenance (Hassan et al., 2013; Asgarpour and van de Pieterman, 2014). 

 

Figure 2. 4 Types of maintenance (Asgarpour and van de Pieterman, 2014). 

Preventive/Proactive maintenance 

Wind farm operators usually take steps to prevent and/or postpone foreseeable failures or 

breakdowns by either monitoring deterioration and/or performing activities that prevent 

these breakdowns such as minor repairs (Shafiee et al., 2016). The measures taken are 

referred to as proactive maintenance measures and these maintenance activities are aimed 

at reducing the chances of sudden system failures. Preventive maintenance can further be 

categorized into calendar-based maintenance and condition-based maintenance. 

Calendar-based maintenance often requires scheduled maintenance activities, undertaken 

after a specified period to reduce the probability of system breakdowns and extend over the 

life of a turbine or wind farm. These activities could include inspections, planned adjustments 

and planned replacement of parts, and lubrication. An example of a preventive maintenance 

procedure is the regular inspection of the lifts within turbines to ensure that they remain 

functional for maintenance purposes. 
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Predictive maintenance or condition-based maintenance activities involve the use of sensors 

and advanced analytical methods to measure the degradation of a system or component. As 

such the component failure is not known but is expected (Asgarpour and van de Pieterman, 

2014). 

Corrective maintenance 

Corrective maintenance on the other hand occurs after breakdowns and faults occur. These 

maintenance activities are carried out in order to return the wind turbine or wind farm to 

normal working operation. Such activities are generally more expensive than proactive 

maintenance activities as they require short-term planning for vessels, spare parts, and 

available technicians needed at short notice (Asgarpour and van de Pieterman, 2014). 

Additionally, faults or breakdowns that require the shutdown of a wind turbine usually lead 

to a loss of revenue as a decrease in turbine availability causes an increase in loss of revenue 

(Carroll et al., 2017). The processes involved in corrective maintenance can be further 

categorized into two – planned corrective maintenance and unplanned corrective 

maintenance. 

Planned corrective maintenance occurs following the observed degradation of a 

component/system that results in or might result in a breakdown. Plans to address observed 

degradation are then put in place and maintenance is carried out on a scheduled date. 

Unplanned corrective maintenance occurs after a component fails unexpectedly resulting in 

the shutdown of the wind turbine. 

It is then clear that the type of maintenance carried out can greatly affect the cost of overall 

operation and maintenance for an offshore wind farm. 

2.3.2.2  The cost of Operations and Maintenance 

The costs of operation and maintenance in offshore wind energy can be up to a third of the 

overall life-cycle cost of an offshore wind farm (Scheu et al., 2012). Musial and Ram, (2010) 

describe the high cost of offshore wind farm projects as a major barrier to the offshore wind 

industry. They state that the cost of offshore wind nearly doubles that of its onshore 

counterpart and highlight O&M as one of the reasons for the associated high costs of offshore 

wind farms. An estimate of this cost is given by BVG Associates, (2019) in their guide to 
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offshore wind farms. They estimate that for a 1 GW offshore wind farm, O&M could amount 

to about £75,000 per megawatt year. Their estimates include the cost of insurance, 

environmental studies, compensation payments, and other internal asset costs. The chart in 

Figure 2.6 below represents a breakdown of the elements that contribute to the Levelized 

cost of energy (LCOE) for a typical offshore wind farm project where the combined cost of 

operations and maintenance costs amounted to 28.2% (ORE Catapult, 2022). 

 

Figure 2. 5 Life-cycle cost breakdown of a typical offshore wind farm project. Adapted from 
(ORE Catapult, 2022).  

Shafiee et al., (2016) give a good breakdown of the costs of operation and maintenance 

activities in their publication. They separate the cost of O&M into two parts - the operational 

expenses, CO, and the maintenance expenses, CM, expressed as: 

𝐶𝑂&𝑀 = 𝐶𝑂 + 𝐶𝑀 2. 6 

According to Shafiee et al., (2016), the cost of operation could relate to rental and lease 

payments, insurance costs, and transmission charges. This is in line with the description of 

operational activities by Hassan et al., (2013) where operational costs were described as high-

level management activities. On the other hand, and also in line with Hassan et al., (2013), 

Shafiee et al., (2016) describe the costs associated with maintenance to include costs incurred 

by activities that maintain the availability of an offshore wind farm such as transport to repair 

failed turbines, cost of spare parts, and maintenance technicians who carry out maintenance 
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activities, etc. A vital highlight from the publication by Shafiee et al., (2016) is that due to the 

nature of operations activities, it is far easier to estimate the cost of operations on an annual 

basis. In contrast, maintenance costs vary across the type of maintenance operation needed 

and as such, can be difficult to estimate on an annual basis, especially with unscheduled 

maintenance activities, which incur higher costs than scheduled maintenance. This is worth 

noting as it points to the previously mentioned case study by Newman, (2015) published by 

ORE Catapult which found that unscheduled maintenance activities or reactive maintenance 

activities such as in the cases of breakdowns, and proactive maintenance activities, 

constituted 65% of O&M costs. It should be noted that while the case study by Newman, 

(2015) gives insight into the cost of O&M, different variables could also affect the associated 

costs such as the amount of downtime during failures which add to the cost of O&M as stated 

by Scheu et al., (2012) and Ravindranath, (2016). An estimation of potential cost savings due 

to higher availability is given by Scheu et al., (2012) where downtime losses were quantified 

and a strong linear correlation between availability and production losses was discovered. 

This shows that a small increase in availability can lead to high-cost savings. This, therefore, 

exposes some uncertainties in the offshore wind industry. Today, the immature nature of the 

offshore wind industry is one of the main reasons for the operational risks associated with 

reliability and energy production. However, this risk and uncertainty could reduce as the 

industry matures and as operations and maintenance practices improve which is a current 

focus in both industry and academia (Gilbert et al., 2021). This means that with the continued 

adoption of offshore wind energy and improvements in technology and maintenance 

procedures, the cost and risk involved with O&M can be reduced using improved technology 

as well as more efficient O&M procedures that increase turbine availability and accessibility. 

Nevertheless, the many moving parts of a wind turbine will still make 100% availability 

unattainable. As such, major improvements in the resources need to access offshore wind 

farms, as well as more cost-effective methods for maintenance, are vital. The next section in 

this chapter explores the main resources used for O&M activities. 

2.3.3  Resources for Operation and Maintenance Activities 

This section discusses the major resources used in the operation and maintenance of offshore 

wind farms. The challenges associated with each major resource are given and the available 

methodologies used to mitigate these challenges are discussed. The common influential 
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factors surrounding the use of these resources and the operation and maintenance of 

offshore wind farms, as discovered in the literature, are also highlighted.  

2.3.3.1  Introduction 

Uit het Broek et al., (2019) stated that the diverse nature of resources used in the O&M of 

offshore wind farms, as well as the availability of these resources, challenge the design of a 

cost-effective program for maintaining offshore wind farms. As the type of resources needed 

for maintenance activities of offshore installations differ from those used onshore, the 

experience from the maintenance of onshore wind farms is not entirely transferable (Michiel 

et al., 2019). Specialized vessels and personnel are needed in the offshore environment, 

which varies concerning the cost, location, and weather. The major resources currently used 

in the operation and maintenance phase of offshore wind are described below. 

2.3.3.2  Spare parts 

Often, maintenance activities require various spare parts, the supply of which offers a high 

potential for cost savings (Tracht et al., 2013). Usually, the sourcing of spare parts is left to 

the turbine supplier during warranty periods, and up to the project owner once out of 

warranty (Hassan et al., 2013). The transportation of these spare parts of different sizes 

through the harsh conditions of the marine environment often requires specialized access 

vessels and support equipment such as nacelle cranes, each with its limits. In order not to 

suffer a significant loss of revenue due to turbine downtimes from shortages, efficient 

maintenance strategies that consider the complexities of spare parts, their transport, and 

support equipment are needed (Tracht et al., 2013). A subdivision of spare parts is given by 

the British Standards Institution, (2010) [BS EN 13306:2010], where spare parts are separated 

into repairable and consumables. Consumables here refer to spare parts that do not require 

repair and as such tend to be lower-cost items with a relatively fixed mean time between 

failures; while repairable are usually expensive, plagued with low inventory levels, and 

variable mean time between failures (Tracht et al., 2013). An effective spare parts 

management system would, therefore, ensure the provision of spare parts when needed for 

maintenance processes and at the same time, maintain a low-cost inventory. There have been 

some approaches to effectively managing spare parts in available publications such as Wang 

and Syntetos, (2011) who used a maintenance-driven model to improve the prediction 
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accuracy of spare parts by estimating useful lifecycles. Another approach was taken by Tracht 

et al., (2013) to plan spare parts maintenance by accounting for restrictive factors, such as 

meteorological conditions and the availability of maintenance resources. These are a few 

steps taken that are necessary to mitigate turbine downtime and reduce inventory costs. The 

main challenges in these models appear in the uncertainties related to failure rates, 

availability of other resources such as access vessels to transport spare parts, available 

technicians to perform maintenance operations and most of all, the reliance on 

meteorological conditions i.e., sea state and wind speed for available weather windows to 

perform maintenance activities. In any case, the type of spare parts needed for a maintenance 

activity also determines the type of vessel needed for a maintenance operation. For instance, 

the carrying capacity for helicopters can only accommodate smaller spare parts and 

therefore, would not be suitable for maintenance operations requiring bigger spare parts. In 

cases like these, more specialized vessels are needed to perform maintenance operations that 

may have access limitations such as the influence of wave height.  

2.3.3.3  Access Vessels 

The deployment of vessels is crucial in guaranteeing access to offshore wind farms for 

maintenance activities. As Stålhane et al., (2017) state, access vessels are one of the dominant 

resources in the operation and maintenance of offshore wind farms with as much as 45% of 

the total O&M costs being vessel-related costs. The sub-sections below describe the most 

used access vessel in the offshore wind farm industry. 

2.3.3.3.1 Crew transfer vessels (CTV). 

Crew transfer vessels (CTVs) are high-speed small-sized vessels of about 12 to 30 metres able 

to transport between 12 to 16 technicians from onshore operations bases to wind turbines 

and offshore substations for O&M activities at speed up to 20 to 25 knots (BVG Associates, 

2019). These vessels typically operate up to a limit of a 1.5 m significant wave height and are 

the most used form of transport in O&M operations due to their cost-effectiveness and speed 

(Phillips et al., 2015). These vessels are typically used for wind farms close to shore and in 

operation, crew transfer vessels press up against the turbine boat landing which allows 

personnel to step across to a ladder (BVG Associates, 2019; Gilbert et al., 2021). 
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The challenges associated with crew transfer vessels are listed in the Crown Estates 2013 

publication of “A guide to UK offshore wind operations and maintenance” to include sea-state 

access limits of up to 1.5m significant wave height, and the risk to passengers during 

maintenance operations (BVG Associates, 2019). The use case of crew transfer vessels varies 

between wind farm operators, but a cost estimate for chartering a crew transfer vessel was 

given by BVG Associates, (2019) to be about £2,500 per day depending on vessel type and 

availability. 

 

Figure 2. 6 Image of a crew transfer vessel (Hassan et al., 2013) 

2.3.3.3.2 Service operation vessels (SOV). 

Service operation vessels (SOVs) differ from CTVs in size, function, and carrying capacity. 

Service operation vessels are equipped with liveable quarters, a mess, welfare facilities, 

workshops, and storage facilities for spare parts as well as all necessary maintenance 

materials (BVG Associates, 2019). As such, they perform the dual function of offshore 

accommodations services and transport vessels. They accommodate between 50 and 100 

passengers, have an operational speed of 15 knots and are equipped with a hydraulic walk-

to-walk gangway. The use of the hydraulic gangway enables technicians to walk safely onto a 

wind turbine’s platform which allows access to wind farms between 3 m and 4 m significant 

wave heights (BVG Associates, 2019). Typically, service operating vessels are used to maintain 

wind farms further offshore and will usually stay for up to three weeks at sea, thereby, 

eliminating the daily transits associated with crew transfer vessels. This means that 

technicians are almost always on-site depending on shift patterns (Orsted, 2019). BVG 
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Associates, (2019) estimate the cost of Service Operating Vessels to be about £25,000 per day 

depending on the type, size, and region. 

 

Figure 2. 7 Image of a service operation vessel (Orsted, 2019) 

2.3.3.3.3 Helicopters 

While not as well established as using workboats to access offshore wind farms, helicopters 

have been used as access vessels for both O&M and search and rescue activities for a few 

years. Hassan et al., (2013) highlight the use case for helicopters for O&M in the offshore wind 

industry, stating that crew transfer vessels and service operating vessels are relatively 

inexpensive and carry significantly more technicians than helicopters, however, helicopters 

improve response times and accessibility to wind farms. This is because helicopters are not 

limited by sea conditions although wind speed and visibility can impact their use case. Hassan 

et al., (2013) go further to explain that the major reasons for low adoption in operations are 

cost and carrying capacity. As such, there is some uncertainty as to how widespread 

helicopter use might be in the future. BVG Associates, (2019) estimates the cost to charter a 

helicopter to be about £1.5 million per year depending on a lot of factors including type, 

availability, and contracts. 
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Figure 2. 8 Airbus helicopter accessing a wind turbine (Durakovic, 2020) 

There are more specialized vessels used in O&M activities such as jack-up vessels which are 

self-elevating platforms used for transporting and lifting large components of wind turbines, 

however, these are used in both the construction and operational phase of offshore wind 

farms. 

2.3.3.3.4 Daughter craft 

Daughter crafts are hybrid vessels that transport technicians between SOVs, where they live 

offshore, to turbines to perform maintenance activities. In addition to this, daughter crafts 

can perform emergency safety and recuse operations as well as support trips to ports. These 

vessels can support about 12 personnel (24 persons in emergencies), are about 12 m in length 

and can travel at speeds reaching up to 25 knots (Snyder, 2020; Reid, 2021). 
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Figure 2. 9 Image showing a daughter craft (Buljan, 2021) 

 

2.3.3.4  Technicians 

Wind farm technicians perform maintenance activities on turbines. In the offshore wind 

industry, technicians are usually trained in both technical and health and safety skills with 

several certifications to ensure they are qualified to fulfil the roles needed by offshore wind 

farms while ensuring their safety as well as others. According to BVG Associates, (2019), about 

£500 per MW per year could be spent on training technicians. An interview conducted by 

Mette et al., (2018) on “healthy offshore workforce” describes the regular shift hours for 

offshore technicians to be twelve hours a day with a work schedule that consists of two weeks 

of work and an accompanying two weeks off work or free time. 
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Figure 2. 10 Image of a technician on the nacelle of an offshore wind turbine (Hassan et al., 
2013)  

The maintenance resources described above work together to improve the availability of 

offshore wind farms. In Hassan et al (2013) ‘Guide to UK offshore wind operations and 

maintenance’, the availability of a wind farm is a measure of its performance and access to 

offshore wind farms is one of the major hurdles in maintaining or increasing availability. The 

publication states that getting technicians on and off turbines and substations is vital to O&M, 

especially in cases of unscheduled maintenance. It goes on to highlight factors affecting access 

such as transit time and weather constraints and states that maximising access and availability 

will ultimately result in reducing the cost of energy. The next section discusses the relevant 

influential factors affecting the operations and maintenance of offshore wind farms. 

2.3.4  Influential Factors in the Operation and Maintenance of 

Offshore Wind Farms 

This section discusses the major influential factors in the operation and maintenance phase 

of offshore wind energy. Special attention is given to the role of wave height, which is largely 

considered the most influential factor in an offshore environment, in the accessibility of wind 

farms and the use of its resources. Gaps in the literature are explored regarding the effect of 

wave motions on wind farm technicians in transit and their ability to do work. 
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2.3.4.1  Introduction 

The general conclusion from most publications is that the major factors influencing the 

scheduling and cost of maintenance in offshore wind farms are the rate of turbine failures, 

weather, and the availability of maintenance resources including spare parts, access vessels, 

and maintenance crews (Hassan et al., 2013; Seyr and Muskulus, 2019). Other factors such as 

regulations and health and safety organisational procedures designed to reduce risks can also 

affect maintenance procedures in offshore wind farms (Seyr and Muskulus, 2019). 

2.3.4.2  Failure rates 

Both offshore and onshore wind farm projects are designed to last between 25 to 30 years of 

operation. It is therefore important to maintain the reliability of wind farms throughout their 

operation. The complex nature of the components working in wind turbines means that 

turbines are prone to failure. One of the more cited definitions of a failure in wind turbines is 

given by Kaidis et al., (2015), in which a wind turbine failure is said to be the inability of a 

subassembly to perform its designed function. They state that for a wind turbine to be 

considered to have a failure, the duration of the event must be greater than an hour and must 

require human intervention to return the turbine to its original state. In the assessment by 

(Kaidis et al., 2015), pitch systems, frequency converters, and control systems were identified 

to have the greatest failure rates and verification of the bathtub curve as a broad 

representation of failures in wind turbines was given. The bathtub curve has long been used 

to represent the general change in the frequency of failure throughout a machine’s operation.  

 

Figure 2. 11 Image of a bathtub curve (Zheng et al., 2020)  
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Figure 2.11 below represents the bathtub curve in the context of wind turbines. The bathtub 

curve shows a change in the rate of failure over the life cycle of a typical wind turbine and is 

separated into regions. The infant mortality region shows a high rate of failures usually at the 

warranty phase of the life cycle of a wind farm. This high rate gradually reduces coming to a 

period of low and stable failures called the steady-state region. The rate of failures then 

increases following this to a point of deterioration called the wear-out region, which often is 

at the end of a turbine's life cycle (Zheng et al., 2020). Turbine failures are usually recorded 

by the SCADA system.  

 

Figure 2. 12 Number of system failures in a wind turbine (Zheng et al., 2020). 

Figure 2.12 shows the number of system failures recorded by a SCADA system for a wind 

turbine. The figure gives an expression for the frequency of failures for various components 

in a wind turbine. The various failures can either require scheduled maintenance or corrective 

maintenance as the result of a wind turbine failure – the state where the wind turbine is no 

longer operational. This in turn results in additional costs to O&M as highlighted by Scheu et 

al., (2012) and Ravindranath, (2016). There have been further breakdowns of the relationship 

between failure rate and the cost of O&M including a more recent publication by (Zheng et 

al., 2020) who used the mean time between failures in a wind turbine to evaluate the intensity 

of failure, thereby, representing the conditional probability of a failure to occur. Their final 

comprehensive evaluation was used to calculate the proposed availability of wind turbines – 
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the number of hours a wind turbine is operational. Overall, the frequency of failures in wind 

turbines is still a topic of vital import, with more research and funding being put into 

evaluating its relationship to cost and modelling this relationship to aid maintenance 

strategies. Hassan et al., (2013) express the need for cost reduction associated with failures 

in discussing the key concepts of O&M in offshore wind farms. This report also highlights 

access to offshore wind farms as a major concept with a focus on overcoming the operational 

limitations of weather and sea conditions. The next subsection of this thesis discusses the 

weather and sea conditions as major influential factors in the O&M of offshore wind farms. 

2.3.4.3  Weather and Sea Conditions 

In most relevant studies, one of the most important factors in accessing offshore installations 

is the sea state. Sea-state is a term that usually combines meteorological conditions such as 

wave height, wave direction, and wave period (Seyr and Muskulus, 2019). These 

meteorological factors play an important role in the costs and risks involved in O&M 

procedures and in the case of wave height, often determine whether a maintenance 

operation will take place. Currently, significant wave height (Hs) is used as a metric in the 

offshore wind industry to express wave conditions and in most cases where Crew Transfer 

Vessels are used, O&M activities are usually carried out at a threshold of 1.5 m (Röckmann et 

al., 2017). However, each access vessel has its own significant wave height threshold of 

operability, such as 4 m for Service Operation Vessels (SOVs) (Scheu et al., 2018). This is 

particularly important as stated by Röckmann et al., (2017), the accessibility of a wind farm 

by a vessel is correlated with the occurrence of significant wave heights. As such if the 

cumulative occurrence of significant wave heights equal to or less than 1.5 m is 80% in the 

case of Crew Transfer Vessel use, this would mean that for 20% of the time, the wind farm 

would be inaccessible. Subsequently, for an access vessel with a 4.0 m threshold, if the 

cumulative occurrence of 4.0 m significant wave height increases to 90%, this could mean a 

possible 90% decrease in access days. Similar statements are made by Röckmann et al., (2017) 

and Stavenuiter, (2009) who state that an increase in safe working heights from 1.5 m to 2 m 

could increase accessibility by 15% for certain vessels and an increase to 3 m could increase 

the number of access days to 310 days a year. This could therefore cumulate in a significant 

cost reduction in offshore wind energy due to the relationship between accessibility and cost. 

Current solutions to the possibility of larger wave heights are specialized vessels with 
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specialized systems for the safe transfer of O&M personnel such as walk-to-work hydraulic 

systems in service operating vessels that compensate for the vessel’s motions. This, therefore, 

highlights the need for forecasting both the accessibility of wind farms and also in decision-

making during scheduling as research has shown that the accessibility of offshore wind farms 

is greatly constrained by the sea-state (Miedema, 2012; Röckmann et al., 2017). Domain 

knowledge of specific offshore sites, as well as personalised interviews, inform that other 

meteorological factors can also influence O&M activities such as ocean tides and currents. 

The decision of whether an operation is going to be performed, therefore, depends on the 

threshold created by weather windows, the application of which is determined by weather 

forecasts. The uncertainties in weather forecasts, therefore, can be a cost-driving factor, as 

wind farms and costs of activities are primarily driven by the expected offshore operational 

hours and waiting times for weather windows, suitable for offshore operations (Gintautas and 

Sørensen, 2017). Generally, short-term meteorological forecasts are used to inform the 

decision-making process in maintenance planning, but meteorological forecasts can be 

imperfect and as stated by Browell et al., (2017), such imperfections could affect this decision-

making process. The study by Scheu et al., (2012) on maintenance strategies for offshore wind 

farms showed a strong dependence between the number of operations and the reliability of 

the short-term weather forecasts. Similar results expressing the limitations of weather 

imposed on the number of operations were also found in an earlier study by Lange, (2005) 

while analysing the uncertainty in power predictions from wind energy. He found that 

deviations in predicted forecasts and measured forecasts lead to financial uncertainties in 

wind farms. There is, therefore, a need for continued improvements to optimize the different 

aspects of O&M such as reducing cost, improving decision-making, and reducing risks (Feng 

et al., 2010; Musial and Ram, 2010; Newman, 2015). Further reference to the importance of 

better forecasting in O&M was in a publication by Gintautas and Sørensen, (2017), who stated 

that more reliable weather forecasts and as such weather windows, would result in better 

accessibility. In addition, Seyr and Muskulus, (2019) stated that there is a need to improve the 

decision-making processes in operation and maintenance by regarding more influential 

factors, including uncertainties, and by acquiring and analysing more accurate data. 
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2.3.4.4  Availability of maintenance resources  

The maintenance resources used in the offshore wind industry are described in section 2.3.3 

of this thesis including spare parts, access vessels, and maintenance technicians. Currently, 

there are no standard practices or procedures for the procurement of maintenance resources 

as such, practices differ between wind farm operators and between wind farms. The 

relationship between the maintenance resources is, however, explained by Seyr and 

Muskulus, (2019) who state that to repair failures in offshore wind farms, trained technicians 

capable of performing desired maintenance are crucial and as some maintenance procedures 

not only need technicians but tools and spare parts, and so the availability of needed tools 

and spare parts is also important for the completion of maintenance activities. Additionally, 

to transport technicians as well as tools and spare parts from onshore bases or ports to 

offshore wind turbines transport vessels are required. The type of occurring failure 

determines the number of technicians needed, the equipment needed, and the access vessel 

used. As such, all three resources need to be considered in maintenance planning. The next 

section describes typical maintenance strategies used in maintaining offshore wind farms. 

2.3.5  Maintenance Strategies 

Section 2.3.4 describes the various factors of importance in the operation and maintenance 

of offshore wind farms and highlights the need for the consideration of these factors in 

maintenance planning. This section gives a generalized view of maintenance strategies in 

offshore wind farms and evaluates relevant O&M methodologies. 

In daily O&M planning and activities, choices of maintenance resources, as well as relevant 

influential factors that might affect operations, need to be taken into consideration to 

successfully complete a maintenance activity. A publication by Stock-Williams and Swamy, 

(2019) gives a good description of this typical maintenance planning process in stages using 

the image in Figure 2.13 below. 
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Figure 2. 13 A schematic overview of the daily maintenance process of an offshore wind farm 
(Stock-Williams and Swamy, 2019). 

In the first stage, an offshore wind farm manager reviews a list of pending maintenance 

activities in the morning. A transfer plan is then created from this in stage two which assigns 

maintenance service orders to technicians and in turn, assigns the technicians to vessels 

based on the nature of the maintenance required and the available weather forecast. Stage 

three sees the implementation of the transfer plan and at stage four, upon the return of the 

vessel to port, service orders are updated. In the fifth stage, a preliminary transfer plan is 

made for the next day using updated service orders and current pending maintenance. An 

important challenge highlighted by Stock-Williams and Swamy, (2019) is the presence of 

complications that could arise in the implementation of a transfer plan. They state that these 

complications can include differences in expected maintenance durations and inaccuracies in 

weather forecasts which can make some offshore turbines inaccessible or make some 

technicians too seasick to perform work. Uncertainties like these promote the need for 

better-informed decision-making in maintenance strategies as well as improved technologies 

that can not only reduce the cost of operations, but also the risks involved. 

The following subsections provide a summary of the maintenance strategies and tools applied 

for different factors associated with operation and maintenance in the available literature. 

These include strategies specific to the frequency of failures, strategies specific to the 

optimization of maintenance resources, strategies specific to the optimization of access vessel 

use, and strategies for optimizing sea state. 

2.3.5.1  Summary of Relevant Operations and Maintenance Models 

The earliest publications on wind farm strategies concern onshore wind farms, however, 

these methods are not entirely transferable due to the differences in means of transport and 

the influence of external environmental factors. More recent publications into maintenance 
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strategies in offshore wind farms have observable differences in the aspect of O&M being 

optimized. 

Various researchers have attempted to optimize maintenance strategies in wind farms to 

reduce the cost of operation and maintenance by modelling the frequency of failures. In 

optimizing failure rate, the observable difference between methods lies in the presentation 

of failure, either in using historical data to predict failure or using assumed mean time 

between failures calculated from observed failures (Seyr and Muskulus, 2019). Rademakers 

et al., (2008) made a compelling assessment for estimating the cost of O&M in offshore wind 

farms by modelling costs through failure rates. Using an O&M Cost Estimator (OMCE), they 

processed information from SCADA systems, load measurements, O&M data, and condition 

monitoring collected over 5 years to estimate one to 5 years' future cost. They denote that 

the failure frequencies of the different wind turbine components have a significant influence 

on the O&M costs of an offshore wind farm. The type of maintenance required, and the 

strategies taken for maintenance activities then determine the overall availability of offshore 

wind farms. Modelling the failure of wind turbine components has for this reason been of 

particular focus in reducing costs. In recent research, the modelling of failure across 

publications using wind turbine components has been explored from as few as three 

components (Hofmann and Sperstad, 2013; Sperstad et al., 2014), to as many as nineteen 

components (Endrerud et al., 2015). A comprehensive summary of relevant failure models is 

given by Seyr and Muskulus, (2019) in a review of decision support models for O&M in 

offshore wind farms. It should, however, be noted that O&M models a representation of the 

input data that make up the model including the components involved in the model. 

Variations in effectiveness could then occur between models and between wind farms. As 

such a good model should incorporate all the factors that influence O&M in offshore wind 

farms. It should also be noted that at the time of writing, there are no widely used O&M 

models. 

A few researchers have implemented the maintenance resources into optimizing operation 

and maintenance in offshore wind farms. Across publications, researchers include 

maintenance resources relevant to individual case studies which can describe some 

resources, but often do not include all resources. An interesting application where 

maintenance resources are applied in O&M models is the model by Besnard et al., (2013). 
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Their model was used in a case study when the output of the model includes the number of 

maintenance technicians required for an O&M activity, the estimated length of shifts, the 

location of accommodation, and the choice of transfer vessels and/or helicopters. Similarly, 

Endrerud et al., (2015) consider the availability of technicians but further separate the type 

of technicians required by the used case into electricians and technicians. Their model also 

accounts for access vessels needed with the amount of waiting time determined by the type 

of failure. On the other hand, publications such as Halvorsen-Weare et al., (2013) and 

Dinwoodie et al., (2013), focus more on optimizing vessel size by creating decision-support 

models that account for uncertainties in fleet optimizations across a few scenarios. 

The choice of access vessel used for a maintenance activity is usually chosen based on cost, 

carrying capacity, response time, sea-state conditions, and safety regulations (Ravindranath, 

2016). In their study on optimizing vessel fleets in O&M, Halvorsen-Weare et al., (2013) 

proposed an optimisation model that indicates which vessel types should be either purchased 

or chartered and which infrastructure is needed such as onshore ports and helicopter bases. 

In relating access vessel use cases to cost, Dalgic et al., (2015) developed a simulation tool to 

improve resource allocation costs. Their tool includes a range of access vessels that not only 

includes helicopters and CTVs but also jack-up vessels to support day-to-day O&M activities. 

In testing the robustness of O&M models, Sperstad et al., (2014) tested six decision-support 

tools for determining the size and composition of the CTV fleet, with the aim of reducing 

uncertainties in both modelling assumptions and input data. The commonality between the 

various models implementing vessel section as output is the use of sea-state or weather-

based criteria within models. This is due to individual sea-state restrictions from the different 

types of access vessels such as the 1.5 m threshold for crew transfer vessels. 

As one of the more important factors in O&M activities, sea-state criteria are mostly present 

in O&M strategies and decision-making models (Seyr and Muskulus, 2019). Improvements in 

modern technology have improved forecasting over the years (Seyr and Muskulus, 2019), 

however, inaccuracies in weather forecasts still cause complications during maintenance 

activities. These complications can include maintenance delays, the inability of technicians to 

transfer safely onto turbine platforms and reported seasickness in technicians (Stock-Williams 

and Swamy, 2019). A case study by the Offshore Renewable Energy Catapult concluded that 

new effective weather-based O&M decision-making tools and efficient O&M strategies could 
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potentially decrease unscheduled maintenance activities and even shift some previously 

unscheduled activities to scheduled maintenance activities. The report states that this shift 

would, therefore, go a long way toward reducing the risks and costs associated with offshore 

wind energy as well as signal a more mature and stable offshore wind industry (Newman, 

2015). The statement by Newman, (2015) has also been emphasized by earlier reports 

including the assessment of barriers and opportunities in large-scale offshore wind farms by 

Musial and Ram, (2010) and a report on early experiences with offshore wind farms in the UK 

by Feng et al., (2010). A more popular model which implements sea-state in optimizing O&M 

called NOWIcob was developed by Hofmann and Sperstad, (2013) to reduce maintenance 

costs. The model assumes accurate weather forecasts for creating weather windows in 

modelling operations and maintenance costs. A different application was made by Dinwoodie 

et al., (2013) where a multivariate autoregressive time-series is used to model correlated wind 

speeds and wave heights in order to simulate the costs of operation and lost revenue, based 

on wind farm specifications, weather conditions and maintenance strategies. This study 

emphasises that wave height is the major factor in the accessibility of offshore wind farms 

and expresses the effect on the availability due to extended downtime with cost implications. 

Similarly, Endrerud et al., (2015) simulated the operation and maintenance phase of offshore 

wind operations using wave height and wind speed as integral components of logistics. The 

novelty in their model is that the model enables vessel fleet configuration, supply base 

locations, wind turbine technology, staffing and work processes. Dinwoodie et al., (2013), and 

Hagen et al., (2013) modelled sea state but included more than just wave height and wind 

speed, adding more parameters e.g., wind direction, wave direction, and wave period. They 

also included seasonal variations to improve their model. While estimating waiting times 

Douard et al., (2012) improved upon the already existing ECUME tool using meteorological 

site characteristics and seasonality. In so doing, their model included uncertainties in the 

variability in the meteorological site conditions. 

The various models and methodologies apply different levels of importance to maintenance 

resources and influential factors in optimizing O&M activities. A notable commonality 

between these strategies is that most models estimate cost savings in optimizing O&M. 

However, Newman, (2015) and Musial and Ram, (2010) express optimizing O&M as the need 

to also reduce the risks involved in O&M to make the offshore wind industry more 
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competitive and more attractive to employees, reducing turnover of staff. Additionally, 

Hassan et al., (2013) in their guide to UK offshore wind operations and maintenance, describe 

not only cost but risk as the key areas of concern in O&M. In doing so, key uncertainties in 

optimizing O&M in offshore wind farms were exposed. 

2.3.6  Uncertainties in the Operation and Maintenance of Offshore 

Wind Farms 

The section discusses the uncertainties existing with available research into the operation and 

maintenance of offshore wind farms. 

2.3.6.1  Uncertainty in decision-making 

It has been established from the available literature that access is a major concern in the 

maintenance of offshore wind farms (Hassan et al., 2013). Halvorsen-Weare et al., (2013) 

discuss the cost implications of the specialised vessels used in the transportation of 

personnel, spare parts, and tools, to offshore wind farms such as crew transfer vessels, service 

operating vessels, helicopters, and even specialised vessels for tasks such as cable-laying. 

Laura and Vicente, (2014) also point to the use-case of these transport systems and their 

dependence on the type of maintenance required and the distance from the ports of exit. The 

frequency of failures implies the need for a maintenance activity which drives the costs 

associated with the operation time of vessels and technician labour costs. This is especially 

costly in corrective maintenance procedures. Van Bussel and Schöntag, (1997) state that 

unplanned maintenance events for repairs/replacement of failed offshore wind turbine 

components account for a high percentage of procedures between 50-70%. Further research 

has gone into cost-saving measures that take weather delays into account. This is because, 

O&M costs are not limited to the cost of repair alone, but also, the cost of downtime (Scheu 

et al., 2012; Ravindranath, 2016). However, downtime is also dependent on the accessibility 

of offshore wind farms. Li et al., (2016) express revenue loss by calculating the required time 

of a planned or unplanned service and the productivity level. Therefore, efficient 

maintenance strategies aimed at reducing costs and maintaining or improving the availability 

of offshore wind farms are a necessity (Ding and Tian, 2012). Nielsen and Sørensen, (2011) 

state that to reduce the overall lifetime costs of an offshore wind farm, an efficient plan for 

O&M needs to be developed to handle failure risks. The offshore wind industry is relatively 
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new and there are numerous uncertainties in the current operational O&M procedures such 

as when and how to schedule maintenance operations (Stock-Williams and Swamy, 2019). 

A study (Pahlke, 2007) on offshore wind farm companies exposed the need for decision-

support tools. The study states while a few companies already had decision-support tools for 

O&M, up to 70% of respondents expressed a need for decision-support models. In addition, 

most of the decision-support tools reported in the literature are mainly based on simulations 

without real case study applications (Li et al., 2016). The importance of decision-support tools 

is further emphasised by Li et al., (2016) who state that through the use of statistical data, the 

development of better maintenance schedules could potentially minimise maintenance 

expedition costs. Section 2.3.5 of this thesis discusses decision-support tools used in O&M 

activities. The common objective between these support tools is to estimate optimum 

maintenance strategies for test offshore wind farms, rather than an optimum maintenance 

strategy for all offshore wind farms. As such, these models usually have a use case specific to 

individual case study wind farms (Li et al., 2016). The variations between support tools, 

however, can be seen in the overall aim of each model - in most cases, cost-effective 

maintenance – and the relevant factors used to generate the model. While cost-effective 

maintenance is vital to the offshore wind industry, studies have shown that reducing the risks 

involved in maintenance practices will reduce uncertainties associated with the industry 

(Musial and Ram, 2010; Newman, 2015). There seems to be an absence of risk reduction 

measures in the available decision-support models, especially with regard to the harsh marine 

conditions and the effects on wind farm technicians. The next sub-section discusses the 

uncertainties arising from accounting for technicians in decision-making. 

2.3.6.2  Uncertainties in Accounting for Technicians  

In recent years, decision-support tools have been created by a few researchers with different 

model outputs in offshore wind farms. The aims of these support tools have included the 

estimation of wind energy potential (Schillings et al., 2012), the forecasting of operations in 

wind farms (Scheu et al., 2012), to O&M estimation of costs and revenue losses in wind farms 

(Dinwoodie et al., 2013), and even to provide simulations of the entire operational phase of 

offshore wind farms including all activities and costs (Hofmann and Sperstad, 2013). Decision-

support tools in offshore wind farms usually aim to estimate the optimal cost-effective 
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maintenance strategy or plan. Most tools evaluate the maintenance cost as an output based 

on the levelised cost of energy (LCOE) (Myhr et al., 2014; Li et al., 2016). This gap in 

methodology exposes risk-related uncertainties especially as little consideration is made to 

the health of technicians and their ability to do work on offshore turbines. 

In an interview conducted by Mette et al., (2018), the work carried out by wind farm 

technicians was considered demanding and required high concentration with access and 

transfer to offshore installations considered particularly demanding. Their study goes further 

to highlight several problems facing offshore wind technicians including the high risks of 

accidents, lengthy and inconsistent work times brought about by bad weather, and finally, 

the problem of seasickness, which as interviewees reported, could further complicate tasks 

such as transfer to offshore installations. The well-being of wind farm personnel is considered 

an important component of operating and maintaining an offshore wind farm (Crown Estate, 

2021). This is addressed in the offshore wind report by the Crown Estate to include the ability 

of technicians to access offshore installations, the transit time in terms of shift patterns, 

transit durations, maintenance durations, and the accessibility of wind farms in harsh weather 

conditions. Several publications have addressed the uncertainties in technicians accessing 

offshore installations such as Scheu et al., (2012) who created a decision support model that 

accounted for crew size in specific weather restrictions and varying turbine components.  

Their model assumed transit times for two types of vessels (ordinary and cranes) and includes 

adjustable carrying capacity for the vessels, and variable wave height and wind speeds to 

study the effect on the availability of the wind farm. In accounting for technicians, limitations 

of working hours were set at a maximum of 7.5 days, and if exceeded, ongoing operations are 

aborted, and the affected vessel returns to shore. A little variation to accounting for 

technicians was made by Besnard et al., (2013) who presented a model that optimized 

maintenance support organisation using the number of maintenance technicians, location of 

accommodation and the choice of transfer vessels (and helicopters) and used an alternative 

to maximum working-hours in the form of a length of daily shifts (12-hours). An obvious 

finding in this paper was that offshore accommodation with technicians available at any time 

was preferred. However, this is not always the case in reality. Similarly, Dalgic, Lazakis, 

Dinwoodie, et al., (2015) also used the length of daily shifts at 12 hours per day in logistics 

planning for offshore wind farms. Their paper considered the type of vessel (including a CTV, 
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helicopter, offshore access vessel, and jack-up vessel) with its personnel carrying capacity and 

access restrictions, its travel duration, and its costs. A different approach was taken by 

Endrerud and Liyanage, (2015) who, depending on the type of failure, also determined the 

number of technicians and vessels needed, including a deterministic waiting time for spare 

parts. Other offshore wind farm schedule optimization models available in the literature 

account for the number of technicians per service order (Tan et al., 2016), the number of 

service orders per technician (Dawid et al., 2016), technician types (Irawan et al., 2017), and 

technician availability (Tan et al., 2016; Dawid et al., 2016; Irawan et al., 2017).  

From the available literature, it can be seen that in accounting for technicians in optimizing 

O&M, terms used include the number of technicians (Scheu et al., 2012; Besnard et al., 2013; 

Endrerud and Liyanage, 2015; Dalgic, Lazakis, Dinwoodie, et al., 2015), the length of shifts 

(Scheu et al., 2012; Besnard et al., 2013; Dalgic, Lazakis, Dinwoodie, et al., 2015), the number 

of technicians per service order (Tan et al., 2016), number of service orders per technicians 

(Dawid et al., 2016), technician types (Irawan et al., 2017), and technician availability (Tan et 

al., 2016; Dawid et al., 2016; Irawan et al., 2017). Therefore, it could be noted that these 

models focus more on optimizing costs and have little consideration for the health of 

technicians as they travel to offshore wind farms as well as their ability to do work upon 

arrival. It could be argued that some available models include wave height thresholds such as 

Scheu et al., (2012), and as such, accounts for the health and safety of personnel. Based on 

policy standards, the wave height thresholds are usually set at 1.5 m for smaller vessels, and 

about 4 m for larger vessels (Phillips et al., 2015), however, as Mette et al., (2018) highlighted, 

some safety factors such as seasickness, which according to their research, can affect 

experienced technicians, have been overlooked in models and research. Furthermore, the 

current guideline set by G+ in the “Offshore Wind Good Practice Guidelines Wind Farm 

Transfer” states that “individuals feeling the effects of seasickness are to stay on board vessel 

until effects subside”. This means that in cases where seasickness occurs, the mean time to 

repair and overall maintenance duration would be extended, and in extreme cases result in a 

return to port and a reschedule of maintenance. This not only exposes the need for 

accounting for technicians in reducing risk but also the need to account for technicians in 

reducing operational costs. Therefore, it could be said that the full scope of accounting for 

personnel safety has not been fully explored.  
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To fully understand the effect of the sea state on the health of technicians and their ability to 

do work during O&M activities, section 2.6 of this thesis will explore human exposure to vessel 

accelerations brought about by the sea-state. In order to lay the foundation for that section, 

the next section of this thesis, section 2.4, introduces necessary ideas about wave theory.  

2.4  An Introduction to Wave Theory 

2.4.1  Introduction 

Section 2.3.2 describes the importance of operation and maintenance in maintaining an 

offshore wind farm's integrity and section 2.3.3 describes the access vessels used to transport 

technicians for maintenance activities. During transits to wind farms, however, technicians on 

vessels experience accelerations brought about by the movement of the surface of the sea 

which can have various effects on technicians during operation and maintenance activities. 

Therefore, it is important to understand the propagation of ocean waves, the response of 

vessels to the waves, the effect of vessel accelerations on technicians and how they can affect 

operations and maintenance. This section provides an introduction to the fundamentals of 

wave theory, describes vessel response to sea-state, and describes the human response to 

accelerations from the available literature. 

2.4.2  Wave Theory 

Vessel accelerations are oscillatory mechanical movements of marine vessels brought about 

by ocean surface waves. These waves are a combination of different wave types which can 

be identified by their period and wavelength. Holthuijsen, (2007) provides a good description 

of these wave types in order of the longest to shortest including trans-tidal waves, tides, 

storm surges, tsunamis, seiches, infra-gravity waves, wind-generated waves or wind waves, 

and capillary waves. 

2.4.2.1  Simple Waves 

A simple definition for surface waves can be in the way they are visually perceived - as vertical 

motions of the ocean’s surface. Young, (1999) states that provided the water depth changes 

by less than 20% to 30% within one wavelength, linear wave theory provides reasonable 
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approximations for describing ocean waves. Therefore, the simplest way to define a wave 

mathematically is: 

𝑎(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) 2. 7 

Here, a(t) is the acceleration in ms-2 at time t. A is the wave’s amplitude and f is the wave’s 

frequency measured in hertz Hz. In some cases, the frequency can also be expressed in 

radians per second (w) as: 

𝜔 = 2𝜋𝑓 2. 8 

To describe waves in this manner, some assumptions must be made. The Coriolis force must 

be ignored, the water depth is uniform, the waves assume a two-dimensional flow, and 

surface tension and viscosity are ignored (Miles, 1957), however, in reality, the sea state we 

observe is usually a combination of multiple waves of varying frequencies moving in different 

directions which combine to form random waves (Mansfield, 2005).  

 

Figure 2. 14 Image showing the combination of many harmonic waves to form a random sea-
state (Holthuijsen, 2007). 

A few factors influence the formation of random surface waves which transform waves 

including interactions with offshore structures, and interactions with the seabed (Young, 

1999). The list of transformations below only includes transformations relevant to the thesis 

aim: 

• Refraction: In some cases, waves change direction towards shallower waters due to 

interactions with the seabed or interactions with ocean currents in a phenomenon 

called refraction (Holthuijsen, 2007). 
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• Breaking: Wave breaking occurs when the base of a wave can no longer support its 

top which causes it to collapse. This phenomenon usually occurs when waves run into 

shallower waters, or when two opposing waves combine (Young, 1999). 

• Tides: The tides are periodic oscillations of large bodies of water caused by the earth’s 

rotation and the gravitational forces of the moon and the sun (Hardisty, 1990). The 

gravitational forces of the Moon and Sun cause bulges on large bodies of water 

following coherent amplitude and phase relationships which cause both semi-diurnal 

tides (twelve-hour tidal periods i.e., experiencing two high tides and two low tides 

each day) and diurnal tides (twenty-four-hour tidal periods i.e., one high tide and one 

low tide) (Toffoli and Bitner-Gregersen, 2017). 

• Wave-tide Interaction: When wind-generated waves propagate towards coastal 

regions, they usually interact with ocean currents or tides which cause 

transformations that modify the size and shape of propagating waves in a 

phenomenon called wave-tide interactions (Longuet-Higgins and Stewart, 1964). The 

effects of wave-current interactions on sea-state vary from changes to wave 

propagation in terms of growth and decay (Yu, 1952), to increases or decreases in 

wave height and wave steepness in cases of strong opposing currents and flowing 

currents respectively (Ris, 1997; Davidson et al., 2008; Rusu et al., 2011). 

• Reflection: A wave reflects when it strikes a surface such as coastal headlands. When 

this happens, it changes direction, at an angle equal to the angle made by the incident 

wave on the surface it is reflecting off. An example of this phenomenon occurring in 

the open ocean is when standing waves are created as harmonic waves reflect off an 

offshore structure or obstacle (Holthuijsen, 2007).  

The individual and combined occurrence of each of the wave transformations can and are 

computed in wave forecasting models which are applied in various disciplines. All of the above 

are relevant to the discussion of vessel motion, particularly in the shallow shelf seas where all 

present-day wind farms are located. 
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2.4.2.2  Wave Measurement 

In-situ Observations 

In-situ, observational methods refer to on-site or in-position measurements taken by 

instruments placed on the ocean’s surface or below the ocean’s surface. These include: 

• Wave buoys: Wave buoys are one of the most well-known methods of measuring 

waves. They are surface floating instruments equipped with accelerometers (and in 

some cases GPS sensors) that measure the vertical displacement of the ocean’s 

surface as a function of time using accelerometers. Though well suited for deep water 

sites, wave buoys are expensive, require regular removal of marine growth to avoid a 

change in weight and drag, and might accurately follow the water surface in the 

presence of currents and steep waves (Medina-Lopez et al., 2021). 

• Wave Poles, Pressure Transducers, Current Meters, and Echo-sounder: Wave poles 

are wires submerged from platforms into the water surface that measure the 

electrical resistance of the dry areas of the wire. On the other hand, echo-sounders, 

current meters, and pressure inducers are placed at the seabed rather than being 

submerged, and echo-sounders measure the position of the water surface using sonic 

beams, while pressure transducers use linear wave theory along with measured wave-

induced pressure fluctuations to estimate wave characteristics. Current meters, on 

the other hand, measure wave-induced orbital motions to estimate wave 

characteristics  (Holthuijsen, 2007). 

• Wave Radar: Positioned looking downwards, from a high platform or tower, the 

return time of a pencil-thin radar beam can be used to estimate wave shape.  

In-situ measurements provide a relatively accurate way of measuring sea state, however, as 

these instruments are expensive, their placement in offshore wind farm sites is sparse. Wind 

and sea-state measurements are usually measured on-site for a period of two years before 

construction. Whilst wind measurements are critical for monitoring the electrical yield of the 

farm and are measured continuously during the operational phase, wave measurements are 

not always continued. As in-situ instruments are only able to provide measurements in areas 

where instruments can be moored, spatial coverage is limited. As such, to describe the sea 

state in operation and maintenance planning, numerical models are typically used. 
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Numerical Modelling 

The numerical modelling of wave energy resources is typically achieved using third-

generation spectral models such as SWAN, ROM, WaveWatch or Meteo France WAve Model 

MFWAM (Holthuijsen, 2007; Warner et al., 2008; Uchiyama et al., 2010; Olabarrieta et al., 

2011). These models solve the wave action balance equation by Hasselmann et al. (1988) on 

a grid which discretises the ocean domain of interest (Medina-Lopez et al., 2021). Modern 

forecast models account for most wave transformations including the non-linear transfer of 

energy between wave frequencies, bottom friction, and wave breaking, where the fetch is the 

main energy source. These models are typically used for various applications including 

forecasting (M.J. Lewis et al., 2019), ocean modelling, and salt and sediment transport 

modelling (Warner et al., 2008; Cho et al., 2012), and extend to various industries like the oil 

and gas industry, coastal protection, ecological studies, and the offshore wind industry (Wolf 

and Prandle, 1999). Within these industries, the information from wave models can be used 

to plan marine-based activities mostly affected by surface waves such as loads on ships, 

offshore installations, mooring systems, major port activities, and scheduling purposes 

(Toffoli and Bitner-Gregersen, 2017). However, in modelling wave characteristics, models 

require calibration and validation with in-situ measurements (Medina-Lopez et al., 2021).  

Remote-Sensing Methods 

Remote sensing is a more modern way of measuring waves and is the process of monitoring 

physical properties and characteristics using reflections of electromagnetic radiation from 

aerial platforms and devices. For instance, remote sensing imaging techniques such as stereo 

photography involve taking images of the earth’s surface from cameras on aeroplanes at 

quick intervals, while non-imaging radar on ships can be used to detect obstacles around the 

ship. On the other hand, altimetry techniques can include laser altimetry where a downward-

facing laser is used to measure the distance between the laser and the earth or sea surface, 

usually from satellites. (USBR, 2001; Holthuijsen, 2007). The limitations of remote-sensing 

methods include cost and the early-stage nature of some remote-sensing techniques 

(Holthuijsen, 2007). 

The results of the measuring techniques are often presented in form of statistical 

terminologies described in the section below. 
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2.4.2.2  Statistical Description of Ocean waves 

There are a few statistical descriptors used in journals and used by oceanographers to 

describe ocean waves. The most common of these descriptors include: 

• Wave Height: Wave height (H) is one of the most important wave parameters. It is the 

vertical distance between the wave crest and wave trough (Holthuijsen, 2007). Where, 

𝐻 is the mean wave height, i is the sequence of waves on record, and N is the number 

of waves, the statistical representation of the mean wave height is: 

𝐻 =
1

𝑁
∑ 𝐻𝑖

𝑁

𝑖=1

 
2. 9 

• Significant Wave Height: Significant wave height (Hs) is a term more commonly used 

in forecasts and in research to describe sea-state and it is the average of the highest 

one-third of waves in a record. Where j is the rank number of the highest waves based 

on the height (Holthuijsen, 2007), significant wave height can be expressed statistically 

as: 

𝐻1/3 =
1

𝑁/3
∑ 𝐻𝑗

𝑁/3

𝑗=1
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• Wave period: The wave period is the time it takes to complete a single wave cycle in 

seconds and is inversely proportional to the frequency of the wave. In most cases, the 

wave period will be defined as dominant or peak wave period Tp, which is the wave 

period with the highest energy and is the reciprocal of peak frequency, fp (Holthuijsen, 

2007) expressed as: 

𝑇𝑃 = 1
𝑓𝑝

⁄  2. 11 

Where The peak frequency, fp is commonly estimated from spectra obtained from 

sampled data (Young, 1999). Another common term for wave period is the zero-

crossing period (T0). The mean of the zero-crossing wave period can be statistically 

represented as: 
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𝑇0 =
1

𝑁
∑ 𝑇0,𝑖

𝑁

𝑖=1

 
2. 12 

• Wave Direction: This is the dominant direction of wave propagation with time. It is 

usually represented as the mean wave direction ϴm which is the average of individual 

wave directions in a time series. 

Section 2.3 of this thesis emphasised the importance of weather and sea-state on operations 

where the accessibility of an offshore wind farm can be determined by numerous parameters, 

with sea-state conditions being the most important factor to consider, able to significantly 

affect the deployment of technicians, equipment to wind turbines and able to affect the costs 

of both planned and unplanned maintenance activities. However, section 2.3.6 also exposed 

uncertainties where the welfare of technicians is not accounted for in planning maintenance 

activities. As such, it is important to explore the effects of transits to offshore wind farms on 

technicians’ health, comfort, and ability to do work upon arrival at turbines. Section 2.5 

below, therefore, explores the impact of the sea state on marine vessels as a way to explore 

the impact of vessel accelerations on human passengers. 

2.5  Vessel Response to Sea-State 

2.5.1  Introduction 

Most offshore wind maintenance activities use marine vessels such as crew transfer vessels 

and Service Operating Vessels, as discussed previously, with crew transfer vessels (CTV) being 

the most used class of vessels (Gilbert et al., 2021) with sizes ranging between 12 to 30 meters 

(Phillips et al., 2015). As marine vessels transit between the port and offshore wind farms to 

transfer technicians, the physical forces of the sea act on the vessels which generate varying 

oscillatory motions or accelerations in such a way that the motion of a vessel at sea, therefore, 

depends on the sea-state (Shaw, 1954). The technicians on these vessels are, therefore, 

affected by the movement of the vessels, which can have negative effects on their health, 

comfort, and ability to do work.  
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Therefore, in order to understand human responses to accelerations, understanding a 

vessel’s response to sea state is important. 

In general, a floating rigid structure is assumed to undergo six independent 

translational and rotational degrees of freedom (Figure 2.15), though in some cases floating 

structures could be restrained to have fewer degrees of freedom such as when fastened to 

the seafloor or anchored to a platform (Shaw, 1954). 

2.5.2  Translational/Linear Motion 

For floating structures, translational motions refer to vertical, lateral, and fore-and-aft 

motions. One of these motions is the heave motion, which is the linear vertical motion, or the 

up-and-down motion of a floating structure usually described using the coordinate system as 

the z-axis motion from the centre of gravity (Kluijven, 2016). The surge motion is the front-

to-back (bow to stern in boats) longitudinal motion of a floating structure usually described 

using the x-axis, and the sway motion is the lateral side-to-side (bow to stern in boats) 

transverse motion of a floating structure described using the y-axis (Shaw, 1954).  

2.5.3  Rotational Motion 

Floating bodies are also capable of rotational motions including the yaw motion, which is the 

motion about the z-axis, the side-to-side tilting roll motion about the x-axis, and the front-to-

back tilting pitch motion about the y-axis (Kluijven, 2016).  

 

Figure 2. 15 The general six degrees of freedom for a floating structure (Scheu et al., 2018). 
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The next section of this chapter describes the mechanisms and human response to 

accelerations caused by the sea state. 

2.6  Human Response to Acceleration 

The effect of accelerations on humans has been explored as early as the 1950s, yet due to the 

complex nature of accelerations on humans, it is difficult to obtain a simple analytical 

expression for this effect (Shaw, 1954). However, studies suggest that humans perceive 

accelerations in two ways – localized and whole-body accelerations (Mansfield, 2005). Whole-

body accelerations are relevant to this thesis as accelerations caused by vessels are usually 

transmitted through the base of the vessels, backrests, and seat surfaces, which can affect 

comfort, performance, and health (Mansfield, 2005). The effects of these motions are 

described by Griffin, (1990) in the “Handbook of Human Vibration” and are documented in 

the code of practice for controlling risks due to whole-body accelerations including causing 

discomfort and motion sickness, the effects on performance, health and safety, and the 

aggravation of pre-existing injuries (Maritime and Coastguard Agency - Great Britain, 2009). 

The classification of these motions with respect to their frequency and magnitude of 

acceleration in causing some of the above effects has been explored in literature by 

Mansfield, (2005), and is represented in Figure 2.16 below. 
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Figure 2. 16 Classification of human perceived acceleration by frequency and magnitude 
adapted from Mansfield, (2005). 

Figure 2.16 presents a classification of human perceived acceleration by frequency and 

magnitude of acceleration adapted from Mansfield, (2005) to show the magnitudes of 

acceleration and frequencies relevant to this thesis including frequency and weighted 

vibration magnitudes concerning whole-body vibrations and motion sickness.  

 

2.6.1  The Discomfort-based Effects of Accelerations 

Mansfield, (2005) describes the term discomfort as an absence of comfort. This is because 

apart from pain receptors, physiologically there is no comfort receptor in the human body. 

Though not able to cause pain, however, there exists a range of accelerations known to cause 

discomfort in humans. This acceleration-caused discomfort can lead to distraction, annoyance 

(Marjanen and Mansfield, 2011), reduction of human reaction time (Newell and Mansfield, 

2008), impairment of balance (McPhee et al., 2009) and mental fatigue in high-speed vessels 

as expressed by Olausson, (2015) and Leung et al., (2006), though it can be hard to 

differentiate between physical and mental fatigue and  Stevens and Parsons, (2002) suggest 
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that mental fatigue is a manifestation of physical fatigue.  In addition to fatigue, studies also 

show that in high-speed vessels, transits can cause a reduction in physical capacity (Myers et 

al., 2012). Myers et al., (2012) investigated the physiological consequences of three-hour 

transits stating the performance of participants was reduced after transits. The performance 

of the participants was tested for handgrip, vertical jump and push, and shuttle run, some of 

which are relatable in offshore wind maintenance. 

2.6.1.1  Evaluating the Effect of Acceleration on Passengers 

Evaluating acceleration exposure is fundamental in ensuring the comfort and safety of 

passengers, however, factors like the speed of the vessel, as well as the sea state, and the 

heading of the vessel can make the prediction of acceleration complicated (Olausson, 2015). 

Typically, when analysing the motion of a floating structure for human exposure to 

acceleration, the response amplitude operator (RAO) is used along with wave energy spectra 

to produce response spectra for the floating structure (Jenkins et al., 2021). The Root Mean 

Square (RMS) value is then calculated from the response spectra over a range of significant 

wave heights and wave periods from which limiting conditions can be added. Simulated 

applications involve the use of numerical models to describe various sea-state conditions 

from significant wave heights and wave periods which are then combined with numerical seat 

models such as from the findings of Griffin, (1990). This is because experimental 

measurements would require time-consuming methods of measuring sea state, and 

accelerations measured on vessels will be restricted to the vessel measured (Olausson, 2015). 

As such operating conditions can be expressed for a range of sea states and vessel parameters 

such as vessel speed such as the operational profile represented by Olausson, (2015)  in Figure 

2.17. For instance, Olausson, (2015)  presents an illustration for a generalized operational 

profile using vessel speed and sea states in Figure 2.17. 
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Figure 2. 17 An operational profile illustrated by Olausson, (2015) 

As illustrated, the exposure is defined as a percentage of time in each condition ranging 

between high and low, and sea-state, which ranged between severe and calm from which 

working conditions can be evaluated. This method of defining operational profiles is used in 

most studies along with design decisions such as vessel speed as with  Derakhshanjazari et 

al., (2018), (Hostens and Ramon, 2003) and (Eger et al., 2011) where speed had a significantly 

increasing effect on the magnitude of acceleration, as well as vessel shape, and displacement 

(Garme et al., 2014). However, it should be noted in most of these publications, these 

parameters are chosen regarding ship design with little consideration for human comfort. It 

also should be noted that mathematical models exist that model ship response to sea-states 

(Zarnick, 1978; Keuning, 1994; Akers, 1999), however, these models are usually not in relation 

to human exposure to accelerations.  

For most whole-body accelerations, it is assumed that participants are in a seated position 

and that accelerations are transferred from the seats to the passengers (Mansfield, 2005). For 

these positions, international standards provide guidance on the thresholds of perceptions 

and optimal operating conditions, most commonly the ISO 2631-1 and the BS 6841. Both 

standards provide guidance for the assessment of whole-body accelerations using RMS of 

frequency-weighted acceleration, with the ISO 2631-1 being the most recent standard and as 

such the most relevant. The standards define frequency weightings for application to 

acceleration from the floor to the seat, and backrest in both translational and rotational axes 

of motion (Mansfield, 2005). The standards also present methods of assessing accelerations 

in multi-axis directions using root-mean-square (RMS) of the frequency-weighted 
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acceleration and acceleration dose value (VDV), further suggesting criteria by which the 

quantities can be evaluated. The root-mean-square (RMS) of acceleration is expressed using 

the magnitude of acceleration over a number of time steps (ISO 2631-1, 1997): 

𝑅𝑀𝑆 = √
1

𝑛
∑ 𝑎𝑖

2

𝑛

𝑖=1

 

2. 13 

Here, ai is the magnitude of acceleration, and n is the time steps. 

The RMS of acceleration used is then weighted acceleration which means that more relevant 

accelerations are amplified and nonrelevant frequencies are filtered out using band-limiting 

low and high-pass filters (Scheu et al., 2018). It should, however, be noted that the weightings 

expressed in this thesis are specific to the ISO 2631-1, (1997), and the BS 6481 applies 

different frequency weightings and filtering techniques (Scheu et al., 2018). The weighted 

RMS of acceleration, expressed in metres per second squared (m/s2) or radians per second 

squared (rad/s2) for rotational acceleration, is expressed as: 

𝑎𝑤 = [
1

𝑇
∫ 𝑎𝑤

2 (𝑡)𝑑𝑡
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]
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Here, aw(t) is the weighted acceleration as a function of time in metres per second squared 

(m/s2) or radians per second squared (rad/s2) for rotational acceleration, while T is the 

measurement duration in seconds ISO 2631-1, (1997). Additionally, the ISO 2631-1, (1997) 

suggests a combination of RMS weighted acceleration in form of a vector sum when 

accounting for multiple axes of acceleration expressed as: 

𝑎𝑥𝑦𝑧 = √𝑘𝑥𝑎𝑤𝑥
2 + 𝑘𝑦𝑎𝑤𝑦

2 + 𝑘𝑧𝑎𝑤𝑧
2  

2. 15 

Here, axyz is the weighted frequency RMS vector sum of accelerations, awx, awy, and awz are the 

weighted frequency acceleration in the x, y, and z-axis, respectively, and Kx, Ky, and Kz are 

multiplying factors of 1.4, 1.4, and 1.0, respectively, which are used when fore and aft 

measurements at the backrest or area of principal support can not be made (Mansfield, 2005). 
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Regarding the weighted frequencies highlighted above, the ISO 2631-1, (1997) provides 

frequency weighting curves dependent on the posture of exposed persons, the direction of 

acceleration and the nature of the acceleration measurement and the method of evaluation 

for health, comfort, and perception. The frequency weightings are designed to model, using 

mathematical digital signal processing, the response of the human body to wave phenomena 

or model the human response to accelerations as a whole (Mansfield, 2005). In applying 

frequency weightings to amplify relevant frequencies in estimating the health, and comfort 

of passengers, ISO 2631-1, (1997) suggests two principal frequency weightings and three 

additional frequency weightings. The frequency weightings provided by the ISO 2631-1, 

(1997) are presented in Table 2.1 below, in relation to the barycentric axes of the human 

body, as seen in Figure 2.19 below. 

Frequency 
Weighting 

Application Area Direction 
Frequency 

Range 

Wk Whole-body z-seat surface 0.5 – 80 (Hz) 

Wd Whole-body x-seat surface; y-seat surface 0.5 – 80 (Hz) 

Wf Motion sickness z-vertical 0.1 – 0.5 (Hz) 

Wc Whole-body x-seat back 0.5 – 80 (Hz) 

We Whole-body Rotational rx, ry, rz-seat surface 0.5 – 80 (Hz) 

Wj Head Vertical- recumbent (head) 0.5 – 80 (Hz) 

Table 2. 1 ISO 2631-1 Guide for the application of frequency weighting. Adapted from ISO 
2631-1, (1997).  

The defined axis of rx, ry, and rz are described in Figure 2.18 below. 
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Figure 2. 18 The barycentric axes of the human body. Image adapted from ISO 2631-1, (1997) 

The two principal frequency weightings suggested for the health and comfort of passengers 

include Wk for the vertical direction, Wd for the x and y directions and persons in recumbent 

positions (ISO 2631-1, 1997). The additional frequency weightings include Wc for seated 

measurements, We for rotational acceleration measurements, and Wj for accelerations under 

the head of persons in recumbent positions (ISO 2631-1, 1997). Using a high-pass and low-

pass filter, lower and upper-frequency band limitations can be applied with Butterworth 

characteristics, and the tolerance of the combined frequency weighting and band-limiting of 

±1 dB is suggested by ISO 2631-1, (1997). As stated by Mansfield, (2005) Wk, Wb, and Wd are 

the most used frequency weightings, especially for whole-body accelerations. In comparison 

with the British standard, Wk provides slightly higher perception accelerations than Wb used 

in the British standard for seated whole-body z-axis accelerations, generating higher values 

for weighted acceleration (Mansfield, 2005). An obvious limitation to the use of frequency 

weightings is that they are modelled from observed and experimental studies, as such they 

are a representation of sample size and not an individual representation of human response. 

However, this thesis applies the use of frequency weighting and the metric for measuring 

human response to vibration under the guidance of international standards because, at the 

time of writing, there is little evidence to show that an alternative means of assessing complex 

accelerations exists (Mansfield, 2005). 
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Acceleration dose value (VDV) or the integral of accelerations to the fourth power dose, on 

the other hand, is mostly used in relation to shocks where using RMS of acceleration 

underestimates the effects of peak values of accelerations (Mansfield, 2005). The fourth 

power acceleration dose value (VDV) in metres per second to the power 1.75 (m/s1.75) for 

linear accelerations, or in radians per second to the power 1.75 (rad/s1.75) for rotational 

accelerations, can be expressed as: 

𝑉𝐷𝑉 = {∫ [𝑎𝑤(𝑡)]4𝑑𝑡
𝑇

0

}

1
4
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Here, aw(t) is the instantaneous frequency-weighted acceleration, and T is the measurement 

of duration in seconds (ISO 2631-1, 1997). 

Other measures for assessing accelerations exist such as using root-mean-quad as suggested 

by  Kjellberg & Wikström, (1985b) who state that using weighted root-mean-square of 

acceleration may overestimate results. 

The guidelines of the ISO 2631-1 are based on experience and research results which outline 

suggested criteria where these quantities can be evaluated including the magnitude of RMS 

accelerations with discomfort. This is presented in Table 2.2 below shows approximate 

thresholds of human comfort for passengers exposed to accelerations for up to eight hours 

(ISO 2631-1, 1997).  

The magnitude of Acceleration in ms-2 Comfort Reaction 

Less than 0.315 Not uncomfortable 

0.315 – 0.630 A little uncomfortable 

0.500 – 1.000 Fairly uncomfortable 

0.800 – 1.600 Uncomfortable 

1.250 -2.500 Very uncomfortable 

Greater than 2.000 Extremely uncomfortable 

Table 2. 2 Estimations for comfort response to periodic accelerations ISO 2631-1, (1997). 
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This subjective scaling mechanism is generated from relevant studies cited in the ISO 2631-1 

and has been used in various studies such as Huston et al., (2000) and Shoenberger, (1982), 

where subjects were asked to rate stimuli based on acceleration using the same scales. 

Variations may exist in the terms used to describe discomfort between these studies, but 

corroborations exist in the magnitude thresholds used in these studies including studies such 

as Mansfield et al., (2000), and Wikström et al., (1991) where discomfort was rated with 

magnitude estimations for industrial trucks, and more relevant to this study, Nielsen, (1987) 

which presented the most used criteria for limiting motion exposure on different kinds of 

works on vessels using the magnitude of accelerations during transits and depending on 

activities performed or expected to be performed by passengers. It should however be noted 

that these thresholds depend on various internal and external factors such as individual 

susceptibility, passenger activities, and the duration of exposure (ISO 2631-1, 1997). For this 

reason, these thresholds should not be considered limits but rather indicators of likely 

reactions to the stated levels of acceleration magnitudes. The relationship between travel 

duration and discomfort has also been explored by researchers such as Clevenson et al., 

(1978), Griffin & Whitham, (1998), Kjellberg & Wikström, (1985a) and Kjellberg & Wikström, 

(1985b), who all suggest that low acceleration magnitude levels are acceptable over longer 

periods than higher levels stating that the effect of the acceleration on the human body is 

reduced with increasing exposure time. The image below in Figure 2.19 presents a 

relationship between duration and weighted RMS of acceleration in moving trucks by Maeda 

and Morioka, (1998). 
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Figure 2. 19 Comparison of frequency-weighted acceleration to health risks (Maeda and 
Morioka, 1998). 

Conversely, experimental studies including Miwa et al., (1973) and Griffin & Whitham, (1980) 

state the opposite, demonstrating an increase in discomfort with exposure time, however, 

the difference between these sets of studies is that Griffin & Whitham, (1980) performed 

their analysis on much shorter time-scales with a maximum duration of two minutes while 

other studies used either a daily dose or performed analysis on durations up to eight hours. 

The subjective scaling mechanisms based on RMS acceleration have not been limited to the 

levels of discomfort, and some researchers have also applied limits to the type of work being 

performed. Nielsen, (1987) introduced limiting motion criteria for different kinds of work that 

have been cited in a lot of publications. This publication presented criteria for limiting motion 

exposure for different kinds of works on naval vessels between light manual work, heavy 

manual work, and intellectual work, with some of the criteria used in this paper originating 

from the criteria introduced by Payne, (1976) for quantifying ride comfort. The table below 

presents limiting motion criteria by work description according to Nielsen, (1987). 

RMS Vertical 
Acceleration (g) 

RMS Lateral 
Acceleration (g) 

Roll (˚) 
Work Description 

0.2 0.1 6.0 Light manual work 
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0.15 0.07 4.0 Heavy manual work 

0.10 0.05 3.0 Intellectual work 

0.05 0.04 2.5 Transit for passenger 

0.02 0.03 2.0 Cruise liner 

Table 2. 3 Limiting motion criteria by work description according to Nielsen, (1987). 

2.6.2  The Health-based Effects of Accelerations 

The most common health-based effect of whole-body accelerations is lower back pain 

(Griffin, 1990; Cardinale and Pope, 2003; Mansfield, 2005), however, in a survey of reported 

injuries by Ensign et al., (2000) these could also include sprains, chronic pain, fractures, 

dislocations, headaches, and tiredness. Other researchers have identified health-related 

effects of whole-body accelerations in connection with low-frequency noise such as digestive 

disorders (Griffin, 1990) However, these are long-term effects of acceleration on human 

health and though accelerations could increase the probability of injuries, research suggests 

that there is limited statistical data to support the influence of accelerations on injuries 

Olausson, (2015). On the other hand, the most common short-term health-based effect of 

vessel accelerations on passengers is motion sickness (Coyte et al., 2016).  

2.6.2.1  Motion Sickness 

This section describes motion sickness in relation to marine travel called seasickness. It 

discusses the known causes and symptoms of motion sickness, human susceptibility to 

motion sickness, available prevention methods and cures, and finally, this section discusses 

the effect of motion sickness on human performance using available literature. 

Motion sickness (MS) is a common feeling of unwellness usually associated with discomfort 

and vomiting and brought about by provocative motions (Stevens and Parsons, 2002). Motion 

sickness can be induced on land, sea, air, and in virtual environments (Koohestani et al., 2019). 

The most widely accepted theory of motion sickness was proposed by Reason and Brand, 

(1975) who stated that motion sickness can develop when there is a sensory mismatch 

between the visual, vestibular, and somatosensory inputs. However, other susceptibility 

factors such as gender, drugs, environment, and internal factors like psychology, though do 

not on their cause motion sickness but can increase the susceptibility to motion sickness in 
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the human body in the presence of sensory conflict (Kluijven, 2016). It is important to note 

that the theory surrounding motion sickness is still very ambiguous (Zhang et al., 2016) and 

new findings concerning motion sickness are still being reported. For instance, Stoffregen and 

Smart, (1998) suggest that postural stability should be considered a precursor to motion 

sickness, while Kluijven, (2016) states that excessive amounts of alcohol can simulate motion 

sickness in that it can cause dehydration and feelings of nausea, and that upon the application 

of external acceleration, the feelings of nausea can be amplified which can trigger vomiting 

in passengers. This can also be said for coffee intake in passengers which can trigger nausea 

in the body and can also be amplified upon the application of external acceleration (Kluijven, 

2016). Additionally, the environment can also play a role in inducing motion sickness. For 

instance, the duration of travel is a major contributing factor in motion sickness susceptibility 

as small encounters with accelerations might not be enough to cause motion sickness, 

however, prolonged exposure to accelerations can induce motion sickness even in the most 

experienced sailors (Kluijven, 2016). However, research also suggests that there can be 

adaptation where the sensory conflict can experience inhibitory innervations cancelling 

reafference which means excessive exposure to sensory conflict can be cancelled (Zhang et 

al., 2016). This theory is also supported by ISO 2631-1, (1997) which suggests that long periods 

of exposure to motions increase the occurrence of motion sickness even over several hours, 

however, after extended exposure, adaptation occurs, and the occurrence of motion sickness 

reduces. As such the individual experiencing motion sickness can overcome the sensation 

after a period. Other environmental factors that can induce motion sickness can be a lack of 

visual reference to the motion being experienced especially in ships (Kluijven, 2016), as well 

as temperature and fumes from ship engines which can cause  nausea (Kluijven, 2016). 

2.6.2.2  The Effect of Motion Sickness on Health and Human Performance 

The main symptom of motion sickness is nausea which can result in vomiting, sweating, and 

pallor (Dobie, 2019). Other short-term effects can be hyper-salivation, stomach awareness, 

feelings of drowsiness, fatigue, and lethargy (Lackner, 2014; Zhang et al., 2016), and though 

the symptoms of motion sickness are still being investigated (Zhang et al., 2016), these 

symptoms can affect the human performance over various tasks. Motion sickness has also 

been known to affect human performance in relation to comfort, well-being, and cognitive 

performance (Smyth et al., 2019). Similarly, Kluijven, (2016) states that the incidence of the 
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symptoms of seasickness can not only decrease work ethic but also, the probability of an 

accident occurring can increase significantly resulting in serious work injuries. In this report, 

49% of the crew members on a large vessel admitted that work activities suffer from 

symptoms of seasickness. These findings are corroborated in various studies on the subject, 

including the study of the effects of seasickness on cognitive functions by Bos, (2004) where 

60% of test subjects did not complete a task when subjected to motions causing seasickness, 

a variation from the baseline of 5% when subjects were not subjected to seasickness-causing 

accelerations. Additionally, Matsangas et al., (2014) showed that after extended exposure to 

motion sickness, there were significant decreases in memory, arithmetic functions, and time 

to complete tasks.  Relating to passengers on marine vessels, Calvert, (2005) studied the effect 

of motion sickness on crew performance along with Cheung and Nakashima, (2006) and 

Malek et al., (2009), all of which concluded that motion sickness negatively affected crew 

performance in terms of adaptation and cognitive performance. In more recent years, Pisula 

et al., (2012) used data collected from three vessels to determine that problems most 

associated with vessel motion were more related to difficulties with physical tasks. They state 

that there were fewer correlations between cognitive tasks and vertical accelerations. Their 

findings do not diminish the work of other authors but instead suggest that physical tasks 

might be more affected by motion sickness than cognitive tasks and as such might be an area 

of greater concern. Therefore, the overall conclusion from available literature is that motion 

sickness can affect human performance (Bos, 2004) and that the rate of illness is affected by 

the magnitude of vessel oscillations and the duration of journeys (Matsangas et al., 2014), 

though after prolonged passive motion, the sensory conflict may receive inhibitory 

interventions that cancel the effects of the sensory conflict (Zhang et al., 2016). Though these 

correlations exist across publications, some variations can be found in the rate of illness 

among passengers. As already addressed earlier in this section, motion sickness is a complex 

phenomenon, and it can be hard to obtain a simple analytical expression for its effects, 

especially since some symptoms of motion sickness have gone unrecognised until recent 

years such as drowsiness as suggested by Lackner, (2014). In modern research, more 

expansive symptoms of motion sickness have been grouped into four categories including 

cognitive symptoms such as dizziness, temperature-related symptoms such as sweating, 

sopite symptoms such as fatigue, and gastrointestinal symptoms such as nausea and vomiting 

(Earle et al., 2021). In addition to this, publications have reviewed motion sickness in different 
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modes of transport, and for different durations of travel. Not only this, but the susceptibility 

factors also mentioned earlier in this section could affect the rate of illness in passengers as 

well as the differences in survey methodologies used across publications. These differences 

were highlighted by Matsangas et al., (2014) who used incentives during surveys which could 

influence the outcome of the dexterity tests taken. Furthermore, the greater portion of 

publications survey and model motion sickness on much larger vessels such as naval vessels 

and as such are not suitable for operation and maintenance in offshore wind farms where 

primary transport vessels are Crew Transfer Vessels. 

It should be noted that methods and medications exist that can prevent and suppress motion 

sickness. These include anticholinergics, antihistamines, monoamine antagonists, and some 

stimulants and sedatives (Spinks and Wasiak, 2011; Zhang et al., 2016; West Essex Medicines, 

2022). However, these medications are not without side effects, including drowsiness, dry 

mouth, blurred vision, nausea, diarrhoea, skin reactions in cases of patch use and headaches 

(Rubio et al., 2011; NHS, 2020). Other than pharmacological methods, there are also 

behavioural and habituation methods that can either help prevent or suppress the incidence 

or the effects of motion sickness such as using ginger, forward-looking, using horizon glasses 

and eating energy-dense and high-sodium diets low in vitamin A and C (Zhang et al., 2016). 

However, clinical trials for some of these recommendations have had conflicting outcomes 

(Zhang et al., 2016). 

2.6.2.3  Modelling the Effect of Motion Sickness 

The various symptoms and the effects on human performance caused by motion sickness 

make predicting the exposure to motion sickness fundamental to both ensuring the comfort 

and safety of passengers, and also fundamental to ensuring the efficient completion of tasks. 

Concerning the maintenance of offshore wind farms, Phillips et al., (2015), state that while 

the ability of technicians to perform tasks is important, motion sickness is an issue for the 

well-being of technicians. 

The first established method for evaluating the incidence of motion sickness was developed 

by O’Hanlon and McCauley, (1974). Their algorithm for evaluating the incidence of motion 

used a laboratory-controlled manner, where the real-life scenario of vessels experiencing the 

six-axis of acceleration can be replicated by correlating the vertical axis of acceleration to 
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motion sickness. This metric for evaluating sickness was based solely on the incidence of 

vomiting which at the time was regarded as the sole symptom of motion sickness. As stated, 

further research into motion sickness in recent years has identified other symptoms (Lackner, 

2014), however, the model by O’Hanlon and McCauley, (1974) is still widely used for various 

applications relating to the evaluation of motion sickness ranging from evaluations in fishing 

vessels by Bao-Ji and Song-Nan, (2019), to ship design (Cepowski, 2012). Variations to the 

original model have been also implemented for various use cases. Typically, numerical 

modelling has generally been used to apply vessel and sea-state parameters where time-

consuming experimental measures would have been used such as Piscopo & Scamardella, 

(2015), where linear and parabolic relationships were found between estimated motion 

sickness and significant wave height, wave period, and wave direction respectively for 

catamarans. However, motion sickness in this study was expressed in a value called overall 

motion sickness (OMSI), which expresses Motion Sickness Incidence for a particular area on 

the vessel. Guidelines for assessing Motion Sickness Incidence can be found in international 

standards including ISO 2631-1, (1997). The ISO2631-1, as well as various studies, highlights 

motions at frequencies below 0.5 Hz (between 0.1 Hz and 0. 5 Hz) as able to induce motion 

sickness and assesses motion sickness from weighted acceleration determined for the z-axis 

of acceleration. ISO 2631-1 quantifies whole-body acceleration concerning human health 

using the incidence of motion sickness and provides a frequency range based on frequency 

weightings of the root mean square acceleration (RMS), extended below 1 Hz. The standard 

as well as relevant studies suggest that vertical accelerations of about 0.15g root mean square 

values (RMS) and horizontal accelerations of about 0.12g RMS are the limits of acceptable 

operational conditions. In using weighted RMS of acceleration, the z-axis is usually considered 

when estimating the incidence of motion sickness in humans and a frequency weighting of 

Wf, defined in Table 2.2, is appropriate for passengers in a seated position. Using this, ISO 

2631-1 outlines two metrics for assessing the incidence of motion sickness including Motion 

Sickness Dose Values (MSDV) and Motion Sickness Incidence (MSI). According to Mansfield, 

(2005) the only validated measure for sickness related to sea state is MSDV, though it is only 

recommended for use with vertical acceleration and with a Wf frequency weighting. The 

MSDV is determined from measurements of acceleration throughout the observation. It is the 

squared root of the integral of the weighted z-axis acceleration, measured in metres per 

second to the power of 1.5 (m/s1.5): 
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Here, aw(t) is the instantaneous frequency-weighted acceleration in the z-axis direction, and 

T is the measurement of duration in seconds for durations up to 6 hours (ISO 2631-1, 1997). 

Higher values of motion sickness dose value, therefore, indicate higher occurrences of motion 

sickness in passengers ISO 2631-1, (1997). 

On the other hand, because available literature suggests that individual susceptibility to 

motion sickness can vary based on a number of factors including gender and age, the Motion 

Sickness Incidence gives a generalized method of estimating the probability of accelerations 

to induce vomiting as a percentage. The Motion Sickness Incidence can be described as: 

𝑀𝑆𝐼𝑣𝑧 = 𝐾𝑚 ∙ {∫ [𝑎𝑤(𝑡)]2𝑑𝑡
𝑇

0

}

1
2

 

2. 18 

Here, Km is a constant equal to 1/3 in a mixed population of men and women but varies based 

on the population exposed to motions between 0.333 hours to 6 hours. Also, aw(t) is the 

instantaneous frequency-weighted acceleration in the z-axis direction, and T is the 

measurement of duration in seconds (ISO 2631-1, 1997). 

Practical experience, as well as experimental studies, shows that values of Motion Sickness 

Incidence of between 20% to 25% are associated with the limits of acceptable conditions 

(Phillips et al., 2015).  It should, however, be noted that various factors can influence the 

prediction of motion sickness including the duration of exposure. Literature suggests that 

increases in exposure duration increase the incidence of motion sickness (ISO 2631-1, 1997; 

Stevens and Parsons, 2002; Kluijven, 2016). A review by (Stevens and Parsons, (2002) 

illustrate this relationship shown in Figure 2.20 below where Motion Sickness Incidence is 

plotted against time in days. 
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Figure 2. 20  Motion Sickness Incidence over time (Stevens and Parsons, 2002). 

Other relationships with the incidence of motion sickness are found in the study by Cheung 

and Nakashima, (2006) who reviewed the effects of oscillatory frequencies on motion 

sickness with dominant frequencies causing nausea in humans between 0.1 Hz to 1 Hz. Their 

study lists both the design of the vessel and the nature of the wave as important factors in 

the characteristic frequency of oscillation of a floating vessel. The application of vessel 

parameters and sea state in predicting the incidence of motion sickness is more common in 

studies optimizing ship design such as Youn and Park, (2020), Cepowski, (2009), Cepowski, 

(2012), and Rumawas et al., (2018). These studies explored predicting Motion Sickness 

Incidence at the design stage, using vertical accelerations as well as ship parameters such as 

hull shape, areas in contact with water, design speed, and much more (Polymeropoulos et al., 

2020). The study by Rumawas et al., (2019) goes further to include habitability indexes that 

account for noise levels. Their study is relevant because this accounts for susceptibility factors 

not usually included even in international standards. The reasoning behind the addition was 

stated by the authors as accounting for noised-caused sleep interruptions in passengers which 

can probably influence fatigue, thereby, making passengers more susceptible to motion 

sickness. 

A common observation in most studies on motion sickness is the use of vertical accelerations 

in predicting Motion Sickness Incidence (Cepowski, 2009; Rumawas et al., 2018) and while 

vertical accelerations are of interest in limiting performance, recent publications have stated 
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that angular motions are also of interest with regards to their influence on ship axis 

accelerations (Phillips et al., 2015). The application of vessel roll in estimating motion sickness 

was explored by Joseph and Griffin, (2008) who found that motion sickness increased with an 

increase in the magnitude of rotational oscillations and pitch oscillations. These findings are 

correlated with earlier findings by Wertheim et al., (1999) though the authors also state that 

the alternative motions in themselves are not sickness-provoking but combined with vertical 

motions produce more motion sickness than the classic model. Similar correlations have been 

made in research concerning lateral oscillations such as Donohew and Griffin, (2004) whose 

study supports motion sickness causing frequencies in the lateral direction between 0.0315 

Hz to 0.25 Hz depending on the weighting used. Using just vertical accelerations to assess the 

incidence of motion sickness, Dallinga et al., (2002) found that the singular use of vertical 

accelerations was insufficient as input for estimating Motion Sickness Incidence in their study 

on the human factors in the operation and maintenance of ferries. They propose the use of 

the roll and transverse motions as secondary inputs to be used alongside vertical motions. 

Similarly, Khalid et al., (2011) perform a combination of both theories to create a model 

combining horizontal motions with vertical motions to predict the incidence of motion 

sickness for 10 different vessels. The study found that the new model was marginally more 

accurate than traditional models using only vertical motions. However, these conclusions are 

not shared across studies. An early study by Morton et al., (1947), found that various 

frequencies from as low as 0.125 Hz, for vertical motion combined with pitch oscillations, 

produced similar illness rates with and without roll motions, and concluded that roll motions 

did not contribute to sickness and the incidence of sickness with the roll and vertical motion 

combined was not significantly different from that with the vertical motion alone. More 

recently, Cepowski, (2009) stated that alternative motions only had a slight influence on the 

prediction of motion sickness and based his model solely on vertical accelerations using a 

mathematical interrelation to describe the effect of waves, in terms of wave height, and ship 

design parameters on the incidence of motion sickness. The differences in opinion across 

studies can be attributed to various factors including new knowledge of motion sickness 

symptoms in research, differences in sample sizes, differences in transit durations, differences 

in survey and assessment methodologies, and susceptibility factors such as personal health 

and lifestyle. Furthermore, the assessment of motion sickness is performed across various 
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vessel types ranging from high-speed crafts to large naval vessels, ranging between different 

transport types, and ranging between simulations and experimental studies. 

Another finding from the available literature is that most publications relate to vessel design 

with limiting criteria and the implementation of human factors in boats concerning comfort 

and safety-related issues are limited Rumawas et al., (2019). As such, the evaluation of the 

Motion Sickness Incidence of the vessels evaluated would be within the limits of the standards 

of human effectiveness (Alkan, 2011). In addition, shocks induced by slamming are not readily 

accounted for though most crew members will try to avoid slamming as much as possible 

using economically acceptable changes in heading and speed as a principle of good 

seamanship (Phillips et al., 2015). The ISO 2631-1, (1997), however, suggests that the levels 

of slamming between 5 to 10 per hour are unacceptable for passenger comfort depending on 

the severity of the slamming (Phillips et al., 2015). In addition to international standards, UK 

regulations also provide guidance on protecting workers from risks due to whole-body 

accelerations. The next section describes available legislation on whole-body accelerations. 

2.6.3  Available UK Legislation on Whole-body Acceleration 

The Control of Vibration at Work Regulations 2005 follows proposals submitted by the Health 

and Safety Commission and is based on a European Union Directive requiring similar laws on 

protecting workers from risks caused by vibration (The Control of Vibration at Work 

Regulations, 2005). These regulations were introduced to reduce instances of back pain from 

whole-body vibration and are also represented in the code of practice for reducing the risks 

from whole-body vibration on ships by the Maritime and Coastguard Agency (Maritime and 

Coastguard Agency - Great Britain, 2009). These regulations introduce an action value limit of 

0.5 m/s2 for 8-hour durations (assumed to be a typical shift length) where employers should 

introduce technical and organisational measures to reduce exposure and an exposure limit 

value of 1.15 m/s2 for 8-hour durations which should not be exceeded. The suggested actions 

that should be taken by an employer where exposure limits are exceeded include:  

• A reduction of a worker's exposure to vibration to below the limit; 

• Identifying why limits were exceeded; 

• Adopting measures to prevent limits from being exceeded in future. 
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Though there are no specific regulations concerning motion sickness, employers have a duty 

of care to their employees. Under Health and Safety at Work etc Act 1974 (Health and Safety 

at Work Etc Act, 1974) and the Management of Health and Safety at Work Regulations 1999 

(Management of Health and Safety at Work Regulations, 1999), employers should identify 

causes of injury or illness, assess the likelihood and seriousness of the risk, and take action to 

eliminate and control the risk. 

2.6.4  Limiting Criteria for O&M 

As helicopters can operate independently from sea-state conditions – only limited by visibility 

and wind speed (Scheu et al., 2018) – Crew Transfer Vessels (CTVs) and service operational 

vessels (SOVs) are the major O&M vessels with sea-state limitations. Literature suggests limits 

of operation in CTVs to be up to 1.5 m of significant wave heights while SOVs have much larger 

limitations at about 4.0 m due to available walk-to-work assisted transfers (Scheu et al., 2018). 

Industry practices have also identified other operational limits such as limits to wind speed, 

and in some cases wave peak periods (Gintautas and Sørensen, 2017). 

 

Figure 2. 21 Image showing operational weather limits for O&M (Gintautas and Sørensen, 
2017). 

The plots in Figure 2.21 present limits of operation specific to crew transfer vessels, illustrated 

by Gintautas and Sørensen, (2017). However, literature has shown that operational limits for 

O&M vessels in sufficient as research into human exposure to accelerations show that human 

comfort, health, and performance are affected by vertical and horizontal accelerations Scheu 
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et al., (2018). According to Scheu et al., (2018), there may be times when access to a wind 

farm is possible but exposure to motion is unacceptable leading to increased waiting time. It 

should be noted that current industry guidelines suggest the implementation of suspension 

seating, ventilation, and window positioning as mitigating measures to undertake where 

seasickness may make a person unfit at the point of transfer (RenewableUK, 2015). In terms 

of the duration of working hours, studies give evidence of increased risk of health associated 

with long-term exposure to whole-body acceleration (ISO 2631-1, 1997). However, literature 

has also exposed the need to optimize operation and maintenance decision-making to reduce 

the risks associated with maintenance activities. Additionally, Phillips et al., (2015) also state 

that there is little consensus and experience with respect to the limits of vessel motion at the 

point of transfer, and even less considering the human response to acceleration. As such more 

methods that account for the comfort, safety, and performance of technicians in decision-

making are vital in optimising operations and maintenance and identified motion criteria 

should be treated the same way as weather windows (Scheu et al., 2018). 

2.7  Summary 

The current growth and potential of offshore wind energy show that as a renewable energy 

source, offshore wind energy can achieve the UK’s energy targets in mitigating the effects of 

human-caused climate change. However, experience shows that the operation and 

maintenance phase of the offshore wind farm life cycle contributes about a third of the cost, 

and as such, there is a need to optimize the costs and risks associated with this phase of 

offshore wind energy to compete with traditional energy generation means. The literature 

review presented here highlights the need to optimise maintenance scheduling and generally, 

the planning of maintenance activities in offshore wind farms has involved accounting for 

weather and sea-state, and the availability of maintenance resources to determine whether 

a wind turbine is accessible. More recently, decision-support tools have been developed to 

aid this decision-making process by modelling daily maintenance planning based on the key 

factors described in this chapter. However, literature on operation and maintenance 

strategies and models also shows that day-to-day scheduling does not typically account for 

the welfare of technicians and their ability to do work upon arrival at offshore wind farms. 
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Where technicians were accounted for in research, it was typically related to the number of 

technicians available, the length of shifts, the number of technicians per service order or the 

number of service orders per technician, the type of technician available, and the availability 

of technicians for work orders. This exposes some uncertainties in maintenance scheduling 

and a gap in the literature as research has shown that accelerations caused by vessels in 

transit to offshore wind farms affect the comfort and health of the technicians on board which 

can affect the technicians in a number of symptoms including discomfort, seasickness, and 

inability to do work. Additionally, the available guidance on the discomfort caused by 

accelerations in the offshore wind industry is limited, but there is some guidance (though also 

limited) on the occurrence of seasickness-related issues which states that individuals feeling 

the effects of seasickness are to stay onboard the vessel until the effects subside. This creates 

further uncertainties such as increased waiting times, especially in cases where wind turbines 

are assessable but exposure to accelerations is unacceptable. Therefore, there exists a need 

to account for the comfort and health of technicians in maintenance planning. 

This thesis explored the development of a technician welfare model in order to close the 

identified gap in research by applying comfort and health operational limits to sail or no sail 

decisions to ensure the comfort, health, and safety of technicians during transits to offshore 

wind farms for maintenance activities. The next chapter describes the chosen methodology 

used to model the technician welfare during transits for offshore wind farm operations. 
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3  Methodology 

3.1  Introduction 

The literature review exposed a relevant gap in research. Current operations and 

maintenance strategies rarely account for the welfare of technicians during transits to 

offshore wind farms, only accounting for weather windows and the availability of 

maintenance resources when planning maintenance operations. However, studies show that 

vessel motions during transits to offshore wind farms can affect the comfort, health, and 

ability to do work of technicians on board vessels and as such, can impact the successful 

completion of maintenance activities. This thesis presents a decision support tool that can aid 

wind farm operators in the sail or not sail decision-making process in maintenance planning 

by modelling the health and comfort of technicians as a way of accounting for technician 

welfare during transits to offshore wind farms. 

The following sections outline the methodologies used in achieving the thesis aim and 

objectives. This section provides a brief introduction and outlines the subsequent sections 

within this chapter. The second section presents the observed limitations to the data used in 

this research, and the limitations to data collection encountered in this research. The third 

section describes the type of data used within the research, the instrumentation used in data 

collection, their principles of operation, and the typical data output of each instrument. The 

fourth section presents a general description of the project sites while the timescale for data 

collection is provided in section five. Section six describes the processes of data processing, 

data visualization, and data analysis used to achieve the thesis aim and objectives. Section 

seven describes the data analysis, feature engineering, and data visualisations used on the 

dataset within this study. Section eight presents a description for modelling the comfort, 

health, and welfare of technicians. Finally, section nine presents a summary of the key details 

from this chapter. 
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3.2  Limitations to Data and Project Scope in Meeting 

Thesis Objectives 

This section describes the limitations of the data collected and the data collection methods 

within the scope of this thesis. 

3.2.1  Forecast and Remote sensing data 

In-situ observations from moored buoys, met masts, and tide gauges provide the most 

assessable data for scheduling purposes, however, in-situ data only describes data collected 

adjacent to the measuring instrument. This means that relevant meteorological data such as 

wind speed and significant wave height were limited to coastal regions and a few on-site wave 

riders located at wind farms. As such, the data available was insufficient to cover the project 

sites and did not cover areas of transits between ports or onshore platforms and wind farms 

that are travelled by crew transfer vessels during maintenance activities. To mitigate this, this 

research uses metocean products to increase the spatial coverage of the data collected and 

cover the transits between wind farms and ports. The use of numerical models has been used 

to describe sea-state for various uses including human response to motions (Olausson, 2015), 

and in recent years, satellite remote sensing has become an efficient tool for global surveying 

(Dubovik et al., 2021). Satellite data is able to provide an optimum source of reliable data for 

a wide range of purposes including monitoring the dynamics of coastlines dynamics, 

topographic surveys, monitoring ocean surfaces, changes in sea level, sea surface 

temperature, ocean turbidity, ocean salinity, mapping of water current, ocean ecosystems, 

fisheries, and so much more. (Fu et al., 2019). For this reason, hindcast metocean data were 

chosen to give accurate spatial coverage of the project sites, with forecast-mode metocean 

data used to provide prediction data in line with the thesis's aim to aid decision-making with 

forecast information. Metocean data, produced using a blend of in-situ, satellite, and model 

output data assimilation techniques, also mitigated the limitations of using satellite data 

alone, including filling existing gaps in temporal and spatial coverage made from instrument 

trajectory, especially in lower timeframes, and the escape of data from capture which can 

occur due to backscatter in higher temporal and spatial variability (Dubovik et al., 2021). In 

this thesis, data has been processed and validated in order to avoid large gaps in datasets and 

where gaps were present, the data cleaning process employed in section 3.6 of this chapter 
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involved interpolating between missing data points in both lower and higher time frames 

except where missing data points were defined as relevant to the study such as major storm 

events. 

3.2.2  In-situ data 

This project required vessel motion measurements and employed the use of secondary data 

from the ‘Safety and Productivity of Offshore Wind Technician Transit’ (SPOWTT) project 

which was aimed at improving the safety and productivity of offshore turbine technicians 

(Earle et al., 2021). The vessel motion measurements were acquired using vessel motion 

monitoring systems (VMMS) that were deployed on crew transfer vessels to measure on-site 

data. The difference in project aims and objectives meant that some assumptions had to be 

made regarding the calibration of the accelerometers on the vessel motion monitoring 

systems (VMMS), and the placement of the VMMS on the participating vessels which can 

create errors from the physical constraints of the device, and errors concerning the location 

of the device in relation to the technicians on board the vessel as this project translates vessel 

vibrations to human vibrations. Additionally, as the vessel measurements were collected for 

a different project, there was some sampling variability between datasets as meteorological 

datasets, even at instantaneous levels, were recorded at much lower frequencies than the 

data from the accelerometers. In addition, there also existed spatial variability between the 

accelerometer data – collected in motion during transit - and the meteorological data 

acquired from metocean data products. The variabilities between datasets were reduced by 

matching the frequencies of both datasets and synchronising GPS data and time stamp data 

between both datasets. This could, however, create a loss of contributions to the variance 

from the smaller and larger motions whose time scales are smaller and longer than the record 

length, respectively. 

3.2.3  Scope 

The objectives of this thesis centre on the operation and maintenance of offshore wind farms 

and as such, only operation and maintenance transits were considered. Due to distinct 

reasons including weather restrictions, vessel repairs, and non-maintenance-based activities, 

the number of consecutive maintenance transits was affected within the data collection 

timeframe. This, therefore, reduced the size of the dataset used in the project analysis and 
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variable modelling. This was important because the performance of the resulting models 

created in this project could benefit from a larger dataset which can also reduce errors that 

can arise from a reduced dataset, especially when performing machine learning processes. In 

addition to this, further adjustments had to be made to the thesis objectives to adapt the 

scope of the research to available datasets including processes such as model validation with 

subjective measurements for comfort and seasickness which can be implemented through 

adapted questionnaires and parameter definition for seasickness and comfort more specific 

to crew transfer vessels 

3.3  Data and Instrumentation 

Wind farm operators use forecasting along with relevant risk criteria, in the binary sail or no 

sail decision-making process associated with planning maintenance activities. This makes 

forecast data a vital aspect of maintenance planning (Scheu et al., 2012). Forecasting 

information is usually provided by national meteorological agencies (e.g., UK Met Office) or 

commercial providers (e.g., ABPmer, Oceanweather Inc.) usually in terms of wind speed 

(Soukissian and Papadopoulos, 2015) and wave height (Endrerud and Liyanage, 2015; 

Endrerud et al., 2015). This thesis utilizes metocean data, and in-situ data to measure 

meteorological and acceleration data, respectively, at transit routes for operation and 

maintenance transits in the research project sites. This section describes the instruments used 

within the project to measure vessel motions and meteorological data. 

3.3.1  In-situ data 

A vessel motion monitoring system (VMMS) was used to gather data on participating 

operation and maintenance vessels in order to describe and model the relationship between 

sea-state-caused vessel motions and human factors relating to comfort and seasickness. The 

VMMS device (Xsens, 2017) was developed and calibrated by BMO Offshore (Offshore Energy, 

2016), an external partner aligned with the SPOWTT project where data permissions were 

acquired, and data made available after data collection had subsided. The devices were 

deployed on four (4) wind farms located in different areas in the North Sea to ensure spatial 

variability of sea-state conditions and deployed on twelve (12) participating crew transfer 
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vessels of different sizes ranging from 18-metre hull length to 27-metre hull length. The 

participating vessels were operated by four (4) distinct offshore wind farm operators which 

ensured variability in the modes of operation maintenance procedures and activities. Table 

3.1 presents a summary of the information recorded by the VMMS including the number of 

sailing O&M sailing days recorded, vessel sizes, and the data collection period. 

Site No. of sailing days Vessel sizes (m) Data collection period 

Southern site 1 440 23 - 24 03/01/2019 -31/10/2019 

Northern site 1 184 23 - 27 20/07/2019 -31/10/2019 

Southern site 2 121 22 - 23 03/01/2019 -28/02/2019 

Western site 1 105 18 14/08/2019 -26/10/2019 

Table 3. 1 Summary of VMMS transit information 

The image in Figure 3.1 presents a schematic diagram of the vessel motion monitoring system. 

 

Figure 3. 1 A schematic diagram of the vessel motion monitoring system. Image adapted from 
Earle et al., (2021). 

Figure 3.1 shows a schematic of the device used to measure vessel motions. The device is a 

data acquisition system coupled with a 4G antenna, an automatic identification system 

transponder, a GPS, and a six-directional motion sensor. The resulting output from the device 

includes data on vessel type, vessel speed, vessel heading, longitude and latitude GPS 

locations, the translational (i.e., accelerations in the x-axis, y-axis, and z-axis) and angular 
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accelerations (i.e., accelerations in roll, pitch, and yaw) at 40 Hz. Table 3.2. below is a summary 

of output parameters from the Vessel Motion Monitoring System (VMMS). 

Parameter Unit 

Translational acceleration Acceleration due to gravity (g) 

Rotational acceleration Degrees (˚) 

Vessel heading Degrees (˚) 

Vessel speed Kilometre per hour (Km/h) 

Longitude and latitude degree 

Table 3. 2 Output parameters from the vessel motion monitoring system (VMMS). 

Data from each of the devices deployed resulted in a total of 2500 transit trips between ports 

and wind farms, including the testing and measuring phases of the project. 

3.3.1.1  Mode of operation 

The VMMS measures and logs vessel motions with the help of coupled accelerometers. The 

working principle of the accelerometer is to convert mechanical energy into electrical energy. 

The accelerometer records the accelerations or vibrations of the vessel on a micro-scale by 

measuring changes in velocity caused by the movement of the vessel. The changes sensed by 

the accelerometer then get converted into an electric voltage which in turn is used to record 

vessel orientation. Six-axis accelerometers were used within this project which combined the 

readings of a 3-axis accelerometer with a 3-axis gyroscope. Thereby measuring the 

acceleration in the x-axis, the y-axis, and the z-axis as well as the angular acceleration around 

the x-axis, y-axis, and z-axis called the roll, pitch, and yaw. 

3.3.2  Metocean and Satellite data 

Meteorological data used in this thesis was acquired and licenced from: 

• Copernicus Marine Service (CMEMS) for metocean and satellite products 

(marine.copernicus.eu) 

• Cefas, licensed under the Cefas WaveNet Non-Commercial Licence v1.0 

(wavenet.cefas.co.uk) 
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• Channel Coastal Observatory (CCO), licenced under the Open Government Licence 

v3.0, for in-situ validation data (coastalmonitoring.org). 

The Copernicus program employs the use of earth-observing satellites called Sentinel 

satellites to provide free data for global-level monitoring and numerical ocean products for 

sea-state description. The various missions from the satellites provide data on physical, bio-

geophysical, and biological variables used for ocean and land research activities (Malenovský 

et al., 2012). The satellite-based instruments used to provide data for land and sea research 

activities include spectroradiometers, infrared radiometers, microwave radiometers, satellite 

altimeters, satellite scatterometers, and synthetic-aperture radar (CMEMS, 2020). 

This research used hindcast satellite data and metocean data from numerical models in areas 

surrounding participating wind farms and exit ports, and for periods within the scope of the 

project to achieve the thesis objectives. Operational data products from the Copernicus 

Marine Service consisted of hindcast datasets for wave, wind, current, and sea surface height 

characteristics. For ocean wave datasets, hindcast data from the Atlantic - European 

Northwest Shelf product NWSHELF_REANALYSIS_WAV_004_015 was used, provided at 

approximately 1.5 km resolution from the WAVEWATCH-III wave model (Lewis et al., 2019) 

which was forced by lateral boundary conditions from the Met Office Global wave forecast 

model. The product outputs included wave parameters for the significant wave height, 

period, and directional characteristics. The model operates using 6-hourly analysis and 3-

hourly forecasted winds from the IFS-ECMWF atmospheric system and provides daily analyses 

for the global sea surface waves as well as 10-day forecasts.  (CMEMS, 2020). For current and 

tidal datasets, the hindcast data from the Atlantic - European Northwest Shelf product 

NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013 was used. The product outputs 

were generated from the NEMO (Nucleus for European Modelling of the Ocean) ocean model 

(Tonani et al., 2019) at 1.5km resolution for hindcast data of currents, and sea surface heights. 

The model provides hourly instantaneous, quarter-hourly, and daily 24-hour temporal 

resolutions (CMEMS, 2020). For wind datasets, remotely sensed surfaced winds from 

scatterometers and radiometers were used for hindcast data of the Global Ocean Wind 

(Product WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006). Outputs from this product 

were from scatterometers (the ASCAT scatterometers on MetOp-A, MetOp-B and MetOp-C 
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at 0.125 and 0.25 degrees; the OSCAT scatterometer on Scatsat-1 at 0.25 and 0.5 degrees; 

the HSCAT scatterometer on HY-2B at 0.25 and 0.5 degrees) on the Sentinel satellites 

(CMEMS, 2020). The data reported included stress-equivalent wind and wind stress, wind 

stress curl, and divergence in the northward and eastward directions. See Appendix B for 

more product information. 

Though not used towards the creation of the models used towards the thesis objectives, this 

research explored the use of satellite products to describe sea state variables used as model 

inputs. Satellite-based datasets included Global Ocean Spectral Parameters from near-real-

time Satellite Measurements (product WAVE_GLO_PHY_SPC_L4_NRT_014_004). The dataset 

included measurements of significant wave height, partition peak period and partition peak 

or principal direction from Sentinel-1A and Sentinel-1B SAR missions. Similarly, the current 

dataset was acquired from Global Ocean Gridded Sea Surface Heights and Derived Variables 

(product SEALEVEL_GLO_PHY_L4_MY_008_047). The dataset presents satellite altimeter 

measurements of directional current and sea surface heights. The modes of operation for the 

satellite-based devices described are listed below including altimeters, satellite 

scatterometers, and synthetic-aperture radar SAR. 

 

The satellite altimeters measure global surface 

topography by measuring the time taken for an 

electromagnetic pulse - sent from the satellite - to 

reach the earth’s surface and back after being 

reflected off the surface. Ocean-based outputs 

include sea surface height, ocean surface wind 

speed, wave height and sea ice. 

 

The satellite scatterometer is a radar sensor that 

scans the Earth and measures the scattering effect 

produced. Ocean-based outputs include ocean 

near-surface wind speed and direction, rainfall, and 

sea ice concentration. 
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The synthetic-aperture radar (SAR) is a radar that 

creates two-dimensional or three-dimensional 

images of the Earth’s surface with finer spatial 

resolution. Ocean outputs include surface waves, 

sea ice monitoring and wind data. 

Figure 3. 2 Top to bottom: i. Image of a satellite altimeter; ii. Image of a satellite 
scatterometer; iii. Image of synthetic-aperture radar (SAR), adapted from CMEMS, n.d. 

Satellite and model data was downloaded in netCDF-4 format for processing. The downloaded 

data had undergone pre-processing measures with initial cross-validation with in-situ data for 

the numerical model data.  

Table 3.3. below presents a summary of the meteorological parameters from the instruments 

highlighted above in this thesis. 

Measure Parameter Unit 

Current 

 

Northward current velocity Meters per second (ms-1) 

Eastward current velocity  Meters per second (ms-1) 

Sea surface height above the geoid Meters (m) 

Wave height 

 

Sea surface significant wave height Meters (m) 

Sea surface wave direction Degrees (˚) 

Wave period Seconds (s) 

Wind speed Northward wind velocity Meters per second (ms-1) 

Eastward wind velocity Meters per second (ms-1) 

Table 3. 3 Summary of meteorological parameters. 

The next section describes the project site used in this research. 

3.4  Site Selection 

This section describes project sites for data collection and data analysis used within the scope 

of this project to meet the thesis objectives. 
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Data for the SPOWTT project was collected from 12 Crew Transfer Vessels (CTVs) operating 

across four 4 distinct wind farms located in the North Sea (see Table 3.1 above). The project 

sites include the operating wind farms, the ports of exit, and the area travelled by Crew 

Transfer Vessels. The project sites were located in the South of the North Sea for Southern 

site 1 and Southern site 2, the North of the North Sea for Northern site 1, and the West of the 

North Sea for Western site 1. 
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Figure 3. 3 Locations of available operational wind farms in red coloured polygons, with 
relevant buoys in blue, and met stations in green. The image contains data provided by The 
Crown Estate that is protected by copyright and database rights, Cefas, licensed under the 
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Cefas WaveNet Non-Commercial Licence v1.0, and the channel coastal observatory (CCO) 
licenced under the Open Government Licence v3.0.  

Figure 3.3 presents a map of the North Sea area, showing operational offshore wind farms in 

the United Kingdom and the relevant available buoys and met stations considered in this 

thesis for metocean data validation. While the map shows operational wind farms in the 

region, the specific wind farms used towards the thesis aims are not highlighted following the 

terms to which the project data was made available. As such the wind farms are identified by 

their locations on the made including Southern site 1, Southern site 2, Northern site 1, and 

Western site 1. 

3.4.1  Southern site 1 

Data from southern site 1 included data from three (3) crew transfer vessels of sizes ranging 

between 23 and 24 metres. Data from the vessel motion monitoring systems deployed on the 

crew transfer vessels recorded longitude and latitude GPS locations, the speed and heading 

of the vessels, translational (i.e., accelerations in the x-axis, y-axis, and z-axis) and angular 

accelerations (i.e., accelerations in roll, pitch, and yaw) at 40 Hz. The distance between the 

port of exit and the wind farm for southern site 1 was about 40 km with an added 10 km for 

the wind farm’s extension. The average transit time for participating vessels was recorded at 

about 1.3 hours, the average speed of the participating vessels was recorded at about 42.7 

km/h (23 knots), and the average distance to turbines within the wind farms travelled by the 

vessels was recorded at about 54.8 km. Data collection for this site commenced on the 3rd of 

January 2019 and concluded on the 31st of October 2019. 

3.4.2  Northern site 1 

Similar to southern site 1, data from northern site 1 were collected from 3 (three) crew 

transfer vessels including a 27-metre vessel, a 24-metre vessel, and a 23-metre vessel. The 

vessel motion monitoring systems deployed on the vessels in northern site 1 recorded similar 

datasets to the systems deployed in southern site 1. The distance between the port of exit 

and the wind farm for northern site 1 is about 21 km, the average transit time for participating 

vessels between the exit port and wind farm was recorded at about 0.7 hours, and the 

average speed of the participating vessels recorded was about 29.7 km/h. Data collection 

commenced on the 3rd of January 2019 and concluded on the 31st of October 2019. 
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3.4.3  Southern site 2 

Data from southern site 2 were collected from the vessel motion monitoring systems 

deployed on 3 (three) crew transfer vessels of sizes ranging between 23 and 22 metres. The 

distance between the port of exit and the wind farm for southern site 2 is about 60 km with 

an added 10 km for the wind farm’s extension. The average transit time for participating 

vessels was recorded at about 1.2 hours, the average speed was 47.7 km/h, and the average 

distance to the turbine travelled by the participating vessels is 62 km. Data collection 

commenced on the 27th of November 2018 and concluded on the 28th of February 2019 with 

gaps in data collection within this period. Meteorological and in-situ data used in southern 

site 2 were similar to the datasets used in project sites 1 and 2, however, the data collected 

was adjusted to the GPS locations of the vessels participating in southern site 2. 

3.4.4  Western site 1 

Data from western site 1 were collected from the vessel motion monitoring systems deployed 

on 3 (three) 18-metre crew transfer vessels. The distance between the port of exit and the 

nearest turbine on the wind farm is about 50 km. The average transit time for the participating 

vessels was recorded at about 1.3 hours, the average speed was 47.7 km/h, and the average 

distance to the turbines travelled by the participating vessels is 54.8 km. Being the site for the 

initial test phase of the project, data collection commenced on the 4th of August 2018 and 

concluded on the 26th of October 2019 with gaps in data collection within this period. As with 

previous project sites, meteorological and in-situ data used were adjusted to the GPS 

locations of the vessels participating in western site 1. 

3.5  Temporal Selection 

The section describes the timescale used in this thesis and the reasoning behind the time-

scale selection. 

Overall, data collection from all participating wind farms began in August of 2018 and 

concluded in October 2019, however, the data collected in 2018 was pilot data used to refine 

data collection methods and initially used to create a general overview of a vessel and journey 

characteristics. Therefore, this thesis uses datasets from 2019 which had the largest and most 



 

84 
 

overlapping sampling timescales between participating vessels and wind farms. As such, data 

from 2018 were filtered using cleaning processes described in section 3.6 to allow for proper 

time stamping between datasets. It was important for the timestamps to coincide between 

vessels and wind farms and at the same time for enough data to be available for analysis. As 

such, the time scale for the entire study was limited between the 3rd of January and the 31st 

of October. 

3.6  Data Processing, Analysis, and Visualisation 

This thesis followed a structured approach to data analysis and modelling including a 

descriptive analysis performed after data cleaning and processing, a diagnostic analysis to 

identify and process outliers within datasets, and a predictive analysis to model thesis 

objective responses. This section describes the processes of data processing, data analysis 

and data visualization undertaken within the scope of this thesis to achieve the thesis aims. 

This project utilized MATLAB software for data analysis and modelling procedures. The 

MATLAB software has the advantage of integrating a deep learning toolbox which allows the 

use of simpler codes to perform complex commands. The MATLAB software also allows the 

creation of scripts which was specifically beneficial as this project required the application of 

specific feature engineering calculations to large datasets. As a result, the application of the 

same feature engineering procedures, where new variables are created from existing 

variables in a dataset, was used on multiple datasets with little or no changes. In addition, the 

software also has various added toolboxes for machine learning useful to the modelling 

phases of the thesis. 

3.6.1  Data Processing of VMMS Data 

Data from the Vessel Motion Monitoring System (VMMS) was imported into the MATLAB 

workspace for initial processing. The data from the VMMS device was stored as MATLAB files 

and stored with timestamps according to the date and time of transit for each vessel in their 

respective wind farms of operation. The dataset included recordings for the vessel’s longitude 

and latitude, the vessel’s speed, and heading, and the translational (i.e., accelerations in the 

x-axis, y-axis, and z-axis) and angular accelerations (i.e., accelerations in roll, pitch, and yaw) 
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of the vessels at 40 Hz for daily transits by each participating Crew Transfer Vessel. The initial 

dataset contained numerical data and did not contain logistical or categorical data. It was 

discovered that parameter identifiers such as names or titles differed between vessels and 

wind farms. This was most likely because the VMMS used a combination of different 

accelerometers, and though calibrated similarly, the accelerometers included different 

identifying numbers between vessels and wind farms. As such, parameters within each 

dataset were found to have multiple entries with varying identifiers, with most containing 

empty cells or not-a-number (NaN) values. To mitigate this and streamline the process of 

analysis, a cleaning and filtering process was needed to first remove empty parameters from 

the datasets and then select the parameter from the list of parameters with multiple entries 

that contained the most data as well as the most accurate data.  This was done using “if”, 

“else if”, and “else” statements to test various conditions for the availability of data under 

each parameter for conditional assignments that create a  dataset with only the required 

parameters and parameters with data within them. The code containing the filtering 

statements was then applied to a loop function that repeated the filtration process for each 

transit dataset. To process the VMMS data more efficiently, daily transit datasets were stored 

as tables using the “table” function to provide a detailed report on all data within using 

the ”summary” function, and for ease in manipulating the data in datasets. This code was 

used to streamline the analysis process so that lines of code could be added to a script which 

would perform similar cleaning processes for every O&M transit. While most missing data 

were removed from the dataset, missing data considered relevant to the thesis analysis such 

as missing timestamps within variables were identified using ‘NaT’ for date and time-related 

values and ‘NaN’ for all else.  

The scope of this thesis defines an operation and maintenance (O&M) transit as a transit 

originating at an exit port on a CTV that travels to a wind farm and travels back to its exit port 

or another, within an operation and maintenance day. As such, it was necessary to explore 

the VMMS data to identify where the vessel was at different points during the transit. . A 

process of discretization was then applied to acceleration data from vessel transits to better 

understand transits during O&M activities and create categorical variables of CTV positioning 

during transits. This was done using one of two methods – using frequency changes in 

acceleration data and standard deviation in acceleration signals. It was, however, discovered 
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that the acceleration data contained significant variations at different periods during transit 

which when combined with domain knowledge of O&M activities, could be used to identify 

vessel characteristics. As such, summary statistics were calculated for the entirety of daily 

vessel transits, using four-sectioned windowing (dividing transit signal into equal parts) on 

acceleration signals, as well as the standard deviation of the acceleration signal. Through this 

process, classifications of transits were created. The classifications created included features 

to classify the vessel’s activity in transit and at wind farms. To validate results, peaks in the 

frequency domain of the acceleration signal were matched with peaks in summary statistics 

of peak prominence and differences in the acceleration signal, as well as the distance between 

the port and wind farm of the participating wind farms and the speed of the vessel showing 

when the vessel is in motion in comparison with peaks in acceleration. The process of 

discretization highlighted relevant points during vessel transits needed to represent the 

welfare of technicians. The points used included outward transit to the wind farms, transit 

within the wind farms, and daily dose transit durations for the entire O&M day. These points 

were relevant as the outward transits can provide estimations of sickness and comfort at the 

point of transfer, the transits within the wind farms could account for service trains – where 

more than one wind turbine is serviced by a crew transfer vessel - and the daily dose transit 

can present a general estimation of comfort and seasickness that can be applied to decision 

making. Figure 3.4  
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Figure 3. 4 Plot showing the discretization process including the standard deviation of x,y, and 
z-axis acceleration signals, a plot of the CTV transit track plotted using GPS coordinate data 
before the process of discretization, a plot of the speed of the vessel and the z-axis acceleration 
after discretization has been applied, and a plot of the CTV transit track plotted using GPS 
coordinate data after the process of discretization. 

After the vessel transit characteristics had been explored from the discretization process, it 

was discovered that transit with the dataset was not O&M transits following the scope of this 

thesis. As such, additional filtering processes were used to separate defined O&M transits 

from other transits.  This was done using “if”, “else if”, and “else” statements for conditional 

assignments on the created variables for CTVs in transit or at wind farms where transit data 

not defined as O&M transits were removed from the dataset. In addition, due to the size of 

the datasets which included 40 Hz data from 3 vessels each on 4 wind farms, a script was 

created to streamline the analysis process whereby the same data processing measures were 

applied for daily transits by each participating Crew Transfer Vessel using a loop function. This 

resulted in a total of eight hundred and fifty (850) defined O&M transits between four (4) 

wind farms and twelve (12) crew transfer vessels (CTVs). 
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To explore the VMMS data further, stacked plots of the variables in the transit datasets were 

created. The stacked plots included plots of acceleration data in the x, y, and z-axis, plots of 

roll, pitch and yaw acceleration data, and a plot of the vessel speed. 

 

Figure 3. 5 Image showing a sample stacked plot of VMMS data from a CTV on an O&M transit 
day. From top to bottom: i. Vessel x-axis acceleration in m/s2; ii. Vessel y-axis acceleration in 
m/s2; iii. Vessel z-axis acceleration in m/s2; iv. Vessel roll acceleration in degrees; v. Vessel 
pitch acceleration in degrees; vi. Vessel yaw acceleration in degrees; vii. Vessel speed recorded 
in kph 

3.6.2  Data Processing of Meteorological Data 

Meteorological data used in this thesis was open-sourced oceanographic data for current, 

wind, and wave data described in Appendix B of this thesis and licensed from Copernicus 

Marine Service (CMEMS). The meteorological data was collected to inform the sea-state 
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around the participating crew transfer vessels on transit routes to and from wind farms during 

O&M activities. This was done to account for the lack of spatial coverage from existing in-situ 

devices along transit routes. The meteorological data was downloaded in netCDF-4 format 

and imported into the MATLAB workspace for initial processing.  To describe the sea state in 

transit sites, four data points from the VMMS GPS data were used to describe the area 

between the wind farm and the exit port. This was done by randomly segmenting transit 

routes between wind farms and ports plotted from VMMS data and selecting the geographical 

area surrounding the transit route for download. Since all transits in project sites typically 

followed similar routes, this was done manually four times to create geographical regions for 

the four sites in longitude and latitude data. Having identified the regions of interest, 

Copernicus Marine credentials were set to access and download data by setting the longitude 

and latitude parameters required to subset and download files. This also included a time 

range and specific ocean variables, Therefore, the code was used to download the 

meteorological data using the GPS data as reference points for the four sites. The individual 

netCDF-4 files were read using and the variables relevant to the study were extracted using 

file dimensions. The variables extracted from the current, wind, and wave files include: 

▪ Northward and Eastward current velocity measured in meters per second (ms-1) 

▪ Sea surface height above geoid measured in metres (m) 

▪ Northward and Eastward wind velocity measured in meters per second (ms-1) 

▪ Sea surface wave period in seconds (s) 

▪ Significant wave height in metres (m) 

▪ Sea surface wave direction in degree (˚) 

▪ Longitude data measured in degrees east 

▪ Latitude data measured in degrees north 

The northward and eastward current velocity data variables and the northward and eastward 

wind component data variables were used to create new variables of current velocity 

measured in meters per second (ms-1) and current direction measured in degrees (˚), and wind 

speed measured in meters per second (ms-1) and wind direction measured in degrees (˚), 

respectively. This was done by calculating the magnitude of the u and v velocity components 

i.e., the northward and eastward components. The direction variable of both current and 
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wind data was then converted to the direction in degrees from the inverse trig function of tan 

seen in the equations below. 

𝑈𝑤𝑖𝑛𝑑/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = √(𝑢2 + 𝑣2) 3. 1 

 

𝛳𝑤𝑖𝑛𝑑/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑡𝑎𝑛−1 𝑣/𝑢 3. 2 

 

Where Uwind/current is wind speed and current speed in ms-1, u is the northward velocity 

component of the wind or current and v is the eastward velocity component of the wind or 

current; ϴwind/current is wind and current direction in degrees (˚). 

Another process of feature engineering was applied to the current dataset to transform the 

sea surface height variable into a new variable called tidal range in order to better understand 

the relationship between current data and VMMS data. This was done by finding the 

difference between the maximum and minimum sea surface height within a period and 

expressed in metres. A final table including newly created (feature-engineered) variables 

were saved and exported in readable excel formats. 

Missing data points in all four sets of data were identified and represented with ‘Nan.’ The 

meteorological datasets were recorded in timescales ranging from tri-hourly to daily datasets, 

as such, synchronisation processes were applied to change all the temporal resolutions of the 

datasets to 1.1574074074074 x 10-5 Hz or a daily/24-hour resolution using the retime function 

which is a straight forward method of retiming a signal to match another in MATLAB. For 

instance, the wave dataset was downloaded in tri-hourly resolution, the dataset was 

aggregated to the daily mean using the mean in the retime function in MATLAB which 

generated a mean value. This process was repeated for transit periods measured by the 

VMMS data to ensure all transit days were accounted for within O&M transits over eight 

months. In-situ meteorological data was used to validate metocean sea-state data to ensure 

that there was sufficient spatial coverage of transit routes travelled by participating crew 

transfer vessels. Data from sea-surface directional waverider buoys, tide gauges, and met 

masts were used in the validation process for their locations either in the part of the port of 

exit for participating crew transfer vessels or at participating wind farms. Buoys are an 
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accurate means of point measurements for sea-state (Seemann et al., 2015) and met masts 

though limited provide useful wind datasets. The data from the in-situ instruments were 

open-sourced data provided by Cefas and funded by Environment Agency, licensed under the 

Cefas WaveNet Non-Commercial Licence v1.0, and from the channel coastal observatory 

(CCO) licenced under the Open Government Licence v3.0. More information on 

meteorological data can be found in Appendix B.  The validation process was done by 

performing a simple regression analysis on metocean and in-situ data and the variables tested 

included significant wave height (m) and wind speed (ms-2).  

To explore the meteorological, stacked plots of the variables were created. The stacked plots 

included plots of acceleration data in the x, y, and z-axis, plots of roll, pitch and yaw 

acceleration data, and a plot of the vessel speed. 
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Figure 3. 6 Image showing a sample stacked plot of meteorological data. From top to bottom: 
i. Hs, Significant wave height (m); ii. ϴwave, Wave direction (°); iii. TP, Peak wave period (s); 
iv. Uwind, Wind speed (m/s); v. ϴwind, Wind direction (°) vi. Ucurrent, Current velocity (m/s); 
vii. ϴcurrent, Current direction (°); viii. SSH, Sea surface height (m); 

3.7  Technician Welfare Analysis 

To achieve the thesis’s aim of developing a welfare model, this research uses proxy metrics 

to estimate the level of comfort and the likelihood of seasickness in technicians including 

Composite Weighted Acceleration and Motion Sickness Incidence, respectively. Both metrics 

were chosen as measurable metrics for the short-term effects of vessel motions on 
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passengers able to represent subjective levels of discomfort and passenger short-term health 

in relation to travel at sea. These metrics were also chosen based on the availability of data 

within this study concerning whole-body accelerations. Motion Sickness Incidence was 

chosen as a measurable metric for the likelihood of a technician vomiting from exposure to 

accelerations during transit and its use has been documented in various studies (Cepowski, 

2009, 2012; Piscopo & Scamardella, 2015; Rumawas et al., 2018), as well as international 

standards. In addition to this, Motion Sickness Incidence is a recognisable metric used in 

various marine-based industries that would be understandable to offshore wind farm 

operators. The discomfort of technicians is subjective, however, available studies show that 

there is a relationship between the magnitude of acceleration and the levels of discomfort 

experienced by travellers (Mansfield et al., 2000), as such, Composited Weighted Acceleration 

was used in this thesis to express the total experienced weighted acceleration with time 

following the guidance from the ISO 2631-1 for exploring human response to acceleration 

(ISO 2631-1, 1997). The weighted acceleration method was used in this thesis because it 

accounts for transient vibration and occasional shocks using an integration shorter time 

constant. As stated in section 2.6.1, other measures for assessing accelerations exist such as 

using root-mean-quad in relation to vibration dose values as suggested Kjellberg & Wikström, 

(1985b), However, these methods are not widely used and are used mostly in relation to 

shocks (Mansfield, 2005). This ISO standard was used because it is the most recent standard 

for estimating human response vibration. As such, the proxy metrics were created from 

acceleration and timestamp data and from guidelines of the ISO 2631-1 presented in 

equations 2.14 and 2.18 of sections 2.6.1 and 2.6.2, respectively, to explore the relevant 

variables for the prediction. The process described below presents the methods used to 

explore the human response to vessel motions at sea from instantaneous measurements. 

3.7.1  Feature engineering welfare variables 

both create a duration variable, in seconds, and create the proxy variables used to describe 

comfort and seasickness in technicians. The duration variable was created from the 

timestamp data recorded by the VMMS by subtracting succeeding timestamps from previous 

timestamps. To generate the weighted acceleration proxy variable, the Root Mean Square 

(RMS) of acceleration was calculated from equation 2.14 in section 2.6.1 of this thesis. This 

was done using the z-axis acceleration and the duration variable created as well as using the 
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vector sum of translational acceleration variables of the x, y, and z-axis as represented in 

equation 2.15. The rotational acceleration data including the roll, pitch, and yaw, were not 

included in the vector sum following guidance from international standards. Appropriate 

multiplying factors including Kx, Ky, and Kz with values of 1.4, 1.4, and 1.0, respectively,  were 

included to account for dominant accelerations such as z-axis accelerations (Mansfield, 2005). 

The appropriate weightings were also applied to the acceleration signal before calculation 

following the ISO 2631-1 guide for the application of frequency weightings seen in Table 2.1 

of the second chapter. Frequency weightings are applied to model human response to 

vibration phenomena from a time-series signal rather than the mechanical characteristics of 

the vibrating structure (Mansfield, 2005). As such, this thesis applies frequency weightings to 

transform the measured acceleration data from the VMMS into human response signals. 

While frequency weightings have limitations expressed further in section 2.6.1 of this thesis, 

at the time of writing there was no better alternative method for assessing human response 

to complex vibrations (Mansfield, 2005).   Applied weightings depend on the posture of 

passengers, as such, weightings in this thesis are applied under the assumption that 

technicians on the CTVs are in seated positions. As such, whole-body vibration weighting for 

persons in seated positions expressed as Wk for z-axis accelerations, Wd for x and y-axis, and 

Wf for z-axis for Motion Sickness Incidence, were used.  The weightings are defined by s-

domain Laplace operator equations in one-third octaves, and band-limiting transfer functions 

as well as weighting transfer functions expressed in the ISO 2631-1 are used to limit the 

influence of the out-of-band frequencies.  High-pass and low-pass filters are used to achieve 

high and low-frequency band limitations, respectively, while the frequency weighting is 

expressed in the weighting transfer functions. The weighting curves were defined by the 

equations below: 

High-pass filter 
𝐻ℎ(𝑝) = |

1

1 + √2 𝜔1 𝑝 + (𝑤1 𝑝⁄ )2⁄
| = √

𝑓4

𝑓4 + 𝑓1
4 

3. 3 

 

Low-pass filter 

𝐻𝑙(𝑝) =
1

1 + √2 𝑝 𝜔2 + (𝑝 𝑤2⁄ )2⁄
= √

𝑓4

𝑓4 + 𝑓2
4 

3. 4 
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Acceleration 

velocity 

transition 

|𝐻𝑡(𝑝)| = |
1 + 𝑝 𝜔3⁄

1 + 𝑝 (𝑄4𝜔4) + (𝑝 𝜔4⁄ )⁄
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2
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2
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2 

3. 5 

 

Step 
𝐻𝑠(𝑝) = |

1 + 𝑝/(𝑄5𝜔5) + (𝑝/𝜔5)2

1 + 𝑝/(𝑄6𝜔6) + (𝑝/𝜔6)2
∙ (

𝜔5

𝜔6
)

2

| 
3. 6 

 

Where, Hh(p) and Hl(p) are the band-limiting transfer functions; Ht(p) and Hs(p) are weighting 

transfer functions; ωn = 2πfn and fn = corner frequency (ISO 2631-1, 1997; Paddan et al., 2012). 

Therefore, the total frequency applied as described by the ISO 2631-1, (1997) was: 

𝐻𝐼𝑆𝑂(𝑝) = 𝐻ℎ(𝑝) ∙ 𝐻𝑙(𝑝) ∙ 𝐻𝑡(𝑠) ∙ 𝐻𝑠(𝑝) 3. 7 

 

Similarly, a variable of Motion Sickness Incidence is created in the MATLAB workspace by 

applying whole-body vibration weighting for persons in seated positions expressed as Wf for 

the dominant z-axis accelerations, following ISO 2631-1, (1997) guidelines. Following the 

weighting, additional high-pass and low-pass filter frequencies were applied from equation 

3.3 to 3.7 above and band-pass filtering and re-filtering processes were applied for phase 

correction before calculating the Root Mean Square of acceleration (aRMS) used to evaluate 

the Vibration Dose Value (VDV), Motion Sickness Dose Value (MSDV), and Motion Sickness 

Incidence (MSI), using the expressions from ISO 2631-1, (1997) shown in equation 2.14, 

equation 2.15, equation 2.17, and equation 2.18 of chapter 2, respectively. However, as the 

new variables of Motion Sickness Dose Value (MSDV) and Motion Sickness Incidence (MSI), 

both represent the likelihood of seasickness occurring, the Motion Sickness Dose Value was 

regarded as redundant to achieving the thesis’s objectives during the dimensionality 

reduction process described below. The feature engineering process for generating 

technician comfort and technician health variables was performed for several iterations over 

the entire VMMS datasets for all twelve vessels transiting four wind farms. 
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3.7.2  Daily Dose Welfare Analysis 

The VMMS data were imported into MATLAB workspace using a loop function that performed 

the feature engineering process described in Section 3.7.1, on each transit dataset. As this 

research aimed to estimate technician welfare for daily transits, a daily dose value was 

needed to represent the welfare metric. As such,  daily aggregates from 40 Hz to 1 Hz by a 

method of daily mean were used to present a daily dose value for the variables in the dataset 

which prepared the data for predictive modelling and reduced the processing time for each 

analysis. The workflow included the creation of a matrix of the dominant accelerations in g,  

the duration of the journey in seconds, the vessel speed data, vessel heading data, and the 

application of whole-body vibration weightings for the estimation of the root mean square of 

acceleration (aRMS), the Vibration Dose Value (VDV), the Motion Sickness Dose Value 

(MSDV), and the Motion Sickness Incidence (MSI) in each dataset Following this, the mean 

function was applied iteratively using a loop function to transit files, thereby, creating daily 

values for each variable. The daily VMMS data were tabulated for easy synchronisation and 

stored in the MATLAB workspace, as well as exported to readable Excel format.Similarly, the 

already aggregated meteorological dataset was imported to the MATLAB workspace. A join 

function in MATLAB code was used to synchronise the meteorological datasets to the VMMS 

dataset (now on a daily timescale) using timestamps and GPS data as key joining variables 

with the VMMS dataset as the principal dataset. As such dates with corresponding data in the 

meteorological dataset were merged to the same data in the VMMS dataset for GPS locations 

corresponding to wind farms in the VMMS data.. The identified missing values were 

recognised to be mostly missing at random (MAR), meaning conditional on other variables 

such as unknown internal decisions within operators, or missing not at random (MNAR), 

where missing data was due to weather conditions such as in the wind datasets. As such these 

missing data values were not replaced or removed from the data set but ignored so as not to 

introduce bias and not to reduce the size of the dataset. For VMMS data, identified missing 

data points were due to non-maintenance transit days. A moving mean method over 30 days 

was used to identify outliers within the dataset and set thresholds were used to identify 

transient spikes in the dataset. Outliers were investigated in diagnostic processes to avoid 

scaling favourable to a few large data points or biased distribution mean. Having classified the 

outliers present in the dataset as meaningful to the study, data exploration processes were 
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performed to explore relationships between the variables in the dataset and satisfy the thesis 

objectives. 

3.8  Welfare Modelling 

This section describes the processes employed to model the comfort of technicians from 

Composite Weighted Acceleration and the health of technicians from Motion Sickness 

Incidence. To identify relevant variables for the model inputs, a dimensionality reduction 

process is employed to explore the relationships that are most relevant to predicting 

Composite Weighted Acceleration for the comfort model, and the variables most relevant to 

the prediction of Motion Sickness Incidence for the health-based model. 

3.8.1  Dimensionality Reduction 

Dimensionality reduction in this thesis was used to select a subset of the most relevant 

variables in the combination of VMMS and meteorological datasets for the predictive 

modelling of technician welfare.  The variables identified following the feature engineering 

process included the Composite Weighted Acceleration, Motion Sickness Incidence, vessel 

duration, vessel speed, vessel heading, vibration dose value, motion sickness dose value, 

significant wave height, wave direction, wave period, wind speed, wind direction, sea surface 

height, tidal range, current speed, and current direction. As such this process identified which 

input variables to include and which irrelevant variables to exclude for predictive modelling 

in order to train models faster, simplify the models, improve accuracy and reduce over-fitting 

where a model does not generalize well on unseen data based on training data. There are 

various known methods for feature selection and dimensionality reduction in supervised 

machine learning such as Principal Component Analysis (PCA), filtering, wrapper, and 

embedding (Chandrashekar and Sahin, 2014), however, this thesis employs a few including 

filtering, Principal Component Analysis (PCA), based on the type of dataset and the aim of the 

thesis. Having a dataset with such high dimensionality meant that before modelling the 

welfare of technicians, feature selection processes were needed to select relevant variables 

for modelling welfare. This was done in order to determine which variables will enable the 
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model created to make accurate predictions from the variables that will not enable the model 

to make accurate predictions based on their statistical properties.  

The filter method was chosen above the wrapper and embedded methods of feature 

selection as it ranks variables based on uni-variate metrics, in this thesis correlation 

coefficients (Kumari and Swarnkar, 2011), and is not typically embedded in the machine 

learning process. As such domain knowledge can be applied to the dataset. Wrapper and 

embedded methods, on the other hand, are not model agnostic and can be embedded in the 

machine learning algorithm (Lal et al., 2006). This thesis, however, applies domain knowledge 

to the dataset to remove redundant variables such as the Vibration Dose Value (VDV) and the 

Motion Sickness Dose Value (MSDV), which are other proxy indexes for comfort and the 

likelihood of seasickness, and wind data which is highly correlated with significant wave 

height data. Motion Sickness Incidence (MSI), however, was chosen as a percentage value, 

because it is the most used predictor of illness induced by motion (Cepowski, 2012). As such, 

this made the two selected variables redundant. Following this, a pairwise Pearson 

correlation coefficient filter section method was performed to compare the strengths of the 

linear relationships between the predictor variables and the response variables and discard 

weakly related features. After identifying weakly related variables within the dataset. This 

was performed by loading the 850 observations of O&M transits for the fourteen variables 

into the MATLAB workspace, where the analysis was performed using the “coeff” function. 

The plots in Figure 3.7 shows visualisations of the Pearson correlations analysis performed. 

The image of the pairwise Pearson correlation coefficient was created to compare the 

relationships between the response variables of Motion Sickness Incidence and composite 

weighted RMS of acceleration, and the predictor variables of vessel duration, vessel speed, 

vessel heading, vibration dose value, motion sickness dose value, significant wave height, 

wave direction, wave period, wind speed, wind direction, sea surface height, tidal range, 

current speed, and current direction. 
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Figure 3. 7 Image showing a Pearson correlation coefficient analysis 

Following the filter method,  a Principal Component Analysis (PCA) was performed as the 

previous filter method could select variables with the most relationships with the variables 

being predicted, however, a variable could be an important influencer when combined with 

other variables but may not show strong relationships on its own. Therefore, the aim of the 

PCA was to select the main predictor variables from the dataset of variables. The first step 

taken in the PCA was applying weighting to the variables. When all variables are in the same 

unit, it is appropriate to compute principal components for raw data. However, when the 

variables are in different units or the difference in the variance of different columns is 

substantial, as in this case, scaling of the data or the use of weights is often preferable. 

Following this, the percentage variance or variance thresholding is performed which creates 
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a vector containing the per cent variance explained by the corresponding principal 

component and plotted using the “pareto” function as seen in the scree plot in Figure 3.8. 

The process was followed to first variables by percentage variance that explains roughly 

three-quarters of the total variability in the standardized ratings, so that might be a 

reasonable way to reduce the dimensionsFollowing this, the PCA is visualised in a single plot 

through orthonormal principal component coefficients for each variable and the principal 

component scores for each observation. In this plot, all variables are represented by a vector 

and the direction, and length of the vector indicates how each variable contributes to the two 

principal components in the plot. Thereby showing the most relevant variablesin the dataset. 

The variables selected were the vessel duration, vessel speed, tidal range, current speed, 

significant wave height, and current direction for Composite Weighted Acceleration, and 

vessel duration, vessel speed, tidal range, current speed, significant wave height, and vessel 

heading for Motion Sickness Incidence. Figure 3.8 presents a visualisation of the variance 

thresholding for principal component analysis. 

 

Figure 3. 8 Plot of a principal component analysis 

The next sections describe the modelling of the comfort-based model, the health-based 

model, and the welfare model. 
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3.8.2  Modelling the Comfort of Technicians 

This section describes the process of model selection and validation undertaken to create the 

health-based model to achieve the first objective of this thesis. 

Having identified relevant predictor variables for the comfort model in section 3.8.1 above, 

the selection of a model to predict the welfare of technicians is based on the numeric output 

required. In the case of the comfort analysis a numeric value for Composite Weighted 

Acceleration. As such the required model for the thesis objective is a regression model. This 

thesis uses machine learning processes to train, validate, and test the model of best fit within 

the MATLAB workspace. A machine learning model was defined as the following general 

equation, 

�̂�𝑖 = 𝛽0 + ∑ 𝛽𝑖

𝑛

𝑖=1

𝑋𝑖 + 𝑒𝑖 
3. 8 

 

Where i = 1, 2,… n; Ŷi is the proxy variable in the ith sample, Xi composes of the input variables 

in the ith sample (assumed to be a known constant measured without error), βi is the 

coefficient for the input variables and ei is the residual error.  

The dataset was separated into a training dataset, a validation dataset, and a testing dataset 

using the hold-out function. This was performed following a standard machine learning 

approach to validate the performance of the model selected after training (Stetco et al., 

2019). The original dataset (nt = 850 transits) was split randomly into a six hundred and thirty-

seven (637) training set (75% of the dataset) and a two hundred and twelve (212) testing set 

(25% of the dataset). The training dataset includes the set of data used to train the model 

with the purpose of deploying the model to accurately predict responses from new data (not 

within the training data) based on the training data. The training dataset was also subdivided 

into a validation set which is used simultaneously during model training to validate the model 

by adjusting for hyperparameters. This ensured the model was not overfitting to the data in 

the training dataset and by so doing created a more generalized model. The model’s 

performance at predicting Composite Weighted Acceleration was assessed using fivefold 

cross-validation which split the data in the training set into five partitions, with each partition 

containing the same amount of data points. This was done within the MATLAB workspace 
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using cross-validation functions. The dataset was trained using the regression learner app in 

the MATLAB workspace, alternatively, the model can also be trained using the code presented 

in Appendix C of this thesis. This process is repeated iteratively for different models in the 

MATLAB workspace until a model of best fit was selected. The dataset was trained against 

multiple regression models including linear regression models such as a linear model, 

interaction linear, robust linear, and stepwise linear; regression tree models including fine 

tree, medium tree, and coarse tree; support vector machines (SVM) including linear SVM, 

quadratic SVM, cubic SVM, fine gaussian SVM, medium gaussian SVM, and coarse gaussian 

SVM; Gaussian process regression (GPR) models including rational quadratic GPR, squared 

potential GPR, matern GPR, and exponential GPR; and ensemble tree models including 

boosted trees and bagged trees. A Gaussian Process Regression (GPR) model was identified 

as the model with the best fit which has, in recent years, been identified as an efficient tool 

for estimating predictions and able to describe nonlinear relationships between predictor 

variables and response variables (Baiz et al., 2020). Table 3.4 presents a summary of the 

models trained on the training set to identify the GPR model.  

Table 3. 4 Summary of trained models used to identify the model of best fit 

Regression Model R2 (aWRMS) RMSE (aWRMS) R2 (MSI) RMSE (MSI) 

Linear 0.51 0.08 0.29 4.63 

Interactions linear 0.52 0.08 0.27 4.68 

Robust linear 0.50 0.09 0.28 4.64 

Stepwise linear 0.53 0.08 0.27 4.69 

Fine tree 0.40 0.09 0.25 4.77 

Medium tree 0.43 0.09 0.30 4.62 

Coarse tree 0.46 0.09 0.31 4.57 

Linear SVM 0.50 0.09 0.27 4.68 
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Quadratic SVM 0.54 0.08 0.37 4.35 

Cubic SVM 0.54 0.08 0.38 4.32 

Fine Gaussian SVM 0.21 0.12 0.24 4.78 

Medium Gaussian SVM 0.56 0.08 0.41 4.20 

Coarse Gaussian SVM 0.51 0.08 0.33 4.47 

Boosted tree 0.58 0.08 0.45 4.02 

Bagged trees 0.56 0.08 0.45 4.02 

Squared exponential GPR 0.61 0.08 0.43 4.02 

Matern 5/2 GPR 0.59 0.08 0.42 4.02 

Exponential GPR 0.60 0.08 0.43 4.02 

Rational quadratic GPR 0.63 0.07 0.46 4.02 

Therefore, the model outputs numerical values of the proxy variables which can be modelled 

as: 

�̂�𝑖 = 𝑓𝐺𝑃(𝑥𝑖) + 𝑣 3. 9 

 

Where Ŷi is modelled output, the ith sample; i = 1, 2,… n; Xi contains the input variables (x1, x2, 

x3,… xn); v is the Gaussian noise, fGP is the Gaussian process model with zero mean 

(Rasmussen, 2004) and covariance function of the form k (x, x’) for rational quadratic 

expressed as: 

𝑘(𝑥, 𝑥 ,) = 𝛿1
2 (1 +

‖𝑥 − 𝑥 ,‖2

2𝑝𝛿
)

−𝑝

, 𝑝 ∈ 𝑁 
3. 10 

 

Here σ2 is the variance; p is the length of scales for each input; p ∈ N is a parameter that 

determines the degree of the polynomial (Rasmussen, 2004). Comprehensive descriptions of 

GPR methods are presented by Rasmussen, (2004) and Schulz et al., (2018), however, the GPR 
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model is created in MATLAB using the regression learner app and tested on the testing set 

using the fitgrp function with ‘KernelFunction = rationalquadratic, BasisFunction = constant, 

Standardize = true, PredictMethod = Exact’, as the model specification. The application of GPR 

has been used in various fields including medicine (Tonner et al., 2017), energy (Roberts et 

al., 2013), and animal nutrition (Baiz et al., 2020), however, to the best of my knowledge, its 

use in motion sickness analysis is not yet reported. In integrating the model outputs into the 

welfare model, discussed in section 3.8.4, ISO 2631-1 limits of operation are applied to define 

vessel transits such as how comfortable a transit will be or whether transits should be 

attempted based on the level of discomfort experienced.  

The accuracy of predicting Composite Weighted Acceleration was tested following training 

and testing, using standard statistical machine learning measures including the coefficient of 

determination (R2) which is best used in measuring regression model performance (Stetco et 

al., 2019), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared 

Error (RMSE). 

The Root Mean Squared Error provided a measure of how far apart the predicted and 

observed values of Motion Sickness Incidence and Composite Weighted Acceleration were 

from the observed values. 

𝑅𝑀𝑆𝐸 = √∑(𝑌𝑖 − 𝑋𝑖)2/𝑛 
3. 11 

 

Where Yi was the predicted value of Composite Weighted Acceleration and Motion Sickness 

Incidence, and Xi was the mean value of Composite Weighted Acceleration and Motion 

Sickness Incidence. 

The coefficient of determination (R2) presented the proportion of the variance in the 

dependent comfort and health variables of Composite Weighted Acceleration and Motion 

Sickness Incidence that was predictable from the independent variables of vessel duration, 

vessel speed, vessel heading, significant wave height, current speed, current direction, and 

tidal height. R2 is expressed as: 

𝑅2 = 1 − (𝑅𝑆𝑆
𝑇𝑆𝑆⁄ ) 3. 12 
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Where TSS is the sum of squares and RSS is the residual sum of squares in the model. 

The Mean Squared Error MSE presented the squared difference between the predicted and 

observed values of Motion Sickness Incidence and Composite Weighted Acceleration 

expressed as: 

𝑀𝑆𝐸 = 1
𝑛⁄ × ∑(𝑌𝑖 − 𝑋𝑖)

2 3. 13 

 

Where n was the sample size 

The Mean Absolute Error MAE was used to show the average difference between predicted 

and observed values of Motion Sickness Incidence and Composite Weighted Acceleration. It 

is expressed as: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑋𝑖 − 𝑌𝑖| 

3. 14 

 

These measures for the model’s performance were included to investigate how well the 

models predicted proxy indexes, where 1 is perfect prediction and 0 is uncorrelated for the 

coefficient of determination, and all other measures present information on the model’s 

errors. In addition, the RMSE, MSE, and MAE present measures through which improved 

models can be tested against with regard to predicting the proxy variables. As such, the 

metrics used show how well the selected input variables predicted proxy variables and 

measure residuals as a means of assessing technician welfare where proxy variables are 

assumed to have a good relationship with comfort and the likelihood of seasickness. In 

application, the explored input variables will be used in the model created to generate sailing 

decisions, therefore, there is a need to measure their accuracy in making predictions. For 

instance, where a minimal amount of variance resides in the residuals, the model can be seen 

to perform well, however, where more than half of the variance is in the residuals, then more 

work is needed.  

3.8.3  Modelling the Health of Technicians 

This section describes the process of model selection and validation undertaken to create the 

health-based model to achieve the second objective of this thesis. 
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Similar to the comfort-based model, the identified relevant predictor variables for the health-

based model (section 3.8.1) were used to predict a value for Motion Sickness Incidence, a 

numerical output used as a proxy indicator for the percentage of technicians likely to be 

seasick during transits. As with the previous model, machine learning processes were used to 

train, validate, and test the model of best fit within the MATLAB workspace. The machine 

learning processes identified a Gaussian process regression (GPR) model as the model with 

the best fit. In integrating the model outputs into the welfare model, ISO 2631-1 limits of 

operations were applied to define the percentage of technicians likely to get sick. After 

training and testing, the efficiency of the model was tested using statistical measures 

including the coefficient of determination (R2), Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Root Mean Squared Error (RMSE). 

Visualisations of model results and model performance were shown from a response plot 

showing predicted and estimated values of Composite Weighted Acceleration and Motion 

Sickness Incidence were plotted. A predicted against observed values plot, and a predicted 

against observed values plot showing the number of data points in the dataset was presented 

to show how well the model performs on a perfect prediction line and indicates if and where 

the model overestimated or underestimated values. Finally, a histogram of residuals plot, and 

a residual plot with the number of datasets, were then used to describe the model’s 

performance. The histograms of residuals indicate the range of variance in the data set and 

the response plot with data points confirms the models' performance. Similar plots were 

created to visualise the health-based model including a response plot showing predicted and 

estimated values of Motion Sickness Incidence, a predicted against observed values plot, a 

predicted against observed values plot showing the number of data points in the dataset, a 

histogram of residuals plot, and a residual plot with the number of datasets was then used to 

describe the model’s performance. An example of the visualisations is presented in Figure 3.9 

below. 
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Figure 3. 9 A plot showing model results and performance including, from top row: i. A 

response plot of observed Composite Weighted Acceleration and predicted Composite 

Weighted Acceleration with time; the second row left to right: ii. Predicted against the 

observed plot of Composite Weighted Acceleration, iii. Predicted against the observed plot of 

Composite Weighted Acceleration with the number of data points; the third row left to right: 

iv. Histogram of residuals, v. Residual plot with the number of data points. 

3.8.4  Modelling the Welfare of Technicians 

This section describes the process of modelling the welfare of technicians in achieving the 

thesis aim. 
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In operation, the welfare model applies the limiting criteria defined by ISO 2631-1 to the 

outputs of the comfort and health-based model to make sail or not sail decisions. For the 

comfort-based model, this research uses the recommendation by the ISO 2631-1 expressed 

in sections 2.6.1 and 2.6.2 of this thesis, to describe technician discomfort based on the 

identified relationship between discomfort and the magnitude of acceleration. Table 2.2 

presents the ISO 2631-1 guideline for likely human reactions to vibrations which shows a 

range of magnitudes of acceleration between 0 ms-2 to 2 ms-2 which have defined human 

reactions ranging from not uncomfortable to extremely uncomfortable. In applying the scales 

described, logic decisions are created in the MATLAB workspace using “if” and “else” 

statements, where predicted values of Composited Weighted Accelerations less than 0.315 

ms-1 are defined as good sailing conditions and values of predicted Composite Weighted 

Acceleration greater than or equal to 0.315 ms-1, are defined as good sailing conditions and 

values of predicted Composite Weighted Acceleration greater than or equal to 0.315 ms-1 are 

defined as not good sailing conditions. Similarly, the health-based model applies operational 

conditions based on limits of acceptable working conditions and the duration of exposure 

which suggests a threshold of 20% Motion Sickness Incidence (Stevens and Parsons, 2002; 

Phillips et al., 2015; Saha et al., 2020). As such, logic decisions for sail or not sail decisions are 

described when predicted values of predicted Motion Sickness Incidence less than 20% are 

defined as good sailing conditions and predicted values of Motion Sickness Incidence greater 

than or equal to 20% are defined as not good sailing conditions. 

To visualise the welfare model, plots of predicted Motion Sickness Incidence and predicted 

composited weighted acceleration were plotted showing the ISO 2631-1 threshold. This was 

used to indicate the levels of operability based on technician health and comfort. A resulting 

plot show categorised decisions of sail and not-sail was then presented to show simple logic 

decisions, where green described sail decisions and red described not-sail decisions.  
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Figure 3. 10 Welfare model showing predicted sailing decisions. 

3.9  Conclusion 

This chapter described the methodologies used to collect data, process data collected, 

analyse the data collected, and model the estimated sickness and comfort of technicians on 

crew transfer vessels during operation and maintenance transits. 

In-situ vessel data was collected using vessel motion monitoring systems (VMMS) which 

recorded vessel acceleration data in the six-axis of freedom as well as GPS data, vessel speed 

data, timestamp data, and vessel heading data. The site selection for this thesis was based 

solely on the availability of data and the participation of wind farm operators and vessels 

across four wind farms (4), four wind farm operators, and twelve (12) crew transfer vessels 

operating in the North Sea. The data collection for this project lasted for a year, however, 

data used for the analysis process covered eight months resulting in eight hundred and fifty 

defined operation and maintenance transit days after data processing and cleaning. 

Metocean data was used to represent meteorological data in the project sites and MATLAB 

code was used to synchronise metocean data to vessel transits between port and wind farms 

using the GPS coordinates of crew transfer vessels. The meteorological data included wind, 

wave, and current data. An analysis was performed on the vessel motion monitoring system 
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dataset to instantaneously describe operation and maintenance transits, and feature 

engineering processes were used to create Motion Sickness Incidence and Composite 

Weighted Acceleration variables based on equations 2.14 and 2.18 of chapter two. A daily 

dose value of the dataset was created and after feature engineering processes, the total 

number of variables in the combined dataset was brought to sixteen variables. Dimensionality 

reduction processes were performed to identify variables most relevant to predicting Motion 

Sickness Incidence and Composite Weighted Acceleration in order to improve the model 

performance. The processes involved included a feature section based on domain knowledge, 

a pairwise correlation between variables, a variance thresholding analysis, and a principal 

component analysis (PCA). Seven input variables were identified including vessel duration, 

vessel speed, vessel heading, current speed, current direction, tidal range, and significant 

wave height. Using machine learning processes, a Gaussian process regression (GPR) model 

was identified as the model with the best fit for predicting both Motion Sickness Incidence 

and Composite Weighted Acceleration based on the input variables. After the models had 

been trained, validated, and tested, statistical measures including the coefficient of 

determination (R2) mean absolute error (MAE), mean Squared Error (MSE), and root-mean-

squared error (RMSE), were used to show the models effectiveness. The outputs of the 

comfort and health-based model were used as inputs for the welfare model by applying 

limiting criteria defined by the ISO 2631-1 to make sail or not sail decisions in a logic model 

where values of Composite Weighted Acceleration below 0.315 ms-1 and Motion Sickness 

Incidence below 20% were categorised as a sail decision. Similarly, values of Composite 

Weighted Acceleration equal to or above 0.315 ms-1 and Motion Sickness Incidence equal to 

or above 20% were categorised as a not-sail decision. The results of the methodology 

described in this chapter are presented in the following chapter – Chapter Four. 
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4  Results 

4.1  Introduction 

This chapter provides representations and descriptions of the meteorological data and in-situ 

data collected by the Vessel Motion Monitoring System to meet the thesis objectives. 

This project defines an operation and maintenance (O&M) transit as the transport from an 

O&M vessel originating from a port of exit onshore to a participating wind farm and concludes 

at its original port of exit (or a different exit port) within a day. As such transits outside the 

scope of this definition were not considered in the research analysis. The vessel motion 

monitoring system data collected includes data from four project sites, collected over a single 

year between January to October of 2019. Figure 4.1 below presents a frequency distribution 

of the defined O&M transits for the four project sites collected within the data collection 

period. 

 

 

Figure 4. 1 Figure showing the distribution of operation and maintenance (O&M) transit by 
the four participating project sites over a year. 

From Figure 4.1, Southern site 1 accounts for the majority of O&M transits with a sample size 

of n1 = 440 recorded transits. Similarly, project sites 2, 3, and 4 recorded O&M transits of n2 

= 184, n3 = 121, and n4 = 105, respectively, bringing the total number of definable O&M 
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transits for the entire project to nt = 850 transits. Data from the vessel motion monitoring 

system also showed that on most maintenance days, daily O&M transits are undertaken by 

more than one maintenance vessel resulting in more than one transit in a single day. The data 

also shows that data from some sites including Southern site 2 and Western site 1 contain 

data that only cover part of the year. This coincides with rougher weather and sea state 

conditions during winter months where operational conditions would prevent O&M transits. 

Therefore, models created from this data will not cover the entire seasonal variability during 

the year which can affect future predictions for the uncovered months. Southern site 1 and 

western site 1 also appear to have noticeably higher durations than the other two sites which 

suggest longer daily O&M transits and longer time in completing maintenance tasks which 

could affect estimations for weighted accelerations and motion sickness incidences. 

Chapter description 

The results presented in this chapter are structured between each of the project sites and the 

nature of the analysis needed to achieve the exploratory thesis objectives outlined in Figure 

4.2 below. 

 

Figure 4. 2 Figure showing project data analysis flow chart. 

As seen in Figure 4.2, descriptive analysis processes were performed on both the 

meteorological dataset and the in-situ dataset to better understand the dataset and pair 

finding with domain knowledge before further diagnostic analysis is performed to explore 

specific features. The predictive analysis is performed to achieve the thesis objective of 

modelling the welfare of technicians on crew transfer vessels. 

This chapter is separated into sections. This first section (Section 4.1) provides an overview of 

the dataset used within the project, defines relevant project terms, and provides a description 

of the sections contained within this chapter. Section 4.2 presents the results from southern 

site 1 including the results of the remote sensing meteorological data, the results of the 

VMMS in-situ data, and the results of the analytical process undertaken to achieve the thesis 

Descriptive 
Analysis

Diagnostic 
Analysis

Predictive 
Analysis
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objectives. Section 4.3 presents the results from northern site 1 including the results of the 

remote sensing meteorological data, the results of the VMMS in-situ data, and the results of 

the analytical process undertaken. Section 4.4 presents the results from southern site 2 

including the results of the remote sensing meteorological data, the results of the VMMS in-

situ data, and the results of the analytical process undertaken. Section 4.5 presents the results 

from western site 1 including the results of the remote sensing meteorological data, the 

results of the VMMS in-situ data, and the results of the analytical process undertaken. Section 

4.6 explores the relationships between relevant variables and presents the results of the 

modelling process undertaken to achieve the thesis aims and objectives including modelling 

the comfort of technicians, modelling the health of technicians, and modelling the welfare of 

technicians. Finally, section 4.7 provides a summary and conclusion of the results of sections 

4.2 to 4.6. A discussion of the results provided in this chapter is given in the following chapter 

– chapter five. 

4.2  Descriptive Analysis of Southern site 1 

This section presents the results of the data collected for southern site 1. 

4.2.1  Meteorological Data from Southern site 1 

As discussed in section 3.3 of chapter three of this thesis, meteorological data including wind 

speed and wind direction, significant wave height, wave period and wave direction, sea 

surface height, current velocity, and current direction, were acquired and licenced from the 

Copernicus Marine Service (CMEMS). The meteorological data for Southern site 1 was 

collected from periods between 03/01/2019 and 31/10/2019. The multi-sourced data was 

recorded at different temporal resolutions, with the wave data which included significant 

wave height (Hs) measured in metres, wave period (Tp) measured in seconds, and wave 

direction (ϴwave) measured in degrees, available as tri hourly data points. The current data 

was available at an hourly temporal resolution and included sea surface height (SSH) 

measured in metres, current velocity (Ucurrent) and wave direction ϴcurrent in degrees, both 

calculated from northward and eastward current velocity v and u and measured in metres per 

second and degrees, respectively. This was done in MATLAB space by calculating the 
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magnitude and direction of the current vector. Future engineering processes were applied to 

the sea surface height variables of the current dataset to create a new variable containing 

tidal range in metres. The wind data were recorded daily and included wind speed (Vwind) and 

direction ϴwind calculated from northward and eastward wind components v and u and 

measured in metres per second and degrees, respectively. This was done in the MATLAB 

workspace by calculating the magnitude and direction of the wind vector. MATLAB code was 

used to synchronise all three environmental datasets including the wave dataset, the current 

dataset, and the wind dataset using timestamps and dates as the merging variable. The 

synchronised environmental dataset was then synchronised with the Vessel Motion 

Monitoring System (VMMS) dataset to correlate with the movements of the vessels as they 

travel to wind farms using timestamps, dates, and vessel GPS locations. 
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Figure 4. 3 Meteorological data for Southern site 1. From top to bottom: i. Hs, Significant wave 
height (m); ii. ϴwave, Wave direction (°); iii. TP, Peak wave period (s); iv. Uwind, Wind speed 
(m/s); v. ϴwind, Wind direction (°) vi. Ucurrent, Current velocity (m/s); vii. ϴcurrent, Current 
direction (°); viii. SSH, Sea surface height (m); 

Figure 4.3 above is a stacked plot arranged from top to bottom which presents the daily 

meteorological dataset for Southern site 1. The plot shows that the significant wave height 

for southern site 1 ranged between 0.06 metres and 1.89 metres with an average height of 

about 0.65 m during the 8-month project data collection period. There were periods of rough 
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weather resulting in higher than 1.5 m significant wave heights in the autumn and winter 

months. Wave direction ranged between 5 degrees and 339 degrees with an average 

direction of about 128 degrees. The peak wave period ranged between 1.71 seconds and 

14.09 seconds and recorded an average peak wave period of around 5.21 seconds. Recorded 

current velocities ranged between 0.009 m/s and 0.14 m/s with an average current velocity 

of 0.07 m/s and distinct periods of higher current velocities in the autumn and winter months. 

The current direction ranged between 5.71 degrees and 356.82 degrees. The sea surface 

height and tidal range during the project period ranged from -1.55 m to 2.09 m and 1.82 m to 

3.68 m, respectively. The wind speeds for the project period ranged between 2.91 m/s and 

14.74 m/s with increased activity in the autumn and winter months which recorded wind 

speeds greater than 9.0 m/s coinciding with increased wave activity in the autumn and winter 

months. The average wind speed in the project time scale was 8.576 m/s. Wind direction 

ranged between 10 degrees and 359 degrees with an average of 176 degrees. 

4.2.2   VMMS Data from Southern site 1 

This section presents the results of the Vessel Motion Monitoring System collected at 

Southern site 1. The data collected using the VMMS includes GPS location data, vessel speed 

data, vessel heading, translational acceleration data (i.e., accelerations in the x-axis, y-axis, 

and z-axis) and angular accelerations (i.e., accelerations in roll, pitch, and yaw) at 40 Hz. For 

eight (8) months, beginning on 03/01/2019 to 31/10/2019, Southern site 1 recorded 440 

O&M transits from 3 (three) maintenance vessels (CTVs) with Vessel 1 recording 176 transits, 

Vessel 2 recording 110 transits and Vessel 3 recording 154 transits. Figure 4.4 presents the 

total O&M transits from the three participating crew transfer vessels at Southern site 1. 
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Figure 4. 4 Figure showing the distribution of operation and maintenance (O&M) transits by 

three CTVs at Southern site 1. 

Figure 4.4 shows an increase in O&M transits in the summer months and a reduction or 

absence of transits in the autumn and winter months which corresponds to higher wave and 

wind activity in the autumn and winter months for the project period. The reduction and 

absence of transits correspond to periods of rougher weather where significant wave heights 

were recorded above 1.5 m - the threshold for crew transfer vessels (CTVs) used in the 

offshore wind industry (Phillips et al., 2015) - and where the wind speed was recorded above 

10 m/s2 which can be described by an index of 5 on the Beaufort wind scale (Met Office, 

2017). Figure 4.5 provides data from the VMMS collected for Southern site 1 on a typical O&M 

journey as defined in section 4.1 of this chapter. The plot shows a stacked plot using data 

from a CTV (Vessel 1) on an O&M transit day – the 12th of September 2019. 



 

118 
 

 

Figure 4. 5 Sample data from a CTV transit day. From top to bottom: i. Vessel x-axis 
acceleration denoted by ax in m/s2; ii. Vessel y-axis acceleration denoted by ay in m/s2; iii. 
Vessel z-axis acceleration denoted by az in m/s2; iv. Vessel roll acceleration in degrees; v. 
Vessel pitch acceleration in degrees; vi. Vessel yaw in degrees; vii. Vessel speed recorded in 
kph 

The stacked plot presents data from a CTV on a maintenance operation over about 9.83 hours 

(35388 seconds) beginning at 06:23:37 and concluding at 16:13:26 of the same day - 

12/09/2019. From top to bottom, the translational accelerations of the vessel ranged from -

3.35 m/s2 to 2.49 m/s2 for the x-axis acceleration with an average acceleration of 0.23 m/s2, 

between -3.75 m/s2 and 4.00 m/s2 for the y-axis acceleration with an average acceleration of 

0.01 m/s2, and between 3.01 m/s2 and 14.84 m/s2 for the z-axis acceleration with an average 

acceleration of 9.79 m/s2. There are distinct periods of greater variations in translational 

accelerations suggesting changes in vessel behaviour during the transit. Figure 4.5 also 

presents the vessel’s rotational acceleration which ranges from -12 degrees to 12 degrees for 
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the roll, between -8 degrees and 7 degrees for the pitch, and between -180 degrees and 180 

degrees for the yaw. The speed of the vessel, measured in kilometres per hour, ranged from 

0 km/h to a maximum of 54.08 km/h and the average speed of the vessel for the duration of 

the transit was 18.92 km/h. The changes in vessel speed correlate with the changes in the 

translational acceleration which suggests that the increase in vessel speed during transit leads 

to an increase in the vessel's translational acceleration and vice versa. 

4.2.3  Instantaneous Descriptive Analysis 

As described in section 3.6.1 of the third chapter of this thesis, to define the scope of O&M 

transits, a discretization process was applied to the acceleration data from participating 

vessels to define and classify the changes in vessel behaviour. Figure 4.6 presents plots of the 

descriptive analysis process carried out on a participating vessel at southern site 1.  

 

Figure 4. 6 Sample data from a CTV transit day. Left top to bottom: i. Time series plot of the 
discretized x-axis, y-axis, and z-axis acceleration signals using standard deviation; ii. Time 
series plot of vessel speed in km/h showing transit classifications between the vessel in transit 
and the vessel at wind farms; iii. A plot of the z-axis acceleration signal showing transit 
classifications of the vessel in transit and the vessel at wind farms; Right top to bottom: vi. 
Vessel transit plot before classification; vii. Vessel transit plot showing classified transit of 
vessel in transit and vessel at wind farms. 
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The discretization plot shows the standard deviations of the acceleration between 0.063 m/s2 

and 1.045 m/s2 which increases during transit to offshore wind farms with peaks that highlight 

technician transfers (onto and off wind turbine platforms) during the maintenance activity. 

The individual plots of vessel speed against time and z-axis acceleration with time corroborate 

the discretization plot and the classification of vessel behaviour between vessels in transit 

and vessel and wind farm. The resulting categorized plots suggest the practice of pit-stop 

servicing within maintenance operations – where more than one wind turbine is serviced in 

one transit by the same vessel.  

4.2.4  Estimation of Personnel Comfort and Sickness 

Using the process of discretization shown in Figure 4.6 and feature engineering processes for 

estimating comfort using Composite Weighted Acceleration, and sickness using Motion 

Sickness Incidence Figure 4.7 presents plots of the welfare variables of sickness and comfort 

with technician transfer points and sail and no sail decisions. 

 

Figure 4. 7 Left top to bottom: i. A time series plot of Composite Weighted Acceleration in m/s2 
showing technician transfer points and estimated human comfort levels as defined by ISO 
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2631-1 for Vessel 1; ii. A time series plot of Composite Weighted Acceleration in m/s2 showing 
technician transfer points and estimated human comfort levels as defined by ISO 2631-1 for 
Vessel 2; iii. A time series plot of Composite Weighted Acceleration in m/s2 showing technician 
transfer points and estimated human comfort levels as defined by ISO 2631-1 for Vessel 3; 
Right top to bottom: iv. A time series plot of Motion Sickness Incidence in % showing technician 
transfer points and estimated sail or not-sail decision-based CTV safety thresholds for Vessel 
1; v. A time series plot of Motion Sickness Incidence in % showing technician transfer points 
and estimated sail or not-sail decision-based CTV safety thresholds for Vessel 2; vi. A time 
series plot of Motion Sickness Incidence in % showing technician transfer points and estimated 
sail or not-sail decision-based CTV safety thresholds for Vessel 3. 

The plots on the left show black dots which indicate values for defined Composite Weighted 

Acceleration defined from the description given in section 3.6.3 of the third chapter, and 

categories of colour represent a human reaction to vibrations as defined by ISO 2631-1 shown 

in Table 4.1 below. However, as Figure 4.7 shows, transit accelerations are below 0.315 m/s2, 

and as such are categorised as comfortable represented in black as seen in the figure legends. 

The plots on the right, indicate the levels of estimated Motion Sickness Incidence (defined in 

section 3.6.3 of chapter 3) represented in black dots. Colour variations shown in the plot 

legend show sail or no sail decisions based on best sea fairing practices (Phillips et al., 2015) 

of a 20% Motion Sickness Incidence threshold. However, as levels in the transit plot are below 

15%, the transit is categorized as sail shown in black. The red squares in both plots indicate 

technician transfer points defined from the discretization process in Figure 4.6. The table 

below shows the comfort reactions to vibrations defined by ISO 2631-1 used in Figure 4.7. 

Less than 0.315 m/s2 Comfortable 

0.315 m/s2 – 0.633 m/s2 A little uncomfortable 

0.500 m/s2 – 1.000 m/s2 Fairly uncomfortable 

0.800 m/s2 – 1.600 m/s2 Uncomfortable 

1.250 m/s2 – 2.500 m/s2 Very uncomfortable 

Greater than 2.000 m/s2 Extremely uncomfortable 

Table 4. 1 Table showing comfort reactions to vibrations in ms-1 (ISO 2631-1, 1997). 

Both plots in Figure 4.7 (left and right) seem to follow plots of square root functions as both 

plots have a minimum y-value of 0, no negative values, and an opening along the x-axis. 
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4.3  Descriptive Analysis of Northern site 1 

This section presents the results of the data collected for northern site 1. 

4.3.1  Meteorological Data from Northern site 1 

Similar to the data from Southern site 1 in section 4.2.1 above, the meteorological data used 

for Northern site 1 included wind, wave, and current datasets acquired and licenced from 

Copernicus Marine Service (CMEMS). However, the meteorological was downloaded for 

periods between 20/07/2019 and 31/10/2019 and synchronised with the Vessel Motion 

Monitoring System (VMMS) dataset to correlate with the movements of the vessels as they 

travel to wind farms using timestamps and vessel GPS locations. 

Figure 4.8 below shows that the significant wave height for northern site 1 ranged between 

0.29 and 2.03 metres with an average significant wave height of about 0.81 m during the 4-

month project period. There were periods of rough weather resulting in higher than 1.5 m 

significant wave heights in the autumn and winter months. Wave direction ranged between 

2 and 317 degrees with an average direction of about 116 degrees. The peak wave period 

ranged between 2.74 and 14.52 seconds and recorded an average peak wave period of 

around 6.34 seconds. Recorded current velocities ranged between 0.01 and 0.12 m/s2 with 

an average current velocity of 0.05 m/s and distinct periods of higher current velocity in the 

autumn and winter months. The sea surface height and tidal range during the project period 

ranged from -1.09 to 1.94 m and 1.60 to 4.04 m, respectively. The wind speeds for the project 

period ranged between 0.48 and 8.93 m/s2 with increased activity in the autumn and winter 

months which recorded wind speeds greater than 9.0 m/s2 though not within the project’s 

data collection phase. Wind direction ranged between 4 and 349 degrees with an average of 

171 degrees. 
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Figure 4. 8 Meteorological data for Northern site 1. From top to bottom: i. Hs, Significant wave 
height (m); ii. ϴwave, Wave direction (°); iii. TP, Peak wave period (s); iv. Uwind, Wind speed 
(m/s); v. ϴwind, Wind direction (°) vi. Ucurrent, Current velocity (m/s); vii. ϴcurrent, Current 
direction (°); viii. SSH, Sea surface height (m);  

4.3.2   VMMS Data from Northern site 1 

This section presents the results of the Vessel Motion Monitoring System. As with southern 

site 1 in section 4.2.2, the data collected by VMMS includes GPS location data, vessel speed 

data, vessel heading, and translational acceleration at 40 Hz. The data was collected over four 

months, beginning on 20/07/2019 and ending on 31/10/2019. This site recorded 184 O&M 
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transits, from 3 (three) maintenance vessels with Vessel 4 recording 61 transits, Vessel 5 

recording 55 transits and Vessel 6 recording 68 transits. 

 

Figure 4. 9 Figure showing the distribution of operation and maintenance (O&M) transit by 
three CTVs at Northern site 1. 

Figure 4.9 shows the presence of increased O&M transits in the summer months, starting in 

July and ending in October, and an absence of transits in autumn and winter months which 

corresponds to rougher weather with a higher wave and wind activity in the autumn and 

winter months for the site. 

Figure 4.10 presents the data from the VMMS collected for Southern site 1 on a typical O&M 

transit as defined in section 4.1 of this chapter. 
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Figure 4. 10 Sample data from a CTV transit day. From top to bottom: i. Vessel x-axis 
acceleration denoted by ax in m/s2; ii. Vessel y-axis acceleration denoted by ay in m/s2; iii. 
Vessel z-axis acceleration denoted by az in m/s2; iv. Vessel roll acceleration in degrees; v. 
Vessel pitch acceleration in degrees; vi. Vessel yaw acceleration in degrees; vii. Vessel speed 
recorded in kph. 

Figure 4.10 The plot shows a stacked plot of the available VMMS data from a CTV (Vessel 4) 

on an O&M transit on the 12th of September 2019. The plot shows that the transit lasted for 

about 7.25 hours (26115 seconds) beginning at 06:54:04 and concluding at 14:09:19 of the 

same day, 12/09/2019. The translational accelerations of the vessel ranged from -2.88 to 2.76 

m/s2 for the x-axis acceleration with an average acceleration of 0.305 m/s2, between -3.987 

and 4.07 m/s2 for the y-axis acceleration with an average acceleration of 0.04 m/s2, and 

between 3.69 and 13.97 m/s2 for the z-axis acceleration with an average acceleration of 9.77 

m/s2. There are distinct periods of greater variations in translational accelerations suggesting 

changes in vessel behaviour during the transit. Figure 4.5 also presents the vessel’s rotational 
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acceleration which ranges from -11.40 to 11.99 degrees for the roll, between -8 and 5 degrees 

for the pitch, and between -180 and 180 degrees for the yaw. The speed of the vessel, 

measured in kilometres per hour, ranged from zero to a maximum of 35.37 and the average 

speed of the vessel for the duration of the transit was 13.51 km/h. The changes in vessel 

speed correlate with the changes in the translational acceleration which suggests that the 

increase in vessel speed during transit leads to an increase in the vessel's translational 

acceleration and vice versa. 

4.3.3  Instantaneous Descriptive Analysis 

As described in section 3.6.1 of the third chapter of this thesis, to define the scope of O&M 

transits, a discretization process was applied to the acceleration data which was used to 

define and classify the changes in vessel behaviour. Figure 4.11 presents plots of the 

descriptive analysis process conducted on a participating vessel at southern site 1. 

 

Figure 4. 11 Sample data from a CTV transit day. Left top to bottom: i. Time series plot of the 
discretized x-axis, y-axis, and z-axis acceleration signals using standard deviation; ii. Time 
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series plot of vessel speed in km/h showing transit classifications between the vessel in transit 
and the vessel at wind farms; iii. A plot of the z-axis acceleration signal showing transit 
classifications of the vessel in transit and the vessel at wind farms; Right top to bottom: vi. 
Vessel transit plot before classification; vii. Vessel transit plot showing classified transit of 
vessel in transit and vessel at wind farms. 

The discretization plot shows the standard deviations of the acceleration between 1.10 and 

1.33 m/s2 which increases during transit to offshore wind farms with peaks that highlight 

technician transfers (onto and off wind turbine platforms) during the maintenance activity. 

The individual plots of vessel speed against time and z-axis acceleration with time corroborate 

the discretization plot and the classification of vessel behaviour between vessels in transit 

and vessel and wind farm. The resulting categorized plots suggest the practice of pit-stop 

servicing within maintenance operations – where more than one wind turbine is serviced in 

one transit by the same vessel.  

4.3.4  Estimation of Personnel Comfort and Sickness 

Using the numerical evaluations described in section 3.6 of chapter three, the results of 

motion sickness evaluation and technician comfort evaluations is presented in Figure 4.12 for 

three vessels (vessel 4, 5, 6). 
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Figure 4. 12 Left top to bottom: i. A time series plot of Composite Weighted Acceleration in 
m/s2 showing technician transfer points and estimated human comfort levels as defined by 
ISO 2631-1 for Vessel 4; ii. A time series plot of Composite Weighted Acceleration in m/s2 
showing technician transfer points and estimated human comfort levels as defined by ISO 
2631-1 for Vessel 5; iii. A time series plot of Composite Weighted Acceleration in m/s2 showing 
technician transfer points and estimated human comfort levels as defined by ISO 2631-1 for 
Vessel 6; Right top to bottom: iv. A time series plot of Motion Sickness Incidence in % showing 
technician transfer points and estimated sail or not-sail decision-based CTV safety thresholds 
for Vessel 4; v. A time series plot of Motion Sickness Incidence in % showing technician transfer 
points and estimated sail or not-sail decision-based CTV safety thresholds for Vessel 5; vi. A 
time series plot of Motion Sickness Incidence in % showing technician transfer points and 
estimated sail or not-sail decision-based CTV safety thresholds for Vessel 6. 

The plots on the left show black and red dots which indicate values for defined Composite 

Weighted Acceleration, defined from the description given in section 3.7 of chapter three. 

The black and red colours describe the human comfort reactions to vibrations as defined by 

ISO 2631-1 shown in Table 4.1 of section 4.2.4 of this chapter. The black coloured dots indicate 

that the journey is not uncomfortable (below 0.315 m/s2), and the red dots indicate that the 
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transit was fairly uncomfortable (between 0.315 m/s2 and 0.633 m/s2). The red squares 

indicate technician transfer points defined from the discretization process in Figure 4.6. 

On the right, the black and red dots indicate estimated Motion Sickness Incidence also defined 

from descriptions given in section 3.7 of chapter three of this thesis. The black dots indicate 

a sail welfare-based decision using 20% thresholds for best sea fairing practices (Phillips et al., 

2015), while the red dots indicate a no sail welfare-based decision. The red squares also 

indicate technician transfer points defined from the discretization process in Figure 4.6. 

Both plots in Figure 4.12 (left and right) seem to follow plots of square root functions as both 

plots have a minimum y-value of 0, no negative values, and increasing values along the x-axis. 

The plots also show that for Vessel 6, at about 15:20, the transits start becoming slightly 

uncomfortable for technicians onboard the vessel and this categorization seems to seem to 

coincide with the categorization of no sail on the motion sickness plot. 

4.4  Descriptive Analysis of Southern site 2 

This section presents the results of the data collected for southern site 2. 

4.4.1  Meteorological Data from Southern site 2 

Meteorological data for southern site 2 included wind, wave, and current datasets acquired 

and licenced from Copernicus Marine Service (CMEMS) between 03/01/2019 and 

28/02/2019. The dataset was synchronised with the Vessel Motion Monitoring System 

(VMMS) dataset to correlate with the movements of the vessels as they travel to wind farms 

using timestamps and vessel GPS locations. 
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Figure 4. 13 Meteorological data from Copernicus Marine Service (CMEMS) for Southern site 
2. From top to bottom: i. Hs, Significant wave height (m); ii. ϴwave, Wave direction (°); iii. TP, 
Peak wave period (s); iv. Uwind, Wind speed (m/s); v. ϴwind, Wind direction (°) vi. Ucurrent, 
Current velocity (m/s); vii. ϴcurrent, Current direction (°); viii. SSH, Sea surface height (m); 

Figure 4.13 shows that the significant wave height for southern site 2 ranged between 0.09 

and 1.68 metres with an average height of about 0.73 m during the 2-month project period. 

There were periods of rough weather resulting in higher than 1.5 m significant wave heights 

in the autumn and winter months. Wave direction ranged between 4 and 350 degrees with 
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an average direction of about 129 degrees. The peak wave period ranged between 1.69 and 

10.15 seconds and recorded an average peak wave period of around 5.42 seconds. Recorded 

current velocities ranged between 0.02 and 0.09 m/s with an average current velocity of 0.05 

m/s2 and distinct periods of higher current velocity in the autumn and winter months. The 

sea surface height and tidal range during the project period ranged from -0.92 to 1.04 m and 

1.69 to 2.77 m, respectively. The wind speeds for the project period ranged between 2.10 and 

12.37 m/s2 with increased activity in the autumn and winter months which recorded wind 

speeds greater than 9.0 m/s2 coinciding with increased wave activity in the autumn and 

winter months. Wind direction ranged between 26 and 348 degrees with an average of 139 

degrees. 

4.4.2   VMMS Data from Southern site 2 

This section presents the results of the Vessel Motion Monitoring System. The data collected 

using the VMMS includes GPS location data, vessel speed data, vessel heading, translational 

acceleration data (i.e., accelerations in the x-axis, y-axis, and z-axis) and angular accelerations 

(i.e., accelerations in roll, pitch, and yaw) at 40 Hz. Over two months, beginning on 

03/01/2019 and ending on 28/02/2019, southern site 2 recorded 121 O&M transits, in which 

transits were recorded from 3 (three) maintenance vessels with Vessel 7 recording 39 transits, 

Vessel 8 recording 41 transits and Vessel 9 recording 41 transits.  

 

Figure 4. 14 Figure showing the distribution of operation and maintenance (O&M) transit by 
three CTVs at Southern site 2. 

Figure 4.14 shows an increase in O&M transits in January and February and an absence of 

transits for the rest of the data collection period.  
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Figure 4. 15 Sample data from a CTV transit day. From top to bottom: i. Vessel x-axis 
acceleration denoted by ax in m/s2; ii. Vessel y-axis acceleration denoted by ay in m/s2; iii. 
Vessel z-axis acceleration denoted by az in m/s2; iv. Vessel roll acceleration in degrees; v. 
Vessel pitch acceleration in degrees; vi. Vessel yaw acceleration in degrees; vii. Vessel speed 
recorded in kph. 

Figure 4.15 shows data from a select vessel (Vessel 7) at Southern site 2. The figure shows 

about 9.63 hours (34663 seconds) beginning at 07:30:18 and concluding at 17:08:00 on the 

same day, 27/02/2019. The translational accelerations of the vessel ranged from -1.07 to 1.16 

m/s2 for the x-axis acceleration with an average acceleration of 0.09 m/s2, between -1.72 and 

1.81 m/s2 for the y-axis acceleration with an average acceleration of -0.23 m/s2, and between 

2.96 and 10.78 m/s2 for the z-axis acceleration with an average acceleration of 9.82 m/s2. 

There are distinct periods of greater variations in translational accelerations suggesting 

changes in vessel behaviour during the transit. Figure 4.5 also presents the vessel’s rotational 

acceleration which ranges from -8 to 2 degrees for the roll, between -5 and 3 degrees for the 
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pitch, and between -180 and 180 degrees for the yaw. The speed of the vessel, measured in 

kilometres per hour, ranged from 0 to a maximum of 54.95 and the average speed of the 

vessel for the duration of the transit was 14.41 km/h. The changes in vessel speed correlate 

with the changes in the translational acceleration which suggests that the increase in vessel 

speed during transit leads to an increase in the vessel's translational acceleration and vice 

versa. 

4.4.3  Instantaneous Descriptive Analysis 

As described in Chapter three of this thesis, to define the scope of O&M transits, a 

discretization process was applied to the acceleration data from participating vessels to 

define and classify the changes in vessel behaviour. Figure 4.16 presents plots of the 

descriptive analysis process conducted on a participating vessel at southern site 2. 

 

Figure 4. 16 Sample data from a CTV transit day. Left top to bottom: i. Time series plot of the 
discretized x-axis, y-axis, and z-axis acceleration signals using standard deviation; ii. Time 
series plot of vessel speed in km/h showing transit classifications between the vessel in transit 
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and the vessel at wind farms; iii. A plot of the z-axis acceleration signal showing transit 
classifications of the vessel in transit and the vessel at wind farms; Right top to bottom: vi. 
Vessel transit plot before classification; vii. Vessel transit plot showing classified transit of 
vessel in transit and vessel at wind farms. 

The discretization plot shows the standard deviations of the acceleration between 0.04 and 

0.34 m/s2 which increases during transit to offshore wind farms with peaks that highlight 

technician transfers (onto wind turbine platforms) during the maintenance activity. The 

individual plots of vessel speed against time and z-axis acceleration with time corroborate the 

discretization plot and the classification of vessel behaviour between vessels in transit and 

vessel and wind farm. The resulting categorized plots suggest the practice of pit-stop servicing 

within maintenance operations – where more than one wind turbine is serviced in one transit 

by the same vessel.  

4.4.4  Estimation of Personnel Comfort and Sickness 

Using the numerical evaluations described in section 3.6 of chapter three, the results of 

motion sickness evaluation and technician comfort evaluations is presented in Figure 4.17 for 

three vessels (vessel 7, 8, 9). 
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Figure 4. 17 Left top to bottom: i. A time series plot of Composite Weighted Acceleration in 
m/s2 showing technician transfer points and estimated human comfort levels as defined by 
ISO 2631-1 for Vessel 4; ii. A time series plot of Composite Weighted Acceleration in m/s2 
showing technician transfer points and estimated human comfort for Vessel 5; iii. A time series 
plot of Composite Weighted Acceleration in m/s2 showing technician transfer points and 
estimated human comfort levels for Vessel 6; Right top to bottom: iv. A time series plot of 
Motion Sickness Incidence in % showing technician transfer points and estimated sail or not-
sail decision-based CTV safety thresholds for Vessel 4; v. A time series plot of Motion Sickness 
Incidence in % showing technician transfer points and estimated sail or not-sail decision-based 
CTV safety thresholds for Vessel 5; vi. A time series plot of Motion Sickness Incidence in % 
showing technician transfer points and estimated sail or not-sail decision-based CTV safety 
thresholds for Vessel 6. 

The plots on the left show black dots which indicate values for defined Composite Weighted 

Acceleration, defined from the description given in section 3.7 of chapter three. The black 

coloured dots also describe the human comfort reactions to vibrations as defined by ISO 

2631-1 shown in Table 4.1 of section 4.2.4 of this chapter, with black and red colour categories 

representing the different comfort levels. The black coloured dots in this plot indicate that 
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the journey is not uncomfortable (below 0.315 m/s2), and the red squares indicate technician 

transfer points defined from the discretization process in Figure 4.6. 

On the right, the black dots indicate estimated Motion Sickness Incidence also defined from 

descriptions given in section 3.7 of chapter three of this thesis. The black coloured dots also 

indicate a sail welfare-based decision using 20% thresholds for best sea fairing practices 

(Phillips et al., 2015), with black and red colours indicating sail and no sail welfare-based 

decisions respectfully. The red squares also indicate technician transfer points defined from 

the discretization process. 

Both plots in Figure 4.17 (left and right) seem to follow plots of square root functions as both 

plots have a minimum y-value of 0, no negative values, and increasing values along the x-axis. 

4.5  Descriptive Analysis of Western site 1 

This section presents the results of the data collected for western site 1. 

4.5.1  Meteorological Data from Western site 1 

Meteorological data including wind speed and direction, significant wave, wind, and current 

datasets acquired and licenced from Copernicus Marine Service (CMEMS). The meteorological 

data for Western site 1 were collected from periods between 14/08/2019 and 26/10/2019.  

Figure 4.18 below shows that the significant wave height for western site 1 ranged between 

0.15 and 1.52 metres with an average height of about 0.64 m during the 3-month project 

period. There were periods of rough weather resulting in higher than 1.5 m significant wave 

heights in the autumn and winter months. Wave direction ranged between 4 and 358 degrees 

with an average direction of about 120 degrees. The peak wave period ranged between 2.04 

and 13.63 seconds and recorded an average peak wave period of around 7.05 seconds. 

Recorded current velocities ranged between 0.01 and 0.11 m/s with an average current 

velocity of 0.034 m/s and distinct periods of higher current velocity in the autumn and winter 

months. The sea surface height and tidal range during the project period ranged from -2.98 

to 1.70 m and 2.69 to 6.95 m, respectively. The wind speeds for the project period ranged 

between 1.37 and 9.37 m/s2 with increased activity in the autumn and winter months which 
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recorded wind speeds greater than 9.0 m/s2 coinciding with increased wave activity in the 

autumn and winter months. Wind direction ranged between 13 and 348 degrees with an 

average of 183 degrees. 

 

Figure 4. 18 Meteorological data for Western site 1. From top to bottom: i. Hs, Significant 
wave height (m); ii. ϴwave, Wave direction (°); iii. TP, Peak wave period (s); iv. Uwind, Wind 
speed (m/s); v. ϴwind, Wind direction (°) vi. Ucurrent, Current velocity (m/s); vii. ϴcurrent, 
Current direction (°); viii. SSH, Sea surface height (m); 

4.5.2   VMMS Data from Western site 1 

This section presents the results of the Vessel Motion Monitoring System. The data collected 

using the VMMS includes GPS location data, vessel speed data, vessel heading, translational 

acceleration data (i.e., accelerations in the x-axis, y-axis, and z-axis) and angular accelerations 
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(i.e., accelerations in roll, pitch, and yaw) at 40 Hz. Beginning on 14/08/2019 and concluding 

on 26/10/2019, Western site 1 recorded 105 O&M transits from 3 (three) maintenance 

vessels (CTVs) with Vessel 10 recording 15 transits, Vessel 11 recording 39 transits and Vessel 

12 recording 51 transits. The figure below (Figure 4.4)presents the total transits to wind farms 

from the three participating vessels at Western site 1. 

 

Figure 4. 19 Figure showing the distribution of operation and maintenance (O&M) transits by 
three CTVs at Western site 1. 

Figure 4.19 shows increased O&M transits in the summer months, starting in August, and an 

absence of transits in the autumn and winter months which loosely corresponds to rougher 

weather conditions with a higher wave and wind activity. 
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Figure 4. 20 Sample data from a CTV transit day. From top to bottom: i. Vessel x-axis 
acceleration denoted by ax in m/s2; ii. Vessel y-axis acceleration denoted by ay in m/s2; iii. 
Vessel z-axis acceleration is denoted by az m/s2; iv. Vessel roll acceleration in degrees; v. Vessel 
pitch acceleration in degrees; vi. Vessel yaw acceleration in degrees; vii. Vessel speed recorded 
in kph. 

Figure 4.20 shows a stacked plot of the available VMMS data from a CTV (Vessel 10) on an 

O&M transit on the 12th of September 2019. The plot shows that the transit lasted for about 

10.744 hours (38679 seconds) beginning at 05:31:48 and concluding at 16:16:28 on the same 

day, 12/09/2019. The translational accelerations of the vessel ranged from -1.107 to 1.829 

m/s2 for the x-axis acceleration with an average acceleration of 0.833 m/s2, between -2.911 

and 2.463 m/s2 for the y-axis acceleration with an average acceleration of -0.116 m/s2, and 

between 3.187 and 18.946 m/s2 for the z-axis acceleration with an average acceleration of 

9.788 m/s2. There are distinct periods of greater variations in translational accelerations 

suggesting changes in vessel behaviour during the transit. Figure 4.20 also presents the 
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vessel’s rotational acceleration which ranges from -10.045 to 8.380 degrees for the roll, 

between -11.999 and 0.049 degrees for the pitch, and between -180 and 180 degrees for the 

yaw. The speed of the vessel, measured in kilometres per hour, ranged from 0 to a maximum 

of 40.206 and the average speed of the vessel for the duration of the transit was 12.805 km/h. 

The changes in vessel speed correlate with the changes in the translational acceleration which 

suggests that the increase in vessel speed during transit leads to an increase in the vessel's 

translational acceleration and vice versa. 

4.5.3  Instantaneous Descriptive Analysis 

As described in chapter three of this thesis, to define the scope of O&M transits, a 

discretization process was applied to the acceleration data from participating vessels to 

define and classify the changes in vessel behaviour. Figure 4.21 presents plots of the 

descriptive analysis process conducted on a participating vessel at western site 1.  

 

Figure 4. 21 Sample data from a CTV transit day. Left top to bottom: i. Time series plot of the 
discretized x-axis, y-axis, and z-axis acceleration signals using standard deviation; ii. Time 
series plot of vessel speed in km/h showing transit classifications between the vessel in transit 
and the vessel at wind farms; iii. A plot of the z-axis acceleration signal showing transit 
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classifications of the vessel in transit and the vessel at wind farms; Right top to bottom: vi. 
Vessel transit plot before classification; vii. Vessel transit plot showing classified transit of 
vessel in transit and vessel at wind farms. 

The discretization plot shows the standard deviations of the acceleration between 0.07 and 

1.40 m/s2 which increases during transit to offshore wind farms with peaks that highlight 

technician transfers (onto and off wind turbine platforms) during the maintenance activity. 

The individual plots of vessel speed against time and z-axis acceleration with time corroborate 

the discretization plot and the classification of vessel behaviour between vessels in transit 

and vessel and wind farm. The resulting categorized plots suggest the practice of pit-stop 

servicing within maintenance operations – where more than one wind turbine is serviced in 

one transit by the same vessel.  

4.5.4  Estimation of Personnel Comfort and Sickness 

Using the numerical evaluations described in section 3.6 of chapter three, the results of 

motion sickness evaluation and technician comfort evaluations is presented in Figure 4.22 for 

three vessels (vessel 10, 11, 12). 
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Figure 4. 22 Left top to bottom: i. A time series plot of Composite Weighted Acceleration in 
m/s2 showing technician transfer points and estimated human comfort levels as defined by 
ISO 2631-1 for Vessel 4; ii. A time series plot of Composite Weighted Acceleration in m/s2 
showing technician transfer points and estimated human comfort for Vessel 5; iii. A time series 
plot of Composite Weighted Acceleration in m/s2 showing technician transfer points and 
estimated human comfort levels for Vessel 6; Right top to bottom: iv. A time series plot of 
Motion Sickness Incidence in % showing technician transfer points and estimated sail or not-
sail decision-based CTV safety thresholds for Vessel 4; v. A time series plot of Motion Sickness 
Incidence in % showing technician transfer points and estimated sail or not-sail decision-based 
CTV safety thresholds for Vessel 5; vi. A time series plot of Motion Sickness Incidence in % 
showing technician transfer points and estimated sail or not-sail decision-based CTV safety 
thresholds for Vessel 6. 

The plots on the left show black dots which indicate values for defined Composite Weighted 

Acceleration, defined from the description given in section 3.7 of chapter three. The black 

coloured dots also describe the human comfort reactions to vibrations as defined by ISO 

2631-1 shown in Table 4.1 of section 4.2.4 of this chapter, with black and red colour categories 

representing the different comfort levels. The black coloured dots in this plot indicate that 
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the journey is not uncomfortable (below 0.315 m/s2). The red squares indicate technician 

transfer points defined from the discretization process in Figure 4.22. 

On the right, the black dots indicate estimated Motion Sickness Incidence also defined from 

descriptions given in section 3.7 of chapter three of this thesis. The black coloured dots also 

indicate a sail welfare-based decision using 20% thresholds for best sea fairing practices 

(Phillips et al., 2015), with black and red colours indicating sail and no sail welfare-based 

decisions respectfully. The red squares also indicate technician transfer points defined from 

the discretization process. 

Similar to plots in sections 4.2.4, 4.3.4, and 4.4.4. both plots in Figure 4.22 (left and right) 

seem to follow plots of square root functions as both plots have a minimum y-value of 0, no 

negative values, and opening along the x-axis. 

Table 4.2 presents a summary of the descriptive analysis performed including mean 

observations of significant wave height, mean wind speed, mean estimated Composite 

Weighted Acceleration, mean estimated motion sickness incidence, sea state occurrences in 

the project sites based on the Beaufort wind force scale (Singleton, 2008), and the observed 

percentage occurrence of each sea state. 

Sea 
state 

Mean significant 
wave height (m) 

Mean wind 
speed (m/s2) 

Mean Composite 
Weighted 
Acceleration 
(m/s2) 

Mean 
MSI (%) 

Percentage of sea 
state occurrence 
(%) 

1 0.06 5.65 0.23 5.19 2.41 

2 0.14 3.44 0.27 5.70 3.25 

3 0.42 5.58 0.29 6.15 42.00 

4 0.88 6.33 0.39 8.05 52.35% 

Table 4. 2 Sea state occurrences in project sites with equivalent values for estimated 
Composite Weighted Acceleration (aRMS) and motion sickness incidence (MSI). 

The data in Table 4.2 shows that the most experienced sea state in the project sites was sea 

state 4 with a 52.35 per cent occurrence and an equivalent significant wave height of 0.88m. 

On the other hand, sea states 1 and 2 were the least measured sea states with percentage 

occurrences of 2.41% and 3.25% respectively. The table also shows the relationships between 
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sea state, sea state variables, and welfare variables including motion sickness incidence (MSI) 

and Composite Weighted Acceleration (aRMS). Table 4.2 shows an increase in welfare 

variables with sea state variables and equivalent sea state numbers. 

Section 4.1 to 4.5 presents the results of the descriptive analysis used to describe data from 

the VMMS, the meteorological data, and created variables needed for the predictive analysis 

or modelling processes. The next section explores the relevant relationships between the 

variables and presents and predictive analysis by modelling the comfort of technicians 

through Composite Weighted Acceleration and the likelihood of seasickness through motion 

sickness incidence. 

4.6  Exploring Relationships and Modelling 

Technician Welfare 

This section presents the results of the exploratory data analysis used in measuring the 

influence of variables such as the duration of the O&M operation, and significant wave height, 

on the welfare variables of Composite Weighted Acceleration and Motion Sickness Incidence, 

as well as predict the welfare variables from other variables. 

A pairwise correlation between variables, seen in Figure 4.23 below, indicates relationships 

between variables in the dataset with some variables being as high as -0.534, however, the 

pairwise correlation also indicates that some variables are more relevant to one of the welfare 

variables than they are to the other. 
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Figure 4. 23 Pairwise correlation showing relevant variable comparisons. Left column, top to 
bottom: i. Comparison between weighted acceleration and transit duration; ii. Comparison 
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between weighted acceleration and vessel speed; iii. Comparison between weighted 
acceleration and significant wave height; iv. Comparison between weighted acceleration and 
vessel heading; v. Comparison between weighted acceleration and tidal range; Right column, 
top to bottom: i. Comparison between Motion Sickness Incidence and significant wave height; 
ii. Comparison between Motion Sickness Incidence and transit duration; iii. Comparison 
between Motion Sickness Incidence and current speed; ii. Comparison between Motion 
Sickness Incidence and vessel heading; ii. Comparison between Motion Sickness Incidence and 
vessel speed. 

Figure 4.23 shows the pairwise correlation of six variables, instead of eleven, and the welfare 

variables. The pairwise correlation also indicated that for relevant variables, there is a 

moderate linear relationship with the welfare variables with the presence of identifiable 

outliers which during the diagnostic analysis were identified as relevant to the study. It was, 

therefore, determined that a principal component analysis (PCA) would reduce the 

dimensionality of the large dataset for eventual modelling which would also prevent 

overfitting and underfitting. As the pairwise correlation highlighted, the PCA was performed 

on each welfare variable to identify variables relevant to each principal component. 

Figure 4.24 below presents the PCA processes performed on the combined VMMS and 

meteorological dataset for the composite weighted analysis variable. 

 

Figure 4. 24 Figure showing Principal Component Analysis results performed on VMMS and 
meteorological dataset for the composited weighted acceleration variable 
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This scree plot (left plot) only shows the first ten (instead of the total eleven) components 

that explain 95% of the total variance. The only clear break in the amount of variance 

accounted for by each component is between the first and second components. However, 

the first component by itself explains a little less than 25% of the variance, which highlights 

the need for more components. The figure also shows that the first six principal components 

explain roughly three-quarters of the total variability in the standardized ratings, suggesting 

an adequate dataset for exploration. 

The second plot on the left of Figure 4.24, shows an orthonormal principal component 

coefficient plot for each variable and the principal scores for each observation. Figure 4.24 

shows that all eleven variables are represented in this bi-plot by a vector, and the direction 

and length of the vector indicate how each variable contributes to the two principal 

components in the plot. The first principal component, on the horizontal axis, has positive 

coefficients for seven variables, including sea surface height, vessel speed, significant wave 

height, vessel heading, current direction, wave period, and wave direction, seen on the right 

half of the plot. The first component also has three negative variables including current speed, 

vessel duration, and tidal range, as seen on the left. The largest coefficient in the first principal 

component is the current speed coefficient followed by the duration of the vessel transit. The 

second principal component, on the vertical axis, has five positive coefficients and five 

negative variables including current speed, sea surface height, significant wave height, wave 

direction, and vessel speed for positive variables and vessel duration, tidal range, wave 

period, vessel heading and current direction for negative variables, seen on the top and 

bottom sides respectively. This indicates that the second component distinguishes between 

vessels that have high values for the first set of variables and low for the second, and vessels 

that have the opposite. The largest coefficient in the second principal component is the 

current speed coefficient. The PCA, therefore, shows that the relevant variables needed to 

model Composite Weighted Acceleration, and protect against over and underfitting are 

current speed, the vessel transit duration, the speed of the vessel, tidal range, current 

direction, and significant wave height. 

Figure 4.25 below shows the PCA processes performed on the combined VMMS and 

meteorological dataset for the motion sickness variable. 



 

148 
 

 

Figure 4. 25 Figure showing Principal Component Analysis results performed on VMMS and 
meteorological datasets for the Motion Sickness Incidence variable 

The PCA analysis indicated that there exists a pairwise correlation between variables in the 

dataset with the highest correlation at 0.485. The left scree plot in Figure 4.25 only presents 

the first ten (instead of the total eleven) components that explain 95% of the total variance. 

The plot indicates a clear break in the amount of variance between the first and second 

components and between the fourth and fifth components. However, the first component by 

itself explains about 18% of the variance, which indicates a need for more components. The 

plot indicates that the first six principal components explain roughly three-quarters of the 

total variability in the standardized ratings, suggesting an adequate dataset for exploration. 

The plot on the left of Figure 4.25, shows an orthonormal principal component coefficient 

plot for each variable and the principal scores for each observation. All eleven variables are 

represented in this bi-plot by a vector, and the direction and length of the vector indicate how 

each variable contributes to the principal component – Motion Sickness Incidence (MSI). The 

first principal component, on the horizontal axis, has 4-positive variables, seen on the right 

half of the plot, and 5-negative variables, seen on the left including current speed, wave 

direction, tidal range, and vessel duration for the positive variables, and sea surface height, 

significant wave height, vessel speed, vessel heading, and current direction for negative 

variables. The largest coefficient in the first principal component is the duration of the vessel 

transit. The second principal component, on the vertical axis, has 4-positive and 5-negative 
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coefficients seen on the top and bottom sides, respectively. The positive variables include 

vessel duration, vessel sea surface height, significant wave height, and current speed, while 

the negative variables include vessel speed, vessel heading, current direction, tidal range, and 

wave direction. The largest coefficient in the second principal component is the speed of the 

vessel. The PCA further shows that variables such as wave direction are more relevant to MSI 

than they are to Composite Weighted Acceleration and shows that in modelling Motion 

Sickness Incidence, the relevant variables needed are vessel transit duration, vessel heading, 

vessel speed, significant wave height, tidal range, current speed, and current direction. 

The newly dimensioned dataset was then used in the modelling process described in section 

3.7 of chapter 3 of this thesis. To validate the model used, this thesis applied a standard hold-

out machine learning approach (Stetco et al., 2019). This approach held out sets of data by 

splitting the data set into a 637 training set (75% of the dataset) and a 212 testing set (25% of 

the dataset). Using the training dataset, k-fold cross-validation (k = 10) is performed in the 

MATLAB workspace to build a more generalized model by partitioning the data within the 

training data before training the model. A few measures were used to show the validity of the 

regression model behaviour. These measures, described in section 3.7 of chapter 3 of this 

thesis, based on the model prediction, included Mean Absolute Error (MAE), Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R2). 

These metrics were selected as they are best used in expressing regression-based models 

(Stetco et al., 2019). 

4.6.1  Modelling Composite Weighted Acceleration 

Figure 4.26 presents the results of the regression model used to assess the trained model 

comfort model using predictions of Composite Weighted Acceleration. 
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Figure 4. 26 Modelled Composite Weighted RMS Acceleration (m/s2) denoted by aW (m/s2) 
RMS. From top row: i. Response plot of observed Composite Weighted Acceleration and 
predicted Composite Weighted Acceleration with time; the second row left to right: ii. 
Predicted against the observed plot of Composite Weighted Acceleration, iii. Predicted against 
the observed plot of Composite Weighted Acceleration with the number of data points; the 
third row left to right: iv. Histogram of residuals, v. Residual plot with the number of data 
points. 

Figure 4.26 shows a moderate linear correlation between the predicted and observed values 

of Composite Weighted Acceleration. The response plot shows a similar pattern between 

predicted and observed values with slight differences of about 0.06 m/s2 between values 

indicating that the predicted values of Composite Weighted Acceleration could be off by 0.06 

m/s2. There are more dots below the perfect prediction line (thin red line) at the right of the 
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predicted against the observed plot which shows that the predicted values tend to be lower 

than the observed values for less common predicted values of Composite Weighted 

Acceleration values (between 0.5 and 1 m/s2). The prediction against the observed plot with 

the number of data points shows that the densest area of the plot, shown in the yellow dots, 

is above the diagonal line which means that the model overestimates the most common 

values of Composite Weighted Acceleration (between 0.1 and 0.3 m/s2). The histogram of 

residuals shows that most points are centred around zero, but the range of the x-axis shows 

that some of the residuals are large, with some predictions off by 0.25 m/s2. This is a large 

value considering the MAE is 0.055 m/s2 shown in Table 4.3 below. The model also has a p-

value less than 0.01 which rejects the project null hypothesis of no statistical relationship 

between predicted Composite Weighted Acceleration and estimated composited weighted 

acceleration. The residual plot with the number of data points shows that the smallest 

Composite Weighted Acceleration is overestimated, as the yellow areas are below zero, and 

the spread of residuals changes over the response value, meaning that the variance of 

residuals is not uniform. This suggests that the model will be more accurate for some values 

than it is with others and the error is not consistent across responses. This means that in 

predicting technician comfort levels, this model will overestimate technician comfort levels 

deemed as comfortable and a little uncomfortable according to ISO 2631-1, (1997) and 

underestimate dangerously uncomfortable levels up to 1 m/s2 considered uncomfortable by 

ISO 2631-1, (1997) see Table 4.1 in section 4.2.3 of this chapter. 

The table below provides the results for both the training data set and the testing dataset for 

the regression model of best fit. 

 RMSE R2 MSE MAE Speed time Model 

Train 0.073 0.63 0.005 0.055 25000 12.111 Rational quadratic Gaussian 

process regression Test 0.059 0.67 0.004 0.043 8800 3.046 

Table 4. 3 Table of model results 

4.6.2  Modelling Motion Sickness Incidence 

This section presents the observed and predicted values of Motion Sickness Incidence using 

the testing dataset.  
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Figure 4. 27 Comparison between observed (true) and predicted Motion Sickness Incidence 
(%). From top row: i. Response plot of observed Motion Sickness Incidence (%) and predicted 
Motion Sickness Incidence with time; the second row left to right: ii. Predicted against the 
observed plot Motion Sickness Incidence (%), iii. Predicted against the observed plot of Motion 
Sickness Incidence (%) with the number of data points; the third row left to right: iv. Histogram 
of residuals, v. Residual plot with the number of data points 

Similar to the comfort model, Figure 4.27 shows a moderate linear correlation between the 

predicted and observed values of Composite Weighted Acceleration. The response plot shows 

a similar pattern between predicted and observed values with slight differences of about 2% 

between some values indicating that the predicted values of Motion Sickness Incidence could 

be off by 2%. The predicted against the observed plot shows more dots below the perfect 

prediction line (thin red line) at the right which shows that the predicted values tend to be 

lower than the observed values for less common predicted values of Motion Sickness 
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Incidence values (between 22% and 36%). The prediction against the observed plot with the 

number of data points shows that the densest area of the plot, shown in the yellow dots, is 

above the diagonal line which means that the model overestimates the most common values 

of Motion Sickness Incidence (between 5% and 12%). The histogram of residuals shows that 

most points are centred around zero, but the range of the x-axis also shows that some of the 

residuals are also large, with some predictions off by 12%. The model also has a p-value of 

6.068e-31, a value less than 0.05 which rejects the project null hypothesis of no statistical 

relationship between predicted Motion Sickness Incidence and estimated Motion Sickness 

Incidence. The residual plot with the number of data points shows that the densest areas of 

the plot (yellow dots) are below zero, which means that the smaller values of Motion Sickness 

Incidence are overestimated, and the plot has a spread of residuals which means that the 

error is predictions are not equal but vary. This suggests that the model will overestimate 

Motion Sickness Incidence below 12% (regarded as optimal levels) and underestimate values 

greater than 22% (dangerous levels). 

The table below provides the results for both the training data set and the testing dataset for 

the regression model of best fit. 

 RMSE R2 MSE MAE Speed time Model 

Train 4.018 0.460 16.146 3.158 34000 16.559 Rational quadratic Gaussian 

process regression Test 2.640 0.489 6.970 1.780 8800 12.111 

Table 4. 4 Table of model results 

4.6.3  Modelling the welfare of technicians 

This section presents the results of the welfare model produced using predictions of 

Composite Weighted Acceleration and Motion Sickness Incidence. 
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Figure 4. 28 Welfare model showing predicted sailing decisions. 

Figure 4.28 presents a visualisation of the results of the welfare model with predictions of sail 

and not-sail decisions made from operational limits applied to input variables. The plot shows 

four-month-long model predictions including 7 not-sail decisions from 139 predictions. 

4.7  Summary 

This chapter presented, described, and explained the results generated from modelling the 

welfare of technicians during transits to offshore wind farms using predictions of Composite 

Weighted Acceleration and predictions of Motion Sickness Incidence. To meet the thesis aims 

and objectives, this research used data from vessel motion monitoring systems (VMMS) 

deployed on twelve (12) crew transfer vessels operating across four wind farms (4) by four 

wind farm operators in the North Sea. The VMMS recorded vessel acceleration data in the 

six-axis of freedom as well as GPS data, vessel speed data, timestamp data, and vessel heading 

data. The data collection used in this project began in January of 2019 and ended in October 

of the same year, covering eight months, and resulting in eight hundred and fifty (850) defined 

operation and maintenance transit days after data processing and cleaning. To describe sea 

state, this research used hindcast metocean data which was synchronised to crew transfer 

vessels' transit routes between port and wind farms using the GPS coordinates and 

timestamps from the VMMS. The data used to describe the sea state included significant wave 

height, wave period, wave direction, current direction, current speed, sea surface height, 

wind speed, and wind direction.  

An instantaneous descriptive analysis process highlighted the presence of multiple transfer 

points during O&M transits which suggests the practice of service trains, as such, a daily dose 

analysis was considered in accounting for multiple transfers in O&M. A dimensionality 

reduction analysis was performed to identify variables in the dataset most relevant to 

predicting Composite Weighted Acceleration and Motion Sickness Incidence which 

represented the comfort and health of technicians, respectively. The dimensionality 

reduction process involved a pairwise correlation and a principal component analysis which 
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identified the vessel transit duration, averaged vessel speed, averaged vessel heading, 

significant wave height, wave direction, wave period, current speed, current direction, and 

tidal height variables as relevant to 70% of the variation in predicting Composite Weighted 

Acceleration and Motion Sickness Incidence. 

Machine learning applications in the MATLAB workspace were used to determine a model of 

best fit for predicting Composite Weighted Acceleration and Motion Sickness Incidence using 

vessel transit duration, averaged vessel speed, averaged vessel heading, significant wave 

height, wave direction, wave period, current speed, current direction, and tidal height, as 

independent variables. Results show a rational quadratic gaussian process regression model 

able to predict Composite Weighted Acceleration with an R2 value of 0.67, and a rational 

quadratic gaussian process regression model able to predict Motion Sickness Incidence with 

an R2 value of 0.49. Operational limits were applied to model outputs of Composite weighted 

Acceleration and Motion Sickness Incidence to form a dual-criterion input model that predicts 

sailing decisions in a welfare model. 
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5  Analysis 

5.1  Introduction 

This chapter analyses the results of the data from the vessel motion monitoring systems 

(VMMS) deployed on participating vessels and data from operational ocean models used to 

achieve the thesis aim of modelling the welfare of technicians on crew transfer vessels during 

transits to offshore wind farms. For technicians the main concern is their comfort, health, and 

safety during transit (Phillips et al., 2015), as such, this thesis applies measurable aspects of 

these concerns from available data, which is described in the thesis scope. 

5.1.1  Scope 

In exploring human response to vessel motions for the technician welfare analysis, this 

research uses proxy variables derived from whole-body accelerations to describe the comfort 

and health of technicians and as such the welfare of technicians in transit.  The proxy variables 

are used due to relationships to whole-body accelerations which are supported by findings in 

the literature explored. The factors used to describe technician welfare in this thesis were 

also selected based on available research data and the standards for mechanical vibration 

evaluation (ISO 2631-1, 1997). This thesis differs from the scope of the SPOWTT project, 

where vessel measurements were acquired, as this project delivers a framework for assessing 

the well-being of technicians in transit while the SPOWTT project intended to understand the 

effect sailing on Crew Transfer Vessel (CTVs)  can have on the mental and physical wellbeing 

of technicians on board (Earle et al., 2021). The image in Figure 5.1 presents a clear boundary 

between the scope of the SPOWTT project and this thesis. 
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Figure 5. 1 Image showing the boundary between the SPOWTT project and the scope of this 
thesis. Image adapted from Earle et al., (2021). 

Within the scope of this study, this research assumes that during transits to offshore wind 

farms, technicians are in a seated position and in this position, the transmission of 

acceleration is through the seats of crew transfer vessels (CTVs). This means the path of 

acceleration transmission begins from the action of the surface of the sea to the crew transfer 

vessels, from the crew transfer vessels to the seats and footrests on the vessels, and finally, 

through to the crew members and technicians on the vessels. Therefore, the accelerations 

experienced by the technicians are whole-body accelerations. To describe comfort, the 

measuring metric used in this research is composite root-mean-square (RMS) acceleration 

which refers to the cumulative multi-axis RMS of whole-body acceleration with time 

expressed in equation 2.14 of chapter two from the recommendations of the ISO 2631-1 to 

describe the human response to vessel accelerations from frequency weightings – objective 

one. On the other hand, to explore the health of technicians, this thesis investigates the 

impact of vessel accelerations on the likelihood of inducing seasickness using Motion Sickness 

Incidence (MSI) – objective two. This research used weighted root-mean-square (RMS) of the 

vector sum of tri-axial translational accelerations and the RMS vertical accelerations in 

assessing the comfort and Motion Sickness Incidence of technicians. This is done following 

the guidelines from the ISO 2631-1 presented in equation 2.14 and equation 2.15 of the 
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second chapter, however, the thesis methodology explores the application of the six-axis of 

acceleration in the analysis process. To achieve both objectives, this research explores the 

relevant relationships that affect weighted accelerations and Motion Sickness Incidence 

during transits in order to define input variables for both models. This is done by 

synchronising metocean data with the data from the vessel motion monitoring systems in 

order to describe the sea state across crew transfer vessel transit routes, thereby creating a 

complete dataset of operational and oceanographic characteristics. Therefore, to reach the 

aim of the thesis, Machine Learning Tools were used to fit a regression model from the 

complete dataset which was then used to predict comfort and health-based responses of 

Composite Weighted RMS Acceleration and Motion Sickness Incidence, respectively, as dual-

criterion variables for technician welfare during maintenance transits – objective 3. The 

research algorithm used to achieve the thesis aim is presented in Figure 5.2 below. This 

algorithm is expanded from the thesis methodology presented in Figure 1.1 of this thesis and 

shows the detailed phases undertaken to create the welfare model. 

 

Figure 5. 2 Revised methodology to achieve the thesis aim expanded from Figure 1.1 where: 
X1… Xn is the vessel characteristics, G1… Gn is sea-state characteristics, C and H are the comfort-
based and health-based models, and K is the welfare model. 
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Figure 5.2 illustrates the process of achieving the thesis aim described above over five phases. 

The first phase explores the significant micro factors (X1… Xn) and macro factors (G1… Gn) in 

the available dataset that influence the prediction of Composite Weighted RMS Acceleration 

for the comfort and Motion Sickness Incidence for the health of technicians. From the 

exploratory analysis, the comfort-based model (C) and health-based (H) models are 

developed using the explored input micro and macro variables. Limits of operation defined 

by ISO 2631-1 are applied to the outputs of the comfort-based model and health-based model 

which are used as input variables for the welfare model (K). The welfare model determines 

sail or not sail decisions (Y) based on the inputs with defined limits. The welfare model K can 

be expressed as: 

𝑌 = 𝐾(𝑋1, … , 𝑋𝑛, 𝐺1, … , 𝐺𝑛 ) 5. 1 

  

Where: Y, is the estimated design variable for sail or not sail decisions; X1… Xn, are micro factor 

input design variables including transit duration, vessel speed, and vessel heading; G1… Gn, 

are macro factor input design variables including significant wave height, current speed, 

current direction, and tidal height. 

The term micro factor in this thesis refers to the operational vessel parameters associated 

with whole-body accelerations from crew transfer vessels identified during analysis processes 

to include the magnitude of accelerations, the duration of exposure, the speed of the crew 

transfer vessel, and the heading of the vessel. On the other hand, macro factors refer to 

environmental parameters associated with whole-body accelerations which were identified 

during the thesis analysis described in chapter three of this thesis to include sea-state 

parameters. Physiological factors such as fatigue, diet, and sleep are not included within the 

scope of this study due to the defined thesis objectives and the availability of data within this 

study. Additionally, for the assessment of motion sickness, susceptibility factors such as age, 

environment, and psychology were not included in the models created due to data availability 

and as described in section 2.6.2.1 of this thesis, these factors increase the susceptibility to 

motion sickness rather than cause motion sickness (Kluijven, 2016). As such the models 

created are based on discomfort and motion sickness caused by whole-body accelerations 

alone which are transferred through crew transfer vessels from the sea state. 
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This chapter is structured into sections. This section (section 5.1) provides a brief introduction 

to the chapter and an overview of subsequent sections within this chapter. Along with 

relevant literature relating to the subject matter, section 5.2 discusses the exploration of 

variables for modelling Composite Weighted Acceleration as a metric for the comfort of 

technicians during transits to offshore wind farms. Section 5.3 analyses and discusses the 

model created for the comfort of technicians on crew transfer vessels during transits and 

explores potential applications of the model in offshore wind operation and maintenance. 

Along with relevant literature relating to the subject matter, section 5.4 discusses the 

exploration of variables for modelling Motion Sickness Incidence as a metric for the health of 

technicians during transits to offshore wind farms. Section 5.5 analyses and discusses the 

model created for the health of technicians on crew transfer vessels during transits and 

explores potential applications of the model in offshore wind operation and maintenance. 

Section 5.6 analyses and discusses the welfare model created for day-to-day sail or no-sail 

decision-making and its potential application to operation and maintenance. 

 Objective 1 Objective 2 Objective 3 

Criterion Comfort Health Welfare 

Thesis section Section 5.3 Section 5.5 Section 5.6 

Table 5. 1 Structure of thesis objectives 

The next section explores relevant relationships in predicting Composite Weighted 

Acceleration. 

5.2  Exploring relationships in assessing the comfort 

of technicians using Composite Weighted Acceleration. 

This section explores the impact of micro and macro factors on the whole-body accelerations 

felt by technicians on crew transfer vessels in order to explore relationships in predicting 

Composite Weighted Acceleration which is used as a proxy for the comfort of technicians 

during transits to offshore wind farms for maintenance operations. Generally, most 

researchers apply response amplitude operators (RAO) along with wave energy spectra to 

produce response spectra (Jenkins et al., 2021), or numerical models combined with seat 
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models to describe sea-state (Griffin, 1990; Olausson & Garme, 2013). This allows researchers 

to model sea states along with defined vessel parameters such as vessel heading and vessel 

profiles when predicting acceleration exposure in humans (Olausson, 2015). This is due to the 

time-consuming nature of experimental measurements which would require measuring sea 

state, and accelerations on vessels. This research applies metocean products to describe sea 

state from oceanographic models including the WAVEWATCH-III model (H.W. Lewis et al., 

2019) and NEMO model (Tonani et al., 2019). This allowed sea state variables no typically 

used when exploring human response to vibration to be explored. 

5.2.1  Exploring notable relationships in assessing the comfort of 

technicians 

The exploratory analysis phase of this project explores multiple variables to assess the 

discomfort of technicians using their relationship to the acceleration measured on 

participating vessels. The analysis was performed on a synchronised dataset that included 

micro variables of Composite Weighted RMS Acceleration, vessel transit duration, averaged 

vessel speed, and averaged vessel heading, and included macro variables of significant wave 

height, wave direction, wave period, current speed, current direction, tidal height, sea surface 

height, wind speed, and wind direction. The exploratory analysis involved dimension 

reduction processes using pairwise correlations and principal component analysis to avoid 

overfitting the model and determine the variables most relevant to the prediction of 

Composite Weighted Acceleration. Figure 4.23 presents the results of exploring major 

relationships and Figure 4.24 shows the result of the principal component analysis where the 

variables identified included vessel transit duration, averaged vessel speed, averaged vessel 

heading, significant wave height, current speed, current direction, and tidal height, after the 

dimension reduction process. 

The most correlated relationships with Composite Weighted Acceleration identified were the 

relationships with vessel transit duration, vessel speed, and significant wave height. There 

was a moderate negative correlation between the duration of transit and Composite 

Weighted Acceleration for daily transits up to about 18 hours seen in the first plot of Figure 

5.2. This confirms the guidelines of the ISO 2631-1 and supports the findings in the explored 

publications in section 2.6.1 such as Clevenson et al., (1978),  Griffin & Whitham, (1998), and 
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Kjellberg & Wikström, (1985a). The plot also follows a similar path to the study by Maeda and 

Morioka, (1998) seen in Figure 2.19 of this thesis and further corroborations can be found in 

a few other studies (Kjellberg & Wikström, 1985b). Therefore, the analysis confirms the 

duration dependency of weighted accelerations suggesting that low vibration levels are 

acceptable over longer periods. The plot in Figure 5.2, however, presents this relationship in 

daily doses by using daily transit duration. On a smaller scale, the relationship between 

duration and weighted acceleration was presented in the left plots of Figure 4.7, Figure 4.12, 

Figure 4.17, and Figure 4.22, where weighted acceleration was compared with duration in 

hours ranging between two and eight hours. The plots show an increase in Composite 

Weighted Acceleration with time between two and six hours for most transits which also 

corroborates the findings of some explored literature in section 2.6.1 such as Griffin & 

Whitham, (1980) and Miwa et al., (1973). Additionally, the findings by Kjellberg & Wikström, 

(1985a) are also corroborated in Figures 4.7, 4.12, 4.17, and 4.22, as the increase in weighted 

acceleration seems to be less rapid as duration increases leading to a possible plateau. As 

such, the findings from this research suggest that for daily dose values, weighted acceleration 

decreases with longer transit durations while weighted acceleration increases with shorter 

transit durations. 

As the literature explored in section 2.6.1 has shown that transits become progressively more 

uncomfortable as the magnitude of acceleration increases (Mansfield et al., 2000), the 

relevance of this relationship in operation and maintenance planning is that in scheduling 

maintenance operations the daily dose weighted accelerations give an estimate for the 

average daily acceleration experienced by technicians which can inform decision-making if 

the comfort of technicians is taken into account. Figures 4.7, 4.12, 4.17, and 4.22, also show 

that initial technician transfer between two and six hours could prove to be uncomfortable as 

Composite Weighted Acceleration increases with time especially since the data from the 

vessel motion monitoring systems confirm the practice of service trains – where more than 

one wind turbine is maintained by the same crew transfer vessel (CTV) in a wind farm (Solano, 

2021) – also shown in Figures 4. 4.7, 4.12, 4.17, and 4.22. Additionally, the literature review 

also suggests that the current trend in the offshore wind industry is the development of wind 

turbines further offshore which also suggests longer durations (Newman, 2015). 
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Figure 5. 3 Comparison between daily Composite Weighted RMS Acceleration (aRMS) and the 
most correlated relationships. Top plot: i. Comparison between daily Composite Weighted 
Acceleration and duration; Bottom plot: ii. Comparison between daily Composite Weighted 
Acceleration and significant wave height; iii. Comparison between daily Composite Weighted 
Acceleration and vessel speed. 

Whilst the regression determined the relationship between weighted acceleration and 

duration, the lack of a high R2 value and clear spread of results meant that other variables 

could exist for more accurately predicting Composite Weighted Acceleration such as vessel 

speed, and significant wave height. 

The plot in Figure 5.3 also shows the comparison between composite weight acceleration and 

vessel speed (bottom right). The plot shows a positive linear relationship between weighted 

acceleration and average vessel speed which suggests that there is an increase in weighted 

acceleration with vessel speed. It is rare to find time-series collaborations between speed and 

weighted acceleration when predicting exposure to accelerations in available research. This 

is because this relationship is usually defined in vessel parameters where operating 

parameters are explored on defined speeds ranging from high to low (Olausson, 2015). These 

studies have similar findings where defined speeds in the design parameters had an increasing 

effect on the magnitude of acceleration including Derakhshanjazari et al., (2018), Hostens & 

Ramon, (2003) and Eger et al., (2011). Similarly, Figure 5.2 also presents the comparison 

between composite weight acceleration and significant wave height (bottom left). The 
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comparison shows a moderate linear relationship where Composite Weighted Acceleration 

increases with significant wave height between 0.1 m and 2.0 m. Generally, in predicting 

exposure to accelerations, the sea-state is modelled using numerical models and such as 

vessel speed, predictions are made for defined sea-states (wave spectra) (Olausson, 2015; 

Stevens & Parsons, 2002). As such, comparisons between significant wave height and 

Composite Weighted Acceleration are also rare in the available literature and are usually 

included in studies relating to vessel design. 

The other variables explored in this thesis are shown in Figure 5.4 which shows the 

comparison between Composite Weighted Acceleration and four identified variables 

including vessel heading, current speed, current direction, and tidal range. Unlike the 

previously identified variables, there is little correlation between these variables and 

weighted acceleration, and there is not an easily identifiable trend in the comparisons. The 

comparison with vessel heading seems to cluster around the average vessel headings with 

observable outliers where weighted acceleration peaks between 150˚ and 200˚. Similar 

clusters are found in the comparison with the current direction where two clusters are seen 

with identifiable outliers where weighted acceleration peaks between 50˚ and 90˚, and 

between 220˚ and 280˚. The comparison with the tidal range shows a cluster between 1.8 m 

and 3.0 m, and there is no observable trend in the relationship between weighted 

acceleration and current speed. Despite these much weaker relationships, the principal 

component analysis showed that these variables, along with the first three variables 

presented, were relevant to 70% of the variation of Composite Weighted Acceleration.  
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Figure 5. 4 Comparison between daily Composite Weighted RMS Acceleration (aRMS) and 
variable identified during dimension reduction. Top left to right: i. Comparison between daily 
Composite Weighted Acceleration and vessel heading; ii. Comparison between daily 
Composite Weighted Acceleration and current direction; Bottom left to right: iii. Comparison 
between daily Composite Weighted Acceleration and tidal range; iv. Comparison between 
daily Composite Weighted Acceleration and current speed. 

As with vessel speed, the relationship between weighted acceleration and vessel heading or 

other sea-state characteristics is presented and is usually seen in included vessel design 

parameters and operating parameters (Olausson, 2015). Additionally, the literature explored 

in this thesis shows that mathematical models exist for planning boat motions in sea-states 

including (Akers, (1999), Keuning, (1994), and Zarnick, (1978), however, this is not usually 

explored concerning human performance. 

5.2.2  Summary 

This section showed the relevant variables explored during the dimension reduction process 

in order to model the discomfort of technicians during transits to offshore wind farms. 

Principal component analysis processes were used to identify variables most relevant to the 

prediction of Composite Weighted Acceleration. The process revealed that vessel transit 

duration, averaged vessel speed, averaged vessel heading, significant wave height, wave 

direction, wave period, current speed, current direction, and tidal height, are relevant to 70% 

of the variation in predicting Composite Weighted Acceleration. Significant relationships were 
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found between vessel transit duration, vessel speed, and significant wave height, however, 

there was no observable trend seen in the comparisons between Composite Weighted 

Acceleration and vessel heading, current speed, current direction, and tidal range, even 

though the principal component analysis shows in addition to vessel transit duration, vessel 

speed, and significant wave height, these variables account for 70% of the variation for 

predicting weighted acceleration. The following section discusses and analyses the modelling 

of comfort in technicians using the variables explored in this section. 

5.3  Analysis and Discussion of Objective One 

5.3.1  Modelling the comfort of technicians during transits on crew 

transfer vessels using whole-body acceleration. 

While reviewing decision support models for maintenance operations in offshore wind farms, 

Seyr & Muskulus, (2019) stated that existing models aiding the decision-making in operation 

and maintenance (O&M) can be improved by applying more advanced mathematical 

methods, including uncertainties in input variables, and most importantly, regarding more 

influential factors, and collecting, analysing, and using more accurate data. This section 

analyses and discusses the comfort model created and its use as a risk-based decision-making 

tool in the sail or not-sail decision-making process of maintenance planning. Specifically, this 

model estimates the discomfort of technicians using whole-body accelerations in the absence 

of other discomfort-causing aspects of crew habitability on marine vessels from standard sea-

faring guidelines such as noise, temperature, and lighting (McSweeney et al., 2008). 

Therefore, this research developed a model that can be used to estimate the level of 

discomfort in a comfort-based model (C) that predicts  Composite Weighted Acceleration (Y) 

based on explored input variables: 

𝑌 = 𝐶(𝑋1, … , 𝑋𝑛, 𝐺1, … , 𝐺𝑛 ) 5. 2 

Where Y, is the estimated design variable for Composite Weighted Acceleration; X1… Xn, are 

micro factor input design variables including transit duration, vessel speed, and vessel 

heading; G1… Gn, are macro factor input design variables including significant wave height, 

current speed, current direction, and tidal height. 
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The model was created following a machine learning training process that identified a rational 

quadratic gaussian process regression model presented in Figure 4.26 of chapter four as the 

model of best fit. The model of best fit was selected from metrics that assessed the model’s 

performance including the coefficient of determination (R2), root-mean-square error (RMSE), 

and mean average error (MAE) which identified the best fit from multiple models including 

linear regression models, regression trees, support vector machines, Gaussian process 

regression models, ensembles of trees, and neural networks. Gaussian process regression 

methods have been reported as an efficient tool in estimating predictions (Baiz et al., 2020), 

especially for non-linear relationships requiring fewer data samples (Richardson et al., 2017). 

Gaussian process regression has also been used in different fields such as medicine (Swain et 

al., 2016) and energy (Richardson et al., 2017). Therefore, the gaussian process regression 

model proved to be suitable for predicting technician welfare. However, at the time of 

writing, the use of Gaussian process regression models in comfort or seasickness assessments 

and predictions has not been reported. 

The testing set of the model was assessed achieving an R2 of 0.67, an RMSE of about 0.06 

m/s2, and a p-value of less than 0.01 which shows that the null hypothesis of there being no 

statistically significant relationship can be rejected. As such, the model’s quality expressed in 

terms of an R2 value expressed that predicted Composite Weighted Acceleration is influenced 

by the selected independent variables that make up over 70% of its variation. This shows that 

for this model, 67% of the variation of estimated Composite Weighted Acceleration, can be 

explained by the independent variables, and as such, only 33% reside in the residual. This 

gives a measure of improvements that need to be done in improving the model which is 

relevant since there could be some unexplored, uncontrollable, and undeterminable or 

unknown factors that could influence the measured acceleration on the participating CTVs. 

The RMSE and MSE not only explored the errors present in the model but also provides 

measures to compare future models against. As such where future work, discussed in chapter 

six, is applied to this study such as an increased dataset, the subsequent model results can be 

compared. The model results, however, show that more than half of the variance in predicting 

Composite Weighted Acceleration was explained and as such, the model presents an 

acceptable level of performance. This is visible in the response plot in Figure 4.26 of predicted 

against observed values which were used to show the effectiveness of the model and showed 
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a correlated track. Subsequent plots in Figure 4.26 also highlight where the model 

overestimates and underestimates values. It should be noted that some prediction errors can 

be explained by a few reasons such as the accuracy of the in-situ measuring devices, the 

efficiency of frequency weightings and Composite Weighted Acceleration estimations. 

5.3.2  Discussion of Objective One 

As a decision-support tool, the comfort-based model in section 5.3.1 provides predictions on 

Composite Weighted Acceleration in m/s2 rather than a prediction for vessel acceleration 

magnitudes, this provides an estimation of the daily dose accelerations felt by technicians 

during transits. The model does not, however, predict human comfort but uses the magnitude 

of modelled Composite Weighted Acceleration as an indicator for discomfort based on studies 

that show significant correlations between discomfort and acceleration magnitudes 

(Mansfield et al., 2000).  As such, Composite Weighted Acceleration is used as a proxy 

indicator for comfort when ISO 2631-1 levels of likely reactions to magnitudes of accelerations 

are applied. This presents a measurable short-term indicator for comfort, however, it should 

be noted that this indicator is not tested against real-life measured levels of discomfort in 

technicians during transits. As such the model’s results are not validated. Additionally, while 

the relationship between weighted acceleration and the discomfort of passengers has been 

explored in literature, consideration has to be made for the way discomfort is assessed, the 

nature of questionnaires used to assess discomfort, and the type of vessels or simulations 

used and the impact of this on the ranges of discomfort experienced. 

This research has also contributed to knowledge in previous literature by exploring a 

framework for using experimental measurements in the prediction of motion exposure. The 

literature explored in section 2.6.1 of this thesis showed that studies on predicting 

acceleration exposure typically calculate the RMS of vessel acceleration using a response 

amplitude operator (RAO) along with wave energy spectra to produce response spectra 

(Jenkins et al., 2021)(Jenkins et al., 2021)(Jenkins et al., 2021), or numerical models combined 

with seat models to describe sea-state (Griffin, 1990; Olausson & Garme, 2013). This research 

adds to this by using available experimental vessel motion measurements from participating 

vessels in this research, synchronised with oceanographic data to describe the sea state in 

predicting acceleration exposure. In addition to this, studies into predicting acceleration 
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exposure do not usually use the non-homogeneous random variables of sea-state and vessel 

parameters such as different speeds and heading but define operational conditions for a set 

of sea-states, and vessel parameters. As such the merging of sea-state data and measured 

acceleration data and applying machine learning processes in assessing human reactions 

allows for a more variable comparison not typically seen in available literature such as the 

comparisons between Composite Weighted Acceleration and vessel speed, vessel heading, 

significant wave height, current speed, current direction, and tidal height. 

In practical application, the model will potentially be used for pending maintenance activities 

on Crew Transfer Vessels where a sail or not sail decision needs to be made for a transfer 

plan. The potential phases for this decision-making include: 

1. Comfort level assessment is required for pending maintenance activities before a 

transfer plan is created or as part of the transfer plan. 

2. Input operational values including duration to a turbine, average speed, vessel 

heading, significant wave height, current speed, current direction, and tidal height, 

into the model as input variables. 

3. The model predicts values for Composite Weighted Acceleration. 

4. The assessment is reviewed. 

The next section explores relevant relationships in predicting Motion Sickness Incidence. 

5.4  Exploring relationships in assessing the health of 

technicians using Motion Sickness Incidence. 

Literature on the operation and maintenance of offshore wind farms show that for the 

technicians' onboard crew transfer vessels (CTVs), the main concern is their comfort, safety, 

and their ability to do work (Phillips et al., 2015). Literature in section 2.6.2 of this thesis 

identifies motion sickness as a major limiting factor when considering the short-term impacts 

of accelerations on human health maintenance (Coyte et al., 2016; Mette et al., 2018; Scheu 

et al., 2018), stating that motion sickness can cause vomiting, hyper-salivation, fatigue, 

lethargy sweating, pallor, and human performance (Dobie, 2019; Lackner, 2014; Smyth et al., 

2019; Zhang et al., 2016). Therefore, predicting exposure to motion sickness is fundamental 
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to both ensuring the comfort and safety of passengers, and fundamental to ensuring the 

efficient completion of tasks. This research assesses motion sickness in technicians using 

Motion Sickness Incidence (MSI) which is a well-known method for assessing motion sickness 

and is also presented in ISO 2631-1 seen in equation 2.18. This measure estimates the 

probability of accelerations inducing vomiting as a percentage value.  

This section discusses the relevant relationships explored in the exploratory analysis phase of 

this research to predict motion sickness in technicians during transit to offshore wind farms 

using Motion Sickness Incidence as a measuring metric. 

5.4.1  Exploring relationships in assessing the health of technicians 

using Motion Sickness Incidence 

Similar to the exploratory analysis in section 5.3.1, multiple variables to assess the health of 

technicians were explored using their relationship to Motion Sickness Incidence. The analysis 

was performed on a synchronised dataset that vessel transit duration, averaged vessel speed, 

averaged vessel heading, significant wave height, wave direction, wave period, current speed, 

current direction, tidal height, sea surface height, wind speed, and wind direction. Following 

dimension reduction processes using pairwise correlations and principal component analysis, 

a dataset of variables was identified to be of most significance in predicting Motion Sickness 

Incidence. Figure 4.23 presents the results of exploring major relationships and Figure 4.25 

shows the result of the principal component analysis where the variables identified included 

vessel transit duration, averaged vessel speed, averaged vessel heading, significant wave 

height, current speed, current direction, and tidal height. 

The most correlated relationship with estimated Motion Sickness Incidence was the 

relationship with significant wave height where a moderate linear correlation between 

Motion Sickness Incidence and significant wave height between 0 m and 2.0 m is shown in 

Figure 5.6. Expressions for this relationship are rare but section 2.6.2 explores literature 

where sea-state is used in predicting Motion Sickness Incidence such as Piscopo & 

Scamardella, (2015) where there was an increase in Motion Sickness Incidence with increases 

in significant wave height which correlates with the findings from this study. It should be 

noted that these studies usually predict MSI concerning the design phase of ships, thereby 

testing MSI for different operating criteria and design characteristics (Cepowski, 2009, 2012; 
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Piscopo & Scamardella, 2015; Rumawas et al., 2018). The lack of a high R2 value and clear 

spread of results also meant that other variables could exist for more accurately predicting 

Motion Sickness Incidence. 

 

Figure 5. 5 Left to right: i. Comparison between daily estimated Motion Sickness Incidence and 
significant wave height; ii. Comparison between daily estimated Motion Sickness Incidence 
and vessel transit duration 

Figure 5.5 also presents the plot of comparison between daily estimated Motion Sickness 

Incidence and duration (right plot). The plot shows a square root relationship between 

Motion Sickness Incidence and duration where MSI increases with duration and seems to 

plateau at about two hours with increasing duration. A correlated expression can be found 

with Stevens & Parsons, (2002), however, their review covers a duration of up to three days 

and there seems to be a decline in Motion Sickness Incidence after ten hours in this review. 

It is also important to note that the review by Stevens & Parsons, (2002), was performed on 

naval vessels and not high-speed crew transfer vessels. 

Figure 5.6 shows the comparisons between Motion Sickness Incidence and vessel speed, 

vessel heading, current speed, current direction, and tidal range. The regression analysis 

between variables did not reveal any observable trends or correlation between Motion 

Sickness Incidence and these variables, however, the principal component analysis in Figure 

4.25 shows that these variables along with the significant wave height and vessel transit 

duration make up 70% of the variation in predicting Motion Sickness Incidence. 
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Figure 5. 6 Pairwise correlation showing the relationship between input variables and daily 
estimated Motion Sickness Incidence MSI. Top plot: i. Comparison between MSI and vessel 
speed; Second row from left to right: ii. Comparison between MSI and vessel heading; iii. 
Comparison between MSI and current direction; third row from left to right: iv. Comparison 
between MSI and current speed; v. Comparison between MSI and tidal range. 

The comparison between daily estimated Motion Sickness Incidence and vessel heading 

appears to form a cluster that peaks between 150˚ and 180˚ which follows the same trajectory 

as Piscopo & Scamardella, (2015) explored in section 2.6.2 though rather than Motion 

Sickness Incidence, this study uses overall Motion Sickness Incidence – defined as the mean 

Motion Sickness Incidence over the main deck area of a vessel, for a specific angle, and a 

specific sea state. Similarly, the comparison with current direction appears to form clusters 

that peak between 50˚ and 90˚ and between 220˚ and 280˚, the comparison with tidal range 

forms a cluster between 2.5 m and 3.5 m, and the comparison with current speed showed no 

observable trends. In predicting motion sickness, numerical modelling has generally been 

used to describe sea-state parameters as such these comparisons are also rare in the available 
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literature. Where sea-state variables are included is usually in studies that set out operating 

limits for ships using the principal particulars of vessels such as the length of the hull, beam, 

and draft, vessel speed, and sea-state conditions such as wave height and wave period 

(Cepowski, 2009, 2012; Cheung & Nakashima, 2006; Piscopo & Scamardella, 2015; 

Polymeropoulos et al., 2020; Rumawas et al., 2018; Youn & Park, 2020). This research takes a 

different approach by applying experimental acceleration data collected on participating 

vessels merged with sea-state data and as such could explore the non-homogeneous random 

variables of sea-state and vessel parameters. 

5.4.2  Summary 

This section showed the relevant variables explored during the dimension reduction process 

to model Motion Sickness Incidence in technicians during transits to offshore wind farms. 

Principal component analysis processes were used to identify variables most relevant to the 

prediction of Motion Sickness Incidence including vessel transit duration, averaged vessel 

speed, averaged vessel heading, significant wave height, wave direction, wave period, current 

speed, current direction, and tidal height. A significant relationship was found between 

motion MSI and significant wave height, and the comparison with vessel transit duration was 

found to corroborate findings in the literature. The comparisons with vessel speed, vessel 

heading, current speed, current direction, and tidal range, however, did not reveal observable 

trends, though the principal component analysis revealed the variables to account for 70% of 

the variation for predicting Motion Sickness Incidence along with significant wave height and 

vessel transit duration. The following section discusses and analyses the modelling of the 

health of technicians from the incidence of motion sickness in technicians using the variables 

explored in this section. 

5.5  Analysis and Discussion of Objective Two 

5.5.1  Modelling the health of technicians during transits on crew 

transfer vessels using Motion Sickness Incidence. 

This section analyses and discusses the health-based model created to estimate Motion 

Sickness Incidence (MSI) which can be used to describe the probability of seasickness in 
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technicians as a percentage value using the mathematical model developed by Reason & 

Brand, (1975). This presents a risk-based decision-making tool that provides sail or not-sail 

decisions based on predictions of Motion Sickness Incidence. Therefore, this research 

developed a health-based model (H) that estimates Motion Sickness Incidence (Y) based on 

explored input variables described in section 5.4: 

𝑌 = 𝐻(𝑋1, … , 𝑋𝑛, 𝐺1, … , 𝐺𝑛 ) 5. 3 

Where: Y, is the estimated design variable for Motion Sickness Incidence (MSI); X1… Xn, are 

micro factor input design variables including transit duration, vessel speed, and vessel 

heading; G1… Gn, are macro factor input design variables including significant wave height, 

current speed, current direction, and tidal height. 

The input variables explored in section 5.4.1 were used within MATLAB’s machine learning 

processes described in chapter three of this thesis to identify the model of best fit. The 

resultant rational quadratic gaussian process regression model is presented in Figure 4.27 and 

shows the test for a relationship between the explored independent variables and estimated 

Motion Sickness Incidence. The performance of the model was shown in Table 4.4 of chapter 

four with a Mean Average Error (MAE) of about 1.8%, and a Root-Mean-Square Error (RMSE) 

of about 4%. The goodness of fit was tested using the R2 coefficient of determination at 0.49, 

showing that 49% of the variation of estimated Motion Sickness Incidence, can be explained 

by the independent variables, and the statistical significance was tested using the p-value less 

than 0.01 which rejects the null hypothesis of there being no statistically significant 

relationship. The efficiency of the model was shown in Figure 4.27 where the predicted values 

of Motion Sickness Incidence follow a similar trajectory to the estimated values of Motion 

Sickness Incidence, however, there is a slight difference in prediction. The predicted against 

observed plots (the second row left and right plots) in Figure 4.27, confirms this observation 

showing data points that fall below the perfect prediction line between above 15%, and data 

points that fall above the perfect prediction line between 5% and 12%. This suggests that the 

model slightly overestimates values of estimated Motion Sickness Incidence between 5% and 

12% and underestimates values of estimated Motion Sickness Incidence above 15%. As the 

plot on the right of the second row in Figure 4.27 also shows a higher frequency of data points 

below 12%, this suggests that the values overestimated are the most common predictions for 
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Motion Sickness Incidence while the values the model underestimated are the more common 

predictions of Motion Sickness Incidence. 

The testing set of this model achieved an R2 of 0.49, an RMSE of about 4%, and a p-value less 

than 0.01 which shows that the null hypothesis of there being no statistically significant 

relationship can be rejected. The model’s performance expressed in terms of an R2 value 

showed that more than half of the variance, up to 51% resided in the residual as such, the 

variables explored do not make up most of the variation in predicting MSI. This shows that a 

significant amount of work needs to be done to improve the models' prediction as such, the 

model does not present an acceptable level of performance.  

5.5.2  Discussion of objective two 

Motion Sickness Incidence was chosen as a measurable short-term indicator of the health of 

technicians.  It should be noted that this model predicts Motion Sickness Incidence which by 

definition is the incidence of vomiting (a symptom of motion sickness) and does not account 

for other symptoms of motion sickness or other susceptibility factors associated with motion 

sickness including sweating, changes in temperature, and headaches (Earle et al., 2021). As 

such, Motion Sickness Incidence is not an indicator of motion sickness but an indicator of 

vomiting caused by motion sickness. This, therefore, means that technicians could be exposed 

to the many other explored symptoms of motion sickness which can affect their well-being 

and ability to work. Additionally, relevant motion sickness susceptibility factors are not 

included such as cabin temperature and a lack of visual reference, which could have a 

significant impact in inducing motion sickness (Kluijven, 2016). Bos et al., (2022) state that the 

effect of a lack of visual reference was not included in ISO 2631-1 because, at the time, 

observations from experimental participants without organs of balance appeared to be 

almost insensitive to motion sickness while blind participants suffer the effects of motions 

sickness. However, current studies identified the impact of vision on motion sickness, 

especially in relation to virtual and car sickness (Schmidt et al., 2020; Stanney et al., 2020). As 

such, MSI may not be a sufficient indicator of the welfare of technicians in transit. As such, it 

has become clear that relevant factors are missing from motion sickness estimations (Bos et 

al., 2022). Therefore, there is a need to expand the dimensions of ISO 2631-1 to include more 

ranges of symptoms and as such, expand the dimensions of this thesis though this inclusion 
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would require knowledge of vessel architecture in relation to seating to account for visual 

impacts, as well as other measured parameters not included such as temperature. 

Consideration also has to be made for the genetic component which contributes to motion 

sickness susceptibilities such as gender and age (Hromatka et al., 2015). As such, MSI in its 

current form, may not be a sufficient indicator of the welfare of technicians in transit. 

However, similar to the comfort-based model, this research contributes to existing knowledge 

in exploring relationships with variables not typically presented in research predicting the 

incidence of motion sickness including vessel speed, vessel heading, significant wave height, 

current speed, current direction, and tidal height. This is because generally, numerical models 

are used to describe sea-state and in predicting motion sickness, defined sea-state 

parameters and operational conditions are used. As such, this research presents a framework 

for using near-real-time metocean data to predict Motion Sickness Incidence in technicians 

during transit.  

Like the comfort-based model, predicting Motion Sickness Incidence for practical application 

will potentially be used for pending maintenance activities where a sail or not sail decision 

needs to be made for a transfer plan. The potential phases for a health-based assessment 

include: 

1. A sea-sickness assessment is required for pending maintenance activities before a 

transfer plan is created or as part of the transfer plan. 

2. Input operational values including duration to a turbine, average speed, vessel 

heading, significant wave height, current speed, current direction, and tidal height, 

into the model as input variables. 

3. The model predicts values for Motion Sickness Incidence. 

4. The assessment is reviewed. 

The next section analyses and discusses the welfare model used in predicting sail and not sail 

decisions to aid maintenance planning in offshore wind farms. 
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5.6  Analysis and Discussion of Objective Three 

Section 5.3 and 5.5 discusses the comfort-based and health-based models developed to 

predict Composite Weighted Acceleration and Motion Sickness Incidence for technicians in 

transit to offshore wind farms during maintenance. Both models used variables in sections 

5.2 and 5.4 as input variables relevant to the prediction of the comfort-based and health-

based models respectively. Operational limits defined in sections 2.61 and 2.6.2 were applied 

to both model outputs in order to describe optimum operational conditions for technicians 

based on the daily dose discomfort level of the transit and the daily dose predicted Motion 

Sickness Incidence. Therefore, this section discusses a technician welfare model that accounts 

for the comfort of technicians, using predicted values of Composite Weighted Acceleration, 

and the health of technicians from motion sickness, using the predicted values of Motion 

Sickness Incidence, in creating sail or not sail decisions for maintenance scheduling. 

5.6.1  Developing a criterion-based decision-making model for 

maintenance scheduling based on technician welfare. 

In applying limiting criteria for the comfort-based model, this research uses the 

recommendation by ISO 2631-1 expressed in sections 2.6.1 and 2.6.2 of this thesis. The 

operating limits used to describe technician discomfort are based on the identified 

relationship between discomfort and the magnitude of acceleration where studies have 

shown that increases in the magnitude of acceleration result in increases in the degree of 

discomfort in passengers (Mansfield et al., 2000). This relationship has been made in various 

experimental studies where subjects were asked to rate stimuli based on vessel motions 

which led to the development of semantic rating scales based on the magnitude of 

acceleration (Huston et al., 2000; Nielsen, 1987; Shoenberger, 1982; Wikström et al., 1991). 

A similar rating scale is presented in the recommendations of the ISO 2361-1 used in this 

research and presented in Table 2.2 which shows estimations for human response to 

accelerations. Table 2.2 shows a range of magnitudes of acceleration between 0 ms-2 to 2 ms-

2 which have defined human reactions ranging from not uncomfortable to extremely 

uncomfortable. It should, however, be noted that the limits presented, act as approximate 

indications of likely reactions to the stated levels of acceleration magnitudes during transits 

and further depend on other factors such as the activities performed or expected to be 
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performed by passengers as well as the duration of the transit. These scales are also specific 

to the environment used, for instance, concerning the discomfort of people in residential or 

industrial buildings, a different scale found in the ISO 2631-2 should be used (ISO 2631-1, 

1997). In applying the scales described, this research defines sail decisions on values of 

predicted composited weighted accelerations less than 0.315 ms-1, and not sail decisions on 

values greater than or equal to 0.315 ms-1 in a simple logic model for scales described as 

comfortable and uncomfortable respectively. 

Similarly, the health-based model applies operational conditions based on limits of acceptable 

working conditions and the duration of exposure which suggests a threshold of 20% Motion 

Sickness Incidence (Stevens and Parsons, 2002; Phillips et al., 2015; Saha et al., 2020). As such, 

this research defines sail decisions on values of predicted Motion Sickness Incidence less than 

20%, and not sail decisions on values greater than or equal to 20%in a simple logic model. 

Figure 5.6 below presents the results of the welfare model developed. 

 

 

Figure 5. 7 Plot of the developed technician welfare model showing sail and not sail decisions 
for O&M transits over three months. 

Figure 5.7 shows a plot of the predictions from the welfare model between the 9th of July and 

the 29th of October 2019. The plot shows sail and not-sail predictions (top plot) based on 
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model output prediction from the comfort-based model (second row), and the predictions 

from the health-based model (bottom row). In 163 predictions, the model shows 129 sail 

predictions (shown in green) and 34 not-sail predictions including 11 not-sail decisions where 

transits were predicted to be both uncomfortable and where the incidence of motion sickness 

was predicted to be above 20% of the population. Additionally, the model also shows 23 not-

sail predictions where transits were predicted to be uncomfortable, but Motion Sickness 

Incidence was predicted to be below 20% (such as between 8/9/2019 and 26/9/2019) but 

none, where Motion Sickness Incidence was predicted above 20% and the transit, was 

predicted comfortable. This suggests that in some cases, transits could be predicted as 

uncomfortable but not able to cause seasickness to a large population of technicians during 

transits. 

The model presented shows that the welfare of technicians can be modelled and accounted 

for in sail or not sail decision-making based on both the health and comfort of technicians. 

The potential application of this model can avoid potential waiting times in cases where 

access is possible but exposure to motion is unacceptable (Scheu et al., 2018). Additionally, 

this model can allow for the successful completion of a range of tasks that could be affected 

by whole-body accelerations ranging from less complex tasks such as reading, writing, and 

eating (Mansfield, 2005), to complex tasks including manual tasks and other task associated 

with handgrip, vertical-jump, and push. Furthermore, distractions, annoyance, elevated blood 

pressure and stress-related symptoms that are associated with whole-body accelerations 

(Marjanen & Mansfield, 2011) can be avoided.  

5.6.1.1  Comparison between welfare model output and limits of operation. 

To further analyse the model’s performance, this research compared the estimated values of 

Composite Weighted Acceleration and Motion Sickness Incidence with predicted values in all 

the project sites to the standard sea-faring operational limits for Motion Sickness Incidence 

to determine how the model’s predictions would compare to possible sailing decisions by 

wind farm operators. 
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Figure 5. 8 A plot of predicted and estimated Motion Sickness Incidence for all sites, denoted 
by MSI, with the Motion Sickness Incidence operational limit. 

Figure 5.8 shows the estimated and model-predicted Motion Sickness Incidence (MSI) with 

the standard motion sickness operational limit of 20% of Motion Sickness Incidence. The 

residual from the predicted and estimated values showed that of 212 predictions, 23 were 

false predictions, and of the 23 false predictions, there were 7 false not sail predictions and 

16 false sail predictions. This means that in practice, there were 7 transits where the model 

predicted a not sail decision instead of a sail decision and 23 transits where the model 

predicted a sail decision for a not sail decision, based on Motion Sickness Incidence limits. 

Therefore, based on applied limits the model would have a 12.2% error rate in practical 

application. 

The implementation of comfort assessments is rarely seen in the literature concerning the 

operations and maintenance of offshore wind farms, however, the Health and Safety 

Executive presents acceleration exposure limitations for the reduction of back pain in workers 

which can be used as a guide. The regulations found in the ‘The Control of Vibration at Work 

Regulations, 2005,’ suggests that employers introduce a technical and or organisational 

measure to decrease acceleration exposure for acceleration exposures up to 0.5 m/s2 during 

a workday (usually estimated to be 8 hours). However, as suggested in section 5.1, lower back 

pain is a long-term effect of acceleration exposure, and this thesis provides a framework for 

short-term predictions and only considers the short-term effects of acceleration such as the 

effect on the comfort of technicians. Figure 5.8 shows predicted and estimated values of 

Composite Weighted Acceleration with exposure limits. 
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Figure 5. 9 A plot of predicted and estimated composited weighted RMS acceleration, denoted 
by aW (m/s2) RMS, with the Health and Safety Executive HSE defined exposure limit and the 
comfort model limit. 

As current literature and information from industry experts suggest that comfort assessments 

are rarely used in operations and maintenance planning, it is difficult to determine sailing 

decisions that could be made by offshore wind farm operators. However, where the comfort 

model limit is applied at 0.315 m/s2 for increasing levels of discomfort, the plot in Figure 5.9 

shows that for 212 predictions, 19 were false predictions, and of the 19 false predictions, 

there were 9 false not sail predictions and 10 false sail predictions. This means that in practice, 

there were 7 transits where the model predicted a not sail decision instead of a sail decision 

and 23 transits where the model predicted a sail decision for a not sail decision, based on the 

set comfort-based limits. Therefore, based on applied limits the model would have a 9.8% 

error rate in practical application. 

To further test the models against operations and maintenance strategies, the research 

compares the standard limit of operation for crew transfer vessels (1.5m of significant wave 

height), as outlined in section 2.6.2, with model predictions for Motion Sickness Incidence and 

Composite Weighted Acceleration to identify if established limits were sufficient in 

accounting for the welfare of technicians in transit. Figure 5.9 shows that when considering 

the likelihood of seasickness occurring in technicians, the welfare model predicted not-sail 

decisions for transits below 1.5m, and similarly, when considering the comfort of technicians, 

the welfare model predicted not-sail decisions for significant wave heights below 1.5m. 
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Figure 5. 9 (a) A plot of Motion Sickness Incidence (MSI) against significant wave height with 
crew transfer vessel operational limits denoted by CTV limit; (b) A plot of Composite Weighted 
Acceleration aW(m/s2) RMS against significant wave height with crew transfer vessel 
operational limits denoted by CTV limit. 

This suggests that the traditional crew transfer vessel limits of operation were insufficient in 

accounting for the welfare of technicians for the dataset explored and based upon 

estimations of Motion Sickness Incidence and Composite Weighted Acceleration. This 

corroborates suggestions made by Scheu et al., (2018) for the inclusion of human motion 

criteria in operation and maintenance planning when studying human exposure to 

acceleration during maintenance on floating offshore wind turbines. Scheu et al., (2018) 

further expressed the importance of the inconsistency between standard success criteria and 

human motion criteria stating that human motion criteria should be treated the same way as 

weather windows as there could be situations where a wind turbine could be accessible but 

exposure to motion is unacceptable. As such this research proposes the potential application 

of the welfare model in typical maintenance planning for decision-making. The image in 

Figure 5.10 outlines the potential process for obtaining a technician welfare assessment using 

the welfare model. 
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Figure 5. 10 Process for obtaining a welfare assessment 

The phases described in Figure 5.7 above include a request for a welfare assessment for a 

pending maintenance activity before a transfer plan is created or as part of the transfer plan; 

Input variables are applied to the comfort and health-based models which provide outputs 

for Composite Weighted Acceleration and Motion Sickness Incidence respectively. 

Operational limits are applied following ISO 2631-1 guideline; Model outputs are used in the 

welfare model to determine sail or not-sail decisions and the welfare model output is 

reviewed. 

5.6.2  Limitations and Recommendations 

This section discusses the limitations encountered during this research and provides areas 

where improvements can be made. 

The results of both the comfort-based model and health-based model show the lack of a high 

R2 value which suggests other variables or factors could exist for more accurately predicting 

Composite Weighted Acceleration and Motion Sickness Incidence in technicians. This could 
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be related to vessel parameters not included in the dataset used for the thesis analysis. As 

such, more iterations are needed that include a bigger dataset, as well as more variables to 

improve model predictions but at the same time avoid overfitting. 

While sufficient in meeting the thesis objectives the predictions of Motion Sickness Incidence 

for describing seasickness in technicians, and Composite Weighted Acceleration for describing 

discomfort, are estimations of likely response to whole-body accelerations. The results of this 

thesis could benefit from validations with real-life measurements of seasickness and 

discomfort in technicians during transits. There have been efforts to apply physiological 

correlates which can be considered, especially for motion sickness, such as changes in heart 

rate, temperature, respiration rate, the occurrence of yawning, and gastrointestinal activity 

(Bos et al., 2022). A measure of both physiological changes and questionnaire-based 

symptomatic ratings would measure the relationship between the proxy variables against 

actual measurements and expressions of discomfort and seasickness made by technicians. 

This process would inform future exploration of input parameters and greatly improve the 

thesis model as it eliminates the subjective nature of the operational limits used to define 

safe operations for technicians. In addition to this, the operational limits suggested by 

guidelines can also be tested against the welfare of technicians and their ability to do work. 

However, it should be stated that the operational limits used have been tested in various 

experimental studies though most of these studies explored these limits for vessels of varying 

sizes, some of which are different from the crew transfer vessels used in operation and 

maintenance activities.  

The welfare model also functions as a generalised representation of the well-being of 

technicians in transits and while accounting for the likelihood of seasickness and discomfort, 

the model does not present weighted RMS of acceleration limits to the type of work being 

performed such as the limits introduced by Nielsen, (1987) which applies limits to the type of 

work performed ranging from light manual work to intellectual work for vertical and lateral 

root-mean-square accelerations. While the limits can be applied to the comfort model which 

predicts weighted RMS of acceleration, it should be noted that the limits provided by Nielsen, 

(1987) were for naval vessels on naval missions and as such the limits may need to be re-

evaluated when considering the motions of high-speed vessels at sea. Moreover, the highest 

prediction of RMS acceleration for the dataset explored in this research was below 0.9 ms-2, 
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a value less than the lowest limiting motion criteria for different kinds of work by Nielsen, 

(1987) and as such, the impact of this limiting criteria on this dataset was not explored. 

Additionally, the welfare model predicts sail and not-sail decisions for crew transfer vessels 

and as such cannot be used in predicting technician welfare in other vessels used in operation 

and maintenance activities such as service operating vessels (SOVs) which are much larger in 

comparison to crew transfer vessels, and helicopters which are not restricted by sea-state 

which along with vessel parameters, make up the model’s input variables. 

5.6.3  Summary 

This section analysed and discussed the technician welfare model used in predicting sail and 

not-sail decisions for technicians during transits to offshore wind farms for maintenance 

operations. Operational limits described in sections 2.6.1 and 2.6.2 were applied to model 

outputs from the comfort-based model discussed in section 5.3, and the health-based model 

discussed in section 5.5. The operational limits described predictions for composited 

weighted accelerations less than 0.315 ms-1, as comfortable for technicians during transit and 

predictions greater than or equal to 0.315 ms-1 as progressively uncomfortable. Similarly, 

predictions for Motion Sickness Incidence less than 20% are defined as safe for transit while 

predictions for Motion Sickness Incidence greater than or equal to 20% as unsafe for transit. 

The results of the technician welfare model show that the welfare of technicians can be 

modelled able to account for both the health and comfort of technicians using Composite 

Weighted Acceleration and Motion Sickness Incidence to make sail or not sail decisions. In 

predicting the welfare of technicians, the results of the model show that in some cases, 

transits could be predicted as uncomfortable but not able to cause seasickness to a large 

number of the population of technicians. In comparing model outputs for sail and not-sail 

decisions with standard crew transfer limits of operation, the results of the welfare model 

showed that standard crew transfer vessel limits of operation were insufficient in accounting 

for the welfare of technicians for the dataset explored and based upon estimations of Motion 

Sickness Incidence and Composite Weighted Acceleration. 
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5.7  Conclusion 

This chapter analysed and discussed the results of the data from the vessel motion monitoring 

systems (VMMS) deployed on participating vessels and meteorological data to achieve the 

thesis aim of modelling the welfare of technicians on crew transfer vessels during transits to 

offshore wind farms. To model the welfare of technicians, this research defined the welfare 

of technicians as the comfort and health of technicians during transits and modelled the 

comfort and health of technicians using Composite Weighted Acceleration and Motion 

Sickness Incidence. This research employed a novel method for describing sea-state when 

predicting human exposure acceleration by using metocean data synchronised with vessel 

GPS locators to describe sea-state. To predict the comfort of technicians, an exploratory 

analysis process was used to identify the most relevant variables to predict Composite 

Weighted Acceleration including vessel transit duration, averaged vessel speed, averaged 

vessel heading, significant wave height, wave direction, wave period, current speed, current 

direction, and tidal height, which were relevant to 70% of the variation in predicting 

Composite Weighted Acceleration. This research adds to existing research by exploring the 

relationships between Composite Weighted Acceleration and the identified variables. 

Significant relationships were found between vessel transit duration, vessel speed, and 

significant wave height, however, there was no observable trend seen in the comparisons 

between Composite Weighted Acceleration and vessel heading, current speed, current 

direction, and tidal range. The identified variables were used as independent variables in the 

comfort-based model which predicted composited weighted acceleration in ms-1 with a 

coefficient of determination R2 of 0.67. Similarly, to predict the health of technicians during 

transit, an exploratory analysis process was used to identify the most relevant variables to 

predict Motion Sickness Incidence including vessel transit duration, averaged vessel speed, 

averaged vessel heading, significant wave height, wave direction, wave period, current speed, 

current direction, and tidal height, which were relevant to 70% of the variation in predicting 

Composite Weighted Acceleration. This research added to existing research by exploring the 

relationships between Motion Sickness Incidence and explored variables. Significant 

relationships were found between Motion Sickness Incidence and significant wave height, and 

the comparison with vessel transit duration was found to corroborate findings in the 

literature. However, the comparisons with vessel speed, vessel heading, current speed, 
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current direction, and tidal range, did not reveal observable trends. The identified variables 

were used as independent variables in the health-based model which predicted Motion 

Sickness Incidence as a percentage with a coefficient of determination R2 of 0.49. By applying 

relevant limits of operations to the outputs of the comfort-based model and the health-based 

model, a simple logic model was used to define sail or not-sail decisions for decision-making 

in offshore wind maintenance scheduling. The results of the model showed that in some 

cases, transits could be predicted as uncomfortable but not able to cause seasickness to a 

large number of the population of technicians. The results of the technician welfare model 

show that the welfare of technicians can be modelled able to account for both the health and 

comfort of technicians using Composite Weighted Acceleration and Motion Sickness 

Incidence to make sail or not sail decisions. In comparing model outputs for sail and not-sail 

decisions with standard crew transfer limits of operation, the results of the welfare model 

showed that standard crew transfer vessel limits of operation were insufficient in accounting 

for the welfare of technicians for the dataset explored and based upon estimations of Motion 

Sickness Incidence and Composite Weighted Acceleration. 
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6  Conclusion 
This thesis has made significant contributions to the knowledge of maintenance planning in 

offshore wind farms. Generally, the planning of maintenance activities in offshore wind farms 

has involved accounting for weather and sea state, and the availability of maintenance 

resources to determine whether a wind turbine is accessible. More recently, decision-support 

tools have been developed to aid this decision-making process by modelling daily 

maintenance planning based on the key factors mentioned. However, the literature review 

showed that available models do not account for the welfare of technicians and their ability 

to do work after transits to offshore wind turbines for maintenance. Where technicians are 

accounted for in literature, this account is usually in relation to the number of technicians 

available, the length of shifts, the number of technicians per service order or the number of 

service orders per technician, the type of technician available, and the availability technician 

for work orders. This exposes some uncertainties in maintenance scheduling and a gap in the 

literature as research has shown that vibrations caused by vessels in transit to offshore wind 

farms affect the comfort and health of the technicians on board in a number of symptoms 

including discomfort, seasickness, and inability to do work. Additionally, the available 

guidance on the discomfort caused by vibrations in the offshore wind industry is limited, but 

there is some guidance (though also limited) on the occurrence of seasickness-related issues 

which states that individuals feeling the effects of seasickness are to stay onboard the vessel 

until the effects subside. This exposed further uncertainties such as increased waiting times, 

especially in cases where wind turbines are assessable but exposure to vibrations is 

unacceptable. Therefore, there was a need to account for the comfort and health of 

technicians during transits in maintenance scheduling. The aim of this research was to apply 

technician welfare criteria in the same way operational limits are applied in sail or no sail 

decisions to ensure the comfort, health and safety of technicians and ensure their ability to 

do work on arrival at offshore wind turbines. 

To explore human exposure to vibration, this research used data from vessel motion 

monitoring systems (VMMS) deployed on twelve (12) crew transfer vessels operating across 

four wind farms (4) by four wind farm operators in the North Sea to measure acceleration 

data.  The dataset was synchronised with sea-state data including significant wave height, 
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wave period, wave direction, current direction, current speed, sea surface height, wind speed, 

and wind direction. 

To model the welfare of technicians, this research defined the welfare of technicians as the 

comfort and health of technicians during transits to offshore wind farms. Therefore, for 

objectives one and two, this study modelled the comfort of technicians using Composite 

Weighted Acceleration as a proxy indicator and modelled Motion Sickness Incidence as a 

proxy indicator for the health of technicians describing the likelihood of vomiting due to 

motions experienced on Crew Transfer Vessels. These indicator variables were chosen as 

measurable short-term indicators of the comfort and health of technicians. However, the 

models created did predict human comfort or health but used the magnitude of modelled 

Composite Weighted Acceleration and percentage values of Motion Sickness Incidence to 

describe levels of discomfort and the likelihood of vomiting from vessel motions based on the 

guidance of international standards and previous studies. 

 The Composite Weighted Acceleration and Motion Sickness Incidence variables were feature 

engineered and added to the thesis dataset using the expressions described in ISO 2631-1 and 

an exploratory analysis process was used to identify the most relevant variables to predict 

both indicator variables. The identified variables included vessel transit duration, averaged 

vessel speed, averaged vessel heading, significant wave height, wave direction, wave period, 

current speed, current direction, and tidal height, which were relevant to 70% of the variation 

in predicting proxy variables. The use of a merged sea-state and measured vessel motion data 

allowed relationships to be explored that are not usually explored in research which added to 

existing literature. The comparison between vessel transit duration and Composite Weighted 

Acceleration confirmed that there is a decrease in daily weighted acceleration with increased 

duration, the comparison between the vessel speed and Composite Weighted Acceleration 

suggested that an increase in vessel speed resulted in an increase in daily weighted 

acceleration, and the comparison between significant wave height and Composite Weighted 

Acceleration showed that there was an increase in daily weighted acceleration with increases 

in significant wave height. The comparison between vessel transit duration and Motion 

Sickness Incidence confirmed relationships found in available literature where there was an 

increase in Motion Sickness Incidence with vessel transit duration which plateaued. The 

relationship between Motion Sickness Incidence and significant wave height suggested that 
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there was an increase in Motion Sickness Incidence with increases in significant wave height. 

The identified variables were used as independent variables  

in a machine learning process that trained a training dataset against multiple models, 

identifying a Gaussian Process Regression (GPR) model as the model of best fit for both 

variables. The goodness of fit was tested for both models using the R2 coefficient of 

determination which had results of 0.67 for the model predicting weighted acceleration and 

0.49 for the model predicting MSI. This showed that for objective one, 67% of the variation 

of estimated Composite Weighted Acceleration, can be explained by the explored 

independent variables, and as such, only 33% reside in the residual. This gives a measure of 

improvements that need to be done in improving the model which is relevant since there 

could be some unexplored, uncontrollable, and undeterminable or unknown factors that 

could influence the measured acceleration on the participating CTVs. For objective two, The 

model created revealed that more than half of the variation (51%) in predicting Motion 

sickness Incidence could not be explained by the variables explored in the research. 

Therefore, this thesis showed that significant work is needed to improve the model’s 

performance. Additionally, the mean average error (MAE) and Root-Mean-Square error 

(RMSE) were used to explore the errors present in the models as well as provide measures to 

compare future models against. Typically, R2 values higher than 0.5 are seen as acceptable 

goodness of fit, depending on the data and field, however, this thesis uses this measure to 

evaluate the effectiveness of the explored input variables in predicting the proxy variables, as 

such, where the residual variance is greater than the variance of the data, as with the model 

predicting MSI, more work is needed to explore variables more relevant to predicting the 

proxy variable. Therefore, for the intended purpose of this thesis, the model predicting 

weighted acceleration showed satisfactory performance while the model predicting MSI 

showed that more work was needed to improve performance. 

For the third objective, the welfare model was developed by applying relevant limits of 

operations to the outputs of the comfort-based model and the health-based model, as 

defined by ISO 2631-1 for limits of human operation. For the output of the comfort-based 

model, predictions of Composite Weighted Acceleration above 0.315 ms-1 were categorised 

as uncomfortable based on the ISO 2631-1 estimation for human comfort response to 

vibrations. For the output of the health-based model, a threshold equal to or above 20% for 
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the predictions of motion sickness was applied to show unfavourable sailing conditions where 

there was a probability to induce seasickness in 20% of technicians on crew transfer vessels. 

Using the limits of operation applied to the outputs of the comfort and health-based model, 

a simple logic model was used to define sail or not-sail decisions for decision-making in 

offshore wind maintenance scheduling. The results of the model showed that in some cases, 

transits could be predicted as uncomfortable but not able to cause seasickness to a large 

number of the population of technicians (Motion Sickness Incidence below 20%). The results 

of the technician welfare model showed that the welfare of technicians can be modelled able 

to account for both the health and comfort of technicians using Composite Weighted 

Acceleration and Motion Sickness Incidence to make sail or not sail decisions. 

Major contributions from this project were achieved by merging measured vessel motion data 

with ocean model data. This is because research into the human response to vessel motion is 

expensive and time-consuming, as such, numerical models are usually used to define vessel 

parameters in the available literature (Olausson, 2015). Through these models, operational 

conditions have usually been defined for specific sea states and vessel parameters which has 

not allowed significant relationships to be explored fully in literature. This research on the 

other hand benefited from the wide spatial and temporal variations made available by 

metocean products (acquired from Copernicus Marine Service CMEMS) which when 

synchronised with data from the vessel motion monitoring system, using GPS coordinates and 

timestamps to describe crew transfer vessel's transit routes between port and wind farms, 

allowed for statistical analysis to be made that identified significant relationships with 

weighted acceleration and Motion Sickness Incidence that is rarely explored in literature. 

Major relationships were found with vessel parameters such as vessel duration and vessel 

speed, and sea-state parameters like significant wave height. While some of the relevant 

variables explored have been used either as vessel parameters and/or sea-state parameters 

for models exploring human response to vibrations at sea, analysis showing the relevance of 

these variables in predicting weighted acceleration and Motion Sickness Incidence is not 

typically seen in literature. Additionally, relationships with variables such as tidal height, 

current speed, and current direction which were found to have some importance to the 

variation when predicting weighted acceleration and Motion Sickness Incidence, but not 

enough observable significance when comparisons were made, has not been explored in 
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literature. The major contributions to operation and maintenance practice by this research 

were expressed in accounting for the overall well-being of technicians in maintenance 

planning by accounting for the likelihood of seasickness and the comfort of technicians which 

has not previously been explored. This is particularly important as available literature shows 

that vibrations caused by sea-state cannot only cause discomfort and seasickness but can also 

affect the ability to perform functions in technicians ranging from less complex functions such 

as writing and eating to complex tasks involving manual handling, cognitive tasks, and physical 

capacities such as handgrip, and vertical-jump and push. Additionally, other vibration-caused 

impairments can be avoided including a reduction of human reaction time, impairment of 

balance, and mental and physical fatigue. In addition to the effects of vibration on technicians, 

when modelling sail or not sail decisions, major findings from the welfare model showed that 

typical crew transfer vessel operational limits of 1.5m of significant wave height are not 

enough to account for the well-being of technicians during transits. This is because the 

welfare model showed that some transits below 1.5m of significant wave height can still be 

uncomfortable for technicians and may likely cause seasickness in 20% or above of the 

population of technicians in transit. These findings are also applicable in lighter vessels like 

daughter crafts which while not used in model predictions are also limited by significant wave 

height operational limits and are typically about 12m in length which can expose passengers 

to significant vessel motions (Snyder, 2020; Reid, 2021). Therefore, the findings from this 

research further inform maintenance planning, especially when applied before or when a 

maintenance work order has been issued as proposed in this thesis. The findings from this 

thesis also highlight the relevance of near-real-time and forecast data as a helpful and less 

expensive tool for maintenance planning which can fill gaps in the temporal and spatial 

variations of the marine environment. This was further expressed in this thesis where 

validations were made against in-situ measurements. 

This research can also provide a framework for regulatory compliance as the model limits fall 

below the limits provided in the code of practice for reducing the risks from whole-body 

vibration on ships by the Maritime and Coastguard Agency (Maritime and Coastguard Agency 

- Great Britain, 2009), and The Control of Vibration at Work Regulations 2005 (The Control of 

Vibration at Work Regulations, 2005). Additionally, wind farm operators are able to apply a 

well-being criterion in decision-making in order to mitigate risks following the guidelines 
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under the Health and Safety at Work etc Act 1974 (Health and Safety at Work Etc Act, 1974). 

As such, this thesis does not affect established regulations but presents a method for 

compliance by making sailing decisions that eliminate the risk of not meeting regulatory 

compliance. 

 

6.1  Limitations and future work 

Despite meeting the thesis aims and objectives, there were key limitations that need to be 

highlighted, some of which can be addressed in future work. The vessel motion monitoring 

system (VMMS) data used in this thesis was secondary data which amongst other 

measurements, measured acceleration data from participating crew transfer vessels. The 

VMMS data were made available to this research from the SPOWTT project which was aimed 

at improving the safety and productivity of offshore turbine technicians, and as such was 

acquired for a different purpose than the thesis aims and objectives. For this reason, some 

assumptions had to be made within the course of this research regarding the calibration of 

the accelerometers on the Vessel Motion Monitoring System (VMMS), and the placement of 

the VMMS on the participating vessels which can create errors in validation due to the 

physical constraints of the device, and the location of the device in relation to the personnel 

on board. 

A drawback of this study is that it does not include a model validation against measured 

discomfort and seasickness, which can be acquired from subjective questionnaires (Golding, 

1998). This would measure the relationship between the proxy variables against expressions 

of discomfort and seasickness made by technicians through designed surveys. This process 

would inform future exploration of input parameters and greatly improve the thesis model as 

it eliminates the subjective nature of the operational limits used to define safe operations for 

technicians. In addition to this, the operational limits suggested by guidelines can also be 

tested against the welfare of technicians and their ability to do work in relation to Vessels 

specific to the maintenance of offshore wind farms. However, it should be stated that the 

operational limits used have been tested in various experimental studies though most of 
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these studies explored these limits for vessels of varying sizes, some of which are different 

from the crew transfer vessels used in operation and maintenance activities. Future work will 

need to be undertaken to test the created models against technician data to explore model 

accuracy and variations. In addition to this, the scope of this research can also be further 

expanded using data collected specifically for this research to include other ambient 

environmental aspects of vessel habitability including the effect of noise and temperature on 

technicians. This would involve the exploration of the effect of noise on cognitive 

performance (Jafari et al., 2019), and the effect of thermal comfort on technicians (Khan et 

al., 2021) to apply limits of operability for risk-based decision-making that can further inform 

the ability to do work in technicians. 

Further improvements can be made to the comfort, health, and welfare models by the 

iterative addition of relevant variables that improve the model predictions, and the definition 

of the welfare variables used such as Motion Sickness Incidence (MSI). While MSI is a 

measurable metric for seasickness, the literature review showed that other symptoms of 

motion sickness including fatigue, cognitive symptoms, and temperature-based symptoms 

are not included in this metric. Additionally, MSI as developed by Reason and Brand, (1975), 

has typically been used for larger vessels such as naval vessels which have significantly 

different shapes, weights, and functions to CTVs. Therefore, a novel seasickness metric that 

includes more symptoms and developed from crew transfer vessel characteristics would be 

beneficial in maintenance planning. In addition to this, it should be noted that this model 

predicts the incidence of vomiting (a symptom of motion sickness) and does not account for 

other susceptibility factors that can induce motion sickness such as a lack of visual reference 

to the motion being experienced especially in ships and temperature in vessels (Bos et al., 

2022). As such, Motion Sickness Incidence is not an indicator of motion sickness but an 

indicator of vomiting caused by motion sickness and may not be a sufficient indicator of the 

welfare of technicians in transit. This, therefore, means that technicians could be exposed to 

the many other explored symptoms of motion sickness which can affect their well-being and 

work.  

It will also be beneficial to improve the modelling process for vessel sizes with more variability 

as the welfare model predicts sail and not-sail decisions for crew transfer vessels and as such 

cannot be used in predicting technician welfare in other vessels used in operation and 
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maintenance activities such as service operating vessels (SOVs) which are much larger in 

comparison to crew transfer vessels. The welfare model also functions as a generalised 

representation of the well-being of technicians in transits and while accounting for the 

likelihood of seasickness and discomfort, the model does not present limits to the type of 

work being performed light manual work, heavy manual work, and intellectual work. Existing 

literature shows that limiting exposure criteria for different kinds of work can be applied 

(Payne, 1976), however, further work needs to be done to relate this to specific vessels used 

in offshore wind maintenance activities.  

To improve the machine learning process, improvements can be made by increasing the data 

used in making predictions. Though this research demonstrated promising results, the success 

of created models is largely due to the size of the dataset. While the dataset used in this 

project can be rare and complicated to generate, a system of cooperation between industry 

and academia can allow the collection of vessel information during transits to be acquired 

especially since the resulting research can be beneficial to industry partners. The comfort, 

health, and welfare models can further be improved by increasing spatial and temporal 

variability. The current model includes data from some sites including Southern site 2 and 

Western site 1 which contain data that only cover part of the year in autumn and winter. This 

shows that meteorological conditions for those sites do not cover the variability of conditions 

and as such can affect model predictions for predictions within the uncovered months. Future 

work would need to be done to improve spatial variability such as modelling the welfare of 

technicians in the Irish Sea for different seasons. 

 

6.2  Researcher Development 

This section presents a reflection, in the first person, on my personal experience and 

development as a researcher during this research project. 

This research required an interdisciplinary understanding of human exposure to vibration and 

the operation and maintenance of offshore wind, and for this reason, in-depth research into 

relevant and related literature was carried out as well as interviews with industry 
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professionals on related topics. This improved my ability as a researcher to explore existing 

literature, conduct interviews with specialists, draw out conclusions, and identify relevant 

gaps in both research and within the industry that needed to be addressed. The exploration 

of literature and information allowed me to address initial biases I had concerning the 

relevance of technician welfare in the offshore wind industry at the start of this project which 

informed my analysis and writing process following. In addition to this, my views on how 

comfort and seasickness were addressed and assessed have also adapted to the current 

knowledge available and its applicability to health and safety standards. To achieve the set 

aims and objectives of this thesis, it was necessary to learn new skills and develop already 

learned skills including skills in data analysis and exploration, feature engineering, machine 

learning, teaching, and dissemination, as well as personal skills such as communication, 

presentation, and writing skills. In addition, I applied the use of software tools within the 

course of this research project including MATLAB for data exploration, analysis, data 

visualisations, and machine learning, BRAT for exploring satellite data, ArcGIS for exploring 

spatial data and data from the vessel motion monitoring system, and Microsoft Excel for 

small-scale data analysis and visualisations. I was able to explore and develop skills in using 

different methods of research in order to gain a thorough perspective of the subject area, 

especially for a research area relevant to the industry. This allowed me to gain useful domain 

knowledge in the field that was necessary when analysing data collected and when defining 

the scope of the research and analysis. The nature of this research project required 

continuous adaptation to achieve the thesis aims based on the type and availability of data 

and the relevance of results in practice. I learnt that while relationships within datasets could 

be discovered, their relevance to industry practice should be taken into account. 

Overall, the research project allowed me to gain analytical skills, and research skills and 

enabled me to learn new and relevant software for research purposes. I was also able to 

develop interpersonal and transferable skills such as skills in communication, presenting, and 

writing. 
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Appendix A 

A.1  Exploring the potential of near-real-time data for 

decision-making in the operation and maintenance of 

offshore wind farms.  

As previously highlighted in the literature review (section 2.3), the day-to-day maintenance 

and the decisions involving the planning and scheduling of maintenance are influenced and 

affected by the validity of short-term forecasts with specific relevance to the sea state 

(Medina-Lopez et al., 2021). Most studies predicting human exposure to accelerations use 

numerical models to describe sea-state, this is because there are a handful of on-site met-

ocean sensors that provide detailed high-resolution site data. This is most likely due to the 

expense and impracticality of using in-situ measurements to cover wide areas. These include 

measurements from wave buoys equipped with accelerometers from which time-series data 

can be collected, tide gauges, and met masts amongst other instruments. Amidst other 

limitations such as the presence of currents and steep waves, and maintenance needs such 

as the removal of marine growth (Medina-Lopez et al., 2021), these in-situ devices, and are 

limited to measurements in the areas they are moored and the local measurements from 

these devices are usually assumed to be representative for the entire area being monitored 

and used by wind farm managers to direct operations.  As such, complete spatial coverage 

has not yet been accomplished (Medina-Lopez et al., 2021). The numerical models exist to 

mitigate the problems associated with in-situ devices including Simulating Waves Nearshore 

(SWAN), Wave Watch-III, WAM WAM, and Meteo France Wave Model (MFWAM), that take 

non-linear energy transfer between frequencies into account (Medina-Lopez et al., 2021). 

Other models exist that have been used with specific reference to human exposure to 

acceleration in existing publications such as the JONSWAP model which uses significant wave 

height, modal period, and spectral shape have been used to define sea conditions (Phillips et 

al., 2015). Similarly, the WAMIT software used by Scheu et al., (2018) in exploring human 

exposure to motion during maintenance, can calculate first-order wave force and motion 

transfer functions, second-order wave drift forces, hydrostatic stiffness, and radiation forces 

for wetted areas around floating bodies in the water. These models, in relation to this thesis 
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aim, have been used specifically to define parameters that describe the wave interactions of 

floating bodies in the water, but do not usually use the non-homogeneous random variables 

of sea-state and vessel parameters such as different speeds and heading but define 

operational conditions for a set of sea-states, and vessel parameters (Olausson, 2015). 

Additionally, some of these models require expert calibration and validation against in-situ 

measurements as it is not always possible to overlap in-situ measurements and modelled data 

(Medina-Lopez et al., 2021). In recent years, however, satellite data has proven to be a helpful 

tool in ocean monitoring and short-term forecasting. According to Hasager et al., (2013), 

satellite-based data can fill gaps in the temporal and spatial variations of the marine 

environment especially as the offshore environment is less known. In the operation and 

maintenance of offshore wind farms, this is particularly relevant as unlike data available from 

in-situ measurements, satellite data can provide data over a wide spatial coverage using 

different sensors and can also overcome some of the problems of physical forecast models 

(Medina-Lopez et al., 2021). In addition, coupling systems exist that merge satellite 

observation data with numerical forecasting models to improve the accuracy of data. 

Bruciaferri et al., (2021a) state that this ocean-wave coupling can improve the accuracy of the 

predicted surface dynamics by about 4% and about 8% in the open ocean and on the shelf 

respectively. 

This research explores the potential of near-real-time metocean and satellite data from 

Copernicus Marine Service with measured acceleration data to predict acceleration exposure 

in technicians. This study used hindcast metocean products in research, however, near-real-

time satellite observations as well as short-term forecast models exist to explore the potential 

application of near-real-time products in exposure assessments. As described in chapter three 

of this thesis, the data from the WAVEWATCH III wave model (Tolman, 2014) can provide daily 

analyses and 10 days forecasts for the global ocean sea surface waves. Similarly, other model 

input parameters such as current, and tidal data are produced using the NEMO (Nucleus for 

European Modelling of the Ocean) forecasting model, which provides a 6-day forecast. On the 

other hand, satellite data was acquired from altimeter and synthetic-aperture radar (SAR) 

measurements from the Copernicus Marine Service. 

To ensure an accurate representation of the sea state, this research applies a comparison 

ocean model and satellite measurements with available buoys for wave measurements. 
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A.1.1  Comparison between metocean and satellite data with 

directional wave rider buoy data 

Chapter three of this thesis describes the processes taken to synchronise sea state data for 

locations within the thesis project sites to in-situ measurements collected by the vessel 

motion monitoring system (VMMS) using GPS data within datasets. The resulting dataset 

shows the routes taken by vessels merged with their associated meteorological data along 

the transit routes in Figures 4.7, 4.12, 4.17, and 4.22. The meteorological data used in this 

thesis included wave data, current data, tidal data, and wind data. In order to validate the 

synchronisation process, metocean and satellite datasets were compared with in-situ 

measurements from directional wave rider buoys. Werdell & McClain, (2019) describe a 

straightforward approach to this validation which involves the comparison of simultaneously 

collected data. For this study, the comparison was made using data from directional wave 

riders acquired from Cefas and funded by Environment Agency, licensed under the Cefas 

WaveNet Non-Commercial Licence v1.0. The wave measurements were recorded in thirty-

minute (30-minute) samples and the significant wave height data measurement was selected 

for comparison using hindcast data and the GPS location of the directional wave riders. The 

comparison assessed standard metric errors including the root mean square error (RMSE), 

the correlation coefficient (R), the coefficient of determination (R2), and the probability value 

(p-value). The results for the comparison are presented below in Table 5.4. 

Category R2 RMSE p-value Parameter 

Metocean and buoy data  0.89 0.20 <0.05 Significant wave height 

Metocean and buoy data  0.84 0.25 <0.05 Significant wave height 

Metocean and buoy data  0.986 0.15 <0.05 Significant wave height 

Satellite and buoy data  0.71 0.50 <0.05 Significant wave height 

 Satellite and met station data   0.54 1.74 <0.05 Wind speed 

Satellite and met station data 0.90 0.18 <0.05 Wind speed 

Table 5. 2 Comparison between metocean and satellite data products with in-situ data 
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Overall, the result of the comparisons shows good agreement between metocean and in-situ 

data and between satellite data and the data from the in-situ devices which corroborates 

findings by Boudière et al., (2013) who stated that wave data produced by wave models 

compared well between satellite altimeters and buoy measurement. Another satellite data 

validation was performed by Werdell & McClain, (2019) who also found a good relationship 

between the datasets as well as the slight differences between satellite measurements and 

in-situ measurements which are present in the findings by Boudière et al., (2013), however, 

Werdell & McClain, (2019) explained the differences to be due to a few reasons including 

erroneous estimations, missing data from satellite trajectory, inaccurate and missing in-situ 

values, and errors due to empirical regressions. In application, however, this exploration 

showed that metocean products were more suited to welfare predictions in offshore wind 

farms. Though this research shows that the time-consuming nature of experimental human 

reaction to vessel acceleration research can be mitigated with satellite data, this research also 

highlights the practical limitations of satellite data in forecasting which is relevant for welfare 

predictions. This is because satellite products are able to provide hindcast datasets and in 

some cases, near-real-time datasets, however, short-term forecast data is needed for 

maintenance planning operations which can be achieved from numerical ocean models able 

to provide near-real-time and forecast outputs. As such, the models created in this research 

used metocean data in model predictions. The models created can be deployed as a web 

application or integrated into existing operation and maintenance models which can both 

improve decision-making and risk management in operation and maintenance and in some 

cases, reduce costs associated with delayed and rescheduled maintenance brought about by 

seasickness in technicians (Stock-Williams & Swamy, 2019).  

A.1.2  Discussion and conclusion 

This section illustrated the potential for the use of ocean models and satellite data in decision-

making for the operation and maintenance of offshore wind farms using a practical 

application. Ocean model and satellite data were used to provide spatial coverage for areas 

within project sites. In order to validate both sea state datasets, a comparison was made with 

an available in-situ device in the project area. A comparison was made between in-situ data 

and ocean model and satellite which showed a good agreement between the datasets 

suggesting that ocean-modelled, and satellite-measured data can add significant value to 
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offshore wind energy as well as other offshore renewable energy industries. Medina-Lopez et 

al., (2021) make similar statements while exploring the opportunities of satellite data in the 

renewable energy sector. They state that there is a need for the provision of more data with 

improved spatial resolutions which could improve the offshore renewable sector in the 

context of operational and environmental conditions, and more specifically to this thesis's 

aims, improve decision-making in the sector. The decision-making process of operation and 

maintenance in offshore wind is heavily influenced by environmental conditions which can 

define the type of vessel used for a maintenance operation or even whether or not a 

maintenance operation can be performed safely. As such this research demonstrated that 

near-real-time data and in some cases short-term forecast data can used in combination with 

machine learning methods can be used for risk-based decision-making in the operation of 

offshore wind farms (described in sections 5.3 and 5.4 of this chapter) to estimate the comfort 

and health of technicians on crew transfer vessels during transits for maintenance operations. 

Where project sites included large areas around wind farms, transit routes, and areas around 

exit ports, modelled ocean data and satellite data were vital in providing high-resolution 

spatial coverage for areas not initially covered by in-situ data. However, the exploration of 

practical applications showed that numerically modelled data was better suited to 

maintenance planning due to the limitation of satellite data to provide forecast data. As this 

research showed, a major limitation to the use of satellite data was that the current satellite 

products available are only able to provide hindcast and near-real-time data (usually one to 

three hours behind), and in practice, a welfare model will benefit from real-time data in 

describing sea-state. Further limitations to the use of satellite data in the operation and 

maintenance of offshore wind farms could be a lack of knowledge in integrating satellite data 

with standard operation and maintenance techniques (Medina-Lopez et al., 2021). However, 

as this thesis, shows a combination of domain knowledge and the extra level of information 

provided by satellite data is possible and can supplement in-situ data for purposes such as 

model validation in areas out of in-situ coverage. Other limitations to the use of satellite data 

include errors caused by cloud cover (Werdell & McClain, 2019), though some SAR satellites 

can acquire images under cloudy conditions (Notti et al., 2018), and latency and the time of 

the satellite pass for real-time data (Notti et al., 2018), which could be an important factor in 

day-to-day maintenance decision-making. Nevertheless, forecast products exist that can 

complement near-real-time data for short-term forecasts, however, these forecast models 



 

219 
 

are based on some of the numerical forecast models already used in available research. 

Where raw real-time data can be made available for use, measures will need to be taken to 

process this data before model predictions can be made. The potential for metocean data in 

planning operations can, however, be extended to other areas of operations in offshore wind 

energy.  

Further work will include the addition of more datasets to inform and improve the created 

models, and the integration of the created models into existing models for real-life 

applications. Additionally, the created models can be improved by modelling the welfare of 

technicians using vessels of more variable sizes such as service operating vessels (SOVs), and 

modelling welfare in variable sea-states other than the North Sea for greater spatial variation. 

Further application and recommendations from these findings include having a wider 

network of satellite data provision services for free and open-access data for the 

implementation of more use cases not only for the operation and maintenance of offshore 

wind farms but also for other offshore renewable energy sectors including tidal and wave 

energy. 

Appendix B 

B.1  Data 

Table B.1 presents more information on the satellite and ocean model data used in achieving 

the thesis aim and objectives. 

Parameter Information 

Current speed; 

current 

direction; sea 

surface height 

Source Copernicus Marine Service 

Product NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013 

Details Numerical model; 0.014˚ x 0.03˚ spatial resolution; hourly 

instantaneous, daily mean, and 15-minute instantaneous 

temporal resolution; NetCDF-4 file format; Description: E.U. 

Copernicus Marine Service, n.d. Atlantic - European Northwest 
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Shelf - Ocean Physics Analysis and Forecast, [Product] 

marine.copernicus.eu, https://doi.org/10.48670/moi-00054; 

Public data 

Current speed; 

current 

direction; sea 

surface height 

Source Copernicus Marine Service 

Product SEALEVEL_GLO_PHY_L4_MY_008_047 

Details Satellite observation; 0.25˚ x 0.25˚ spatial resolution; 3 hourly 

instantaneous temporal resolution; NetCDF-4 file format; 

Description: Copernicus Marine Service, n.d. Global Ocean 

Gridded L4 Sea Surface Heights and Derived Variables 

Reprocessed (1993-Ongoing), [Product] marine.copernicus.eu, 

https://doi.org/10.48670/moi-00148; Public data 

Significant wave 

height; wave 

period; wave 

direction 

Source Copernicus Marine Service 

Product NWSHELF_REANALYSIS_WAV_004_015 

Details Numerical model; 0.017˚ x 0.017˚ spatial resolution; 3 hourly 

instantaneous temporal resolution; NetCDF-4 file format; 

Description: Copernicus Marine Service, n.d. Atlantic- European 

Northwest Shelf- Wave Physics Reanalysis, [Product] 

marine.copernicus.eu, https://doi.org/10.48670/moi-00060; 

Public data 

Significant wave 

height; wave 

period; wave 

direction 

Source Copernicus Marine Service 

Product WAVE_GLO_WAV_L3_SPC_NRT_OBSERVATIONS_014_002 

Details Satellite-observation; 0.017˚ x 0.017˚ spatial resolution; 3 hourly 

instantaneous temporal resolution; NetCDF-4 file format; 

Description: Copernicus Marine Service, n.d. Global Ocean L3 

Spectral Parameters from NRT Satellite Measurements, 

[Product] marine.copernicus.eu, https://doi.org/10.48670/moi-

00175; Public data 
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Wind speed; 

wind direction 

Source Copernicus Marine Service 

Product WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 

Details Satellite-observation; 0.25° × 0.25° spatial resolution; 6 hourly 

mean temporal resolution; NetCDF-4 file format; Description: 

Copernicus Marine Service, n.d. Global Ocean Wind L4 

Reprocessed 6 hourly Observations, [Product] 

marine.copernicus.eu, https://doi.org/10.48670/moi-00185; 

Public data 

Significant wave 

height 

Source CEFAS 

Product West Gabbard 2 WaveNet Site 

Details In-situ observation; Location: 51°57'.18N 002°06'.54E in 41m 

water depth are currently recorded using a Directional Waverider 

MkIII; Data provided by Channel Coastal Observatory on behalf of 

the Environment Agency and the Anglian Coastal Monitoring 

Programme; Public data 

Significant wave 

height 

Source CEFAS 

Product Felixstowe waverider 

Details In-situ observation; Location: 51°56'.29N 001°23'.63E in 8m water 

depth are currently recorded using a Directional Waverider; Data 

provided by Channel Coastal Observatory on behalf of the 

Environment Agency and the Anglian Coastal Monitoring 

Programme; Public data 

Significant wave 

height 

Source CEFAS 

Product North well waverider 

Details In-situ observation; Location: 53°03'.45N 000°28'.48E in 31m 

water depth are currently recorded using a Directional Waverider; 

Data provided by Channel Coastal Observatory on behalf of the 

Environment Agency and the Anglian Coastal Monitoring 

Programme; Public data 

Wind speed Source Channel Coastal Observatory 
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Product Felixstowe 

Details In-situ observation; Meteorological station; Location: 51°56'.13N 

001°19'.10E; Instrument: Gill windsonic anemometer; Elevation 

15.92m; Data courtesy of the Anglian Regional Coastal Monitoring 

Programme; Public data 

Wind speed Source Channel Coastal Observatory 

Product Chapel point 

Details In-situ observation; Meteorological station; Location: 53°13'.85N 

000°20'.18E; Instrument: Gill windsonic anemometer; Elevation 

15.92m; Data courtesy of the Anglian Regional Coastal Monitoring 

Programme; Public data 

Table 3. 5 Summary of metocean product information 

Appendix C 
The script presented in this section outlines the code used to streamline the analysis process 

for feature engineering, data analysis, and predictive modelling. 

C.1  Feature engineering welfare variables. Code adapted from Irvine, 

(2006) 

Using a MSI estimation tool, the values of duration in first column and acceleration in the second 

is created. 

%Input 
%create matrix of duration and signal 
 

matrix = [full_trip.duration, full_trip.("accZ")]; 
matrix = fillmissing(matrix,"nearest"); 
 

%Input 
%Ammended tool below 
THM = matrix; 
% 
t=THM(:,1); 
f=THM(:,2); 
% 
tmx=max(t); 
tmi=min(t); 
n = length(f); 
dt=(tmx-tmi)/(n-1); 
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sr=1./dt; 
% 
dtmin=min(diff(t)); 
dtmax=max(diff(t)); 
% 
ncontinue=1; 
if(((dtmax-dtmin)/dt)>0.01) 
    disp(' ') 
    disp(' Warning:  time step is not constant.  Continue calculation? 1=yes 
2=no ') 
    ncontinue=input(' '); 
end 
%Input 
%Set start and end time 
st=0; 
% 
te=endtime_rtn; 
% 
j=1; 
jfirst=1; 
jlast=max(size(THM)); 
for i=1:max(size(THM)) 
    if(THM(i,1)<st) 
        jfirst=i; 
    end 
    if(THM(i,1)>te) 
        jlast=i; 
        break; 
    end 
end 
% 
tim=double(THM(jfirst:jlast,1)); 
amp=double(THM(jfirst:jlast,2)); 
% 
% 
[fwl,fw,fwu,wk,wd,wf,wc,AW_rms,wj,wb,www,iweight]=weight_trial(); 
% 
aw=zeros(length(amp),1); 
% 
iband=3;  % bandpass filtering 
iphase=1; % refiltering for phase correction 
% 
progressbar; 
for i=1:44 
% 
    progressbar(i/44); 
% 
    fh=fwl(i);  % highpass filter frequency 
    fl=fwu(i);  % lowpass filter frequency 
% 
    if(fl<sr/2.1) 
        [y,mu,sd,rms(i)]=... 
                Butterworth_filter_function_alt(amp,dt,iband,fl,fh,iphase); 



 

224 
 

% 
        aw=aw+y*www(i); 
    end 
% 
end 
% 
pause(0.5); 
progressbar(1); 
% 
n=length(aw); 
% 
AW=std(aw); 
MTW=AW; 
% 
VDV=0; 
for i=1:n 
    VDV=VDV+aw(i)^4; 
end 
VDV=(VDV*dt)^0.25; 
% 
out1=sprintf('\n Composite Weighted Level  AW = %8.4g (m/sec^2)RMS ',AW); 
disp(out1); 
% 
out1=sprintf('\n Maximum Transient Vibration MTW = %8.4g (m/sec^2)RMS ',MTW); 
disp(out1); 
% 
out1=sprintf('\n Fourth Power Vibration Dose VDV = %8.4g (m/sec^(1.75)) 
\n',VDV); 
disp(out1); 
% 
out1=sprintf('\n                          MTW/AW = %8.4g\n',MTW/AW); 
disp(out1); 
End 
 

C.2  Model training and validation 

function [trainedModel, validationRMSE] = 

trainRegressionModel(trainingData) 
% [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 
% Returns a trained regression model and its RMSE.  
%  Input: 
%      trainingData: A table containing the same predictor and response 
%       columns as those imported into the app. 
% 
%  Output: 
%      trainedModel: A struct containing the trained regression model. The 
%       struct contains various fields with information about the trained 
%       model. 
% 
%      trainedModel.predictFcn: A function to make predictions on new data. 
% 
%      validationRMSE: A double containing the RMSE. In the app, the 
%       History list displays the RMSE for each model. 
% 
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% Use the code to train the model with new data. To retrain your model, 
% call the function from the command line with your original data or new 
% data as the input argument trainingData. 
% 
% For example, to retrain a regression model trained with the original data 
% set T, enter: 
%   [trainedModel, validationRMSE] = trainRegressionModel(T) 
% 
% To make predictions with the returned 'trainedModel' on new data T2, use 
%   yfit = trainedModel.predictFcn(T2) 
% 
% T2 must be a table containing at least the same predictor columns as used 
% during training. For details, enter: 
%   trainedModel.HowToPredict 

  
% Auto-generated by MATLAB on 11-May-2022 12:34:40 

  

  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
% model. 
inputTable = trainingData; 
predictorNames = {'duration', 'heading', 'speed', 'cur_speed', 'cur_dir', 

'tidalrange', 'Hs'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.Arms; 
isCategoricalPredictor = [false, false, false, false, false, false, false]; 

  
% Train a regression model 
% This code specifies all the model options and trains the model. 
regressionGP = fitrgp(... 
    predictors, ... 
    response, ... 
    'BasisFunction', 'constant', ... 
    'KernelFunction', 'rationalquadratic', ... 
    'Standardize', true); 

  
% Create the result struct with predict function 
predictorExtractionFcn = @(t) t(:, predictorNames); 
gpPredictFcn = @(x) predict(regressionGP, x); 
trainedModel.predictFcn = @(x) gpPredictFcn(predictorExtractionFcn(x)); 

  
% Add additional fields to the result struct 
trainedModel.RequiredVariables = {'Hs', 'cur_dir', 'cur_speed', 'duration', 

'heading', 'speed', 'tidalrange'}; 
trainedModel.RegressionGP = regressionGP; 
trainedModel.About = 'This struct is a trained model exported from 

Regression Learner R2020a.'; 
trainedModel.HowToPredict = sprintf('To make predictions on a new table, T, 

use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the 

variable that is this struct, e.g. ''trainedModel''. \n \nThe table, T, 

must contain the variables returned by: \n  c.RequiredVariables \nVariable 

formats (e.g. matrix/vector, datatype) must match the original training 

data. \nAdditional variables are ignored. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appregression_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
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% model. 
inputTable = trainingData; 
predictorNames = {'duration', 'heading', 'speed', 'cur_speed', 'cur_dir', 

'tidalrange', 'Hs'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.Arms; 
isCategoricalPredictor = [false, false, false, false, false, false, false]; 

  
% Perform cross-validation 
partitionedModel = crossval(trainedModel.RegressionGP, 'KFold', 5); 

  
% Compute validation predictions 
validationPredictions = kfoldPredict(partitionedModel); 

  
% Compute validation RMSE 
validationRMSE = sqrt(kfoldLoss(partitionedModel, 'LossFun', 'mse')); 

 

Appendix D 

Project Engagement 

Engagement for this project included engagement with industry specialists comprising of 

informal interviews including the Offshore Renewable Energy Catapult, The Carbon Trust, 

and The Centre of Competence EHS Offshore Siemens Gamesa. 

Publications 

A Machine Learning Approach to Comfort Assessment for Offshore Wind Farm Technicians. 

Ocean Engineering (Submitted). 

A data-driven Assessment of the Welfare of Technicians During Transits to Offshore Wind 

Farms. (Under review). 

Conferences 

Human Factors in the Operation and Maintenance of Offshore Wind Turbines,” ICYMARE 

International Conference for Young Marine Researchers. September 2021 (presentation). 

Human Factors in the Operation and Maintenance of Offshore Wind Turbines,” University of 

Hull Postgraduate Research Conference. February 2021 (presentation). 

 


