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Growth and spectroscopic studies of CdS/CdSe single layers a 

superlattice structures 

Epitaxial layers of CdS and CdSe were grown on various substra 

by metallo-organic chemical vapour deposition. The substrates used 

growth were GaAs, InP and InAs with differing crystallograp 

orientations. The effect of growth conditions on the surface morphol 

of the epitaxial layers was studied. Reflection high energy elect 

diffraction was also used to determine the crystalline phase of 

resulting epilayers. It was found that the CdS grew as high qual 

wurtzite epilayers only on GaAs (111)A out of the substrates tried. 

CdSe in contrast tended to grow as either cubic or mixed phases. It 

found that the alloys CdS1_xSex tended to grow hexagonal on the G 

(111)A face. 

Photoluminescence studies of the single epilayers confirmed 

high quality and purity of the CdS grown on GaAs (111)A relative 

that grown on other substrates. Similar studies of the CdSe epilay 

grown on this face showed lower quality material, the luminesce: 

being dominated by a defect band (the 'Y' band). Evidence is presen 

linking this emission with twinning in the layers. The quality of 

CdSe epilayers improved with increased growth temperatures. 

CdS/CdSe wurtzite superlattice structures were subsequently gr 

on GaAs (111)A substrates, the first reported. The luminescence f 

these superlattices was dominated by deep near infra-red emiss 

unlike that observed from other II-VI superlattices. A piezoelect 

model is presented to account for the observed luminescence. Using t 

model we find good agreement between theory and experiment if 

assume a type II conduction band offset of approximately 0.23 eV. 

conclude that the band structure of this superlattice is dominated 
the presence of strain induced piezoelectric fields. 
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1. PROPERTIES OF CdS AND CdSe AND INTRODUCTION TO IOW 

DIMENSIONAL STRUCTURES 

Introduction 

This thesis describes the growth and assessment of epitaxial CdS 

and CdSe. The principal objective of the project was the growth and 

spectroscopic assessment of the first CdS/CdSe strained layer 

superlattices. The study of such artificial semiconductor structures is 

an area of research which has shown an explosion of interest in recent 

years. This field promises the production of novel semiconductor 

materials with properties tailored to the requirements of the user. One 

technology which has been influenced by the production of superlattices 

is that of optoelectronic devices. New growth techniques have allowed 

the production of semiconductor lasers operating at efficencies and 

wavelengths previously unobtainable. The study of such structures 

containing large bandgap II-VI compounds is of particular interest as 

these promise the production of blue light emitting solid state 

devices, the subject of considerable technological interest. CdS and 

CdSe are both large bandgap II-VI semiconductors which have previously 

not been grown into such epitaxial structures. The growth and optical 

studies of such CdS/CdSe superlattices is therefore clearly of great 

interest. This thesis describes the growth of, and spectroscopic 

studies conducted on, the first reported wurtzite CdS/CdSe 

superlattices grown by MOCVD. 

To enable the superlattices studied here to be grown many studies 

of single layers of CdS, CdSe and the alloy CdSl_XSex had to be 

undertaken. Therefore, this thesis contains work relating to many areas 
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of the growth and assessment of epitaxial CdS/CdSe and other compound 

semiconductors. The studies contained in the subsequent chapters are 

concerned with the structure, growth and photoluminescence of CdS and 

CdSe. Hence, in order to provide a background to the work in this 

thesis, these aspects of CdS, CdSe and other II-VI compounds are 

reviewed here in this chapter. Also in this chapter is a review of the 

field of semiconductor superlattices. The final section puts the 

CdS/CdSe system into the perspective of other II-VI semiconductor 

superlattice systems. 

1.1 II-VI semiconductors 

The II-VI semiconductors are, as the name suggests, composed of 

elements from groups II and VI of the periodic table. Figure 1.1 shows 

the elements of interest. As semiconductors, these compounds are direct 

gap materials with large band gaps of between 1.5 and 3.8 eV (table 

1.1). It is this latter property which provides most of the interest in 

these compounds. The energy of a photon of visible light lies in the 

range 1.8-2.8 eV. Therefore, in principle, the band to band 

recombination emission from these compounds can be anywhere in the 

visible spectrum. This property makes the compounds of interest for 

technological applications in light emitting solid state devices. 

However, this single advantage is somewhat offset by the difficulties 

associated with the preparation of these compounds, which include the 

presence of two stable crystal phases and the lack of controlled n and 

p doping. Most II-VI compounds can conveniently be doped only one type; 

i. e. either p-type or n-type. This restriction prevents the production 

of efficent p-n junctions and the associated light emitting devices. 

The study of II-VI compounds, however, is still important as, to date, 
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Figure 1.1. Periodic table showing elements used as 
components in II-VI semiconductors (hatched areas). 

Compound Band gap (eV) 

Zn0 3.436 

ZnS 3.91 

ZnSe 2.823 

ZnTe 2.391 

CdS 2.582 

CdSe 1.840 

CdTe 1.607 

Table 1.1. Band gaps of major II VI semiconductors at 0 K. 



they present the only realistic possibility of efficent blue-light 

emitting solid state devices. 

With the advent of precision epitaxial growth techniques the field 

of II-VI compounds has shown a surge in interest. It has been suggested 

that by appropriate control of the growth and the use of semiconductor 

microstructures efficent p-n junctions might be grown. Cadmium sulphide 

and cadmium selenide are both large band gap II-VI semiconductors with 

a long history of previous study. Consequently the study of their 

epitaxial growth is of considerable interest. 

1.2 Crystal structure and lattice defects 

In common with the other II-VI semiconducting compounds, both CdS 

and CdSe can be grown with either the hexagonal 'Wurtzite' or the cubic 

'Zincblende' crystal structures, the phase of the material being 

determined by the growth conditions. However, unlike the other II-VI 

semiconductors, the most stable phase for CdS and CdSe is the hexagonal 

one. The two structures are closely related and it is important that 

the similarities between the two are understood, as this has a bearing 

on the origin of lattice defects in the two compounds. 

page 3 



1.2.1 Wurtzite structure 

C 

_ý 

J 

Figure 1.2. Wurtzite atomic arrangment; a and c 

are the wurtzite lattice constants. 

Figure 1.2 shows the wurtzite atomic arrangment with the hexagonal 

lattice constants a and c indicated. The underlying Bravais lattice for 

this structure is the simple hexagonal. The structure can be considered 

to be composed of two interpenetrating hexagonal close packed lattices, 

one for the anions and one for the cations. The successive alternating 

layers of Cd (or S) are displaced horizontally so as to lie over the 

hollows in the preceding layer. For this structure there exists an 

'ideal' ratio of c/a given by 

c- a V"8-/3 (l) 

This ratio represents the optimum packing density of spheres for 

such an arrangment. The lattice constants and ratio c/a are given in 
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table 1.2 for the II VI compounds known to crystallize in this phase. 

As indicated on the figure, there exists a six fold axis of 

rotational symmetry about the [0001] axis. It is important to note that 

the atoms possess tetrahedrally orientated bonds in this structure. 

Such bonding is characteristic of covalent materials and is common to 

all II VI, III -V and group IV semiconducting compounds. Also note that 

there is no centre for inversional symmetry along the [0001] axis and 

consequently there is a polar axis parallel to the [0001] axis. The 

group II and group VI ions can be seen as forming a network of dipole 

moments. A distortion of the lattice will thus produce a net field. As 

a result, wurtzite crystals are piezoelectric. 

1.2.2 Zincblende structure 

----------------- 

O 

,ýI 

Figure 1.3. Zincblende atomic arrangment. 

Figure 1.3 shows the zincblende atomic arrangement. This structure 

is by far the most common amongst the II-VI, III-V and group IV 

semiconductors. The underlying Bravais lattice for this structure is 
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Compound a c c/a a1/2 

ZnO 3.250 5.206 1.602 4.600 

ZnS 3.814 6.257 1.641 5.393 

ZnSe 4.003 6.540 1.634 5.661 

CdS 4.136 6.713 1.623 5.849 

CdSe 4.299 7.011 1.631 6.080 

Table 1.2. Lattice constants of II-IV compounds known to 
crystallize in the wurtzite structure. The values are in Angstroms 
and at room temperature. The a -Vr2 value is the equivalent crystal 
parameter to the cubic lattice constant (see section 1.2.3). 



face centred cubic. The atomic positions consist of two 

interpenetrating face centred cubes, displaced along the body diagonal 

by one quarter the length of the diagonal, one cube represents the 

positions of the anions, the other the cations. The atoms in the 

structure possess tetrahedral bonds. Table 1.3 shows the lattice 

constants of a number of II VI compounds which can be crystallized in 

this structure 

It is important to note that, as for wurtzite, there is no centre 

of inversional symmetry in the zincblende structure. Consequently the 

[111] axis is a polar axis and zincblende compounds are piezoelectric. 

Another result of the lack of inversional symmetry is that the [111] 

axis and the [111] are not equivalent. A crystal can be cleaved to 

produce two (111) facets parallel to each other (i. e. a bottom and top 

face). These faces will not be equivalent, as one will be composed of 

metal ions and the other non-metal. These faces are referred to as the 

(111)A and (111)B respectively and they frequently possess different 

physical and chemical properties [1]. 

1.2.3 Relationship between structures 

The wurtzite and zincblende structures are closely related. Figure 

1.4 shows the two structures aligned with the [0001] and [111] axis 

vertical. It can be seen that, along these directions, the structures 

are composed of tetrahedrally bonded layers that repeat in a given 

sequence, the sequence for wurtzite being ABPB and for zincblende being 

ABCABC, where the letters refer to the layers on the diagram. 
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Compound a 

ZnS 5.4102 

ZnSe 5.6687 

ZnTe 6.100 

CdO 6.100 

CdS 5.825 

CdSe 6.052 

CdTe 6.481 

Table 1.3. Lattice constants of II-VI compounds known to 
crystallize in the zincblende phase. The values are in 
Angstroms and at room temperature. 



Threefold axis 
[111] 

Cubic 

Sixfold axis 

By 
9 

d d- ýA 

Hexagonal 

Figure 1.4. Stacking sequence of tetrahydral layers in 

zincblende and wurtzite compounds. The large 

atoms are the group VI elements. 

The actual layers are identical for the two structures only their 

sequence is different. In consequence the structures are identical out 

to nearest neighbour atoms, and the arrangement of the twelve next 

nearest neighbour atoms is very similar. 

It is possible to relate the two structures by defining 

transformation relations. We do this by defining the [111] and [0001] 

axis as equivalent. By comparing the (0001) and (111) facets we find 

that the [2020] hexagonal and [110] cubic axis are equivalent. The 

lengths of these two lattice vectors are 2a and av2 for the hexagonal 

and cubic systems respectively. By using this and the ideal c/a ratio 

(see above) we can obtain the relationships 

a' = a/V%2 (ii) 

C'= a'I 3 (iii) 
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Where the primed letters are the hexagonal constants. The full 

coordinate transformations between the cubic miller indices a1-3 and 

the hexagonal a1, ä2 and c are now [2]: - 

ai=al-a3 (iv) 

a2=-a1+a3 (v) 

c=a1+a2+a3 (vi) 

These relationships are used throughout this thesis to obtain the 

equivalent cubic and hexagonal axes. Also, the lattice mismatches 

between hexagonal epilayers and cubic substrates were calculated using 

relation (ii). 

It was mentioned above that some II-VI compounds will readily 

crystallize in either phase. In particular, ZnS, CdS and CdSe tend to 

grow in a mixture of the two phases. The similarity in the two 

structures means that the difference in their formation energy is 

small. The wurtzite structure has a slightly larger Madelung constant 

than the zincblende (1.641 compared to 1.638 [3]). This probably 

explains the propensity for the more highly ionic compounds to 

crystallize in this structure. For example, CdS has a c/a ratio that 

strongly deviates from the ideal (table 1.2); such a deviation will 

enhance the Madelung constant even more [4]. 

The closeness of the structures in energy terms in some compounds 

leads to polytypism. This is where the stacking sequence has a longer 

repeat sequence than the ideal ones mentioned above. ZnS has been shown 

to exhibit polytypes and amongst the sequences observed have been ABAC, 

ABCACB and ARACBABC. This behaviour is closely related to the problem 
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of twinning in these compounds 

1.2.4 Twinning 

Twins are large two dimensional crystalline defects. Their 

presence can have serious effects on the electronic and luminescent 

properties of a semiconductor. In wurtzite or zincblende compounds 

twins are almost invariably caused by layers being added in the wrong 

stacking sequence and thus lie in the plane perpendicular to the 

[111]/[0001] axes. Such a fault in a hexagonal crystal results in a 

cubic layer one double layer thick, the stacking sequence proceeding 

ABABABCBCBC 

Correspondingly the same fault in the zincblende structure 

produces a hexagonal double layer 

ABCABABC 

These double layers are referred to as lamellas. They give the 

twins their name -'lamella twins'. 

The twins formed are referred to as p type, n type or neutral 

depending on where the change in stacking sequence occurs. The most 

likely to occur is the neutral, as this has the lowest formation 

energy. In general lamella twins are very common in II-VI compounds 

grown along a [111] axis as a result of their low energy of formation. 

Twins are highly undesirable in semiconductor materials; they enhance 

impurity diffusion and trap carriers, causing non radiative 

recombination. 
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1.3 Crystal growth 

The production of pure and defect free semiconductor crystals is 

essential for the study of their electrical or optical properties. The 

growth of II-VI semiconducting compounds is a well studied problem. As 

this thesis describes the epitaxial growth of CdS and CdSe by MOCVD, it 

it useful first to consider the other growth techniques that have been 

applied to II VI compounds. This section describes briefly the basic 

techniques used for the preparation of samples by either bulk or 

epitaxial techniques. 

1.3.1 Bulk growth 

The principal technique used to produce spectroscopy quality 

crystals of CdS (and other II-VI compounds) has been vapour growth. The 

most commonly used apparatus for this growth is that developed by 

Greene et al [5]: figure 1.5 shows the growth apparatus. 

4" 6 -f -- 6 t-ý 

ABCBE 
HOT ZONE 

OF FURNACE 

Figure 1.5. Vapour growth apparatus used by Greene et al 

for the growth of CdS (taken from [51). 
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The growth occurs in a silica tube (E) heated at the centre to the 

sublimation temperature of the compound. The compound simply evaporates 

from the reservoir (C) and condenses on to the seed crystal on an 

endplate (B). Using this technique, large samples of crystalline CdS 

and other II-VI compounds have been prepared. Much of the pioneering 

work on the spectroscopy of II-VI compounds was done on samples grown 

by this simple method. The main disadvantage of the technique is the 

high growth temperature, up to 1200 0C for CdS growth. At such a high 

temperature indiffusion of impurities from the metal plates and silica 

tube is inevitable. 

Other bulk growth techniques have been used for the preparation of 

II-VI crystals. A similar technique to sublimation is vapour phase 

transport, in which a reversible reaction is used to transport the 

compound to the growing crystal. For CdS and ZnS a commonly used 

transport agent is iodine, the reaction proceeds thus: - 

CdS + 12 _ Cd12 + S2 

This technique has all the disadvantages of the vapour technique 

with the additional one of the transport agent being incorporated into 

the crystal. However, the growth temperature is somewhat lower than for 

straight sublimation techniques. 

Growth from the melt is possible for the II-VI compounds with 

lower melting points, such as CdTe, ZnTe and CdSe. However, this 

material is usually unsuitable for spectroscopic purposes owing to the 

high concentration of intrinsic and extrinsic defects in such material. 
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1.3.2 Epitaxial techniques 

An alternative to bulk growth is the growth of epitaxial layers. 

There are a number of such epitaxial techniques. In these processes the 

semiconductor is deposited on to the surface of another crystal (the 

substrate) with a similar structure and lattice constant. For 

spectroscopic and optoelectronic applications such techniques have 

proved invaluable in recent years. The advantages of epitaxy stem from 

the low growth temperatures and the accurate growth control that these 

techniques provide. Three such techniques are briefly discussed here, 

vapour phase epitaxy (VPE), metallorganic chemical vapour deposition 

(MOCVD) and molecular beam epitaxy (MBE). 

VPE is the simplest of the epitaxial techniques and involves 

simple sublimation of the compound on to the substrate. The closed 

space technique is an example of this approach and has been applied to 

CdS [6]. The substrate temperatures involved for the growth of CdS are 

in the range 500-800°C. Thus the growth temperature is still quite high 

and impurity diffusion occurs. 

MOCVD is a more advanced technique which relies on the thermal 

instability of some metallo-organic compounds which carry the elemental 

components of the semiconductor to the substrate. MOCVD is described 

fully in chapter 2. Its principle advantage is the low growth 

temperature, which is typically in the range 250-450°C. At these 

temperatures impurity diffusion is considerably restricted and high 

purity growth can be achieved. Control of the reagent flow can be very 

precise allowing the production of superlattice type structures (see 

section 1.6). MOCVD has been used to grow a large number of II-VI 

compounds including ZnSe, ZnS [7], CdTe, CdxHgl_xTe [8] and, in this 

present work, CdS and CdSe [9]. The only real disadvantage of the 

technique is the highly reactive and toxic nature of some of the 
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reagents. 

The final epitaxial technique mentioned is molecular beam epitaxy. 

MBE is the most advanced epitaxial technique developed, requiring the 

use of complex apparatus, although the principle is simple. Figure 1.6 

shows, schematically, an MBE machine. The machine is evacuated to 

ultra-high vacuum conditions (typically 10-lltorr). The component 

elements are projected at the heated substrate from cells arranged 

around the periphery of the machine. The epitaxial layer grows on the 

substrate under very closely controlled conditions. In addition the use 

of an evacuated apparatus allows the in situ characterisation of the 

growing layer by RHEED. As NEE was not used for the material studied in 

this thesis it is not described in detail. It is useful to note, 

however, that the MBE technique allows the growth of semiconductor 

superlattices with great precision. The growth temperature is typically 

very low (200-300 °C). Compounds grown by this technique include 

CdxMn l-xTe, CdxZn1-xTe and ZnSe [10,11,12). 

Electron diffraction 
LN2cryo- gun (10-50keV) 
panels 

GaAs substrate 

,, 
ýý\ 

J 

Effusion 
cells with 
shutters 

ýlj 

'_ ýý 

Metal isolation 

ýi valve 

To sample load-lock 
and preparation chamber 

Rotating 
substrate heater 

} 
LN2 Viewport 

Fluorescent Movable 
screen ion gouge 

Figure 1.6. Schematic diagram of molecular beam epitaxy 

(MBE) machine of the type used for the 

growth of III-V epitaxial material (361. 
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Epitaxial techniques allow the growth of crystalline layers of 

semiconductor with great precision and purity. The key to the 

production of good quality material lies in the choice of a suitable 

substrate and growth conditions. It is, therefore, important that the 

quality of the material grown can be assessed by as many techniques as 

possible to allow the optimization of these parameters 

1.4 Wurtzite band structure 

The band structures of the wurtzite II-VI compounds have been 

calculated theoretically. These calculations have been found to be in 

good agreement with experiment (for a review see [13)). In the tight 

binding approximation the bands at the r point are considered to be 

composed of linear combinations of atomic wavefunctions. For CdS the 

bottom of the conduction band is assumed to be formed from the 5s 

levels of the cadmium atoms and the top of the valence band from the 3p 

levels of the sulphur. In the case of the sphalerite structure the p 

levels in the valence band would-be degenerate owing to the equivalence 

of the x, y and z directions. However, for wurtzite an important 

modification occurs owing to the presence of a principal axis (along 

the z-axis). Hence, in the absence of the spin-orbit interaction, the 

valence band at the centre of the Brillouin zone is split into two 

bands with the irreducible representations ý1 and r'5. The cadmium 

s-levels form a single r'1 conduction band. Figure 1.7 shows the 

calculated energy bands for a wurtzite crystal along the r'-A axis 

(i. e. the c-axis of the reciprocal lattice), in the absence of spin 

orbit coupling [13). 

The presence of spin-orbit coupling produces a splitting of the F5 
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Figure 1.7. Wurtzite band structure in the absence of spin 
orbit coupling [13]. 
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Figure 1.8. Composition of wurtzite conduction and valence 
bands at k=0 [ 14 ]. The valence bands are referred to as A, B 
and C for convenience. 



band into a T'9 and ar bands, the fl band is also reduced to aT 
band [14). The resulting band structure in the region of k=0 is shown 
in figure 1.8. The holes from the three 

indicated. It can be seen that the effec 

to lift the degeneracy of the valence 

zincblende structure. The effect of this 

optical studies, as recombination can be 

any of these bands. For convenience the 

valence bands have the spins 

t of the wurtzite structure is 

bands that occurs for the 

splitting is important in 

observed involving holes from 

bands are referred to as the 

'A', 'B' and 'C' bands, as indicated on the diagram. 

Table 1.4 shows the important band parameters amd effective masses 

for the wurtzite forms of CdS and CdSe. It is important to note that 

the mass of the 'A' band hole is highly anisotropic with a much larger 

mass along the c-axis of the crystal. This anisotropy is the result of 

the presence of a principal axis. The values of the hole effective mass 

along this axis are (as indicated) uncertain. Cardona [15] calculated a 

series of band parameters for CdS and CdSe using k. p theory. The value 

obtained for the mass m*ä was 2.5 m0 for both CdS and CdSe. The values 

calculated for m*e, m*ä and m*b were in close agreement with 

experiment. In the light of the difference between the measurement and 

calculation of the m*a parameter a large uncertainty must be applied 

for its measured value (as indeed the experimenters themselves 

acknowledged [16,17]). As the value of the m*a parameter for CdSe is 

important for the work in chapter 4, we will here ascribe limiting 

*11 
values to it. The measured value of ma is greater than or equal to m0 

[16], and the calculated value is 2.5 mo. Therefore for the moment we 

will assume that the value lies in the range 1-2.5 mo. Notice that the 

calculated and measured value of m*a for CdS are in agreement (both 

2.5 m0) [15,18). The implications of the uncertainty in this value are 

discussed in chapter 4. 
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CdS CdSe 

Eg 2.582 1 841 . 

2.599 1.866 g 

Eg 2.655 2.274 

Af 0.028 0.039 

A00.068 0.420 s 

Mh 0.7 0.45 

Mari 2.5 [18] 
>1 

[16] N 

Mh 1.1 0.9 

M 0.2 [191 0.13 [20] 
e 

Table 1.4. Band parameters and effective masses of 
wurtzite CdS and CdSe. The masses are in units of m 
and the energies in electron volts. The sources froh 
some of the more important parameters are indicated. 



1.5 Luminescence properties of II-VI compounds 

One of the most technologically useful effects exhibited by 

semiconductors is that of radiative recombination. The origin of such 

recombination can reveal a great deal about the relative purity and 

structural quality of a semiconductor crystal. The origins of the 

various luminescence bands observed from the II-VI compounds have been 

studied for many years. Here, a brief overview of low temperature 

radiative recombination in these compounds is given. 

The luminescence technique described in this thesis is 

photoluminescence. In photoluminescence a sample of semiconductor is 

excited with photons of light, usually with a greater energy than the 

materials forbidden gap. This light produces a large number of 

electron-hole pairs in the sample. These carriers are thermally 

unstable (at the low temperature of the sample) and they will 

recombine, some radiatively. The process by which recombination occurs 

will reveal information about the presence of impurity or defect states 

within the forbidden gap. The general types of recombination process 

observed in II-VI semiconductors are described here. 

1.5.1 Free excitonic recombination 

Excitonic states in semiconductors arise as a result of the 

coulombic interaction between an electron in the conduction band and a 

hole in the valence band. The resulting exciton has hydrogen like 

energy states. These states are displaced in energy below that of the 

materials band gap by the excitonic binding energy given by :- 

EXsµ*e4/(4 1 (2h2 ( r2)) 
(vii ) 
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where Er is the dielectric constant of the material and µ is the 

reduced electron hole effective mass, the other constants have their 

usual values. It was observed above that the photocreated carriers must 

recombine. Free excitonic recombination is the simplest recombination 

process, and occurs when the exciton decays, the electron recombining 

with the hole. However, as the exciton is free to move within the 

crystal lattice it will, in general, possess a non-zero momentum. This 

momentum must be exactly removed by the emitted photon (for the 

zero-phonon line). Although this k-selection rule is relaxed by phonon 

emission, the free exciton emission is, in practice, usually weak 

compared to other processes. In general, although phonon assisted free 

exciton transitions are observed in high quality semiconductor 

crystals, the zero-phonon line is not [21]. 

1.5.2 Bound excitonic recombination 

In a structurally perfect and totally pure semiconductor (the type 

only grown in theoretical treatments! ) free excitonic recombination 

emission would be the only one observed. However, in impure material 

another type of excitonic process can occur. It was shown by Lampert 

[22] that it is possible for excitons in II-VI compounds to bind to 

shallow acceptor or donor defects. Bound excitons can best be 

considered by the analogy of the exciton with the hydrogen atom. 

Consider neutral donors: these are also analogous to the hydrogen atom 

with the donor centre holding an electron by coulombic attraction. An 

exciton can bind to this donor in the same manner as two hydrogen atoms 

can bind together to form a hydrogen molecule. A neutral acceptor can 

also trap a free exciton in a similar manner. Similar states exist for 

the ionized sites. The systems this time being analogous to the H+ and 
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H ion for the ionized donor and ionized acceptor sites respectively. 

The exciton bound in any of these states has no momentum, thus the 

exciton can recombine directly, without phonon assistance. This lack of 

lattice interaction results in a very narrow linewidth (as small as 

0.04 meV [23]), the main broadening mechanism being the interaction of 

the bound exciton with impurities on lattice sites close by. Thus 

broadening of the bound exciton emission line can indicate the presence 

of high levels of impurities (24]. The energy of the photon emitted on 

recombination for an exciton bound to a neutral acceptor or donor is 

given by 

ER E9 EbX Exo (viii) 

Where Ex0 is the binding energy of the free exciton, Ebx is the 

binding energy of the exciton to the impurity site and Eg is the 

materials band gap. Ebx can be calculated by using the analogy with the 

hydrogen molecule. However, without going into the calculation here, a 

simple rule (the so called 'Haynes rule' [24]) is found to hold for 

most semiconductors. 

Ebx=kdEd (ix) 

Where Ed is the binding energies of the donor and kd is a constant 

dependant on the material. A similar relationship holds for the neutral 

acceptor bound exciton with a different constant. The value of these 

constants have been determined for a large number of impurities in most 

of the II-VI compounds. Measurements of the positions of the bound 

exciton emissions allows an assessment of the impurities present in a 

sample. 
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1.5.3 Impurity recombination 

With the presence of high levels of impurities in a sample another 

kind of recombination becomes possible. This recombination involves the 

impurity levels lying within the forbidden gap of the semiconductor. 

Two types of emission are considered here; donor-acceptor pair and free 

to bound. 

Donor acceptor pair recombination occurs when an electron bound to 

a neutral donor site recombines directly with a hole bound at a neutral 

acceptor site. This is illustrated in figure 1.9. 

IE CB 

by 
ýýr> by j-\' 

E9 

Ea Ea 
VB 

Figure 1.9. Mechanisms for donor acceptor pair (left hand side) 

and free to bound recombinations. Ea and Ed are the 

binding energies of the acceptor and donor 

respectively. 

The energy of the emitted phonon for D-A pair recombination is 

given :- 

EP(r)= Eg Ed -E + e2/(4ir Err) (X) 

Where the Ea and Ed are the binding energies of the donor and 

acceptor respectively. The term on the righthand side is the coulombic 
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interaction energy between the ionized donor and acceptor present after 
the recombination has occured. This is dependent on the separation r of 
the two sites. Consequently the d-a pair emission is usually a broad 

band consisting of emission from pairs with differing separations. In 

general the d-a pair emission is strongly coupled to the lattice and is 

accompanied by phonon replicas. 

Free to bound emission occurs when a free electron recombines with 

a hole bound at an acceptor, as illustrated on the right hand side of 

figure 1.9. The corresponding process in which a hole recombines with 

an electron bound at a donor is known (bound to free) but rarely 

observed [25). The photon energy observed is given by [261: - 

EP Eg Ea+kTe (xi) 

Where the kTe term is the thermal energy of the recombining 

electron which can be obtained by curve fitting. As for the d-a pair 

emission; the free to bound couples strongly to the lattice and phonon 

repicas are usually observed. The relation (xi) can be used to derive 

the depth of the acceptor involved by estimating the kTe term which is 

usually small anyway [27]. 

Both of the above processes produce similar emissions in the same 

region of the spectrum. In order to determine which, if either, is 

involved in a particular luminescence band other measurements may be 

necessary. One method that can be applied is the temperature dependance 

of the emissions. The free to bound, in general, persists to higher 

temperatures, the d-a pair emission decaying with the activation energy 

of the donor (the shallower defect). 
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1.6 Low dimensional structures and superlattices 

Introduction 

one of the most intensively studied areas of solid state physics 

in recent years has been that of semiconductor microstructures. 

Advances in the epitaxial growth techniques mentioned in section 1.3.2 

have allowed the construction of semiconductor structures with 

unprecedented precision. These techniques have allowed the construction 

of devices on a scale comparable to the wavelength of the carriers in 

such devices. One of the most promising areas of research for such 

structures is that of solid state optical devices. The techniques have 

already been applied to the construction of visible light solid state 

lasers and such lasers have proved to be the most efficent light 

sources ever constructed [28]. 

In this section the field of epitaxial structures is reviewed. 

Special emphasis is given to the optical properties of semiconductor 

superlattices, as this is of relevance in chapter 4. 

1.6.1 Compositional superlattices 

The term superlattice is applied to semiconductor systems in which 

a larger scale periodicity is imposed on the usual lattice structure. 

If this periodicity is of sufficently small size than it can alter the 

band structure of the semiconductor. Because of the nature of epitaxial 

growth techniques the simplest way to impose such periodicity is by 

depositing alternating layers with different compositions. In such a 

system the imposed periodicity is essentially one dimensional. Such 
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compositional semiconductor superlattices were first suggested in 1970 

by Esaki and Tsu [29], long before one was actually produced. 

Consider a simple system in which both materials have the same 

lattice constant such as the GaAs/Al 
xGa1_ 

As system. Al Gal As has a 

larger band gap than the GaAs (approx 2ev for Al 0.3 Ga0.7p'S compared to 

1.5 eV for GaAs). The simplest structure of interest is a simple 

'quantum well' composed of a thin layer of GaAs sandwiched between 

thick Al Gal_ As cladding layers. We can consider the interface between 

the two semiconductors to produce a potential step in the conduction 

and valence bands of Ec and Ev respectively. It is clear that the sum 

of Ec and Ev must be equal to the difference in the band gap of the two 

materials. For the AlXGal_XAs/GaAs system Ev and Ec are both positive 

(i. e. the lower potential is in the GaAs). Figure 1.10 shows the 

electronic structure of such a quantum well along the z-axis (the 

growth direction). 

E I 
Vo, 

c 

1 

E9 E9 

1-1 L Vo, v 

d cý(z) 

z 

Figure 1.10. Electronic structure of GaAs/Al 
XGa1_XAs multiple 

quantum well structure. The I and II superscripts 

refer to GaAs and AlxGi-xA respectively. 
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It can be seen that the confinement of the carriers in the 

z-direction will produce a series of confined states in the conduction 

and valence bands. The problem of the carrier confined in the quantum 

well in figure 1.10 is analogous to that of the 'particle in a box' 

problem. The appropriate electron and hole wavefunctions can be 

calculated from the solutions of Schrodinger's equation for the 

problem. Here we will briefly review the calculation of the effective 

band gap in such a system. 

The simplest approach is to assume that the well is infinitely 

deep (a good approximation for wide wells). Now the energy of the 

electron or hole is quantized into a set of discrete levels with 

energies trivially given by [30]: - 

22*2 En ýi2n /(2m LW) + ß'i2 (kx2+ky2 )/2m (xi i) 

Where Lw is the well width, m* is the effective mass of the 

particle and the term of the right hand side is the dispersion term for 

motion in the x and y directions. The most important effect of this 

quantization is to alter the density of states in the conduction and 

valence bands of the semiconductor. For each value of n the density of 

states for the system described above is given by [31]: - 

C(E)= nm*/(ß{h2) (xiii) 

Figure 1.11 shows the density of states of a2 dimensional system 

compared with the 3 dimensional bulk. Instead of the usual parabolic 

density the 2 dimensional system has a stepped density, with the steps 

occuring at the confined energy levels of the carrier. 

The most important changes in the optical properties of the 
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Figure 1.11. Density of states in three dimensional and two 
dimensional energy bands (assuming k perpendicular to the 
quantization direction is zero). 



material in the quantum well can be understood in terms of the 

elementary theory described above. The first effect is the shift of the 

emission to higher energy as the well width is reduced. This is a 

result of the increase in band gap of the well material due to the 

confinement of the carriers. The optical transition occurs between the 

confined electron and confined hole ground states. Another effect 

arises out of the selection rule , 
fin=0,2,4 etc for optical transitions. 

This is seen in the absorption spectra, where only the these 

transitions are observed [31]. The presence of light and heavy holes 

can split the emission line as the confinement energy is a function of 

carrier mass. The most technologically interesting effect, however, is 

the enhancment of the radiative efficency. In the bulk semiconductor 

the density of states at the the r point is zero. Therefore any 

radiative recombination will, in general, be indirect and require some 

phonon assistance. In the 2 dimensional system this is not the case as 

there are a finite number of states at k=0. The result of this is that 

direct excitonic radiative recombination is enhanced in quantum well 

emission. It is observed in a number of systems that the luminescence 

from quantum wells can be brighter than that from bulk epilayers by 

several orders of magnitude [32]. 

The theory above assumed infinite potential barriers for the well. 

In practice the band offsets Ev and Ec are finite and sometimes 

unknown. It is therefore important that the modifications to the theory 

this gives are understood. In the case of a single quantum well with 

finite barriers the solution of Schrodingers equation for the confined 

carriers is again elementary. Using the definitions [30]: - 
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q2=2m*(V-E)/h2 (xiv) 

k2a2m*E/h2 (X V) 

we find the following quantization condition for the energy levels 

in the well. 

k2-g2= 2qk Cot(ka) (xvi) 

where the constants have the same meaning as above and V is the 

height of the potential barrier. This relation can be solved 

numerically by computer as outlined in appendix 2. The energy levels 

occur at higher energy than those given by (xii). It is important to 

note that the density of states in this case is still stepped as in the 

infinite well case. The steps simply occuring at the positions given by 

(xvi). The selection rule Ln=O still holds for optical transitions in 

this case. 

The final modification we consider here is the interaction between 

adjacent wells. Figure 1.12 shows the potential experienced by the 

electron in a true 'superlattice'. The superlattice has a periodicity 

of d superimposed on the lattice constant. 

V(z) 

0 
z I-- d --I 

T 
V 
1 

Figure 1.12. Periodic potential assumed in Kronig-Penney model. 
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The solution of Schrodinger's equation for this potential was 

derived by Kronig and Penney in 1936. They derived the well known 

Kronig-Penney dispersion relation [33]: - 

Cos(d ksl)=[(q2-k2)/2gk] Sinh(qb) Sin(ka)+Cosh(qb) Cos(ka) (xvii) 

where a and b are the thicknesses of the well and barrier 

respectively (d=a+b) and ksl is the 'superlattice momentum vector'. The 

other values are the same as for the finite well solution. The left 

hand side of the equation only has real solutions in the range -1 to 

+1. Bastard [34) adapted this equation for superlattices in which the 

effective mass alters at the interface to derive the relations: - 

ka2=2maE/h2_ k2 (xviii) 

kb2=2mb(V-E)/li2- k2 (xix) 

x= makb/mbka (xx) 

Cos(d ksl)=Cos(a ka)Cosh(b kb)-12[x-1/x]Sin(a ka)Sinh(b kb) (xxi) 

Where ma and mb are the effective masses along the z-direction in 

the barrier and well respectively and k is the term for the dispersion 

in the x and y directions. A computer program was written to solve this 

equation for a wide range of material parameters (see appendix 2). The 

resulting carrier states are referred to as subbands. Figure 1.13 shows 

the reduced zone scheme for the subbands in a semiconductor 

superlattice, superimposed on the usual parabolic dispersion. The 

effect of the interaction between wells is to reduce the confinement 
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energy below that of the finite well case. In addition the presence of 

a non-zero dispersion relaxes the An=0 transition rule [35). 

Calculating the confinement energies using the theory above 

depends on a knowledge of band offsets. This is not always available. 

However, by measuring the transition energies accurately it is possible 

to estimate the band offsets. This approach has been taken for a series 

of systems. As a rule of thumb, the accuracy of such measurments 

increases as the number of electron and hole subbands observed 

increases; also the electron and holes must possess significantly 

different effective masses. 

Before considering alternatives to compositional superlattices it 

is important to note that not all systems have band offsets with the 

same sign. The system described above is type I. An example of a 

superlattice with offsets of different signs is the GaxInl_ As 

/GaAsySb1_y system. The potential along the z direction for this system 

is illustrated in figure 1.14 

ýI d1 f--- Id I1 f-- 

Ec, 1 
ýc, o (Z) Vo, c 
Ec, p E9 

T E9 Evp 

ýv. oýZ 2, ýz 

uov ýI E v. i 

Figure 1.14. Type II superlattice in a GaXInl_ As 

/GaAsySb1_y compositional superlattice 

(taken from [36]). 

In this system the electrons and holes are confined in different 

layers and such a system is referred to as type II. The confinement 
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energy of the electron and holes can be calculated in a type II 

superlattices as described above. However, the optical transition is 

indirect in real space and will occur with lower energy than the band 

gap of either component. The theory used to deal with this is discussed 

in section 4.4.3. 

1.6.2 Doping superlattices 

In addition to simple modulation of the composition of epitaxial 

material, an alternative 'doping' form of superlattice can be produced. 

A doping superlattice is formed when alternating layers of p and n 

doped semiconductor are deposited within an epitaxial layer. The layer 

compound itself remains the same throughout the superlattce. An example 

of a doping superlattice is the GaAs nipi structure. In a GaAs nipi 

structure layers of GaAs are deposited in the sequence n-type, 

insulating, p-type, insulating, hence the acronym nipi. The modulation 

produces a series of parabolic potential wells in the conduction and 

valence bands which are displaced relative to each other in space. 

Figure 1.15 shows the potential distribution along the growth direction 

of such a structure. 

tion bond edge 

EP 
4, 
c 
v 

iii-E9 

valence band edge 
d -ýI 

Figure 1.15. Potential distribution in a GaAs nipi 

doping superlattice. 
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GaAs nipi structures display a number of interesting properties 

associated with the spatial separation of the electrons and holes (36]. 

The theory of their band structure is not important for the present 

work and so is not discussed. However, comparisons are made between 

nipi structures and CdS/CdSe superlattices in chapter 4. 

1.6.3 Strained layer superlattices 

Strained layer superlattices are compositional superlattices. In 

the Al Ga1_xAs/GaAs system discussed in section 1.6.1 the two 

components of the superlattice had almost identical lattice constants. 

When the component materials of the superlattice have different lattice 

constants than the superlattice is described as 'strained layer'. Such 

a system can be considered in some ways to be an ordered alloy, with a 

lattice constant which is intermediate between those of the two 

component materials. The effect of the strain on the presence of 

defects in the lattice and on the band structure of the material can be 

significant. These aspects are discussed for CdS and CdSe in section 

3.1. The lattice constants of the superlattice and the bulk compounds 

are related by the Matthews Blakeslee lattice matching condition [37]: - 

as1= a1+ (al-a2)/(1+L1/L2) (xxii) 

Where a and L refer to the lattice constant and the thickness of 

the materials 1 and 2 respectively and where asl is the lattice 

constant of the superlattice. Equation (xxii) relies on the 

superlattice being effectively infinite and the elastic constants of 

the two compounds being the same. The biaxial strain E of each layer 

can be obtained from (xxii) trivially as :- 
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E1= f/(1+L1/L2) (xxiii) 

E2= f/(1+L2/L1) (xxiv) 

Where the subscripts again refer to material 1 and 2, and f is the 

lattice mismatch between the two compounds. The periodic potential in 

such a superlattice is similar to that of other compositional 

superlattices, as outlined above. However, the presence of strain might 

alter the band structures of the compounds and this might have to be 

taken into account to when calculating the carrier energy levels in the 

system. 

A modification to the periodic potential of such a superlattice by 

the piezoelectric effect was suggested recently [38]. It was found that 

for certain orientations of cubic substrates large strain-induced 

fields could be generated. Figure 1.16 is a diagram taken from [39] 

showing the periodic potential for the InGaAs/GaP system with a 

substrate orientated so that the [111] cubic axis is perpendicular to 

the epilayer. The internal fields have a number of effects on the 

electronic states in the system, these are discussed for the case of 

the CdS/CdSe system in chapter 4. 
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Figure 1.16. Effect of piezoelectric fields in the 
GaAs/InXGal_XAs strained layer system [39]. 



1.7 II-VI superlattice systems and band offsets 

A large number of compositional superlattices have been grown 

using II-VI semiconductor compounds. It is useful here to review the 

offsets found for these systems. Table 1.5 shows the systems studied 

along with the system type, the magnitude of the valence and conduction 
band offsets measured and the size of the mismatch between the 

components; the sources of the data are indicated. Some of the most 

intensively investigated systems are those based around the zinc 

cation. These systems include ZnS/ZnSe, ZnS/ZnTe and ZnSe/ZnTe. The 

zinc based superlattices are of technological interest as blue light 

emitting compounds. It has been found for these systems that intense 

excitonic emission dominates the luminescence at low temperatures. By 

studying this luminescence it has been concluded that the ZnS/ZnSe is 

type I and the ZnSe/ZnTe and ZnS/ZnTe systems are type II [46,41]. For 

any of these systems to be used in optoelectronic devices a knowledge 

of the band offsets is essential. 

The measurement of band offsets is a problem frequently addressed 

in the study of semiconductor superlattices. There have been many 

theoretical attempts at predicting offsets (see for example [47,48,49] 

). However, most of these have proved unreliable. The simplest 

theoretical approach taken has been the so called common-anion rule 

[50]. This relies on the observation that for all the III-V and II-VI 

semiconductors the conduction band is derived from the s-levels of the 

cations and the valence band from the p-levels of the anion. It was 

therefore suggested that for common cation superlattices the conduction 

band offset should be very small. Correspondingly, for common anion 

systems the valence band offset should be vanishingly small. Table 1.5 

is divided into common cation and common anion sections. It can be seen 
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that although this law holds for a number of systems there are 

noticeable exceptions (e. g. ZnSe/ZnTe). 

Photoluminescence provides a convenient tool for assessing the 

band offsets of a new system. However, the accurate measurement of band 

line-ups requires the use of a combination of techniques and is not so 

simple. It can be seen from table 1.5 that, previous to the present 

work, no studies of CdS/CdSe superlattices have been reported. The 

parameters of this system are therefore of considerable interest. 
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2 GRcwrH AND MICROSCOPY 

Introduction 

This chapter describes the growth of CdS and CdSe epitaxial 

material by atmospheric pressure metallo-organic chemical vapour 
deposition. All the growth was carried out using the facilities of the 

Royal Signals and Radar Establishment, Great Malvern (R. S. R. E). The 

surface morphology was also examined at R. S. R. E using both optical and 

scanning electron microscopy. 

CdS and CdSe have been grown previously mainly by vapour phase 

techniques, as discussed in chapter 1. However, this study is the first 

detailed investigation of the growth of CdS and CdSe by MOCVD and 

includes the first reported growth of CdS/CdSe low dimensional 

structures, although for many electronic materials MOCVD is a well 

established epitaxial growth technique. 

The initial problem was the choice and orientation of the 

substrate. It is known that CdS and CdSe can grow in either of two 

crystalline phases, cubic or hexagonal. Clearly any layer which 

contained more than one phase must contain large extended crystalline 

defects at the interface between phases (see section 1.2.4). It was 

therefore desirable that only one phase be present throughout the 

epilayer and this was found to be dependent on the substrate used. 

The effect of growth parameters on the surface morphology was 

investigated. The surfaces of the material grown by MOCVD are compared 

to those of material grown by vapour phase epitaxy. In particular the 

appearance of hexagonal growth features is discussed in connection with 

growth mechanisms. 
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In this chapter the principal features of the growth process and 

the requirements of the reactor and gas flow system are discussed. The 

choice and preparation of the substrates for the growth of CdS and CdSe 

is described. Also included in the chapter is a study of the surface 

morphology of the layers grown. The adaption of the reactor gas-flow 

system to allow superlattice growth is also outlined. 

2.1 Growth system 

The use of MOCVD for the growth of electronic grade epitaxial 

material is well established. The principal advantages of MOCVD over 

other vapour phase epitaxy techniques stem from the use of an unstable 

organo-metallic compound as the source of the metallic elements. The 

reagents are mixed and passed into a reaction vessel where the reaction 

occurs over the heated substrate. Ideally, this reaction should only 

occur over the heated parts of the reactor. In this way impurities from 

the cooler parts of the system are not incorporated into the layer. 

Further, the use of volatile compounds allows precise control of the 

flow of reagents into the vessel, enabling the growth of multilayer 

structures. These aspects dictated the design of the MOCVD growth 

system. 

The choice of reagents used for MOCVD growth is limited mainly by 

the availability of the high purity compounds. The principal 

requirements of the reagents are that they should only react at 

elevated temperatures and that they have adequate vapour pressures. If 

they react significantly at room temperature, material will be 

deposited throughout the system making effective growth control 

impossible. Such prereaction is a well recognized problem in MOCVD. The 
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other main requirement is that they must be available at high enough 

purities and not contain any elements which can be incorporated as 

defects in the layer. 

The important features of the reaction vessel are relatively 

simple. To produce uniform layer thicknesses the reaction vessel should 

allow an isotropic flow of the reagents over a small heated region 

holding the substrate. The source of heating should be outside the 

vessel preventing contamination from heating elements. 

2.1.1 Reagents 

Table 2.1 lists the compounds commonly used as sources of group II 

and group VI elements for MOCVD growth [1]; included in the table are 

some physical properties relating to their suitability as such sources. 

It is important for the growth of good material to choose the best 

reagents. In order to do this we must consider the MOCVD growth 

process. The principal problems associated with MOCVD reagents are (a) 

prereaction and (b) precondensation. Both can interfere with the growth 

process. The former can be prevented by choosing reagents which do not 

react significantly at room temperature. The latter is most simply 

prevented by using compounds that are sufficently volatile so as not to 

condense in the pipework. 

Previous investigations of MOCVD growth of CdS [2,3,4] have 

centred on the use of Dimethyl Cadmium and Hydrogen Sulphide. Dimethyl 

Cadmium (DMC) is already used as a source in the growth of CdHgTe [5] 

and as such has been in industrial use for some years. As a result DMC 

has the advantage of being readily available at the required high 

purities. DMC is a liquid at room temperature and so needs to be 

conveyed into the vessel by a carrier gas (hydrogen). This can most 
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easily be achieved by a simple bubbler arrangement, as shown in figure 

2.1. 

BYPASS 
VALVE 

Figure 2.1. Gas bubbler used to convey liquid reagents into 

the reactor vessel. 

There are two gas lines to the bubbler, the input line and the 

output line. The carrier gas is passed into the input line, through the 

liquid and out of the output line. The quantity of vapour carried out 

is essentially proportional to the flow rate of the carrier gas and the 

vapour pressure of the liquid. In order to produce consistent results 

the temperature and hence the vapour pressure of the compound should 

remain constant during a series of growths. If the compound has a high 

vapour pressure at room temperature it may prove necessary to control 

the temperature of the bubbler accurately. However, at 20 °C DMC has a 

vapour pressure of 28 torr and it proved unnecessary to control the 

temperature in this case. A high purity DMC bubbler supplied by Alfa 

products was used for the cadmium source in all growths. 

The simplest sulphur and selenium sources available for use are 

the hydrides, hydrogen sulphide and hydrogen selenide. These are gases 
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at room temperature and therefore can be conveyed into the reactor from 

pressurised cylinders. Cylinders of high purity 5% H2S and H2Se in 

hydrogen were used as the sulphur and selenium sources respectively. 

The reaction that occurs over the heated substrate can now be 

elucidated. As mentioned earlier, the reaction should occur only over 

the heated substrate. The simple (without catalysis) reaction that 

occurs can be written as [6) :- 

Cd(CH3)2 + H2S -> CdS + 2CH4 

One part of this is the pyrolysis of the DMC to form free cadmium. 

This decomposition assists the lowering of the growth temperatures in 

MOCVD. It is possible to estimate the minimum reaction temperature by 

measuring the degree of DMC pyrolysis occuring as a function of 

temperature. Figure 2.2 shows a series of measurements performed in a 

reactor similar to the one used in this study with a DMC partial 

pressure of 7.3 Torr [7]. As can be seen, the decomposition increases 

between the temperatures of 350-380 0C. This temperature is high enough 

to prevent deposition of elemental cadmium in the growth system due to 

reevaporation. During growth the reactions occuring may be more complex 

as the pyrolysis is catalysed by the presence of the hydrides [8), 

which lowers the growth temperature further. This can have important 

consequences on both alloy growth and the possible formation of cadmium 

droplets at the surface (see sections 2.4.4). The reaction produces a 

supersaturated vapour of the growing compound over the substrate. This 

vapour will condense onto the surface of the substrate producing the 

desired epitaxial layer. 
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2.1.2 Reactor design 

The reactor used for the growth of epitaxial CdS and CdSe is shown 

schematically in figure 2.3. The design is a development of that 

described by Bass [9) for the growth of III-V compounds. The reactor 

consists of a horizontally mounted water cooled silica envelope, inside 

which the substrate is mounted on a SiC coated graphite susceptor. The 

susceptor rests in a quartz lining boat which inclines it at an angle 

to the incoming gas flow and is heated by an external radio frequency 

coil, the temperature being monitored by a thermocouple and controlled 

thermostatically. The susceptor can be baked out at high temperatures 

(>1000 °C) to outgas and remove any residue remaining from previous 

growths. The tilting of the susceptor produces more uniform growth. 

Without the tilt the reaction would proceed most rapidly at the front 

of the boat producing a non uniform thickness along the direction of 

flow. 

The gases enter the reaction vessel through a mixer nozzle. 

Experiments were conducted with two types of nozzle. The first was 

simply a silica glass tube; the second was of the type used for III-V 

growth and consisted of a blanked off stainless steel tube with fine 

holes drilled at symmetrical positions in the sides. It was reported 

previously [10] that careful positioning of the silica tube nozzle was 

necessary to produce uniform growth. Using the III-V nozzle the growth 

was found to be less sensitive to the nozzle position and subsequently 

this nozzle was used for all growth. 
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2.1.3 Gas flow system 

The gas-flow system used to control the flow of reagents into the 

reactor is shown schematically in figure 2.4. It essentially the same 

as used for the growth of ZnS and ZnSe by P. J. Wright et al [10]. The 

reagents were conveyed along stainless steel pipes with mass flow 

controllers used to control the flow rate of the gases. The hydrides 

were passed into a manifold with the carrier gas; the alkyl was 

introduced just before the gases enter the nozzle. Mixing of reagents 

within the pipework was kept to a minimum to prevent prereaction within 

the tubing. The carrier gas was high purity hydrogen, diffused through 

palladium. For the growth of epilayers the carrier gas flow rate was 

0.5 litre/min; for the growth of superlattices this was increased to 

reduce reagent clear time (see section 2.3.2). 

2.2 Substrates 

2.2.1 Substrate choice 

The choice of substrate for the growth of CdS and CdSe was found 

to be critical to the quality of the produced layers. The structure of 

CdS and CdSe are normally wurtzite, but they both exhibit unstable 

cubic sphalerite phases [11]. It was expected that the most defect-free 

growth would proceed in the wurtzite phase. Previously CdS has been 

grown by VPE on a variety of substrates including GaAs, Ga, InP, CdTe, 

CaF2, ZnTe, SrF2 and CdS itself [12,12,13,14,15,16,17,17 respectively]. 

In these previous studies it was found that the substrate orientation 

influenced the structure of the CdS layer. It was also suggested that 

the 111 face of cubic compounds provided a good surface for hexagonal 

growth [18]. Although there are no related studies for the growth of 
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Figure 2.4. Schematic diagram of gas flow system used to 
control the growth of CdS and CdSe by MOCVD. 



CdSe, one would expect a similar dependence on substrate orientation 
due to the wurtzite structure. 

Initially, a range of substrates was investigated to ascertain the 

best substrate and orientation for wurtzite growth. Figure 2.5 shows 

the band-gaps and lattice constants of a number of II VI and III-V 

compounds. It can be seen that the lattice constants of several of the 

III -V compounds lie between that of CdS and CdSe. The easy availability 

and ease of preparation of the III -V substrates made them attractive 

choices for CdS and CdSe epitaxial growth. The substrates available for 

this work are listed in table 2.2, along with their band-gaps and the 

mismatch of the (111) cubic face to that of the (0001) wurtzite face of 

CdS and of CdSe. Growth was attempted on all these substrates to 

determine the best surface for CdS and CdSe epitaxy. 

2.2.2 Substrate preparation 

All the crystalline substrates used were cut from single crystals 

grown at R. S. R. E by the Czochralski method. The (111) orientations were 

cut 3° off orientation as is common practice in III-V epitaxial growth 

to prevent the faceting of the epilayers [13). The GaAs and InAs were 

mechanically polished to a mirror finish using standard Syton 

techniques, so avoiding the pitting that can occur with chemical 

etches. The InP was chemically and mechanically polished on the (111)B 

face to a mirror finish. Unfortunately Syton polished InP was not 

available: this prevented growth on the (111)A face, which pits badly 

under chemical polishing. 

Before loading into the reactor the substrates were cleaned and 

etched to remove work damage on the surface. For GaAs the approach by 

Stutius [19) was employed, although a shorter three stage method was 
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Compound Orientation mismatch to 0001 face 
(in percent) 

CIS CdSe 

InP 

InAs 

Glass 

100 
110 
111(B) 3.43 7.09 
111(A) 3.43 7.09 

111(B) 0.33 3.47 

111(B) -3.75 0.35 
111(A) -3.75 0.35 

Table 2.2. Substrates used in this work. The 
mismatches are given for CdS and CdSe between the 
111 cubic faces and the 0001 hexagonal face, a 
negative sign indicates the substrate has a larger 
lattice parameter than the epilayer. 



used. Initially the substrate was degreased in boiling propan-2-ol and 
blown dry. It was then etched in a 5: 1: 1 solution of H2SO4: H202: H20 at 
40 °C for 5 minutes and washed thoroughly in deionised water. Finally, 
the substrate was again washed in boiling propan-2-ol, blown dry and 
loaded into the reactor. 

This process was found to be adequate for the (100), (110) and 
(111)B orientations. However, the (111)A orientation was found to pit 

under these etching conditions. It was suggested that a faster, hotter 

etch would be more uniform. As a result the etching condition was 

altered to 1 min in boiling 5: 1: 1 solution which successfully stopped 

the pitting without any apparent reduction in the epilayer quality. 

The InP and InAs were prepared in a similar fashion, but were 

etched in 5% bromo-methanol solution at 40 °C for 2 minutes. The glass 

was simply washed in boiling propan-2-ol. The appropriate substrate 

preparations were found to be satisfactory for all growths. 

2.3 Crystal growth 

2.3.1 Epilayer growth 

The following procedure was adopted for a typical epilayer growth: 

the substrate was prepared as described above and placed at the centre 

of the susceptor inside the reaction vessel, which was then clamped in 

position in the system. The system was sealed and the carrier gas flow 

increased to approximately 0.5 litres/min as monitored on the exhaust 

line. The cooling water was switched on to both the vessel and the 

endplate. After the vessel had been flushed through with the carrier 

gas the R. F coil was switched on and any bakeout of the substrate 

performed. The GaAs was baked out at 500-550 oC for 5 mins in hydrogen. 
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The InAs was not baked out as the decomposition temperature is too low. 

The InP also decomposes at low temperature; however a bakeout at 400 °C 

under hydrogen sulphide was attempted with some growths, as suggested 
by Bettini at al [20]. After bakeout, the temperature was reduced to 
the growth temperature (Tg) and the hydride flushed through the vessel 
before the alkyl was introduced to start the growth. 

All growth was conducted with the hydride in excess. In this way 
the growth can be controlled accurately by the alkyl flow and no 
deposition of elemental cadmium from DMC pyrolysis should occur. 

Typical flow rates were 50 cc/m, hydride and 10 cc/m through the DMC 

bubbler. 

After growth the reagents were flushed from the vessel and the 

epilayer was removed. The vessel was demounted and etched in aqua 

regia. Periodically the susceptor was heated to high temperature (1000 

°C) to prevent the build up of reaction deposits. 

2.3.2 Superlattice growth 

The properties of the CdS/CdSe superlattices, and the structures 

grown, are discussed in chapter 4. Here only the modifications to the 

growth system required for their growth are described. Superlattices 

were grown by simple switching of the flows, growing a layer of CdS 

followed by a pause to allow the reagents to clear and then a layer of 

CdSe. It is required that this be repeated a large number of times, 

both to increase the signal obtained by assessment techniques such as 

photoluminescence and to assist theoretical work to interpret the 

electronic states. To allow this, the principal requirement is a fast 

gas flow through the reactor vessel with computer control of the 

switching system to provide consistent and precise growth period 
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control in the structures. 

The gas flow system was adapted to allow 7 litres/min flow through 

the vessel and up to 0.5 litres/min along the hydride line alone. This 

was achieved by use of a fast gas manifold system [21]. In this system 

the gases can be switched either to vent or into the reactor by valves 

mounted on the manifold, providing the fastest possible switching of 

the reagent gases. The capacity of the reaction vessel is approx 1 

litre. Thus, with 7 litres/min of carrier gas flowing through, a clear 

time of 10-30 seconds should be adequate. Experimentally a clear time 

of 30 seconds was found to produce good quality interfaces. A computer 

control system was used to control the gas flow system as described in 

reference 21. 
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2.4 Microscopy 

2.4.1 CdS epilayers 

The morphology of the all the epilayers grown was examined by 

optical microscopy. For this study the primary concern was to produce 

the smooth surfaces necessary for superlattice growth. Initially a 

series of CdS layers were grown at 300 °C on the three orientations of 

GaAs (100), (110) and (111)A. A relatively high growth rate of 5.1/hr 

was used allowing thick layers to be produced for cross sectional 

viewing of the epilayers. In the event it was found that the CdS grew 

polycrystalline on all these substrate orientations other than on the 

(111)A orientation of GaAs. Figure 2.6 shows two cross sectional views 

of MH3c and MH3a, two 8 pm CdS epilayers; the upper view is on GaAs 

(111)A the lower view on (100) GaAs. The polycrystalline nature of the 

latter is obvious. The surface of the layer grown on GaAs (111)A was of 

matt appearance and under the microscope showed a very rough surface. 

After this initial series, a second series was grown with one third of 

the growth rate. The substrates used this time were only (100) and GaAs 

(111)A. These samples showed excellent smooth surfaces on the (111)A 

surface but were still polycrystalline on the (100) surface. These 

observations are consistent with the findings of Kuznetsov et al [61 

who reported 'mirror-like surfaces' of CdS grown by MOCVD on the (111)A 

face of GaAs. It is also in agreement with the observations of CVD 

growth studies for CdS where good epitaxy is observed on this face 

[18]. Subsequently, CdS layers were also grown on the (111)B face of 

GaAs and InP; these also showed apparently smooth surfaces. 

Previously reported studies of the morphology of CdS epitaxial 

films centred on the appearance of hexagonal and 'star-like' growth 

structures [18]. Hexagonal 'flat-top' structures were occasionally 
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Figure 2.6. Edge on microscope images of CdS grown on GaAs at 
3000C. The upper image shows an 8pm layer grown on GaAs 
(100). The lower image shows a layer grown simultaneously on 
GaAs (111)A. 



observed on CdS epilayers and became more frequent for increasing 

growth rate. Figure 2.7 shows the surfaces of three CdS epilayers grown 

with growth rates of 3.5im/hr, 2.6NnVhr and 1.3 /hr. The growth 

temperature was 450 °C (Samples MH134, MR138 and MH86 respectively). It 

can be seen that the surface is smooth at the lower rate but as the 

growth rate increases flat topped hexagonal growth features develop. It 

seems likely that the production of a very large number of such 

structures results in the matt appearance of the layers grown with very 

high growth rates. This supports the view of Strehlow [171 that they 

are the result of the high supersaturation of the vapour over the 

substrate (see section 2.4.4). The growth temperature had little other 

effect on the morpology. The surface roughness was found to increase 

slightly with increasing growth temperature. As T9 is lowered to below 

300 °C the surface starts to show a milky appearence irrespective of 

the growth rate. The appearance of the hexagonal 'flat tops' seemed 

relatively independent of Tg. In general, the CdS grown on GaAs (111)A 

showed smooth surfaces with any growth structures being reduced by the 

use of a low enough growth rate. 

2.4.2 CdSe epilayers 

Cadmium selenide was grown on the three GaAs orientations 

(100), (110) and (111)A initially at 300 °C at a growth rate of 3.4 

piTVhr. As observed in CdS, these epilayers were clearly polycrystalline 

on orientations other than on the (111)A face. However, unlike the 

CdS, when the growth rate was reduced the epilayer surface on the GaAs 

(111)A was not smooth but still showed a high density of hexagonal 

pyramid structures. Figure 2.8 shows a typical area of sample MH40 

showing many pyramid features. There are also a few 'flat top' features 
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Figure 2.7 (Overleaf). Three microscope images showing the 
effect of growth rate on the surface morphology of the CdS 
epilayers grown on GaAs (111)A. The growth rates for each 
sample are indicated, also given are the image 
magnifications. 
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Figure 2.8. Region of CdSe epilayer grown on GaAs (111)A at 
350 °C. The surface displays many hexagonal pyramid features 
as discussed in the text. The magnification is x530. 



as described for CdS. The surface between these features appears very 

smooth. Moreover these features were always present irrespective of 

growth rate, although at high growth rates the granular nature of the 

surface eventually disguised them. In particular they were present at 

as low a growth rate as was practicable. To try and eliminate these 

features Tg was increased progressively. Figure 2.9 shows areas of 

three samples grown at 350,400 and 450 °C (MH40, MH42 and MH43 

respectively). As can be seen the concentration of pyramids decreases 

with increasing temperature. However, it can be seen that the surface 

roughness increases considerably at 450 °C. InAs (111)A and a CdS 

buffer layer on GaAs (111)A were tried as alternative substrates for 

CdSe growth. The epilayer on InAs showed an apparently smooth layer 

with a slight milky appearance; that on the CdS buffer layer still 

showed the hexagonal pyramids. The possible origin of the growth 

spirals is discussed in section 2.4.4. 

2.4.3 Superlattices 

The superlattices were all grown on CdS buffer layers grown on 

GaAs 111(A). The surface morphology of these structures was similar to 

that of the CdS epilayers grown at the same temperature. However, for 

the structures with large total thicknesses the number of hexagonal 

flat tops increased. It is possible that the flat tops always form in 

the superlattice but only when there is sufficent total thickness does 

it become apparent. A small number of superlattices were grown at lower 

temperatures (350-400 °C) before T9 was raised for the reasons given in 

chapter 4. The low T9 superlattices showed interesting linear features 

on their surfaces, as shown for MH84 in figure 2.10. These lines occur 

at an angle to each other of 60 °, which suggests cracks along the 
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Figure 2.9 (Overleaf). Effect of growth temperature on the 
surface morphology of the CdSe epilayers grown on GaAs 
(111)A. The growth temperatures are as indicated, also shown 
are the sample numbers. The magnification is X530. 
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Figure 2.10. Surface of superlattice MH84. The surface shows 
linear features which occur at 600 to each other. The 
magnification is x530. 



principal axes of the hexagonal structure. Similar cracks have been 

seen on CdS grown by CVD [22] on GaAs (111)B; there they were 

attributed to thermal stresses on cooling. The origin of these lines is 

almost certainly the misfit strain between the superlattice and the 

buffer layer. Indeed the lines may represent dislocations lying 

parallel to the interface (see section 3.1). It is interesting to note 

that these lines were not seen on superlattices grown at temperatures 

above 400 °C. The higher growth temperature will reduce the growth rate 

and this might prevent surface cracks from forming. A simpler 

explanation for the disappearance of the lines is the much higher 

quality of the material grown at 450 °C. 

2.4.4 Origin of surface features 

The surface morphology of epitaxial CdS has been the subject of 

several previous studies [18,19,20,21,22,23). Although there are no 

similar studies of epitaxial CdSe, the nucleation processes involved 

have been linked to the wurtzite structure of CdS and as such will 

probably be common to both CdS and CdSe. Here the surface appearance is 

discussed with respect to the possible formation of defects in the 

layer. 

All CdSe layers grown on GaAs (111)A displayed surface hillocks. 

In order to observe these features in more detail, sample MH40 was 

examined in a scanning electron microscope. MH40 is a 1µm layer of CdSe 

on GaAs (111)A grown at 350 °C at a rate of lµm/hr. Visible light 

microscopy had shown that this sample displayed particularly well 

formed surface features. Figure 2.11 shows three views of the sample. 

The arrows indicate the principle type of features seen (a-d). 

Feature (a) is a simple hexagonal 'flat top' structure. These 
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Figure 2.11 (Overleaf). Three scanning electron micrographs 
of the surface of MH40 (CdSe grown on GaAs (111) A at 350 °C). 
The surface show several different types of growth structure. 
The reference letters are referred to in the text. The scales 
are indicated on the images. 
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features frequently appeared on the CdS epilayers and invariably on the 

CdSe. Caveney [24] observed similar structures on the surface of CdS 

grown by CVD and identified them as a natural result of wurtzite 2D 

nucleation. This analysis was supported by the work of both Strehlow 

[17] and Christmann et al [25]. The formation of these structures can 

be explained by considering two possible forms of nucleation, 2D and 

3D. In 2D nucleation the monolayers are deposited a single monolayer at 

a time. This is clearly the growth mechanism which is required for good 

epilayer growth. In 3D nucleation islands occur on the surface which 

are more than one monolayer thick and may subsequently develop facets 

at the edges which produce the observed structures. It has been shown 

by Hirth and Pound [26] that the 3D mechanism requires a higher degree 

of supersaturation than 2D nucleation. In this study it was noted (see 

above) that the concentration of these features reduced in both the 

CdSe and CdS as the growth rate was reduced or Tg was raised. Both 

these adjustments will have the effect of reducing the degree of vapour 

supersaturation, which supports the above analysis. The facets clearly 

display six-fold symmetry and the shape can only be explained if the 

epilayers are growing in the wurtzite [0001] direction for these 

structures (as confirmed by RHEED see section 3.2). Similar shapes are 

seen on bulk CdS crystal [27], where it is observed that nucleation 

preferentially occurs on the (1120), (0001), (1010), (1100) and equivalent 

planes. It is worth noting that the 'flat top' in figure 2.11(i) 

clearly runs into the smooth layer, and consequently the layer in 

between facets is likely to be wurtzite as well. 

The other features b-d were in general only seen on the CdSe 

layers. It was known from RHEED measurements and photoluminescence (see 

chapter 3) that the CdSe (including MH40) was of poor quality and in 

fact consisted of a mixture of the cubic and hexagonal phases as well 
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as polycrystalline material. In the light of this evidence the origins 

of features b-d were expected to be crystalline defects; their absence 

from CdS epilayers supports this view. 

Feature b was common on the CdSe at all growth temperatures. It 

consists of a raised square or rectangular region of increased surface 

roughness. There is some indication on the top of these structures of 

three-fold symmetric 'star-like' hillocks (best seen on figure 

2.11(iii)). Igarashi [22] observed similar hillocks (although larger 

and more clearly defined) on CdS grown on GaAs (111)B by evaporation, 

and attributed them to cubic CdS epitaxy. Such features are often seen 

on cubic materials grown on (111) orientated cubic substrates and these 

features bear a similarity to hillocks seen on CdTe grown 

homoepitaxially along the [111] axis [14]. In this case the roughness 

of the surface and the lack of any clear structure suggests these 

features may be regions of polycrystalline cubic growth. The obvious 

crystalline nature of the rest of the layer makes this explanation the 

most satisfactory. 

Feature c is a hexagonal pyramid feature with an irregular peak. 

This structure was also observed in references [22] and [23] on 

epitaxial CdS. Christmann et al showed that these structures have a 

different crystallographic orientation to the rest of the epilayer (in 

contrast to the flat top structures) and suggested that hexagonal twins 

formed around cadmium droplets as their cause. The presence of the 

droplets induces stacking faults which, due to their high energy of 

formation in CdSe, produce twins. It was noted throughout growth that 

the selenide exhibited a much higher degree of prereaction than the 

sulphide, as shown by thick deposits of material on the reactor walls. 

It was stated in section 2.1.1 that hydrides could catalyse the 

pyrolysis of the DMC and this would lead to prereaction. If this is the 
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case then, during growth of the selenide, the production of cadmium 

droplets at the surface is possible. The droplets could thus lead to 

stacking faults and a series of different crystal defects including 

twins. In support of this assertion, it has been shown that the 

triangular growth pyramids observed in some III-V homeoepitaxy on the 

(111) face are cation-rich twins and probably form around cation 

droplets. The most notable cases are GaAs and GaP [28,29]. The present 

study could not confirm this identification. However, it was noted that 

the concentration of the pyramids reduced as the temperature increased. 

At higher T9 the cadmium atoms will have more energy to move about on 

the surface and locate at cation sites, reducing the formation of 

droplets. 

Feature d was a rare feature on this sample but is relatively 

interesting. It appears as a hexagonal pyramid but at the top evolves 

clearly into a star-like feature. As mentioned above the formation of 

such three-fold symmetric structures is characteristic of cubic growth. 

This suggests that the top of this pyramid has changed phase during 

growth to produce a cubic top. This could be achieved by a twin-like 

cubic-hexagonal interface (see 3.2.2). This is supported by the 

observation of Igarashi that, for CVD growth of CdS on GaAs (111)B, 

the initial growth of CdS was hexagonal but as growth proceeded the 

cubic phase dominated. 

The poor quality of the CdSe surface relative to the CdS is 

obvious. The cause of this must lie in the growth process. Although 

there is a greater mismatch for CdSe to GaAs compared with CdS (7% 

compared to 3.5%) good epitaxy on GaAs has been demonstrated for 

systems with very large mismatches (for example CdTe [30] with 17%). 

Moreover, the surface did not improve when the CdSe was grown on a CdS 

buffer layer on GaAs (111)A. As stated above there is a large degree of 

page 53 



prereaction for growth of the selenide and production of cadmium 
droplets at the surface is possible. This may cause a large number of 

stacking defects. Alternatively the cubic phase of CdSe may be more 

stable, producing growth in a mixture of phases. These possibilities 

are discussed further in chapter 3. 

2.5 Summary 

CdS and CdSe epilayers have been grown by MOCVD on a variety of 

substrates and crystallographic orientations. The reagents used were 

dimethyl cadmium as the cadmium source and hydrogen sulphide and 

hydrogen selenide as the sulphur and selenium sources respectively. It 

was demonstrated that CdS and CdSe could be grown epitaxially on the 

(111) face of the cubic sphalerite compounds of table 2.1 using the 

reagents described. It was found that the surface morphology of the 

layers grown depended on the growth conditions. For CdS it was possible 

to produce smooth layers on the (111)A face of GaAs. The surface 

roughness decreases as the growth rate is reduced. The optimum growth 

rate for CdS as judged by the morphology was approximately lFm/hr at 

350 °C. In contrast, the surface of the CdSe was always rougher and 

displayed a series of different growth structures. It was found that 

the concentration of these structures reduced as the temperature was 

raised but that the surface roughness also increased. It is suggested 

that the origin of these structures lies in formation of the cubic form 

of CdSe accompanied by the possible formation of Cd droplets on the 

substrate surface. These results are compared with the findings of 

other workers and are found to be in broad agreement. The growth of 

CdS/CdSe superlattices by MOCVD was described. The surface morphology 
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of the superlattices was found to be similar to that of the CdS 

epilayers. 

2.6 Conclusions 

From the results in this chapter it can be concluded that it is 

possible to produce mirror-like epitaxial layers of CdS on GaAs (111)A 

by MOCVD. The CdSe epitaxial layers grown under similar conditions on 

GaAs (111)A also exhibit a smooth surface between growth hillocks. The 

growth hillocks indicate the possible presence of a number of lattice 

defects in the CdSe epilayers. The CdS and CdSe layers grown on the 

other substrates do not exhibit the same mirror surfaces, but we cannot 

conclude that the layers are of poor quality by the morphology alone. 

In order to determine the exact structure, purity and crystalline 

quality of the layers more detailed information concerning the 

structural and optical properties of the layers is required. These 

properties are studied in chapter 3. 
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3. OPTICAL AND STRUCTURAL CHARACTERIZATION OF CdS AND CdSe 

EPITAXIAL LAYERS 

Introduction 

In general the goal of crystal growth is to produce material as 

free from crystal defects and impurities as is possible. In order to 

assess the effectiveness of an epitaxial growth technique it is 

therefore necessary to determine the quality of the material grown. 

There are two areas in which information is required to allow an 

assessment of the epilayer quality: the structural perfection of the 

crystal lattice and the presence of impurity atoms within that lattice. 

These considerations govern what is often referred to as the 'quality' 

of the material. 

There are a large number of characterization techniques that can 

be applied to epitaxial layers. These techniques can provide a variety 

of information concerning the structural, optical and electrical 

properties of the material. For the purpose of optimizing the growth 

conditions it was desirable that the techniques used be easy to 

interpret and non-destructive. It was decided to assess the epilayers 

principally by luminescence techniques with electron diffraction being 

used to study the crystal structure of the layers. 

In this chapter the characterization of the epilayers is divided 

into three sections. The first section lays the theoretical groundwork 

for wurtzite epitaxial layers. The relaxation of strain within 

epitaxial layers is discussed and the effects of that strain on the 

band structure of CdS and CdSe calculated. The second section describes 

the structural assessment of the layers using Reflection High Energy 

Electron Diffraction (RHEED). In the third section the use of optical 
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techniques is described. The low temperature photoluminescence spectra 

of all the epilayers were recorded. The spectra are intepreted and 

conclusions are drawn as to the most suitable substrate and growth 

conditions for the two compounds. Also in this section, the growth of 

the ternary alloy CdS1_xSex is described and reflection spectroscopy 

and photoluminescence are used to obtain the values of x for a series 

of such alloys. 

3.1 Theory of strained epilayers 

3.1.1 Introduction: critical thickness 

When an epitaxial layer of one crystalline solid is grown on to a 

substrate of another which possesses a different lattice constant there 

is said to exist between the layer and substrate a 'lattice mismatch'. 

It has been found that, provided the mismatch is small enough, the 

initial atomic monolayers will grow commensurately to the substrate, 

the layer being strained to the substrate lattice constant. As the 

layer grows thicker, dislocations will form to relieve the strain, 

until the layer material has the same lattice constant as that of its 

bulk value. 

It was shown by Van der Merwe [1], by strain energy 

considerations, that the relaxation of the strain occurs after some 

critical thickness has been reached. Subsequently the existence of such 

a critical thickness was verified for a number of strained systems (for 

example ZnSe/GaAs and Ge/Si [2,3]). Below this thickness the strain in 

the layer will have important effects on its band structure. Moreover, 

this critical thickness will have special relevance in chapter 4 where 

the properties of CdS/CdSe superlattices are discussed. Hence, before 
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proceeding to study the epilayers, we consider here the theoretical 

value of this thickness for the system studied. Such a calculation 

allows us to obtain a feel for the magnitude of the critical thickness 

in our system and whether we might expect to observe strain effects or 

not. In addition, deformation theory is used to calculate the effects 

of biaxial strain on the band structure of the wurtzite epitaxial 

layer. 

3.1.2 Calculation of critical thickness 

The approach taken to calculate he (the critical thickness) is, in 

principle, simple. It is required to determine the layer thickness at 

which the tension along the dislocation line exactly balances the force 

exerted on the dislocation line by the stress generated in the layer by 

lattice mismatch. As the layer thickness increases so does the stress 

until the critical thickness is reached and dislocations form. 

A number of authors attempted to solve the critical thickness 

problem by areal strain energy arguments, notably Van der Merwe 

(1], Matthews [4] and People and Bean [5]. The approach of Van der Merwe 

was derived from energy considerations and simply balanced the 

interfacial energy between epilayer and substrate by the strain energy 

stored in the strained epilayer. In contrast, the approach of Matthews 

was by mechanical equilibrium, considering different arrays of 

dislocations and the associated energy densities. When the rate of 

change of the total energy with thickness (where total energy is the 

sum of dislocation and strain energy densities) is zero then the 

critical thickness has been reached. 

The approach of People and Bean is an energy balance one. It has 

been found to give excellent agreement with experiment and it is this 
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theory, modified slightly for the wurtzite case, that is discussed 

here. In this approach it is assumed that he can be determined by 

energy considerations alone. This implies that he can be derived by 

simply equating the areal strain energy to the areal energy associated 

with the formation of a dislocation. For the wurtzite structure the 

dislocation with the lowest formation energy is the screw dislocation 

[6]. The energy per unit area associated with an isolated screw 

dislocation a distance h from a free surface in a compound is given by 

ED (Gb2/8wN%2a)1n(h/b) (i) 

where G is the shear modulus, b is the magnitude of the burgers 

vector and a is the lattice constant. The strain energy per unit area 

contained within a strained epilayer of thickness h is given by [7]. 

E 
h-2G(1+v)/(1-v)hf2 (ii) 

Where v is Poisson's ratio and f is the mismatch. To obtain the 

critical thickness he in the People and Bean approach equations (i) and 

(ii) are simply equated to give 

hc=(1-v)(b2/a)/[(1+v)(161V%2)f2)1n(hc/b) (iii) 

The values of the constants v, G and a can be obtained in the 

literature [8]. In a wurtzite epilayer growing with the c-axis vertical 

the simplest screw dislocation lying parallel to the interface will be 

orientated along the [1210] direction, with a burgers vector [2110] 

[6]. This gives us a value for the magnitude of the burgers vector b 

given by 
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ký aß%3 (iv) 

This takes the value of 7.1 and 7.4 angstroms for CdS and CdSe 

respectively. Equation (iii) was solved numerically to provide a 

theoretical estimate for the value of hc. The values of Possion's ratio 

used were 0.259 and 0.236 for CdS and CdSe respectively. Figures 3.1 

and 3.2 show the calculated critical thicknesses for CdS and CdSe 

respectively, as a function of mismatch to substrate. It can be seen 

that he is a very strong function of the mismatch. Included on the 

diagram are dotted lines indicating the mismatches to the principle 

substrates. Most of the epitaxial layers were grown on GaAs, for this 

substrate CdS has an estimated critical thickness of 220A. If this is 

the case then we would not expect to see large strain effects for 

epilayers more than a few tens of monolayers thick. 

3.1.3 Strain components in an epilayer 

In order to investigate the effects of the biaxial strain on the 

band structure of the epitaxial layer we need to determine the 

components of the biaxial strain. This is an elementary problem in 

strain theory and is best solved by use of the wurtzite strain tensor 

191 :- 
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Figure 3.1. Critical thickness of CdS epilayer as a function 
of mismatch to substrate, as calculated in section 3.1.2. The 
dotted lines indicate the mismatch between the (111) faces of 
the named compounds and the CdSe (0001) face. 
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Exx Eyy Ezz Exy Eyz E 
zx 

Xx c11 c12 c13 0 0 0 

Yy c12 c11 c13 0 0 0 

Zz c13 c13 c33 0 0 0 

xy 0 0 0 c44 0 0 

Yz 0 0 0 0 c44 0 

zx 0 0 0 0 0 c66 

(v) 

where the cif are referred to as strain moduli. The tensor is 

arranged so that the columns represent the strain components and the 

rows the stresses giving rise to those strains. The terms along the 

left edge are stresses on those faces in the subscripted direction e. g. 

xx is the stress on the x face along the x-axis. The E's are strains 

with similar notation. The first letter is the face and the second the 

direction e. g Exx is the fractional displacement of the x face along 

the x-axis. Hookes law in this system is now given by 

6 
SJ Elc1J 

i=1 

(vi) 

Where i is the column, j the row and S is the strain. For a 

biaxially strained epilayer (c-axis normal to the substrate) we use the 

convention that the z-direction is along the c-axis and the two 

components of the strain lie in the x and y directions, which are 

symmetrically equivalent. Putting E. =Eyy=-E (using the convention of 

negative for compressive strain) into (vi) we get the equation in ZZ: - 
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Zz= -2Ec13 + Ezzc33 (vii) 

As the epilayer is free to expand in the z direction we can put 

ZZ=O and equate to obtain the three strain components. 

E -E 

E= -E yy 
(viii) 

EZZ= 2ExC13/C33 

Note that the off-axis components of the strain E, E and E xy yz xz 
are all zero. 

3.1.4 Deformation theory 

When a crystal of semiconductor is strained there will in general 

be a change in that compound's band structure. In the case considered 

above, this change can be considered to originate from two components 

of the strain, the hydrostatic component and trigonal distortion 

component. The hydrostatic component acts so as to reduce the lattice 

constants of the compound, the essential symmetries of the crystal 

lattice being preserved. The trigonal distortion, however, will produce 

directionally-dependent strain, consequently altering (usually 

lowering) the lattice symmetry. The effects of these two components on 

the band structure depend on the symmetries of the conduction and 

valence bands. 

The band structure of wurtzite CdS and CdSe was described in 
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chapter 1. Figure 1.3 showed the origin of the bands at the r point in 

CdS [10]. At the T' point in CdS and CdSe the conduction band consists 

of a doubly degenerate s-like band having the symmetry r'1. The valence 

band is p-like and consists of a fourfold degenerate r'5 band which is 

split by the spin orbit interaction into doubly degenerate r'7 and F9 

bands with angular momenta of J=+ 1/2 and J-+-3/2 respectively. There 

is also a T7 band split off by the trigonal crystal field at somewhat 

lower energy than the other two. 

The hydrostatic component of the strain will move the conduction 

and valence bands relative to each other without altering the valence 

band structure. The trigonal component will affect the valence bands by 

altering the energy separation of the the three bands relative to each 

other and the conduction band. To calculate the movement of the bands 

under stress we use the linear approximation for the effect of stress 

on the wurtzite band structure obtained by Pikus and Sandomirskii 

[11,12]. 

EA = EA + 
Sl+ s2 (ix) 

=++ 

ý2 
1+ 

ý1-ý2 
1/2) (X) EB EB 12 ((01-02)2* 8031 

(xi ) E=E+S+21- ý1- 2 
1/2) CC12 f(01- 2 )2,82 

Where: - 
s1= C1 EZZ + C2 E& s2= C3 EZZ + C4 El 

The ms's are the k. p band parameters, C1, C2, C3 and C4 are 

deformation potentials and the EA, B, C are the undeformed respective 

bandgaps. 

These expressions can now be evaluated by using equation (viii). 
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We find a simple linear (for biaxial strain perpendicular to the 

c-axis) relationship exists between the strain and the energy gap for 

the three valence bands. The values for the deformation potentials have 

been determined from uniaxial pressure measurements by other workers 
[13,14]. The potentials, band parameters and elastic moduli used in 

this study for CdS and CdSe are given in Table 3.1. The change in band 

gaps with strain E for CdS and CdSe are thus given by 

CdS CdSe 

EA =EA -0.82E -1.379E (xii) 

EB=EB +2.27E +3.3E (xiii) 

Ec Ec +3.17E +2.01E (xiv) 

Where the potentials are in electron volts. The relative intensity 

of the recombination emission for the three bands as a function of 

strain can also be calculated [13]. However, this proved to be 

unnecessary for this study as no such intensity variations were 

observed in single epilayers. The above theory, however, is used in 

chapter 4 to calculate the band structure for the CdS/CdSe 

superlattices, and to interpret the observed recombination emission 

from CdSe in the multilayer structures. 
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CdS CdSe 

Q1 28.4 68.8 

02 20.9 138.0 

L3 20.7 150.7 

C1 -2.8 -0.76 

C2 -4.5 -3.7 

C3 -1.3 -4.0 

C4 2.9 2.2 

c13 4.6 3.9 

c33 9.4 8.45 

Table 3.1. Band parameters, deformation potentials and 
elastic moduli of wurtzite CdS and CdSe. The units of the 

Q's are meV, tYe units of the C's are eV and the elastic 
moduli are in N/m . Data taken from reference [13]. 



3.2 RHEID studies 

In chapter 1 the properties of cadmium sulphide and cadmium 

selenide were reviewed. it was noted that both compounds can have 

either cubic sphalerite or hexagonal wurtzite crystal structures 

depending on the growth conditions. Although the wurtzite phase is 

usually the most stable, it was clearly of great interest to this study 

that the lattice structure of our epilayers should be known. 

It is possible to determine the crystal structure of CdS and CdSe 

from spectroscopic studies. This relies on observing the splitting of 

the valence band in unstrained crystals, as this only occurs for the 

wurtzite structure. However, as strain can have this effect as well, it 

was decided that more unequivocal structural information was required 

to judge the best substrate for the growth of purely wurtzite CdS and 

CdSe by MOCVD. In particular we wanted to be able to detect the 

possible presence of both phases in the same epilayer. 

Reflection high energy electron diffraction (RHEED) is a well 

established epitaxial layer assessment technique. It provides a 

convenient way to assess the single crystalline nature of an epilayer 

as well as giving information on layer smoothness and the presence of 

defects such as twins within the layer. The RHEED patterns of a 

selection of CdS and CdSe epilayers were studied. 
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3.2.1 Experimental technique and theory 

In RHEED a beam of high energy electron is projected on to a 

crystalline surface at a very oblique angle (see figure 3.3). 

Fluorescent 
screen 

Shadow 

Figure 3.3. Experimental arrangment for RHEED. 

The resulting RHEED diffraction pattern formed is characteristic 

of the arrangment of the surface atoms. The incident electrons are 

primarily reflected by the initial monolayer of atoms; as a result 

RHEED is essentially a surface assessment technique. The interpretation 

of RHEED patterns has been covered in detail by other authors and here 

only the basic principles are described. 

Any surface of a crystalline solid will possess a two dimensional 

arrangment of atoms which must belong to one of five possible surface 

nets. These nets are the two dimensional equivalent of the three 

dimensional Bravais lattices [15]. The exact nature of the net will 

depend on the structure of the solid and the orientation of the surface 

normal. In the ideal case of a perfectly smooth epilayer surface the 

RHEED pattern shows the interference pattern of electrons scattered by 
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the initial monolayer of the crystal face. It can be shown that, for 

high enough energy electrons, such a pattern will consist of a series 

of streaks lying parallel to the plane normal [16]. The separation of 

the streaks depends on the lattice constant of the compound and the 

orientation of the sample's crystallographic axes relative to the 

electron beam. 

Some epitaxial material does indeed demonstrate only diffraction 

streaks (for example high quality MBE grown material [17]). However, 

for the purpose of determining the structure of the layer, these 

patterns have limitations. In particular, the pattern of streaks cannot 

be used to distinguish between the wurtzite (0001) and sphalerite (111) 

faces. This can be seen from (as noted in chapter 1) the close 

similarity of wurtzite and sphalerite structures along the (111] and 

[0001] directions respectively. The surface atoms of the (111) cubic 

and (0001) hexagonal faces possess the same (hexagonal) surface net. 

In practice the ideal case of a totally smooth epilayer is 

difficult to achieve and some parts of an epilayer surface will 

inevitably be raised above other areas. This will cause the electron 

beam penetrating into the compound to be diffracted by the three 

dimensional lattice structure. The degree to which this occurs depends 

on the surface roughness. Consequently, as we move from the case of a 

perfectly smooth surface to a very rough one the pattern will change 

from streaks to streaked spots to spots only. Hence, streaking of the 

diffracted spots from a surface can indicate smoothness [17]. For rough 

surfaces, the diffraction pattern will simply correspond to the well 

studied electron diffraction pattern for the beam lying along the 

appropriate crystal axis. In this manner, with a knowledge of the 

expected patterns, the difference in crystal structures can be 

resolved. 
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Figure 3.4 shows the surface net for the (111)/(0001) plane, the 

notations refering to the cubic and hexagonal crystallographic systems 

respectively. 

110 
0 no 1230 1010 

0 1010 

00 
000 

0000 

00000 

0000oC 

000000 
Surface net 

Figure 3.4. Surface net for wurtzite (0001) or zincblende (111) 

surface. The figures indicate the main axes in the 

plane, although in practice these would be cyclic 

permutations of the Miller indices indicated, they 

are symmetrically equivalent. 

The main high symmetry axes are indicated on the figure for both 

systems. The [110] axis lies in the plane for both (111) and (100) 

orientations. The electron diffraction patterns for an electron beam 

lying along the cubic [110] and equivalent hexagonal [1010] axes 

(referred to as the "[1010] zone axis") are shown in figure 3.5 

[18,19]. It can be seen that the wurtzite pattern is easily 

distinguishable from the cubic pattern. In addition, cubic twinning can 

be observed in this orientation by the presence of additional 

diffraction spots [19]. The pattern corresponding to the [211]/[1230] 

zone axis is also shown in figure 3.5, the pattern is the same for both 

phases. 
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[1101 [1010] [211] or [1230] 

11 ,' }}; 

Figure 3.5. Electron diffraction patterns for beams lying 

along the indicated crystallographic axes. The 

dots correspond to diffraction maxima. 

The RHEED measurments were conducted at Durham university under 

the supervision of G. J. Russell. The samples studied were mounted inside 

a modified JEOL 150 electron microscope and a 100KeV electron beam was 

reflected off the surface onto a luminescent screen to produce the 

desired patterns. 
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Results and discussion 

3.2.2 Cadmium sulphide 

Figure 3.6 shows the REED patterns obtained from sample MH8b a1 

µm CdS epilayer grown on (111)A GaAs at a growth temperature of 3500C. 

The upper photograph shows the diffraction pattern from an electron 

beam lying along the [1010] axis of a wurtzite crystal. The epilayer 

has unequivocably the wurtzite crystal structure. To demonstrate the 

epitaxial relationship the epilayer was rotated by 30 0 about the 

surface normal. It can be seen from figure 3.5 that this should obtain 

the pattern corresponding the the cubic [211] or hexagonal [1230] zone 

axis. The lower photograph in figure 3.6 shows this pattern for the 

previous sample. The pattern is the same for the two phases, but, its 

presence at 30° to the [1010] pattern confirms the expected epitaxial 

relationship. The CdS epilayer is growing on the (111) cubic substrate 

orientated with axes aligned [0001] 11 [111] and [110111 [10101. 

All the CdS epilayers on (111)A GaAs showed the same patterns. 

They also displayed the Kikuchi diffraction lines characteristic of 

high crystalline perfection. Figure 3.7 shows the [1010] zone axis from 

MH55, a 150 R thick layer of CdS on (111)A GaAs. The pattern confirms 

that the epilayers grow as wurtzite from the interface. The patterns 

also shows a noticeable degree of spot streaking (clearer when viewed 

on the luminescent screen) indicating a degree of surface smoothness. 

In addition to the layers grown on (111)A GaAs, CdS epilayers on 

GaAs (111)B and (100) surfaces were studied. The CdS epilayer MH10a was 

studied by RHEED. This sample consisted of a thin CdS layer grown on 

GaAs (100) at a growth temperature of 400 0C. For this orientation, if 

the layer is growing epitaxially, we expect the GaAs 110 axis to be 

aligned with either the cubic CdS [110] or hexagonal CdS (1010] axis, 
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Figure 3.6. RHEED diffraction patterns taken from sample MH8 
(see text). The upper image shows the hexagonal [1010] zone 
axis, the lower shows the hexagonal [1230] zone axis. 



Figure 3.7. [1010] zone axis from sample MH55. 

Figure 3.8. [1010] zone axis diffraction pattern from sample 
MH10. Two such patterns were observed with a 1800 rotation of 
the substrate and epilayer between them. 



depending on the phase of the CdS epilayer. The diffraction pattern 

obtained is shown in figure 3.8: it demonstrates clear hexagonal 

structure. Two such patterns were found with a 1800 rotation between 

them, showing that one[1010]hexagonal axis lies in the plane for this 

growth orientation. It was reported in chapter 2 that thick CdS 

epilayers grown at 350 0C on GaAs [100] were clearly polycrystalline. 

This sample grown hotter and slower than 3 pm/hr showed a smooth 

surface and appeared epitaxial. The RHEED results indicate hexagonal 

CdS epitaxy on this surface and under these growth conditions. In 

section 3.3.3.2 it is found that the CdS epilayers grown on the (100) 

GaAs face produced poor luminescence. This can be understood if the 

epilayers contain a high density of lattice defects, which cannot be 

detected in the RHEED patterns. Figure 3.9 shows the [1010] diffraction 

pattern from MH14 a 0.4pni layer grown on (111)B GaAs at 3500C. The 

initial pattern obtained is shown in the upper photograph of figure 

3.9. It can be seen that the spots are drawn out into streaks, the 

layer demonstrating a typical diffraction pattern from a very smooth 

surface. Although this is initially encouraging, it is not possible to 

resolve clearly the spots and the phase of the epilayer cannnot be 

deduced. To observe the diffraction spot pattern the epilayer was 

etched for ten seconds in hydrochloric acid, roughening the surface, a 

similar procedure having been used previously for CdTe [19]. 

Subsequently the required pattern was recorded and is shown in the 

lower photograph of figure 3.9. The pattern is that of the cubic [110] 

zone axis accompanied by diffraction spots at intermediate positions 

corresponding to cubic twinning of the layer. This provides direct 

evidence for CdS having a cubic structure when grown on this face of 

GaAs. The pattern also clearly shows that the layer is of poor 

structural quality despite possessing a very smooth surface. Similar 
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Figure 3.9. [110] zone axis patterns from sample MH14, a CdS 
epilayer grown on GaAs (111)B. The upper image (3.9a) shows 
the pattern obtained from the 'as grown' sample. The lower 
image (3.9b) was taken from the sample after etching as 
described in the text. The streaks in the lower image show 
extra spots in addition to those expected for the hexagonal 
[1230] zone axis (figure 3.5) indicating twinning. 



electron diffraction patterns were reported in reference [20] for CdS 

evaporated on an InSb (111) surfaces. These results are consistent with 

the findings of other workers (e. g. Igarashi [21]) who found that CdS 

grown by VPE on GaAs (111)B had the sphalerite structure. 

3.2.3 Cadmium selenide 

The RHEED patterns from the CdSe epilayers grown on (111)A GaAs 

were studied. Figure 3.10 shows the [1010] pattern for a layer of CdSe 

(MH40) grown on GaAs (111)A at 350 °C. The pattern shows many features, 

the most striking being the polycrystalline rings. In addition to the 

rings there are intense spots at the cubic positions and many spots at 

intermediate positions corresponding to cubic twins. We can conclude 

that the layer is largely cubic and contains many cubic twins. 

It was noted in section 2.4 that this epilayer showed a very 

smooth surface with prominent surface hillocks at some positions. It is 

not possible directly to determine which surface feature could be 

responsible for the observed RHEED effects. However, it was observed 

that the surface contained regions of apparently polycrystalline 

growth. If the polycrystalline diffraction rings originate in these 

features then the rest of the layer must be epitaxial cubic growth. It 

was also noted in section 2.4 that some of the hexagonal growth 

features showed evidence of cubic twinning. 

Electron diffraction patterns similar to that shown in figure 

3.10 were observed from cubic CdS epilayers grown by evaporation on 

InSb [20]. In this case, the diffraction spots were identified as 

being due to the (222) reflection from twinning about the [111] axis, 

the cubic twins being derived from a change in the tetrahydral layer 
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Figure 3.10. RHEED pattern from CdSe epilayer grown on GaAs. 
The image shows the [1010] zone axis, the material is clearly 
polycrystalline (diffraction rings) and twinned (double 
spots). 



stacking sequence along the [111] growth direction. It is clear that 

the CdSe epilayers grown at low temperature are of poor quality and 

contain many twins. 

A similar degree of cubic twinning is observed in other II-VI 

epitaxial layers grown along the [111] direction of the sphalerite 

structure, for example CdTe [19]. In section 1.2.4 the production of 

these so called 'lamella twins' from the tetrahedral orientated layers 

was described. Since one result of such twinning is the production of a 

wurtzite nearest neighbour environment for the stacked layers, heavy 

twinning of cubic CdSe (and CdS) might, qualitatively, be expected. 

This situation is similar to that of other II-VI compounds such as ZnS 

which demonstrate two stable phases. The energy of formation of the 

lamella twins is small so that the continuity of the stacking sequence 

along the [111] axis varies according to growth conditions. It is 

observed in ZnS bulk growth that such twinning is frequent and 

unavoidable (see section 1.2). Possible reasons for the poor quality of 

the CdSe epilayers relative the CdS were discussed in section 2.4.4. 

In section 3.3.5 the preparation of the ternary alloy CdS1_xSex is 

discussed. The RHEED patterns from an alloy CdS0.02Se0.98 grown at 

350°C on GaAs (111)A were studied visually to investigate the effect of 

the addition of small quantities of sulphur to the CdSe. It was found 

that the layer showed purely hexagonal growth with no apparent cubic 

twinning or polycrystallinity. The effect of hydride mixing on the 

structure and quality of the epilayers was studied further in section 

3.3.4.2. 
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3.3 Photoluminescence studies 

3.3.1 Introduction 

Photoluminescence spectroscopy is an established technique for the 

characterization of semiconductors. It provides a convenient 

non-destrucive method for determining the relative purity and 

perfection of the crystal lattice. This allows the study of growth 

aspects such as the effect of misfit dislocations in the layer and the 

diffusion of impurities from the substrate. In this way the growth 

parameters can be optimised with respect to these quantities. CdS and 

CdSe are luminescing materials and their photoluminesence spectra have 

been studied extensively. The wealth of literature relating to both 

bulk and epitaxial CdS and CdSe provided a convenient source with which 

to compare the luminescence from the MOCVD material. The low 

temperature photoluminescence spectra of all samples grown were 

recorded. Reflection spectroscopy was also used to measure free exciton 

energies in order to determine the sulphur content of alloy samples. 

3.3.2 Experimental technique 

The experimental arrangement for photoluminescence is shown 

schematically in figure 3.11. The samples were mounted on the copper 

sample rod using low temperature varnish. To avoid thermal stressing 

care was taken to insure that the samples were fixed only at one 

corner. The sample rod was lowered into a liquid helium immersion 

cryostat. The helium reservoir was then overpumped to below the helium 

lambda point achieving a final sample temperature in the range 1.6-2 

K. The luminescence was excited with the light from a Spectra-Physics 

series 2020 Argon-ion laser. The laser lines used were the 458nm line 
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Figure 3.11. Experimental arrangment for Photoluminescence. D 
is the photodetector (see text). 



for CdS and the alloys, and the 488nm line for the CdSe samples. Laser 

light was passed through an interference filter which greatly 

attenuated the plasma lines at frequencies other than the principal 

line. The monochromatic beam was then focussed on to the sample 

surface and the resulting luminescence collected at an angle of 330 to 

the incident light. A Wratten filter was used to remove the unwanted 

laser light and plasma lines at wavelengths shorter than the 

luminescence (filters used were W8 for the 458nm line and W16 for the 

488nm line). A lm focal length Spex was used to disperse the 

luminescence using a 500nm blazed grating with 1200 lines/nm. The light 

was then detected with a Hamamatsu trialkali photomultiplier tube for 

the wavelength region 4000-8000A and a North Coast Scientific cooled 

germanium detector for the region 8000-14000R. The luminescence was 

chopped and recorded using standard lock-in techniques (see figure 

3.11). The resolution of the spectrometer was limited by the slit width 

and was in the range 0.2-30 A. Allowance was always made for the delay 

effect of the PSD time constant and spectrometer scan rate. The 

spectrometer was calibrated by passing the (greatly attenuated) laser 

line through the system and was found to be accurate to 0.2 1 over the 

region of the CdS and CdSe edge emissions. 

The spectrometer was controlled by a Victor VPC II microcomputer. 

An analoque to digital conversion system allowed the computer to 

collect and display the data. The data were then corrected for system 

response by the computer using a correction curve. It was possible to 

store the data on floppy disc for subsequent recall and processing. 

The temperature dependence of the luminescence was also 

investigated using an Oxford Instruments CF1204 continuous flow 

cryostat. The sample was mounted on a cold finger which was cooled by 

pumping cold helium gas into the surrounding space. The temperature 
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could be controlled thermostatically via a heating element attached to 

the cold finger. The minimum temperature obtainable in this system was 

found experimentally to be 4 K. The luminescence was detected in the 

same way as above. 

Reflection spectroscopy was conducted using the same apparatus as 

for the photoluminescence. Light from the white light source was 

dispersed by the lm Spex, chopped and passed into the cryostat. The 

reflected light was then detected by a trialkali photomultiplier tube 

and the signal detected by standard lock-in techniques. 

Results and discussion 

3.3.3 Cadmium sulphide 

The initial layers of CdS were grown on various substrates at a 

growth temperature of 300-350 °C. It was not known which substrate 

would prove the best for the growth of CdS and photoluminescence was 

used principally to identify the most promising CdS epilayers. A series 

of CdS epilayers were grown on GaAs (111)A, (111)B, (110), (100), InP 

(111)B and glass substrates, as described in chapter 2. The 

luminescence spectra of these layers were then studied. 

Figures 3.12,3.13 and 3.14 show six spectra from layers grown 

under similar growth conditions on the substrates above. The sample 

numbers and substrates used are indicated on the diagrams. The spectra 

show the near-gap emission and consist of the well-known bound 

excitonic and green edge emissions of CdS. Without studying the 

luminescence in detail, it can be clearly seen that, unlike that grown 

on the other faces, the material grown on the (111)A face of GaAs shows 

very bright and narrow excitonic emission and faint green edge 
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Figures 3.12,3.13 and 3.14 (overleaf and on successive 
pages). Low temperature (2K) photoluminscence f6om CdS 
epilayers grown on various substrates at 300-350 C. The 
substrates used and sample numbers are as indicated in the 
top right of each spectrum. 
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emission. The luminescence from CdS grown on the other substrates is 

broader and typically ten times fainter than that grown on GaAs (111)A. 

In general broad excitonic emission can be due to either high 

impurity levels or a high concentration of lattice defects [22]. Both 

of these properties introduce central cell corrections to the 

recombination processes as described in section 1.5.2. In addition, the 

presence of extended lattice defects will strain the lattice, causing 

strain broadening [23]. Moreover, it has been observed previously for 

evaporated CdS that high levels of dislocations lead to such line 

broadening [24]. The RHEED studies showed that the CdS epilayer grown 

on GaAs (111)B contained large numbers of cubic twins. It was also 

found by microscopy that the layers grown on GaAs (100) and (110) at 

this temperature were polycrystalline (chapter 2). We conclude that, 

qualitatively, the photoluminescence results support the RHEED and 

morphology studies and are consistent with good epitaxy at this growth 

temperature on the GaAs (111)A face. The three principal substrates 

used for subsequent CdS epitaxy where GaAs (111)A, GaAs (100) and InP 

(111)B and the photoluminescence from the epilayers grown on these 

substrates is described below. 

Effect of substrate on CdS photoluminescence 

3.3.3.1 GaAs 111(A) substrates 

The photoluminescence from the layers grown on GaAs 111(A) shows 

many clear emission features. Figures 3.15 and 3.16 show two 

luminescence spectra obtained from a 0.7 pm layer of CdS grown at 350°C 

(MH26). The principle lines are identified using the notation of Thomas 

and Hopfield [25]. The two bright emission lines shown in figure 3.15 
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occur at 4888.4 A and 4869.9 A respectively; these correspond to the 

well known I1 and 12 bound exciton emissions. The origin of these lines 

was shown by Thomas and Hopfield [25] to be excitons bound to neutral 

acceptors and neutral donors respectively. There is also further 

structure in this spectrum including a high energy shoulder on the 12 

line possibly due to the 13 emission from excitons bound to ionised 

donors and the free exciton emission Xo at 4853 (indicated on the 

figure). The low energy tail on the I1 line is due to acoustic phonon 

interaction, although other authors reported emission lines in this 

region these lines maybe obscured in our spectra by this tail. 

A frequently used measure of crystal quality is the full width at 

half maxima (FWHM) of the bound excitonic emission, measured as the 

width of the emission line at one half of the maximum luminescence 

intensity. In the best layers this was typically 1 meV, compared to 0.1 

meV reported by Thomas and Hopfield [25] for selected vapour phase 

platelets. However, our value compares favourably to that reported for 

other II-VI compounds grown by MOVPE (e. g 0.8 meV for ZnSe on GaAs 

[26]). 

It is, in principle, possible to identify the impurity species 

responsible for an emission line by photoluminescence. This relies on 

the binding energy of the donor and acceptor impurities being different 

for each atomic species. These different binding energies will alter 

the line positions. There are only two common shallow acceptor 

impurities in CdS, lithium and sodium. The I1 positions ascribed to 

these impurities are 4888.2 A and 4888.57 A for Li and Na respectively 

[27). The I1 position in our material was 4888.4+0.2 X. Although our 

data are consistent with the presence of either (or both) of these 

impurities, it is impossible to resolve which is present. However the 

precision of this measurement does confirm that, at this thickness at 
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least, there is no residual compressive strain from the interface 

region. Such strain would alter the band gap and shift the peak 

position, using the relationships calculated in section 3.1.4 we can 

estimate that the epilayer is less than 0.01% strained. 

There are a large number of possible donors in CdS and the 

position of the 12 line is relatively insensitive to their identity. 

The measured position of the 12 line in our MOCVD material was 4869.9 

A, which is consistent with the findings of other workers and 

corresponds to a whole series of possible donors including Li, F, C1, Ga 

and Al [28]. The possible autodoping of the layers by gallium is 

discussed below. 

Figure 3.17 shows the CdS green edge emission of the same sample. 

The emission is approximately one thirtieth of the intensity of the 

excitonic emission. The spectrum shows a band peaking at 5145 followed 

by a series of phonon replicas. There are also some phonon replicas of 

the excitonic emission which are identified on the figure. The green 

edge emission can originate from either of two processes, the so called 

high energy series (HES) and low energy series (LES) [29]. The LES 

originates from donor-acceptor pair recombination in which an electron 

bound to a donor impurity recombines directly with a hole bound to an 

acceptor impurity. The HES is caused when a free electron recombines 

with a hole at an acceptor site. Both these emissions can display extra 

bands due to recinbination with the 2s state of the acceptor [30]. The 

expressions for the recombination energy for the donor-acceptor pair 

and free to bound recombination processes was given in section 1.5.3 

[27,31]. We can use the free to bound expression (equation (x) section 

1.5.3) to estimate the depth of the acceptor involved. We note that the 

kTe term in expression (x) in section 1.5.3 involves an unknown 

quantity Te the electron temperature. We ignore this term here as it is 
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usually small, however, we note that as a result the estimates of the 

acceptor depths are lower limits. 

The recombination energy in all the best CdS samples has a 

zero-phonon peak at 5145+5 R. This represents a recombination energy 

of 2.4095+_. 003 eV. This is more than the energy observed by Henry et 

al [27] for distant D-A pairs in CdS (2.391-2.397eV) is consistent with 

free to bound recombination. The calculated acceptor depth for this 

transition (in the free to bound case) is 170+3 meV, which agrees well 

with the depth of Na or Li acceptors of 169+6 meV and 165+_6 meV 

respectively [27]. The temperature dependance of this emission is shown 

in figure 3.18. It can be seen that the emission intensity remains 

approximately constant up to 120 K; after this the luminescence is 

quenched with an activation energy of 54 meV. This dependence is 

consistant with CdS free to bound recombination as studied by other 

workers [29]. Bound to bound recombination in CdS has not been observed 

above 77k (it was historically referred to as the low temperature 

series [26]). Moreover, d-a pair emission generally quenches with the 

activation energy of the donor, no known donor exists at a depth of 54 

meV below the CdS conduction band. If such a donor did exist than the 

depth of acceptor this implies is 100 meV, again no known acceptor lies 

at this depth in CdS. No shift in the peak position with increasing 

laser intensity was observed for the green emission, d-a pair 

recombination will usually show a shift lower energy due to the 

saturation of the close pairs. We conclude that the series starting at 

5145A is almost certainly free to bound recombination. 

In order to optimize the growth conditions the effect of growth 

temperature on the photoluminescence was investigated. Figure 3.19 

shows a series of three spectra demonstrating the effect of growth 

temperature (Tg) on the bound exciton emission from the CdS. For 
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samples with Tg smaller than 350 °C the emission is broad and faint, 

characteristic of poor material. As T9 was raised above 350 °C the 

luminescence from the epilayers sharpened and brightened rapidly until 

some broadening was evident again above 400 °C. The poor quality of the 

low T9 material's luminescence is almost certainly due to a high level 

of crystalline defects. At this low temperature the atoms do not have 

sufficent kinetic energy to move on the surface and find their correct 

sites. Such effects are seen for all epitaxial techniques when the 

substrate temperature is too low. The broadening for high T9 samples 

may be due to a higher level of impurities in the layer (see section 

3.3.3.4). 

The green edge emission also showed changes as the growth 

temperature was raised. Figure 3.20 shows the luminescence from a 

sample grown at 450 °C. It can be seen that the green edge emission is 

considerably more intense than the excitonic emission, unlike the 

spectra in figure 3.15 where it is approximately 30 times fainter. The 

intensity of the green edge emission relative to the excitonic emission 

is very sensitive to the level of impurities within the layer [28]. The 

intensity of either the HES or LES series increasing rapidly as the 

impurity concentration increases. Consequently, the intensity change is 

consistent with higher impurity incorporation at higher growth 

temperatures. 

Reflection spectroscopy was also applied to the CdS epilayers. The 

imaginary parts of the refractive index of semiconductors show large 

anomalies below the band edge corresponding to the free exciton 

resonances, the reflection minima are taken as occuring at the free 

exciton energies [32]. Figure 3.21 shows two spectra for layers grown 

at 3500C and 450 0 C. The spectra clearly show the three valence bands 

(indicated on the figure) characteristic of the wurtzite valence band. 
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The reflection minima occuring at 2.551,2.566 and 2.632 eV. These 

energies correspond exactly to the reflection minima of the A, B and C 

excitons as reported by Thomas and Hopfield [32]. There is no evidence 

of strain-induced shifts for these thicknesses (aonrox 1 gym, ). 

indicating that the layers are thicker than the critical thickness. 

There is a noticeable improvement in the spectra for the higher T9 

sample, the resonances become more clearly defined and the C resonance 

is much more easily seen. 

3.3.3.2 GaAs 100 substrates 

Figure 3.22 shows the near gap emission from a layer of CdS grown 

at 4000C on GaAs(100) (sample MH10a). The emission shows clearly both 

excitonic emission and green edge emission. It was observed in the 

RHEED section that this sample demonstrated wurtzite epitaxy on the 

sphalerite (100) face. However, the photoluminescence indicates poor 

quality on this face relative to the CdS grown on the (111)A face (see 

previous section) with an exciton line FWHM of 15 mey (cf 1.5 meV 

above). The green edge emission is not well resolved and is of 

comparable intensity to the excitonic emission. The green edge emission 

seems to contain luminescence bands from several different defect 

centres. 

In the light of the purity of the layers grown on GaAs (111)A, we 

attribute the breadth of the excitonic emission to high levels of 

dislocations causing strain broadening. It is obvious that the CdS 

grown on the (111)A face is of superior quality. Moreover, the CdS 

grown on the (111)A face was grown at the lower temperature of 350 °C. 

CdS grown on 100 GaAs at this temperature was polycrystalline and 

showed only broad band luminescence. We conclude that the CdS grown on 
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(100) GaAs, although epitaxial, contains more lattice defects than that 

grown on (111)A GaAs at the same temperature. We note, however, that 

the CdS epitaxy on this face at higher growth temperatures is of 

surprisingly good quality and represents the first reported wurtzite 

epitaxy on a sphalerite (100) face. 

3.3.3.3 InP (111)B substrates 

The other principal substrate experimented with for CdS growth was 

InP (111)B. The mismatch between the (111) InP face and the CdS (0001) 

face is 0.27% compared to a figure of 3.5% for GaAs. It was hoped that 

the close lattice matching would reduce the level of dislocations in 

the epilayer and restrict impurity diffusion. Figures 3.23 and 3.24 

show two spectra of the luminescence from sample MH20, a1 Ym CdS 

epilayer grown on InP 111(B) at 350 °C. The emission is dominated by 

the 12 donor bound exciton emission at 4868.6A (2.545 eV). This line is 

twenty times broader than for CdS grown under similar conditions on 

GaAs (111)A. There is no evidence of the usual CdS green edge emission, 

only a weak peak at 4985 R accompanied by what appear to be phonon 

replicas. The breadth of the 12 line indicates a high concentration of 

donor impurities. The material grown on GaAs under the same conditions 

does not show such a broad 12 line and we can conclude that the donors 

responsible are either intrinsic or originate from the InP substrate. 

We can estimate the depth of the donor responsible for the 12 line by 

using Haynes rule as outlined in section 1.5.2, equation (ix) [33]. 

Using the value for kd in CdS of 0.22 [27], we find a donor depth of 

33.2+_1 meV. This is consistant with the presence of several possible 

donors including Indium, which forms a shallow donor in CdS with a 

depth of 33.8 meV [28]. 

page 85 



CO 
4J 
-r-1 

n L 
Q 
v 

A 

ý-1 
a, 
C 
a, 

C 
H 

4850 

-I2 

Wavelength (A) 4950 

V) 
41 

D 

13 
L 

-41 
-r i 
0) 
C 
U) 

C 
H 

4950 

FB+ Phonon replicas 

Wavelength (A) 5450 

Figures 3.23 (upper spectrum). Photoluminescence spectrum 
showing excitonic emission from a CdS epilayer grown on InP 
(111) B at 350°C. 

Figure 3.24 (lower spectrum). Spectrum from same sample 
showing green edge emission. 



Figure 3.24 shows the green edge emission from the sample. The 

emission appears to show a zero-phonon peak at 4985 A accompanied by a 

series of phonon replicas with the right energy spacing for the CdS 

LO-phonon. Figure 3.25 shows the temperature dependence of this 

emission. It can be seen that the emission intensity remains constant 

until approximately 50 K. Above 50K the peak intensity is quenched with 

an activation energy of 35 meV. This behaviour is consistent with free 

to bound recombination [29]. Also, the emission is much shallower than 

any previously reported bound to bound process in CdS. Assuming a free 

to bound recombination process we calculate from equation (xviii) an 

acceptor depth of 106+3 meV. It is known that phosphorus forms an 

acceptor complex centre approximately 120 meV above the valence band in 

CdS [34]. The discrepancy in these two values could be accounted for by 

the kinetic energy term in equation (x), section 1.5.3. Moreover, there 

are no other reported acceptors close to this depth in CdS. A similar 

band was observed in CdS grown at high temperatures on GaAs, this band 

was ascribed to free to bound recombination at arsenic complexes lying 

94 meV above the valence band (see section 3.3.3.4). We therefore 

ascribe the emission at 4985, to free to bound recombination at 

phosphorus complex acceptor sites. 

The conclusion is clear: large scale indiffusion of In and P 

occurs when CdS is grown on InP at this temperature. The diffusion must 

be the result of the greater reactivity of the InP relative to GaAs. 

The CdS epilayers grown on this face are of reasonable structural 

quality but, even when grown at 350°C, autodoping by both indium and 

phosphorus is dominating the optical properties of the resulting 

layers. Because of the close lattice match to InP many CdS layers were 

grown on it under different conditions and with varying substrate 

preparations (see appendix 1). The luminescence shown in figures 3.23 
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and 3.24 was the best obtained from any such epilayer. It was apparent 

that the problem of massive autodoping was not easily solved. For this 

reason InP is an unattractive substrate for the growth of CdS by MOCVD. 

However, such evidence of diffusion was not found for CdS grown on 

GaAs, where the lattice mismatch is greater. It is clearly of interest 

to study whether autodoping occurs in this case. 

3.3.3.4 Autodoping on GaAs 

Table 3.2 shows the spectral and energy positions of all the major 

emissions observed in the epitaxial CdS along with our identifications 

and the sources used for comparison. It is interesting to compare the 

luminescence from the MOCVD grown material with that grown by other 

epitaxial methods. Christmann et al [35] studied CdS grown by VPE on 

GaAs (111)A at high temperature (650-750 °C). They observed a spectrum 

similar to that from the MOCVD material but the green edge emission was 

much more intense than the excitonic emission. In addition they 

observed the 18p and 15 lines [36]. These they ascribed to cadmium 

interstitials resulting from the large cadmium over-pressure present in 

their growth process. Yoshikawa and Sakai [37] studied the luminescence 

from CdS layers grown by the close-space technique on GaAs (111)A. 

These samples differ from the MOCVD material mainly in their growth 

temperature being much higher (>500°C). These authors conducted their 

experiments at 77K and observed the 12 and free to bound emissions; in 

addition they observed two extra emissions at 500nm and 510nm and 

called them the X and HT2 bands. These were ascribed to pair 

recombination involving two acceptor complexes at 94meV and 143meV. 

They postulated that these complexes were due to arsenic and GaVcd 

complexes respectively, hence assuming a large degree of gallium and 
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Wavelength(A) energy(eV) 

4853 2.554 

4859 2.550 

4869.9 2.5447 

4888.4 2.5356 

4958 2.500 

5045 2.456 

5145 2.409 

name origin 

Xo free exciton 

13 exciton bound to D+ 

12 Donor bound exciton 

11 Acceptor bound exciton 

I1-LO phonon replica 

I1-2L0 phonon replica 

FB free to bound emission 

Table 3.2. Emissions observed from CdS grown on 
GaAs. The identifications are based on the peak 
positions given in [27]. The identification of the 
free to bound emission is described in the text. 



arsenic indiffusion. We observed no such features at 1.6K or at 80K for 

any of our CdS epilayers. Indeed there was no clear evidence of a large 

impurity presence. The low growth temperature of MOCVD evidently 

reduces the indiffusion greatly. It is also possible that the superior 

quality of the MOCVD grown CdS prevents the formation of the complexes 

involved by restricting the formation of intrinsic defects. The width 

of the 12 line increases for the high T9 samples suggesting greater 

concentrations of donors for these samples. 

Autodoping of epitaxial layers by impurities from the substrate 

is a well studied problem in epitaxial growth. It has been shown that 

even at 300°C there is significant diffusion of gallium into epitaxial 

ZnSe [38]. Of the two substrate elements Ga and As we would expect the 

smaller atom (gallium) to diffuse the most rapidly. Gallium forms a 

shallow donor in CdS at 33.1 meV below the conduction band [28]. It was 

noted above that the position of the 12 line in the spectra is 

consistent with the presence of gallium or a number of other possible 

donors. We are therefore unable to state whether Ga is the major 

impurity in the layers grown at 350 °C. 

It is possible to gain an insight into the problem of autodoping 

by considering the diffusion of Ga into CdS. We will use epitaxial ZnSe 

as a comparison material as it is known to show the effects of Ga 

diffusion even at low temperatures. Unfortunately there are no 

measurements of the diffusion of Ga into CdS in the temperature range 

350-450°C. However, Jones and Mykura [39] did study this diffusion in 

the range 660-960 0C and for this range. By studying experimental data 

they proposed the following form for the diffusion constants of Ga 

along the c-axis of CdS. 

-4 _ C�_47x10 exp( KT5 m2s-1 at%1 (XV) 
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Notice that the constant is inversely proportional to the Ga 

concentration. Jones and Mykura suggested that in the limit of low 

concentration D becomes independent of the concentration below 0.1 At%. 

The same relation was studied for the diffusion of Ga in ZnSe in the 

temperature range 500-700°C by Takenoshita et al [401. They found that 

the diffusion constant was independent of concentration and could be 

expressed as 

Dznse' 676x10-2 expi-1.8/KT) m2s-1 (xvi) 

We can now simply extrapolate backwards to achieve an estimate of 

the relative diffusion of Ga in the two compounds, neglecting the 

effects of misfit dislocations in epitaxial material. The curves 

resulting for these equations are shown in figure 3.26. It is evident 

that the diffusion rate of Ga is somewhat higher in ZnSe than in CdS 

over this temperature range, in particular at 450 °C the rate is 10 

times greater in ZnSe than in CdS. Thus the observation of the purity 

of the layers, relative to other II-VI compounds grown on GaAs, even 

when grown at higher temperature, is partially supported by the Ga 

diffusion rates. Although some Ga diffusion must occur and there is 

evidence for this in the luminescence. It is worth noting that the Ga 

diffusion rate in CdS is inversely proportional to the Ga 

concentration. Therefore, qualitatively, the diffusion rate at any 

particular distance from the interface will fall with time. This effect 

may restrict the diffusion of gallium into CdS below that in a similar 

ZnSe epilayer. This calculation, however, is governed only by the rate 

of diffusion of Ga into the two compounds. In practice other effects 

may be more important such as chemical reactions between the GaAs 

surface and the growing layer. Such effects will be strongly dependent 
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on the surface grown on and the reagent used, these aspects are too 

complex to be discussed here. 

3.3.4 Cadmium Selenide 

3.3.4.1 Epilayer quality 

In the same manner as for the CdS samples, the CdSe epilayers were 

initially grown on a series of substrates. Photoluminescence was then 

used to assess the suitability of these substrates for the growth of 

good quality material. Figures 3.27,3.28 and 3.29 show a series of 

spectra of the near gap emission obtained from CdSe layers grown at 350 

°C on InAs (111)A, GaAs (100), (110), InP (111)B and a buffer layer of 

CdS on GaAs (111)A: figure 3.30 shows similar spectra from CdSe grown 

on GaAs (111)A. The sample numbers and substrates used are indicated on 

the diagrams. These spectra from layers grown under similar growth 

conditions do not show the large differences as do photoluminescence 

from CdS epilayers grown on the same substrates. The luminescence from 

the layer grown on the GaAs 111(A) shows resolved exciton lines, unlike 

those grown on the other substrates. The problems associated with the 

reactivity of the InAs and InP substrates made these less attractive 

choices than GaAs although the mismatch is less for these compounds. It 

was decided as a result of the photoluminescence results, and in the 

light of the quality of the CdS grown on this surface, to concentrate 

attempts at CdSe growth on GaAs 111(A) substrates. 

The poor quality of the CdSe epilayers relative to the CdS was 

discussed in sections 3.2.3 and 2.4. It was suggested there that the 

higher stability of the CdSe cubic phase and reagent prereaction were 

responsible for the observed differences. It was reported in section 

page 90 



Figures 3.27,3.28 and 3.29 (overleaf 
Series of photoluminescence spectra 
from CdSe epilayers grown on various 
The substrate used and sample number 
right of each spectrum. 

and on successive pages) 
showing edge emission 

substrates at 300-350 C. 
are indicated in the top 



U) 
4) 
-ri 
C 

12 
L 

A 

-rl 
N 
C 
cu 
41 
C 

H 

MH35c 
InAs(iil)A 

6500 Wavelength (4) 8000 

N 
4-1 
-ri 
C 

L 

A 

-ri 
U) 
C 

w 
41 
C 

H 

MH3a 
GaAs (100) 

6500 Wavelength (4) 8000 



U) 

-H 
C 
D 

L 

v 

41 
-ri 
cn 
C 
(1) 

C 
H 

6500 

MH3b 
GaAs (110) 

Wavelength (A) 8000 

N 

JO 
L 

41 
-rl 
G) 
C 
a) 
43 
C 

H 

MH35a 
InP(111) B 

6500 Wavelength (4) 8000 



U, 

. rl 
C 
D 

L 
v 

41 
-ri 
U, 
C 
Q) 
C 
H 

MH46 
CdS/ GaAs (111)A 

6500 Wavelength (A) 8000 



2.4 that raising the temperature reduced the formation of the hexagonal 

growth structures and this could be a result of lower vapour saturation 

and/or a decrease in the stability of the cubic phase. In order to 

investigate the effect of growth temperature, a series of CdSe 

epilayers was grown on GaAs (111)A with increasing Tgs. The 

photoluminescence spectra of the series were then recorded. 

Figures 3.30 and 3.31 show four spectra of the near-gap emission 

from CdSe epilayers grown on GaAs at 300,350,400 and 450°C. The 

luminescence from the layer grown at 300°C is interesting as at first 

appearances it shows excellent quality. In fact it demonstrates the 

limitations of photoluminescence as an assessment technique, since Laue 

X-ray plates of this sample clearly show that it is polycrystalline. To 

explain the luminescence we must propose that the individual crystals 

have grown so large as to produce good quality emission. Similar 

effects are seen for polycrystalline ZnSe when the particle size 

exceeds a few tens of microns [41]. It is clear that the layer is not 

growing epitaxially. However, the quality of the spectrum at least 

serves to demonstrate that large quantities of impurities are not being 

incorporated from the MOCVD sources. Indeed the crystalline quality of 

the individual crystals must be relatively high. The remaining spectra 

show a clear trend to higher quality epitaxial material as the 

temperature is raised. 

The emission for the low Tg samples is dominated by a broad band 

peaking at 7015A (1.765 eV labelled as Y in the diagram). As the growth 

temperature is raised the emission at 7015A fades and a deeper emission 

at 7150 A accompanied by phonon replicas dominates in the infra-red. 

This emission occurs at the spectral position of the free to bound 

recombination reported by Reynolds et al [42]. The corresponding 

acceptor depth being 110+_ 3 meV, consistent with either Li or Na 
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acceptors [43]. 

As Tg is raised the luminescence shows an increase in quality. The 

photoluminescence from the epilayers grown at high T9 show a number of 

characteristic CdSe spectral features. Figure 3.32 shows the excitonic 

emission from ? 1H43 grown at 4500C. The principle emission lines occur 

at 6805 A (1.821 eV) and 6824.5 A (1.816 eV), which correspond to the 

11 and 12 lines due to the neutral acceptor and donor bound excitons 

(observed in Na doped material) respectively [43]. The Xo line of the 

free exciton is also present at 6794.5 A (1.824 eV). The FWHM of the 12 

line is 1.5mev in the best samples compared to typically 0.1 meV 

observed in bulk platelets [27]. The luminescence from the high Tg 

samples is therefore consistent with good quality material. In 

particular the emission still indicates relatively pure material. 

3.3.4.2 Origin of defects: effect of growth under H1S 

In order to assess the reasons for the poor quality of the CdSe we 

need to determine the origin of the luminescence observed from these 

epilayers. In particular, the origin of the Y band is of interest, as 

this feature has also been observed in CdSe and ZnxCd1_XSe grown by MBE 

on GaAs and ZnSe at low temperatures [45]. It is obvious both from the 

morphology studies and from photoluminescence studies that the 

structural quality of the CdSe improved as the growth temperature was 

raised. The Y emission is not present in the luminescence from CdSe 

layers grown above 400°C. Further, we know from the CdS luminescence 

that the epilayers become less pure as the temperature is raised. We 

therefore conclude that the centre involved in the Y emission is either 

intrinsic or is a complex involving an intrinsic defect. This requires 

that the concentration of intrinsic defects reduces as the growth 
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temperature is raised. 

In order to try and identify the nature of the Y band the 

emission's dependence on temperature was studied. Figures 3.33 and 3.34 

show this dependence for both the Y band and the free to bound zero 

phonon peak. It can be seen that both emissions remain fairly constant 

in intensity until they start to quench at 40K for the Y band and 60 K 

for the free to bound, decaying with activation energies of 18 and 54 

meV respectively. The dependence of the 7150, band is totally 

consistant with its identification with free to bound recombination 

[29]. However, the Y band dependence is inconclusive as the 

luminescence quenches at relatively low temperature. In fact the 

dependence is not particularly characteristic of free to bound or D-A 

pair emissions. The lack of clearly resolved phonon replicas for the 

band also makes these possibilities unlikely. Samarth pointed out that 

the Y emission disappears for the MBE samples after annealing in Se and 

suggested a Se vacancy complex may be involved [46]. The MBE samples 

were grown exclusively in the cubic phase. We note that the emission 

band was totally absent in the emission from the polycrystalline layer. 

It is apparent that the defect is associated with the epitaxial growth 

process. 

Interesting evidence for the origin of the Y band came during the 

attempted growth of alloys (section 3.3.5). Figure 3.35 shows the near 

gap emission from an epilayer grown at 3500C on GaAs (111)A with 10 

cc/in H2Se and 60 cc/m H2S flowing (MH50 see appendix 1). This layer was 

assessed by reflectivity to contain 2% sulphur. It is obvious that the 

quality of the luminescence is superior to that from CdSe grown under 

the same conditions without H2S flowing. In particular the emission at 

70158 is totally absent. Growing with an overpressure of H2S prevents 

the formation of the defect involved in the Y band. Layers grown under 
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insufficent H2S to incorporate any sulphur proved to show similar 

luminescence to the pure CdSe samples. It was reported in the RHEED 

section that the same sample, MH50, grown on GaAs (111)A was purely 

wurtzite. It can be concluded that the incorporation of even small 

amounts of sulphur in the CdSe epilayers has a beneficial effect on the 

structural quality. The most likely reason for this change in phase is 

simply the lower stability of the cubic phase in CdS relative to CdSe 

when grown epitaxially. 

The addition of small amounts of sulphur is unlikely to prevent 

the formation of point defects such as acceptor complexes although it 

could conceivably passivate them. A more likely explanation, therefore, 

is that the absence of the Y band from this sample is a result of the 

change of phase. This suggests that the Y band is associated with the 

cubic twinning in the pure CdSe layers grown at low temperature. The Y0 

band observed in the luminescence from ZnSe is known to be associated 

with carrier trapping by twins [41], and occurs at a similar depth to 

the Y band in CdSe (allowing for the difference in band gaps). Although 

we cannot positively identify the Y band, we believe that the above 

analysis presents strong evidence for recombination at extended defects 

in the epilayers being responsible. 
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3.3.5 Ternary alloys 

The growth of alloys by MOCVD is, in principle, possible by simple 

mixing of the appropriate reagent flows. In this manner other workers 

have been able to grow a number of ternary alloys, including ZnSxSei-x 

and CdxHgl_xTe [38,47]. The values of x achieved will be a function of 

the gas phase ratios of the MOCVD reagents and the growth temperature. 

For our study the growth of the ternary alloy CdSi_xSex was attempted 

by mixing of the H2S and H2Se gas flows in the reaction vessel. The 

hydride flows were mixed so as to produce a gas partial pressure of 

H2Se defined by 

R_I H2Se (xvi i) 
[H 2 Se] + [H 2S 

The alloy concentration x will be a function of R. The nature of 

the x-R relationship is governed by a number of factors relating to the 

reagent sources used. In general the x-R relationship will usually be 

a non-linear function. To determine the x-R curve for the CdSl-x Sex a 

series of alloy samples was grown with varying H2S partial pressures. 

The x values were determined from reflection spectroscopy and/or 

photoluminescence. The variation in the alloys A exciton band 

gap Ea with x is given by [48] 

Ea(x)= Ea(0)+(Ea(1)-Ea(0))x-bx(1-x) (xviii) 

Where b is the band bowing parameter. Figure 3.36 shows the 

variation of Ea with x assuming a value of 310meV for b as in [48]. 
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Figure 3.36. Variation of band gap with x for the alloy 

CdS1-x Sex. 

Reflection spectroscopy is an established technique for 

determining alloy concentrations. The free exciton energy is taken as 

being at the reflection minimum [48] and the band gap calculated by 

adding the binding energy of the exciton. Photoluminescence allowed an 

assessment of the alloy's quality and consistency. In particular the 

small size of the focussed laser spot (approx 0. lmm diameter) allowed 

the variation in alloy concentrations across the sample to be assessed. 

A series of alloys was grown at 350°C and 400°C, all on GaAs (111)A. 

The flow rates of the reagents were 10 cc/m of DMC and a total of 100 

cc/m hydride flow (i. e. the sum of the hydride flow rates was a 

constant 100cc/Yn). 
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Figures 3.37 and 3.38 show the variations of x with R for the two 

growth temperatures. The points are experimental and indicate the 

degree of variation of the alloy concentration across the samples 

(error bars). It can be seen that a considerable over-pressure of H2S 

is necessary in order to achieve some sulphur incorporation in the 

layer. This is similar to the situation in the related ZnSxSel_x system 

[491 where an over-pressure of H2S is also necessary to incorporate 

sulphur. 

The relationships shown render the growth of alloys in the x range 

0.1-0.9 extremely difficult as fluctuations in the H2Se flow rate are 

very significant. A change in the H2Se flow rate will cause a variation 

in x whose magnitude will be proportional to the gradient of the x-R 

graph. Thus, in the range x=0.1-1 large variations in the alloy 

concentration with depth and laterally across the substrate can be 

expected. 

The effect of this is illustrated in figure 3.39 which shows a 

luminescence spectrum from an alloy grown at 350 °C with an x value of 

0.3. The very large breadth of the emission from the x=0.3 sample is 

obvious. In fact it is impossible to resolve any clear features in the 

reflection spectra and the concentration is estimated from the 

luminescence spectrum. Furthermore, the apparent concentration for this 

sample varied appreciably according to which part of the sample the 

laser spot illuminated. This breadth makes an assessment of the alloys 

structural quality and purity difficult. However, it was observed from 

all the alloys in this range that the total photoluminescence intensity 

was much higher than that observed from either the pure CdS or the pure 

CdSe epilayers. 

Unfortunately the mass flow controllers fitted to the growth 

system could not control the flow of the H2Se accurately enough to 
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allow alloys of consistent composition to be grown in the range 

x=0.1-0.9. The luminescence from these alloys is investigated further 

in section 4.2.1, where the origin of the superlattice emission is 

studied. 
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3.4 DISCUSSION AND CONCLUSIONS 

From the results in this chapter we can draw a number of 

conclusions concerning the growth of CdS, CdSe and the ternary alloy 

CdSi_xSex by MOCVD. The quality of the CdS epilayers was dominated by 

the substrate used. It was found that the production of high quality, 

smooth and purely wurtzite CdS epilayers by MOCVD is possible on the 

(111)A face of GaAs. That CdS should grow hexagonally on this face, 

despite the 3.5% lattice mismatch between GaAs and CdS, is 

understandable in terms of the similarity of the wurtzite (0001) and 

sphalerite (111) surfaces. In contrast, the CdS layers grown on GaAs 

(111)B consisted of heavily twinned cubic material. The structural 

difference between CdS grown epitaxially on GaAs (111)A and (111)B has 

been noted by other authors. The reasons for the cubic structure of the 

CdS grown on the arsenic face (the B face) unlike that grown on the 

gallium face are unclear. We only note that it must originate from 

different chemical natures of the two faces as they are structurally 

identical. The CdS was also wurtzite when grown on GaAs (100) at high 

growth temperatures. However, photoluminescence indicated a high 

density of lattice defects in the layers grown on GaAs (100). 

CdS layers grown on InP (111)B were also studied. The 

photoluminescence showed clear evidence of indium and phosphorus 

diffusion into these epilayers, even for a low growth temperature of 

350°C. It was evident that the high reactivity of the InP surface was 

encouraging autodoping of the epilayers. We can conclude that InP is 

not suitable for the growth of high purity CdS at this temperature. 

From the photoluminescence evidence we can conclude that the 

optimum growth temperature for CdS, as judged by the FWHM of the bound 

exciton emission, was 350 °C. There was no evidence in the 
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photoluminescnce spectra of large scale diffusion of Ga when grown 

at 350°C. It was observed that the impurity level increased as the 

growth temperature was raised. 

The growth of CdSe epitaxially was also studied and this was the 

first report of such a study. The photoluminescence from CdSe samples 

grown on a variety of substrates was investigated. RHEED studies proved 

that at low growth temperatures the CdSe grown on GaAs (111)A was 

largely cubic and was heavily twinned. The photoluminescence confirmed 

poor quality and was dominated by an emission band 79 meV below the 

band edge, referred to here as the Y band. The temperature dependence 

and shape of the emission was found to be inconsistent with either 

conventional free to bound or d-a pair recombination. It was suggested 

that the emission was associated with the presence of cubic twins 

within the layer. 

The luminescence indicated considerable improvement in structural 

quality for higher T9 samples. It was found that CdSe grown on wurtzite 

CdS at 350°C was of no better quality than when grown on the cubic GaAs 

(111)A face. We conclude from this that the poor quality of the CdSe 

epilayers is not a result of the use of a cubic substrate. 

It is evident that the CdSe contains many more lattice defects 

than CdS grown at the same temperature. The reasons for the poor 

quality of the CdSe must lie in epitaxial growth process for this 

material. Similar results have been obtained from MBE-grown CdSe [45]. 

Moreover, the quality of the CdSe showed considerable improvement even 

when very small quantities of sulphur were incorporated in the layers, 

the presence of sulphur preventing the formation of the centre 

responsible for the Y band. In order to explain these results, we 

suggest that the incorporation of sulphur greatly enhances the 

stability of the wurtzite phase in the alloy. It was observed by RHEED 
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that the addition of sulphur to the layer prevented cubic or 

polycrystalline growth. The suppression of the Y emission in the alloys 

is probably linked to the change in phase. The suppression of the Y 

emission for higher Tg samples supports the view that these layers 

contain fewer twins. We conclude that the reagents used for our growth 

were not suitable for the growth of pure CdSe at low temperatures. At 

high growth temperatures, however, reasonable quality material can be 

grown on GaAs (111)A. 

The ternary alloy CdSxSel_x was studied. We concluded from the 

relationship between x and the gas phase ratio R that it is difficult 

using our gas system to grow uniform alloys in the x range 0.9 -0.1. 

This is a result of the preferential reaction of the dimethyl cadmium 

with the H2Se. We can conclude, however, that the quality of the alloys 

grown can be high, RHEED showing that the layers grown on GaAs (111)A 

are purely wurtzite. In addition it was observed that the integrated 

photoluminescence intensity from the alloys was extremely high. 
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4. CdS/CdSe SUPERLATTICES AND MULTILAYER STRUCTURES 

4.1 Introduction 

With the advent of precision epitaxial growth techniques it has 

proved possible to construct semiconductor structures with a 

precision on the atomic scale. In particular, the growth of modulated 

epitaxial structures has been studied intensively for a wide variety 

of material systems. In chapter 1 the field of II-VI superlattices 

was reviewed. It was noted that, to date, there has been no reported 

growth of superlattices using either CdS or CdSe. The reasons for 

this lie in the difficulties associated with the two stable phases of 

these compounds [1]. We showed in the previous chapter, and reported 

in [2], that high quality and smooth wurtzite CdS epilayers can be 

grown on GaAs (111)A substrates by MOCVD. We also found that good 

quality CdSe epilayers could be grown on either the CdS epilayers or 

GaAs (111)A at high growth temperatures. It was now clearly of great 

interest to determine if it was possible, using MOCVD, to grow a 

wurtzite superlattice using these two compounds. 

In this chapter the assessment of all the CdS/CdSe multilayer 

structures grown is presented. The chapter is divided into five 

sections. In the first section the structures grown are described. 

Transmission electron microscopy (TEM) images were used to study the 

structural quality of the layers. The second section discusses the 

results of optical assessment of the multilayers. The third section 

considers the theoretical background of the CdS/CdSe system. The 

fourth section uses theory to interpret the observed properties of 

the superlattice luminescence; in this section a measurement of the 

band offsets is made. A final section gives the summary and 
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conclusions to the chapter. 

4.2. Transmission electron microscopy measurements 

4.2.1 Samples grown 

Following the successful growth of wurtzite CdS on GaAs (111)A 

the MOCVD growth apparatus was modified as described in section 

2.3.2. This allowed the growth of multilayer structures with a 

thickness precision of a few atomic monolayers. It was decided that 

to minimise the effect of the substrate mismatch and autodoping the 

superlattices would principally be grown on a CdS buffer layer on 

GaAs (111)A. Moreover, it was known that the CdS grown on this face 

produced a good quality smooth wurtzite surface suitable for 

superlattice growth. A series of superlattices were then grown at 

temperatures of 350,400 and 450°C. A typical structure is shown 

schematically in figure 4.1. 

20 Period superlattice 

CdSe LCdSe 

P 
T 

CdS LcdS 

c-axis 

Figure 4.1. Schematic representation of superlattice 

structures prepared by MOCVD. 
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The superlattice consists of a 30001 buffer layer of CdS on GaAs 

(111)A, followed by twenty repetitions of alternating CdS and CdSe 

layers. Before any optical studies of the superlattices were attempted 

they were assessed by transmission electron microscopy. This technique 

has been used to study the structure of a wide range of semiconductor 

microstructure systems (for a review see [3]). 

4.2.2 Sample preparation 

The TEM was conducted by A. G. Cullis using the facilities at 

R. S. R. E. The samples were prepared in a cross sectional configuration. 

Layer pairs bonded face to face with epoxy resin were first reduced in 

thickness normal to the joint by mechanical polishing. Specimen discs, 

3mm in diameter, were cut out and were reduced to electron transparency 

by low voltage ion milling. Most of the thickness reduction was carried 

out using Ar+ ion bombardment but, for the final stages of the process, 

reactive I+ ion milling was employed to minimise artefact formation 

[4). The thinned specimens were examined in a JEOL JEM 4000 EX TEM 

operated at 400KeV. 

4.2.3 Results and discussion 

Looking first at the CdS buffer layer, figure 4.2 shows a region 

of the CdS/GaAs interface. It is immediately evident that the interface 

is abrupt and that the CdS is growing commensurately with the GaAs. In 

addition, the CdS is observed to grow with high crystalline quality on 

the GaAs. Diffraction analysis showed that the buffer layers are 

orientated with [0001] CdS parallel to the [111] GaAs and with the 

page 107 



JI 
. air .. 

4' 

'ý 
LlZ 

p7d1. -. rn 9r- ße 
7y ... 

yV c- 'ýJ v. iw J 

fk. T 

Figure 4.2. Transmission electron lattice image of the 
CdS/GaAs interface for MH93. The interface and the respective 
compounds are indicated on the image. 



[1120] CdS axis parallel to the [110] GaAs. 

Figure 4.3 shows another region of the interface. As is (in part) 

evident, some dislocations, occasional stacking faults and microtwin 

defects originate at the interface and extend into the CdS buffer. The 

figure clearly shows a dislocation threading into the buffer layer 

(left hand side). This dislocation appears to form a loop starting some 

250 A from the interface, below which there are no dislocations. 

Although this is only a single measurement, it does support the 

calculated critical thickness of CdS on GaAs of approximately 220R (see 

section 3.1.2). Further studies of thin CdS epilayers on this surface 

have revealed that the strain is relaxed within the first 4008 of 

epilayer [5]. Figure 4.4 shows the diffraction pattern obtained when 

the electron beam is passed along the [0001]/[111] axis of a 400A CdS 

epilayer on GaAs (111)A (taken from [51). The six-fold symmetry of the 

pattern is obvious; in addition, the formation of the spots into 

rosettes indicates relaxation of the epilayer relative to the GaAs. All 

the findings from the TEM studies of the CdS buffer layers are 

consistent with the RHEED analysis for CdS epilayers given in section 

3.2. Following this confirmation of the buffer layer's structural 

quality the superlattices themselves were examined. 

Figure 4.5 shows a 'good' region of a 110R/35A CdS/CdSe (MH93) 

superlattice. The alternating layers of the superlattice are clearly 

revealed. The shading effects are possibly caused by sample stressing 

during preparation. Diffraction analysis showed that the CdSe in the 

superlattices was purely wurtzite, in contrast to the CdSe grown 

directly on GaAs (111)A (see section 3.2.3). The layers were found to 

be of good structural quality; however, undulations in thickness did 

occur at some positions. Figure 4.6 shows a region of MH82, a 150 /70A 

CdS/CdSe superlattice grown at 4000C. It can be seen that the 

page 108 



Figure 4.3. Lattice image of CdS/GaAs interface in MH91. The 
image shows the interface and a number of lattice faults in 
the CdS epilayer. Marked on the figure are a two threading 
dislocation lines X and Y, this dislocation appears to 
originate at a misfit dislocation in the CdS lying parallel 
to the interface (Z). 



Figure 4.4. Transmission electron diffraction pattern from a 
400k thick CdS epilayer grown on GaAs (111)A. The electron 
beam is lying parallel to the cubic [001], hexagonal [0001] 
axis. The formation of the spots into rosettes indicates that 
the epilayer is relaxed relative to the substrate (see text). 
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Figure 4.5. Lattice image of CdS/CdSe superlattice (MH93). 
The component layers are as indicated. The mean thicknesses 
as measured from the imaging are CdSe 35k, CdS 110. 



superlattice shows undulations and, in particular, the top of the CdS 

buffer layers is not regular. This photograph shows both the buffer and 

superlattice in their entirety; several dislocations can be seen to 

extend into the superlattice from close to the interface. Figure 4.7 

shows a similar region of MH93, a 110"5R CdS/CdSe superlattice grown 

at 4500C. This time the top of the CdS buffer is much smoother and the 

superlattice consequently more planar. From this evidence we believe 

that the increased growth temperature produces a smoother layer. This 

assertion is supported by the morphology studies in section 2.4, where 

it was found that the CdS epilayers became smoother at higher 

temperatures. Finally, figure 4.8 shows a high resolution image of 

MH91. By measuring accurately the thickness of a number of periods it 

was possible to measure the thickness of the component layers. This 

sample was found to be a 90RA60A CdSe/CdS superlattice in variance to 

the intended 100R/200A estimated from growth rates. Appendix 1 

indicates the calibration samples used to obtain growth rates. 

We can conclude from the TEM measurements that the superlattices 

are of good structural quality. The interfaces between the component 

layers being abrupt and acceptably smooth. In addition, the high 

quality of the CdS buffer layers grown on GaAs (111)A was confirmed. 

The presence of strain relieving dislocations in the buffer layer was 

observed, with evidence for the existance of a <400& critical thickness 

for CdS on GaAs, in agreement with theory. 

As a result of the TEM studies the superlattices were known to be 

of sufficent structural quality to exhibit quantum size effects in 

luminescence experiments. The photoluminescence of the layers was then 

studied. 
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Figure 4.7. TEM image showing substrate, buffer layer and 
superlattice of sample MH93. This sample was grown at 450°C 
and shows a smooth and regular interface (c. f. figure 4.6). 

c V1- VN 



Figure 4.8. High resolution TEM image of superlattice MH91. 
The layer thicknesses were measured from this to be CdS l60ä, 
CdSe 90L. 



4.3 Photoluminescence results 

Introduction 

The technique used to study the electronic states within the 

CdS/CdSe superlattices was photoluminescence. All II-VI superlattice 

systems studied by other workers exhibit strong band to band 

recombination emission (see section 1.7). If the layers are of high 

purity then this emission is principally excitonic recombination. The 

observed recombination energy for these transitions allows an 

assessment of the carrier energy levels within the layers. It was known 

from TEM that we could grow CdS/CdSe wurtzite superlattices with a high 

degree of crystalline perfection. We could now proceed to try and 

determine something of the electronic states within the superlattices. 

A number of superlattices were then grown, consisting of 20 

periods on a CdS buffer layer as described in the previous section. In 

light of the TEM evidence it was decided to grow at 450°C as this 

produced the smoothest layers. Table 4.1 gives a list of all the 

superlattices studied by photoluminescence in this chapter. The periods 

were calculated from growth rates calibrated by TEM measurements. The 

superlattices can be divided into two groups; the constant period 

series and the constant ratio series. These series were grown to assist 

the theoretical interpretation in section 4.4. The photoluminescence 

spectra of all these samples was then recorded with the samples at 2K, 

as described in section 3.3. The 488nm Ar+ laser line was used to 

excite the luminescence. All spectra were corrected for instrumental 

response. 
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Constant ratio series 

Name LCdS LCdSe LCdS/'CdSe Period 

MH92 50 60 0.8 110 
NH104 45 40 1.1 85 
MH95 40 25 1.6 65 
MH123 25 25 1 50 
MH121 15 15 1 30 
MH114 14 14 1 28 
MH120 7 7 1 14 

Constant period series 

Name LCdS LCdSe LCdS/Period Period 

MH109 76 8 0.9 84 
MH108 68 20 0.77 88 
MH110 40 56 0.58 96 
Milll 40 60 0.4 100 
MH112 24 84 0.29 108 
MH113 12 104 0.1 116 

Table 4.1. Superlattices studied by photoluminescence. 
They are divided into two series as discussed in the 
text. The dimensions are in angstroms, and are 
determined from growth rates calibrated by TEM 
measurements. 



4.3.1 Photoluminescence from CdS/CdSe strained layer 

superlattices 

Figure 4.9 shows the spectrum obtained from MH88, a 300,9/400A 

CdS/CdSe superlattice. It can be seen that the emission is composed of 

several bands with structure in the region of the CdSe edge emission 

(6800-7800, ). In addition to this red emission there is a bright band 

in the near infrared centred on 90008. The infrared emission is not 

observed from any of the single layers; in particular it is not present 

in the spectrum from the alloy CdS0.5Se0.5. We conclude therefore that 

this emission is the result of the superlattice structure. As the 

superlattice period is reduced the structure near the CdSe edge 

emission position simplifies. Figure 4.10 shows the spectrum obtained 

from MH90 (160F, /130A CdS/CdSe). It can be seen that this smaller period 

sample displays only one, relatively narrow, band in the red centred at 

6900A. The infra-red emission is still present for this sample and is 

somewhat more intense than for MH88. As the period reduces to 'true' 

superlattice proportions the emission simplifies further. Figure 4.11 

shows the luminescence from ? 1H95 with a period of 65 A (40A/25A 

CdS/CdSe). The emission for this samples is dominated by the broad band 

emission. Note that the band is shifted from the infra-red into the 

red, as expected for quantum confinement effects. The band centred at 

84008 in figure 4.11 is the GaAs edge emission from the substrate. 

Subsequently to this series a number of small period samples were 

grown. These all exhibited one single intense emission band in the red 

region of the spectrum. Figure 4.12 shows the emission from MH121, a 

15Jý/15X CdS/CdSe superlattice. The spectrum shows the band centred at 

7000.. The emission in this case comes from only 600A of material (the 

superlattice). It is, however, approximately 10 times brighter than the 
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Figure 4.9. Low temperature photoluminescence spectrum from 

MH88, a 300A/4001 CdS/CdSe superlattice. 
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Figure 4.10. Photoluminescence spectrum from MH90 (160/130A 
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excitonic emission observed from a 1µm CdSe epilayer under the same 

conditions (e. g. MH43 figure 3.31). There is some emission in the 

region of the GaAs bandedge as indicated by the rise in emission at the 

low energy end of the spectrum. The red peak is similar (in width and 

brightness) to that observed from other small period superlattices 

composed of II VI semiconductors, for instance ZnSe/ZnTe and ZnS/ZnSe 

[6,7]. 

Without studying the theoretical reasons for the emission 

observed, we can make one simple observation. This concerns 

superlattices in which the CdS and CdSe layers are of equal thickness. 

For such a superlattice (in the limit of small period) we expect, 

intuitively, the emission to become that of the alloy CdS 0.5 Se 0.5* 
Figure 4.13 shows the spectra from MH120 and NH73, a 7R/A superlattice 

and a CdS0.5Se0.5 (see section 3.3.5) alloy respectively; note the 

different wavelength limits on the spectra. It can be seen that the 

spectra are still very different even for such a small period 

superlattice. The large difference suggests that the superlattice 

structure holds even down to such small periods. That is to say that 

the absence of 5700, emission from the superlattice confirms that 

isotropic alloying does not occur. 

We conclude that the spectra from the superlattices show features 

not observed in single epilayers. That these feature originate from the 

modulated nature of the structures can be inferred. We can now attempt 

to identify the emission bands. 
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4.3.2 Origin of emission bands 

The interpretation of superlattice emission was briefly reviewed 
in section 1.6. The nature of the transitions responsible for the 

emission from our samples was initially totally unknown. Before any 

analysis of the CdS/CdSe superlattice system could be attempted it was 

necessary to identify the origin of the luminescence peaks. In this 

section we will discuss this identification. In section 4.4 theory is 

developed to describe the dependence of the luminescence on period for 

two series of samples. 

It is clear from the short period superlattices that the emission 

band in the near-infrared is the principal emission from the 

superlattice. As we move to large periods we might expect the 

luminescence to change to that of bulk CdSe (cf. the CdTe/Cd1_xznxTe 

system [8]). We therefore expected to be able to identify the 

luminescence peaks from the thick CdSe layers in terms of the CdSe 

epilayer emission as studied in section 3.3.4. 

Figures 4.14 and 4.15 shows the red emission from MH88 and MH89 

with periods of 700, and 5008 respectively. Both spectra show the same 

two bands in addition to the deep infra-red emission. The visible red 

emission from the sample consist of two bands (labelled A and B on the 

figures), with maxima at 7100A and 7250A respectively. We can compare 

these spectra to those observed from the the CdSe epilayers (section 

3.3.4.1). We find that the A and B bands from the superlattices lie 

close to the wavelength positions of the CdSe epilayer emissions 

referred to as the Y band (7015) and the zero-phonon free to bound 

emissions (7150, ) respectively (see figure 3.15). Figure 4.16 shows the 

temperature dependence of the two bands A and B for MH88. The 

temperature dependence of the A band is identical to that of the Y band 

from the CdSe epilayers (figure 3.34): they both show rapid quenching 
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above 35K with the same activation energy of 18 meV. Correspondingly, 

band B shows identical temperature dependance to the free to bound 

recombination (figure 3.35). We can conclude that the A and B bands are 

respectively the same emissions as the Y and free to bound bands 

observed from the CdSe epilayers. The discrepancy between the 

wavelength positions observed in epilayers and superlattices is 

discussed below. 

As the sample is warmed, further structure is revealed in the 

spectra due to the quenching of the Y band at 35K. Figure 4.17 shows 

three spectra taken from MH88 at 15,50 and 150K. The Y and free to 

bound bands fade as the temperature is raised, leaving a narrow band at 

6850A (at 45K); this is close to the position expected for the free 

exciton from CdSe (6797A [9]) and is marked in figure 4.17 as X0. This 

band's temperature dependence is shown in figure 4.18a. The 

luminescence from the peak at 6850A persists to high temperature and 

decays with a small activation energy (29meV). Figure 4.18b shows the 

temperature dependence of the CdSe free exciton (from MH43). It can be 

seen that the decays are almost identical, the luminescence decaying 

with an activation energy of 26meV. We conclude that the band at 6850A 

is the free exciton emission from the CdSe layers in MH88. MH89 also 

showed the same X0 emission at higher temperatures. Figure 4.19 shows 

the free exciton emission resolved with MH89 at 45K along with the Y 

band and the free to bound emission (marked FB). 

As we move to smaller periods emission spectra changes markedly. 

Figure 4.20 is a spectra recorded from MH90 at 1.6K. The spectrum shows 

only the CdSe free exciton emission (X0) with a very weak free to bound 

zero-phonon line visible (marked FB on the figure). In order to 

understand the emission the first thing to note is that the X0 emission 

from the three samples is shifted to lower energy relative to the bulk 
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CdSe free exciton emission. It was shown in section 3.1.4 that elastic 

deformation of the lattice can produce such a shift. Clearly this could 

provide an explanation for the red shift observed for the free exciton 

from these samples. 

4.3.3 Strain relaxation in CdS/CdSe superlattices 

It is clearly of interest to try and determine whether the 

superlattices studied above are freestanding or pseudomorphic to the 

buffer layer. It was shown in section 1.6.3 that a freestanding 

strained layer superlattice consists of alternating layers under 

biaxial compression and tension. The lattice constant of such a system 

was calculated in section 1.6.3. Therefore we can calculate the biaxial 

compressive strain E on the CdSe in such a freestanding structure. We 

find it is given by (using equation (xxiii), section 1.6.3) 

E=0.039/(1+LCdSe/LCdS) (i) 

Where LCdSe and LCdS are the thicknesses of the CdSe and CdS 

layers respectively and 0.039 is the mismatch between CdS and CdSe. If 

MH88 is freestanding and the layers of the superlattice are 

commensurate to each other (without any strain relaxing dislocations) 

then the CdSe will have a 2.5% compressive strain. We can now use the 

theory in section 3.1.4 to calculate the energy shift of the CdSe free 

exciton emission that this strain produces. We find (from equation 

(xii), section 3.1.4) that we expect a red shift of 26 meV for the A 

exciton transition energy. The same figures for NHi89 and MH90 are 32 

and 30 meV respectively. We can compare these shifts to the observed 

shifts. The shifts measured being 16,23 and 31 meV for I1i88, MH89 and 
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MH90 respectively. We find that the observed shift is less than the 

calculated shift. However, the values get closer as the period 

decreases. Indeed, the discrepency for MH90 is well within the limits 

of experimental error (+-2 meV). MH91 was studied by TEM (see section 

4.2), this sample is similar to MH90 with only slightly thinner CdSe 

layers (90R compared to 1308 in MH90). MH91 was found to have high 

crystalline quality, containing very few dislocations. Therefore, we 

conclude that the samples with larger period than MH90 (290, ) are not 

freestanding. Moreover, neither are they pseudomorphic as this would 

produce an even larger red shift. We can therefore conclude that the 

large period superlattices must contain many dislocations in each CdSe 

epilayer relaxing the strain. This is supported by the fact that the 

CdSe layers in these superlattices are close to the critical thickness 

calculated in section 3.1.2 for CdSe grown on CdS (200, ). We can also 

conclude that the superlattices with periods <290R are either 

freestanding or pseudomorphic. 

In section 3.3.4.2 the origin of the Y band was discussed. It was 

suggested that this band may be associated with the presence of 

extended lattice defects in the epilayers. This band is absent in the 

emission from MH90 (160ä/130R CdS/CdSe) and all superlattices with 

periods smaller than 2508. We know that these superlattices are high 

quality with few lattice defects (section 4.2). We also found above 

that the thicker superlattices MH89 and MH88 probably contained many 

such defects. It seems reasonable to suggest that the two observations 

may be related and that the centres responsible for the Y band are not 

present in the smaller period superlattices. The evidence from both TEM 

and luminescence is that the small period superlattices are of high 

structural quality. The presence of only free excitonic emission from 

the CdSe in sample MH90 indicates high purity. This is an important 
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point in view of the analysis in section 4.4. The emission from the 

CdSe layers in small period structures (<240R) is free excitonic. 

As the period reduces the CdSe edge emission is suppressed and the 

deep, near-infrared, luminescence dominates. As observed above this 

emission is not observed from any of the single epilayers, and its 

intensity increases rapidly as the period decreases. The CdSe edge 

emission, in contrast, increases in intensity as the period increases. 

It is found that faint higher energy luminescence is observed for all 

the smaller period (<150R) superlattices. An example of this emission 

is shown for MH108 (68R/20R CdS/CdSe) in figure 4.21. This emission is 

very broad, unlike the CdSe excitonic emission observed from thick 

samples. The origin of this emission is discussed in section 4.5.4. 

We conclude that, as expected, in the limit of long period the 

emission from the CdS/CdSe superlattices becomes that of bulk CdSe. The 

CdSe free exciton emission shows clear evidence of red shifting caused 

by the compressive strain within the superlattice. We can finally 

conclude that the broad band infra-red emission is the only bright 

emission which is unique to the superlattice structure. 

4.3.4 Effect of laser intensity 

It was found that the infra-red emission of the superlattice 

samples showed large variations with excitation power density. Figure 

4.22 shows a series of spectra demonstrating this effect for MH121 

15&/15, superlattice). The luminescence peak shifts to higher energy by 

upto 100 mev as the laser power is increased. Accompanying this shift 

there is a reduction in the FWHM of the peak. Figure 4.23 shows the 

peak emission energy and FWHM as a function of laser intensity for this 

sample. The shift to higher energy becomes more pronounced for larger 

period samples. Figures 4.24 and 4.25 show this shift for MH95 and 
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Figure 4.22. Series of photoluminescence spectra showing the 
effect of laser excitation power on the emission from MH121. 
The relative laser intensities are indicated on the left hand 
side in arbitary units. 
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MH111, with periods of 655 and 100A respectively. It can be seen that 

the emission peak from MH95 shifts by up to 300meV as the laser power 

increases. None of the other peaks observed from the superlattices 

exhibited this shift. In particular the free to bound, Y band and free 

excitonic emissions observed from the large period structures did not 

shift with increasing laser intensity. 

Also studied was the intensity of the emission as a function of 

laser power. This relationship can be useful in determining the origin 

of superlattice emission. If the emission is impurity driven then it 

should be possible to saturate the luminescence by increasing the laser 

power significantly. This results from the presence of only a finite 

number of impurities to participate in the recombination [10]. In the 

alternative case of excitonic recombination we expect the luminescence 

intensity to be proportional to the exciting laser power. 

Figure 4.26 shows the LN(Iin) against LN(11) for MH120 (7"R 

CdS/CdSe), where in is the laser excitation power and Il is the peak 

emission intensity (i. e. the peak energy emission per unit wavelength). 

There is no evidence of luminescence saturation and the power N taken 

from the graph is 1.07 indicating excitonic recombination. This is 

consistent with, although not conclusive proof of, intrinsic 

recombination not involving impurities. 

4.3.5 Temperature dependence 

The temperature dependence of sample MH120 was studied. This 

sample is a 79/7ä superlattice. The red emission from this sample was 

shown in figure 4.13 and consists of intense superlattice emission at 

68001. In addition, faint broad band emission in the region 5800-6300A 

is observed. This sample, in common with all the superlattices, shows 
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faint luminescence at a higher energy than the red or infrared 

'superlattice' emission. The origin of this band was investigated by 

examining the temperature dependence of the two bands. Figures 4.27a 

and 4.27b show this temperature dependence for the 6800A and 5500A 

emissions respectively. It can be seen that both emissions display a 

remarkable temperature dependence. The intense superlattice emission at 

68008 first reduces in intensity and then increases before quenching 

totally as the temperature is increased. The emission at 55008 actually 

increases initially, reaching a peak at the same temperature as the 

6800A emission is at minimum, before quenching totally as the 

temperature increases. It is unlikely that the emissions' respective 

minima and maxima occur at the same temperature by coincidence. It 

appears that carriers transfer from the superlattice recombination 

process to the 5500A emission as the temperature is raised. A similar 

effect is observed for very small period ZnSe/ZnTe superlattices [11]. 

In this system the luminescence from a 201 period superlattice was 

observed to increase as the temperature was raised. The authors 

attributed this to thermal detrapping of carriers. Our interpretation 

of this effect is discussed further in section 4.5.4. 

Figure 4.28 shows the temperature dependence of the emission from 

MH92. The emission from this sample consists of the broad, intense 

infra-red band observed in all superlattices with periods >50A. The two 

curves correspond to laser powers of 50 and 5mw as indicated. The 

curves show that the luminescence remains fairly constant up to 70K 

before decaying with an activation energy of 50 meV. The mechanism of 

the quenching process can not be discerned from these curves. However, 

the relationships are similar to those observed from other II-VI 

superlattices with periods in this range (for example ZnSe/ZnTe [11]). 
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Figure 4.27. Arrhenius plots that show the dependance of the 
photoluminescence peaks observed from MH121 (a 7A/7A 
superlattice) 

Figure 4.27a (upper graph) shows the temperature dependance 
of the emission intensity for the 68001 'superlattice 
emission'. The points are experimental, the line is drawn to 
aid the eye. 
Figure 4.27b (lower graph) shows the same dependance for the 
weaker luminescence observed in the region of 55001. The 
points and lines have the same significance as for the 
previous graph. The peak in emission intensity occurs at the 
same temperature as the dip in the 68001 emission intensity 
(i. e. at 60K). 
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4.3.6 Time resolved measurements 

The decay time of luminescence can give important information as 

to its origin. In particular the decay of the luminescence from 

superlattices has been extensively studied. It has been found these the 

decay times are very sensitive to the relative positions of the 

electron and holes within a superlattice [12]. For this reason time 

decay measurements of the infra-red band from our superlattices were 

important. These measurements were taken at Strathclyde university by 

X. Chen and K. P. O'Donnell. The technique used to measure the decay was 

time correlated photon counting. The details of the technique are 

described in reference [13]. Here we will simply examine the measured 

decays for two samples. The samples studied were MH123 and MH93 with 

periods of 50R and 145, respectively. Owing to the limitations of the 

detector, the time decay measurements were limited to luminescence in 

the visible region (longest wavelength 7500 R). 

The sample MH123 displayed strong superlattice emission in the 

region 7000-7500,. For this sample the time decay was measured at three 

wavelengths 7000,7300 and 7500,. The decay curve for for the emission 

at 7500A is shown in figure 4.29. The decays exhibit different 

lifetimes, the results are shown in table 4.2. The luminescence decays 

are not simple exponential. However, the principal decay is a single 

exponential curve with the given lifetimes. It can be seen that the 

decay is quite slow for excitonic recombination (16-63ns). This 

lifetime is long compared to 2.75ns for the free exciton in the alloy 

CdS0.5Se0.5 [13]. 

peak, indicating a 

GaAs the presence 

decay has been att 

impurities causes 

The decay is slower at lower energy positions in the 

peak shift to lower energy with time. In the case of 

of other exponential components in the luminescence 

ributed to the presence of impurities [14]. The 

carrier trapping and the consequent alternative 
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Figure 4.29. Decay curve of luminescence at 75008 from 
CdS/CdSe superlattice NH123 (25R/25R). The line 
drawn on the left corresponds to a half life of 
63ns. 

Wavelength dependance MH123 

Wavelength(A) 7000 7300 

Lifetime(ns) 16 58 

sample lifetime (ns) 

NH93 5 

NH123 63 

7500 

63 

wavelength (ý, ) 

6280 

7500 

Table 4.2. Summary of time resolved measurements on the 
luminescence from CdS/CdSe superlattices 
(K. P. O'Donnell and X. Chen, Strathclyde 
University). 

0 10 20 30 40 50 60 

TIME 10-7s 



(slower) recombination processes. Thus the presence of a slow decay 

process could indicate the presence of impurities in our samples. 

However, the first decay component accounts for the vast majority of 

the carrier recombination. Consequently the identification of this 

luminescence as excitonic recombination is not inconsistent with the 

observed luminescence decay characteristics. Moreover, the slow 

recombination time can be explained by confinement of the electrons and 

holes in separate regions [12]. 

The other sample studied was MH93 a 11O/3A CdS/CdSe 

superlattice. The band measured was the red band at 6320ä, similar to 

that from MH120 studied in the previous section. It was found that this 

band from the sample showed a simple exponential decay, with a half 

life of 5 ns. This is somewhat longer than that of the CdSe free 

excition, which has a lifetime of 1.4ns [15]. This emission is 

discussed in section 4.5.4. 
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4.4 Theoretical interpretation 

4.4.1 Piezoelectric fields 

It has been forecast that for cubic strained layer superlattices 

grown along the [111] axis there should exist within the layers large 

strain induced piezoelectric fields [16]. It was shown theoretically 

that these fields should produce a reduction in band gap which might 

prove of use in non-linear devices [17]. These fields have been 

indirectly observed in the InGaP/GaAs system by the lifting of the 

intersubband selection rules [18]. However, in the InGaP/GaAs system 

the fields involved are of the order of 106 V/m. These fields are too 

small to produce a significant reduction in band gap for superlattices 

in which the layers are commensurate. 

Wurtzite semiconductors are also piezoelectric. Moreover, the 

highly ionic nature of the II-VI semiconductors leads to a considerable 

enhancement of the piezoelectric coefficents of these compounds (19]. 

In light of the work on [111] orientated III-VI systems it was decided 

to calculate the magnitude of these effects in the CdS/CdSe wurtzite 

system. 

We can calculate the electric fields within the layers of the 

wurtzite superlattice by use of the wurtzite piezoelectric tensor [20] 

Exx EYY Ezz Eyz Ezx Exy 

PX 0000 e15 0 

Py 000 e15 00 (ii) 

Pz e31 e31 e13 000 
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The P's are electric polarisations in the subscripted directions 

and the Exx etc are the strains as described in section 3.1.3. The 

electric polarisation P along the x, y or z axis is now given by 

6 
P3 Emeji (iii) 

i[[.. =1 

Where j and i are the row and column respectively and EM is the 

appropriate strain component. The components of the strains within a 

wurtzite epilayer undergoing biaxial strain perpendicular to the c-axis 

were calculated in section 3.1.3. Using equation (viii)) in section 

3.1.3 and equation (iii) above we can obtain the expression for the 

electric polarization field along the c-axis of the wurtzite layer. We 

find PZ is given by 

PZ = 2E([c13e33/c33]-e31) (iv) 

Where E is the biaxial strain and is positive for compression. The 

values of c13'c33'e31 and e33 were obtained from reference [19] and are 

given in table 4.3. The final electric field induced can be obtained 

from Maxwell's equations. We find, in the absence of free charge, the 

electric field F is given by 

F= PZ/E0 El) (v) 

Where E1lis the low frequency dielectric coefficent parallel to 

the c-axis (9.12 for CdS and 10.16 for CdSe [21,22]). Evaluating these 

two expressions gives us the final simple linear relationships between 
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CdS CdSe 

c13 4.6 3.9 

c33 9.4 8.45 

e33 0.440 0.347 

e13 -0.244 -0.160 
£r 9.12 10.16 

Table 4.3. Strain and electroelastic 
constants of wurtzite CdS and CdSe [22]. 



the biaxial strain E and the electric field F for both CdS and CdSe of 

FCdS = 1.05X1010E V/m (vi) 

FCdSe = 7X109E V/m (vii) 

In order to use these expressions we need to know the distribution 

of strain within the superlattice. A further complication is the 

presence of free charge which can alter the magnitude of the fields. 

The easiest strain system to deal with is that of a freestanding 

superlattice. It was noted in section 4.3.3 that the spectral position 

of the CdSe free exciton indicated that the thinner superlattices were 

freestanding. In this case the CdS and CdSe layer have biaxial tension 

and compression stresses respectively. This will generate fields in 

opposite directions in the two different layers. The strains in the 

alternate layers are given by equations (xxiii) and (xiv) section 

1.6.3. Figure 4.30 shows the example of a 50&/50A CdS/CdSe superlattice 

with the strains and generated fields. It can be seen that the effect 

of the strain induced field is to create a sawtooth type potential 

within the superlattice. However, there is no net polarization field 

across the whole superlattice because the polarization change across 

the CdS layers balances the change across the CdSe layers. This 

balancing of polarizations is simply a convenient property of such a 

freestanding superlattice, opposite strain induced polarizations are 

generated in the two component layers. There is in fact a small net 

field due to the different magnitudes of the CdS and CdSe piezoelectric 

coefficents, this net field can be allowed for as described below for 

the pseudomorphic superlattice. 

The alternative case of a pseudomorphic (or partially relaxed to 
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Figure 4.30. Schematic diagram showing a 501/50JL 
freestanding superlattice. Below this diagram are 
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free standing) superlattice is slightly more complicated. In a 

pseudomorphic structure the CdS is unstrained. The CdSe layers, 

however, undergo the full 3.9% mismatch strain (the buffer layer is 

relaxed relative to the GaAs). Consequently the electric polarization 
2 in the CdSe is 0.025 C/m. This displacement implies a standing 

electric field of 2.8x108 V/m. This field cannot exist in a steady 

state because a large potential between the top and bottom of the 

superlattice would be generated. A good analogy to this structure is a 

dielectric in a capacitor. Such a dielectric will initially be 

polarized by an applied electric field and will remain so when the 

field is removed. However, with time dielectric leakage will occur to 

neutralise the capacitors stored field by charge displacement. Thus 

within the superlattice charge must transfer so as to neutralise the 

net field. This charge will generate a linear electric field analogous 

to that in a parallel plate capacitor. If we call this field Fnet we 

can calculate the field necessary. Using the condition that the Fnet 

must be equal and opposite to the total potential drop across each 

period divided by the period, We find 

Fnet 2.8x108 LCdSe/(LCdS+LCdSe) V/m (viii) 

8 
2.8x10 -Fnet V/m (ix) 

FCdS=Fnet W/M (x) 

If we calculate these fields over a wide range of LCdS and LCdSe 

values we find that the result, quantitatively, is the same as the free 

standing case, i. e. there is a sawtooth potential superimposed in the 

superlattice potential periodicity. Smith and Mailhot studying the same 
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problem in the III-V systems came to the same conclusion [17]. 

Irrespective of the relaxation state of the superlattice, there are 

large strain induced fields within the layers. As mentioned above, the 

freestanding case does also have a small net field as the piezoelectric 

coefficents of CdS and CdSe are not identical. This field is small and 

can be allowed for in the manner described above. It is interesting to 

note that the pseudomorphic superlattice can possess a large continuous 

electric polarization. This 'steady state' internal polarization is 

analogous to that in ferroelectric crystals [23]; the degree of 

polarisation being similar to that of a typical ferroelectric, (for 

example) potassium dihydrogen phosphate, which has a displacement of 

. 0475 C/m2 (c. f. 0.013 C/m2 of a superlattice with LCdS=LCdSe grown 

pseudomorphic to the CdS buffer layer). 

Figure 4.31 shows the magnitude of the fields in the layers as a 

function of the ratio LCdS/Period for the freestanding case. The graph 

shows that the fields forecast are very large, up to 3x108 V/m. This is 

approximately 20 times greater than expected for III -V superlattices 

grown on a [111] axis [16]. It was stated above that the fields in the 

cubic systems were too small to observe directly. We conclude that the 

CdS/CdSe system, when grown along the wurtzite c-axis, generates much 

greater fields. It should be possible to observe the effects of these 

fields in the luminescence, as described in section 4.4.2 

The size of these fields may at first sight be difficult to 

justify. The breakdown field of CdS is approximately 108 V/m [24], i. e. 

less than the fields predicted here. Although we are using 

macroscopically measured coefficents, there is no reason to believe 

that the above theory is not applicable. The validity of the 

calculation for microscopic systems relies on the nature of the 

piezoelectric effect. The piezoelectric effect originates in the 
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microscopic deformation of the lattice under strain. The charge on the 

atoms being displaced so as to generate an electric displacement. The 

correct treatment of this problem would require a full band structure 

calculation for the appropriate deformed crystal lattices. The 

difficulty of such a calculation precludes this approach here. However, 

the approach taken should allow the effect of the internal fields to be 

discerned from that of the usual compositional type superlattice 

potential. Moreover, as mentioned above the presence of internal fields 

has been indirectly observed in III-V compound superlattices. 

For the purposes of this study we will assume that the these 

fields are present and that the electron and hole states are modified 

accordingly. We can now consider the effects of such fields on the 

confinement energies within the superlattice. 

4.4.2 Effect of an electric field on a quantum well 

The use of finite well and Kronig-Penney models for calculating 

superlattice electron states was described in section 1.6. Clearly for 

the CdS/CdSe system we expect a similar square well potential from the 

band offsets. In addition to this, we showed in the previous section 

that we expect there to be a sawtooth piezoelectric potential 

superimposed on top of the compositional square well potential. The 

band offsets for this system are totally unknown. In order to be able 

to attempt to measure the offset from the luminescence measurements we 

have to be able to calculate the electron and hole confinement 

energies. 

Figure 4.32 shows the potential well generated by the 

circumstances described above. 
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_T 

Figure 4.32. Potential well in strained layer system, with 

strain induced piezoelectric fields. Vo is 

the appropriate band offset. 

This well can by described by the potentials 

V(z)= ö+a. e w+e Fb z z>a 

V(z)= e FW z IzI<a (xi) 

V(z)= Vo-a e Fw e Fb'z z<-a 

Where FW and Fb are the electric fields in the well and barrier 

respectively. The problem of the confinement energies for a quantum 

well in an externally applied electric field has been studied by 
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several workers [25,26]. Exact solutions of Schrodinger's equations for 

the electron energy states in this potential can be obtained [27]. 

However, these solutions involve Airy functions and are difficult and 

complicated to use. For the purpose of our work a simpler approach was 

sought. An approximate variational function was tried for the ground 

state electron (or hole) wavefunction. The problem of the 

piezoelectric well has not been solved with a variational calculation 

before. However, the related problem of a finite well in an externally 

applied electric field has been studied. For such a system the 

following variational wavefunctions were suggested [25]. 

+(z)= 
Aexp[(q-p )z/a] z<-a 

+(z)=Bcos(kz/a)exp(z/a) 
lzl<a (xii) 

ý(z)= 
Cexp[-( q+q )z/a] z>a C 

Where q and k have their finite well zero field value (see 

Appendix 2) and ß is the variational parameter. From these 

wavefunctions thelvariational energy can be obtained from the integral 

[28) 

var 
l ýxý' äý 

(xiii) 

1 Il2dz 
Where R is the usual energy Hamiltonian from Schrodinger's 

equation, the integral on the bottom of the right hand side of (xiii) 

is the normalization factor. This integral is evaluated in full in 
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appendix 3. The resulting variational energy was minimised with respect 

to P by computer. The accuracy of this calculation can be judged by 

taking certain limits. In the limit of no field the calculation is 

exact (P is zero and we obtain the finite well solution). In the 

limit of an infinitely thick well the calculation gives an energy 7% 

too large (the energy in this case can be calculated from a 

semiclassical result [29]). We can therefore expect the calculation to 

give a good approximation over the range of well thicknesses. 

We can illustrate the effect of the electric field by taking an 

example. Figure 4.33 shows the confinement energy of an electron in a 

50A well with 1 eV barriers. The electron effective mass in the well is 

0.2 m0, the fields applied are 108 and -108 V/m in the well and barrier 

respectively. It can be seen that the effect of the applied field is to 

continously reduce the confinement energy as the well width increases. 

In fact the confinement energy eventually goes 'negative' i. e. falls 

below the potential at the centre of the well. Included in the figure 

is the finite well confinement energies (zero field). It can be seen 

that the finite well confinement energy tends to zero for thick wells. 

Figure 4.34 shows the variational wavefunctions calculated for the 

electron in a 50 A well described above and a hole with a mass 2.5 mo 

confined in such a well. It can be seen that the effect of the field is 

to move the peak probability of the electron's wavefunction towards the 

lowest point of the potential; the effect is more pronounced for the 

heavier particle (the hole). We conclude that the effect of strong 

electric fields on a quantum well is to reduce the confinement energy 

below that expected for a 'square well' type potential. This effect has 

been observed in the luminescence from quantum wells in externally 

applied fields (30], the observed shift to lower energy being in good 

agreement with the theory above. A small reduction in band gap has also 
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been observed in III-V compounds with internal piezoelectric fields. 

There is therefore every reason to expect similar effects in the 

CdS/CdSe system. 

It is important to note that the above calculation is only valid 

for an isolated well. As the barrier thickness reduces the interaction 

between wells will introduce a non-zero dispersion into the energy 

level (see section 1.6.1). This will reduce the effective confinement 

energy below that calculated using the above theory. Also exact 

treatments would include the effects of excitonic interactions. These 

interactions however, only introduce small corrections to the 

calculated confinement energies. Here we are interested in a first 

order estimate of the carrier confinement energies. 

4.4.3 Recombination emission from a superlattice 

When the excitonic (or free carrier) recombination emission is 

observed from a superlattice it is, in general, assumed that the 

transition observed involves the electron and hole ground states [31]. 

That is to say that at the low temperatures involved typically (1.6-2K) 

the carriers will be lying in the lowest energy levels available. This 

assignment allows the estimation of band offsets by the observation of 

the recombination energy as a function of superlattice period (e. g. 

ZnS/ZnSe [32]). 

To see how this can be done consider a simple type I superlattice. 

In a type I superlattice the electrons and holes are confined in the 

same layer which has a thickness L1 and a band gap E1. The 

corresponding values for the other (barrier) layer are L2 and E2. we 

assume a conduction band potential offset of Ve. Figure 4.35 shows the 

band structure of such a superlattice. 
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Figure 4.35. Band structure of simple type I quantum 

well. 

For this case the recombination emission energy will be given by 

(ignoring excitonic binding energies): - 

Er = E1+Ee+Eh (xiv) 

Where Ee and Eh are the confinement energy of the electrons and 

holes respectively, as derived from the Kronig-Penney relation. There 

is frequently a splitting of the hole energies due to the presence of 

both heavy and light holes. For a type I superlattice with 

piezoelectric fields (see above) the equation (xiv) is the same, but 

the confinement energies are obtained from the variational calculation 

above. 

In the alternative case of a type II superlattice (see section 

1.6) the electrons and holes are confined in seperate layers. This 

gives two possibilities, either the electrons are in material 1 and the 

holes in material 2 or vice versa. If we assume E1>E2 than the two 

page 132 



possibilites are represented in figure 4.36. 
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Figure 4.36. Type II superlattice offsets. In the upper 

case the electrons are confined in material 1 

(with band gap E1). In the lower case the 

holes are confined in material 1. 

The recombination energies are given by the two expressions 

Er = E2-Ve+Ee+Eh (xv) 

Er = E1-Ve+Ee+Eh (xvi) 

For the upper and lower figure respectively. Again the confinement 
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energies are either given by the Kronig-Penney expression or the 

variational calculation depending on whether the piezoelectric fields 

are present. Notice that in the limit of long period the emission from 

a non-piezoelectric type II superlattice will be given by either E1-Ve 

or E2-Ve depending on the offsets; whilst with the piezoelectric field 

the band gap will reduce to zero with large enough period. 

It is therefore possible, by calculating the recombination energy 

for the different possibilities, to fit theory to results. Using these 

relations offsets have been found for a number of different systems. It 

is in general found that measurement of the ground state luminescence 

recombination energy is relatively insensitive to the exact value of 

the band offsets [33]. The lineshape of intersubband recombination 

emission is subject to a number of difficult to assess factors. These 

include electron temperature effects and dispersion in the electron E-k 

relationship [33]. In addition to these effects the exciton binding 

energy is also function of period and offset. Since the recombination 

emission observed is usually excitonic in nature this can also affect 

the measurement of band offsets. However, when dealing with a totally 

new and unstudied system the considerations above can allow a 

measurment of the superlattice type and the distribution of the band 

offsets to reasonable accuracy. Moreover, the variation in the 

excitonic binding energies in the superlattice will only be of the 

order of those binding energies in the bulk material. For CdS and CdSe 

these values are 19 and 29 meV respectively [34,35]. The possible 

effects of these binding energy uncertainties are discussed in section 

4.5.3. 

The physical constants used in the calculation of confinement 

energies are those given in table 1.4, section 1.4. The wurtzite 

valence band was described in section 1.4. It is composed of three 
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bands, the holes from each band having different effective masses. It 

is assumed through out the next section that the holes participating in 

the transitions were lying in the lowest possible state. The 

calculation of transition energies was conducted thus. A conduction 

band offset was assumed for the system. From this the valence band 

offset was derived for each band, the effect of strain was included in 

the valence band offset as suggested in [36]. The confinement energies 

for the carriers was then calculated for each respective periodic 

potential, using either the Kronig-Penney or piezoelectric model 

accordingly. Finally the transition energy for the electron-hole 

recombination was calculated for each band. The band gap of the 

superlattice was then assumed to be the calculated energy difference 

between the highest energy valence band states and the lowest energy 

conduction band states. It was found that, because of the high mass of 

the J= 3/2 hole along the c-axis of the superlattice, the J= 3/2 

valence band was invariably the highest energy valence band. Indeed the 

high mass of the hole from this band was useful in identifying which 

compound contains the hole. It requires a very narrow well to produce 

significant confinement energies for this carrier. Similar 

considerations were used to identify the offsets in the ZnS/ZnSe and 

CdTe/Cd1_ Mn Te systems [32,38]. In these systems the offsets in one 

band is very much smaller than in the other. 
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4.5 Interpretation of luminescence 

Introduction 

It was observed in section 4.3.1 that the luminescence spectra 

from the superlattices was dominated by a bright emission band in the 

red or near-infrared. It was found from luminescence lifetime 

measurements that this emission was consistent with an excitonic 

recombination process. Moreover, the high purity of the single 

epilayers grown by the same process indicated that impurity driven 

processes were unlikely sources for the emission. If the emission is 

simple intersubband excitonic emission it should be possible to measure 

the band offset for this system with our data. In addition, we wanted 

to observe the effects of the internal fields forecast by the theory in 

the previous section. For this purpose the series of samples described 

in section 4.2.1 were grown. This section describes the interpretation 

of the superlattice emission bands observed from these series. Three 

problems associated with the system are addressed, the superlattice 

type (i. e. type I or type II), the magnitude of the conduction band 

offset and the evidence for the presence of the internal fields. 

4.5.1 Constant period series 

In chapter 1, two types of offset for superlattices were 

described. The essential difference between type I and type II 

superlattices lies in the location of the electrons and holes. In type 

I superlattices the electrons and holes are confined in the same layer. 

For type II superlattices the electrons and holes are confined in 

separate layers. In order to determine the superlattice type a constant 

period series was grown. This series was composed of 7 samples with a 
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common period of roughly 1008 (see table 4.1). The ratio of LCdS/Period 

for these samples was in the range 0.9-0.1. 

Similar series of superlattices have been studied in the type II 

ZnSe/ZnTe system (11). It should be possible to determine the type of a 

superlattice by studying the intersubband recombination energies from 

such a series. The variation in the type I and type II recombination 

emissions for such a series is illustrated in figure 4.37, in the 

absence of piezoelectric fields, it can be seen that the curve of 

superlattice band gap against the ratio LCdS/period is totally 

different for the two superlattice types. In a type I superlattice the 

electrons and holes are both confined in the CdSe. Consequently, the 

emission energy rises as the CdSe well thickness is reduced. In the 

type II case electrons and holes are confined in the different layers. 

This separate confinement results in an increase in recombination 

energy as either layer thickness is reduced. This gives rise to the 

characteristic U shaped curve for the emission energy versus 

LCdS/period relationship. Unfortunately the piezoelectric field theory 

described in the previous section complicates the situation by reducing 

the band gap further. However, by studying the shape of the emission 

energy versus LCdS/Period relationship it should be possible to 

determine which carrier is confined in which layer. This relies on the 

large difference in effective masses for the two carriers along the 

c-axis of the component layers. The larger confinement energies being 

produced by the lighter particle (the electron). 

page 137 



Eat 

JLJL 

TYPE II 

ýý IEe 
TYPE I 

--I 
I 

Ea 

1 

Figure 4.37. Recombination emission from a type II 
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Results and discussion 

The energy positions of the superlattice bands were measured in 

the limit of low excitation power. Figures 4.38 and 4.39 show spectra 

from MH109, MH108, MH112 and MH113 respectively. These four samples show 

the variation in peak energy across the series, the periods of the 

samples being indicated on the figure. Sample MH112 displays an 

asymmetric peak. This is the result of the GaAs substrate absorption 

edge, which occurs at 85008: this change in absorption causes light to 

be transmitted through the sample and reflected off the copper sample 

rod. There is consequently a sudden apparent increase in emission 

intensity at this position. This effect is a hindrance to the 

measurement of the peak position. For this reason large errors were 

estimated for the transition energies from samples emitting in this 

region. The great breadth of the emission in general is apparent in the 

spectra. For the moment we ignore this: the implications of the width 

of the bands is discussed in section 4.5.6. 

Figure 4.40 shows the recombination energy versus LCdS/period for 

the constant period series. It can be seen that the curve is bowed in a 

similar way to that found in the type II ZnSe/ZnTe system [37]. we can 

now use this curve to assess the superlattice type. 

We can eliminate one possibility immediately. The curve is clearly 

not consistent with the emission from a type I superlattice without 

internal fields. In this case we would only observe an increase in 

transition energy as the CdSe layer thickness was reduced. Moreover, 

the emission is always below the band edge of CdSe (1.84eV). This 

leaves three possibilities. Type I with internal fields or Type II with 

or without internal fields. Figure 4.41 shows a calculation using the 

piezoelectric field theory in section 4.4.2. The transition energies 

are calculated for the above series in the case of a type I offset with 
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Figures 4.38 and 4.39 (next two pages). Photoluminescence 
spectra showing the change in the luminescence from a series 
of superlattices with common period (LCdS+LCdSe=100, ) as the 
ratio LCdS/period is varied. The thicknesses of the CdS and 
CdSe layers are indicated on the diagram. The sample numbers 
are fig 4.38 (top) MH109, (bottom) MH108; fig 4.39 (top) 
MH112, (bottom) MH113. 
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piezoelectric fields. The curves correspond to the conduction band to 

valence band offset ratios indicated. It is obvious that none of the 

curves lies close to the observed transition energies. We therefore 

exclude the possibility of a type I offset for the system. In section 

4.5.5 further evidence against a type I offset is presented. 

We therefore now consider a type II offset. The electron can be 

confined in either the CdS or CdSe in such a superlattice. It was 

suggested earlier that the large mass of the hole along the c-axis of 

CdS and CdSe should allow us to deduce which compound confines this 

carrier. We note in figure 4.40 that when LCdS/period =1 and 0 (i. e. 

pure CdS and CdSe respectively) the emission is at 2.56 and 1.82 eV 

respectively, corresponding to the intrinsic edge emission for the pure 

compounds. There is therefore a marked asymmetry in the curve in figure 

4.40, the sample NH109 with 1OA CdSe layers in 90A CdS layers produces 

emission 0.8eV lower in energy than the CdS band gap. The corresponding 

sample MH113 with 10A CdS layers in 90A CdSe layers produces emission 

at 1.74eV, almost exactly at the CdSe band edge (1.82eV). This 

certainly suggests that the hole is confined in the CdSe. We therefore 

consider the case of a type II system with the hole confined in the 

CdSe. Figures 4.42 and 4.43 shows a series of curves for this case 

with and without piezoelectric fields respectively. It can be seen that 

both theories can provide reasonable agreement with experiment. The 

curve corresponding to a conduction band offset of 0.25 eV with 

piezoelectric field effects is particularly close. The alternative case 

of electrons confined in the CdSe cannot produce a curve that lies 

remotely near the observed transition energies. This is a result of the 

large conduction band offset in this model, the CdSe electron being 

light and producing high confinement energies. In all these theoretical 

fits a J=3/2 hole mass of 2.5 mo in CdSe is assumed. It was noted in 
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section 1.4 that this value was uncertain and in fact lied in the range 

1-2.5 mo. In practice it was found that these two limiting values gave 

very similar fitting curves and that this problem did not interfere 

with the previous analysis. 

We conclude from this series that the evidence of the confinement 

energies is that the superlattice offset is type II. We cannot, from 

these data alone, be sure that the internal fields expected are 

present. The transition energies can be accounted for by either a large 

type II offset with no piezoelectric effect (Ec approximately 0.6 eV); 

or a small type II offset with internal fields (Ec approximately 0.25 

eV). Unfortunately there is considerable error expected in the measured 

thickness of the layers. This problem is especially acute for small 

thicknesses (i. e. the extrema of the curve). To be able to demonstrate 

the presence of the internal fields, samples with different periods 

must be studied 

4.5.2 Constant ratio series 

Introduction 

The constant ratio series were grown with layers of CdS and CdSe 

of equal thickness (see table 4.1). The periods were in the range 

14-120A. The growth of such a series should allow the measurement of 

the offsets. In addition, as was pointed out in section 4.4.2, 

piezoelectric effects should result in a continuous decrease in the 

effective band gap as the period increases. Such a series of 

superlattices should show the effects of the piezoelectric fields. This 

would provide direct evidence for the existence of such fields, 

previously only forecast theoretically. 
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Results and discussion 

The peak emission energies of the constant ratio series were taken 

at low temperatures. As before, the spectra were recorded in the limit 

of low laser excitation. Figure 4.44 shows three spectra from 

superlattices in the series with periods of 13R/13ä, 25 x,, /25, and 

45L/40R. It can be seen that the FWHM of the peaks increases rapidly as 

the period increases. Figure 4.45 shows the relationship of the peak 

emission energy versus period. It can be seen that the emission energy 

decreases as the period increases, as expected for either model. 

The first analysis we can apply is by studying the limit of small 

period. For vanishingly small period superlattice emission must become 

that of the alloy CdS0.5Se0.5. In this limit the piezoelectric field 

effects become insignificant (see section 4.4.2). This should produce 

an excitonic emission at 2.15 eV. It can be seen from the figure 4.45 

that the even the 14R period sample only emits at 1.8eV. The mass of 

the hole along the c-axis of CdSe is very large (1-2.5*m0). The low 

energy of the 14k period superlattice emission is entirely consistent 

with the hole being confined within the deepest well (see figure 4.36 

upper diagram). Moreover, the depth of the emission is entirely 

consistent with a type II offset system (cf ZnS/ZnTe and ZnSe/ZnTe 

[39]). This supports the model proposed in the previous section of a 

type II system with the hole confined in the CdSe. 

We can now try to fit the theoretical curves to this data. Figure 

4.46 shows the data points with two Kronig-Penney type fitting curves. 

Curve A assumes a 0.23 eV conduction band offset, whilst curve B 

assumes a 0.51eV conduction band offset. It can be seen that the two 

curves give reasonable agreement at either long or short period. 

However, it is impossible, assuming a simple square well type 

potential, to account for all the observed recombination energies. 
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To account for the shape of this curve we use the piezoelectric 

theory. Figure 4.47 shows data with two fitting curves, A and B. Curve 

B is the variational calculated transition energies, curve A is the 

Kronig-Penney curve A from figure 4.46. Both curves assume the same 

0.23 eV conduction band offset. It can be seen that, as expected, the 

Kronig-Penney model gives a good fit to the data in the limit of small 

period. The piezoelectric theory assumes no interaction between 

adjacent wells and so is innaccurate for small period. However, for 

large period superlattices the piezoelectric theory gives good 

agreement with the observed value. 

We conclude that the curve fitting for the two series studied 

presents direct evidence for the presence of piezoelectric fields 

within this system. This represents the first direct observation of the 

presence of such fields within strained layer superlattices. In 

addition the luminescence recombination energies indicate that the 

system is type II with a conduction band offset of approximately 0.23 

eV. For this calculation we assume that the excitonic binding energy is 

zero. The effect of binding energy on our calculations would be to 

decrease the measured offset. Therefore we conclude that our measured 

offset is an upper limit value. 
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4.5.3 Band structure of a CdS/CdSe superlattice 

The luminescence from the CdS/CdSe superlattice samples is unlike 
that reported for any other superlattice system. In the theoretical 

section possible reasons for this were proposed. In the previous 

section the luminescence was interpreted. We can now use this 

intepretation to propose a model for the system. It is important that 

this model be able to account for all the observed properties of the 

system 

We now have the final model for the band structure of a CdS/CdSe 

superlattice when grown with the c-axis vertical. The analysis above 

suggests a type II structure with a 0.23 eV conduction band offset 

(1.02 eV Ev). We also found that the presence of the piezoelectric 

internal fields had to be assumed to account for the depth of the 

emission from large period superlattices. The small conduction band 

offset is in line with that expected from the 'common cation rule' 

[40]. The value of the conduction band offset measured is subject to a 

number of unknowns. These include the exact mass of the hole in CdSe 

parallel to the c-axis, excitonic binding effects, and problems 

associated with well width fluctuations. By considering the limiting 

values of the hole mass and realistic uncertainties in the superlattice 

periods an error can be estimated in Ec. In addition to these unknowns 

there are also excitonic binding effects. Such excitonic effects will 

lower the transition energy by the magnitude of the binding energy. 

Without considering the calculation of excitonic binding energies in 

quantum wells we can make a few simple observations. For a type I 

quantum well, in the limit of small period, the excitonic binding 

energy is increased above that in the bulk (by upto four times the 3 

dimensional value [41]). Therefore without calculating the possible 

magnitude of the electron-hole interaction energy we will simply 
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estimate a possible error in the measured offset of twice the excitonic 
binding energy in CdSe i. e. approximately 40 meV. As this energy will 
be subtracted from the conduction band offset, we note that the 

measured offset is an upper limit. Combining this error with the error 

due to uncertainties in the effective masses and well widths we 

ascribe Ec in this system a value of 0.23+ 0.1 eV. We can now use our 

measurement to draw our predicted band structure for the system. 

Figures 4.48 and 4.49 show the periodic potential along the c-axis 

of CdS/CdSe superlattices with periods of 14,50,100 and 200 angstroms. 

Included in the diagrams are the calculated ground state transition 

energies. It is obvious from the diagram that the band gap of this 

superlattice should actually reduce to zero at some point. This is 

shown for the 200 angstrom period superlattice in figure 4.49, this 

superlattice has a band gap of 0.2 eV. The CdS/CdSe system therefore 

has a band gap which is tunable in the region 0-1.8 eV. 

The theory used is straightforward, and the results above support 

it. However, the system is clearly very unusual and it is important to 

justify this interpretation in as many ways as is possible. 

4.5.4 Origin of higher energy emission 

It was described in the luminescence section how, in the large 

period superlattices, CdSe free excitonic emission was observed. 

Furthermore, for smaller periods there was still some higher energy 

emission observed. Considering the model developed above we can explain 

this higher energy emission in terms of direct (in real space) 

recombination. It is observed in the next section that the laser 

intensity effects are very similar to those seen from GaAs nipi doping 

superlattices. These structures are doping superlattices as described 
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Figures 4.48 and 4.49. Series of schematic diagram showing 
the potential distribution along the c-axis of CdS/CdSe 
superlattices with various periods. The periods are indicated 
by the scale markers. Also indicated on the diagrams are the 
electron and hole confinement energies in their respective 
wells. 
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in section 1.6.2. GaAs nipi structures also display broad band emission 
below the GaAs band edge. Moreover, with increasing laser power the 

emission shifts to higher energy and the F HM decreases. For this 

system the effect is due to the charge separation effects within doped 

layers (for a review see [42]). Within the structures the carriers lie 

in separate parabolic wells. Figure 4.50 is taken from (42] and it 

illustrates the origin of the luminescence seen from these structures 

(the notations refer to that paper). It can be seen that there are two 

principal processes, the direct in space hw(60) and the indirect in 

space hw(54). These give rise to two emissions from the superlattice, 

one at the GaAs band edge and one at much lower energy. Figure 4.51 

(taken from [43]) illustrates the mechanism behind this. The 

photoexcited carriers either thermalise (via phonon emission) into 

their respective wells and then recombine via the low energy process 

or, before reaching the wells, recombine directly across the GaAs 

bandedge. We can understand our observed high and low energy emissions 

in terms of similar processes. The equivalent of the transition hw(60) 

in our system is the high energy emission which is observed from all 

the superlattices. The intense near-infrared emission is the indirect 

recombination as assigned in the previous theoretical treatment. 

To support the above analysis we can make three observations. 

Firstly it is observed that the intensity of the direct recombination 

increases relative to the indirect as the exciting intensity increases. 

This is also observed for the equivalent emission in the nipi 

structures [43]. Support also comes from our temperature dependence 

work. In section 4.3.5 such emission from a 7R/7R superlattice was 

studied. It was found that as the temperature was raised the high 

energy (direct) emission intensity increased, whilst the superlattice 

(indirect in space) emission's decreased. This is precisely what is 
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observed for the direct and indirect emissions in GaAs nipi stuctures. 
The thermal distribution of the carriers alters as the temperature is 

raised, increasing the amount of recombination from carriers in the 

same layer [421. The final observation comes from the luminescence 

decay measurements (conducted at low temperature). It was found that 

the superlattice emission decayed with a relatively long decay 

half-life of 16-63ns for a 25R/25R superlattice. In contrast the higher 

energy emission (62808) from a 145R period superlattice decayed in only 

5ns. This is what is expected from the process discussed above. The 

carriers rapidly thermalise into their respective wells to recombine 

via the low energy process, with a longer decay. Figure 4.52 shows our 

model for the origin of the observed luminescence for a 50, R/50A 

CdS/CdSe superlattice. The hw1 and hw2 refer to high and low energy 

recombinations respectively. 

4.5.5 Space charge effects 

One of the most remarkable effects observed for the luminescence 

from the CdS/CdSe superlattices is the effect of laser intensity on the 

emission peak position. It was found in section 4.3.4 that, as the 

laser excitation power increased, the luminescence peak shifted to 

higher energy by up to 0.3 eV. Accompanying this shift there is a 

reduction in the FWD of the emission peak. Similar effects are also 

observed for the GaAs nipi structures discussed above. The effect in 

the doping structures is produced by the space charge fields developed 

between the electron and hole confining layers. When carriers are 

photoexcited into the wells a space-charge potential develops between 

the doped layers raising the energy difference between the electron 

hole recombining pairs. This produces an increase in emission energy. 
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Clearly such a mechanism could explain the observed peak shift in 

the CdS/CdSe superlattices. If this is the case then carriers nest be 

confined in separate layers. This can be easily verified by observing 

the effect of laser power on luminescence originating from carriers 

within the same layer. The spectrum obtained from MH90 (160R/13OR 

CdS/CdSe) was studied at two different excitation densities (one 1000 

times more intense than the other). It was observed that the deep 

superlattice emission shifted by 0.3 eV under the increased excitation. 

However, the CdSe excitonic emission energy did not shift at all 

between the two laser powers. 

A process that could explain a shift in emission energy was simple 

band filling. However, such a process would affect the CdSe excitonic 

recombination, broadening and shifting the peak and no such shift is 

seen. We conclude that the peak at 6900,, as expected, originates from 

recombination between carriers within the same layer. This is to be 

expected if the recombination is a result of excitons existing wholly 

in the CdSe, with no significant degree of band filling occuring. The 

superlattice emission, however, does shift and the only satisfactory 

explanation for this is the presence of space charge effects. 

As carriers are photocreated within the layers of a CdS/CdSe 

superlattice they will be thermalise into the lowest energy state lying 

(mostly) in the ground state of their respective potential wells. The 

approximate wavefunctions for carriers in these potentials were 

calculated in section 4.4.2. These carriers can now be thought of as 

producing a2 dimensional sheet of charge within the layer. It was 

shown in [44] that such a superlattice is analogous to a parallel plate 

capacitor, with the plates positioned along the z-axis at the positions 
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The fields between the plates can be calculated trivially to be 

given by 

F=Ne/fof,, (xix) 

Where N is the areal charge density within the layers of the 

superlattice. Figure 4.53 shows schematically the plates and the 

resulting electric fields. It can be seen that the effect of the charge 

generated field is to neutralise the internal piezoelectric fields. 

This effect was recognised in [17] where the pieozelectric superlattice 

was first envisaged. The situation is actually more complex as the 

<z>'s are not exactly located at the interfaces. Moreover, as the 

charge density increases the fields are neutralised and the 

wavefunction will alter. However, qualitatively the effect is to reduce 

the internal fields. 

Figure 4.54 shows the change in potential distribution which can 

be expected from carrier seperation in a superlattice described in 

section 4.5.3. The shift to higher energy from the emission that is 

observed can therefore be understood in terms of the field 

neutralisation. The low energy of the emission for low laser powers 

being a result of the piezoelectric fields. 

With the piezoelectric field theory, we calculate a transition 

energy of 0.7 eV for MH91 (160/90A CdS/CdSe). In practice we observe a 

transition energy of 1.1 eV. This clearly represents an anamolous 

result. This can be understood in terms of the charge effects. Figure 

4.25 shows the shift of emission peak with laser power for MH111 
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(40A/60A CdS/CdSe). It can be seen that at the low excitation limit the 

gradient of the graph is still steep; at this limit the laser power was 

as low as was possible to still detect a luminescence signal. We 

conclude that the actual low excitation limit of the emission energy is 

not being observed. The intensity of the luminescence will be 

proportional to the inverse of the carrier lifetimes for decay by the 

luminescence process. For very large periods the recombination rate of 

the electron and hole pairs is very small. Consequently the 

luminescence cannot be observed before significant charge has 

accumulated. It is important to compare figure 4.24a with figure 4.25 

which shows a similar graph for a isL'i 5R sample. In this case the 

graph shows a clear tailing off at the low excitation limit. We 

conclude that for the small period sample we are observing the 

unperturbed transition energy. 

4.5.6 Emission band line shape 

For small superlattice periods the emission from the samples 

studied here is similar to that observed from other II-VI 

superlattices. However, as we move to large periods the emission band 

becomes very broad, with a FwHM of upto 200 meV. Clearly to justify our 

intepretation we must be able to account for this observed emission 

breadth. In this section we will consider mechanisms that can cause 

such linewidths in luminescence from superlattices. 

Spectral broadening in semiconductor excitonic recombination has a 

number of causes. The main contributions are from phonon interaction 

and hot electron effects [45]. In superlattices both these can occur 

and, in addition, well width variation effects can contribute. 

Considering phonon interaction first, we can see direct evidence for 
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such interaction in figure 4.55. This figure shows the emission from 

mh122, a A/7A superlattice. It can be seen that phonon replicas are 

clearly visible on the low energy tail of the superlattice emission, 

the phonon energy being 27.5 meV. We are not concerned with calculating 

phonon energies within superlattices here. However, this energy is 

close to that of the CdSe LO phonon and is consistent with the believed 

nature of the structure [46]. We can conclude that phonon broadening 

occurs and is a major factor in the linewidths for small period 

superlattices, causing a FWHM of 40-70meV. Strong phonon interaction is 

not observed in type I superlattices. However, in type II superlattices 

we might expect, qualitatively, the seperation of the carriers in real 

space to encourage phonon assisted recombination. We can only assume 

that similar phonon interaction occurs in the larger period structures. 

However, in this case the phonon replicas are obscured by other 

broadening mechanisms. 

The principle broadening mechanism observed in superlattice 

emission is due to well width fluctuations [47]. The fluctuations in 

well width cause variations in the recombination energy, broadening the 

observed luminescence band. It can be shown trivially that the energy 

broadening is proportional to the differential dE/dl, where E is the 

transition energy [48] i. e: - 

DE oC 
bE 

(xx) 

Consequently, for a simple superlattice without electric fields, 

the line width reduces as the period increases. This is indeed observed 

in a wide range of systems. The CdS/CdSe system is unusual in that a 

large increase in FWHM is observed for increasing period. 

To explain the FWHN we consider first the effect of width 
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fluctuations. For a conventional superlattice, in the limit of wide 

wells, a change in well width will not affect the confinement energy. 
However, with internal fields, such fluctuations will produce large 

changes in the recombination energy. This is illustrated by figure 

4.56. 

Figure 4.56. Effect of layer thickness variations on 

emission energy. 

It can be seen that variations in layer thickness not only produce 

variations in confinement energy but also alter the potential energy at 

the centre of the wells. The variations in the well thickness are 

quantized into multiples of c/2 (c is the wurtzite lattice constant and 

corresponds to two monolayers). The difference in recombination energy 

thus produced is given by dEr=de+c*F/4; where de is the change in 

confinement energy, c is the wurtzite lattice constant and F is the 

electric field. Similar effects have been observed in A1GaAs/Gags 

multiple quantum wells in an externally applied electric field [49]. It 

was observed in this system that the FWHM of the recombination emission 
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was proportional to the applied field. 

Therefore in a piezoelectric system the slightest fluctuation in 

well width will cause large variations in emission energy. We consider 
FIH111 a 40L/60R CdS/CdSe superlattice, with an emission band FWHM of 
230 meV. We can do a naive calculation by subtracting the 70 meV due to 

phonon broadening and estimate a 'thickness fluctuation' band width of 
160 meV. This width could be caused by a fluctuation in the interfaces 

of only two monolayers (7R). Fluctuations larger than this are actually 

observed in the TEM images (for example see figure 4.8). 

It also relevant to compare the luminescence from M H113 (12/104R 

CdS/CdSe) and MH109 (76/88 CdS/CdSe) (figure 4.15). The sample with the 

thin CdS layers shows a much smaller luminescence line width (54 meV) 

compared with the equivalent sample with thin CdSe layers (260 meV). 

The model developed above has the hole confined in the CdSe, at the 

bottom of a 1.012 eV deep potential well. For sample MH109 a change in 

the CdSe thickness of only one atomic monolayer (3.5g) will change the 

recombination energy by 185 meV (calculated from the variational 

wavefunction). The same figure for MH113 (variation in the CdS well of 

one monolayer) is approximately 60 meV. The last figure was estimated 

from the Kronig-Penney model, since it is essential for this sample to 

include the effects of dispersion on the confinement energies. The 

small value of the second figure is a result of the lower mass of the 

electron and the smaller depth of the electron potential well. This 

observation provides very strong support for the model developed 

earlier, as it is difficult to account for by other processes. 

The well width fluctuation mechanism in itself can explain the 

observed emission width. However, the observed reduction in FWHM with 

increased laser power may indicate another mechanism. Such a reduction 

is also observed for the emission from nipi structures. The change in 
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this case is attributed to laser penetration effects [43]. The emission 

from different depths will be shifted to different extents. The net 

effect is to broaden the observed band. As the laser power is increased 

the emission from the layers at all depths will shift to occur in the 

same spectral region. Hence a reduction in linewidth occurs. It is 

interesting to note that the effect of injected charge is to neutralise 

the internal fields. This in itself might reduce the FWHM by making 

thickness variations less significant. Although this effect could (in 

fact should) occur, it is indistinguishable from the laser penetration 

effect. We conclude that the great breadth of the emission is a result 

of the presence of the piezoelectric fields. However, this is not 

inconsistent with a good quality superlattice structure. 

4.5.7 Luminescence decay time 

The subject of superlattice luminescence decay rates has been 

widely studied. It has been found that the half life of the excitonic 

emission from type I superlattices is typically very short, e. g. 600ps 

ZnS/ZnSe [50]. This is a result of the close confinement of the 

electron hole pairs in these structures. However, for type II systems 

and GaAs nipi structures, the decay times are found to be considerably 

longer. The calculation of absolute carrier recombination rates in 

superlattices is a non-trivial problem (see for example [51]). However, 

one result that we can apply to this problem is that the recombination 

rate is proportional to the square of the electron hole wavefunctions 

'overlap integral' 1o defined by [51]: - 

b0 
e(Z) h (z) dz (xxi) 

page 153 



Electrons and holes confined in the layers of a Type I 

superlattice will have an overlap integral of approximately 1. Hence 

the recombination rate is fast. This is essentially the reason for the 

slow recombination rates in type II and doping superlattices. In these 

systems the electrons and holes are separated spatially. It is found 

that in the type II superlattices the recombination rate can be orders 

of magnitude longer than in bulk [52]. Simlarly, in doping 

superlattices the electrons and holes lie in well separated, deep 

potential wells (see figure 4.50) and thus the overlap integral is very 

small. Consequently nipi structures display very long recombination 

times, up to microseconds [53]. It was noted in section 4.5.3 that 

there are certain similarities between the piezoelectric superlattice 

and GaAs nipi structures. We expect the recombination rate in the 

piezoelectric superlattice to be long as well, the electron hole 

overlap integrals being very small for this system. 

In section 4.3.6 the time decay of the luminescence was measured. 

It was found that the recombination rate from a 259/25R CdS/CdSe 

superlattice was 16ns and 63ns at 700 and 750 nm respectively. These 

lifetimes are significantly longer than measured for the type I II-VI 

compound superlattices (for example 3ns for CdSe/ZnSe [54]). We 

conclude that they are consistent with separate carrier confinement 

within the superlattice. It was also reported that the luminescence 

decay was not simple exponential. It was suggested there that the 

presence of impurities could cause a complex exponential decay [14]. 

To explain the wavelength dependence of the decay times we must 

examine the origin of the luminescence. We found in sections 4.3.2 and 

4.3.6 that the luminescence was entirely consistent with excitonic 

recombination. In the last section the breadth of the luminescence band 

was attributed to a combination of phonon interaction, layer thickness 
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variations and laser power effects. Consider a system in which the 

superlattice layers are perfectly smooth: We expect to get one band 

which is broadened by phonon-interaction alone. In this case the 

luminescence decay rate is the same at any point in the band, this has 

been observed in other systems (e. g. ZnS/ZnSe [54]). Considering a 

system with well width fluctuations: now the low energy tail of the 

emission band is principally emission from longer period regions of the 

superlattice (see previous section). Figure 4.57 shows the relationship 

between the square of the electron hole overlap integral and the period 

for a LCdS-LCdSe superlattice (calculated from the variational 

wavefunctions). The graph shows that the larger the period the smaller 

the overlap integral and hence, the slower the recombination. For our 

system we therefore expect the low energy tail to display longer 

lifetimes as the emission from longer periods dominates on this side, 

as is observed in MH123 (25A/25A) . 

We conclude that the measured lifetimes are consistent with the 

piezoelectric model. We can do a simple calculation in support of this 

analysis. The emissions at 700nm and 750 nm correspond (using the 

theory described in section 4.4.3) to superlattices with periods of 

15A/15R and 23/23, respectively. The square of the electron hole 

overlap integrals calculated for these superlattices are 0.186 and 0.05 

respectively. We can therefore estimate the relative recombination rate 

for carriers in the two superlattices to be 0.186/0.05=3.10. This 

compares with the observed 63ns/16ns=3.94. Considering the naivety of 

this calculation the theory is in good agreement with experiment for 

this case. 

There is another way to estimate recombination rates for the long 

period superlattices based on the observed space charge effects. It is 

obvious that in a superlattice being studied under continuous wave 
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illumination the rate of carrier creation is equal to the rate of 
carrier recombination. Now if the probability of recombination per 
carrier pair per unit time is y, then we can express the recombination 

rate R as 

R=NY (xxii) 

Where N is the number of electron hole pairs (assuming excitonic 

recombination). We consider the superlattice Milli (40L/60R CdS/CdSe). 

It was found that the luminescence intensity was proportional to the 

excitation intensity for this sample. Therefore we believe that the 

above expression for the recombination rate is valid for this 

superlattice. It was observed for this superlattice that as the 

excitation density was altered from 1mw/mm2 to lOmw/mm2 the 

luminescence shifted by 60 meV. The model we have for this shift is 

that the increased laser power creates carriers that do not recombine 

quickly enough to prevent charge accumulating in the respective layers. 

This process continues until the resultant space charge field 

neutralises the internal fields. When this occurs the electron-hole 

overlap integral increases until the recombination rate is sufficently 

fast to balance equation (xxii), i. e. Y will increase. 

We can use this model to estimate recombination times. Taking the 

above example, we calculate (using the variational calculation) a 

change in the areal charge density of 2x 1016e/m2 is necessary to 

produce the observed shift in MH111.10mw/mm2 corresponds to 2.5X1022 

photons/m2/sec. Clearly we do not know how many of these photons create 

carriers in which layers. However, we can consider the limiting case in 

which all the photons are absorbed by one period of the superlattice 

(the upper limit of N). Y is now given by 
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2.5X1022 = 2x1016Y (xxiii) 

The half life of a carrier is thus given by 

T1/2 = ln(2)/Y >ln(2)/106 (xxiv) 

T1/2 >7x10-7 S 

N is an upper limit, therefore T1x2 is a lower limit. We conclude 

that the carrier half-life in a 40. Q, /60. R CdS/CdSe superlattice is at 

least 0.7ps. This is a very long lifetime and is in excess of what we 

would expect from a type II superlattice in the absence of the 

piezoelectric effect [52]. We conclude that the lifetime measurements 

are consistent with the seperation of the electron hole pairs. In 

addition, the apparent very long lifetimes associated with large 

periods supports the presence of the internal fields. 
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4.6 Summary and conclusions 

This chapter described the studies conducted on CdS/CdSe 

multilayer structures grown by MOCVD. These were the first such 

structures reported and the first wurtzite multilayer epitaxial 

structures grown. The structures were investigated initially by 

transmission electron microscopy. It was vital that something of the 

structural quality of the structures could be observed directly. The 

lattice images show that the structures are of high quality and are 

wurtzite throughout, with no twinning. This is in contrast to the 

observed twinning in CdSe epilayers. Diffraction analysis indicated a 

critical thickness for the CdS on GaAs of <400R. The TEM high 

resolution lattice images showed abrupt interfaces and allowed accurate 

calibration of the growth rate for a series of samples. 

We conclude from this structural assessment that the layers are of 

high crystalline quality. Furthermore, despite the high growth 

temperature (450°C), the constituent compounds have not interdiffused 

significantly. From this assessment we concluded that our superlattices 

are of as high a quality as other II-VI superlattices known to exhibit 

quantum size effects. 

The other technique applied to the superlattices was 

photoluminescence. It was observed in the luminescence that for large 

period structures the luminescence was composed of CdSe edge emission 

shifted to lower energy by strain effects. The other emission observed 

was an infra-red band which dominated the emission as the period was 

reduced. This band shifted into the visible for small period 

superlattices. In addition, it was found that the infrared emission 

shifted to higher energy by up to 0.3 eV as the laser exciting power 

was increased, the largest shifts being observed in the larger period 
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samples. 

In order to explain the observed luminescence the theoretical 

background to the system was investigated. It was found that the system 

should contain large strain induced piezoelectric internal fields. The 

magnitude of the calculated fields was so large that the effects should 
be readily observable in the luminescence. In order to study this 

effect some elementary confinement energy calculations were carried out 

using a variational approximation. The kind of band structure expected 

and the interpretation of the luminescence was discussed. The 

conclusion of this theoretical work was that the CdS/CdSe system should 

show almost unique properties in terms of the electron and hole 

confinement energies. 

The final section used the theory developed to model the 

recombination energies in the superlattices. it was found, by studying 

two different series of samples, that the band offsets of the system 

were type II. The conduction band offset was determined to be in the 

range 0.23+_O-1 eV with the electron confined in the CdS and the hole 

in the CdSe. It found that it was essential to assume the presence of 

internal fields to explain the observed luminescence. This provided the 

first reported direct evidence for the presence of such fields in a 

superlattice. Finally the potential distribution along the c-axis of 

the superlattices was discussed. The observed laser power effects and 

time decay of luminescence were interpreted in terms of the model 

developed. 

In conclusion, the photoluminescence from these samples is highly 

unusual. In fact it does not bear resemblance to that observed to date 

from any other II-VI superlattice system. In some manners it resembles 

doping superlattice emission (power shifts and indirect recombination), 

in others II VI compositional superlattices (small period emission). we 
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believe we have demonstrated that this is a result of the strain 
induced fields. The induced fields dominate at large periods, producing 

recombination reminiscent of doping structures (e. g. GaAs nipi 

structures). At small periods the compositional superlattice type 

emission dominates. We find that every aspect of the superlattice 

emission can be explained by our model. The principle result of this 

chapter is that the CdS/CdSe superlattice system is type II with a 

conduction band offset of 0.23+0.1 eV. In addition the expected 

piezoelectric effects occur and cause substantial reduction in the 

effective band gap as the period increases. 

We conclude that this system present unique properties. The band 

gap of the superlattice is tunable from 0-1.8 eV. This system presents 

new and previously unobserved effects to the field of semiconductor 

superlattices. 
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APPENDIX 1: Samples grown 

NAME Material Substrate Bakeout (0C, mins) T (°C) R (uv/hr) T(j. un 9 9 

MH1 CdS GaAs (100) 500 10 H 300 equipment failure 
mH2 CdS GaAs (100) 500 10 H 300 3.4 1.7 
MH3a CdS GaAs (100) 500 15 H 300 3.4 1 
MH3b CdS GaAs (110) 500 15 H 300 3.4 1 
NH3c CdS GaAs (111)A 500 15 H 300 3.4 1 
mH3d CdS Glass 500 15 H 300 3.4 1 
MH4a CdS GaAs (100) 550 10 H 300 3.4 3 
MH4b CdS GaAs (110) 550 10 H 300 3.4 3 
MH4c CdS GaAs (111)A 550 10 H 300 3.4 3 
MH5a CdS GaAs (100) 550 15 H 300 5.1 10 
MH5b CdS GaAs (110) 550 15 H 300 5.1 10 
MH5c CdS GaAs (111)A 550 15 H 300 5.1 10 
MH6a CdSe GaAs (100) 500 10 H 300 3.4 1 
MH6b CdSe GaAs (110) 500 10 H 300 3.4 1 
MH6c CdSe GaAs (111)A 500 10 H 300 3.4 1 
MH6d CdSe Glas s 500 10 H 300 3.4 1 
MH7a CdSe GaAs (100) 550 15 H 300 3.4 3 
IlH7b CdSe GaAs (110) 550 15 H 300 3.4 3 
MH7c CdSe GaAs (111)A 550 15 H 300 3.4 3 
rlH8a CdS GaAs (100) 500 10 H 350 1.7 2 
MH8b CdS GaAs (111)A 500 10 H 350 1.7 2 
MH9a CdS GaAs (100) 500 10 H 250 1.7 2 
MH9b CdS GaAs (111)A 500 10 H 250 1.7 2 
MHlOa CdS GaAs (100) 550 10 H 400 1.7 2 
MHlOb CdS GaAs (111)A 550 10 H 400 1.7 2 
MH11 CdS GaAs (111)B 550 10 H 350 equipment failure 
MH12 CdS GaAs (111)B 550 10 H 350 1.74 0.87 
MH13 CdS GaAs (111)B 550 10 H 350 1.74 0.1 
MH14 CdS GaAs (111)B 550 10 H 350 1.74 0.4 
MH15 CdS GaAs (111)B 550 10 H 350 1.74 0.8 
MH16 CdS GaAs (111)B 550 10 H 350 1.74 2 
MH17 CdS InP (111)B none 350 1.74 0.1 
MH18 CdS InP (111)B none 350 1.74 0.25 
MH19 CdS InP (111)B none 350 1.74 0.5 
MH20 CdS InP (111)B none 350 1.74 1 
MH21 CdS InP (111)B none 350 1.74 2.5 
11123 MH CdS GaAs (111)A 550 10 H 350 1.6 1.2 

24 MH CdS GaAs (111)A 550 10 H 350 1.6 0.4 
25 MH CdS GaAs (111)A 550 10 H 350 1.6 4 
2 CdS GaAs (111)A 550 10 H 350 1.6 0.7 

MH27 CdS GaAs (111)A 550 10 H 300 1.6 1.5 
? 1H28 M CdS InP (111)B none 200 2 2 

29 CdS InP (111)B none 250 2 1.5 
MH30 CdS InP (111)B none 300 1.7 1.5 
11H31 CdS InP (111)B none 350 1.6 1.2 
MH32a CdS InP (111)B 500 10 HS 2 300 1.7 0.9 
MH32b CdS GaAs (111)A 500 10 H S 2 300 1.7 0.9 
MH33a CdS InP (111)B 600 10 H S 2 300 1.7 1 
MH33b CdS GaAs (111)A 600 10 H S 2 300 1.7 1 
MH34a CdSe InP (111)B 550 1 Se H 300 2 1.5 
MH34b CdSe GaAs (111)A 550 1 H2Se 300 2 1.5 
MH34c CdSe InAs (111)A 550 1 H Se 300 2 1.5 
MH35a CdSe InP (111)B 550 5 HZSe 350 2 1 
MH35b CdSe GaAs (111)A 550 5 H Se 2 

350 2 1 
MH35c CdSe InAs (111)A 550 5 H 2 Se 350 2 1 
111136 CdS GaAs (111)A 550 10 H 350 1.4 0.7 



MH37 CdS GaAs (111)A 550 10 H 350 1.4 0.3 
mH38 CdS GaAs (111)A 550 10 H 350 1.4 0.1 
NH39a CdSe InAs (111)A none 300 2.4 1.8 
i 39b CdSe GaAs (111)A none 300 2.4 1.8 
ri40 CdSe GaAs (111)A 550 10 H 350 2 1 
mH41 CdSe GaAs (111)A 550 10 H 400 equipment failure 
mH42 CdSe GaAs (111)A 550 10 H 400 1.5 0.9 
mH43 CdSe GaAs (111)A 550 10 H 450 1.2 1 
ui44 CdSe GaAs (111)A 550 10 H 250 3 1.5 

mH45 CdSe GaAs (111)A 550 10 H 450 1.2 1 
MH46 CdS/CdSe GaAs (111)A 550 10 H 350 2 1/1 
mH47 Alloy GaAs (111)A 550 10 H 350 2 0.7 
MH48 CdSe/CdS GaAs (111)A 550 10 H 350 2 1/1 
M1149 Alloy GaAs (111)A 550 10 H 350 2 1 
MH50 CdS GaAs (111)A 550 10 H 350 0.8 0.4 
MH51 CdS GaAs (111)A 550 10 H 350 0.8 0.15 
MH52 CdS GaAs (111)A 550 10 H 350 equipment failure 
MH53 CdS GaAs (111)A 550 10 H 350 0.8 0.035 
MH54 CdS GaAs (111)A 550 10 H 350 0.8 0.07 
ri55 CdS GaAs (111)A 550 10 H 350 0.8 0.02 
MH56 CdSe/CdS GaAs (111)A 550 10 H 350 0.8 0.16/0. 
6 
mH57 CdS GaAs (111)A 550 10 H 350 0.8 0.4 
MH58 CdSe/CdS GaAs (111)A 550 10 H 300 0.8 0.03/0. 
3 
MH59 CdS GaAs (111)A 550 10 H 350 0.8 0.46 
MH60 Alloy GaAs (111)A 550 10 H 350 0.8 0.6 
MH61 Alloy GaAs (111)A 550 10 H 350 0.8 0.8 
MH62 CdS GaAs (111)A 550 10 H 325 0.8 0.4 
NH63 CdS GaAs (111)A 550 10 H 400 0.8 0.8 
MH64 CdS GaAs (111)A 550 10 H 400 0.8 1 
MH65 CdS/CdSe/CdS GaAs (111)A 550 10 H 400 0.8 0.4/0.2 
0.2 

After these samples the subsequent ones were all grown with the 
fast gas flow system described in section 2.3.2. The su$strates 
used were all GaAs (111)A baked out for 10 minutes at 550 C under 
hydrogen. The next samples listed are divided into single layers 
and superlattices, with the single epilayers listed first. The 
flow rates are included as these relate to the alloy growth 
described in section 3.3.4, the growth rates were in the range 1-2 
pm/hr. 

Sample Material Flow rates (cc/min) o ) k hi H2S H2Se ( C) T ness (Fun c t 
g 

MH66 CdSe 0 50 350 2 
MH67 Alloy 20 80 350 1 
MH68 Alloy 40 60 350 1 
Nß-169 Alloy 60 40 350 1 
MH70 Alloy 80 20 350 1 
MH71 CdS 100 0 350 1 
MH72 Alloy 90 10 350 1 
MH73 Alloy 95 5 350 1 
MH74 Alloy 60 40 400 1 
MH75 Alloy 80 20 400 1 
MH76 Alloy 90 10 400 1 
MH77 Alloy 93 7 400 1 
cw7R Alloy 90 10 450 1 



MH79 Alloy 

Superlattices 

97 3 

Samples marked * were imaged by TEM. 

Sample Buffer layer Layer thicknesses 
CdS CdSe 

450 1 

nT 
9 Period (A) 

NH80 None 150, 70 20 350 220 
M H81 CdS 5000 150 70 20 350 220 
MH82* CdS 5000 150 70 20 400 220 
MH83* CdS 3000 100 50 20 450 150 
MH84 CdS 5000 150 70 20 400 220 
MH85 CdS 5000 150 20 20 400 170 
MH88 CdS 4000 300 400 10 450 660 
NH89 CdS 4000 300 200 10 450 460 
MH90 CdS 4000 160 130 20 450 260 
MH91* CdS 4000 160 90 20 450 220 
MH92 CdS 4000 50 60 20 450 110 
MH93* CdS 4000 110 35 20 450 100 
MH94 CdS 4000 equipment failure 
MH95 CdS 4000 40 25 20 450 55 
MH96 CdSe 3000 60 90 20 450 150 
Nß-197 none 60 90 20 450 150 
MH98 CdS 3000 60 alloy 130? 20 450 150 
11H99 CdS 3000 60 alloy 130? 20 450 230 
MH100 CdS 3000 60 alloy 130? 20 450 230 
MH101 CdS 3000 60 alloy 130? 20 450 230 
MH104 CdS 3000 45 40 25 450 100 
MH105 CdS 3000 76 7 20 450 83 
MH106 CdS 3000 68 20 20 450 88 
NH107 CdS 3000 equipment failure 
MH108 CdS 3000 68 20 20 450 88 
MH109 CdS 3000 76 8 20 450 84 
MH110 CdS 3000 56 40 20 450 96 
MH111 CdS 3000 40 60 20 450 100 
MH112 CdS 3000 24 84 20 450 88 
MH113 CdS 3000 12 104 20 450 116 
MH114 CdS 3000 14 14 20 450 28 
MH115 CdS 3000 60 30 10 450 90 
MH116 CdS 3000 60 30 5 450 90 
MH117 CdS 3000 60 30 2 450 90 
11H118 CdS 3000 60 30 1 450 90 
MH119 CdS 3000 40 60 20 450 90 
MH120 CdS 3000 7 7 20 450 14 
MH121 CdS 3000 15 15 20 450 30 
MH122 CdS 3000 7 7 20 450 14 
MH123 CdS 3000 25 25 20 450 40 



Subsequently to this a number of CdS epilayers were grown 
on GaAs (111)A at different growth rates the ones studied 
for surface morphology were. 

MH134 1.6pm of CdS grown at 3.5 pm/hr 
MH135 1.5}ßm of CdS grown at 1.6 pm/hr 
MH136 1.5pm of CdSe grown at 1.6 pnVhr 
MH137 2.6µm of CdS grown at 2.6 }. /hr 
MH138 2 pm of CdS grown at 2.6 pm/hr 



APPENDIX 2 

Particle confined in a finite well 

The quantization condition for such a particle was given in 

chapter 1 (pg 25) as: - 

k2-g2 = 2kq Cot(ka) (i) 

2 
q =2m (V-E)/h2 (ii) 

k2=2m*E/h2 (iii) 

Where a is half the diameter of the well, V is the depth of the 

potential well and E is the total energy of the electron. The other 

constants take their usual physical values. This relation can be solved 

graphically by plotting the curves of k/q, Cot(ka) and -Tan(ka) against 

E on the same graph. The crossing points corresponding to the solutions 

[1]. However, an easier numerical approach can be taken by computer. 

This is achieved by assuming a solution at an arbitary energy E and 

then iterating 

kM+l = (1/a) ArcCot ([ km2_gm2 ]/[ 2qk ]) + n11 

where m is the iteration number and n is the quantum number of the 

transition. The energy Em is calculated from (iii) and the 

corresponding qm is derived from (ii). In order to avoid infinities at 

the asymptotes of the Cot function the initial E should be chosen to 

lie above the previous transition but below the value being sought. 



This is best achieved by starting with E--0 for the first transition and 
then using each transition in turn as the starting point for the 
interation to find the next. A program to perform this calculation was 

written in pascal on a Victor IBM compatible equipped with a maths 

coprocessor. The energies so derived were used for the calculation 

described in appendix 3. 

Kronig-Penney dispersion relation 

The Kronig-Penney relations were given on page 26 as :- 

ka2= 2maEA2 - k2 (iv) 

kb2= 2mb(V-E)/r2 - k2 (v) 

x= Makb/mbka (vi) 

Cos(dksl)= Cos(aka)Cosh (bkb)-%2[x-1/x]Sin(aka)Sinh(bkb) (vii) 

Where ma and mb are the effective masses of the carriers in the 

respective wells. For a full description of how this relation produces 

the minibands and parabolic dispersion see any good solid state text 

book (for instance [21). Here we are only interested in solving this 

equation. The important solutions required are when the right hand side 

of equation (vii) takes the values of -1 or +1 as these represent the 

top or bottom of subbands; we will refer to the right hand side of 

equation (vii) as g(E). We now have two alternative conditions to 

satisfy: - 



g(E)+1=0 

or 

g(E) -1=0 

These conditions were solved by simply starting with E--0 and 
increasing it in increments of dE until a condition is observed where 

g(E+nxdE) +1 <0 and g(E+(n+1)xdE) +1 >0 

with -1 substituted for +1 to obtain the alternative solution. The 

two values E+n dE and E+(n+l)dE are then passed to a midpoint solving 

routine to obtain precise values for the energies at the subband 

extrema. This is illustrated by the flow diagram below. 



After solving the solutions are ordered so as to produce the 

energy positions of bottom and top of each subband in order from the 

lowest energy state up. The energies of the bottom of the subbands 

corresponding to g(E)= +1, -1, +l, -l, +1 etc from the first band upwards. 

It is important to note that if dE exceeds the energy difference 

between any two solutions then the routine will miss solutions. This 

can be prevented by choosing a small enough dE. This was expressed in 

terms of V for our program and set at V/400. This provided a good 

compromise between time taken to calculate the subbands and the 

possible missing of solutions. In practice the confinement energies 

calculated were greatly in excess of V/400. 
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APPENDIX 3 

Evaluation of variational energy 

The variational wavefunctions tried for the piezoelectric well 

were given on page 129 as: - 

ý(z)= 
Aexp[(q- B)z/a) 

ý(z)= 
Bcos(kz/a)exp(g z/a) (i) 

C 

T (z)= Cexp[-(q+6 )z/a] 
l 

Where A, B and C are normalizing constants, q and k are the zero 

field finite well parameters, ß is the variational parameter and a is 

half the width of the well (see figure 4.32). The variational energy 

Evar is given by 

ýJt 

E 
var 

Where Evar>Eo' Eo being the exact energy eigenvalue. The 

expression (ii) is therefore minimized with respect to p to give the 

closest value to the exact eigenvalue. The Hamiltonian V,. is the usual 

Schrodinger one :- 

-f{, = 712 ý2 
+2 V(z) (iii) 

2 ýX 
Where V(z) is the potential given by (pg 128) 



V(z) = Vo+aFWe+eFbz z>a 

V(z) = eFWz Izl<a (iv) 

V(z) = Vý-awe+eFbz z<-a 

The matrix element can therefore be broken into 

three integrals. To assist with these integrals the wavefunction was 

rewritten in a different form :- 

t 
(z)= Aexp[(q- )(z/L+1/2)) 

1 
(z)= Bsin[kz/L+ 5]exp[- z/L] 

+ 
(z)= exp[-(q+ )(z/L-1/2)) 

1 

z<-L12 

Izl<L/2 (v) 

z> L/2 

where 5= k/2 + ArcTan(k/q) and L--2a (i. e L=width of well) 

The purpose of this is simply to simplify the integration. After 

the Hamiltonian operation the three expressions to be evaluated are now 

(after considerable simplification and use of integration by parts): - 

- L/2 

(1) A2 
(1i2 (g-)2 + Vn + eFbz) exp[2(q-g)(z/L+1/2) dz `2m 

Ll 
oo 



L/2 

B2 T? 2 2+k2 
+ eF z Sint(kz/L+E )exp(_2ý z, ) dz 2) 2m L 

-L/2 

+ ? i2 Sin2(kz/L+ 5)exp(-2 
z/L) 2Z 

(2) 

+L/2 +L/2 

-eF 
Jsin2(kz+ 

9)exp(-2ßz/L) 
dz dz 

-L/2 -L/2 

00 

(3) c2 
f(-! 

i2 (+ )2 + VP + eFbzl exP[-2(q+ß)(z/L+1/2)] dz 1 2m 
L2 

+L/2 

Where Vp-= V+eFWa and Vn V-eFWa 

(1) and (3) are easily integrated by parts to give: - 

.i2VnL- zeFbL + eFbL2 
(1) Iz<-a - 4m L 2(q- 2(q-ý) 4(q- )2 

(3) Iz>a = =7i 2(q+ )+VpL+ zeFbL + eFbL2 
4m, L' 2+2+4 (q+ 2 (q ß) ß) 

f 
These expressions were checked by comparison with numerical 

integrations and found to be correct. 

Integral (2) gives rise to a very complicated expression which 

will not be presented in full here. However, the important integrals 

were evaluated by repeated integration by parts and are expressed 

below: - 

JSin2(kz/L+)exp(_2rz/L) 
dz= 

I -L +L2 )Cos 2kz 2$) - kL/(2 2)Sin(2kz/L+2S) 
exp(-2(9z/L) 

2B 2t r 2(1+k/ 1 



JSin2(kz/L+ 
S)exp(_2ez/L) dz2= 

rL2 + kL2(2 )Sin(2kz 2 S)+[k2L2/(4 4)-L2M 2)]Cos(2kz 
2 8ý 2[1 + k2/ ]2 / 

These two integrals allow (2) to be evaluated exactly, again the 
resulting expression was checked by both differentiation and numerical 
analysis and found to be correct. f 

To get the variational energy the normalization integral 
ff 

must be evaluated. This, it turns out, can be done using integrals 

already evaluated from (1), (2) and (3). However, use must be made of 
the wavefunction continuity conditions linking the constants A, B and C 

(by matching the wavefunctions at z= +-L/2). 

(i) A= BSin(-k/2+S)exp(-a/2) 

(ii) C= BSin(k/2+S)exp(fI/2) 

With these the normalization factor B is the same for all the 

three wavefunctions. A computer program was written in pascal on an IBM 

compatible to evaluate the variational energy for a wide range of well 

and field parameters. To find the Evar minima with respect to the 

usual approach would be to analytically differentiate the Evar 

expression with respect to P. However, this was impossible in this case 

due to the compexity of the final expression, so the resulting energy 

was numerically differentiated with respect to rand a midpoint method 

was used to find the energy minima with respect to this parameter. It 

was found that for all realistic field and well parameters only one 

minima occured in the range ß=0 to q. Therefore the program simply 



started at these limits and calculated the variational energy to any 

desired accuracy. This is illustrated by the flow diagram below. 

-E v( +o El 
0ý 


