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ABSTRACT

Multiple-input  multiple-output (MIMO) antenna design as used in communication is today,

easily the most important field in the wireless field; as capacities of data are increased based on

the inherent capability of the technology, without an increase in spectrum bandwidth.

This thesis analyses the ways through which data sent over some channel from a number of

transmitters are recovered at  the intended receivers;  Maximum likelihood (ML) and Zero-

forcing (ZF), are used for the data decoding; how effective these retrieval processes are and the

imminent effects of correlation on the bit error rates as variants of signal to noise ratio, on the

retrieved data capacities of the MIMO channels created, are all examined.

This is simply very important as wireless systems continue to impact on lives globally.

To drive the point home, the MIMO technology as it relates to this thesis is explicitly dissected

to attempt a sound understanding of its modus operandi.



AKNOWLEDGMENT

Foremost, I wish to express my highest feeling of thankfulness to the author of life, without

whom this would have only been a dream; thank you God for your mercies, blessings and

graces. 

 My immeasurable gratitude goes to my parents, for their unwavering, unending and

unconditional love and belief; whatever I achieve is a testament of your noble souls, thank you

for the sacrifices you made for me to be here.

I owe the deepest gratitude to my siblings for their prayers and understanding; Aku, Tunde,

Boy Bapba, Karams and Rita. I will live to appreciate the sacrifices and adjustments you had to

make while I am here.

This thesis would not have been possible without the guidance, help, input and enthusiasm of

my supervisor Dr. Kevin Paulson; words cannot convey how indebted I am to you sir. I pray

you continue to drive fulfilment in impacting knowledge to people. Your patience and integral

views have made this thesis a success.

I wish to also thank my second supervisor Nick Riley for his assistance and in-depth thoughts

about this thesis.

My appreciation in no less measure goes to my friends for their encouragement and

comradeship; Emma William, Victor, Henry, Maina, Nasom, Felix, Dauda, Suki, Longret,

Adio, Sule, Ken, JJ, Sunny, my flat mate Ejike, my course mates  and a host of others  too

numerous to mention. 

Let me cease this opportunity to thank my spiritual guides; Fathers Bariki, Silvanus, E. Patrick,

E. Williams, L. Pius, and Bro. S. Benedict. I am grateful for all the intercessions and support.

 Pen ultimately, my grand mums; Kwasuku and Achomai, uncles, aunts, cousins, especially

Happy, Mary, Angarju; thank you for everything. 

Last, but in no way the least, my girlfriend Fenna Todi; thank you for your unflinching love

and prayers.



TABLE OF CONTENTS

Declaration.................................................................................................................................I

Abstract......................................................................................................................................II

Acknowledgement....................................................................................................................III

Table of contents......................................................................................................................IV

List of figures........................................................................................................................VIII

Chapter One: .............................................................................................................................1

Background Information............................................................................................................1

1.1 Introduction....................................................................................................................1

1.2 History............................................................................................................................2

1.3 Wireless Background.....................................................................................................3

1.4 Constraints in Wireless systems.....................................................................................4

1.5 MIMO Evolution............................................................................................................5

1.6 Motivation......................................................................................................................6

1.7 Aims and Objectives......................................................................................................7

1.8 Summary........................................................................................................................7

Chapter Two...............................................................................................................................9

Literature Review.......................................................................................................................9

2.1 Introduction....................................................................................................................9

2.2 MIMO Systems..............................................................................................................9

2.3 MIMO Functional Category.........................................................................................11

2.3.1 Pre-coding....................................................................................................................11

2.3.2 Spatial Multiplexing.....................................................................................................11



2.3.3 Diversity Coding..........................................................................................................12

2.4 Space-Time Block Coding...........................................................................................13

2.5 The Alamouti Scheme..................................................................................................13

2.6 MIMO Channels...........................................................................................................14

2.6.1 Channel Model Classification......................................................................................15

2.6.2 The One-ring Model.....................................................................................................16

2.6.3 The Jake�s Model.........................................................................................................16

2.6.4 The Kronecker Model..................................................................................................17

2.7 MIMO Channel Capacity.............................................................................................18

2.8 Layered Space Time Architecture................................................................................20

2.8.1 The Blast: V-Blast, D-Blast.........................................................................................20

2.9 Equalisation..................................................................................................................21

2.10 MIMO Decoding at the Receivers................................................................................22

2.10.1 Zero-Forcing Receivers................................................................................................23

2.10.2 Maximum Likelihood Receivers..................................................................................23

2.10.3 Nulling and Cancelling Receivers...............................................................................24

2.11 Summary......................................................................................................................24

Chapter Three...........................................................................................................................26

Mathematical Concepts and Design.........................................................................................26

3.1 Introduction..................................................................................................................26

3.2 MIMO Mathematical Channel Model..........................................................................26

3.3 Space-Time Transmit Diversity (Alamouti Code).......................................................28

3.4 One-ring Model............................................................................................................29



3.5 MIMO Decoding..........................................................................................................30

3.5.1 Zero Forcing Decoding................................................................................................31

3.5.2 Maximum Likelihood Decoding..................................................................................32

3.5.3 Nulling and Cancellation..............................................................................................33

3.6 Summary......................................................................................................................33

Chapter Four.............................................................................................................................35

Simulation and Results.............................................................................................................35

4.1 Introduction..................................................................................................................35

4.2 Zero Forcing Equaliser for a 2x2 MIMO System (BPSK in a Rayleigh Fading

Environment.............................................................................................................................35

4.3 Effects of Correlation on BER and SNR of a 2x2 MIMO System as it relates to

Capacity using ZF decoding.....................................................................................................37

4.4 Zero Forcing Equaliser for a 4x4 MIMO System (BPSK in a Rayleigh Fading Channel

Environment...............................................................................................................39

4.5 Maximum Likelihood Equaliser for a 2x2 MIMO System (BPSK in a Rayleigh Fading

Channel Environment...................................................................................................40

4.6 Effects of Correlation on the BER and SNR of MIMO Systems as it relates to Capacity

using ML decoding...................................................................................................43

4.7 Mean Capacity Simulation from Theoretical Equation for Unknown CSI..................47

4.8 Discussion of Results...................................................................................................52

4.8.1 Capacity Evaluation for CSI Unknown at the Transmitter..........................................55

4.8.2  Capacity Evaluation for CSI Known at the Transmitter.............................................57

4.8.3 Relationship between the Theoretical and Simulated Channel Capacities..................59

4.9   Comparisons between Zero-forcing and Maximum-Likelihood Decoders......................60



4.10 Summary..........................................................................................................................61

Chapter Five.............................................................................................................................63

Conclusion and Further Study..................................................................................................63

5.1   Introduction.....................................................................................................................63

5.2    Conclusion......................................................................................................................64

5.3    Further Study...................................................................................................................67

Chapter Six..............................................................................................................................68

Appendixes...............................................................................................................................68

6.1   Appendix (A)....................................................................................................................68

6.2   Appendix (B)....................................................................................................................70

6.3   Appendix (C)....................................................................................................................71

6.4   Appendix (D)....................................................................................................................73

6.5   Appendix (E)....................................................................................................................76

6.6   Appendix (F)....................................................................................................................77

6.7   Appendix (G)....................................................................................................................79

References................................................................................................................................82





LIST OF FIGURES 

Figure 1: A general communication system (Shannon, 1948)...................................................1

Figure 2: A typical multipath scenario (Oestges et al, 2007).....................................................5

Figure 3: Illustration of different antenna technologies (www.cst.com/UGM2009/MIMO,

2010).........................................................................................................................................10

Figure 4: A multiple antenna array in a scattering environment (Kermoal et al, 2002)..........10

Figure 5: Two transmit; two receive Alamouti STBC (Barry et al, 2004)..............................14

Figure 6: Geometric one-ring model For 2x2 channels with local scattering around the MS

(Hogstad et al, 2004)................................................................................................................16

Figure 7: Kronecker model illustration (Bonek et al, 2007)....................................................18

Figure 8: A 4x4 MIMO channel (Sharony, 2006)....................................................................20

Figure 9: MIMO model architecture (Paulson, 2009)..............................................................26

Figure 10: Illustration of how the Alamouti code works (Shrony, 2006)................................28

Figure 11: Data retrieval illustration showing the relationship between BER and SNR to

capacity for a 2x2 MIMO system using ZF.............................................................................37

Figure 12: ZF decoding with 0.5 correlations at both ends......................................................38

Figure 13: ZF decoding with 0.8 correlations at both ends......................................................38

Figure 14: ZF decoding with unity correlations at both ends...................................................39

Figure 15: ZF decoding for unity and null correlations at either ends.....................................39

Figure 16: Data retrieval showing the relationship between BER and SNR to capacity for a 4x4

MIMO system using ZF....................................................................................................40

Figure 17: Data retrieval showing the relationship between BER and SNR to capacity for a 2x2

MIMO system using ML decoding...................................................................................42

Figure 18: Data retrieval showing the relationship between BER and SNR to capacity for a 3x3

MIMO system using ML decoding...................................................................................42
10



Figure 19: Data retrieval showing the relationship between BER and SNR to capacity for a 4x4

MIMO system using ML decoding...................................................................................43

Figure 20: ML decoding with 0.1 correlations at both ends for a 4x4 system.........................43

Figure 21: ML decoding with 0.5 correlations at both ends for a 4x4 system.........................44

Figure 22: ML decoding with 0.9 correlations at both ends for a 4x4 system.........................44

Figure 23: ML decoding with 0.1 correlations at both ends for a 3x3 system.........................45

Figure 24: ML decoding with 0.5 correlations at both ends for a 3x3 system.........................45

Figure 25: ML decoding with unity correlations at both ends for a 3x3 system......................46

Figure 26: ML decoding with 0.5 correlations at both ends for a 2x2 system.........................46

Figure 27: ML decoding with 0.8 correlations at both ends for a 2x2 system.........................47

Figure 28: ML decoding with unity correlations at both ends for a 2x2 system.....................47

Figure 29: MIMO capacity from theoretical computation for a 4x4 system using ML...........48

Figure 30: MIMO capacity from theoretical computation for a 3x3 system using ML...........48

Figure 31: MIMO capacity from theoretical computation for a 2x2 system using ML...........49

Figure 32: MIMO capacity from theoretical computation for a 2x2 system using ZF............49

Figure 33: MIMO capacity from theoretical computation for a 3x3 system using ZF............50

Figure 34: MIMO capacity from theoretical computation for a 4x4 system using ZF............50

Figure 35: MIMO capacity as a function of SNR from theoretical computation for a 2x2

system.......................................................................................................................................51

11



CHAPTER ONE

BACKGROUND INFORMATION

1.1   Introduction

Growth in human population and advancement in technology has come along with an increase

in the need for effective, efficient and reliable communication. This has carved a large and

demanding market for improvement in systems used worldwide. 

The foundation for effectiveness in communication could be traced to the extensive work on

information theory developed by Shannon, (1948); it provides all the possibilities for reliable

communication  involving  information.  In  the  classic  paper  �A  mathematical  theory  of

communication,� he laid out the basic elements of communication:

· An information source that produces a message.

· A transmitter that operates on the message to create a signal which can be sent through

a channel.

· A channel, which is the medium over which the signal, carrying the information that

comprises the message is sent.

· A receiver which transforms the signal back into the message intended for delivery and,

· A destination which can be a person or a machine for whom or which the message is

intended.

He significantly viewed that the fundamental problem of communication is that of reproducing

at one point, either exactly or approximately, a message sent from another point.



Fig.1 Shannon�s diagram of a general communication system, Shannon (1948) 

Hence, Shannon�s law states that information cannot be transmitted at a rate greater than the

capacity of the channel used, for an error free transmission. 

1.2 History

Data transmission and reception in telecommunication started with what is cleverly termed

�First generation networks,� (1G); an analogue system of telecommunication introduced in the

1980s,  which used frequency division multiplexing, (FDMA); a scheme in which numerous

signals are combined for transmission on a single communication channel, each assigned a

different frequency within the main channel. Bi et al (2001) and a host of other writers clearly

note that the Second generation of networks, (2G), came along with digitisation of the systems

and the use of (FDMA) and Time division multiple access (TDMA). TDMA; is a process of

dividing up one communication channel into smaller time slots, in order to increase the amount

of data that can be carried.

Code division multiple access (CDMA); a technique in which each channel transmits its bits as

a  coded  channel  with  specific  sequence  of  pulses,  and a  couple  of  other  techniques  like

(EGPRS)- enhanced general packet radio services;  a technology that allows improved data

transmission rates are used in the third generation (3G) networks. 

The fourth generation (4G) is based on better modulation schemes like orthogonal frequency

division multiplexing (OFDM) � a large number of closely spaced orthogonal sub-carriers that

divide data into parallel streams; one for each sub-carrier and multiple-input-multiple-output

technology (MIMO). Sharony, (2006) rightly  views the OFDM-MIMO combination as the

cornerstone of future broadband wireless access. 

These generational changes have ensured that not only voice but also data are communicated.

In 1G, no data transmission was carried out. Peak data rates increased from 9.6kbps to 2Mbps

for 2G and 3G respectively. It is envisioned that the 4G networks could have peak data rates of

>20Mbps. (Wang, et al 2004). Hence, all the aforementioned multiple access schemes were

used to allow users access resources, simultaneously, on some allocated radio spectrum. 



It  is  viewed that  the limitation of radio spectrum,  the complexity of  wireless propagation

environment, coupled with the increasing demand for better quality of service and higher data

transmission rates, it is imperative for better systems to evolve. 

Since designers have wittingly divided frequency, time and a code, what may be left is space;

Space-time division is the foundation concept of MIMO. 

1.3  Wireless Background

All MIMO technology is wireless so a look into its background is to dive into some chronology

of  wireless  communication,  which  is  a  modern  branch  of  telecommunication  in  which

information  is  transmitted  from one  point  to  another,  regardless  of  distance  and  without

resorting to the use of the known electric cables or wires. 

In spite of its now proliferated use in communication vocabulary, the wireless field had been

around since around the late 1800s;  Marconi successfully demonstrated the art of wireless

telegraphy in 1897. In a few years, 1901 precisely, transatlantic radio reception was achieved.

So a gradual build-up had been on for almost a century. But the past decade has witnessed

astronomical growth in wireless concepts for information communication, David et al (2005)

reason that the success of 2G digitised standards and the large market of 3G networks, have

provided  concrete  demonstration  that  good  ideas  from  communication  theory  can  have

significant impact in practice; ultimately aiding the wireless revolution. 

The  Wireless  concept  arose  as  the  world  gradually  became  a  global  village;  long  inter-

continental distance communication became necessary, making the deployment of wires, cables

or other physical and tangible means of information carriage practically difficult and almost

impossible. (Goldsmith, 1995)

In essence,  wireless networks have evolved to  be more expedient  for both voice and data

communication.  Consequently,  researchers  and  industry  experts  have  concluded  that  the

wireless channel capacity can be increased using multiple components in both transmit and

receive ends, heralding MIMO.

Currently, wireless communications are heavily biased towards voice. However, recent studies

indicate an exponential increase in the growth of wireless data traffic relative to voice. This is



evident since the development of 802.11 data protocol standard by IEEE, as a distinct data

technology that can work in a variety of radio spectrums. (Jankiraman, 2004)

The advent of multi-antenna systems, MIMO in particular, is borne out of the interest and strife

to achieve high data rates at the receiver. This ideal has indeed been the case since the inception

of wireless communication. Jankiraman, (2004), also views that a binding constraint in the

evolution  of  the  desired  high  data  rates  is  the  stringent  limitation  imposed  on  available

spectrum; giving rise to more efficient signalling techniques like MIMO. Hence, the algorithms

that achieve this, actually exploit the multipath structure by cleverly coding data in both time

and space. 

1.4 Constraints in Wireless Systems

What is wrong with the plain old wireless systems, with all its perceived advantages, why

multi-channel-MIMO?  Technical issues; as indeed no human system is perfect. A Wireless

engineer�s life is therefore saddled with the quest to make systems as closest to perfect as can

be imagined!

· First, fading; the time variation of the channel strengths due to small scale effects like

multipath and large scale effects like path loss via distance, attenuation and shadowing

by obstacles. These fading effects are caused by Reflection; as signals impinge on

smooth surfaces, Diffraction; as signals impinge on edge or corner of dense entity and

Scatter; as signals impinge a rough surface. 

· Second, unlike the wired world in which each transmitter-receiver pair are thought of as

isolated  point-to-point  links,  wireless  users  communicate  over  the  air,  significant

interference existing between links and users,  bringing to bear snags like signal  to

noise variations, (David et al 2005).

·  Third,  improved compression technologies have reduced the bandwidth needed for

voice calls, but data traffic still needs more bandwidth as newer services come online.

Hence,  more  bandwidth  is  desired  especially  for  broadband  services.  But  radio

spectrum that provides bandwidths is a finite resource and multiple users must co-exist

without causing interference to each other. (IEEE document on radio spectrum, 2002)

So  emerging  technologies  that  improve  wireless  system efficiency  are  now very

important.  Presently,  examples  include  coded  multicarrier  modulation,  link-level



retransmission,  adaptive  modulation  and  coding  techniques  and  most  importantly,

smart antennas-particularly multiple-input-multiple-output (MIMO) technology.

Fig. 2 A typical multipath scenarios, (Oestges et al, 2007)

These issues coupled with the growing consumer appetite for higher data rates and the endless

demand for bandwidth and spectral availability has therefore made the resort to MIMO timely

and credible.

Consequently, the MIMO technology is deployed providing interference cancellation, route and

space diversity, synthesised arrays and space-time coding to combat the aforementioned bottle-

necks, resolve issues related to quality and coverage, reduce capacity constraints in networks

and ultimately enhance efficiency in wireless communication.

1.5 MIMO Evolution

Theoretical  work asserted  and  developed  by  Teletar  and  Foschini  form the  basis  of  this

technique; their pioneering work ignited much interest in this area-by predicting remarkable

spectral  efficiencies  for  systems  with  multiple  antennas,  when  the  channels  exhibit  rich

scattering with variations that can be tracked accurately. (Goldsmith, 2004) This envisioned

capability  led  to  phenomenal  research  activity  to  characterise  the  aspects  associated  with

MIMO and extend the concepts to multiuser systems; after developing the theories for MIMO,

the direction was towards developing codes and schemes that will enable systems to approach

the envisaged capacity limit. 

It received momentum when Taroakh et al, (1998) introduced their trellis coding; a combined

coding and modulation technique, for digital transmission over band-limited channels, and later



Alamouti  introduced  his  space-time  block  coding  techniques,  to  improve  the  link  level

techniques based on diversity, (Alamouti, 1998). 

Then Bell laboratories introduced its Bell Laboratories Layered Space �Time coding technique

(BLAST), developed by Gerald Foschini; the BLAST is a receiver which employs multiuser

detection strategy and transmit diversity scheme which basically de-multiplexes the data stream

to different sub-streams, each one sent to each antenna; demonstrating spectral efficiencies up

to 42 bits/hertz. Thus, giving a phenomenal boost in spectral efficiency compared to the current

2-3 bits/hertz obtained in cellular mobiles and WLAN systems.

1.6 Motivation

As  previously  inferred,  the  wireless  communication  industry  grew  rapidly  as  newer

technologies evolved to enhance greater quality of service. I was motivated by the fact that

�smart antenna� technology is widely reputed and recognised as the promising technique to

increase the spectrum efficiency of wireless networks.

Initially systems that exploit smart antennas had an array of multiple antennas only at one end

of the communication link; e.g. single-input-multiple-output (SIMO) at the receive side, and

multiple-input-single-output (MISO) at the transmit side. 

MIMO is a more recent idea in which an antenna array is used at both the transmit and receive

sides; thus, with an added spatial dimension, it has potentials far more than the conventional

smart antenna systems leading to dramatic increase in the capacity of wireless links; increasing

both the range of access and total performance of the system. It is evident that MIMO enhances

these feats by ensuring that data streams, arriving from different paths and at different time

combine to increase effectively, the receiver signal capturing power. 

Paulraj  et  al,  (2001),  view that  the  data  separation occurs  in  the  spatial  domain  through

different propagation paths in the rich scattering environment. Teletar (1999) says there are

different conditions in the fixed line MIMO systems, if the channel changes are negligible and

have  channel  state  information  at  the  transmitter;  a  water-filling  analogy  could  be  used,

yielding to optimisation. If the channel state information (CSI), i.e. known channel properties

of a communication link, is not perfect, the transmitter can rely on the average statistics from

the receiver which can result in sub-optimal channel capacity.  



In a nutshell, by suppressing the unwanted problems realised, MIMO system can increase the

data capacity proportionally with the number of antennas. 

1.7 Aims and Objectives

 Comprehensibly, the numerous undesired problems realised in wireless communication are

eliminated by MIMO concept;  the following objectives  as listed  are determined to  aid  in

meeting the main aim of the project, i.e. that of understanding the effects of correlation on the

bit error rates in the retrieved  data capacity and ultimately analysing effective data retrieval in

MIMO systems.

· Firstly, to understand the basic concepts in MIMO, i.e. spatial multiplexing, diversity

gains, etc as it relates to wireless communication in other to give informed perspective

in providing solutions when required.

· To describe  the physical  environment  with  a  view to  understanding  the  scattering

channels that exists between receivers and transmitters.

· To study some proposed channel models used to simulate data retrieval at the receivers,

i.e. the Kronecker and Jake models with reference to their channel co-variance and

limitations.

· To look at the channel models used in available for  this scheme;  the physical and

analytical models and their derivatives like the one ring topology.

· To analyse some decoding algorithms like Zero-forcing, Nulling and Cancellation and

Maximum Likelihood for the retrieval of data.

· To understand the effects of antenna correlation on channel performance, as it relates to

the signal to noise ratios and corresponding bit error rates.

· To compare the performance of these algorithms with the intent of recommending the

best.

· To learn how to make simulations of the desired results using Matlab.



1.8 Summary

This  chapter  is  basically  an  introduction,  starting  from  Shannon�s  views  on  information

communication to the different aspects of modulation techniques that evolved and gradually led

to wireless communication. 

Then a background analysis of the wireless concept was viewed; from Marconi�s invention of

telegraphy  to  the  IEEE  802.11  data  protocol  standard.  Consequently,  the  limitations  that

abound in the wireless systems like multipath signal fading, etcetera; which necessitated better

technological means to contain their effects and deliver higher data rates, was also glanced. So

smart multi-antenna design, promising higher capacities, increase in through-put and range was

researched and is  in use as the single most  important  concept  in  wireless  communication;

MIMO. 

Then an over view of the evolution of MIMO from theories asserted by (Teletar) and (Foschini)

to the Trellis codes introduced by (Taroakh), and the tireless work by (Alamouti) in providing

some fundamental wireless principles were given. 

Finally, a statement about the development of the Blast techniques in the lucent laboratory that

demonstrated higher spectral efficiencies compared to conventional techniques was made.

The motivation for the topic was stated and the basic aims and objectives also highlighted, all

with  the  final  goal  of  demonstrating  the  effects  of  correlation  in  the  different  decoding

algorithms used for retrieval at the receiver, after data is sent using MIMO technology. 



CHAPTER TWO

LITERATURE REVIEW

2.1   Introduction

This chapter tries to bring to the open, general aspects of the MIMO system and the review of

what giants in the communication field had contributed in relation to this thesis. 

The idea of using multiple antennas in both input and output ends is used in wireless systems,

as the quest for higher data rates for systems that are power, bandwidth and complexity limited,

continues. The large spectral efficiencies associated with MIMO channels are based on the

premise that a rich scattering environment provides independent transmission paths from each

transmit antenna to each receive antenna. Kahn (2005) states that the last decade had witnessed

MIMO develop from purely theoretical analysis of its performance capacity to reality products

for the ever expanding wireless market. 

Data retrieval is done after symbols are effectively transmitted and received; the methods used

are different in concept as they are different in results obtained. 

Channel capacity in MIMO depends largely on the statistical properties and antenna element

correlation of the channel; the channel varying drastically relative to the scattering, the distance

between transmitter  and receiver,  antenna  configuration and Doppler  spread. (Kaveh et  al,

2002)  Czink  (2005)  believes  that  the  radio  propagation  channel  sorely  determines  the

characteristics of all MIMO channels.

2.2 MIMO System

 MIMO is one form of several smart antenna technologies, others being MISO- multiple input

single outputs; SIMO-single input multiple outputs and the conventional single-input-single-

output, SISO. 

The MIMO system basically consists  of the fundamental components of the technology as

typically used in radio transmission environment; multiple receive and transmit antennas and a

rich scattering environment between them, as depicted in fig (4).

When space time processing is used appropriately, the space time codes facilitates in achieving

or at least   approaching the MIMO capabilities in practical systems. (Molisch et al 2002)



Fig. 3 Illustration of different antenna technologies,  www.cst.com/UGM2009/MIMO August

2010

As seen in  figure (3) above, conventional wireless communication technologies use single

antennas, resulting in multipath leading to signal fading, cut-out and intermittent reception.

This slows down data reception and increases error rates. The multipath is eliminated when two

or more antennas are used; it even takes advantage of the multipath by using multiple smart

antennas with an added spatial dimension and increases both the range of access and the total

performance of the system. This has broadened the usefulness of wireless technologies for

applications that increasingly call for greater performance.

Fig.4 Multiple antenna arrays in a scattering environment. (Kermoal et al, 2002)

2.3 MIMO Functional Category



Robert,  (2002)  proposes that  the MIMO system can easily be categorised into three basic

functional processes; Pre-coding, Spatial multiplexes and Diversity coding.

2.3.1 Pre coding

Simply  put,  pre-coding  is  a  multi-layer  beam-forming  method  encompassing  all  spatial

processing  at  the  transmitter  and  requiring  adequate  knowledge  of  the  channel  state

information. 

Beam-forming is an important aspect in antenna usage; it is a signal processing technique used

for directional signal transmission/reception in sensor arrays. In a single layer beam-forming

employed in MIMO, the same signals with desired phases are emitted from each of the transmit

antennas increasing the signal  gain by constructive combination and reduces the multipath

fading, adding resilience against channel ill-conditions; the Tomlinson-Haroshima linear model

is an example.

2.3.2 Spatial Multiplexing

 It is a common approach to harness the capacity of MIMO systems as it offers a linear increase

in  transmission  rate  for  the  same  bandwidth.  By  it,  independent  information  streams are

modulated  and  transmitted.  Having  knowledge  of  the  channel,  the  receiver  separates  the

information stream using appropriate signal processing techniques. (Wang et al, 2007) Hence,

it  achieves optimal performance in highly scattered channels like the one depicted in fig.4,

wherein the antenna elements are subjected to un-correlated fading. 

Foschini (1996) views that if there is M number of antenna elements then the input data stream

is first de-multiplexed into M number of sub streams. These sub streams are then modulated

and transmitted all  at the same time from the individual  antenna  elements.  They are then

demodulated to reproduce the M number sub streams and hence retrieve the original input data

stream. Provided there is low correlation in the multipath propagation channels the transmitted

signals will be received distinctly at the receive antenna elements. So parallel free channels at

the receivers are created by the separation of the signal, i.e. if during transmission distortion

make then arrive with dissimilar signatures.

2.3.3 Diversity coding



Oestges et al (2007), hint the principle of diversity to entail combating the impact of fading on

the error rate by using special techniques to provide the receiver with multiple versions of the

same transmitted signal, defining each of these versions as a diversity branch. So when these

versions are affected by independent fading conditions, the likelihood that all the branches are

in a fade simultaneously is dramatically reduced; helping to stabilise the link through channel

hardening and leading to improved performance in terms of error rate.

This technique is used when CSI is not known at the transmitter; unlike in spatial multiplexing,

here a single stream is transmitted and the signal coded using Space-time coding, diversity gain

is then produced at the receiver with effective decoding of the signals. 

Principles  of full  and sometimes near  orthogonal  coding-  achieved by making the carriers

orthogonal to one another to prevent interference between closely spaced carriers, are used to

emit signals from each transmit antennas, i.e. in selecting possible signal channels; raising the

chance of higher data rate, reducing the possibility of putting to use signal channels with high

packet errors and improving the overall network throughput.  Hence, this process uses the

independent fading in the multiple antenna links to enhance signal diversity,  (Paulraj et al,

1989).

The often mentioned fading, i.e. the degradation of signal strength or deviation of attenuation,

can occur in time, frequency or space; diversity techniques may also be exploited in these

domains, i.e. in time; coding and interleaving, in frequency; equalisation techniques or multi-

carrier equalisation, space is what is left. Both time and frequency diversity techniques incur a

loss in time and bandwidth and allow for the introduction of redundancy. (Oestges et al, 2007) 

Spatial diversity in contrast sacrifices neither time nor bandwidth since it is provided by the use

of multiple antennas. However, Chiau (2006) stresses that the space-time coding scheme does

not increase capacity linearly like spatial multiplexing does, it increases the distance coverage

of the system. So a combination of both schemes is required to meet the increase desired in both

capacity and range in MIMO systems. 

2.4 Space-Time Block Coding



Space-time block coding is a simple transmit diversity technique used in MIMO technology. It

is  based  on  using multiple  antennas  to  transmit  several  copies  of  a  data  stream with  the

objective that some withstand the difficulty to be encountered in the physical path, in a good

enough  state  to  allow reliable  decoding at  the  receivers.  So  the  same  data  is  coded and

transmitted through  different  antennas,  effectively improving the signal  to  noise ratio  and

doubling the channel power.

This includes aspects of delay diversity i.e. a method of not transmitting the same symbol

simultaneously from both antennas, but with a delay between the transmissions. An example

for a 2x2 MIMO channel says Jankiraman (2004) is to transmit a data signal from the first

antenna and a delayed replica of the same signal from the second antenna after an interval. At

the receiver, such a channel will look exactly like a two-path channel with independent path

fading and equal average path power.

This approach has a negative effect of introducing interference between symbols and increases

complexity in  using detectors for  data retrieval  exponentially  with the number  of  transmit

antennas.

Consequently, there was a need to look for a better approach- this was fulfilled by Alamouti.  

2.5 The Alamouti Scheme

Alamouti discovered the basics of using space-time transmit diversity, which is a symmetrical

symbol mapping of parallel streams of data in time within the given space between transmitters

and  receivers.  He  modelled  a  simple  and  effective  scheme  for  two  antennas  (Nt =  2),

transmitting two symbols in two time intervals, achieving diversity gain of two. 

The essential assumption of the Alamouti coding is that MIMO channel (H), stays construct for

the two  consecutive  channel  uses utilised by the space-time block code. Matsumoto et  al

(2003),  infer  that  at  the  receiver,  a  space-time  minimum mean  square  error  restores  the

orthogonallity and estimates the sent chip vectors which are then dispread and scrambled to

symbols that can be space-time decoded by means of maximum ratio combining. 

The Alamouti code can be extended using the two transmit antenna codes as building blocks to

design the extended Alamouti (EA)-STBC for four or higher transmit antennas. 



But it is understood that the resulting transmission matrix loses its orthogonallity for N  2.�

Mecklenbrauker (2004) showed that this loss for the new schemes can be made less severe

when gray-coded Quadrature pulse shift keying modulation is used (QPSK), i.e. a scheme that

conveys data by changing the phase of the reference of the carrier wave using four points on

the constellation diagram.  Furthermore, he showed that starting with the four antenna scheme;

linear  receivers  perform close  to  the  theoretical  bound  for  four-path  diversity-  ultimately

offering significant gain over the two antenna case put forward by Alamouti, as shown in figure

(5).

                                       

Fig.5 Two transmit, two receive Alamouti STBC, Barry et al (2004)

2.6 MIMO Channels

These  are  the  paths  created  by  the  combined  effects  of  transmitter-receiver  elements;  in

conventional  communication  only  one  data  stream  is  transmitted  over  a  radio  channel

regardless of the number of antennas used. MIMO technology, which allows simultaneous

transmission  of  multiple  data,  was  deployed  to  increase  the  radio  channel  capacity-data

capacity, needing no extra frequency spectrum. Increasing the transmission data in a given

bandwidth using MIMO depends on parameters observed at the receiver; average power of

desired signal, system related noise and co-channel interference. 

These channels between the transmitters and receivers literarily link them and serve as the

transportation medium for data; and are created by the utilization of space or antenna diversity

at both transmitters and receivers. We need models for these channels to simply meet accuracy

when making site specific decisions on antennas or to obtain same in theoretical analysis.

2.6.1 Channel Model Classification



Channel models can be classified in a number of ways; first, by considering the bandwidth of

the system i.e. wideband and narrowband. According to Botonjic (2004), the wideband models

treat the propagation channel as frequency selective; so different frequency sub channels have

different  channel response,  hence needing additional modelling of multipath characteristics.

While the narrowband models assume that the channel has frequency non-selective fading so

the channel has the same response over the entire system bandwidth.

Example of the narrow band channel  is the flat-fading channels,  also known as amplitude

varying channels,  i.e. channels that  have a constant gain and linear phase response over  a

bandwidth which is greater than that of the transmitted signal.

The  wide  band  channels  are  frequency  selective  fading channels,  i.e.  channels  that  have

constant  gain and linear  phase response over  a  bandwidth that  is  smaller  than that of the

transmitted signal.

Secondly, based on modelling approach, i.e. physical and non-physical (analytic model). 

The non-physical model describes channels via statistical characteristics obtained from data,

i.e. characterised based on the impulse response of the channel. Examples are:  

· The correlation based models.

· Propagation motivated models

· The finite scattering model

The physical model is  based on set-up parameters and theoretical results; choosing crucial

parameters like angles of arrival and departure (AOA, AOD), carrier frequency and antenna

spacing to describe MIMO propagation channels, it is subdivided into three:

· Deterministic models

· Geometry based stochastic models

· Non-geometric stochastic models.

There are three basic geometric channel models representation, i.e.

· One ring model



· Two ring model

· Elliptical model    

One of these is analysed because of its significance, i.e. one ring model.

2.6.2 The one ring model

Hogstad  et  al  (2004)  consider  this  model  as  the  starting  point  for  channel  capacity

determination. In it, a transmitter is assumed to be elevated and the line of sight component is

obstructed. The receiver is surrounded by an infinite number of local scatters forming a ring

around it. The most effective scatterers are situated on the ring from where it got its name.

Kahn  (2005)  says  that  the  effective  scatterers  each  has  a  random phase  shift,  uniformly

distributed  over  (-��,  ).  Hence  only  waves  that  are  reflected  once  by  the  scatterers  are

considered and we assume that all scattered waves that reach the receiver are equal in power. 

Fig.6 A geometric One-ring model for 2 x 2 channel with local scatterers around the mobile

station, (MS). (Hogstad et al, 2004)

Other approaches to modelling and simulation include the �Clarke�s mathematical reference

model� and its simplified simulation model due to Jake.

2.6.3 The Jake�s Model

This is a deterministic model, used often for the design of effective Rayleigh fading channel

simulators that model the received complex low-pass envelop, of the stationary frequency non

selective mobile fading channel, under isotropic condition. It assumes line of sight component

is absent. Zheng et al (2002), infer that it is an appropriate analytical model for a zero-mean

complex Gaussian noise process with uncorrelated impulse and quadrature components. This



model allows an effective approximation of the desired analytic model by using finite number

of  low frequency oscillators.  However,  since  it  is  deterministic  it  has  difficulty  to  create

multiple uncorrelated fading waveforms for MIMO channels. Hence, different modifications to

the model are reported in many literatures.

Though widely accepted, it has some important limitations; it was shown by Pop et al (2002)

that the Jake simulator is, in a wide-sense, non stationary when averaged across the physical

ensemble of fading channels. So Pop and Beauliue, (2002), proposed an improved simulator to

remove the problem by introducing random phase shifts in the low frequency oscillators. They

also showed that higher order statistics of this improved simulator may not match the desired

ones of Clarke�s reference model. 

To better simulate properties of the MIMO channel we can also use the Kronecker model.

2.6.4 The Kronecker Model 

In this model, the transmitter and receiver correlations are assumed to be separable; which is a

plus, since correlation effects on channel performance is a fundamental part of the thesis.  It is

also a well known stochastic narrowband MIMO radio channel model that creates channel

realisation based on correlation. Its physical assumption means irrespective of which transmit

weight vector is chosen, the scatterers surrounding the receiver are illuminated by one and the

same power distribution.

However, Herdin et al (2002), show that the Kronecker assumption does not hold in general for

realistic MIMO channels hence, lacking essential degree of freedom with respect to general

conditions as it  can also not generate diagonally dominated coupling matrices; leading to a

systematic  underestimation  of  channel  capacity,  and  to  a  mismatch  of  the  modelled  and

measured multipath structure.



Fig.7 The Kronecker model enforces that all directions of departure are linked to all directions

of arrival, the joint DOA-DOD spectrum of its synthesized channel is the product of the average

DOA and the average DOD spectrum. (Bonek et al, 2007)

2.7 MIMO Channel Capacity

Based on Shannon�s views, a channel�s capacity  is  the amount  of information that  can be

processed  through  it  per  unit  time  over  a  noisy  channel.  This  is  the  maximum  rate  of

information that can be transmitted via a channel; it is derived from the Shannon law to arrive

at:

 

Where � the time slot, T is the time; n is the number of time slots.

So to increase the channel capacity, either n is increased or � is decreased. Paulson (2009)

 In  a  channel,  uncertainty caused by noise is  detrimental  to  information transfer,  so the

Information can be sent with a vanishing error rate while maintaining the information rate at

the  channel  capacity,  (Teletar  et  al,  1995).  This  is  one  of  Shannon's  most  important

deductions. 

Nonetheless, he did not propose the exact encoding required for achieving this arbitrarily

small error rate while maintaining the information rate at channel capacity. If the information

rate from the source exceeds the channel capacity, then a message cannot be sent with an

arbitrarily small error rate.

Channel capacity for SISO systems is given by the accompanying expression from Shannon �

Hartley theorem:

 CmaxB = log2 [1+SN ] bps/herz                                                2.2

Where B= system bandwidth for a pulse with energy storage devices

S = total signal power



 Cmax = maximum capacity

N = total noise power

Paulson (2009) maintains that a similar expression for MIMO systems channel can be obtained.

MIMO channel capacity is realised for cases when the CSI is known and unknown to the

transmitter. This gives information about maximum possibility transmission rate such that the

probability of error is small. 

When CSI is unknown to the transmitter the signal between are independent and power equally

divided among the  antennas at  the transmitter;  channels exists between  each transmit  and

receive antenna, having a response that depends on the scatter environment i.e. the channel

state information. 

It  is possible to learn the CSI at the transmitter using delay diversity scheme. When CSI is

known to the transmitter each channel has an impulse response due to the entire multipath

components of the channel. Optimal power allocation scheme is shown to be of a water filling

algorithm and this system achieves higher capacity.

Generally,  in  systems  where  CSI  knowledge  is  known  to the  transmitter,  there is  higher

capacity than those in which only the receiver has knowledge. 

Hence for MIMO systems the capacity can be written as:

C = Max  log2 I + � MT�  HRXX  HH bps/hertz                                                  2.3�
         Tr (RXX ) = MT

H  � Cnt x nr   is the channel matrix,

RXX  �   Cnt x nr    is the covariance of the signal vector,

MT  is the number of transmit antennas,

� is the signal to noise ratio at the receiver,

I � Rnrx nt  is the identity matrix



Fig.8 A 4x4 MIMO channel, Sharony (2006)

2.8 Layered Space-Time Architecture

Foschini (1996) designed this architecture for a Rayleigh fading environment for circumstances

in which the transmitter does not have knowledge of the channel characteristics. This was seen

as a newer method of presenting and processing higher dimensional signal (space) with the aim

of leveraging the already developed one-dimensional codec technology, i.e. (SISO)

2.8.1 The BLAST 

This stands for the Bell Laboratories Layered space-time trans-receiver which offers spatial

multiplexing over multiple antenna systems; it  was developed by Gerald Foschini at Lucent

technologies Bell laboratories. In it, by carefully allocating to the transmitting antennas, data to

be transmitted, multiple data stream are moved simultaneously within a single frequency band

in order to attain the data capacity supported by MIMO; data capacity grows directly, in line

with the number of antennas.

Two principal approaches to this are seen, i.e. the D and V Blasts architecture, (diagonal and

vertical).

· The V-Blast: is  a trans-receiver architecture  in which independent data streams are

multiplexed  in  an  appropriate  coordinate  system,  used  over  a  deterministic  time-

invariant MIMO channel. It is a simplified version of the BLAST detection architecture

well  known  for  achieving  high  spectral  efficiencies  over  the  rich  scattering

environment. 



The receiver transforms the received vector into another appropriate coordinate

system to separately decode the different data streams.

At each symbol, it detects the strongest layer of the transmitted signal from each

of the received signals; it cancels the effects of this strongest layer, i.e.

using  (MMSE-SIC);  minimum  mean  square  error-  with  successive

interference cancellation,  and then continues to detect the remaining

layers and so on, (each stream is thought of as a layer). I infer from

Foschini,  that  this  architecture  will  always  reconstruct  transmitted

signals  by  removing  the  fading  effect  of  the  channel  in  frequency

domain.

Relatively,  this  architecture  simply allocates  equal  power  and rate  to  every

transmit antenna, achieving the capacity of a fast fading channel and as a

result, it becomes limited by the antenna with the smallest capacity as

dedicated by the channel. Hence, it is strictly suboptimal for slow fading

channels. 

· The D-Blast  is a modified architecture that codes across the transmit antennas, using

multichannel arrays at both ends with diagonally layered coding structure in which code

blocks are dispersed across diagonals in space-time. Since in the V-blast there is no

coding across the sub-channels, outage occurs whenever one of them is in deep fade

and cannot support the rate of the stream. However, Valenzuela (1998) remarks that this

suffers from implementation complexities i.e.  rate loss,  because in  the initialisation

phase, some of the antennas have to be kept silent. It also suffers from error propagation

i.e. if one layer is decoded incorrectly, subsequent layers are affected.

2.9 Equalization 

Equalisation is the compensation of inter-symbol interference (ISI) created by multipath within

time dispersive channels. Vitetta et al, (1998) say that the ISI occurs when the modulation

bandwidth exceeds the coherence bandwidth of a radio channel causing modulation pulses to

spread in time into adjacent symbols.

Equalisation, diversity and channel coding are techniques which can be used independently or

in tandem to improve received signal quality, (Rappaport, 2002).  



Diversity compensates for the fading channel impairments by using two or more antennas. 

Channel coding improves the link performance by adding redundant data bits in the transmitted

message so that if fading occurs in the channel, the data can still be recovered at the receiver. 

So an equaliser within a receiver compensates for the average range of the expected channel

amplitude  and  delay  characteristics.  Two  types  are  observed;  the  linear  and  non-linear

equalisers.

 Therefore after all these processes comes a data decoding phase or the retrieval stage.

2.10 MIMO Decoding at the Receivers

Retrieving data in MIMO takes place at the receiver. I am looking at the software Matlab for its

simulation.  The  modulation  techniques  could  be  Binary  phase  shift  Keying  (BPSK),

Quadrature phase shift keying, (QPRS) and Quadrature amplitude modulation, (QAM); MIMO

is not restricted to one technique. 

Bottomley (2000), implemented a Rake receiver (a radio receiver originally designed to counter

the effects of multipath),  in  hardware for a  SISO channel  in  a  CDMA system. It  had the

problem  of  in  implementing  equalisation  for  overloaded  systems,  i.e.  in  high  scattering

environments, its performance degrades appreciably. So, other receivers were figured out and

designed to effectively decode signals sent by transmitters in a rich multipath environment.

Hence, from Paulson (2009), MIMO decoding can be done using least square algorithm (LSA),

i.e. all information rewritten as least square problem or by using discrete means - since it is

known that initially transmitted symbols come from a finite discrete set of constellation points,

(a representation of a signal modulation scheme, displaying the signal as a two-dimensional

scatter diagram in the complex plain at symbol sampling instants). 

Or recursive least square algorithm (RLA), i.e. relying on error measures expressed in terms of

time average of the actual received signal instead of the statistical approach of LSA. Examples

of such decoding schemes include:

2.10.1 Zero-forcing



First proposed by Robert Lucky, it is a linear algorithm that first splits different data streams,

decodes each by inverting the channel and eliminating multi stream interference. The MSI is an

undesired signal distortion that arises when a sent symbol affects subsequently received ones.

To remove the MSI perfectly and invert the channel, infinite impulse response filtering is used.

A ZF demodulator forces the interference between streams from different transmitted antennas

to zero. The interference is then completely suppressed by multiplying the received signal with

the Moore-penrose pseudo-inverse of the channel matrix. 

X H Y  *�                                                                                     2.4

 Where * = Moore penrose pseudo-inverse.

  H = channel matrix

 Y = received signal vector.

A diagonal channel is obtained which is demodulated to get data.

Its  advantage  lie  in  the  reduction  of  channel  complexity,  relatively  it  degrades  channel

performance.

2.10.2 Maximum Likelihood Receivers

Maximum likelihood is  a decoding algorithm which results in the minimum probability of

decoding to an incorrect code word when a priori probabilities of all the code words are equal.

This is considered the optimal method as it performs vector coding that searches through all the

solution  space  of  transmit  symbol  vectors  for  the  one  that  maximises  the  probability  of

transmission, given a received symbol vector:

S = arg[min Y- Hs� 2� ]                                                                      2.5

Where S = estimated symbol vector;

H and Y remain the same as in ZF.  

The ML receiver algorithm is difficult to implement but it achieves full diversity gain and zero

power losses.



2.10.3 Null and Cancellation

This is an iterative system that uses an estimate to determine one of the entries of vectors i.e.

(s1).  The entry is assumed to be known so its effect is cancelled out to obtain a reduced order

integer, least-square problem with m-1 unknowns, Paulson (2009). The decoder;

· Works out the continuous LS solution, s.

· Finds the symbol closest to the constellation point s1.

· Takes s1 to be that constellation point.

· Restates the problem with one less known.

· If there are more symbols to decode go to 1. 

If the first estimated entry of the symbol is erroneous, estimation of the remaining entries could

also be.

NC thus, attempts to progressively clean x from the interference corresponding to the layers

already detected.

2.11 Summary

It  is  evident  that  the  desire  to  meet  higher  data  rate  transmissions based  on the inherent

capability of utilising smart antenna technology, to obtain better performances over wireless

channels, motivated much research about MIMO. 

As a result, this chapter reviewed its system format with multiple antennas at both the receive

and transmit sides, the advantageous use of the multi-path created, i.e. different signals arriving

the receiver at various times and the Alamouti approach for using space-time diversity.

 Hence, the three basic functional categories; firstly, pre-coding (space-time coding), in which

antenna  selection,  spatial  division  multiplex,  beam-forming and  transmission  diversity  are

done.  Secondly,  spatial multiplexing;  i.e.  the modulation and transmission of independent

information streams with suppressed interference. And thirdly, diversity coding; encompassing

diversity and array gains with effective decoding of the signals to reproduce transmitted data at

the receiver, were all researched.



The channels for data transportation are analysed, its classification based firstly, on bandwidth

of the channels, i.e. narrow and wide band widths. Secondly, the modelling approaches, i.e.

physical and analytical. Then the One ring model was looked at, analysing its channel model

basis, as it is viewed to be of much significance.

Then individual approaches to models were analysed, the Jake deterministic model; used often

for  the  design  of  Rayleigh  fading  channel  simulators.  Kronecker  model  a  stochastic

narrowband model that creates channel realisation based on correlation. 

The two different aspects involved in channel capacity realisation; when CSI is known and

unknown to the transmitter were looked at. Then the layered space-time architecture (Blast) put

forward by Foschini and their operating modes and basic limitations were analysed.

Finally, equalisation or decoding algorithms used at the receiver for data retrieval were looked

at;  discrete  and least  square approaches that enable Zero-forcing and Maximum-likelihood

methods respectively and a different algorithm termed Nulling and cancellation.  

CHAPTER THREE

MATHEMATICAL CONCEPTS AND DESIGN

3.1 Introduction



MIMO signalling operates by spreading available information in both space and time. After all

the theories and literature concerning the enabling aspects of MIMO, here discussion of the

mathematical elements of the models from radio propagation point of view is attempted. 

It might not be needless to say that in-between the transmitter and receiver antennas used in

MIMO  a  lot  of  mathematical  computations  are  carried  out  accompanying  the  processes

mentioned previously. These computations are what basically transform data from their binary

form through encoding at the Tx, aid the modulation of data in the space-time in-between and

finally helps in data retrieval at the Rx.

3.2 MIMO Mathematical Channel Model

Fig. 9 MIMO model architecture, Paulson (2009).

In the figure above, every transmitter sends its data stream to all the receivers at such, each

channel formed has an impulse response as a result of the multipath created by the components

of the system. Bonek et al (2003) presume this model to be an enhanced stochastic model

which is able to model the spatial properties of a realistic MIMO channel, and then one can

restrict oneself to frequency- flat and stationary channels, which can be described as a single

channel transfer matrix H.

Hence, if a QAM symbol  S I  is broadcast from TxI  , then Rxm receives  H I M  S I .  When all

deterministic components are removed from H I M , the stochastic part is said to be a Rayleigh

random variable says Paulson, (2009).

The signal vector y at the receive antennas read as:

Y = Hx                                                                                                   

Where x represents the transmit signal vector. 



Usually noise n is included, i.e. Y = Hx + n                                                3.1

Where n stands for the noise at the receiver, an example for a 3x3 system is:

=   + Noise                                                      3.2                                                        

This means that the symbol received at y1 is a mixture of all transmitted symbols:

y1 = H11 x1  + H21 x2 + H31 x3 +. . . . . . . .+ Hn1 xn                                       3.3

Paulson  (2009),  further  reiterates  that  on  its  own  the  equation  above  has  no  way  of

unscrambling itself, so collecting all received symbols together yields:

y1 = H11 x1  + H21 x2 + H31 x3 +. . . . . . . .+ Hn1 xn 

y2 = H12 x1 + H22 x2 + H32 x3 + . . . . . . . + Hn2 xn 

.

.

.

ym = H1m x1 + H2m x2 + H3m x3 + . . . . . . . + Hnm xn

Therefore our  MIMO channel  can be estimated if  we send symbols  from all  the transmit

antennas, i.e.

y1 = Hx1 

y2 = Hx2 

yn = Hxn 

When the vectors are collected into matrices;

Y = (y1y2...yn) and X = (x1x2...xn), and 

when X are all orthogonal;

 H = YX 1-  � H = YXT ,                                                                          3.4        

 3.3 Space-Time Transmit Diversity - (ALAMOUTI CODE)



As stated earlier in chapter two and seen in fig (10), Alamouti discovered the basics for this

scheme using two transmit antennas.

Fig. 10 Illustration of how the Alamouti code works, Sharony (2006).

Mecklenbrauker (2004) analysed that when data block (S1, S2*) is sent over the first antenna

and block (S2, -S1*) over the second antenna, where * denotes complex conjugation. Assuming

a flat fading channel with transmission coefficients h1,  h2, the received vector r is formed by

tracking two consecutive received data samples:

 r = [r1 r2 T, ]  , in time, resulting in;

 r = S12 h + V                                                                                                  3.5

Where h = [h1 h2 T, ]  is a complex channel vector and V is the noise vector at the receiver. The

symbol block S12 is therefore defined as  

S =                                                                                                 3.6

r1 = h1S1 + h2S2 + V1                                                                                        3.7

r2* = -h2 S1* + h1 S2*  + V2                                                                                     3.8



(3.5) can be written as  =   +                          3.9

Or Y = HVS + V

Where vector Y = [r1 r2 T, ]  is  introduced, the resulting virtual (2x2) channel matrix  HV  is

orthogonal, i.e. HVH  HV  = HV  HVH  = h2 I2                                                                3.10

3.4 One-ring Model

The geometric one ring model was viewed as the starting point for the derivation of a reference

model for a MIMO channel, from which an efficient space-time simulation can be derived by

applying the principle of deterministic modelling. So from fig (5); a transmitter, referred to as

the base station (BS) is elevated and the line of sight component is obstructed. The receiver,

represented  by  mobile  station  (MS)  is  surrounded  by  an  infinite  number  of  scatterers.

Assuming MBS =  MMS = 2 antennas at both MS and BS, the distance between them denoted

by D, radius of the ring on which the scatterers are located given as R, and the angle spread is

denoted as  maxBS� .  In  the same figure,  we see that the MS moves with speed  V in the

direction determined by the angle V� .

Hence, from Hogstad et al (2004), the time variant complex gains h i j,  (t), (i, j = 1, 2) which

connects the receiver and transmitter antenna elements are AiMS  and AjBS  respectively and

given by:

h11 (t) = l imN  �� 1 N	  n 1N�=  anbnej 2 fnt n� �( + )                                              3.11

h12 (t) = l imN  �� 1 N	  n 1N�=  an bnej 2 fnt n� �* ( + )                                              3.12

h21 (t) = l imN  �� 1 N	  n 1N�=  anbn ej 2 fnt n� �* ( + )                                              3.13

h22 (t) = l imN  �� 1 N	  n 1N�=  an bn ej 2 fnt n� �* * ( + )                                               3.15

And an = ej BS cos BS maxBSsin nMS�� � 	[ ( )+ ] � �                                                            3.16

bn = �ej MS cos nMS V�� � 	( - )�                                                                                     3.17

fn = fmax cos ( nMS� - V� )                                                                                    3.18



(*) represents the complex conjugation function, � is the wavelength and  fmax is the maximum

Doppler frequency.

Consequently, only maxBS�   controls D and R, so h i j,  (t) is a zero complex Gaussian process

with  a  variance  of  unity,  therefore  the  envelop  of   h i j,  follows  a  Rayleigh  distribution.

Furthermore, since the capacity of this MIMO channel depends on the correlation between the

channel gain hi j , , i.e.

H = h11 t h12 t h21 t h22 t( ) ( ) ( ) ( )                                                                                         3.19

So the channel capacity for the channel derived from this one-ring model, in bits/sec/hertz is

given as:

C(t) = log2[det( I 1 PBS totalMBSPN HtHHt+ ,  )]                                                       3.20

Where I, is the 2x2 identity matrix, �det� stands for the determinant matrix,  PN  is the noise

power.

3.5 MIMO Decoding 

 Rappaport (2002) is of the view that the function of a decoder is to estimate the encoded input

information using a rule or method that results in the minimum possible errors, as there is a

one-to-one correspondence between the information and code sequences.

For reasonable data decoding, we consider a system with equal numbers of transmit and receive

antennas, also assuming a flat fading environment;

y = Hx + n                                                                                                         3.21

Where y is the received symbol; a MR  × 1 vector, H is channel matrix of size MR  × MT , x the

transmitted signal and n is the  MR  × 1 noise vector.

3.5.1 Zero-forcing

This removes all ISI by applying the inverse of the channel to the received signal, to restore the

signal before the channel and implements matrix pseudo-inverse-ignoring noise. If we assume

the channel matrix H is invertible, an estimate of the transmitted data is given as:



x = (HHH 1)- Hx = H*x                                                                                           3.22

Where * is the pseudo-inverse. Since an inverse of H can only exist if the columns of H are

independent, an independent identical distribution is assumed, i.e. H =  H�.  Therefore for a

noiseless channel, the transmitted symbols can be calculated by; 

 x = H 1- y                                                                                                                      3.23

Consequently,  the term Zero-forcing was coined to correspond to,  bringing down the inter

symbol interference (ISI) to zero in a noise free case. 

One could continuously work out an LS solution and then look for the nearest constellation

point. i.e. using a QPSK as shown;

With    x= 1 1 0 9j 0 4 0 8j. - . - . - .

We can use ZF to decode to 1 1j 1 1j- - -  

Since  in  reality  in  all  MIMO receivers  we need  to  contend with noise and multi  symbol

interference (MSI), it makes the ZF algorithm suboptimal.

3.5.2 Maximum likelihood

Maximum likelihood basically investigates SMT,  i.e. all received signal sample combination,

for the most probable transmitted signal vector. In this sense it searches for the most likely x

given H and y, making them difficult to implement. 



So, when noise is factored in, the extra information added by increasing the number of antennas

allows for significant noise reduction. 

Therefore, using the least square algorithm, all the information can be used when the problem

is re-written in a least square sense; so rather than solve:

y = Hx, 

Solving for x,  x = arg (min�y- Hx 2� )                                                                3.24

Based  on the IEEE VTC 2000 document,  its  symbol  error  probability  Ps depends  on the

distance, (Euclidean) between the different received vectors Hx. An upper bound on Ps can be

obtained by assuming all possible code words have the same minimum distance (dmin). Hence

the error probability for the ML decoder is given as:

 Ps  � Cm 12-  erfc(	 dmin24 EsNo)  < Cm exp(-  dmin24 EsNo)

3.25

It is assumed in 3.25 that the all transmit antennas use the same constellation point C, so total

number  of  code  words  is  Cm and  dmin2 is  the  squared  minimum distance  between  two

different received code words with unity normalised average power per receive antenna and

EsNo is the average signal-to-noise ratio of the receive antennas.

Despite the difficulty in its implementation, ML receivers provide full MR  diversity and zero

power loss. 

3.5.3 Nulling and Cancellation

This is an iterative method, Seethaler et al, (2004) say a conventional Nulling and cancellation

detection scheme for MIMO systems use layer-wise post detection minimum square errors

(MSEs) as reliability measures for layer sorting; the MSEs being averaged measures that do not

depend on the received vectors.

In addition, it contrasts the linear detection methods, i.e. ZF or ML and MMSE, in which all

layers are jointly detected; NC uses a serial decision feedback approach to detect each layer

separately. At each decoding step, a single layer is  detected, corresponding to the received



vector, it is then subtracted from x, the other layers that have not yet been detected are �nulled

out� using ZF or MMSE. Seethaler et al, 2004

Its basic approach is;  for the ith layer (i  �{1,...,  MT}),  the optimum decision on the data

symbol di� � is given by the maximum a-posteriori map rule that maximises the approximate

a-posteriori probability; App P{di = a yZF�  }. The resulting maximum App P{di  = di�yZF  is a

measure reliability measure of the optimum symbol detection. The optimum symbol  di, for

each layer i, is calculated, if the layer sorting approach is deemed. Then layer i  is chosen, for

which the reliability of the optimum decision is maximum, i.e.

i  � arg max P{di = a yZF�  }.                                                          3.26
    j i�{1...,MT}

And  layer  i  is  finally  decoded  in  favour  of  di,  the  result  obtained  used  for  interference

cancellation.

 3.6   Summary

This chapter bridges the gap between the theories introduced in chapter one and reviewed in

two, with the simulation and results obtained in chapter four. This is important because, there

exists underneath the different  techniques that  aid MIMO wireless technology,  appreciable

mathematical  computations.  These  computational  expressions,  though  mostly  tedious  and

cumbersome, when understood give pragmatic meaning to the volumes of theories available on

MIMO. 

From the basic literature of transmit-receive symbols in  a  noisy channel,  the mathematical

expression Y = Hx + n is deduced which governs MIMO; from which the channel matrix could

be estimated, and the received symbol could be determined knowing the transmitted ones.

The Alamouti  code was  analysed, mathematically,  to  give  meaning to  space-time transmit

diversity.

The One-ring channel model is important in deriving the reference model for a MIMO channel,

hence, the mathematics that support it was also analysed.

Then the all important MIMO decoding, i.e. the estimation of received symbols to predict and

arrive at those transmitted were generated. Consequently,  ZF with its characteristic channel



inversion  and  the  ML  with  its  signature  vector  space  of  all  possible  combination,  were

generated. The NC was also generated but was not used for data retrieval because of time

constraints.

While the generation of mathematical capacity expression would have fit here, it was given in

chapter four since antenna correlation effects on retrieved data BER, hence the systems� overall

performance were examined at length there.

                                              

CHAPTER FOUR

SIMULATION AND RESULTS

4.1 Introduction

The Oxford dictionary for modern English (4th edition), defines simulation as a representation

of a behaviour or characteristic of one system through the use of another system especially a

computer program designed for the purpose. 

Therefore,  the data  retrieval  and  the  channel  performance evaluation based  on  correlation

effects, were done using Matlab program; a highly effective tool for such simulation. It stands



for matrix laboratory; in representing the behaviour of data as they are transmitted and received

in MIMO systems, some communication mathematics are used, these vary depending on the

decoding algorithm employed or the channel model approach. The simulation will show the

results and difference in the algorithms used. And the apparent effects of correlation between

the antennas used  in  wireless  communication, on the available capacities  obtained is  also

viewed.

Details of the Matlab codes are given and the resulting plots of the determined results also

shown.  The  script  used  was  originally  sourced  online  from  http://www.dsplog.com,  and

modifications were made to suit the concepts and objectives of this project. 

4.2    Zero-forcing Equaliser For a 2x2 MIMO (Using BPSK Modulation in a Rayleigh

Channel)

Assuming that the channel is flat, i.e. meaning that the multi-path channel has only one tap-

reducing the convolution operation to  simply multiplication. The  Matlab simulation model

using ZF algorithm performs the following:

· Generate random binary sequence of +1�s and -1�s.

· Group them into pair of two symbols and send two symbols in one time slot.

· Multiply the symbols with the channel and then add white Gaussain noise.

· Equalise the received symbols.

· Perform hard decision decoding and count the bit errors.

· Repeat for multiple values of Eb/No; i.e. signal-to-noise ratio and plot the simulation

and theoretical results.

The script is given in appendix (A); from the introduction of the variables to be used in the

initial stages, the channel paths are built and the channel matrixes declared. At the transmitter,

the symbols to be transmitted are then assigned, transmitted and are based in this case on

BPSK.  Noise  addition  to  the  channel  is  defined  as  shown  in  the  input �y = 10^(-

Eb_N0_dB(ii)/20)*n;�.  

Then the receiver structure is defined and the Moore Penrose pseudo-inverse is carried out on

the  unknown  transmitted  data  i.e.  on  the  matrix  so  formed  by  the  combination  of  each



transmitted symbol with the channel and noise. The accompanying inputs carry out the Moore

penrose inverse on the channel H:

  %  Forming  the  Zero  Forcing  equalization  matrix  W  =
inv(H^H*H)*H^H
 % H^H*H is of dimension [nTx x nTx]. In this case [3 x 3] 
 % Inverse of a [3x3] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
 hCof = zeros(2,2,N/nTx)  ; 
 hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
 hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
 hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
 hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
 hDen  =((hCof(1,1,:).*hCof(2,2,:))-
(hCof(1,2,:).*hCof(2,1,:)));% ad-bc term
 hDen  =
reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);%
formatting for division
 hInv = hCof./hDen; % inv(H^H*H)
 hMod =  reshape(conj(h),nRx,N); % H^H operation 

The  noise  in  the  separated  streams  is  correlated  and  consequently  the  SNRs  are  not

independent.  By so doing the received symbols are equalised. So, a continuous least square

solution is worked, and the nearest constellation point is determined. Then a decision is taken,

forcing the most unlikely transmitted symbols to zero; finally, retrieving the transmitted data.

The accompanying graph indicates the results obtained.

Fig11 Data retrieval illustration showing the relationship between SNR and BER to capacity

for a 2x2 MIMO using ZF 



4.3   Effects of Correlation on the BER and SNR of 2x2 MIMO Systems as it Relates to

Capacity using ZF Decoding

 To analyse the capacity changes in the above system, in relation to the BER and SNR of the

retrieved data, a Kronecker model is employed and the correlation at both ends are varied to see

their effects. Appendix (B) specifies the adjustments made to the original script in (A). 

For starters, I varied the correlation at both ends using the same values, i.e. 0.5, 0.8, 1. Then I

used different values at both ends to analyse the effects of total correlation at either receive or

transmit ends and their subsequent contribution to the channel performance of the system under

analysis. Appendix (B) is the script for a 0.5 correlation at both ends. Subsequent results of

correlation were obtained by inserting the values in the script. Consequently,  the following

results were obtained:

Fig.12 Zero-Forcing decoder with 0.5 correlations at both ends



Fig.13 Zero-Forcing with 0.8 correlations at both ends 

Fig.14 Zero-Forcing for unity (1) antenna correlation at both ends using the kronecker channel

model



Fig.15 Zero-Forcing for null and unity correlation at either ends 

4.4  Zero Forcing Equaliser for a 4x4 MIMO System

To analyse that capacity increments when more antennas are used at both the transmit and

receive ends, a 4x4 multi-antenna system is used with all the previous assumptions for the 2x2

system maintained except that in this case not two symbols are sent in one time slot but four

and Zero-forcing also used as the equaliser for data retrieval. Appendix C shows the algorithm

as used on matlab and the accompanying figure, (16) shows the results plotted as obtained.  



Fig16 Data retrieval illustration showing the relationship between SNR and BER to capacity

for a 4x4 MIMO using ZF 

4.5 Maximum Likelihood (ML) Equaliser For a 2x2 MIMO (using BPSK Modulation in a

Rayleigh Channel)

The ML receiver tries to find x which minimizes, J = y-H� x 2� . Since the modulation scheme is

BPSK,  the  possible  values  of  x1 and  x2 are  either  1  or  -1.  To then find  the Maximum

Likelihood solution, the minimum from all four combination of  x1 and  x2 is needed. The

transmit symbol has chosen estimates based on the minimum value of the four values, i.e.

If the minimum is J + 1, is +1 which translates to [1 1], 

If the minimum is J + 1, is -1 which translates to [1 0], 

If J � 1, is +1 it translates to [0 1],

If J-1, is -1 it translates to [0 0].

The Matlab simulation model using ML algorithm performs the following:

· Generate random binary sequence of +1�s and -1�s.

· Group them into pair of two symbols and send two symbols in one time slot.

· Multiply the symbol with the channel and then add white Gaussian noise.

· Find them minimum among the four possible transmit symbol combinations.

· Based on the minimum chose the estimate of the transmit symbol.

· Repeat for multiple values of EbN0 and plot the simulation and theoretical results.

The script is given in appendix D. As was previously done in the ZF script; the variables to be

used are introduced initially. In fact, the same channel model and variables are used as in ZF.

The only difference is in the method of decoding; a subroutine created by Paulson (2009) for

Maximum likelihood decoding is called after the channel matrix is formed, and is given as

appendix (E).  In  this script,  after the transmitted symbols are multiplied with the Channel

matrix and noise, a sample vector or space is formed of all the possible combinations. So, the



ML decoder  investigates  all  the space  of  the  received signal  sample  combination for  the

received  symbol  that  maximises  the  likelihood  or  probability  of  being transmitted,  or  the

received symbol that appears closest to what was transmitted given a known channel matrix H

and known transmitted symbols y. This done by these lines in the script:

symbol_Vectors  =  [  kron(  ones(1,nSymbols)  ,  Symbols  )  ;
kron( Symbols , ones(1,nSymbols) ) ];
YMHS = kron(Y,ones(1,nSymbols^N)) - H*Symbol_Vectors;
Distance = sum( YMHS.*conj(YMHS) , 1 );
[ C , Index] = min(Distance);
Received_Symbols = Symbol_Vectors(:,Index);

Hence, the symbol is retrieved as the transmitted one, it is worthy of note that the sample for

comparison increases with the number of antennas used, making this process complex. But the

complexity can be reduced by a process called sphere decoding; i.e. finding a continuous LS

solution and then search the transmit vectors close to it. 

Consequently, fig (17) is the result for a 2x2mimo system after scripts (D) and (E) are ran.

Then figs (18) and (19) are for a 3x3 and 4x4 systems respectively, obtained by making slight

changes to the used scripts to increase the number of antennas used and direct the script to act

accordingly.

Fig 17 Data retrieval illustration showing the relationship between SNR and BER to capacity

for a 2x2 MIMO using ML decoding



 

Fig 18 Data retrieval illustration showing the relationship between SNR and BER to capacity

for a 3x3 MIMO using ML decoding

Fig 19 Data retrieval illustration showing the relationship between SNR and BER to capacity

for a 4x4 MIMO using ML decoding   

4.6 Effects of Correlation on the BER and SNR of MIMO Systems as it  Relates to

Capacity using ML Decoding

To investigate the effects of antenna correlation as BER and SNR change, on the performance

of the channel capacity of MIMO systems, using the Maximum likelihood decoder, script D is



modified such that correlation between transmit and received antennas can be varied. Script (F)

is used for a 4x4 system; correlation is varied from 0.1 to 1. The results are given below:  

Fig. 20 Maximum Likelihood decoding with 0.1 correlations at both ends for a 4x4 system

Fig. 21 Maximum Likelihood decoding with 0.5 correlations at both ends for a 4x4 system 



Fig. 22 Maximum Likelihood decoding with 0.9 correlations at both ends for a 4x4 system

The same script (F) is used to examine the effects of correlation on the 3x3 and 2x2 MIMO

systems; the appropriate changes are made to the number of antennas and the channel matrix to

give the accompanying results:

Fig. 23 Maximum Likelihood decoding with 0.1 correlations at both ends for a 3x3 system



Fig. 24 Maximum Likelihood decoding with 0.5 correlations at both ends for a 3x3 system

Fig. 25 Maximum Likelihood  decoding  with  unity  (1)  correlations  at  both ends  for  a  3x3

system



Fig. 26 Maximum Likelihood decoding with 0.5 correlations at both ends for a 2x2 system

Fig. 27 Maximum Likelihood decoding with 0.8 correlations at both ends for a 2x2 system



Fig. 28 Maximum Likelihood  decoding  with  unity  (1)  correlations  at  both ends  for  a  2x2

system

4.7 Mean Capacity Simulation from Theoretical Equation for Unknown CSI

To analyse the capacities of our systems based on the BER/SNR values with respect to the

equation derived in (4.4), i.e. that of theoretical capacity equation for MIMO systems when CSI

is unknown at the transmitters, adjustments are done to the script in use. Appendix (G) shows

that both ZF and ML decoding can be used to analyse the capacity. So (4.4) is used to calculate

the capacity, using the channel matrix, receiver and transmit symbols that were employed in all

previous analysis. The results obtained are:

Fig. 29 MIMO capacity from theoretical computation for a 4x4 system using ML



Fig. 30 MIMO capacity from theoretical computation for a 3x3 system using ML

Fig. 31 MIMO capacity from theoretical computation for a 2x2 system using ML



 

Fig. 32 MIMO capacity from theoretical computation for a 2x2 system using ZF

Fig. 33 MIMO capacity from theoretical computation for a 3x3 system using ZF



Fig 34 MIMO capacity from theoretical computation for a 4x4 system using ZF

Fig. 35 MIMO capacity as a function of SNR from theoretical computation for a 2x2 system

4.8 Discussion of results

To meet  the  said  aims  of  the project,  of  analysing data  retrieval  using  different  receiver

algorithms, with a view to stating the most effective and also ascertain the effects of correlation

no channels created in MIMO communication systems; the following discussion will try to give

meaning to the results obtained.

In all the simulations done, the BER in retrieved data is plotted against the SNR. Generally, an

MxN MIMO system has M transmit antennas and can transmit M symbols accordingly. When

the number of antennas is increased and the BER in the retrieved data remains the same, it



means the capacity is proportional to M, i.e. increases as M increases. However, if M increases

and BER also increases,  it  signifies that  the increase in symbols has made decoding more

difficult;  hence,  meaning  an  inverse  relation  between  capacity  and  M.  So,  an  increase,

decreases  capacity.  Consequently,  I  used  the  BER/SNR relation  to  help  make  deductions

concerning data capacity available for retrieval at the receivers in MIMO systems.

Firstly, as expected, in fig 11 for a 2x2 MIMO system using maximum ratio combination and

BPSK modulation  in  Rayleigh  channel  fading  environment,  the  simulated  results  show a

matching as obtained for a 1x1 system under the same conditions. Signifying that data was

retrieved and the capacity increments that should be introduced by multiple antennas were seen,

though it behaves like a SISO system probably because there is no CSI at the transmitters. Thus

agreeing with Kumar et al (2007) and a host of other writers who uphold that the ZF is not the

best possible way to equalise the received symbols as it helps to achieve data rate gains not

diversity gains. 

Thus, the figures show the relationship between the numbers of errors made for each bit of data

retrieved from the channels formed between Rx and Tx against the SNR. Secondly, the plots

try to show the number of bits that have errors relative to the total number of bits received and

the capacities reached based on the SNR. 

In theory, high values of SNR decreases channel estimation errors and improve capacity. This

is seen in the result obtained in (11) as a SNR of 5db have higher bit error rates of 0.1 than

SNR of 15db, with BER of 0.01; and the capacities as shown are all higher for higher SNRs.

These mean that the errors in all data retrieved is lower for higher SNR, thus increasing channel

capacity.

So,  using  Zero-forcing;  after  carrying  out  the  Moore  Penrose  pseudo-inverse  on  the

combination of  transmitted data  with  the  channel  and  noise,  data  was  retrieved.  And  the

performance of the capacity was seen to increase with increase in SNR and decreased bit error

rates. 

And the matching of the simulated and the theoretical plots in fig (11), shows that the systems

fare well using the ZF algorithm.

Figs (12-14)  show the effects  of increased correlation on the capacity performance of the

already retrieved data in fig 11(wherein there is 0 correlations). 



For starters, as the antennas become more correlated from the case of no correlation in fig (11),

to correlation values of 0.5, 0.8 and a totally correlated value of 1, the bit error rates increases,

indicating possible capacity increments in the channel formed by the system.

In fig (12),  for  a 0.5  correlation, the BER gradually increases for  increasing SNR, this is

different from the result in fig (11) where correlation is 0. 

Fig  (13)  also  shows  higher  BER and  SNR;  much  higher  than  that  in  fig  (12)  since  the

correlation is 0.8. 

Fig (14) shows BER of about 1 which is very high but is realised for unity correlation. 

 Hence, the performance of the system gradually reduces, as indicated by the increase in the

BER for higher SNR and viewed in the shift of the simulated plot up and away from the totally

uncorrelated values; suggesting that, capacity is reduced and it is not the channels that matter in

capacity deductions per se, but the Eigen values of the channel matrix formed. 

Secondly, the kronecker model as discussed in chapter two is not a very accurate means of

channel modelling; perhaps an accurate one must look at the CSI to model channels.

Figure (15) is an unlikely case since the correlation is varied differently at both ends, but it

gives a  result  similar  (14).i.e.  the same as a  totally  correlated system,  as far  as BER for

retrieved data is concerned but throughput is realised on either ends. 

The above cases are for situations where the receiver has no of knowledge the channel state. 

It is also observed that the capacity of the 4x4 system is larger than that of the 2x2 system as

the multipath created by the combination of 4x4 elements is higher than that of a 2x2 elements.

So,  fig  (16)  shows  the  same  matching  as  fig  (11)  even  though  more  antennas  are used;

signifying that the receiver retrieves almost precisely the data sent by the transmitters in the

noisy environment, and the 4x4 systems does almost as accurately as the 2x2 system for the

same environment but with increased capacity. 

Using the Maximum likelihood decoder shows similar trends as observed when using ZF; for a

2x2 system shown in fig (17), the BER decreases from about 0.01 for a 5db SNR to about

0.0001,  for  a  20db SNR. Though,  similar  to  the  behaviour  noticed  in  using ZF,  the  ML



performs  better  as  observed  in  the  BER  and  the  increased  capacities  available  for  data

transmission. 

Increase in the number of antennas as seen in figs (18),  and (19),  for 3x3 and 4x4 MIMO

systems respectively, shows lower BER in data retrieved for increasing SNR values; the 4x4

system  giving the lowest BER of less than 0.0001, indicating it to have performed best and can

have  higher  capacity  as  expected.  And  the  overall  BER for  data  retrieved  using  the  ML

decoding vis-à-vis that retrieved using the ZF decoding shows lower errors in data from ML for

the same SNR and higher capacities as a result.  

For the analysis of the effects of antenna correlation on the performance channel capacity of

retrieved data in the ML decoding scenario, it is observed that BER gradually increases from

about 0.001 for an uncorrelated, 4x4 system in fig (19), to about 0.01, for  0.1, 05 and 0.9

correlations in figs (20) and (21) and (22) respectively for increased SNR. 

For a 3x3 system, using ML decoding, the same pattern of result is observed in Figs (23), (24)

and (25); as correlation increases from 0.1 to 0.5 to 1, the BER increases, reducing the capacity

of the system. Furthermore, for a 2x2 system the behaviour is also similar as seen in figs (26),

(27) and (28);  indicating that  as more antennas are used, though the capacity increases,  if

correlation also increases, the errors in the retrieved data will increase, reducing the capacity of

the system.

 Generally, the reduction in capacity as correlation increases is analogous to the use of pipes in

fluid mechanics. Jankiraman (2004) says that when two pipes are used between two reservoirs;

the more the number of pipes the greater the quantum of flow of water from one to the other.

As seen when a 4x4 MIMO system is analysed fig (16). This is similar to data pipes (channels)

in communication. Hence for the 2x2 MIMO system, i.e. having two data pipes, there are two

possible cases; either the data in the pipes are identical to each other or they are independent,

and so completely different from each other. The same also happens in the 3x3 or 4x4 systems,

but the means of exchange has increased since more water can flow through three and four

pipes than through two, i.e. having four data pipes. 

In the first case, the data goes as if through one data pipe; the pipes being replicas of the same

contents. So the same signal is going through the pipes and no new information is getting

transferred. This is the case of full correlation and because of this correlation the advantage of



throughput  is  not  obtained.  Nonetheless  a  diversity  of  two,  three  or  four  is  obtained  as

observed.

Secondly, when there is absolutely no correlation between the data carried in the pipes, the data

streams are independent. Hence no diversity, but output in bits/sec is definitely higher than the

first case.

Consequently, correlation is not good for communication and as seen in the MIMO system

analysed, it reduces capacity.

Relatively, a point is reached in the systems under scrutiny, where increase in antennas will

automatically entail increase in capacity. This is so because the increase come along with an

increase in the complexity of the matrixes formed, though diversity will continue to increase

with antenna increment as more symbols are available for detection, what is gained in diversity

may be lost in throughput.

4.8.1 Capacity Evaluation Channel Unknown at the Transmitter

By and large  from (2.3)  in  the literature review,  an expression was given for  the MIMO

channel capacity,  and it  was made clear that there are different approaches to the capacity

relation proposed by Shannon, hence varied capacity of data available for retrieval based on

whether the channel state information is known to the transmitter or not.

(2.3) was given as C = Max  log2 �I M R  + MT�  HRXX  HH bps/hertz                  4.1�
                                     Tr (RXX ) = MT

Jankiraman (2004) says the capacity C above is also called error-free spectral efficiency or data

rate per unit bandwidth that can be sustained reliably over a MIMO link.

In the situation analysed in this thesis, where CSI is not known to the transmitter, the vector x

is statistically independent i.e. Rxx = I MT . Implying that the signals are independent and the

power is equally divided among the transmit antennas.

In such a case then, the capacity is given as:

C = log2 det (I MR  + EsMTNo HHH )                                                                                4.2

Where Es/No is the SNR also represented by � in (4.1). 



Teletar (1995) warns that this is not Shannon capacity, since it is possible to out perform Rxx =

I MT  if  one  has  knowledge  of CSI.  Now the  HHH  is  an  MR MT×  positive  semi-definite

Hermitian Matrix. The Eigen decomposition of such a matrix is given by Q�QH says Golub et

al  (1989),  where  Q the  array matrix  satisfying  QHQ =  QQH =  I M R  and  � =  diag{ 1�

, 2�, ..... MR� } with i 0�
 .

The MIMO channel capacity now becomes:

C = log2 det (I MR  + EsMTNo Q�QH)                                                                             4.3

 Matrix simplification results in C = log2 det (I MR+ EsMTNo �)                                   4.4

Or C = i 1r log2=  (1 + EsMTNo i�)                                                                                 4.5

Where  r  is the rank of the channel and  i�(i = 1, 2, 3...., r) are the positive Eigen values of

HHH . The rank is defined as the number of independent equations offered; (algebraic rank),

and is always less than both the number of transmit and receive antennas, says Oesteges et al

2004.  

So (4.5) expresses the capacity of a MIMO channel as the sum of the individual capacities of r

SISO channels, each having a power gain of i� and transmit power of EsMT .

Therefore, for the case presently under scrutiny, i.e. where CSI is unknown to the transmitter,

we can relate the results obtained from our simulation to (4.5): 

· The  technique  of  multiple  antennas  as  used  in  MIMO  opens  up  multiple  spatial

channels HHH  between transmitters and receivers.

· The capacity of the channels created in such systems and hence the data available for

subsequent retrieval depend on the order of diversity or rank  r  of the matrix of the

channels formed, which is determined by the number of antennas used and positive

Eigen values i of the channel.

· Since no knowledge of the channel state is available at the transmitters, equal transmit

energy EsMT is allocated to each spatial channel.  



The plots of MIMO and SISO as seen in fig (11) are the same, this could happen in special

cases where a low correlation does not necessarily translate into higher capacity because of

some special propagation scenarios, so the MIMO capacity can be low (sometime equal to a

SISO capacity level). The effect was denoted as �key hole�,  leading to a drop in capacity,

Valenzuela et al, 2002. It is related to scenarios where rich scattering around the transmitters

and receivers lead to correlation of the signals, while other propagation effects, like diffraction

or  wave  guiding  leads  to  rank  reduction  of  the  transfer  function  matrix;  giving  rise  to

significant local scattering around the Tx and Rx units, causing uncorrelated fading properties-

hence low capacity. 

4.8.2 Capacity Evaluation for Channel State Information known at Transmitter

When CSI is known at the transmitters, the capacity of MIMO can be increased by resorting to

the so called �water filling principle� (Teletar, 1995). The water-filling principle can be derived

by maximising the MIMO channel capacity under the rule that more power is allocated to the

channel that is in good condition and less or none to the channel that is bad, i.e. assigning

various levels of transmitted power pouring to various transmitting antennas, on the basis that

the better a channel gets, the more the power assigned for data transmission through it, and

vice-versa.

Hence, an analysis is  taken from Paulraj (2003);  consider  a  zero-mean circular symmetric

complex Gaussian (ZMCSCG) signal vector, x of dimension r × 1, where r is the rank of the

channel H to be transmitted. The vector is multiplied by a matrix V prior to transmission (based

on the fact that H = U VH�  through singular value decomposition). At the receiver, the received

signal vector y is multiplied by the matrix UH  , the input-output relationship of this operation is

given by: 

y= �EsMTUHHVx + UHn                                                                   4.6

   = �EsMT x�  + n

Where  y is the transformed received signal vector and  n is the ZMCSCG transformed noise

vector of size r × 1 with the covariance matrix �{nnH}= N0 Ir. The vector x satisfies �{xxH}=

MT  to constrain the total transmit energy.  Jankiraman (2004) infers that (4.6) shows that with



channel knowledge at the transmitter H can be completely decomposed to r parallel SISO

channels satisfying;

y i = �EsMT� ixi�  + n i , i = 1, 2, . . . , r                                                      4.7

So, the capacity of the MIMO channel is  the sum of the individual parallel SISO channel

capacities, given by;

C = i r log2 1 Es iMTN0 i� �( + )                                                                      4.8

The above equation, (4.8), is the capacity relation for a channel in which CSI information is

present at the transmitters.

Where i�= �{�x i 2� } (i =1, 2, . . . , r) is the transmit energy in the ith sub-channel such that

i 1r i�=  = MT

Therefore  to  maximise mutual  information,  the transmitter  can  access  the  individual  sub-

channels and allocate variable power levels to them. So the mutual information maximisation

problem becomes,

C = max   i 1r log2 1 Es iMTN0 i� �= ( + )                                                      4.9
      i 1r i�=    

Jankiraman (2004), concludes that using Lagrangian methods, the optimal energy allocation

procedure can be written as:

iopt�  = (
 - MTN0Es i� ), i = 1, 2, . . . , r and                                                 4.10

  i 1r iopt�=  = MT  where 
is a constant.

The  optimal  energy  allocation  can  then  be  determined  iteratively  through  the  water-

pouring/filling algorithm. We set the iteration count p to 1 and calculate the constant  
 in (4.9):


 = MT r p 1( - + )[1+N0Es i 1r p 1 1 i�= - +   ]                                                                 4.11

Using the value of 
, the power allocated to the ith channel is calculated;

i� = (
- MTN0Es i� i 1r p 11 1�= - + ), i = 1, 2, . . . ,r-p+1                                       4.12

The optimal power allocating strategy, therefore allocates to those spatial sub-channels that are

non negative. Consequently, from Jnkiraman�s analysis, since this algorithm only concentrates



on  good-quality  channels  and  rejects  the  bad  ones  during  each  channel  realisation,  it  is

expected that this method yields a capacity that is equal or better than the situation when the

channel is unknown to the transmitter.

It  can therefore be ultimately concluded that increased correlation reduces the CSI,  as the

conditioning of the channel matrix is degraded, since with more knowledge of the Channel; the

capacity  that  can  be  realised  at  the  receivers  end  could  be  greatly  increased,  increased

correlation equally reduces capacity.

4.8.3    Relationship between the Theoretical and Simulated Channel Capacities

Initially, it was finalised that channel capacities are realised for two separate cases; when CSI is

known and when it is unknown to the transmitter.

Since all the analysis in the project was made for cases where CSI is unknown, (4.4) gives the

equation of MIMO channel capacity deduction for this thesis:

C = log2 det (I M R+ EsMTNo �)                                                               4.13  

Hence, an attempt is made to calculate the channel capacities of the systems already analysed

using ML and ZF decoding, based on (4.13) and compare with that obtained by the use of our

previous scripts.

Fig (29) gives the result for a 4x4 system using ML decoding from the direct substitution of the

used parameters into (4.13). 

As seen from the result  using the script  in  fig  (19) the BER for  a  4x4 system using ML

decoding is about 10 3-  for SNR of 5db. This is similar to the result obtained in (29); the BER

for SNR of 5db is slightly above 10 3- , but can be approximated to 10 3- . Since their BER for

the same SNR are almost the same, their performance show a similarity and the data capacities

retrieved are almost equal, as seen in the simulated plots of both cases. 

Fig (30) shows that the result for the calculated 3x3 system using (4.13) for ML decoder. If

compared with fig (29), which is for a 4x4 system, for a 5db SNR, the BER increases in fig

(30) and capacity reduces. However, if compared with fig (18) for the same number of antennas

but using the script, the results are seen to be similar as the BER for SNR value of 5db is

almost the same. 



Fig (31), which is the result for the calculated 2x2 system, shows a much higher BER for the

same SNR using the ML decoding, proving the fact that capacity is increased when antennas

used are increased, the BER increasing with a reduction in the number of antennas.

When fig (31), i.e. result obtained by using the equation of capacity for unknown CSI (4.13), is

further investigated and compared to fig (17) which has the same number of antennas but

obtained using the script, the results obtained are also observed to be the same. 

Hence, indicating that the results obtained from the script used agree with the result obtained

by using the  equations derived for  the  MIMO system when there is  no CSI  for  the  ML

decoding algorithm. 

Figures (32),  (33) and (34) give the results obtained for ZF decoding in 2x2, 3x3 and 4x4

MIMO systems using the equation derived for the data capacity with no CSI at the receivers.

As explained in the ML cases, the same observation are seen using the ZF decoding algorithm

when compared to the corresponding results from the scripts. 

Consequently, it can also be finalised that the equation that was derived gave the capacities that

were realised from the use of the scripts, making it credible.

Figure (35) shows the capacity of a MIMO system as a function of SNR for a 2x2 system, the

same result is obtained for the 3x3 and 4x4 systems using both ZF and ML decoding.

4.9    Comparisons between Zero-forcing and Maximum-Likelihood Decoders

From results obtained, it is apparent that the choice of a decoder has immense impact on the

performance of wireless systems. This is more in MIMO systems as the effects of the multi-

stream  interference  (MSI)  resulting  from  the  de-multiplexing  of  symbols  over  multiple

antennas at the transmitter, creates different streams which interfere at the receivers.

The ML and ZF are both linear decoding schemes used for data retrieval; the methodology of

using a linear filter is an aspect that makes these decoders distinct. 

The  ZF,  is  easy  to  implement  as  it  just  looks  to  eliminate  interference  between  each

independent  stream originating from one of the multiple transmit  antennas. It  does this by

inverting the known channel matrix,  setting it  equal to the linear filter and ignoring noise

enhancement problems. Thus making it suboptimal as observed from the results obtained for



data decoded using ZF from a 2x2 MIMO system in Fig (11) against that retrieved from the

same system using ML in fig (17), also observed for the 4x4 systems in figs (16) and (19).

Higher number of antenna systems result in lower BER and the result obtained can be said to

be reliable since better error rates are observed for higher SNR.

The ML provides optimal performance for data retrieval. It  is also the most appropriate for

practical  systems  because  it  gives  better  BER which  gives  reliability  in  transmitted  data.

Though it is difficult to implement, its approach maximised the desired goals of MIMO. In this

case, the identity matrix is equal to the linear filter; this inhibits an exhaustive search through

the available symbols based on the modulation technique to find each estimated symbol. It gets

complex and can be made less complex by using algorithms such as sphere decoding.

Other receivers are the minimum mean-squared estimate decoders which minimises MSI and

noise to lower errors.

Then  the  non-linear  receiver;  the  successive  cancellation  decoding,  in  which  Nulling and

cancellation falls (NC). The idea behind all successive cancellation receivers is, they treat each

symbol as a layer and is stripped away to be decoded. 

4.10    Summary

In a nutshell, this chapter covered the most important aspect of the thesis; the simulation of data

retrieval, the analysis of available capacities as BER and SNR change at the receivers, when

antenna correlation is factored.

Only two of the previously mentioned algorithms for data retrieval were used; the Zero-forcing

and the Maximum likelihood.

The script used was originally sourced online, subsequent modification to meet desired results

and understood concepts, were made.

Data retrieval for a 2x2 system using ZF decoding was first simulated; the capacity obtained as

a function of the bit error rates and the signal to noise ratio were viewed. Furthermore, the

effects of antenna correlation with varying values were also looked at. Then the 4x4 system

was  also  analysed  to  show  that  as  theoretically  thought,  capacity  available  for  data

communication increases with the number of antennas as the MIMO technology suggests, but

also, only to a limit, since complexity grows. 



Then the ML decoding was used for a 2x2, 3x3, and 4 x 4 MIMO systems, to retrieve unknown

transmitted data. As previously done with the ZF, the data were retrieved as a function of the

SNR and BER of the transmitted symbols. Again, the effects of antenna correlation on the

performance capacity at the receiver for all the system were analysed.

All the results obtained were chronicled and detailed discussion was written based on observed

behaviour in the simulations. 

Considering  the  critical  role  of  capacity  in  communication,  the  issue  of  channel  state

information  and  the  capacities  realised  with  or  without  it  were  further  discussed.  And

mathematical relations based from the Shannon capacity evaluation were arrived at for both

cases.

Finally,  the   capacity  for  the  systems  based  on  the  equations  were  simulated  and  the

relationship between the simulated results  from the use of  the  modified script  with those

obtained by directly substituting the variables in the derived equation for a MIMO system with

no CSI were analysed and seen to be almost accurate.



CHAPTER FIVE

CONCLUSION AND FURTHER STUDY

5.1    Introduction

From the stated objectives in chapter one, the following conclusions can be reached:

Firstly, that an understanding of the basic wireless concepts that govern MIMO technology as

seen  from  the  introduction  and  literature  review,  were  achieved.  Hence,  the  physical

environment that abates the scattering of channels to give a rich multipath suited for the all

important MIMO were also looked into and understood.

Secondly,  the  different  channel  model  classification  were  studied,  the  resulting  models

thoroughly analysed, i.e. the Kronecker model (which was used in this thesis), the Jake and the

one  ring models.  Literature  about  them was given  in  chapter  two  and their  mathematical

analysis, given in chapter three; so channel modelling, as it  relates to this thesis was also

achieved.

Thirdly, data decoding schemes and the algorithm that aid them were successfully analysed; the

ZF, ML and NC, their literature and mathematical expressions also obtained. The real process

of data decoding in different multi-antenna designs were simulated in chapter four, the results

obtained were discussed, and an understanding was reached, that the ML decoder, though more

complex to implement, performs better than the ZF decoder.

Then,  correlation  between  the  multi-antennas  was  seen  to  affect  the  Eigen  values  of  the

matrices formed in  the decoding schemes. Thus,  the BER was seen to  be affected by the

correlation and as a result, the capacity was reasoned to be affected.

Lastly,  the Matlab simulation using the  script  from  www.dsplog.com was  understood and

modifications were made to suit the thesis requirements.

In a nutshell, these emphasise in no small measure that not only were the set objectives met but

the results obtained in this thesis concur with the agreed standards in the wireless world.

Consequently, I can now make meaningful and sound contribution, based on a knowledgeable

and informed perspective, about MIMO generally and specifically its data retrieval schemes,



the  correlation  effects  on  BER as  SNR  increases  on  channel  capacity  and  the  capacities

available when CSI is known or unknown.

So, all that were done in this thesis are summarised below, from all that was understood, as a

way of concluding the thesis. 

5.2   Conclusion

This project was originally aimed at retrieving transmitted data at the receiving end using

discussed algorithms like Maximum likelihood and Zero-forcing and checking the inescapable

effects of correlation of the antennas used in the data capacities realised, as seen from the error

rates and SNR. 

To achieve this, the basic understanding of what MIMO is and how it works was attempted;

MIMO antenna design was analysed to be more beneficial in capacity realisation as against the

previously used technologies of SIMO or MISO. This was understood against the back drop

that more channels are created by the use of more antennas and the rich scattering that results

when utilised, provides a superb foundation for increased capacities. So, spatial multiplexing

and other related ideas that aid this technique were analysed.

But unlike Gaussian channels, wireless channels suffer from attenuation caused by copies of

the transmitted signal reaching the receivers at different times. It will be difficult to retrieve the

transmitted  signal  without  the  use  of  diversity  techniques  and  array gain.  Array gain  for

example provide the validity in that premise; as it is the average increase in the SNR at the

receiver  that arises from the coherent combining effects of multiple antennas at the receiver or

transmitter or both.

Another method is to use the multiple antenna elements in the spatial multiplexing or BLAST

approach. So the vertical and horizontal Bell layered space time techniques were reviewed. 

Prior  to  MIMO  development,  wireless  communication  systems  analysts  viewed  multipath

propagation  as a  problem to be  mitigated  towards  achieving reliable  data/voice  transfers.

MIMO is the first technology that treats multipath propagation as an opportunity to increase

link capacity.

Analysing the performance of MIMO system, need proper modelling of the system to realise

reasonable results. MIMO channels are categorised based on the nature of the impulse response



of the channels; flat, frequency selective and slow fading channels. While the first results from

multipath fading and was used in all the analysis of this project, the other two are a direct result

of delay spread.

A  channel  matrix  characterises  a  MIMO system  with  a  number  of  transmit  and  receive

antennas. The entries of the matrix are the channel impulse response for all transmit-receive

antenna pair. 

Signals from transmitters are spatially multiplexed and expected to mix with and always be

corrupted by noise. Upon receiving such signals, receivers separate the mixed signals always

filter out the noise. This separation is achieved if the equations formed by the combination of

the  matrixes  are  linear  and  independent,  so  each  antenna  uses  a  statistically  independent

channel.

In addition, wireless channels are also affected by distortions of transmitted data symbols. The

symbols being typical forms of amplitude and phase modulation pulses; so neighbouring data

symbols interfere with each other, causing inter symbol interference, which in turn make data

detection for retrieval a herculean task.

But the algorithms used were designed with all these problems at heart, though different, they

all aim to retrieve data based on the channel matrix and transmitted symbols presented.

While Zero-forcing basically tries to remove all ISI by applying the inverse of the channel to

the received signal; thereby restoring the signal before the channel and then implementing a

matrix  pseudo-inverse  on the  signal.  It  does  this  while  ignoring  the  effects  of  noise,  i.e.

bringing down the ISI to zero.

The Maximum Likelihood on the other hand, tries to retrieve data by investigating all  the

sample of the received signal combination, for the transmitted signal vector that maximises the

probability of being transmitted. 

While the former is easier to simulate and run, it is also observed from the results to be less

effective or sub optimal. The later is more effective as lower BER is obtained in retrieved data

for the same SNR, but more complex to implement.

All  simulations were done using the Matlab program; the results  were obtained when the

increasing SNRs are matched against BER for all data retrieved. 



Other  decoding  schemes  like  Nulling  and  cancellation  and  Minimum  mean  successive

cancellation (MMSE) were not analysed because of time constrains.

The capacity available for retrieved data is central to this thesis hence, the effects of correlation

among the multiple antennas used at either ends to the capacity of the system was analysed in

detail. Different multi-antenna design were looked at and different correlation values also used.

It is often assumed that the elements of the channel matrix are independent, this is practise is

never the case. So correlation affects the capacity realised; if there is correlation the capacity of

the MIMO systems are decreased. And when the correlation is increased as was observed from

the  results  obtained,  BER  continues  to  increase  and  the  capacity  continues  to  decrease

appreciably.  Paulson  (2009),  says,  channels  when  correlated,  result  in  similar  paths  with

reflections  off  the same  objects and effect  adjacent  channels,  i.e.  from adjacent  antennas.

Hence, more correlation means fewer effective channels and so lower capacity. 

From the theories and simulation, it can then be said that though capacity increases linearly

with increase in the number of antennas used, the capacity can be reduced when correlation is

increased.  In  practise,  antennas  are  usually  separated  by  about  a  wavelength  to  reduce

correlation.

The capacity of a  system was first  analysed by Shannon in  1948, however,  data  capacity

available for retrieval at the receiver can now be viewed in two separate perspectives; when

there is channel state information and when it is absent.

This thesis was analysed from the former perspective and the results obtained agree with those

obtained by using the sourced, remodelled and implemented script.

But more capacity is  expected when there is CSI,  since the transmitter makes an informed

decision while allocating data to channels to be transmitted; reducing errors and increasing

capacity.

5.3   Further Study



So further work on this thesis could be done in looking at firstly, a better channel model than

the kronecker model incorporated into the script. The Jake model or a model known as the

Monte Carlo model can each be attempted. 

Secondly, a case where there is CSI at the receivers could be analysed and the implementation

of other decoding algorithms, i.e. the Nulling and cancellation, e.t.c.

Thirdly, negative values of correlation could be attempted to view its impact on the capacity.

And since the ZF algorithm is easier to implement but less optimal and the ML, optimal but

difficult to implement, a situation where both are used at the receiver could also be analysed,

and depending on what quality is desired at a specific time, the system could be designed to

choose which decoding algorithm to use.

CHAPTER SIX



APPENDIXES

6.1   APPENDIX A 
% Script for computing the BER for BPSK modulation in a
% Rayleigh fading channel with 2 Tx, 2Rx MIMO channel 
% Zero Forcing equalization
 clear
N = 10^6; % number of bits or symbols
Eb_N0_dB = [0:25]; % multiple Eb/N0 values
nTx = 2;
nRx = 2;
% build CSI and noise arrays
h_iid = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + 1i*randn(nRx,nTx,N/nTx)];
Rayleigh channel
h = h_iid;                                  % declare CSI array
tx_antenna_Correlation = 0; % correlation at transmitter
rx_antenna_Correlation = 0; % correlation at receiver
R_tx = [ 1 tx_antenna_Correlation ; tx_antenna_Correlation 1];
sqrt_R_tx = sqrtm(R_tx)';
R_rx = [ 1 rx_antenna_Correlation ; rx_antenna_Correlation 1];
sqrt_R_rx = sqrtm(R_rx);
for i = 1:N/nTx
h(:,:,i)  =  sqrt_R_rx  *  squeeze(h_iid(:,:,i))  *  sqrt_R_tx;
%Kronecker model
end
n  =  1/sqrt(2)*[randn(nRx,N/nTx)  +  1i*randn(nRx,N/nTx)];  %  white
gaussian noise, 0dB variance
 for ii = 1:length(Eb_N0_dB)
% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0
sMod = kron(s,ones(nRx,1)); % 
sMod = reshape(sMod,[nRx,nTx,N/nTx]); % grouping in [nRx,nTx,N/NTx ]
matrix
% Channel and noise Noise addition
y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n;
% Receiver
% Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H
% H^H*H is of dimension [nTx x nTx]. In this case [2 x 2] 
% Inverse of a [2x2] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
hCof = zeros(2,2,N/nTx)  ; 
hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
hDen = ((hCof(1,1,:).*hCof(2,2,:)) -(hCof(1,2,:).*hCof(2,1,:)));%ad-
bc term
hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);  
% formatting for division
hInv = hCof./hDen; % inv(H^H*H)
hMod =  reshape(conj(h),nRx,N); % H^H operation
yMod  =  kron(y,ones(1,2));  %  formatting  the  received  symbol  for
equalization
yMod = sum(hMod.*yMod,1); % H^H * y



yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting
yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
% receiver - hard decision decoding
ipHat = real(yHat)>0;
% counting the errors
nErr(ii) = size(find([ip- ipHat]),2);
 end
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); 
 
close all
figure
semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);
semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);
axis([0 25 10^-5 0.5])
grid on
legend('theory  (nTx=1,nRx=1)',  'theory  (nTx=1,nRx=2,  MRC)',  'sim
(nTx=2, nRx=2, ZF)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title('BER  for  BPSK  modulation  with  2x2  MIMO  and  ML  equalizer
(Rayleigh   channel)');
 

6.2   APPENDIX B

% build CSI and noise arrays



h_iid = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + 1i*randn(nRx,nTx,N/nTx)];
Rayleigh channel
h = h_iid;                                  % declare CSI array
tx_antenna_Correlation = 0; % correlation at transmitter
rx_antenna_Correlation = 0; % correlation at receiver
R_tx = [ 1 tx_antenna_Correlation ; tx_antenna_Correlation 1];
sqrt_R_tx = sqrtm(R_tx)';
R_rx = [ 1 rx_antenna_Correlation ; rx_antenna_Correlation 1];
sqrt_R_rx = sqrtm(R_rx);
for i = 1:N/nTx
h(:,:,i)  =  sqrt_R_rx  *  squeeze(h_iid(:,:,i))  *  sqrt_R_tx;
%Kronecker model
end 
n  =  1/sqrt(2)*[randn(nRx,N/nTx)  +  1i*randn(nRx,N/nTx)];  %  white
gaussian noise, 0dB variance
for ii = 1:length(Eb_N0_dB)

6.3    APPENDIX C



% Script for computing the BER for BPSK modulation in a

% Rayleigh fading channel with 4Tx, 4Rx MIMO channel 

% Zero Forcing equalization
clear
N = 10^4;               % number of bits or symbols
Eb_N0_dB = [0:25];      % multiple Eb/N0 values
nTx = 4;
nRx = 4;
nSymbolPeriodsToSimulate = N/nTx;
% build CSI and noise arrays
h_iid = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + 1i*randn(nRx,nTx,N/nTx)]; 
% Rayleigh channel
h = h_iid;                                  % declare CSI array
tx_antenna_Correlation = 0;                 % correlation at
transmitter
rx_antenna_Correlation = 0;                 % correlation at
reciever
%R_tx  =  [  1  tx_antenna_Correlation  tx_antenna_Correlation;
tx_antenna_Correlation  1
tx_antenna_Correlation:tx_antenna_Correlation tx_antenna_Correlation
1];
R_tx = eye(nTx);
sqrt_R_tx = sqrtm(R_tx)';

%R_rx  =  [  1  rx_antenna_Correlation  rx_antenna_Correlation;
rx_antenna_Correlation  1
rx_antenna_Correlation;rx_antenna_Correlation rx_antenna_Correlation
1];
R_rx = eye(nRx);
sqrt_R_rx = sqrtm(R_rx);
for i = 1:nSymbolPeriodsToSimulate
h(:,:,i)  =  sqrt_R_rx  *  squeeze(h_iid(:,:,i))  *  sqrt_R_tx;  %
Kronecker model
end
n  =  1/sqrt(2)*[randn(nRx,nSymbolPeriodsToSimulate)  +
1i*randn(nRx,nSymbolPeriodsToSimulate)]; % white gaussian noise, 0dB
variance
for ii = 1:length(Eb_N0_dB)
% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1
sMod  =  reshape(s,nTx,nSymbolPeriodsToSimulate);  %  grouping  in
[nTx,N/NTx ] matrix
%Channel and noise Noise addition
y = 10^(-Eb_N0_dB(ii)/20)*n;
for i = 1:nSymbolPeriodsToSimulate
y(:,i) = y(:,i) + squeeze(h(:,:,i))*squeeze(sMod(:,i));
end
% Receiver
if false
% Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H
% H^H*H is of dimension [nTx x nTx]. In this case [3 x 3] 
% Inverse of a [3x3] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
hCof = zeros(2,2,N/nTx)  ; 



hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
hDen  =  ((hCof(1,1,:).*hCof(2,2,:))-(hCof(1,2,:).*hCof(2,1,:)));%ad-
bc term
hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);  %
formatting for division
hInv = hCof./hDen; % inv(H^H*H)
hMod =  reshape(conj(h),nRx,N); % H^H operation
yMod  =  kron(y,ones(1,2));  %  formatting  the  received  symbol  for
equalization
yMod = sum(hMod.*yMod,1); % H^H * y 
yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting
yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
%receiver - hard decision decoding
ipHat = real(yHat)>0;
 else
% use Kevin's subroutine
for i = 1:nSymbolPeriodsToSimulate
ipHat(:,i) = Zero_Forcing(y(:,i), h(:,:,i) , [ -1,1] );          %
use zero forcing
end
end
%counting the errors
nErr(ii) = length(find( ipHat ~= sMod ));
end
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); 
close all
figure
semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);
semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);
axis([0 25 10^-5 0.5])
grid on
legend('theory  (nTx=1,nRx=1)',  'theory  (nTx=1,nRx=2,  MRC)',  'sim
(nTx=4, nRx=4, ZF)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title('BER  for  BPSK  modulation  with  2x2  MIMO  and  ML  equalizer
(Rayleigh channel)');
6.4   APPENDIX D

% Script for computing the BER for BPSK modulation in a
% Rayleigh fading channel with 2Tx, 2Rx MIMO channel 
% Maximum likelihood
 
clear
N = 12000;               % number of bits or symbols
Eb_N0_dB = [0:25];      % multiple Eb/N0 values
nTx = 2;



nRx = 2;
 
nSymbolPeriodsToSimulate = N/nTx;
% build CSI and noise arrays
h_iid = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + 1i*randn(nRx,nTx,N/nTx)];
% Rayleigh channel
h = h_iid;                                  % declare CSI array
tx_antenna_Correlation = 0;                 % correlation at
transmitter
rx_antenna_Correlation = 0;                 % correlation at
reciever
%R_tx  =  [  1  tx_antenna_Correlation  tx_antenna_Correlation;
tx_antenna_Correlation  1
tx_antenna_Correlation:tx_antenna_Correlation tx_antenna_Correlation
1];
R_tx = eye(nTx);
sqrt_R_tx = sqrtm(R_tx)';
%R_rx  =  [  1  rx_antenna_Correlation  rx_antenna_Correlation;
rx_antenna_Correlation  1
rx_antenna_Correlation;rx_antenna_Correlation rx_antenna_Correlation
1];
R_rx = eye(nRx);
sqrt_R_rx = sqrtm(R_rx);
for i = 1:nSymbolPeriodsToSimulate
    h(:,:,i)  =  sqrt_R_rx  *  squeeze(h_iid(:,:,i))  *  sqrt_R_tx;
% Kronecker model
end
n  =  1/sqrt(2)*[randn(nRx,nSymbolPeriodsToSimulate)  +
1i*randn(nRx,nSymbolPeriodsToSimulate)]; % white gaussian noise, 0dB
variance
for ii = 1:length(Eb_N0_dB)
 
% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1
sMod  =  reshape(s,nTx,nSymbolPeriodsToSimulate);  %  grouping  in
[nTx,N/NTx ] matrix
% Channel and noise Noise addition
y = 10^(-Eb_N0_dB(ii)/20)*n;
for i = 1:nSymbolPeriodsToSimulate
y(:,i) = y(:,i) + squeeze(h(:,:,i))*squeeze(sMod(:,i));
end
 
% Receiver
 
 if false
        
        %  Forming  the  Zero  Forcing  equalization  matrix  W  =
inv(H^H*H)*H^H
        % H^H*H is of dimension [nTx x nTx]. In this case [3 x 3] 
        % Inverse of a [3x3] matrix [a b; c d] = 1/(ad-bc)[d -b;-c
a]
        hCof = zeros(2,2,N/nTx)  ; 
        hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
        hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
        hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term



        hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
        hDen  =  ((hCof(1,1,:).*hCof(2,2,:))  -
(hCof(1,2,:).*hCof(2,1,:))); % ad-bc term
        hDen  =
reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);   %
formatting for division
        hInv = hCof./hDen; % inv(H^H*H)
 
        hMod =  reshape(conj(h),nRx,N); % H^H operation
 
        yMod = kron(y,ones(1,2)); % formatting the received symbol
for equalization
        yMod = sum(hMod.*yMod,1); % H^H * y 
        yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting
        yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
 
        % receiver - hard decision decoding
        ipHat = real(yHat)>0;
        
    else
        
        % use Kevin's subroutine
        for i = 1:nSymbolPeriodsToSimulate
%            ipHat(:,i) = Zero_Forcing(y(:,i), h(:,:,i) , [ -1,1] );
% use zero forcing
            ipHat(:,i) = ML_Decode_2_2(y(:,i), h(:,:,i) , [ -1,1] );
% use ML decoding
  end
  end
 
    % counting the errors
    nErr(ii) = length(find( ipHat ~= sMod ));
 
end
 
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); 
 
close all
figure
semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);
semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);
axis([0 25 10^-5 0.5])
grid on
legend('theory  (nTx=1,nRx=1)',  'theory  (nTx=1,nRx=2,  MRC)',  'sim
(nTx=2, nRx=2, ML)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title('BER  for  BPSK  modulation  with  2x2  MIMO  and  ML  equalizer
(Rayleigh channel)');



6.5   Appendix E

% Maximum Liklihood decoding for N=2
function [Received_Symbols] = ML_Decode_2_2(Y,H,Symbols)
N=2;
nSymbols = length(Symbols);
Symbol_Vectors  =  [  kron(  ones(1,nSymbols)  ,  Symbols  )  ;
kron( Symbols , ones(1,nSymbols) ) ];
YMHS = kron(Y,ones(1,nSymbols^N)) - H*Symbol_Vectors;
Distance = sum( YMHS.*conj(YMHS) , 1 );
[C , Index] = min(Distance);
Received_Symbols = Symbol_Vectors(:,Index);



6.6   Appendix F

% Script for computing the BER for BPSK modulation in a
% Rayleigh fading channel with 4Tx, 4Rx MIMO channel 
% Maximum likelihood equalization
clear
N = 1200;               % number of bits or symbols
Eb_N0_dB = [0:25];      % multiple Eb/N0 values
nTx = 4;
nRx = 4;
nSymbolPeriodsToSimulate = N/nTx;

% build CSI and noise arrays
h_iid  =1/sqrt(2)*[randn(nRx,nTx,N/nTx)+1i*randn(nRx,nTx,N/nTx)];%
Rayleigh channel



h = h_iid;                                 % declare CSI array
tx_antenna_Correlation =0;                 % correlation at
transmitter
rx_antenna_Correlation =0;                 % correlation at receiver
%T_tx = [ 1 tx_antenna_Correlation tx_antenna_Correlation 1];
R_tx  =  [  1  tx_antenna_Correlation  0  0;  tx_antenna_Correlation  1
tx_antenna_Correlation  0;0  tx_antenna_Correlation  1
tx_antenna_Correlation;0 0 tx_antenna_Correlation 1];
sqrt_R_tx = sqrtm(R_tx)';
%R_rx = [ 1 rx_antenna_Correlation rx_antenna_Correlation 1];
R_rx  =[1  rx_antenna_Correlation  0  0;  rx_antenna_Correlation  1
rx_antenna_Correlation  0;0  rx_antenna_Correlation  1
rx_antenna_Correlation;0 0 rx_antenna_Correlation 1];
sqrt_R_rx = sqrtm(R_rx);
for i = 1:nSymbolPeriodsToSimulate
h(:,:,i)  =  sqrt_R_rx  *  squeeze(h_iid(:,:,i))  *  sqrt_R_tx;  %
Kronecker model
end
n  =  1/sqrt(2)*[randn(nRx,nSymbolPeriodsToSimulate)+
1i*randn(nRx,nSymbolPeriodsToSimulate)];  % white gaussian noise,0dB
variance
for ii = 1:length(Eb_N0_dB)
 
% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1
sMod  =  reshape(s,nTx,nSymbolPeriodsToSimulate);  %  grouping  in
[nTx,N/NTx ] matrix
 
%Channel and noise Noise addition
y = 10^(-Eb_N0_dB(ii)/20)*n;
for i = 1:nSymbolPeriodsToSimulate
y(:,i) = y(:,i) + squeeze(h(:,:,i))*squeeze(sMod(:,i));
end
 
% Receiver
 
if false
% Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H
% H^H*H is of dimension [nTx x nTx]. In this case [3 x 3] 
% Inverse of a [3x3] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
hCof = zeros(2,2,N/nTx)  ; 
hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:))); %
ad-bc term
hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);  %
formatting for division
hInv = hCof./hDen; % inv(H^H*H)
hMod =  reshape(conj(h),nRx,N); % H^H operation
yMod  =  kron(y,ones(1,2));  %  formatting  the  received  symbol  for
equalization
yMod = sum(hMod.*yMod,1); % H^H * y 
yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting



yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
 
%receiver - hard decision decoding
ipHat = real(yHat)>0;
else
% use Kevin's subroutine
for i = 1:nSymbolPeriodsToSimulate
% ipHat(:,i) = Zero_Forcing(y(:,i), h(:,:,i) , [ -1,1] );% use zero
forcing
ipHat(:,i) = ML_Decode_4_4(y(:,i), h(:,:,i) , [ -1,1] );  % use ML
decoding
end
end
% counting the errors
nErr(ii) = length(find( ipHat ~= sMod ));
end
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); 

close all
figure
semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);
semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);
axis([0 25 10^-5 0.5])
grid on
legend('theory  (nTx=1,nRx=1)',  'theory  (nTx=1,nRx=2,  MRC)',  'sim
(nTx=4, nRx=4, ML)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title('BER  for  BPSK  modulation  with  2x2  MIMO  and  ML  equalizer
(Rayleigh channel)');
6.7   APPENDIX G 

% Script for computing the BER for BPSK modulation in a
% Rayleigh fading channel with 4Tx, 4Rx MIMO channel 
% Maximum likelihood equalization
 clear
DecodeMethod = 'Maximum Likelihood';
%DecodeMethod = 'Zero Forcing';
N = 1200;               % number of bits or symbols
Eb_N0_dB = [0:25];      % multiple Eb/N0 values
nTx = 4;
nRx = 4;
nSymbolPeriodsToSimulate = N/nTx;
% build CSI and noise arrays
h_iid = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + 1i*randn(nRx,nTx,N/nTx)];
% Rayleigh channel
h = h_iid;                                  % declare CSI array
tx_antenna_Correlation =0;                 % correlation at
transmitter
rx_antenna_Correlation =0;                 % correlation at reciever



%T_tx = [ 1 tx_antenna_Correlation tx_antenna_Correlation 1];
R_tx  =  [  1  tx_antenna_Correlation  0  0;  tx_antenna_Correlation  1
tx_antenna_Correlation  0;0  tx_antenna_Correlation  1
tx_antenna_Correlation;0 0 tx_antenna_Correlation 1];
sqrt_R_tx = sqrtm(R_tx)';
%R_rx = [ 1 rx_antenna_Correlation rx_antenna_Correlation 1];
R_rx  =[1  rx_antenna_Correlation  0  0;  rx_antenna_Correlation  1
rx_antenna_Correlation  0;0  rx_antenna_Correlation  1
rx_antenna_Correlation;0 0 rx_antenna_Correlation 1];
sqrt_R_rx = sqrtm(R_rx);
for i = 1:nSymbolPeriodsToSimulate
h(:,:,i)  =  sqrt_R_rx  *  squeeze(h_iid(:,:,i))  *  sqrt_R_tx;  %
Kronecker model
end
n=1/sqrt(2)*[randn(nRx,nSymbolPeriodsToSimulate)+
1i*randn(nRx,nSymbolPeriodsToSimulate)]; % white gaussian noise, 0dB
variance
for ii = 1:length(Eb_N0_dB)

% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
 s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1
sMod  =  reshape(s,nTx,nSymbolPeriodsToSimulate);  %  grouping  in
[nTx,N/NTx ] matrix

% Channel and noise Noise addition
y = 10^(-Eb_N0_dB(ii)/20)*n;
Capacity = zeros( nSymbolPeriodsToSimulate,1 );
for i = 1:nSymbolPeriodsToSimulate
ChannelMatrix = squeeze(h(:,:,i));
y(:,i) = y(:,i) + ChannelMatrix*squeeze(sMod(:,i));
Lambda = eig( ChannelMatrix );
Capacity(i)  =  log2(  det(  eye(nRx)  +
Eb_N0_dB(ii)/nTx*diag(Lambda) ) );
end
MeanCapacity(ii) = mean(Capacity);
 
% Receiver
if false
% Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H
% H^H*H is of dimension [nTx x nTx]. In this case [3 x 3] 
% Inverse of a [3x3] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
hCof = zeros(2,2,N/nTx)  ; 
hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
hDen  =  ((hCof(1,1,:).*hCof(2,2,:))  - (hCof(1,2,:).*hCof(2,1,:)));%
ad-bc term
hDen  =  reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);  %
formatting for division
hInv = hCof./hDen; % inv(H^H*H)
hMod =  reshape(conj(h),nRx,N); % H^H operation
yMod  =  kron(y,ones(1,2));  %  formatting  the  received  symbol  for
equalization
yMod = sum(hMod.*yMod,1); % H^H * y 



yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting
yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
% receiver - hard decision decoding
ipHat = real(yHat)>0;
else
% use Kevin's subroutine
switch DecodeMethod
case 'Maximum Likelihood'
for i = 1:nSymbolPeriodsToSimulate
ipHat(:,i) = ML_Decode_4_4(y(:,i), h(:,:,i) , [ -1,1] );% use ML
decoding
 end
 case 'Zero Forcing'
 for i = 1:nSymbolPeriodsToSimulate
ipHat(:,i) = Zero_Forcing(y(:,i), h(:,:,i) , [ -1,1] );% use zero
forcing
 end
 otherwise
 disp(' ERROR unknown decoding ethod');
 end
 end
 
% counting the errors
nErr(ii) = length(find( ipHat ~= sMod ));
end
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); 
 
close all
figure(1)
semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);
semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);
axis([0 25 10^-5 0.5])
grid on
legend('theory  (nTx=1,nRx=1)',  'theory  (nTx=1,nRx=2,  MRC)',  'sim
(nTx=4, nRx=4, ML)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title(['BER for BPSK modulation with 4x4 MIMO using ' DecodeMethod '
(Rayleigh channel)']);
 
figure(2)
semilogy(Eb_N0_dB,MeanCapacity);
xlabel('Average Eb/No,dB');
ylabel('Capacity (b/s/Hz)');
title('Capacity of 4x4 MIMO system as Function of SNR');
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