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Abstract

Upon vascular injury, platelets aggregate at the site of blood vessel injury to 

form a hemostatic plug maintaining the physiological integrity of the vascular 

system. Platelets respond to a variety of extracellular stimuli to undergo a 

rapid aggregation response, releasing active granule contents and leading to 

a rapidly growing thrombus. During the adhesion, activation, and aggregation 

of platelets at an injured site, the endothelium responds by limiting the size 

and growth of the hemostatic plug or thrombus, or even reversing platelet 

reactivity. These responses are defined as endothelial thromboregulation. 

There are three primary (and functionally independent) pathways during the 

early stages of thromboregulation by which the endothelium controls platelet 

reactivity (1) nitric oxide (NO); (2) prostacyclin (PGI2 ); and (3) the ecto- 

nucleotidase CD39. NO and PGI2 stimulate signalling cascades that result in 

the activation of the AGC family of Ser/Thr protein kinases (PKA, PKG and 

PKC). Once activated these kinase blunt platelet function through the 

phosphorylation of signalling proteins requested for activation. In this study, 

the role of AGC family kinases and their signaling cascades in regulating 

platelet function was assessed. The experimental data produced during this 

study demonstrate new insights in to the regulation of these kinases in 

platelets. More specifically it was found that

1. Peroxynitrite, a derivative of NO, regulated platelet function and 

particularly cytoskeletal rearrangement through PKC-dependent 
phosphorylation of VASPSer239/157

2. NO-mediated signalling in platelets had a requirement for PKC.

3. Multiple forms of PKA are present in platelets, which are differentially 

localised.

4. The potential regulation of platelet function by PKA is mediated through A- 

kinase anchoring proteins.

5. Lipid rafts may play an important role in platelet regulation by NO and

PKG.

In summary, this studies present insights of the factors regulating AGC

kinases in blood platelets.
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1.1 Overview.

Despite impressive medical advances that have led to diminished 

cardiovascular death rates in some countries over the past 20 years, 

cardiovascular disease (CVD) remains the leading cause of death in 

developed countries (Jamison et a/,, 1991). This promises to worsen as a 

result of aging populations, increasing obesity, type II diabetes epidemic, 

sedentary lifestyle, and continued abuse of alcohol and tobacco. The 

pathology that underlies most CVD is atherosclerosis, a chronic inflammatory 

process, which is multifactorial in origin. At the cellular level atherosclerosis 

involves endothelial cells, neutrophils, platelets, numerous cytokines and 

chemical messengers (Packard et a/., 2008). The importance of platelets in 

the thrombotic process is demonstrated by the clinical success of anti- 

platelet drugs such as aspirin and clopidogrel in reducing CVD mortality 

(Weiss, 2003; Weiss etal., 1967; Zuckeref a/., 1968).

1.2 Platelet production and structure.

1.2.1 Megakaryocytes.

Megakaryocytes are highly specialized precursor cells that function solely to

produce and release platelets into the circulation. Like any other cells in 

blood, megakaryocytes develop from hematopoietic stem cells, which in 

adults, reside primarily in bone marrow (Golde, 1991; Ogawa, 1993). 

Megakaryocytes, which can be distinguished by the expression of CD61 

(integrin Ps) and elevated levels of CD41 (integrin 02) (Vainchenker et a/., 

1988), undergo endomitosis and become polyploidy through repeated cycles



of DMA replication without cell division (Ebbe et a/., 1965; Odell et a/., 1968). 

After the process of endomitosis is completed, the megakaryocytes begin a 

maturation stage in which the cytoplasm rapidly fills with platelet-specific 

proteins, organelles, and membrane systems that will ultimately be 

subdivided and packaged into platelets. The production of approximately 35 

million platelets per liter per day is the end process of thrombopoiesis 

(Marker et a/., 1969).

1.2.2 Platelets.

Platelets are the smallest of the many types of cells in circulating blood. In 

the quiescent state, platelets are discoid and have a smooth, rippled surface 

averaging only 2.0 to 5.0 urn in diameter, 0.5 urn in thickness, and having a 

mean cell volume of 6 to 10 femtoliters (Bessis et a/., 1973). The normal 

platelet count is in the range of 150-350 x109 platelets/L. However individuals 

with platelet count as low as 10 x 109 platelets/L tend to exhibit only 

occasional major spontaneous bleeds, although they are at considerable risk 

of bleeding during major trauma (Hoffbrand et a/., 2005). Their shape and 

small size enables platelets to be pushed to the edge of vessel walls during 

blood flow, placing them next to the endothelium and in the right place to 

respond to vascular damage.

Platelets are anucleated, which is consistent with their short lifespan of 10 

days and their acute role in haemostasis. Hence platelets lack nucleus, they 

cannot adapt to different situations by protein synthesis, although there is 

some evidence for residual protein synthetic capacity from messenger RNA 

(mRNA) carried over from megakaryocytes (Jandrot-Perrus et a/., 2000).



1.2.3 Platelet structure.

Plasma membrane is coated with a layer of lipids, sugars, and proteins 

termed glycocalyx, the overall appearance does not differ from other cell 

types. However, it is exceptionally complex in composition, distribution, and 

function, incorporating a high number of glycoproteins and lipid rafts 

(Behnke, 1968). Uncharged phospholipids, such as phosphatidylcholine and 

sphingomyelin, are mainly present in the outer leaflet of the bilayer, whereas 

the inner leaflet contains the negatively charged aminophospholipids 

phosphatidylserine (PS) and phosphatidylethanolamine (PE) (Schroit et a/., 

1991). During platelet activation, this distribution becomes disrupted, 

phospholipids are scrambled, and PS and PE become exposed on the cell 

surface (Bevers et a/., 1983).which facilitates the activation of the 

coagulation cascade (Zwaal et a/., 1998).

Surface-Connected Canalicular System (SCCS), also called the open 

canalicular system, is part of the surface plasma membrane weaving through 

the entire platelet cytoplasm. SCCS functions as internal reservoir of 

membrane that facilitates platelet spreading, filopodia formation and granule 

release (JG, 1974). The dense tubular system (DTS) are believed to be 

residual smooth endoplasmic reticulum from the megakaryocyte and is the 

site for numerous metabolic processes including thromboxane generation 

(JG, 1974) (figure 1.1).

Immediately below the membrane is the platelet cytoskeleton. The discoid 

shape of platelets and their ability to contract and spread depend on this 

cytoplasmic framework of monomers, filaments, and tubules. Critical



components of the cytoskeleton are, from the plasma membrane inward, a 

spectrin based skeleton that is adherent to the cytoplasmic side of the 

plasma membrane (Fox et a/., 1988), a microtubule coil that runs along the 

perimeter of the disc and hence lines the thin axis of the cell, and a rigid 

network of crosslinked actin filaments, crosslinked by filamin, which provides 

the major membrane-cytoskeletal connection linking actin to the cytoplasmic 

tail of the GPIba chain of GPIb-IX-V complex (Kenney et a/., 1985). Platelets 

contain a single microtubule that is approximately 100 urn in length, that 

spiraled into a coil sits in the cytoplasm, just beneath the plasma membrane, 

along the thin edge of each disc. Each microtubule is composed of 13 stacks 

of ap-tubulin subunits, each arranged in linear head-to-tail aggregates called 

protofilaments (Mchelson, 2006).

In addition to the tubular systems, platelets contain three main types of 

storage granules: a-granules, dense granules, and lysosomes the contents 

of a-granules and dense granules each are released (Table 1.1) upon 

activation. Platelets also contain mitochondria and glycogen storage, 

providing the energy required for their short activation.



a granules

Fibrinogen

Factor V

P-selectin

vWF

Thrombospondin

Dense granules

Adenosine diphosphate ADP

Adenosine triphosphate ATP

Serotonin

Calcium

Table 1.1. Major Platelet Granular Constituents Secreted with 

Activation.



Figure 1.1. Schematic diagram of platelet structure.

Courtesy of (Bentfeld-Barker et al., 1982)



1.3 Physiological roles of platelets.

The major function of platelets is to arrest blood loss after vascular damage, 

a process termed haemostasis. Among the first, and still most compelling, 

evidence that platelets are crucial for human haemostasis is that platelet 

transfusion can restore haemostatic competence to individuals with low 

platelet counts (Duke, 1910). In normal conditions, platelets flow in blood 

vessels in a quiescent state, prevented from unnecessary activation by 

endothelium-derived prostacyclin (PG^) and nitric oxide (NO), whose net 

effect is to suppress the intracellular signaling needed for platelet activation 

by rising cyclic adenosine mono-phosphate (cAMP) and cyclic guanosine 

mono-phosphate (cGMP) respectively (Brass, 2003). As a further barrier to 

platelet activation, endothelial cells express ecto-ADPase (CD39) on their 

luminal surface. CD39 can hydrolyze small quantities of the platelet agonist 

adenosine diphosphate (ADP), which is released from damaged red blood 

cells and activated platelets, thus preventing the ADP from activating 

additional platelets (Marcus et a/., 1997). Upon vascular damage, platelets 

first interact with elements of the blood vessel wall and subsequently with 

other platelets. In order to perform these functions platelets possess 

numerous cell surface receptors and are rich in signaling proteins allowing 

them to respond to changes in their environment.

Platelet receptors determine the activity of platelets with a wide range of 

agonists and adhesive proteins. These receptors are broadly classified and 

some of those have become research disciplines in their own right. Listing all 

of these receptors is behind the scope of this introduction. However, three 

distinct families of surface glycoproteins which signal through Src family



tyrosine kinases are known to be present. (1) ITAM receptors, GPVI and 

FcyRHA. (2) Integrins include c-HbPaand a2(3i (3) leucine-rich repeat receptors 

include GPIb-IX-V complex (Hoffbrand et a/., 2005). Platelets also express 

G-Protein Coupled Receptors (GPCR). GPCRs are so-named because they 

are physically associated with heterotrimeric G proteins, a, p, and Y- (Wong 

et a/., 1990). All GPCRs share a common structure of seven 

transmembrane-spanning domains, with an extracellular N-terminus and an 

intracellular C-terminus (Kroeze et a/., 2003). GPCRs include P2Y1/12 , ADP 

receptor, and PAR! and PAPvj, thrombin receptors (Woulfe, 2005).

1.4 Haemostasis.

Platelet plug formation occurs in three overlapping stages; initiation, 

extension, and perpetuation (figure 1.2). Initiation may occur when 

circulating platelets are captured and then activated by exposed collagen 

and von Willebrand factor (vWF), allowing the accumulation of a platelet 

monolayer that will subsequently support thrombin generation and the 

formation of platelet aggregates. This is made possible by the presence of 

receptors on platelet surface that can bind to collagen [integrin a2pi and 

glycoprotein (GPVI)] and vWF (GPIba and QnbPa). Extension occurs when 

additional platelets are recruited into the initial monolayer. Key to this is the 

presence of platelet receptors that can respond rapidly to soluble agonists 

such as thrombin, ADP, and thromboxane A2 (TxA2 ).



Platelet 
adhesion

Platelet 
secretion

Platelet aggregation and activation of 
clotting

cutting cascade activation

Figure 1.2. Overview of the three main platelet functions, adhesion, 

secretion and aggregation. ADP, adensosine diphosphate. TxA2, 

thromboxane. vWF, von Willebrand factor.

Courtesy of (Kickler, 2006).
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1.4.1 Platelet activation and adhesion.

The extracellular matrix contains numerous proteins that are thrombogenic, 

that is, they trap and activate platelets. Of these proteins, collagen and von 

Willebrand factor (vWF) are the most important.

1.4.1.1 Role of von Willebrand factor (VWF) in platelet activation.

Endothelial damage exposes the extracellular matrix protein collagen, which

is a potent platelet agonist. Following exposure to collagen, platelets rapidly 

adhere, spread, become active, and then aggregate (Rauterberg et a/., 

1993), during which platelets change their shape from discoid to spherical 

with the extrusion of the pseudopodia (JG, 1974). This interaction of collagen 

with platelets is both direct and indirect. Under the high shear stress 

conditions found in small arteries, von Willebrand factor (vWF), which binds 

to newly exposed collagen fibers, is required to capture flowing platelets 

(Savage et a/., 1996), via the GPIb-IX-V complex on the platelet surface or 

to the integrin anb PS in its activated conformation. The importance of GPIb-IX- 

V interaction with vWF in normal haemostasis is documented by the severe 

bleeding disorders derived from the lack of either GPIb-IX-V (Bernard-Soulier 

syndrome) (Clemetson et a/., 1982), or vWF (von Willebrand disease) (Von 

Willebrand, 1926).

In addition to mediate the initial platelet arrest on damaged vessel wall and 

participate in thrombus formation, GPIb-IX-V interaction with vWF promotes 

QiibPs activation and aggregation (Chow et a/., 1992; Sakariassen et a/., 

1986).
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1.4.1.2 Role of collagen in platelet activation.

Collagens represent up to 40% of the total protein of the vessel wall, forming

an insoluble scaffold which is essential for tissue integrity and which provides 

a surface for the attachment of other matrix constituents and for the adhesion 

of vascular cells (Farndale et a/., 2004b). At least 25 different types of 

collagen exist, a number of which, including major widely distributed types I, 

III, IV, V and VI, occur in the vessel wall (Barnes et a/., 1999). Collagen 

contains three polypeptide (a) chains, displaying an extended polyproline-ll 

conformation, a right handed supercoil and a one-residue stagger between 

adjacent chains (Brodsky et a/., 2005). The three a chains are held together 

by interchain hydrogen bonds, and each polypeptide chain has a repeating 

Gly-X-Y triplet in which glycyl residues occupy every third position and the X 

and Y positions are frequently occupied by proline and 4-hydroxyproline, 

respectively (Kadler et a/., 2007), with Gly-Pro-Hyp (GPO) as the most 

frequent, forming about 10% of the primary structure of collagen types I and 

lll(Baumefa/., 1999).

The binding of collagen, via GPO repeat sequences, to GPVI on the platelet 

surface causes the clustering of GPVI and its associated FcRv-chain, a 

trans-membrane protein containing an immunoceptor tyrosine activation 

motif (ITAM). This leads to the phosphorylation of the v-chain by tyrosine 

kinases in the Src family, creating a tandem phosphotyrosine motif that is 

recognized by the SH2 domain of spleen associated tyrosine kinase (Syk) 

(Gross et a/., 1999b) (figurel.3). Association of Syk with GPVI/v-chain 

activates Syk and leads to the phosphorylation and activation of the \2 

isoform of phospholipase C (PLCy2 ) via the adaptor protein, SLP-76 (Gross

12



et al., 1999a). Studies using Syk deficient mice have demonstrated a pivotal 

role for Syk in signalling downstream of ITAM receptors (Turner et al., 2000). 

PLCY2 in turn hydrolyzes PI-4,5-P2 to produce 1,4,5-IP3 and diacylglycerol 

(DAG), raising the cytosolic- free Ca2+ concentration within the adherent 

platelets by releasing Ca2+ stores from within the dense tubular system and 

activating protein kinase C (PKC) (Brass, 2003).

In resting platelets the cytosolic Ca2+ concentration is maintained at 

approximately 100nM by limiting Ca2+ influx and by pumping Ca2+ out of the 

cytosol across the plasma membrane or into the dense tubular system. This 

creates a steep Ca2+ gradient across the plasma membrane. Once formed, 

1,4, 5-IP3 releases Ca+2 from the dense tubular system, which in turn 

opens Ca2+ influx channels in the plasma membrane, extracellular Ca2+ then 

pours in, following its concentration gradient, increasing the cytosolic Ca2+ 

concentration to up to 1uM (Michelson, 2006), depending on the potency of 

the agonist. The rising Ca2+ concentration in activated platelets is 

undoubtedly a critical trigger for numerous events, such as the Ca2+ - 

dependent activation of the Ras family member, Rap-i b , which has been 

shown to be an important contributor to signaling pathways upon the 

activation of aii bp3 (Bertoni et al., 2002; Chrzanowska-Wodnicka et a/., 2005), 

and Ca2+-dependent reorganization of the actin cytoskeleton via activation of 

myosin light chain kinase (MLCk) downstream of G q family members 

(Wettschureck et al., 2002), and some isoforms of PKC (Pula et a/., 2006; 

Tabuchi etal., 2003).
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Pro-coagulanr 
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Figure 1.3. Signaling through collagen receptors.

The major axis of collagen signaling is through GPVI, directed towards 

mobilization of Ca2+, like all strong platelet agonists. A series of 

adapter proteins mediate this process, with the multiply 

phosphorylated LAT acting as a crucial docking site upon which a 

signaling complex can assemble. Courtesy of (Farndale et ai, 2004a).
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Recent studies addressed the question of how a2(3i and the GPVI/FcRy 

complex are involved in collagen signaling. For example, Zhen (Zheng et al., 

2001) reconstituted the GPVI-FcRy complex in RBL- 2H3 cells and found 

that the complex-expressing cells had strong adhesive and signaling 

responses to convulxin (Cvx), a snake venom protein that is a GPVI-specific 

agonist (Polgar et al., 1997), and weak responsiveness to collagen- related 

peptide (CRP) but no response to collagen, suggesting that the direct binding 

of platelets to collagen should be mediated by a2(3i rather than by the GPVI- 

FcRy complex. The adhesion of platelets to GFOGER peptides is 

accompanied by the tyrosine phosphorylation of several proteins, including 

Src, Syk, SLP-76 and PLCY2 , which are also involved in GPVI signaling, and 

Ca2+-dependent spreading (Inoue et al., 2003). P38 MAP kinase, ILK, Rac 

and PAK have also been implicated downstream of a2pi ligation (Stevens et 

al., 2004; Sundaresan, 2003; Suzuki-lnoue et al., 2001). On the other hand 

Nieswandt and colleagues (Nieswandt et al., 2001), performed functional 

studies using prnull or VI deficient mouse platelets and indicated that GPVI- 

collagen interaction is an essential prerequisite for integrin-mediated firm 

adhesion followed by platelet thrombus formation. Research focusing on the 

stimulation of tyrosine kinase signaling in platelets in suspension indicated 

initially that integrin a2pi does not engage in outside-in signaling (Hers et al., 

2000).

Following adhesion and activation of platelets, additional platelets from the 

blood are recruited into the growing platelet plug. This is made possible by

the release of soluble agonists mainly thrombin, which is generated locally
15



from prothrombin once tissue factor has been exposed (a process facilitated 

by the negatively charged phospholipids on the surface of activated 

platelets), ADP, along with ATP, is stored within platelet dense granules and 

secreted upon platelets activation, epinephrine, and

1.4.2 Platelet shape change.

When platelets adhere to the subendothelial matrix they undergo a series of 

shape changes, first rounding, then projecting filopodia, and finally spreading 

(Alien et a/., 1979). The shape change starts with disassembly of the existing 

actin filament network followed by reorganization of the actin into new 

structures in different locations within the cell (Bearer, 1995). This actin 

reorganization is regulated by the interplay between many different actin 

binding proteins, of which gelsolin and vaso-dilator-stimulated 

phosphoprotein (VASP) are among the most abundant (Laurent et a/., 1999; 

Loscalzoefa/., 2002).

Gelsolin, which is activated by the elevated Ca2+ concentrations, binds actin 

filament and sever it and cap the newly formed barbed ends. The rising PIP2 

levels inactivate both gelsolin and CapZ, removing them from the filament 

plus ends. Addition at the barbed end is facilitated by mainly profilin, which 

acts to shuttle actin subunits to actin filament barbed ends, causing the 

activated platelet to extend lamellipodia and filopodia. Once the PIP2 signal 

subsides, the barbed ends are recapped primarily by CapZ, rendering them 

stable against depolymerization and locking the platelet into its spread form 

(Alberts etal., 2002; Michelson, 2006) (figure 1.4).
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In resting platelets, VASP binds to and stabilizes actin filaments, preventing 

them from being disassembled by severing. Upon activation, VASP releases 

the filaments, which are then rapidly severed, causing the platelet to lose its 

discoid shape and round up (Bearer et a/., 2000).

While platelets can adhere to damaged endothelial cells, their principle 

adhesive surface is the extracellular matrix (ECM), which becomes exposed 

in injured vessels and offers a panoply of ligands for platelet adhesion 

receptors. Within this context, integrin adhesion receptors play critical roles 

in platelet function (Ruggeri, 2002a). Integrins are a family of heterodimeric 

proteins, composed of non-covalently associated a and p-subunits. Each 

subunit consists of a large extracellular domain, a single-span 

transmembrane domain, and a short cytoplasmic domain (or tail) composed 

of roughly 20-60 amino acids (Hynes, 2002).

Integrins bind to insoluble ligands (E.G. collagen fibrils) and link them to the 

intracellular cytoskeleton. In addition to forming these physical linkages, 

integrins regulate cell growth, survival, and differentiation (Hynes, 1992). 

Talin, an abundant cytosolic protein, is capable of linking integrins to the 

actin cytoskeleton either directly or indirectly via its interactions with vinculin 

and a-actinin (Burridge et a/., 1996; Otey et a/., 1990; Rees et a/., 1990). 

Talin cleavage by calpain, which itself becomes activated as a consequence 

of increases in cytosolic Ca2+ , is detected within activated platelets (Inomata 

etal., 1996; Martel etal., 2001).
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Figure 1.4. Platelet shape change.

(A) Platelet activation is a controlled sequence of actin filament 

severing, uncapping, elongation, recapping, and cross-linking that 

creates a dramatic shape change in the platelet. (B) Scanning electron 

micrograph of platelets prior to activation. (C) An activated platelet with 

its large spread lamellipodia. (D) An activated platelet at a later stage 

than the one shown in C, after myosin ll-mediated contraction. Courtesy 

of (Alberts et at., 2002).
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1.4.3 Platelet secretion.

Platelet secretion is a mechanism to amplify the activation response and

recruit additional platelets to the site of clotting. Secretion involves 

reorganization of the actin structure, the movement of granules into close 

physical apposition with the plasma membrane, granule-plasma membrane 

fusion, and release of intracellular contents (Flaumenhaft et a/., 2005; White, 

1974), a process that occurs through a SNARE proteins-dependent 

mechanism, and tightly regulated by intracellular Ca2+ levels and activated 

PKC (Konopatskaya et a/., 2009b; Schraw et a/., 2003). The degranulation 

acts to increase the bioavailability of factors required for platelet activation 

including Ca2+ , ADP and fibrinogen.

1.4.4 Role of soluble agonists in platelet activation.

A number of soluble agonists that are released from platelets or generated at 

the site of vascular damage act to amplify platelet activation. These include 

ADP, TxA2 and thrombin. The importance of these agonists is explained by 

the clinical success of aspirin and clopidogrel, which target TxA2 generation 

and ADP, respectively, in reducing CVD mortality (Marker et a/., 1998; 

Herbert et a/., 1998)

1.4.4.1 Role of ADP in platelet activation.

ADP is stored in platelets dense granules and released upon platelet

activation, and is also released from damaged red blood cells. ADP activates 

platelets by G-protein coupled receptors GPCRs termed P2Y! and P2Yi 2 , 

which are coupled to Gq and Gj respectively (Daniel et a/,, 1998; Dorsam et

a/., 2004; Hechler et a/., 1998; Jin et a/., 1998; Kamae et a/., 2006).
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Interaction of ADP with the P2Y-i Gaq-coupled receptor leads to intracellular 

Ca2+ release as well as RhoA activation, leading to thromboxane A2 

generation and platelet shape change (Kunapuli et a/., 2003). Further, P2Y12 

activation by ADP initiates Gj protein signaling leading to the inhibition of 

adenylyl cyclase and the potentiation of dense granule secretion (Kunapuli et 

a/., 2003). Some evidence exists that P2Yi 2 signaling leads to an 

augmentation of P2Yrinduced Ca2+ signaling, although P2Y-| 2 signaling does 

not seem to initiate Ca2+ mobilization independently of P2Y1 (Hardy et a/., 

2004).

1.4.4.2 Role of thromboxane in platelet activation.

Thromboxane (TxA2) is derived from arachidonic acid (AA), which is cleaved

from membrane phospholipids by the enzymatic activity of PLA2 upon 

platelet activation. AA is further catalyzed by cyclooxygenase (COX) to a 

labile intermediate peroxides, PGG2 , which are further reduced to the 

corresponding alcohol, PGH2 , by the enzyme's hydroperoxidase (HOX) 

activity. PGH2 is subject to further metabolism by thromboxane-A synthase to 

thromboxane A2 (Diczfalusy et a/., 1977; Hsu et a/., 1999; Needleman et a/., 

1976).

Platelets only have the A-type TxA2 receptor (Hirata et a/., 1991). The TxA2 

receptor is coupled to signal transduction via several G proteins including G q , 

and Gi2/i3 (Offermanns et a/., 1994), which activate phospholipase C to 

increase intracellular calcium and activates PKC-dependent pathways, which 

facilitate platelet aggregation, whereas Gi 2/Gi 3-mediated Rho/Rho-kinase- 

dependent regulation of myosin light chain phosphorylation participates in

20



receptor-induced platelet shape change (Klages et a/., 1999). TxA2 receptor 

agonists induce tyrosine phosphorylation of several signaling proteins, 

including Syk (Maeda et a/., 1995).

1.4.4.3 Role of thrombin in platelet activation.

The serine protease, thrombin, is the end product of the plasma coagulation

cascade of sequential Zymogen-to-Thrombin steps that requires the 

assembly of a prothrombinase complex comprised of prothrombin, 

coagulation factor Xa, calcium ions, and the active cofactor Va on the 

surface of a cellular phospholipid membrane (Mann et a/., 1988). Thrombin 

acts via cell surface Protease Activated Receptors (PARs). Four PARs 

(PAR-1, -2, -3, -4) are identified, of which PAR! and PAR4 are identified in 

human, mouse platelets express PAR3 and PAR4, however signaling 

appears to be mediated solely through PAR4 (Sambrano et a/., 2001).

PARs are G-protein coupled receptors, which couples to G qa and Gi2a / Gi3a , 

and activated by a proteolytic cleavage in an extracellular loop by thrombin. 

Once activated, this leads to the activation of PLCp, PI 3-kinase, and the 

monomeric G proteins, Rho, Rac, and Rapi, and also causing increase in the 

cytosolic Ca2+ concentration and inhibiting cAMP formation. This process is 

supported by released ADP and TxA2 , which bind in turn to their GPCRs on 

the platelet surface (Brass, 2003).

One of the properties that set thrombin receptors apart from most other G- 

protein-coupled receptors is their inability to be activated by thrombin more 

than once. This is thought to be due in part to receptor phosphorylation and

in part to the apparent inability of thrombin to reactivate cleaved receptors
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(Brass et a/., 1994; Ishii et a/., 1994). Binding studies have identified a high 

affinity binding site for thrombin on GPIbQ (Harmon et a/., 1986) that overlap 

vWF binding site (Andrews et a/., 1999). Deletion of the extracellular domain 

of GPIba or blockade of the thrombin-binding site decreases platelet 

responses to, and Platelets from Bernard Soulier syndrome patients show an 

impaired response to thrombin (De Candia et a/., 2001; De Marco et a/., 

1991). In addition, the GPIb-IX-V complex has a platelet-specific thrombin 

substrate, GPV, that is cleaved very early during thrombin-induced platelet 

aggregation (Berndt et a/., 1981). However, efforts to demonstrate any 

signaling significance were not entirely successful (Ramakrishnan et a/., 

2001).

1.4.5 Platelet aggregation.

The capacity of platelets to form a thrombus depends on their ability to 

aggregate. At a molecular level, platelet aggregation is mediated by a 

specific receptor on the platelet surface, OnbPs, through what is commonly 

known as "inside-out" signaling. Inside-out signaling can be initiated by the 

engagement of various adhesion or G-protein coupled receptors, which are 

coupled to second messengers such as Ca2+ , nucleotides, phospholipases, 

and protein kinases (Nieswandt et a/., 2003). For example, PKC, 

phosphatidylinositol 3-kinase (PI3k), and Rapi b have been implicated as 

intermediates in promoting inside-out signalling, however the identities and 

activities of the relevant effectors of these enzymes remain unclear (Soriani 

et a/., 2006) (Chrzanowska-Wodnicka et a/., 2005), Integrin linked kinase 

(ILK), a serine/threonine kinase downstream of PI3k that interacts with the
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cytoplasmic tails of (3i and p3 integrin subunits (Hannigan et a/., 1996); thus, 

ILK in platelets is probably important for both outside-in and inside-out 

signaling by the integrins a2 (3i and a\\t>fa (Stevens et a/., 2004; Yamaji et a/., 

2002).

Once activated a\\ b$3 binds to its major physiological ligand, the plasma 

protein fibrinogen, or vWF to promote the formation of stable platelet/platelet 

bridges and prevent premature disaggregation. Occupancy of dnbPs causes 

integrin microclustering (Buensuceso et a/., 2003; Loftus et a/., 1984) which 

appears necessary for tyrosine kinase dependent "outside-out" signaling 

(Hato et a/., 1998). Src kinases which is constitutively bound to the P3 

cytoplasmic tail becomes activated (Arias-Salgado et a/., 2003; Obergfell et 

a/., 2002) . Syk is recruited to the Pa tail and become activated by Src 

(Obergfell et at., 2002; Woodside et a/., 2001). Several substrates are 

phosphorylated downstream including SLP-76, ADAP, c-Cbl (molecular 

adaptors), and Vav (a Rac GTPase), that are implicated in signalling to the 

actin cytoskeleton (Miranti etal., 1998; Obergfell etal., 2001). 

In contrast to GPVI signalling, the mechanism of activation of Syk by integrin 

diibPs, which lack an ITAM, is controversial (Shatt.il et a/., 1998). It was 

originally proposed that integrin anbps signalling proceeds independently of 

receptor tyrosine phosphorylation (Woodside et a/., 2002). However, a 

subsequent study provided evidence that the phosphotyrosine-binding 

capacity of Syk is required for activation by integrins, possibly via an 

unidentified ITAM-containing protein (Abtahian et a/., 2006). Indeed, it has 

recently been shown that the low affinity Fc receptor, FcvRNA, couples

integrin ctubpa to downstream signaling events in human platelets (Boylan et
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a/., 2008). It thus seems that 0^3 signals through both ITAM-dependent and 

ITAM-independent regulation of Syk.

After platelet activation and aggregation have occurred in response to a 

vascular lesion, processes take place that consolidate the stability of the 

forming thrombus. An example of the advantage of binding to fibrinogen is 

anchoring aggregated platelets to the site of vascular injury, thus preventing 

downstream embolization under the effects of flow (Ni et a/., 2000).

24



taaototpttttW 

SutMndontMn

EndonM

If rijir tj»f1 ACP

cow

AOf AMP

NO I>*aifc>a-i1<-co
^^

^C^C
d SecrMion, gwwntkin

vWF Collagen , Fifirorwctn Flbrlnogen

igram illustrates the role of platelets in

? usually kept in an inactive state by PGI2 

lothelial cells. Endothelial cells also express 

ch inhibits platelet activation by converting 

ites where the blood vessel wall has been 

 e to the exposed subendothelium through 

jen, von Willebrand factor and fibronectin 

platelets,GPVI, GPIb-IX-V and integrin oc5Pf, 

i and ADP cause platelets to change into an 

Activated platelets secrete ADP, platelet- 

1 fibrinogen from storage granules in the 

.———————, 25
University 

Library

Figure 1.5. Schematic die 

thrombus formation.

(a) Circulating platelets art. 

and NO released by the end 

CD39 on their surface, whit 

ADP into AMP. (b, c) At si 

injured, the platelets adhei 

interactions between collat 

and their receptors on the , 

respectively. Both thrombin 

active conformation, (d) i 

derived growth factor, am



platelet, and thromboxane A2 (TxA2), produced by immediate 

biosynthesis. ADP and TxA2 cause circulating platelets to change 

shape and become activated, (e) alibfis receptors on the surface of 

activated platelets bind fibrinogen, leading to the formation of 

fibrinogen bridges between the platelets, resulting in platelet 

aggregation. This, and the simultaneous formation of a fibrin mesh (not 

shown), lead to the formation of a platelet thrombus. (f)Clot retraction 

then leads to formation of a stable thrombus (Bhatt et a/., 2003).
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1.4.6 Blood coagulation.

Blood coagulation is the last step of homeostasis, and the primary defense 

system of vasculature. Vascular injury exposes collagen and leads to the 

release of tissue factor III, which with the aid of Ca2+ activates factor VII, thus 

initiating the extrinsic pathway (Mackman, 2004). Factor XII from active 

platelets, is activated by collagen (van der Meijden et a/., 2009), which in turn 

activates factor XI, thus initiating the intrinsic pathway. Both active factor VII 

and active factor XI will promote cascade reactions, eventually activating 

factor X. Active factor X, along with factor III, factor V, Ca2+ , and platelet 

thromboplastic factor (PF3 ), activate prothrombin activator. Prothrombin 

activator converts prothrombin to thrombin. Thrombin then converts 

fibrinogen to fibrin. Fibrin initially forms a loose mesh, but then factor XIII 

causes the formation of covalent cross links, which convert fibrin to a dense 

aggregation of fibers (Lorand et a/., 1964). (TAFI), Thrombin-activatable 

fibrinolysis inhibitor, protects the fibrin clot from proteolysis and subsequent 

degradation (Bajzar et a/., 1995). The propagation phase thus stems blood 

loss by providing a stable fibrin clot. Platelets and red blood cells become 

caught in this mesh of fiber, thus the formation of a blood clot.
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1.5 Regulation of platelet function.

Platelets circulate in a quiescent state as long as the endothelium remains 

intact. Once vessel wall is injured, platelets adhere to the exposed 

subendothelial components and undergo sequence of events, which lead to 

a haemostatic plug. It is important that platelets are kept in the quiescent 

state in normal conditions to allow the processes of haemostasis and 

thrombus formation to remain balanced.

The blood vessels are lined by the endothelium, a group of cells that provide 

a physical barrier between the blood circulation and the surrounding tissues. 

The endothelium also produces a series of mediators which control blood 

flow and haemostasis as a whole. As well as acting as an antithrombotic 

surface, the endothelium produces numerous antithrombotic mediators which 

prevent platelet aggregation and promote fibrinolysis. Ectonucleotidases 

(CD39) and proteoglycans (heparin sulphates) are expressed on the cell 

surface and prevent platelet adhesion and thrombin activity (Olson et a/., 

1994). Prostacyclin (PGI2 ), prostaglandin (PGE2 ) (Moncada et a/., 1976; 

Moncada et a/., 1977b; Whittaker et a/., 1976) and nitric oxide (NO) (Ignarro 

et a/., 1987b; Moncada ef a/., 1988a; Moncada et a/., 1988b) are released 

into the lumen and antagonise platelet aggregation and adhesion as well as 

causing vessel dilation.

1.5.1 Nitric oxide.

Nitric oxide (NO) is a gaseous messenger that functions as both a critical

cytotoxic agent and an essential signaling molecule. Historically the toxicity 

NO has long been accepted. However, with almost 100,000 references
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demonstrating biological roles for NO listed in PubMed, it may be difficult to 

remember how controversial was the initial proposal that NO was a biological 

molecule. It is well established now that NO and natriuretic peptides (NPs) 

play an important role in cardiovascular health and disease (D'Souza et al., 

2004; Garbers et al., 1999; Ignarro, 2002; Lloyd-Jones et a/., 1996). NO and 

ANP relax small arteries and arterioles resulting in decreased blood 

pressure, and NO prevents acute vasoconstriction and thrombosis. 

In circulation an intact endothelium releases NO continuously in response to 

blood flow to inhibit platelet adhesion to endothelium (De Graaf et al., 1992). 

Activated platelets also release NO in nanomolar concentrations (Zhou et al., 

1995), to prevent further platelet adhesion and aggregation to growing 

thrombus (Freedman et al., 1999).

1.5.1.1 Nitric oxide production.

NO is biosynthesized by a family of enzymes called nitric oxide synthase

(NOS). The three members of the enzyme are endothelial NOS (eNOS), 

inducible NOS (iNOS), and neuronal NOS (nNOS). A mitochondrial NOS 

(mtNOS) has also been reported elsewhere (Ghafourifar ef al., 1999). 

Generally, NOS catalyzes a reaction between L-arginine with oxygen, in a 

Ca2+ bound to calmodulin (Ca2+/CaM) -dependent manner, forming L- 

citrulline and releasing NO (Marietta et al., 1988a). The enzyme has an 

absolute requirement for the electron donor NADPH, the electron carriers 

FADH + and FMNH + , the cofactors tetra-hydrobiopterin (BH4 ), zinc, haem 

(Moncadaefa/., 1991).
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In cells where eNOS is in caveolae, it is likely that binding to caveolin-1 may 

negatively regulate its function. On stimulation with calcium-mobilizing 

agonists such as bradykinin, acetylcholine, or vascular endothelial growth 

factor (VEGF, Akt, once recruited to the plasma membrane, is 

phosphorylated on threonine-308 (by the serine/threonine kinase PDK-1) 

and/or calmodulin dependent protein kinase kinase (CaMKK) and on serine- 

473 (by the serine/threonine kinase PDK2) resulting in its ability to directly 

activate eNOS by phosphorylate on serine-1179 (Fulton et at., 2001). 

Evidences suggest that the shear stress acting on the endothelium is 

responsible for flow-induced NO release. Responses to shear stress include 

increases in ionic conductances (Lansman et a/., 1987), intracellular levels of 

Ca2+ (Shen et a/., 1992), and IP3 (Bhagyalakshmi et a/., 1992). Again 

phosphorylation by Akt occurs, resulting in NO release.

Synthesis of NO from L-arginine is now known to occur in vascular 

endothelial cells (Palmer et at., 1988), macrophages (Hibbs et a/., 1988; 

Kwon et a/., 1989; Marietta et a/., 1988b), neutrophils (McCall et a/., 1989; 

Salvemini et at., 1989), brain synaptosomes (Knowles et a/., 1989), adrenal 

glands (Palacios et a/., 1989) and a number of other tissues (Moncada et a/., 

1989). In addition, eNOS and iNOS have been described to be expressed in 

platelets, however, data concerning expression, regulation, and function of 

eNOS and iNOS in platelets are highly controversial (Gkaliagkousi et a/., 

2007; Naseem et a/., 2008). In contrast to these publications, data from 

others (Gambaryan et a/., 2008; Ozuyaman et a/., 2005), clearly

demonstrated that human and mouse platelets do not express any

30



functionally active NOS protein, indicating that endothelial cell-derived NO is 

the major activator of platelet sGC.

1.5.1.2 Nitric oxide bioavailability.

A decrease in NO bioavailability has been implicated to play a major role in 

the generation of atherosclerosis (Radomski et a/., 1995). However, it 

remains unclear whether NO production is down regulated or impaired. In 

vivo the bioavailability of NO is regulated by oxygenated haemoglobin 

(HbO2 ) and myoglobin (MbO2 ), which NO reacts with to form nitrate (NO3) 

(Huang et a/., 2001). However, due to the abundance of red blood cells 

(RBC) in circulations, an NO-bioavailability export theory has been proposed. 

According to this theory, NO enters the RBC and preferentially binds with the 

free heme on Hb to form heme-nitrosylHb (HbNO) rather than being oxidized 

by O2- conjugated heme. HbNO then transfers the conjugated NO to b- 

93Cys to form S-nitrosoHb. NO bioactivity is then exported out of RBCs 

through the anion exchange protein, band 3 (or AE1) (Gow et a/., 1999). NO 

can react with superoxide (02") to form peroxynitrite (ONOO") (Crane et a/., 

2005), thus reducing the amount of bioavailable NO.

1.5.1.3 Mechanisms underlying the biological actions 
of nitric oxide.

1.5.1.3.1 Nitric oxide-sensitive soluble guanylyl cyclase.

NO as a free radical with a half-life of about 10 seconds, diffuses readily 

across cellular compartments (RMJ et a/., 1991). Once inside platelets, NO 

binds to the haem group of soluble guanylyl cyclase (sGC).
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sGC is a heterodimer formed by dimerization of either an ar or cf2-subunit to 

the (3r subunit, and these dimers have indistinguishable enzymatic activity 

(Russwurm et a/., 2002). In platelets, only the CH and Pi subunits of sGC are 

expressed (Mergia et a/., 2006). Activation of sGC is initiated by NO binding 

to the sixth coordinating position of the heme iron which leads to the 

breakage of the histidine-iron bond yielding a five-coordinated nitrosyl-haem 

complex with an absorption maximum at 399 nm (Gerzer et a/., 1981). The 

change in haem conformation is transduced to the catalytic cGMP forming 

domain resulting in the up to 200-fold activation of the enzyme. This is 

evident by replacing haem by the haem precursor protoporphyrin IX, which 

stimulates sGC independently of NO indicating that protoporphyrin IX, due to 

the lack of the central iron, is able to mimic the conformation of NO-bound 

heme (Ignarro et a/., 1982). The finding is compatible with the assumption 

that the release of the histidine-iron bond is required for stimulation of sGC. 

Ultimately the increases in the catalytic activity of sGC increases intracellular 

cyclic guanosine 5-monophosphate (cGMP) levels formed from Mg2+-GTP 

(Radomski et a/., 1990). cGMP then binds to phosphodiesterases (PDE), ion- 

gated channels, and cGMP-dependent protein kinases (PKG). These 

effectors can regulate several physiological functions including 

vasodilatation, platelet aggregation and neurotransmission (Munzel et a/., 

2003; Sanders etal., 1992; Warner etal., 1994).

At any given time, the intracellular concentration of cGMP results from the 

balance between synthesis and degradation. The catabolism of cGMP is 

mediated by phosphodiesterases (PDEs), a large group of enzymes

consisting of at least 11 different families (Bender et a/., 2006). PDEs
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hydrolyze the 3' phosphoester bond of cyclic nucleotides, converting them 

into biologically inactive 5' nucleotide metabolites. Currently, only three 

PDEs have definitely been shown to be expressed in platelets, cGMP- 

stimulated PDE2 , cGMP-inhibited PDE3 , and the cGMP-binding, cGMP- 

specific PDE5 (Haslam et a/., 1999). Whereas PDE2 hydrolysis both cGMP 

and cAMP with similar affinities, PDE3 preferentially hydrolysis cAMP. PDE3 

activity is increased by a direct PKA-catalyzed phosphorylation (Macphee et 

a/., 1988), and inhibited by the binding of cGMP. Therefore, cGMP can 

potentially decrease (via PDEa) or enhance (via PDE3) a cAMP response. 

PDE5 is highly specific for cGMP hydrolysis (Schwarz et a/., 2001 a).

1.5.1.3.2 Nitric oxide-insensitive soluble guanylyl cyclase.

In addition to NO, carbon monoxide (CO) can bind to the sGC haem and

weakly activate the protein (Stone et a/., 1994). The binding of CO leads to 

the formation of a 6-coordinate Fe"-CO complex with the histidine-iron bond 

remaining intact (Friebe et a/., 1996; Stone et a/., 1994), and a 2^4-fold 

increase in the rate of cGMP production. This activation is significantly lower 

than the 100-400-fold increase in cGMP production observed with NO. Other 

compounds also have been reported to activate sGC include organic nitrates 

(Obergfell et a/., 2001). Recently a new mechanism of NO-independent 

tyrosine phosphorylation of the sGC p-subunit and activation of sGC was 

described in platelets stimulated with vWF (Gambaryan et a/., 2008), and GP 

VI (Riba et a/., 2008). In a similar manner, it has been shown that sGC exist 

in NO-insensitive (haem-oxidized or haem-free) form under physiological
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conditions, and in increased levels in certain disease conditions (Stasch et 

al., 2006).

1.5.1.4 Role of nitric oxide in platelet function.

1.5.1.4.1 cGMP-dependent mechanism of regulation.

NO plays an important protective role in vascular haemostasis by 

suppressing thrombosis, atherosclerosis, and proliferation of vascular 

smooth muscle cells (Ignarro et al., 2004). In blood vessels, the intact 

endothelium releases NO to inhibit platelet adhesion to the endothelium (De 

Graaf et a/., 1992; Ignarro, 1989), platelet activation and platelet aggregation 

(Azuma et a/., 1986). The vasodilatory effect of NO leads to smooth muscle 

relaxation (Furchgott et al., 1980).

In platelets NO inhibits agonist-evoked calcium mobilization from intracellular 

stores by phosphorylation of IP3 receptor-associated protein (IRAG) and 

calcium entry via store-operated calcium channels, but not via ADP-activated 

calcium channels (Geiger et al., 1994; Moro et al., 1996). The binding affinity 

of QiibPa for fibrinogen is also decreased by cGMP-dependent inhibition of 

phosphoinositide 3-kinase (PI3k) activation (Pigazzi et al., 1999), and by 

phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein 

(VASP) (Horstrup et al., 1994). NO also inhibits PLC-dependent activation of 

PKC (Schwarz et al., 2001 a), while Rapi, which is required for normal 

integrin aii bp3 signalling in platelets (Chrzanowska-Wodnicka et al., 2005), 

has also been identified as a substrate for NO (Danielewski et al., 2005). 

Indirectly, cGMP can also increase intracellular cAMP levels by inhibiting the 

degradation of cAMP by PDE3 (figure 1.6).
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Platelet secretion, in which dense granules, a-granules, and lysosomes are 

released, is a very complex process regulated by multiple intracellular 

signaling systems. Cytoskeletal protein reorganization, increase of cytosolic 

Ca2+ concentration, and activation of protein kinase C (PKC) are essential for 

platelet secretion (Elzagallaai et a/., 2001). Activation of PKG inhibits platelet 

secretion by reducing both cytosolic Ca2+ concentration and PLC-dependent 

activation of PKC (Schwarz et a/., 2001b).

Mice deficient for PKG show impaired NO/cGMP-dependent dilations of large 

and small arteries indicating that the vasorelaxant effects of NO, NPs and 

other cGMP elevating agents are mediated, at least in part, via activation of 

PKG (Koeppen et a!., 2004; Pfeifer et a/., 1998; Sausbier et a/., 2000; Weber 

et a/., 2007). Phosphorylation of IRAG by PKGI|3 inhibits (PS-induced Ca2+ 

release from intracellular stores in transfected COS cells and in smooth 

muscle cells (Ammendola et a/., 2001; Geiselhoringer et a/., 2004; 

Schlossmann et a/., 2000). PKGI activates large-conductance Ca2+-activated 

maxi-K+ (BKCa) channels (Robertson et a/., 1993; Sausbier et a/., 2000), 

thereby reducing Ca2+ influx.
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Figure 1.6. Schemetic diagram of NO signaling in platelets.

cGKI-mediated inhibition of platelet activation by phosphorylation (P) 

of substrate proteins (IPs receptor, the small GTPase Rap ?/,, 

vasodilator-stimulated phosphoprotein [VASP], heat shock protein 

[hsp]27, and the cGMP hydrolyzing phosphodiesterase, PDE5) by 

inhibition of G-protein-coupled (Gq/Gi) receptor complexes and by 

inhibition of cAMP hydrolysis by PDE3. ABP indicates actin-binding 

protein; AC, adenylate cyclase; cAK, cAMP-dependent protein kinase; 

EDRF, endothelium-derived relaxing factor; G, G-protein; GP, 

glycoprotein; IPzR, IPs receptor; sGC, soluble guanylate cyclase; and 

TXA2, thromboxane A2. Courtesy of Munzel and colleagues (Munzel et al.,

2003).
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1.5.1.4.2 cGMP-independent mechanism of regulation.

In literature the primary mechanisms described for NO as a signaling

molecule appear to be cGMP-mediated through regulation of intracellular 

Ca+2 levels. However, other cGMP-independent effects have also been 

described (Oberprieler et a/., 2007), such as nitration (Balafanova et a/., 

2002a; Marcondes et a/., 2006a), modification of cellular or plasma proteins 

by S-nitrosylation of cystein residues forming S-nitrosothiols (Hanafy et a/.), 

peroxynitrite generation (Crane et a/., 2005). Generally, the inhibitory effects 

of NO synchronize with those of prostacyclin, an arachidonic acid metabolite 

released by endothelial cells.

Excess production of the free radicals NO and superoxide (O2*~) is related to 

cell and tissue pathology (Beckman, 1996; Freeman et a/., 1982). Unraveling 

the mechanisms by which these moderately reactive radicals disrupt 

biomolecular structure and function has been challenging due to both their 

transient nature and the potential multiplicity of cellular and extracellular 

target molecules. Substantial progress was made when a hypothesis was 

elaborated in the early 1990s, proposing that the pathways of NO and 02"" 

dependent molecular damage can merge into a common route involving the 

formation of peroxynitrite anion (Beckman, 1990; Radi et a/., 1991b).

1.5.2 Peroxynitrite.

Peroxynitrite is a strong oxidant and nitrating agent which affects the function 

of a number of cells and proteins and has been implicated to play a role in a 

variety of disease states, such as atherosclerosis (Rubbo et a/., 2000; Rubbo 

et a/., 2005), hypoxia (Cooper et a/., 2000; Nonami, 1997), diabetes (Pacher
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et al., 2006), and neurodegenerative disorders (Guix et al., 2005; Moncada 

et a/., 2006). However, endogenously produced peroxynitrite has also been 

described to play a role in cell signaling under physiological conditions 

through the nitration of tyrosine residues (Balafanova et al., 2002b; 

Marcondes et a/., 2006c; Naseem et al., 2000).

1.5.2.1 Reactive oxygen species in biological systems.

Free radicals can be defined as molecules or molecular fragments containing 

one or more unpaired electrons in atomic or molecular orbitals (Halliwell et 

al., 2007). Molecular oxygen (62) has a unique electronic configuration and 

is itself a radical. The addition of one electron to 02 forms the superoxide 

anion radical (02'"). This process is mediated by enzymes such as NAD (P) 

H oxidases and xanthine oxidase (Droge, 2002). O2 *~ in turn is converted by 

O2" scavenger superoxide dismutase (SOD) to H2O2 , which catalyzed to 

H2O by reduced glutathione (GSH) (Choi et al., 2004) (figure 1.7). In 

addition, under conditions such as the absence of L-arginine or BH4, eNOS 

can undergo a process called eNOS uncoupling, whereby eNOS catalyzes 

an uncoupled NADPH oxidation leading to the formation of O2 *~, instead of 

NO (Papapetropoulos et al., 1999).

Reactive oxygen species (ROSs) are mostly generated by reduced 

nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidase in 

phagocytes, and has bactericidal function in these cells (Droge, 2002). Within 

the vessel wall, endothelial cells, vascular smooth muscle cells, and 

fibroblasts express nonphagocytic NAD(P)H oxidase isoforms that produce

mostly intracellular ROSs involved in cellular signaling (Lassegue et al.,
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2003) Here, generated ROSs act as second messengers in control of 

different physiologic responses such as gene expression, apoptosis, and 

proliferation (Droge, 2002).

In platelets the presence of NAD(P)H oxidase subunits has been shown by 

several groups(Seno et a/., 2001). ROSs may regulate platelet function by 

decreasing NO bioavailability because ROSs scavenge platelet or 

endothelium-derived nitric oxide (NO)(Chakrabarti et a/., 2004; Glutton et a/.,

2004). ROSs are also involved in the regulation of dnbfo activation without 

affecting the NO/cGMP pathway, granule secretion, and platelet shape 

change (Begonja et a/., 2005).

1.5.2.2 Generation of peroxynitrite.

Cells of the immune system produce both 02" and NO during the oxidative 

burst triggered during inflammatory processes. While O2" serves a signaling 

role in its own right, the increase in 02'" production during pathological 

scenarios such as ischemia-reperfusion, leads to the reaction of O2 '~ with 

NO. This has a number of significant consequences. Firstly, by reacting with 

O2 '~, the amount of bioavailable NO is reduced, thus reducing the beneficial 

effect of NO in the vasculature. Secondly, the reaction of O2 '~ and NO leads 

to the formation of peroxynitrite (Beckman et a/., 1996b; Bruckdorfer, 2005; 

DarleyUsmarefa/., 1996)

Peroxynitrite is a strong reactive nitrogen species, formed from the reaction 

of the radicals O2*~ with NO at a much faster rate, 6.7 x 109 M" 1 • s" 1 (Huie et 

a/., 1993), than with SOD ~2 x 109 M'1 • s'\ Thus when both O2" and NO

levels are in the high nanomolar range, the former reaction will generate
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peroxynitrite (Ray et al., 2005). It has also been suggested that peroxynitrite 

can also be formed by the reaction of nitroxyl anion (NO") with 62 at a slower 

rate (5.7 x 109 M"1 • s" 1 ) than that of NO with O2" (Hogg et al., 1996) (figure 

1.7). The reaction of NO with oxymyoglobin and oxyhemoglobin leads to 

nitrate formation (Doyle et al., 1981). It has been proposed that this occurs 

through the formation of an intermediate peroxynitrite (Herold, 1998; Ignarro, 

1990;Wadeefa/., 1996)

Peroxynitrite is remarkably stable at alkaline pH. This stability is due to it 

folds into a stable c/s-conformation where the negative charge is localized 

over the entire molecule (Tsai et al., 1994). Peroxynitrite decomposes to 

yield OH" and NO2". This however is likely to become relevant only at acid pH 

because at neutral pH the proton-catalyzed decay is too slow to compete 

with biotargets such as CO2 , biothiols (RSH) and hemoproteins (Augusto et 

a/.,2004)(figure1.8).

The decomposition of peroxynitrite can be affected by the concentration and 

the nature of the buffer. At low phosphate concentrations the pKa can 

decrease from 6.8 to 6.5 (Kissner et al., 1997), and in the presence of 

HEPES, CAPS, CAPSO, or ammonia the apparent pKa increases to values 

near 8 (Beckman et al., 1996a; Koppenol, 1999). Furthermore, reaction of 

peroxynitrite with the buffers can occur in some cases (Gadelha et al., 1997). 

Physiological concentrations of peroxynitrite in vivo have been estimated to 

be -50 uM (Dairou et al.), although 500 uM concentrations have been found 

within phagolysosomes of activated macrophages (Stachowiak et al., 1998). 

Importantly in the context of platelet function, endothelial cells have the
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potential to generate peroxynitrite (Altup et a/., 2001).The half-life of 

peroxynitrite is short (~10-20ms), but sufficient to cross biological 

membranes, diffuse one to two cell diameters (Denicola et a/., 1998).

41



NAD(P)H 
oxidases 
xanthine 
oxidase

SOD
Glutathion 
reductase

iONOOJ

Figure 1.7. Schematic diagram represents reactive oxygen species 

generation and consumption (1), NO production (2), and peroxynitrite 

generation (3).
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Figure 1.8. Schematic diagram of decomposition pathways of peroxy nitrite.

RSH, P-Fe(lll) and CO2 are anticipated to be the most important 

peroxynitrite biotargets because of their high biological concentrations 

and rapid reaction rate with the oxidant (k~102-106 IVT 1 . s' 1). These 

reactions greatly reduce the half-life of peroxynitrite (from s to ms) and 

the targets are usually oxidized by two-electron mechanisms. An 

important exception is the reaction with the biologically ubiquitous 

that produces 65% NO3-and 35% CO3'and *NO2. (Augusto et a/., 2004)
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1.5.2.3 Pathophysiological roles of peroxynitrite.

In red blood cells and platelets, peroxynitrite has been shown to diffuse into

the cytoplasm through HCO3-/CI- ion channel (Boulos etal., 2000b; Denicola 

et a/., 1998). Peroxynitrite alters protein structure and function by reacting 

with metal centers, the fastest known for peroxynitrite (Alvarez et a/., 2003), 

and various amino acids in the peptide chain.

Peroxynitrite can cause DMA strand breaks (King et a/., 1993), which have 

been detected both in isolated DNA (Salgo et a/., 1995b) and in cells 

exposed to exogenous peroxynitrite (Salgo et a/., 1995a). Mechanistically, 

the strand breaks seem to arise both from sugar damage and from base 

modification (Burney et a/., 1999). The formation of strand breaks has been 

shown to activate poly (ADP-ribose) synthetase (PARS), leading to NAD+ 

consumption followed by energy depletion (Szabo et a/., 1997). Peroxynitrite 

also target lipids (Radi et a/., 1991a), mitochondria (Cassina et a/., 1996) and 

cell receptors (Newman et a/., 2002). Whether peroxynitrite has a 

physiological or pathological effect depends entirely on the concentration and 

target. In platelets, it is believed that high concentrations, in excess of 

150uM, peroxynitrite acts as a platelet agonist by stimulating aggregation. At 

lower concentrations or in the presence of plasma, peroxynitrite acts as a 

platelet inhibitor (Low et a/., 2002). The mechanisms underlying these 

processes are unknown.

The ability of peroxynitrite to modulate cell signaling has also been 

demonstrated. Nitration of tyrosine residues, one of the major reactions of 

peroxynitrite, can impair signaling processes depending on tyrosine 

phosphorylation in number of cells such as T lymphocytes (Brito et a/., 1999).
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Other studies have indicated that peroxynitrite promoted rather than inhibited 

tyrosine phosphorylation in red blood cells (Maccaglia et al., 2003), and 

endothelial cells (Zou et a/., 2003), possibly by irreversible inhibition of 

phosphotyrosine phosphatases (PTPs) (Takakura et a/., 1999a). In red blood 

cells, peroxynitrite has been shown to activate Src Kinase Ick via cysteine 

oxidation, whereas another Src Kinase, lyn, was activated through a 

mechanism involved the inhibition of Tyr527 binding to the SH2 domain, 

which maintain Src in its inactive state (Mallozzi et a/., 2001 a). In endothelial 

cells, AMP-activated protein kinase (AMPk) has also been shown to be 

activated by peroxynitrite (Zou et al., 2002).

peroxynitrite has been shown to trigger apoptosis in cardiomyocytes (Arstall 

et a/., 1999) as well as endothelial (Dickhout et a/., 2005) and vascular 

smooth muscle cells (Li et al., 2004), induce decrease in spontaneous 

contractions of cardiomyocytes (Ishida et al., 1996), and depending on the 

environment can stimulate or inhibit platelet aggregation (Moro et al., 1994; 

Nowak et al., 2002). In contrast with these reports, others have found that 

peroxynitrite can mediate a number of physiological processes that may be 

beneficial and can potentially result in cellular protection. For example, 

peroxynitrite produces vascular relaxation in isolated dog and human 

coronary arteries (Ku et al., 1995; Liu et al., 1994). Additionally, (Wu et al., 

1994), have demonstrated that peroxynitrite relaxes pulmonary arteries in 

vitro. Therefore, it is still unclear whether peroxynitrite is a physiological or 

pathological mediator.
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1.5.3 Prostacyclin.

1.5.3.1 Synthesis of prostacyclin.

Prostaglandin I 2 (PGI2 ) or prostacyclin is a derivative of the C-20 unsaturated 

fatty acid arachidonic acid (5,8,11,14-eicosatetraenoic acid) (Kobayashi et 

a/., 2000), and has a half-life of about 3 min (Cho et a/., 1978). The 

biosynthesis of prostacyclin takes a place in endothelial cells as a part of the 

arachidonic acid metabolic pathway. Arachidonic acid, which is present in the 

walls of arteries and veins in several species (Dusting et al., 1977; 

Gryglewski et al., 1976; Johnson et al., 1976), including man (Moncada et 

al., 1977a), is released by phospholipase A2 upon activation of the enzyme 

by an increase in intracellular Ca2+ concentration. Arachidonic acid is further 

metabolized by cyclooxygenase (COX), and (ii) 5-lipoxygenase (Parente et 

al., 2003), to form prostaglandin G2 (PGG2 ), which is then converted by 

prostacyclin synthase into prostacyclin (PGI2 ).

PGI2 is a potent vasodilator, antithrombotic, and antiplatelet agent that 

mediates its effects through a specific membrane-bound receptor, the 

prostacyclin receptor (IP receptor), which belongs to the prostanoid family of 

G protein-coupled membrane receptors (GPCR) (Narumiya et al., 1999). IP 

receptor is expressed on platelets, smooth muscle cells, the atrium and 

ventricle of the heart, arteries mostly abundant in the aorta, but no IP 

receptors in veins (Dutta-Roy et al., 1987; Jones et al., 1997; Nakagawa et 

al., 1994; Narumiya et al., 1999; Smyth et al., 2002). The prostaglandins are 

not necessarily specific for an individual receptor. The binding pocket of the 

IP receptor can accommodate the cyclopentane rings of PGI2 , PGEi, and 

PGE2 (Smyth et al., 2002).
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1.5.3.2 Adenylyl cyclase.

Prostacyclin mediates its biological effects through the activation of the 

enzyme adenylyl cyclase. In mammals, there are at least nine isoforms of 

adenylate cyclase (ACrAC9 ) with AC2 , AC3 , and AC7 identified in platelets to 

date (Hellevuo et al., 1995; Katsel et al., 2003; Smit et al., 1998). The 

approximately 120 kDa glycoprotein AC isoforms share a primary structure 

which consists of a small cytoplasmic N terminal domain (N), followed by two 

transmembrane regions, M-i and M2 (each contain six predicted membrane- 

spanning helices), and two cytoplasmic regions, C 1 and C2 (Feinstein et al., 

1991). MI and M2 domains could serve as a membrane voltage sensor that 

conformationally regulates adenylate cyclase (Dessauer et a/., 1996). The C-\ 

and C2 regions are subdivided into Cia and Ci b ; and C2a and C2b . The C-i a 

and C2a are well conserved, homologous to each other, contain all of the 

catalytic apparatus (Feinstein et al., 1991), and heterodimerize with each 

other in solution (Whisnant et al., 1996; Van et a/., 1996) (figure 1.9). 

In addition to their (ACs) ability to respond to Gas and to forskolin (Seamon 

et al., 1981), the different isoforms can receive signals from a variety of 

sources, including other G proteins, e.g. Gai and G(3Y, protein kinases (PKA, 

PKC), and calmodulin (CaM) kinase), phosphatases (calcineurin), calcium, 

and Ca2+/CaM, and these isoforms are able to support and integrate 

differential regulatory pathways through cross-talk with other signal 

transduction systems (Defer et al., 2000).

Binding of prostacyclin to its receptor induces a signaling cascade through 

coupling to the heterotrimeric G protein GQS (Kobayashi et al., 2000; Wise et 

al., 2000), which then stimulates adenylate cyclase, assumed to be located
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in the dense tubular system (Gonzalez-Utor et a/., 1992), and leads to an 

increase in cAMP levels (Gorman et a/., 1977).

Like all of the GTPase switch proteins, the G protein a-subunits bind GTP 

and adopt an active conformation in which they modulate effector proteins 

until signalling is terminated by the action of an intrinsic GTPase activity and 

reassociation with the G$Y complex (Hamm et a/., 1996).
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Figure 1.9. Structure ofadenylyl cyclase.

The M 1 and M 2 domains are each predicted to contain six 

transmembrane helices. C la and C2a form a pseudosymmetric 

heterodimer that represents the catalytic core of the enzyme. The active 

site is formed within their domain interface. The domains with which 

regulators are known to primarily interact are indicated. The N, C 1 b 

and C2b domains are variable among adenylyl cyclases and their 

structure and location with respect to the membrane and catalytic core 

are unknown. Courtesy of (Tesmer et al., 1998).
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Increased cAMP production activates phospho kinase A (PKA) (Siess, 1989). 

PKA is a serine/threonine kinase composed of a homodimer regulatory 

subunit (PKAR) and two catalytic subunits (PKAC). Cooperative binding of 

cAMP molecules to four nucleotide binding site on PKAR causes a reversible 

dissociation of PKAC and thus PKA activation (Johnson et a/., 2001). PKA 

activation causes the phosphorylation of several key proteins, such as 

myosin light chain kinase (MLCK) (Hathaway et a/., 1981), the platelet 

inositol 1,4,5-triphosphate receptor (IP3 ) (Cavallini et a/., 1996), and VASP 

(Aszodi et a/., 1999).

Phosphorylated MLCK is inactive and has a reduced affinity for calmodulin 

which then reduces the amount of phosphorylated myosin (Conti et a/., 

1981). The effect of this is a decreased platelet contractile activity, including 

secretion, and a decreased association of myosin with the platelet 

cytoskeleton, since only the phosphorylated form of myosin can bind to actin 

(Foxefa/., 1982).

As with NO, VASP phosphorylation by PGI2 closely correlates with platelet 

inhibition (Halbrugge et a/., 1990b; Walter, 1989), and platelets deficient in 

VASP exhibit enhanced agonist-induced activation of P-selectin expression 

and fibrinogen binding to GPIIb-llla integrin (Aszodi et ai, 1999; Mauser et 

a/., 1999).

Synergism between NO and PGI2 signaling is evident not only on cellular 

levels but also on the vasculature system as a whole, in a study conducted 

by Murata et al. (Murata et a/., 1997), found that while IP-deficient mice lack 

the hypotensive response to the synthetic IP agonist cicaprost, their basal

blood pressure and heart rate were not different from those of control
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animals. This is in contrast to what was observed in mice lacking NO (Huang 

et a/., 1995). Mice deficient in the endothelial type of NO synthase showed 

elevated basal blood pressure. These results indicate that the PGI2 and IP 

system does not work constitutively in regulation of the systemic circulation, 

and more likely works on demand in response to local stimuli. This can also 

explain the abundant expression of IP receptors in aorta (Nakagawa et a/., 

1994), and its absence in veins (Narumiya etal., 1999).

1.6 AGC protein kinases.

Protein kinases are key regulatory enzymes that change the properties of a 

substrate by attaching a phosphate group to Ser, Thr or Tyr residues. The 

term AGC kinase was coined by Steven Hanks and Tony Hunter (Hanks et 

a/., 1995) in 1995 to define the subgroup of Ser/Thr protein kinases that 

based on sequence alignments of their catalytic kinase domain, were most 

related to cAMP-dependent protein kinase (PKA), cGMP-dependent protein 

kinase (PKG) and protein kinase C (PKC). It is now appreciated that the 

AGC family contains 60 of the 518 human protein kinases (Manning et a/., 

2002), which have been highly conserved throughout eukaryotic evolution. 

Fourteen AGC kinase domain structures have been determined to date, all of 

which show the proto typical bilobal kinase fold that was first described for 

PKA (Knighton et a/., 1991). In the bilobal kinase fold, an amino-terminal 

small lobe (known as N-lobe) and a carboxy-terminal large lobe (known as 

C-lobe) sandwich one molecule of ATP, which serves as the phosphate 

donor during phosphorylation (Pearce et a/., 2010).
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1.6.1 Protein kinase A (PKA).

cAMP-dependent protein kinase (PKA) was one of the first to be discovered 

(Walsh et al., 1968), it was the first to be sequenced (Shoji et al., 1981), and 

then cloned (MCKNIGHT, 1986). PKA is a serine/threonine kinase that 

phosphorylates a variety of substrate proteins and is involved in the 

regulation of many different intracellular events. PKA consists of an R 

(regulatory) subunit dimer that associates with two C (catalytic) subunits to 

form and (P^Ca) kinase (Francis et a/., 1994; Taylor et al., 1990). Four 

different isoforms (RIQ , Rip, Rll a , and Rllp) of the R subunit have been 

identified, of which Rla and Rll a are the most ubiquitously expressed in cells 

and tissues (Stokka et al., 2006).

Cooperative binding of cAMP molecules to four nucleotide binding site on 

PKAR causes a reversible dissociation of PKAC and thus PKA activation 

(Figure 1.10) (Johnson et al., 2001). The active enzyme is then free to 

phosphorylate target substrates within its vicinity. In vivo the binding affinity 

of Rll to cAMP is relatively much lower of Rl (Edelman et al., 1987; Taylor et 

al., 1992); thus Rl and Rll subunits decode cAMP signals that differ in 

duration and intensity. PKAR | responds transiently to weak cAMP stimulation, 

whereas PKApn is activated by high and persistent cAMP signals (Feliciello et 

a/., 2001).

Compartmentalization of PKA favours the localized action by placing it in 

close proximity to a subset of its target substrates, this is achieved through 

protein-protein interactions of the R subunit with AKAPs (A-Kinase-anchoring 

proteins), a divers family of scaffolding proteins that target PKA to distinct 

subcellular compartments and towards specific substrates (Wong et al.,
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2004). AKAPs are classified according to their ability to bind PKA inside cells 

(Colledgeefa/., 1999).

Each AKAP contains at least two functional motifs. The conserved PKA- 

binding motif forms an amphipathic helix of 14-18 residues that interacts with 

hydrophobic determinants located in the extreme N-terminal docking and 

dimerization (D/D) domain of the regulatory subunit dimer of PKA (Carr et a/., 

1991; Newlonefa/., 1997).

Some AKAPs bind Rl subunits, although with affinities lower than those 

determined for Rll (Herberg et a/., 2000). Many AKAPs also possess 

targeting domains that mediate AKAP attachment to the cytoskeleton and/or 

intracellular organelles (Glantz et a/., 1993). Beside PKA, various AKAPs 

bind proteins such as phosphatases, protein kinase C, and heterotrimeric G 

proteins, suggesting that AKAPs function as scaffolding proteins to integrate 

different signaling pathways (Coghlan et a/., 1989; Suzuki et a/., 1999).
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Figure 1.10. Structure ofPKA and mechanism of activation.

Ligands such as prostacyclin bind and activate G protein-coupled 

receptors (GPCRs). This causes the a-subunit of heterotrimeric G 

proteins to dissociate from the fiy subunits, associate with adenylate 

cyclase (Ac) and induce the production of cyclic AMP. cAMP binds to 

the regulatory (R) subunits of cAMP-dependent protein kinase (PKA), 

causing a conformational change that releases the active catalytic (C) 

subunits. Courtesy of (Pearce etal., 2010).

54



1.6.2 Protein kinase G (PKG).

Protein kinase G (PKG) is cyclic nucleotide-dependent kinase, which exists 

as two isoforms that are regulated by a different second messenger to PKA, 

cGMP. This is produced by soluble guanylyl cyclases, activated downstream 

of nitric oxide. In contrast to PKA, PKG forms homodimers, and its cGMP- 

binding domains are located in the same polypeptide as the catalytic domain. 

The soluble PKG type I exists in two isoforms (type la and l(3) generated by 

separate promoters from the same gene (Orstavik et a/., 1997). A distinct, 

primarily membrane-bound form (PKG type II) was originally identified in and 

cloned from epithelial cells of the small intestine (De Jonge, 1981; DE 

JONGEefa/., 1994).

The enzymes have a rod like structure. They are composed of two functional 

domains: a regulatory (R) domain and a catalytic (C) domain. The regulatory 

domain is further subdivided into the N-terminal domain and the cGMP 

binding domain. Interaction of PKG with cGMP leads to a conformational 

change in PKG, relieving the inhibitory effect of a pseudosubstrate motif 

(Hofmann et a/., 2009) (figure 1.11). The role of activation segment 

phosphorylation in controlling the activity of PKG has been poorly studied, 

although it has been reported that mutation of the activation segment residue 

(Thr516) inhibits PKG kinase activity(Browning et a/., 2000). PKG mediates 

many of the smooth muscle relaxation effects triggered by nitric oxide69. 

PKG is also thought to have overlapping effects with PKA and might also be 

involved in regulating long-term potentiation (Zhuo etal., 1994). 

Human platelets express only PKGip, whereas mouse platelets additionally 

express a small amount of PKG|Q (Antl, 2006). The PKGi concentration in
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human platelets (3.65uM holoenzyme, equivalent to 14.6uM cGMP-binding 

sites) is higher than that in any other cell type examined (Eigenthaler et a/., 

2005). The important role of PKGi inhibition of platelet activation in vitro and 

in vivo has been conclusively demonstrated in PKGi-deficient (PKGi KO) 

murine platelets (Massberg et a/., 1999). In vitro activation of platelet PKGi 

by membrane-permeable cGMP analogs and NO donors inhibited agonist- 

induced serotonin release, shape change, and aggregation in wild-type 

platelets, but not PKGi KO mouse platelets. In PKGi KO mouse platelets, 

expression and functional activity of PKA is not altered, and there is also no 

cross-activation of PKA by cGMP. The reverse, activation of PKGi by cAMP 

seems also not to occur in platelets, indicating that the cAMP and cGMP 

signaling cascades inhibit platelet activation independently of each other 

(Massberg et a/., 1999). In vivo studies using PKGi KO mice showed that 

platelet PKGi, but not endothelial or smooth muscle PKGi, is essential to 

prevent intravascular adhesion and aggregation of platelets after ischemia, 

and a defect due to PKG loss was not compensated by the cAMP/PKA 

system (Massberg et a/., 1999).
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Figure 1.11. Structure of PKG and mechanism of activation.

Occupation of both binding sites induces a large change in secondary 

structure. Binding of cGMP to both sites in the R-domain releases the 

inhibition of the catalytic centre by the N-terminal autoinhibitory/ 

pseudosubstrate domain and allows the phosphorylation of 

serine/threonine residues in target proteins. Courtesy of (Hofmann et al., 

2009).
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1.6.3 Protein kinase C (PKC).

Protein kinase C (PKC) was originally identified as a phospholipid-dependent 

and diacylglycerol-stimulated protein kinase activity. Early studies 

demonstrated that PKC is activated in vivo by the receptor-induced second 

messenger diacylglycerol or direct treatment of cells with tumor promoting 

phorbol esters; this quickly established PKC as a key regulator of growth, 

differentiation, cell survival, neurotransmission, and carcinogenesis 

(Kishimoto et a/., 1985; Nishizuka, 1995). In addition, many key steps in 

platelet activation and aggregation are regulated by members of protein 

kinase C (PKC) family (figure 1.12).

PKC isoforms are a serious of serine/threonine kinases, which are 

subdivided into three subclasses, conventional (a, pi, pll, y), novel (5, £, r\/L, 

9) and atypical (£, lA) (Mellor et a/., 1998). Conventional and novel PKCs 

are allosterically regulated by diacylglycerol (DAG), which binds to the C1 

domain (figure 1.13). Conventional isozymes are under additional control by 

Ca2+ , which binds to the C2 domain and promotes its interaction with anionic 

phospholipids. Although novel PKCs contain this domain, the Ca2+ binding 

pocket lacks essential aspartate residues involved in coordinating Ca2+ and 

thus does not bind Ca2+ . Atypical PKCs contain a single membrane-targeting 

module, the C1 domain, but the ligand-binding pocket is compromised so that 

it is unable to bind diacylglycerol (Newton, 2003).

Generation of the lipid second messenger, DAG, results in the recruitment of 

most protein kinase C isozymes from the cytosol, where they are maintained 

in an inactive conformation, to the membrane, where it adopts a
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conformation in which the pseudosubstrate is out of the active site, thus 

exposing the activation loop phosphorylation site. This conformation is 

essential to target protein kinase C for phosphorylation by PDK-1 (Dutil et a/., 

2000; Mosioref a/., 1995).
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Figure 1.12. Protein kinase C is a key regulator of platelet function.

Adhesion to collagen, or stimulation by soluble agonists such as 

thrombin, ADP or TxA2, activates numerous intracellular signalling 

molecules, especially PLC, resulting in a rise in [Ca2*] and activation of 

PKC. PKC regulates many platelet responses to stimulation, such as 

granule secretion, aggregation and spreading. Courtesy of (Harper et al., 

2007).



Under various conditions PKC colocalizes with actin microfilaments. This 

may in part be dependent upon interactions with actin binding proteins. 

However, particular PKCs may also interact directly. For example, PKCpn 

binds directly to F-actin but not to monomeric G actin (Blobe et a/., 1996). 

PKC£ localizes with and directly binds actin (Prekeris et a/., 1996). In vitro, 

this interaction activates PKCe and, consistent with this, alters its protease 

sensitivity (Prekeris et a/., 1998).

Broadly speaking, in platelets evidence from knock-out mice modules 

suggest that different PKC isoforms play different roles. For example 

Buensuceso and colleagues (Buensuceso et a/., 2005), demonstrated the 

recruitment of PKCp to a\\b$3 integrin during platelet interaction with either 

soluble or immobilized fibrinogen. Another study using knock-out mice has 

shown a novel role for PKC6 in inhibiting collagen-induced aggregation (Pula 

et a/., 2006). Still further PKCQ may regulate granule secretion and thrombus 

formation (Konopatskaya et a/., 2009a). Furthermore (Pears et a/., 2008), 

demonstrated an impaired aggregation and secretion, but not spreading, in 

response to collagen and CRP (at low and moderate concentrations) in 

PKCe KO mice.
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Figure 1.13. Schematic showing the domain structure of the conventional, 

novel, and atypical subclasses ofPKC.

Indicated are the pseudosubstrate, C1 and C2 domains in the 

regulatory moiety, and the carboxyl-terminal kinase domain. Courtesy of 

(Barry et al., 2001).
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Aims of study

Over the last 10 years, platelet- and endothelial-derived NO has become a

great focus for scientists in understanding the role of platelets in thrombosis 

and haemostasis. However, the beneficial actions of NO in regulating platelet 

function have frequently been overshadowed by the poorly documented 

negative effects mainly derived from the generation of peroxynitrite. 

Regulation of platelet function by NO is largely PKG-dependent. PKG is a 

serine/threonine protein kinase which is dependent on cyclic GMP and 

catalyzes the phosphorylation of serine or threonine residues of proteins. 

PKG belongs to the AGC family of serine/threonine protein kinases.

The aim of this study is to investigate the inhibitory actions of peroxynitrite on 

human platelets and whether AGC protein kinases are involved in 

peroxynitrite-mediated inhibition of platelet function. In addition, the 

regulation of AGC protein kinases by NO and PGI2 in human platelets will be 

investigated.

This will be achieved by:

• To study the effects of peroxynitrite on intracellular signaling in human 

platelets.

• To examine the role of AGC protein kinases in peroxynitrite-mediated 

signaling in human platelets.

• To investigate intracellular compartmentation and signaling of AGC 

protein kinases with a greater emphasis on PKA.
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CHAPTER 2 METHODS
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2. Methods.

2.1 Methods for the study of platelet function.

2.1.1 Isolation and preparation of human blood 
platelets.

Blood was drawn from consented volunteers, who claimed not to have taken 

any medication known to interfere with platelet function, using a 21-gauge 

butterfly needle with minimal stasis. The initial 5ml of whole blood were 

discarded to avoid the use of artifactually activated platelets. Platelet rich 

plasma (PRP) was prepared by centrifugation of whole blood at 200g for 

20min at 25°C using acid-citrate dextrose buffer (ACD) (Appendix 1-1) as an 

anticoagulant. PRP was relocated to fresh centrifuge tubes and centrifuged 

at 800g for 12min at 25°C in the presence of prostaglandin ET (PGEi) 

(50ng/ml). The resulting platelet poor plasma (PPP) supernatant was 

discarded and washed platelets (WP) were prepared by suspending the 

platelet pellet in 1 ml of Tyrode's buffer (Appendix 1-1). In some cases, 

Tyrode's buffer contained ethylene glycol-bis ((3-aminoethyl ether)- 

N,N,N',N'-teraacetic acid (EGTA) 1mM to provide platelets with non- 

aggregatory conditions or apyrase (1U/ml) and indomethacin (10uM) to 

abrogate the effect of ADP and TXA2 , respectively. WP were left to recover 

from PGEi treatment for a minimum of 1h before starting experimental 

procedures. This method was adapted from (Vargas et a/., 1982)

Alternatively, PRP were treated with citric acid O.SmM at a ratio of (20ul:1ml 

PRP) to lower the pH to 6.4. PRP were centrifuged at 800g for 12min at

25°C. The pellet were suspended in washing buffer (see Appendix I) and
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centrifuged 800g for 12min at 25°C. WP were resuspended in 1 ml Tyrode's 

buffer. In some experiments, phosphate buffer was used instead of Tyrode's 

buffer.

2.1.2 Determination of platelet count.
WP (5ul) were diluted 1:100 in Ammonium oxalate (1% w/v) and mixed well. 

This platelet suspension was then applied to a Neubauer cell counting 

chamber, which was then left to rest for 15 minutes. The number of platelets 

was counted on both sides of the cell counting chamber. The platelet count 

was corrected for dilutions and volumes and expressed as platelets/ml. All 

final platelet concentrations were calculated using this value (Appendix I-2).

2.1.3 Preparation of platelet whole cell lysates.
WP (5x108platelets/ml) were prepared as described in section 2.1.1. For the 

preparation of lysates, WP were transferred to aggregometer cuvettes, 

preheated to 37°C for 1min and treated as with agonists or inhibitors with 

stirring. For longer stimulation times, sample was stirred for a maximum of 

3min and then left under non-stirred conditions for the reminder of the 

incubation period. To terminate reaction Laemmli sample (2x) buffer 

(Appendix I-6), was added at a ratio of 1:1 and gently mixed. All samples 

were stored on ice until the completion of the experiment. Sample were then 

boiled for 5min and stored at -20°C until required.

2.1.4. Measurement of protein concentration.
Aliquots, which were prepared for protein assay analysis, were subjected to

a DC protein assay kit (Amersham Biosciences, UK). The assay is based on
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the Lowry assay (Lowry et al., 1951), and uses the reaction between protein 

and copper in an alkaline medium, followed by the reduction of Folin reagent 

by the copper-treated protein. All samples and bovine serum albumin (BSA) 

standards were diluted 1:2 in sterile PBS and applied to a micro titer plate in 

triplicate. Protein concentrations of samples were determined by comparing 

the absorbencies of each sample to the standard curve of known BSA 

concentrations using a wavelength of 750nm in a multiplate reader 

(Appendix 1-3).

2.1.5 Turbidimetric measurement of platelet 
aggregation.

Turbidimetric aggregation is a robust and reproducible technique that was 

initially described by Born (Born et al., 1963). The assay is based on the 

principal of light transmission through a platelet suspension which is detected 

by a photocell. Suspended platelets cause light scattering and reduce the 

proportion of light passing through the suspension. The increase in light 

transmission is directly proportional to the degree of platelet aggregation. 

The aggregometer was calibrated using WP as 0% aggregation and Tyrode's 

buffer as 100% aggregation. Platelet aggregation measurement was used as 

a tool to assess the effect of various buffers on platelet function. WP were 

prepared using Tyrode's buffer and diluted to a final concentration of 

3x108platelets/ml (Appendix I-4).
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2.1.6 Analysis of platelet adhesion using fluorescence 

microscopy.

To be able to assess platelet adhesion quantitatively, platelets were left to 

adhere to immobilized collagen, permeabilised with triton X100 (0.1%) and 

the F-actin stained with Phalloidin-TRITC. Phalloidin is a fungal toxin that 

binds to the polymeric and oligomeric forms of actin, thus strongly stabilising 

actin filaments. This property of the agent can be used to deliver and fix 

fluorescent conjugates such as Tetramethyl Thodamine Iso-Thiocyaniate 

(TRITC) into the cell. TRITC has an excitation wavelength of 540-545nm and 

an emission wavelength of 570-573nm which makes it suitable to visualize 

using a fluorescence microscope.

WP (2x107platelets/ml) were prepared as described in section 2.1.1. When 

required, aliquots (500ul) of WP were incubated with inhibitors for up to 

20min at 37°C prior to the addition of agonists. Immediately following the 

addition of agonists/antagonist, WP aliquots (100ul) were added to the 

microscope slides. Platelets were left to adhere at 37°C for 30 min before 

removing all unbound platelets with PBS. Adherent platelets were then fixed 

using para-formaldehyde (4%) (100ul), adding it to each area and left for 

15min at room temperature. Excess para-formaldehyde was then washed off 

using PBS and adherent platelets were permeabilised using Triton-X100 

(0.3%) in PBS for 7 min. Platelets were then incubated with phalloidin-TRITC 

(50ug/ml) for 40min at room temperature protected from light. Excess 

phalloidin-TRITC was then washed off using PBS and microscope slides 

covered with a glass cover slip. Adherent platelets were visualised using a
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Olympus fluorescent microscope with an x60 oil immersion objective 

(Roberts et a/., 2008).

2.1.7 Quantitation of platelet adhesion.

In order to quantify the amount of adherent platelets, images of ten random 

fields of view were taken of each sample for each experiment to calculate the 

total number of adherent platelets /0.1mm2 .

2.1.8 Preparation of peroxynitrite and prostacyclin.
Peroxynitrite is a cell-permeable strong biological oxidizing agent that reacts 

with DMA, membrane phospholipids, sulfhydryl groups, and tyrosine. 

Peroxynitrite, synthesized from isoamyl nitrite and hydrogen peroxide, was 

purchased from Calbiochem. Peroxynitrite stock (170mM) was diluted in 

0.1 mM NaOH to give a final concentration of 100uM.

Prostacyclin, a potent platelet inhibitor, was purchased from Sigma. Stock 

was diluted in 100% ethanol to give a final dilution on 100nM.

2.2 Measurement of platelet cGMP 
concentrations.
The haem containing enzyme sGC is the major Intracellular receptor for NO. 

Once inside platelets, NO interacts with the haem group of |3 subunit of sGC, 

leading to its activation and to the conversion of GTP to cGMP (Radomski et 

a/., 1990). Thus, the measurement of cGMP concentration is a measure of 

sGC activation. cGMP concentrations were measured using a cGMP 

Enzyme Immunoassay Biotrak (EIA) system. This is a simple, sensitive

method for measuring cGMP in biological samples at a range of 0.05 to 100
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picomoles/ml. The method is based on the competitive binding of cGMP in 

the sample and a radioiodinated derivative of cGMP ([1-125] cGMP), for a 

highly specific antibody. The amount of labeled cGMP found in the complex 

decreases with increasing concentration of unlabeled cGMP in the sample. 

Separation of antibody bound cGMP from free cGMP is achieved through a 

precipitating antibody incorporated in the reagent system. Determination of 

the unknown is made by the comparison with a standard curve constructed 

in the same fashion. For the assay, WP (3X108) were isolated as described 

in section 2.1.1 and incubated with zaprinast (10uM) for 20min, to inhibit 

PDEs activity, before the addition of peroxynitrite. Reaction was stopped by 

the addition of dodecyltrimethyl ammonium bromide (0.5%); this reaction 

hydrolyses cell membrane and release intracellular cGMP. (Appendix I-5).

2.2.1 Enzyme-immunoassay procedure.

Within this assay several control wells were used including blanks to

determine the background signal of the assay, and to determine the non 

specific binding (MSB) of the conjugate to the secondary donkey anti-rabbit 

antibody. These were run in addition to the standards and unknown samples. 

All samples were run in duplicate. First, a series of standards containing 0 to 

512fmol/ml cGMP were prepared by serial dilutions in glass test tube. 

Samples prepared for cGMP measurements in platelets suspension were 

thawed and centrifuged at 15000g for 5min to sediment insoluble debris. The 

resulting supernatants, containing extracted cGMP, were used in the assay. 

All standards and samples were acetylated by addition of acetylation reagent 

(1:10) using a mixture of acetic anhydride (1 volume) and triethylamine (2

70



volumes). Aliquots (50ul) of all acetylated standards and unknown samples 

were transferred into the appropriate wells in the presence of antiserum 

(100nM). Plates were incubated at 4°C for 2h followed by addition of HRP- 

labelled cGMP conjugate (100ul). After 1h incubation, plates were emptied 

by inversion and were blotted on tissue to remove any residual buffer before 

addition of the room temperature equilibrated enzyme substrate, TMB 

(200ul), into the wells. Plates were mixed on a microplate shaker for 30min at 

room temperature and then the colorimetric reaction was stopped by addition 

of sulphuric acid (1M) (100ul). The absorbance was read in a microplate 

reader at 450nm within SOmin. This protocol was followed according to 

manufacturer's instruction.

2.2.2 Analysis of cGMP data.

The mean of all duplicate samples was calculated and the mean absorbance 

(Abs) of the MSB wells was subtracted from all other values. The percent 

bound (%B/Bo) for each standard (std) and unknown lysates was calculated 

as follows:

%B/Bo = (std or sample Abs-NBS Abs)/(zero std Abs-NBS Abs) 

x100

A standard curve was generated by plotting the %B/Bo (y axis) against 

cGMP expressed in fmol/108 (x axis).
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2.3 Analysis of phosphorylation based protein 

signaling in platelets.

2.3.1 Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE).

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is 

a method used to separate proteins according to their size by utilising the 

properties of a polyacrylamide gel. Sodium dodecyl sulphate (SDS) is a 

detergent which affects hydrophobic molecules thus leading to the 

dissolution of cell membranes. SDS also binds to polypeptides in a constant 

weight ratio. In this process, the intrinsic charge of polypeptides becomes 

negligible when compared to the negative charges contributed by SDS. 

Thus, polypeptides after treatment become a linear structure possessing a 

uniform charge density that is same net negative charge per unit length. 

Mobility of these proteins will be a linear function of the logarithms of their 

molecular weights. Polyacrylamide is a polymer of acrylamide monomers 

which turns into a gel once the polymer is formed. When an electric current is 

applied, the negatively charged proteins will move through the 

polyacrylamide gel towards the positive electrode (anode). Due to the 

polyacrylamide tunnel structure, large proteins will travel slower through the 

gel than small proteins (Laemmli, 1970a; Shapiro et a/., 1967).

Gradient gels are prepared by pouring two resolving acrylamide solutions 

(10% and 18%) at a pH of 8.8 using a linear gradient former and a peristaltic
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pump. This give high degree of resolution, as the low-percentage acrylamide 

gel at the top enables resolution of high-molecular-mass proteins, and 

higher-percentage gel at the bottom ensures resolution of low-molecular- 

mass proteins. The stacking gel is a large pore polyacrylamide gel (3%) at 

pH 6.8, lies on top of the resolving gel and contains the loading wells. The 

lower pH and lower acrylamide percentage of the stacking gel allows the 

proteins to form a tight band which ensures that all proteins reach the higher 

percentage resolving gel at the same time.

2.3.2 Procedures for SDS-PAGE.

Sample preparation for gel electrophoresis requires the addition of SDS and 

a reducing agent. Adapted from work which was originally conducted by 

Laemmli (Laemmli, 1970b), the Laemmli sample buffer contains SDS as well 

as 2-mercaptoethanol.

2.3.3. Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis method.

Depending on the protein under investigation, a 10% or a 10-18% gradient 

polyacrylamide was selected. For detailed gel oompositions please refer to 

the Appendix 1-7. The resolving gel was poured with aid of a gradient mixer 

and a peristaltic pump and left to set at room temperature for approximately 

1h. Once polymerised, a 3% stacking gel was poured on top of the resolving 

gel and a well-forming comb inserted immediately. The stacking gel was left 

to set for approximately 20min at room temperature before removing the 

well-forming comb and washing all wells with running buffer (Appendix I-7).
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The wells of the gel were then loaded with aliquots of the protein samples 

(10-15ng), and in one well an aliquot (10ul) of biotinylated protein standard. 

Using a molecular weight protein standard increased the accuracy when 

estimating the molecular weight of specific proteins after immunoblotting. 

Gels were subjected to 120V for 2.5h.

2.4 Immunochemical investigation of platelet 

proteins.

Antibodies (immunoglobulins) are heavy plasma proteins consisting of two 

identical heavy chains and two identical lights chains which are connected by 

disulfide bonds. Together these polypeptide chains form a 'Y'-structure with 

two antigen binding sites. An antigen is defined as a foreign body which 

induces the activation of the immune response and the production of 

antibodies. It is possible to create antibodies to react with specific antigens 

which can then be used for biochemical applications such as Western 

blotting or immunoprecipitation.

2.4.1 Immunoprecipitation.

Immunoprecipitation (IP) is the technique of precipitating a protein containing

the antigen using an antigen-specific antibody. Using this technique, it is also 

possible to immunoprecipitate a complex of proteins attached to the antigen- 

bearing protein. Once the antibody binds its antigen, the antibody-antigen 

complex can be precipitated out of solution using insoluble antibody-binding 

proteins, such as Protein A or Protein G. These in turn are coupled to
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sepharose beads which can easily be isolated out of a solution. 

Immunoprecipitation partially purifies and isolates a protein under 

investigation, allowing more detailed and precise study, but can also aid in 

the identification potential interacting proteins. Once a protein or protein 

complex has been isolated, the resulting sample can be processed using 

SDS-PAGE and Western blotting (figure 2.1).

2.4.1.1 Preparation of Protein A/G sepharose beads.

An aliquot of Protein A/G sepharose beads (SOOul) was relocated to a fresh

eppendorf tube and centrifuged at 13000g for 10sec. The resulting 

supernatant was removed from the bead pellet and TBSr(o.i%) (75ul) was 

used to wash the bead pellet before centrifuging at 13000g for 10sec. This 

washing step was repeated twice before carefully removing the remaining 

supernatant. The bead pellet is then weighed and a 50% (w/v) suspension in 

TBST(o.i%) prepared.

2.4.1.2 Immunoprecipitation of platelet proteins.

Sample preparations for WP were processes as described in section 2.2.1,

although in this case ice-cold lysis buffer containing a cocktail of 

phosphatase and protease inhibitors was used (Appendix I-8).

Sepharose beads were blocked with BSA (1mg/ml) in PBS or samples were 

pre-cleared by mixing lysates with protein sepharose beads. Preclearing 

minimizes non-specific binding of non-antigen bearing proteins to sepharose 

beads. For Syk and AMPk, 1ug of antibody was added to each 25ul of beads 

and left to mix for 3 hours at 4C° with rotation. 300-400|ag of lysates per 

sample were added to the antibody/bead mixture and left to mix overnight at
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4C° with rotation. Subsequently the samples were centrifuged at 13000g for 

1min to produce a pellet of protein sepharose beads bound to the antibody- 

antigen complex. The remaining supernatant was relocated to fresh 

eppendorfs for immunoblotting analysis or discarded. The bead pellet was 

washed once with lysis buffer and twice with TBSi(o.i%) before removing the 

supernatant and adding Laemmli sample buffer (65^1) to the pellet. Samples 

were then boiled for 5min to ensure complete separation of the Protein A 

sepharose bead-antibody-antigen complex. Protein A sepharose beads were 

then pelleted using pulse centrifugation for 10s and the supernatant 

containing the antibody and antigen-bearing protein was loaded directly on a 

SDS-PAGE gel and processes as described earlier.
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Figure 2.1. Schematic diagram of immunoprecipitation.
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2.4.1.3. Cross-linking the antibody to protein G/A agarose beads.

Crosslinking an antibody to Protein A or G beads results in a permanent 

affinity support with the antibody properly oriented to bind the target antigen 

(Kaboord et a/., 2008). A common homobifunctional crosslinker such as 

Dimethyl pimelinediimidate dihydrochloride (DMP), which has carboxyl group 

at both ends, reacts with primary amines on both the antibody and the 

Protein A or G molecules in the pH range 7.0-10.0 to form amidine bonds, 

preventing loss of the antibody during antigen elution. This method is a good 

choice when the molecular weight for the protein of interest is the same or 

close to that for heavy or light chain (figure 2.2).
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Figure 2.2. Strategies preparing cross-linked antibody IP.
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25|j| of beads were aliquoted into small eppendorfs, and washed with 400 |jl 

PBS with rotation overnight at 4°C. After washing beads with 500ul D-buffer, 

beads were incubated with antibody. For Csk and PKA, 5|jg of antibody was 

added to each 25|jl of beads and left to mix for 3 hours at 4C° with rotation. 

Subsequently the samples were centrifuged at 13000g for 1min to produce a 

pellet of protein sepharose beads bound to the antibody-antigen complex. 

After washing pellet with PBS, beads were incubated with 500ul of DMP 

(13mg/ml) for 30min at 4°C. Subsequently After spinning samples, beads 

were washed with 500 ul D-buffer, samples were incubated with 2 nd and 3rd 

DMP aliquots.

To quench excess DMP, beads were washed twice with 500ul Q-buffer 

(Appendix 1-10) and once with PBS with rotation for 5 min at 4°C. To remove 

un-cross-linked antibody, beads were washed twice with 500ul 1M glycine 

pH 3 with rotation for 10 min.

To elute bound antigen, 10ul of 1M Tris-HCL, pH 9.5, placed into new 

eppendorfs receiving the eluted antigen. The Tris buffer will serve to 

immediately neutralize the low pH eluent, minimizing exposure of antigen to 

low pH conditions. 190ul of 0.1M glycine, pH 2.8, elution buffer was added to 

samples, mixed several times before transferring the mixture into the 

receiving tubes. Tubes then were centrifuged for 1 min, and the eluted buffer 

containing the antigen was saved in new eppendorfs to analysis with 

Western blot as in figure 2.3. This is protocol was adopted from (Clark) and 

(Kaboordefa/,,2008).
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Figure 2.3. Comparison of immunoprecipitation results between 

classical and cross-linked approaches

WP (5x108) were lysed with lysis buffer (1:1). Syk kinase was 

immunopreciptaed from lysates either using classical IP method (see 

methods) or by cross linking anti-Syk antibody to protein A sepharose 

beads first. Proteins were eluted with 0.1 M glycine, pH 2.8. 2x Laemmli 

buffer were then added. Proteins were separated on SDS-gel and 

immunoblotted with anti-Syk antibody.

81



2.4.2. Immunoblotting.

Immunoblotting is a method used to transfer separated proteins from a gel to 

the surface of a nitrocellulose paper or polyvinylidene difluoride (PVDF) 

(Towbin et a/., 1979). The immobilized proteins are accessible to interact 

with different antibodies (figure 4). PVDF membrane was pre-wet in 

methanol for 3min followed by a 10min wash with dH2O and finally stored in 

transfer buffer. Following SDS-PAGE, the resolving gel was separated from 

the casting glass plates and inserted into the transfer cassette together with 

the PVDF membrane, wet blotting paper, and sponges. The assembled 

transfer cassette was then inserted into the transfer tank, which was filled 

with transfer buffer, and placed in an ice box to prevent overheating during 

transfer. A constant voltage (100v) was applied for 2.5h (figure 2.4).

Following protein transfer, the transfer cassette was dissembled and the 

PVDF membrane washed with TBST(o.i%) for 5min before immersing the 

membrane in 10% (w/v) BSA containing TBST(o.i%) for SOmin at room 

temperature to block unoccupied protein binding sites on the membrane. 

This was followed by immersion of the membrane in the primary antibody 

solution at 4°C overnight with gentle agitation. Primary antibody solutions 

(2% w/v BSA in TBSi(o.i%)) were either prepared on the day or stored at 4°C 

for reuse by adding 0.1% (w/v) sodium azide to prevent bacterial 

contamination. Membranes were then washed 2 times 10min in TBST(o.i%) 

before incubation with secondary antibody solutions (2% v/w BSA in 

TBS(To.i%)) for 1h at room temperature. Secondary antibody solutions also 

contained HRP-conjugated anti-biotin antibody (1:1000) for the detection of 

the biotinylated protein standard. Western blotting membranes were then
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washed 4 to 6 times'!5min in TBST(o.i%) before immersing them in enhanced 

cemiluminescence (ECL) solution (Appendix 1-10) for 90sec with gentle 

agitation protected from light. Membranes were then transferred to an 

exposure cassette and Bio Max film and developer solutions were used to 

visualise the immunoblot. All films were washed extensively with dH2O after 

processing. For all experiments involving the anti-nitrotyrosine antibody, fat 

free milk (5%) was used to block membranes instead of BSA.

Densitometry analysis was
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Figure 2.4. Schematic diagram of immunoblotting.
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2.4.3. Stripping and reprobing of membranes.

A stripping procedure was used to remove the primary and secondary 

antibodies used during the first immunoblotting procedure. The membrane 

could then be "reprobed" with second combination of primary and secondary 

antibodies.

PVDF membranes were incubated with a stripping solution (see Appendix) 

at 80°C for 20 min. Membranes were then washed repeatedly in TBST(o.i%) to 

remove all traces of stripping solution before directly applying the desired 

primary antibody solution as described in section.

2.5 Subcellular fractionation of human 
platelets.
This method was used to separate the cytosolic fraction from the membrane 

fraction of the cell using ultracentrifugation. WP (5-7x 109) were prepared as 

described earlier and incubated with fractionation buffer in a ratio of 1:1 

(Appendix 1-11). The suspension was frozen rapidly in liquid nitrogen and 

thawed, which was repeated 5 times. Sonication was avoided as such harsh 

methods may lead to artificial dissociation of proteins that might be loosely 

attached to cell membrane. After freezing and thawing, lysates were 

ultracentrifuged atlOOOOOg for 60 min at 4°C. The pellet, which is the 

cytoskeleton fraction, was suspended in pellet buffer. Protein concentration 

in each fraction was measured using Bradford assay (Lowry et a/., 1951). 

Laemmli buffer was added to each of the fractions, which were then 

processed for electrophoresis and immunoblotting. This is a modified method 

from (Hall et a/., 2007).
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2.6. The isolation of membrane lipid rafts.
Lipid rafts are regions in the membrane bilayer enriched with cholesterol and 

sphinoglipids that are highly ordered in comparison to the rest of the cell 

membrane (Simons et al., 1997). As a consequence, lipid rafts can be 

isolated as a low-density, insoluble fraction after low-temperature non-ionic 

detergent extraction (Brown et al., 1992).

The method used for lipid rafts isolation is a combination of sedimentation 

and flotation, achieved by using a density of sucrose gradient that straddles 

the density of particles concerned. On centrifugation, the particles move to 

an area of iso-density (Smyth, 1996) (figure 2.5).

WP (450ul of 9x108 ) were solubilised with an equal volume of ice-cold Raft 

lysis buffer (see Appendix 1-12) and placed on ice for 30 min. Samples were 

then mixed with an equal volume of an ice-cold 80% sucrose and placed at 

the bottom of polyallomer ultraclear ultracentrifuge tubes (Beckman). 

Successive volumes of 30% (5 ml) and 5% (5 ml) sucrose solutions were 

consecutively layered upon the solubilised sample. The tubes were 

centrifuged at 200000g at 4°C for 18 hr. 1 ml fractions were sequentially 

removed from the top of the gradient and analysed by Western blotting. This 

is a modified method from (Lee et al., 2006).
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2.7 Phospho-flow analysis.
Flow cytometry has become an indispensable tool in clinical and basic 

immunological research due to its ability to distinguish subsets in 

heterogeneous populations of cells. Surface staining may be an effective 

means of characterizing cells; however it does not provide information about 

the functional responses of those cells to stimuli that are immediately 

reflective of intracellular events (Marodi et a/., 2001). Phospho-flow analysis 

is based on the premise that the phosphorylation state of an intracellular 

protein that correlates with its biological status (McCubrey et al., 2000). As 

part of this project, preliminary experiments were performed to apply this 

methodology to the study of platelet signaling events.

2.7.1 Sample preparation.

WP were prepared as in section 2.1.1. Samples, containing 2.5 X107

platelets/ml, were treated with agonists or inhibitors as desired in cuvettes at 

37C° with stirring. Samples were fixed for 10mins with a pre-warmed Fix 

buffer (BD Biosciences) at a ratio of 1:1+10, for example (100:110). Samples 

were then centrifuged at 13000g/10mins at 4C°. Fix buffer was aspirated and 

cells were permeabilised by resuspending in SOOul pre-cooled Perm buffer 

(BD Biosciences), and samples were stored at -80°C until further analysis.

2.7.2 Fluorescent cell barcoding (FCB).

Flow cytometry allows high-content, multiparameter analysis of single cells, 

making it a promising tool for drug discovery and profiling of intracellular 

signaling. In fluorescent cell barcoding (FCB), each sample is labeled with a
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different signature, or barcode, of fluorescence intensity and emission 

wavelengths, and mixed with other samples before antibody staining and 

analysis by flow cytometry. The advantage of using such cell-based 

multiplexing technique is reducing antibody consumption and acquisition time 

(Krutzikefa/.,2006).

The fluorescent bar-coding of samples utilized a 96 well plate to add a 

specific ratio of dye to each sample or treatment. In these experiments to two 

dyes used were Pacific Blue (PcBlue) and Pacific orange (PcOrange). In the 

first instance a serial dilution of each dye was performed. For PcBlue 4 - 

0.027ug/ml and for PcOrange 40 -0.27ug/ml). The dyes, 10|jl of each, were 

then added to the wells of a 96-well plate as shown below.

4pg\40(jp 
(sample*!)

4|igV"--

4jjg\~ Si',-i

4\ig\

1pgVO;ja 
(sample2)

1|jg\iO|jg

ipg\ -•'••

ipg\

0.25M9\

0.25|jg\ J

0.25Mg\

0.25Mg\

0.027[jg\

0.027pg\ ""--

0.027|jg\ T

0.027jjg\ 
(sample16)

This ensured that each well had an individual ratio of PcBlue to PcOrange. 

Samples were centrifuged at 13000g/5mins at 4°C, the Perm buffer was 

aspirated and pellet resuspended in PBS (180ul). An individual platelet 

sample was then added to each of the wells, which meant that each sample 

had an individual fluorescent label or "barcode". Samples were incubated 

with the dyes for SOmin at RT. For PcBlue and PcOrange controls, 190ul 

unstained sample were incubated with 10ul of the highest concentrations. In
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this was each sample has an individual fluorescent signature of PcBlue and 

PcOrange based on the concentration of each dye as shown (figure 2. 6.).
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Figure 2.6. Phosphoprotein staining technique forphospho flow analysis. 

Samples are treated with different stimulus (agonists, inhibitors, drugs, 

ect), fixed and permeabilised (a). Samples are then bar coded with a 

serial dilution of PcBlue and PcOrange (b). Samples are combined (c), 

and stained with fluorochrome-conjugated phospho-specific antibodies 

(d). Finally cells are analyzed with a flow cytometer.
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2.7.3 Antibody-antigen conjugates.

Subsequently, samples were centrifuged in a plate centrifuge at 1300g/5mins 

at 4°C, and pellet was washed twice with flow wash buffer (Appendix 1-13). 

After second spin, bar-coded samples were combined by resuspending 

pellet in first well in 200ul flow wash buffer, which then used to resuspend 

pellet in second well and so on, till all pellets had been collected. Final 

volume of bar-coded sample was adjusted according to the number of 

antibodies which would be used.

For PcBlue and PcOrange controls, 100ul flow wash buffer and 50ul of 

unstained samples were added to each.

Conjugated primary antibodies at optimal titration in 20ul of flow wash buffer 

were added to new 96-well plate. To these 80ul of bar-coded samples were 

incubated with antibodies for SOmins in the dark at RT. Subsequently, 100ul 

of flow wash buffer were then added and 96-well plate was centrifuged in a 

plate centrifuge at 1300g/5mins at 4°C. Un-bound antibodies were discarded 

by inverting the 96-well plate. 150ul of flow was added to each sample and 

assembled for analysis on flow cytometry. Data were further analyzed on 

phospho-flow software, Cytobank, courtesy of Stanford University (USA).

For un-conjugated primary antibodies, (bar-coded samples+ primary 

antibody) were incubated with secondary conjugated antibodies at a ratio of 

1:8000 for SOmins in the dark at RT. and wash step was repeated.
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2.7.4 Samples analysis with Cytobank.

This is analysis software that was developed by a team in Stanford 

University (USA) and enables users to build data layout using details from 

flow experiments. Data are first uploaded to the program; events recorded by 

flow cytometry are gated into population according to the intensity degree of 

PcBlue and PcOrange (figure2.6).

Samples were then assigned to the population corresponding to the intensity 

of PcBlue and PcOrange staining. For example, control sample corresponds 

with PcBlue 1 and PcOrange 1 staining (figure2.7). After assigning samples 

to populations, samples are then analyzed for phospho-antibodies. Data are 

presented using one of the templates such as Histograms, Overlays or 

Heatmaps (figure2.8).
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Figure 2.9. An example of heatmap view of phospho-flow analysis of 

WP stimulated with collagen in a dose-dependent manner.
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2.8. Statistical analysis.

Aggregation experiments are expressed as % aggregation. Western blot 

analysis is conducted using densitometry software (ImageJ) on gels where 

blots are representative of more than two independent experiments .Results 

are expressed as means ± SEM for the number of experiments indicated. 

Where appropriate, Student's f-test was used to compare specific groups.
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CHAPTER 3. REGULATION OF PLATELET 

FUNCTION BY PEROXYNITRITE.
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ABSTRACT

INTRODUCTION: Peroxynitrite (ONOCT), a strong oxidant, is formed in a 

reaction limited rate between nitric oxide (NO) and superoxide (O2 *~). Despite 

the early discovery for peroxynitrite, its "physiopathological" significance is 

still controversial. Peroxynitrite alters protein structure and function by 

reacting with metal centers and amino acid residues. It has been proposed 

that in vivo the conversion of NO to peroxynitrite is critical factor determining 

the outcome of ON signaling. In this study, we examined the effect of 

peroxynitrite on platelet function.

METHODS: Washed Platelets (WP) treated with peroxynitrite or 

decomposed peroxynitrite (DPN). Real time platelet responses were 

analyzed using a light-scattering aggregometer. Signaling mechanisms were 

studied using Western blotting.

RESULTS: peroxynitrite inhibited platelet aggregation through cGMP- 

dependent and independent mechanisms depending on the conditions. In 

the presence of HEPES buffer, peroxynitrite inhibited aggregation through 

the activation of sGC. The cGMP-independent mechanism observed for 

peroxynitrite, in phosphate buffer seems to be at least in part nitration- 

dependent. Peroxynitrite induced dose- and time-dependent increase in 

VASP-phosphorylation at Ser157'239 . Use of PKA and PKC inhibitors revealed 

that phosphorylation of VASP was mediated primarily by PKC not PKA.

CONCLUSION: This study shows for the first time that VASP is 

phosphorylated by peroxynitrite in a manner that does not require cGMP.
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3. Introduction. 

3.1 Peroxynitrite.
Peroxynitrite (ONOO"), the reaction product of nitric oxide (NO) with 

superoxide (O2"~), is a strong oxidant and nitrating agent. Peroxynitrite 

oxidizes sulfhydryl groups (Radi et al., 1991b), mediates nitration of tyrosine 

residues (Ischiropoulos et al., 1992), and induces lipid peroxidation (Radi et 

al., 1991 a). Peroxynitrite has been implicated to play a role in a variety of 

disease states, such as atherosclerosis (Rubbo et al., 2000; Rubbo et al.,

2005), hypoxia (Cooper et al., 2000; Nonami, 1997), diabetes (Pacher et al.,

2006), and neurodegenerative disorders (Guix et al., 2005; Moncada et al., 

2006). However, endogenously produced peroxynitrite has also been 

described to play a role in cell signaling under physiological conditions 

(Balafanova et al., 2002b; Marcondes et al., 2006c; Naseem et al., 2000). 

Although several studies have investigated the effect of peroxynitrite on 

platelets (Boulos et al., 2000b; Brown et al., 1998a; Low et al., 2002; 

Naseem et al., 1997; Rusak et al., 2006), the signaling pathway by which 

peroxynitrite effects platelet function is still controversial.
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Aims of study

• To establish the effect of exogenous peroxynitrite on platelet.

o Platelet functional response is investigated by measuring

platelet aggregation in response to peroxynitrite, and to

agonists after treatment with peroxynitrite. 

o Platelet functional response is also assessed by quantifying

platelet adhesion to immobilized collagen after treatment with

peroxynitrite. 

o Platelet signaling response is investigated by immunoblotting of

peroxynitrite-treated platelet proteins with anti-phosphotyrosine

and anti-phospho VASP antibodies. 

Materials and methods of study

• Peroxynitrite (Method 2.1.8), 1,2-bis-(o-aminophenoxy) ethane-tetra- 

acetic acid tetra-(acetoxymethyl) ester (BAPTA-AM), L-NG-nitro-L- 

argininemethyl ester (L-NAME), N5-(1-lminoethyl)-L-ornithine (L-NIO), 

1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), were all 

purchased from Calbiochem (Nottingham, UK). For complete list of 

chemicals and antibodies (Appendix ll/lll).

Methods of study

• Platelet aggregation.

• Immunoblotting.

• Measurement of cGMP formation.
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3.2 Results.

3.2 The regulation of platelet functions by 

peroxynitrite.

3.2.1 Determination of buffering condition for use for 

peroxynitrite.

Stabilization of the peroxynitrite solutions requires the presence of NaOH 

(1.2M) to maintain it in its anionic form. Therefore it was important to 

establish the most appropriate conditions for the use of peroxynitrite in 

platelets to ensure that any observed effects are not pH mediated. It has 

been shown previously in our laboratory that peroxynitrite is more stable in 

0.1M sodium phosphate buffer than in Tyrode's buffer (N. Oberprieler, 

University of Bradford, thesis 2007). However, platelets lack the response to 

agonists in this buffer since 0.1M sodium phosphate buffer works as a sink 

for calcium. The buffering capacity of Tyrode's buffer in response to 

peroxynitrite was established. In table 3.1, it can be observed that beyond 

100 uM, peroxynitrite caused a significant increase in pH. Thus for further 

experimentation peroxynitrite (up to 100uM) was used for platelet studies.
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PN (pM)

1000
500
200
100
50
20
10
0

pH of Tyrode's 
buffer
11.3
9.6
8

7.5
7.4
7.4
7.4
7.4

Table 3.1. The effect of peroxynitrite concentrations on the pH of 

Tyrode's buffer.

Peroxynitrite at indicated concentrations was added to Tyrode's buffer. 

Changes in Tyrode's buffer pH were recorded with a pH meter.
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3.2.2 The influence of peroxynitrite on platelet 
signaling.

Platelet response is initiated by a number of biochemical signaling cascades. 

In first instance we examined the influence of peroxynitrite on platelet 

signaling cascades.

3.2.2.1 The influence of peroxynitrite on tyrosine phosphorylation.

Peroxynitrite has been demonstrated to inhibit the activity of protein tyrosine

phosphatases (Takakura et ai, 1999b). Due to this it was essential to 

examine the effect of peroxynitrite on tyrosine phosphorylation in platelets. 

Basal tyrosine phosphorylation levels were observed in resting platelets and 

platelets exposed to decomposed peroxynitrite (DPN). However, when WP 

were treated with peroxynitrite (1-100|iM) for 3 minutes, there was a 

concentration-dependent increase in a number of tyrosine phosphorylated 

proteins, which was most evident using 100uM peroxynitrite. Although level 

of tyrosine phosphorylation in platelets stimulated with a physiological 

agonist, collagen, was sustained and more robust after 3 minutes than that 

caused by peroxynitrite (figure 3.1 a).

To investigate the reversibility of peroxynitrite-induced tyrosine 

phosphorylation, the time-dependent effect of peroxynitrite (100nM) on 

tyrosine phosphorylation was tested. Tyrosine phosphorylation was rapid 

with maximal phosphorylation in response to peroxynitrite was observed at 

15sec, which was maintained for up to GOsec before declining to basal after 

10min (figure 3.1 b).
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Figure 3.1. Peroxynitrite induces tyrosine phosphorylation in platelets.

WP (5x1 Oa) treated with peroxynitrite for 3 minutes in a dose (a) and time (b)

-dependent manner. Reactions were stopped with an equal volume of 

2xLaemmli buffer. Proteins were separated in 10-18% gradient gels. 

Tyrosine phosphorylation was evaluated with anti-phosphotyrosine; 

membranes were stripped and reprobed with anti /3-tubulin for equal loading. 

(c) Densitometric analysis of three independent immunoblot assays of an 

increase in 72Kda protein tyrosine phosphorylation in response to 

peroxynitrite. **pj**P < 0.01 vs. basal sample. Data = mean±SEM
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3.2.2.2 The influence of peroxynitrite on tyrosine nitration.

Peroxynitrite is a well known endogenous nitrating agent (Ischiropoulos et

a/., 1992). The ability of peroxynitrite (100nM) to induce protein nitration was 

also investigated. Tyrosine nitration, the addition of a nitro (-NO2) group 

adjacent to the hydroxyl group on the aromatic ring of tyrosine residues (Gow 

et a/., 2004), was not detectable in resting platelets. However, the addition of 

peroxynitrite (100piM) induced a robust increase in tyrosine nitrated proteins 

(figure 3.2a). Nitration was observed over a whole range of molecular weight 

with the heaviest nitrated bands observed at 30, 60 and 70 kDa. Nitration 

was rapid with modified proteins observed within 15 sec of exposure to the 

nitrating agent. In contrast to peroxynitrite induced tyrosine phosphorylation, 

nitration was maintained over a three hour time course. The exception was a 

band at 40 kDa, which began to decline within 30 min, but was still slightly 

nitrated after 3 hours. In order to assess where in the cell nitration was taken 

place. Platelets were fractionated after treatment with peroxynitrite for 1 min, 

interestingly, nitrated proteins were only found in the cytosolic fraction, as 

indicated by the presence of AMPk which is known to be a cytosolic enzyme. 

These data indicate that peroxynitrite is able to enter the cell (figure 3.2b).
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Figure 3.2. Peroxynitrite causes tyrosine nitration in the cytosolic

WP (5x108) treated with peroxynitrite 100uM for up to 180 min (a). WP 

(1x109) were treated with peroxynitrite (WOfjM) for 1 min and fractionated by 

ultracentrifugation. Pellet and supernatants (b). Proteins were subjected to 

SDS page electrophoresis, immunoblotted with anti-nitro tyrosine antibody. 

Membrane was stripped and reprobed with anti-AMPKct antibody as a control 

for cytosolic fraction. Blots are representative of one experiment.
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3.2.2.3. The role of secondary mediators on peroxynitrite-induced 

tyrosine phosphorylation.

Having observed that peroxynitrite increases tyrosine phosphorylation, the 

mechanism of action was investigated using a series of pharmacological 

inhibitors. WP were preincubated with apyrase (1U/ml), ADP scavenger, and 

indomethacin (10|aM), to block TxA2 production, prior to exposure to 

peroxynitrite (100uM). This was to determine whether tyrosine 

phosphorylation caused by peroxynitrite was secondary mediator-dependent. 

Figure 3.3 shows that peroxynitrite -induced tyrosine phosphorylation was 

reduced but not abolished under conditions where ADP and TxA2 were 

absent. Indeed most phosphorylated bands were only slightly affected 

(figure 3.3b). However, tyrosine phosphorylation level was maintained over 

a longer period in the absence of apyrase and indomethacin (figure 3.3a), 

indicating that peroxynitrite-induced tyrosine phosphorylation occurred 

through an ADP/TxA2-dependent and independent mechanisms. 

In erythrocytes, peroxynitrite has been shown to activate Src kinase (Mallozzi 

et a/., 2001b; Serafini et a/., 2005). In platelets, Src kinase activation leads to 

calcium mobilization and activation of number of downstream signaling 

cascades such as PLC and PKC. To assess whether peroxynitrite-induced 

tyrosine phosphorylation was Src family kinase dependent, WP were 

preincubated with, PP2 (20jiM), Src family kinase inhibitor, RO31-8220 

(10uM), PKC inhibitor and BAPTA (20nM), intracellular Ca2+ chelator. The 

results from these experiments demonstrate that tyrosine phosphorylation of 

all proteins except 45kDa was abrogated in the presence of PP2 and
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BAPTA, while RO31-8220 had no effect (figure 3.4a). This indicates that 

tyrosine phosphorylation caused by peroxynitrite occur in a manner that is 

mediated by Src kinase activation and mobilization of calcium but 

independent of PKC activation.

We have also investigated the effect of nitration induced by peroxynitrite on 

tyrosine phosphorylation. In the presence of EGCG (100nM) (nitration 

scavenger), peroxynitrite failed to cause tyrosine nitration. However, 

peroxynitrite induced tyrosine phosphorylation was increased in the presence 

of EGCG (figure 3.4b). This could be accounted by the fact that tyrosine 

nitrated proteins are masked and once nitration is catalyzed by EGCG, more 

tyrosine residues are accessible for phosphorylation.
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Figure 3.3. Peroxynitrite-induced tyrosine phosphorylation is enhanced 

by secretion

WP (5x108) pre-incubated without (a) or with (b) apyrase (1U/ml), and 

indomethacin (10/jM) for 20min, before treatment with peroxynitrite 100 pM 

for indicated times. Reactions were stopped with an equal volume of 

2xLaemmli buffer. Proteins were separated in 10-18% gradient gels 

Tyrosine phosphorylation and nitration was evaluated with anti- 

phosphotyrosine. Blots are representative of 2 independent experiments, (c) 

Densitometric analysis of three independent immunoblot assays of an 

increase in 72Kda protein tyrosine phosphorylation in response to 

peroxynitrite. **P/##P < 0.01 vs. basal sample. Data = mean±SEM
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Figure 3.4. Peroxynitrite-induced tyrosine phosphorylation is Src and 

calcium dependent.

WP (5x108) were preincubated with Src kinase inhibitor [PP2 (20pM]),PKC 

inhibitor [Ro31-8220 (10uM)J, intracellular Ca2+ chelator [BAPTA-AM (20pM)], 

or nitration inhibitor [EGCG (lOOyM)] in the presence ofapyrase (1U/ml), and 

indomethacin (10^M) for 20mm. WP were treated with 100/jM peroxynitrite 

or decomposed peroxynitrite as indicated for 1mln. Proteins were separated 

in 10-18% gradient gels. Tyrosine phosphorylation (a) with densitometric 

analysis (b) and nitration (c) was evaluated with anti-phosphotyrosine, and 

anti-nitrotyrosine antibody, receptively. Blots are representative of 3 

independent experiments.
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3.3.3 The influence of peroxynitrite on platelet 
aggregation.

3.3.3.1 Peroxynitrite inhibits platelet aggregation in a dose-dependent 
manner.

Having examined peroxynitrite signaling cascades, we next measured the 

functional effects of peroxynitrite. Peroxynitrite was added to WP in 

aggregation tubes with continuous stirring and platelet aggregation response 

was monitored using an aggregometer. Peroxynitrite at 100nM failed to 

cause platelet aggregation when compared to the physiological agonist 

collagen; however, higher concentrations of peroxynitrite (700 uM), which 

has been suggested to occur in vivo (Stachowiak et a/.), did induce a small 

level of aggregation (figure 3.5). Thus, for further experiments, peroxynitrite 

was used at concentrations of lOO^M or less.

We next examined the effect of peroxynitrite on agonist-induced platelet 

aggregation. WP were first treated with peroxynitrite (5-100uM) for SOsec, 

and then stimulated with collagen (0.2ug/ml). Figure 3.6 show that collagen 

caused 43% aggregation, which was reduced to 40%, 16%, and 7% in a 

concentration-dependent manner to peroxynitrite 5, 20, and 100 uM, 

respectively. Decomposed peroxynitrite (100nM), prepared by exposing an 

aliquot of peroxynitrite to room temperature prior to experiment, had no 

effect on the platelets response to collagen.
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Figure 3.5. Low peroxynitrite concentration (100uM) does not induce platelet 

aggregation.

WP (3x108) were treated with either peroxynitrite or collagen at the indicated 

concentrations. Platelet response was recorded for the indicated time and 

expressed as % of aggregation. Traces are representative of one 

experiment.
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Figure 3.6. Peroxynitrite causes platelets inhibition in dose-dependent 

manner.

WP (3x108) were stimulated with collagen (0.2ug/ml) or pretreated first with 

peroxynitrite at the indicated concentrations prior to stimulation with collagen. 

Response was recorded for the indicated time and expressed as % of 

aggregation. Graph represents data of 4 independent experiments. Data = 

mean±SEM. **P < 0.01 vs. collagen sample.
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3.3.3.2 Peroxynitrite inhibits platelet aggregation partially in a time 

dependent manner.

We next examined whether the inhibitory effect of peroxynitrite on platelet 

aggregation was reversible over time. WP were incubated with peroxynitrite 

(100uM) for over 2 hours, aliquots of WP platelets were then stimulated with 

collagen at the different time intervals and platelet aggregation response to 

collagen was monitored. Figure 3.7 show that after 1 min incubation 

peroxynitrite was able to cause 80% inhibition of collagen induced 

aggregation. The level of inhibition was reduced to 60% after 10 min, and 

declined further to 57% by 20 min. At 40 min inhibition was 40%, but this was 

maintained for over 2hours (longest time tested).
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Figure 3.7. Peroxynitrite inhibits platelets in a time-dependent manner.

WP (3x108) incubated with peroxynitrite (WOuM) for over 2 hours. Aliquots 

were taken out at the indicated time intervals, and then stimulated with 

collagen 4ug/ml for 5min. Aggregation trace was recorded using dual 

channel aggregometer and expressed as % aggregation. Traces are 

representative of two experiments.
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3.3.4 Investigation the mechanism of platelet 

aggregation inhibition by peroxynitrite.

3.3.4.1 The role of Src kinase in platelet aggregation inhibition by 
peroxynitrite.

Our data suggests that peroxynitrite induces tyrosine phosphorylation in a 

Src-dependent mechanism. Although some Src family kinases (SFKs) are 

required for platelet aggregation by collagen, platelets possess at least 5 

isoforms (Lyn, Fgr, Fyn, Yes, and Src) (Stenberg et a/., 1997). It is possible 

some of these isoforms have inhibitory roles (Chari et a/., 2009). Thus we 

aimed to investigate whether Src plays a role in the inhibitory effect of 

peroxynitrite on platelet aggregation.

We first evaluated the role of Src family kinases inhibition by PP2 by 

measuring platelet aggregation in response to collagen, consistent with 

others (Suzuki-lnoue et a/., 2003), PP2 abolished collagen induced 

aggregation (figure 3.8a). Next platelets were stimulated with an agonist, 

thrombin, which is known to induce platelet aggregation independently of Src 

kinases (Hughan et a/., 2007). Figure 3.8b shows that peroxynitrite in the 

presence of Src inhibitor was still able to inhibit platelet aggregation induced 

by thrombin, while Src inhibitor had no effect on platelet response to 

thrombin. This data demonstrate that peroxynitrite inhibits platelet 

aggregation in a manner that does not require Src kinase, and the inhibitory 

effect of peroxynitrite is not specific to platelet aggregation to collagen.
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Figure 3.8. The role ofSrc in the inhibitory action of peroxynitrite.

WP (3x108) pretreated with Src kinase inhibitor [PP2 (20 uM)] were treated 

peroxynitrite (100uM) prior to stimulation with collagen (4 ug/ml) (a) or 

Thrombin 0.04 u/ml (b). Response was recorded for 5min and expressed as 

% aggregation. Traces are representative of two experiments.
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3.3.4.2 The role of protein nitration in platelet aggregation inhibition by 

peroxynitrite.

In figure 3.2 we showed that peroxynitrite caused robust increase in tyrosine 

nitration which was abolished by EGCG (figure 3.4b). Thus the role of 

nitration was also investigated in inhibition of platelet aggregation by 

peroxynitrite.

WP were incubated with EGCG (100|iM) for 20min prior to being exposed to 

peroxynitrite 100uM for SOsec, and stimulation with collagen. Figure 3.9 

shows that peroxynitrite, as expected, reduced platelet aggregation in 

response to collagen. However in presence of EGCG, the inhibitory effect of 

peroxynitrite was significantly reduced, in agreement with others (Deana et 

al., 2003), EGCG by itself reduced platelet response to collagen. 

Surprisingly, in the presence of EGCG, peroxynitrite also caused platelets to 

aggregate slightly. This data suggest that inhibition of platelet aggregation by 

peroxynitrite is in part mediated by tyrosine nitration, and that tyrosine 

nitration caused by peroxynitrite might play a protective role in a way that 

platelets are less responsive to stimulation.
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Figure 3.9. Peroxynitrite inhibits platelets at least in part in a nitration 

dependent manner.

WP (3x108) stimulated with collagen (4ug/ml) alone or pretreated with 

peroxynitrite (100uM), or exposed to peroxynitrite alone (a). WP (3x108) 

preincubated with nitration inhibitor [EGCG (100uM)] prior to stimulation with 

collagen (4ug/ml) alone, or in presence of peroxynitrite 100 uM. or exposed 

to peroxynitrite alone (b). Aggregation trace was recorded using dual 

channel aggregometer and expressed as % aggregation. Traces are 

representative of two experiments.
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3.3.4.3 The role of soluble guanylyl cyclase in platelet aggregation 

inhibition by peroxynitrite.

Soluble guanylyl cyclase (sGC) is a key enzyme of NO/cGMP inhibitory 

pathway. We investigated whether peroxynitrite mediate inhibition of platelet 

aggregation via sGC. We first evaluated the ability of sGC inhibitor, ODQ, by 

measuring its ability to reverse the inhibitory effect of NO on platelet 

aggregation. Consistent with the study of Moro and colleagues (Moro et a/., 

1996), ODQ (20nM) reversed the inhibitory effect of NO (figure 3.1 Oa) Here 

NO reduced platelet aggregation to 15 ± 3.1 %, which was recovered to 70 ± 

8 % by ODQ (P < 0.05). Next platelets were stimulated with collagen after 

treatment with peroxynitrite (100nM/30sec) in the presence of ODQ. Figure 

3.1 Ob shows that peroxynitrite significantly reduced platelet aggregation in 

response to collagen from 74 ± 13.1% to 27. ± 4.7 % (P < 0.05). However in 

the presence of ODQ, the ability of peroxynitrite to inhibit aggregation was 

diminished, with aggregation remains at 65 ± 16.5 %. In contrast, L.NIO 

(1mM) had no effect on the inhibitory action of peroxynitrite 28% ±8.5 (P < 

0.05).
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Figure 3.10. Peroxynitrite inhibits platelet aggregation partially in 

guanylyl cyclase -dependent manner

WP (3x1O8) preincubated with sGC inhibitor [ODQ (20uM)] or eNOS inhibitor 

[ L.NIO (1mM)J for 20 minutes. WP were then treated with peroxynitrite 

(WOuM) and stimulated with collagen (4ug/ml), and platelet response was 

recorded with Bom aggregometer and expressed as % aggregation. 

Platelets incubated with ODQ were tested with GSNO (10uM) prior to 

experiment as a positive control. A graph represents data from three 

individual experiments. Data = mean±SEM. **P < 0.01 vs. collagen sample.
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3.3.4.4 NO-dependent and independent effects, the influence of 

buffering conditions.

It is possible that the buffering conditions used in experimental protocols 

could influence the actions of peroxynitrite. Schmidt and colleagues (Schmidt 

et a/., 1998), investigated a number of buffers for the NO-like biological 

activity of peroxynitrite, their data suggested that peroxynitrite may react with 

HEPES in Tyrode's buffer to produce an NO donor, a reaction which does 

not take a place with phosphate buffer. In light of their findings we examined 

whether buffer composition influenced peroxynitrite regulation of platelets. 

WP were re-suspended in phosphate buffer, and the previous experiment 

(figure 3.10) was repeated. Figure 3.11 show that peroxynitrite still inhibited 

platelet aggregation indeed by collagen. However, ODQ did not reverse the 

inhibitory action of peroxynitrite. This suggests that the NO-dependent effect 

of peroxynitrite is entirely dependent on the experimental conditions. 

Because Tyrode's buffer appeared to cause the release of NO, phosphate 

buffer was used as the main buffer for any experiment involves the use of 

peroxynitrite.
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Figure 3.11. Nitric oxide-dependent inhibition by peroxynitrite is 

dependent on the experimental conditions

WP were then treated with peroxynitrite (100uM/30sec) and stimulated with 

collagen (4ug/ml) and platelet response was recorded with Born 

aggregometer and expressed as % aggregation. Platelets incubated with 

ODQ were tested with GSNO (10uM) prior to experiment as a positive 

control. The graph represents data from 3 individual experiments. Data = 

mean±SEM. *P < 0.05 vs. collagen sample. P=1 collagen/PN vs. 

collagen/PN+ODQ.
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3.3.4.5 Peroxynitrite induced sGC activation and cGMP formation.

It is widely accepted that cGMP elevation in platelets occurs in response to 

NO-mediated activation of sGC, and that cGMP formation in response to 

platelet activation is NO-sensitive. However, No-independent regulation of 

sGC activity by vWF (Gambaryan et a/., 2008), and by adiponectin (Riba et 

a/., 2008), has been described. We investigated the contribution of 

peroxynitrite in the formation of cGMP in platelets under condition of 

phosphate buffer.

Peroxynitrite (100uM) significantly increased cGMP production over basal 

levels. Where the cGMP level was 1579.5 ± 76.5 fmol per 108 platelets 

compared to basal 214.4 ± 82.4 (P < 0.05). Pre-incubation of platelets with 

ODQ (20uM) abolished the ability of peroxynitrite to stimulate cGMP 

production (261.3 ± 76,5 fmol per 108 platelets) (figure 3.12). However, in 

the presence of EGCG (100uM) tyrosine nitration inhibitor, the ability of 

peroxynitrite to stimulate cGMP production was unaffected (1264.1 ± 174.7 

fmol per 108 platelets). Although the increase of cGMP production by 

peroxynitrite was significant, it was significantly less than that produced by 

GSNO (10uM). It was surprising that peroxynitrite increased cGMP formation 

but its inhibitory effects on platelet aggregation were independent of ODQ. 

This is perhaps due to the fact that the basal concentration of cGMP is less 

than one-tenth of the concentration of cGMP binding site on PKG, and 

several-fold increases in cGMP levels are capable of stimulating only a small 

fraction of PKG (Schwarz et a/., 2001 b). This is best highlighted comparing 

the potency of platelet inhibition by GSNO (0.1 uM), which produced the 

same level of cGMP as that of peroxynitrite (figure 3.13), and also failed to
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inhibit aggregation. Thus while peroxynitrite may increase cGMP generation, 

it is not sufficient to account for inhibition of platelet aggregation.
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Figure 3.12. Peroxynitrite increase cGMP production in platelets.

WP (3x108) pretreated with EGCG (100/jM) or ODQ (20uM) for 20min prior 

to treatment with peroxynitrite (100uM) for 1min. Platelets were lysed and 

total cGMP concentration was measured using a competitive enzyme 

immunoassay as described in methods. The graph represents data from 4 

independent experiments. Data = mean±SEM. **P < 0.01 vs. basal platelet 

sample.
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Figure 3.13. Nitric oxide-dose dependent effect on inhibition of platelet 

aggregation.

WP (3xW8) pretreated with ODQ (20/jM) for 20mm. WP were stimulated with 

collagen (2/jg/ml) or pretreated first with the indicated doses of GSNO for 

1min, and platelet response was recorded with Born aggregometer and 

expressed as % aggregation. Traces are representative of one experiment.
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3.3.5 The role of vasodilator stimulated 

phosphoprotein (VASP) in regulation of platelet 

function by peroxynitrite.

In section 3.3.3.1, it was observed that peroxynitrite inhibited platelet shape 

change. Under physiological conditions such as upon adhesion to collagen, 

shape change allows filopodia to be formed which are then superseded by 

the sustained lamellipodia of the spread platelet (Pula et a/., 2006). VASP 

promotes filopodia formation and therefore shape change by allowing linear 

actin polymerization (Barzik et a/., 2005). In the next set of experiments, we 

tested whether peroxynitrite is targeting filopodia formation by inhibiting 

VASP and ultimately actin polymerization. To address this hypothesis, we 

examined the effect of peroxynitrite on platelet adhesion and spreading on 

immobilized collagen under static conditions. Platelets adhered to 

immobilized collagen (10|ig/ml) seemed to spread consistent with filopodia 

and lamellipodia formation. Peroxynitrite-treated platelet spreading and 

adhesion was significantly reduced by 79 ± 20 % (P < 0.05). While adhesion 

of platelets treated with decomposed peroxynitrite was slightly affected by 18 

± 13% (figure 3.14a).

Platelet aggregation and adhesion are associated with platelet shape 

change. This is mediated by alterations to assembly and disassembly of 

actin cytoskeleton. Since peroxynitrite inhibited platelet spreading we 

examined whether influencing actin remodeling may be important for platelet 

inhibition by peroxynitrite. VASP is an actin associated protein whose 

phosphorylation is associated with reducing cytoskeleton remodeling in
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platelets. Immunoblotting of proteins from adherent platelets to collagen 

show no increase in VASP phosphorylation. However, when platelet were 

pretreated with peroxynitrite, there was an increase in VASP 

phosphorylation. Pretreatment with decomposed peroxynitrite had no effect 

on VASP phosphorylation (figure 3.14b).

Treatment of washed platelets with peroxynitrite (5-100uM) for 1min led to a 

concentration-dependent increase in VASP phosphorylation of both Ser239 

and Ser157 (Figure 3.15a). Phosphorylation at both sites was observed at 

concentrations as low as 5|jM and was maximal at 100uM (highest 

concentration tested). The incubation of platelets with decomposed 

peroxynitrite failed to induce phosphorylation, indicating that the observed 

effects were independent of potential change in pH or due to the effects of 

decomposition products.

Peroxynitrite-mediated VASPSer239 phosphorylation was observed within 

15sec and declined to almost basal levels after 90mins. On the other hand, 

VAS pSeM57 phosphorylation was delayed till after GOsec of exposure to 

peroxynitrite and declined much faster by GOmins. These data indicate that 

peroxynitrite activates a number of AGC kinase family, since these kinases 

are the only known regulators of VASP phosphorylation on these sites.
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Figure 3.14. Peroxynitrite inhibits platelets adhesion to collagen.

7
WP (3x10 /ml) were adhered to collagen (10ug/ml) coated microscope slides 

for 30 min in the presence or absence of peroxynitrite (100uM) or 

decomposed peroxynitrite, as indicated. Platelets were stained using TRITC- 

conjugated phalloidin and pictures were obtained using a fluorescent 

microscope (x60, oil immersion. Pictures represent results from 10 fields of 

view/sample of 3 independent experiments performed in duplicate. 

Experiments described were repeated 3 times with the results quantified as 

the number of adherent platelets/0.01 mm2. Data=mean±SEM. **P < 0.01 vs. 

collagen sample (a). WP (5x108/ml) were adhered to either human serum 

(HS) or collagen (10ug/ml) for 30min in the presence or absence of 

peroxynitrite (100uM) or decomposed peroxynitrite. Reaction was stopped by 

adding 2x Laemmli buffer equal amount of proteins were loaded into SDS- 

PAGE Proteins (15ug) were separated in 10-18% gradient gels and 

immunoblotted for anti-phospho-VASP8^239,Membranes were then stripped 

and reprobed with anti-/3-tubulin .
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Figure 3.15. Peroxynitrite induces a time- and concentration-dependent 

increase in VASP phosphorylation at both ser157/239- 

WP (3x108/ml) were treated with (a) peroxynitrite (0-100uM) for 1min or 

WOuM for the indicated time (b) with stirring before termination of the 

reaction with an equal volume of 2X Laemmli buffer. Proteins (15ug) were 

separated in 10-18% gradient gels and immunoblotted for anti-phospho- 

VASPSer239, or anti-phospho-VASP86'157. Membranes were then stripped and 

reprobed with anti-fi-tubulin. Graph is representative of densitometric 

analysis of 7 independent experiments (c). Data=mean±SEM. *P < 0.05 vs. 

Basal sample.
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3.3.5.1 The role of nitration and oxidation in regulating peroxynitrite- 

induced VASP phosphorylation.

The decomposition of peroxynitrite at physiological pH leads to the 

generation of nitrating and oxidizing agents (Beckman et a/., 1996b), we 

assessed whether these agents were responsible for the phosphorylation of 

VASP. Preincubation of platelets with EGCG (100uM), inhibitor of 

peroxynitrite-induced nitration (Schroeder et a/., 2001), failed to inhibit 

phosphorylation of VASP in response to peroxynitrite (100uM) (figure 

3.16ai). In contrast, EGCG abolished peroxynitrite-induced nitration of 

platelet proteins (figure 3.16aii). To confirm that our observations were not 

due to the presence of residual \-\2O2 (Kirsch et a/., 1998), the experiments 

were repeated in the presence of extracellular catalase. The presence of 

catalase (300 units/ml) had no effect on peroxynitrite-induced 

phosphorylation of VASPSer239 , while H2O2 (100uM) alone failed to increase 

phosphorylation (figure 3.16bi). Similarly, the antioxidant hydroxyl 

scavenger mannitol (10-100mM) failed to influence phosphorylation of VASP 

alone or in response to peroxynitrite (figure 3.16bii). Thus, under these 

conditions nitration and oxidation mechanism were not responsible for 

peroxynitrite-induced effects.
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Figure 3.16. Peroxynitrite-induced phosphorylation of VASP does not

require nitration.

(a) WP (3x108/ml) were treated with peroxynitrite (WOfjM) for 1min in the

presence and absence of nitration inhibitor [EGCG (100uM)]. Reactions were 

terminated by the addition of with an equal volume of 2xLaemmli buffer. 

Proteins (15ug) were separated in 10-18% gradient gels and immunoblotted 

for (i) anti-phospho-VASP8*239 and anti-phospho-VASP5^157, or (ii) anti- 

nitrotyrosine. (b) Platelets (3x108/ml) were treated with H2O2 (100uM) for 1 

min in (i) presence and absence of catalase (300U/ml) or (ii) mannitol (10- 

100 mM). Reactions were terminated by the addition of with an equal volume 

of 2X Laemmli buffer. Proteins (15ug) were separated in 10-18% gradient 

gels and immunoblotted for anti-phospho-VASPSer239. Blots are 

representative of 4 independent experiments.
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3.3.5.2 The role of Src kinases and intracellular calcium in regulating 

peroxynitrite-induced VASP phosphorylation.

To further investigate the mechanisms responsible for peroxynitrite-mediated 

phosphorylation of VASP, a series of inhibitors were used. Peroxynitrite has 

been reported to activate Src kinase in red blood cells (Minetti et a/., 2002), 

and we have shown it is the case in platelets (figure 3.4 and 3.5). However, 

the presence of the Src family kinase inhibitor, PP1 (20uM), had no effects 

on peroxynitrite-induced VASP phosphorylation in platelets. In contrast, the 

intracellular calcium chelator, 2-bis (2-aminophenoxy) ethane-N,N,N,N',N'- 

tetraacetic acid (BAPTA-AM; 20uM), ablated phosphorylation of VASP at 

both sites (Figure 3.18). Thus, phosphoVASP occurs in a Src family kinase- 

independent in a manner but requires Ca2+ mobilization.
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Figure 3.17. Peroxynitrite-induced phosphorylation of VASP requires 

Ca2+ mobilisation but not Src kinases.

WP (3x108/ml) were treated with peroxynitrite (100[jM) in presence and 

absence of Src kinase inhibitor [PP1 (20[jM)] or intracellular Ca2+ chelator 

[BAPTA (20uM)]. Reactions were stopped with an equal volume of 

2xLaemmli buffer. Proteins (15ug) were separated in 10-18% gradient gels 

and immunoblotted for anti-phospho-VASPSer239/157. Blots are representative 

of 3 independent experiments.
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3.3.6 The role of AGC family kinases in regulating 

peroxynitrite-induced VASP phosphorylation.

3.3.6.1 Protein kinase G (PKG) and protein kinase A (PKA).

In platelets and other cell types VASPSer239 phosphorylation has been shown 

to be a useful monitor for PKG activity (Halbrugge et a/., 1990a; Smolensk! et 

a/., 1998). On the other hand, phosphorylation of VASPSer157 is 

predominantly dependent on protein kinase A (Butt et a/., 1994). 

In the next series of experiments the potential role of PKG and PKA in 

peroxynitrite -mediated phosphorylation of VASP was investigated. Since a 

NOS type activity in blood platelets was described (Patel et a/., 2006), we 

examined its potential role in phosphorylation of VASP in response to 

peroxynitrite. Preincubation of platelets with the NOS inhibitor (L-NIO) had no 

effect on peroxynitrite-mediated phosphorylation of VASP. In the presence of 

the sGC inhibitor ODQ (20uM), the phosphorylation of VASPSer239/157 induced 

by peroxynitrite was reduced, although this was not significant, indicating that 

cGMP-dependent phosphorylation of VASP played only a minor role in the 

actions of peroxynitrite (Figure 3.18a). Consistent with these observations 

peroxynitrite caused a modest increase in cGMP formation. In contrast, ODQ 

reduced NO (10pM) mediated phosphorylation of VASPSer239 to basal levels 

and abolished phosphorylation of VASPSer157 consistent with its ability to 

induce large increases in GMP.
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Figure 3.18. The role of cGMP in VASP phosphorylation stimulated by 

peroxynitrite.

WP (3x108/ml) were treated with peroxynitrite (WOuM) or NO (10uM) for 

1min in the presence and absence of sGC inhibitor [ODQ (20uM)] or eNOS 

inhibitor [L-NIO (1mM)]. Reactions were terminated by the addition of with an 

equal volume of 2X Laemmli buffer. Proteins (15ug) were separated in 10- 

18% gradient gels and immunoblotted for anti-phospho-VASP86'239'157. Blots 

are representative of three independent experiments, and Densitometric 

analysis of three independent immunoblot assays. *P < 0.05 vs. basal 

sample.
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3.3.6.2 Protein kinase C (PKC).

In addition to PKG and PKA, PKC has also been reported to phosphorylate 

VASpseri57 (Ch jtaley et a/ 2rj04), but not VASPSer239 . In vitro, PMA [a potent 

diacylglycerol (DAG) analog] that acts as a PKC activator serves as a useful 

tool for studying the role of PKC in cells. A functional PKC activation was 

verified by incubation of platelets with PMA or peroxynitrite in the presence 

and absence of PKC inhibitors followed by determination of vASPSer239/157 

phosphorylation. Consistent with the report by Wentworth and colleagues 

(Wentworth et a/., 2006), PMA (300nM/ml) caused a significant increase in 

phosphoVASP 157 but had not effects on phosphoVASPSer239 . The formation 

of phosphoVASPSer157 in response to PMA was abolished by the two 

structurally distinct PKC inhibitors RO31-8220 (10nM) and BIM-I (10nM). 

Strikingly, preincubation with the PKC inhibitors caused significant inhibition 

of peroxynitrite-induced phosphorylation of VASP on both sites (Figure 

3.19a). Since this suggested a role for PKC in signaling events initiated by 

peroxynitrite, we examined PKC activity using an antibody that recognizes 

phosphorylation of the preferred PKC consensus phosphorylation motif: 

RXXS/TXRX (Pearson et a/., 1991). Here we observed low level of 

phosphorylation in untreated platelets. However peroxynitrite (100uM) 

induced phosphorylation of proteins with apparent molecular weights of 40 

and 100kDa (Figures.19bi). These phosphorylation events seemed to occur 

in parallel to VASP phosphorylation occurring within 15sec before declining 

to basal after GOmin. However it is important to note that this activation is 

modest in comparison to that observed with PMA of thrombin (1U/ml) 

(Figure 3.19bii).
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Figure 3.19. The role of PKC in VASP phosphorylation stimulated by 

peroxynitrite.

WP (3x108/ml) were treated with peroxynitrite (WOfjM) for 1 min or PMA 

(300nM) for 5min in presence and absence of PKC inhibitor [Ro31-8220 

(10/jM) or BIM I (10pM)] (a). Reactions were stopped with an equal volume 

of 2xLaemmli buffer. Proteins (15pg) were separated in 10-18% gradient 

gels and immunoblotted for anti-phospho-VASP86"239'157. Blots are 

representative of three independent experiments, and densitometric analysis 

of 3 independent immunoblot assays, (bi) Platelets (3x10B/ml) were treated 

with peroxynitrite (WOuM) for up to 60min, Thrombin (1U/ml) or PKC
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activator [PMA 300nM] in presence and absence of RO31-8220 before 

termination of the reactions with an equal volume of 2xLaemmli buffer. The 

samples were processed as in (a) except membranes were probed with an 

anti-phospho PKC substrate antibody. Blot is representative of three 

independent experiments. *P < 0.05 vs. basal sample.
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3.3.7 AMP-activated protein kinase (AMPk).

AMP-activated protein Kinase (AMPk), a sensor of cellular energy status that 

is sensitive to the AMP: ATP ratio, is found in all eukaryotic cells, including 

Giardia lamblia, which does not have mitochondria, nucleoi, or peroxisomes 

(Adam, 2000). (Adam, 2000). AMPk is a heterotrimeric complex consisting of 

a catalyting a-subunit, regulatory (3 and y subunits (Hardie et a/., 2003). The 

y-subunit contains two AMP binding sites and one a tightly bound, non- 

exchangeable AMP. The a-subunit contains an N-terminal kinase domain 

and a C-domain that involved in complex formation. The P- subunit contains 

Glycogen-Binding Site (GBS), and studies show that high cellular glycogen 

represses activation of AMPk in muscles in vivo (Wojtaszewski et a/., 2002), 

suggesting that AMPk can act as glycogen sensor as well as AMP:ATP 

sensor.

AMPk can be activated by any stimuli that change AMP: ATP balance, this 

includes metabolic stress, oxidative stress, hypoxia, and glucose deprivation. 

Despite the relatively early discovery of AMPk, its signaling pathway is poorly 

understood especially in platelets.

Other protein targets which may play role in platelet inhibition by peroxynitrite 

were also investigated. Recently it has been shown that AMPk can be 

activated by peroxynitrite in endothelial cells (Zou et a/., 2002). This was 

evidenced by an increase in AMPka Thr172 phosphorylation as well as 

increased Ser92 phosphorylation of acetyl-coenzyme A carboxylase (ACC), a 

downstream target of AMPk. AMPk activation by peroxynitrite has not been 

shown in platelets. In fact, little is known about AMPk and its signaling

pathway in platelets.
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3.3.7.1 Investigation the presence of AMPk and its substrates in 
platelets.

Given the limited data regarding the presence and/or the role of AMPk and 

ACC proteins in platelets, initial experiments sought to determine the 

presence of those proteins in platelets. In the first instance the relative 

amount of AMPk and specificity of anti-AMPk antibody was evaluated by 

comparing platelet lysates with endothelial cell lysates. Importantly, the 

presence of AMPk in endothelial cells is well established (Chen et a/., 1999; 

Nagata et a/.). Immunoblotting experiments revealed that AMPk was highly 

expressed in platelets and was indistinguishable in terms of molecular weight 

under the same experimental conditions used from that in endothelial cells 

(figure 3.20a).

Acetyl-coenzyme A carboxylase (ACC) is phosphorylated downstream of 

AMPk and has been used as a marker of AMPk activation (Chen et a/., 

2000). While biochemical studies suggested that ACC is present in platelets 

(Philip W et al., 1969), no studies have demonstrated actual protein. Whole 

cell lysates from platelets and endothelial cells immunoblotted with an 

antibody that, according to manufacturer (Cell Signaling), detects all isoforms 

of ACC. Figure 3.20b/c shows that in endothelial cells there is a protein 

band at 280 kDa, which corresponds to the one from manufacturer on the 

left, this band is not present in platelets. Since ACC was to be used as a 

marker of AMPk activity, it lack of detection prevented the pursuit of these 

experiments.
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F/gure 3.20. Detecting the presence AMPk and Acetyl-CoA Carboxylase

in platelets.

20ug of whole cell lysates from WP and endothelial cells (EC) were resolved 

on 10-18% SDS PAGE, Immunoblotted with anti-AMPka (a). Western blot 

analysis of cell extracts from various cell lines, using Acetyl-CoA 

Carboxylase adopted from cell signaling. 1(NIH/3T3), 2(293), 3(HCC78), 

4(C6), 5(PAE), 6(CHO). (b), 20mg/ml of whole cell lysates analysis of WP, 

basal, and treated with WOuM Peroxynitrite, compared to HUVECs (c), 

resolved in 10-18% SDS PAGE, immunoblotted with rabbit mAB against 

ACC, as directed by manufacturer. Blot is representative of one experiment.
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3.3.7.2 The influence of peroxynitrite on AMPk phosphorylation.

AMPk is phosphorylated on threonine 172 residues by LKB1, and is used as 

a marker of enzyme activation. Since AMPk is present in platelets and 

phosphorylated in response to peroxynitrite in endothelial cells (Zou et a/., 

2003), we examined its phosphorylation state of platelet AMPk was 

investigated

In unstimulated platelets, AMPk was found to be basally phosphorylated; 

however this was increased by addition of peroxynitrite (lOO^M). 

Phosphorylation of AMPk was time-dependent, increased phosphorylation 

was observed at SOsecs and maintained for up to QOsecs before declining 

back to basal (figure 3.21).

3.3.7.3 The mechanism underlying peroxynitrite-induced AMPk 

phosphorylation.

Previously we have shown that platelets signal through Src kinases (figure 

3.4), PKC (figure 3.19), intracellular calcium (figure 3.17), and nitration 

(figure 3.10). Therefore we used a series of inhibitors to determine which 

one of these pathways was important for peroxynitrite-mediated 

phosphorylation of AMPk. Inhibition of calcium mobilization and nitration 

using BAPTA (10uM) and EGCG (100uM) respectively, reduced but did not 

inhibit AMPk phosphorylation. In contrast, inhibition of Src kinases and PKC 

using PP2 (10uM) and RO31-8220 (10uM) respectively, failed to affect 

AMPk phosphorylation induced by peroxynitrite. This data suggest that 

peroxynitrite induces tyrosine phosphorylation and AMPk activation by two 

different mechanisms (figure 3.22a). In addition, peroxynitrite caused AMPk
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tyrosine nitration, which was inhibited in presence of EGCG. On the other 

hand, decomposed peroxynitrite and AICAR failed to induce tyrosine nitration 

(figure 3.22b).
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Figure 3.21. AMPk is activated in response to peroxynitrite.

WP (3x108) treated with peroxynitrite or decomposed peroxynitrite 100fjM for 

up to 20m. Whole cell lysates were resolved in 10-18% gradient SDS-PAGE 

and immunoblotted using anti-phospho AMPkctThr172' membranes were 

stripped and reprobed with anti-AMPkct. The graph represents densitometric 

analysis of 3 independent immunoblot assays.
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Figure 3.22. Role of secondary mediators and protein kinases in 

peroxynitrite-mediated AMPk phosphorylation.

WP (3x108) treated with peroxynitrite or decomposed peroxynitrite 100/jM, 

for 1min, in presence, or absence of Src kinase inhibitor [PP2 (20/jM)], PKC 

inhibitor [ Ro31-8220 (lOyM)], intracellular Ca2+ chelator [ BAPTA-AM 

(20/jM)], or nitration inhibitor [EGCG (WOfjM)] (a) whole cell lysates resolved 

on 10-18%SDS PAGE, immunoblotted with anti-AMPkcrThr 172, and anti- 

AMPka antibodies. WP (7x108) treated with AMPk activator [AICAR 

(500/jM)], peroxynitrite or decomposed peroxynitrite lOOyM for 1min in 

presence or absence of EGCG (100jjM), Lysate were immunopreciptaed 

with anti-AMPka antibody, and blotted with anti-nitrotyrosine (b). Blots are 

representative of one experiment.
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3.3.7.4 AMPk inhibits platelet aggregation.

It has been suggested that peroxynitrite reduces platelet aggregation and 

secretion in part by inhibition of mitochondria! energy production (Rusak et 

a/., 2006). We have shown earlier that peroxynitrite increased AMPk 

phosphorylation, and since AMPk is "an energy sensor" of cells, it 

represented a potential target for peroxynitrite mediated inhibition of 

aggregation. We investigated the significance of AMPk activation in platelets. 

5-aminoimidazole-4-carboxamide-1-(3-d-ribofuranoside (AICAR) is a cell- 

permeable adenosine analogue that can be phosphorylated to ZMP, an AMP 

analogue and known AMPK activator (Hardie et a/., 1997; Zhou et a/., 2001). 

The incubation of platelets with AICAR did not induce platelet activation. 

However, when AlCAR-treated platelets were stimulated with collagen 

(0.4ug/ml) we found a significant reduction in aggregation from 73.75 % ± 

10.7 to 27.5 % ± 9.04 (P< 0.05) (figure 3.23 alb).
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Figure 3.23. AMPk activation inhibits platelets aggregation.

WP (3x108) untreated, or pre-incubated first with AMPk activator [AICAR 

(100 uM)] were stimulated with collage and response was recorded for 5min 

and expressed at % aggregation. Graph representing data from 3 

independent experiments. Data=mean±SEM. *P < 0.05 vs. collagen sample 

(a). WP (3x1 08) incubated with AMPk activator [AICAR (100uM)] for indicated 

time points, lysates were subject to SDS-PAGE and immunoblotted with anti-
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3.3.8 Discussion.
The primary source of NO in the vascular system is the endothelium (Ignarro 

et al., 1987a). However, oxidative stress, a risk factor for several 

cardiovascular disorders, interferes with the NO/sGC/cGMP signalling 

pathway through scavenging of NO and formation of the strong intermediate 

oxidant, peroxynitrite (Pryor et a/., 1995). Peroxynitrite is a potent nitrating 

and oxidizing species, which can induce differential effects on platelet 

function depending on the concentration. At higher concentrations (>200uM), 

peroxynitrite can have potentially activatory effects such as increasing Ca2+ 

mobilization, nitration of the platelet inhibitory receptor PECAM-1 (Newman 

et a/., 2002). While at lower concentrations (<100uM), peroxynitrite 

modulates platelet function by reducing energy metabolism, cyclooxygenase 

activity and inhibiting aggregation-induced phosphotyrosine signaling events 

(Boulos et a/., 2000a; Low et al., 2002; Lufrano et al., 2003). However, the 

precise mechanism underlying its potential inhibitory effects are unclear.

The ability of peroxynitrite to regulate platelet function was initially 

demonstrated by aggregation. In agreement with others (Naseem et al., 

1995; Yin et al., 1995), exogenously administrated peroxynitrite caused a 

concentration and time-dependent inhibition of platelet aggregation. In the 

first instance the ability of peroxynitrite to inhibit platelet aggregation through 

the cGMP/PKG pathway was tested. When platelets were incubated with the 

sGC inhibitor ODQ (Moro et al., 1996), the inhibitory effects of NO were 

completely abolished, consistent with its role as a potent activator of cGMP.

163



Surprisingly, the inhibitory actions of peroxynitrite were also ablated by ODQ, 

with is inconsistent with its role as a weak activator of sGC. There has been 

reports that peroxynitrite may react with HEPES based buffers to produce 

compounds that have NO like activity (Kirsch et a/., 1998; Moro et a/., 1995). 

In our experimental conditions, when a phosphate buffer was used instead of 

Tyrode's buffer, which contained HEPES, the apparent cGMP-mediated 

inhibitory effect of peroxynitrite on platelet aggregation was not recovered by 

ODQ. When the ability of peroxynitrite to activate sGC in Phosphate buffer 

was tested, peroxynitrite induced a small but significant increase in cGMP 

formation. This increase was completely blocked by ODQ, and was nitration- 

independent. This is consistent with its classification as a modest activator of 

sGC compared to GSNO. Indeed, the modest levels of cGMP produced by 

peroxynitrite stimulation were not sufficient to have any functional effects on 

platelets. This was confirmed by comparisons with the NO donor GSNO, 

which at 100nM caused a similar increase in cGMP formation but this was 

insufficient to induce inhibition of collagen-mediated platelet aggregation. 

Thus under conditions, that prevent the formation of secondary NO-donors 

the inhibitory effects of peroxynitrite are independent of cGMP. It is possible 

that previous studies highlighting cGMP dependency were due to either the 

composition of the platelet resuspenesion buffer or the presence of plasma 

where reactions between peroxynitrite and glutathione can form S- 

nitrosothiols that are potential cable of release NO (Van der Vliet et a/., 

1994).

Platelet aggregation is a method to analyse the functional response of 

platelets (Born et a/., 1963), but does not provide information of the signal
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transduction mechanisms that regulate platelet function. Therefore, we 

began to examine whether peroxynitrite could cause inhibition of aggregation 

through signaling events that were independent of cGMP. In agreement with 

(Mondoro et a/., 1997; Naseem et a/., 1997), we showed that peroxynitrite 

induced tyrosine phosphorylation and nitration of a number of platelet 

proteins in a time and concentration-dependent manner. This tyrosine 

phosphorylation was potentiated by the release of secondary mediators, 

namely ADP and TxA2 , and un-like tyrosine nitration, was totally mediated by 

a Src-dependent mechanism, but independent of nitration. Tyrosine nitration 

of proteins has long been viewed as a footprint of peroxynitrite, however, 

nitration may occur in physiological conditions and this has been 

demonstrated to be the case in platelets (Naseem et a/., 2000; Sabetkar et 

a/., 2002). As expected peroxynitrite caused nitration of platelet proteins, 

which was maintained for up to GOmin. Interestingly, one protein band did 

decrease over time suggesting the presence of "denitration" mechanisms. 

Indeed, putative denitrase activity was demonstrated in several publications 

(Gow et a/., 1996; Kamisaki et a/., 1998; Kuo et a/., 1999; Kuo et a/., 2002). 

This activity was monitored by the decreased intensity of nitrotyrosine 

immune reactive bands in Western blots. This has also been described in 

platelets previously although the nature of this mechanism remains to be 

elucidated (Naseem et a/., 1997). However, peroxynitrite (100uM), same 

dose used to inhibit platelet aggregation, caused platelet aggregation when 

EGCG was added to platelets prior to treatment with peroxynitrite; thus, it is 

possible that nitration is a protective mechanism. The explanation for these

data is complicated since on one hand peroxynitrite caused activation of
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stimulatory pathways, but functionally the aggregation was inhibited. It is 

possible that while some activatory pathways are switched on, the nitration 

over rides these activatory effects, so the "net balance" is inhibition. 

Certainly, inhibition of aggregation is only partially reversed with time, since 

after 40mins exposure to peroxynitrite collagen mediated inhibition was 

stilled blunted. Furthermore blocking nitration with EGCG partially prevented 

the inhibitory actions of peroxynitrite. However, the precise mechanism by 

which nitration regulates platelet function is still poorly understood and 

requires further investigation.

The inhibition of aggregation by peroxynitrite was associated with an 

abolition of platelet shape changes, indicating that it may target the 

cytoskeletal rearrangement required for function. In this context a recent 

report demonstrated NO-mediated nitration of a-actinin (Marcondes et a/., 

2006b), presumably through generation of intracellular peroxynitrite, can 

regulate platelet adhesion suggests that proteins regulating the platelet 

cytoskeleton may be potential targets of peroxynitrite signaling. Upon platelet 

adhesion to collagen, filopodia are transiently formed and then superseded 

by the sustained lamellipodia of the spread platelet (Frojmovic et a/., 1990). 

Our data showed an inhibition of platelet adhesion and spreading to 

immobilised collagen of platelets exposed to peroxynitrite. In platelets, 

vasodilator-stimulated phosphoprotein (VASP) promotes filopodia formation 

by allowing linear actin polymerization (Barzik et a/., 2005), and 

phosphorylation of VASP correlates with inhibition of platelets (Aszodi et a/., 

1999). VASP, which regulates actin-myosin interactions, and whose activity 

is regulated by reversible phosphorylation induced by PKA, PKC and PKG.
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We therefore explored whether VASP was a target for peroxynitrite and 

showed for the first time that low concentrations of peroxynitrite can induce 

rapid phosphorylation of VASP on both major phosphorylation sites. We 

found that phosphorylation was induced by concentrations as low as 5uM, 

although it should be noted that the rapid decomposition of peroxynitrite at 

physiological pH would suggest that phosphorylation may be induced at 

much lower concentrations. It has been established for some time that 

peroxynitrite has the capacity to modulate signal transduction systems 

through several different mechanisms including the nitration of protein 

tyrosine residues and oxidation of cysteine thiols. To investigate the 

mechanism of signal transduction leading to phosphorylation of VASP by 

peroxynitrite we used a series of pharmacological inhibitors. Peroxynitrite 

undergoes oxidation reactions, but the presence of mannitol had no effect on 

the phosphorylation of VASP. Protein nitration can both activate and inhibit 

phosphotyrosine-dependent signaling leading to altered functional 

responses. However, the presence of epicatechin, which inhibits nitration but 

not oxidation reactions of peroxynitrite, failed to influence phosphorylation of 

VASP indicating a mechanism independent of 3-nitrotyrosine. Peroxynitrite 

can activate phosphotyrosine-dependent signaling independently of nitration. 

In erythrocytes peroxynitrite activates Src family kinases, Hck and Lyn 

(Minetti et a/., 2002), and Lyn plays a key role in platelet function. 

Peroxynitrite did induced tyrosine phosphorylation in a Src family kinase- 

dependent manner, but it had no effects on VASP phosphorylation 

It is widely accepted that activation of PKG via cGMP elevating agents is the 

main upstream signalling pathway of VASP phosphorylation on Ser239 . NO,
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through its ability to elevate cGMP and activate both PKG and PKA, is a 

more potent stimulator of VASP phosphorylation than Peroxynitrite. The use 

of the NOS inhibitor L-NIO did not influence VASP phosphorylation and 

therefore it is unlikely that Peroxynitrite increased platelet-derived NO 

availability, which we have previously shown to phosphorylate VASP (Riba et 

a/., 2006). Our data indicated that PKG plays only a minor role in 

peroxynitrite-mediated phosphorylation of VASP. Importantly, we also saw 

no significant effect of PKA inhibitors on VASP phosphorylation.

In the absence of a major role for PKA or PKG, we next studied PKC. To our 

surprise the PKC inhibitors induced a significant and almost total reduction in 

VASP phosphorylation at both sites indicating a major role for PKC. Indeed 

consistent with data from other cell types we found that PKC was activated 

by peroxynitrite. Since the intracellular Ca2+ cheater, BAPTA, ablated 

phosphorylation, we also propose that peroxynitrite leads to the release of 

Ca2+ from internal stores and causes the activation of a Ca2+-dependent is 

form of PKC. The latter point suggests that a conventional PKC is form (a, 3 

or y) is responsible. Our data contrast with that of Wentworth et al who found 

that PKC only phosphorylated VASP at serine 157 and not serine239 . The 

reason for this unclear but probably reflects different experimental conditions. 

In the former study, the authors used both PMA and thrombin, both of which 

have an established mechanism for activation of PKC isoforms. In contrast, 

peroxynitrite may be less specific and have a plethora of effects in the cell. In 

other cell types, peroxynitrite has been shown to activate nitration-dependent 

and independent activation of phosphotyrosine-dependent signalling events,

PKB, PKC, MAPKs. Furthermore, the pattern of activation of these individual
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pathways differs depending on the type of cell, concentration of peroxynitrite 

and duration of exposure. Further studies will be required to establish the 

functional significance of peroxynitrite-mediated phosphorylation of VASP 

and PKC isoform(s) responsible.

Resting platelets rely predominantly on the anaerobic glycolysis of blood- 

borne glucose as a major source of energy (Akkerman, 1978), despite the 

presence of mitochondria and glycogen particles within these cells. During 

platelet activation the requirements for glycolysis raises by approximately 3 

fold (Sorbara et a/., 1997). It has also been suggested that peroxynitrite 

reduces platelet aggregation and secretion in a manner mediated in part by 

inhibition of mitochondrial energy production (Rusak et a/., 2006). The 

mechanism underlying this observation was unclear. However, it had been 

demonstrated that in endothelial cells peroxynitrite could regulate the 

enzyme AMPk. ATP is able to act as a donor of high-energy phosphate, 

Likewise, with adenylate kinase; ADP can accept high-energy phosphate to 

form ATP. This ATP/ADP cycle occurs at a very rapid rate, since the total 

ATP/ADP pool is extremely small and sufficient to maintain an active tissue 

for only a few seconds (Murray et a/., 2003). Fundamentally, AMPk is a 

sensor of cellular energy status that is sensitive to changes in AMP: ATP 

ratio. AMPk, once activated, phosphorylates several downstream substrates, 

the overall effect of which is to switch off ATP-consuming pathways (e.g. 

fatty acid synthesis and cholesterol synthesis) and to switch on ATP- 

generating pathways (e.g. fatty acid oxidation and glycolysis) (Hardie et a/., 

1998). We hypothesised that AMPk may be a target for peroxynitrite in
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platelets and could in part underpin its ability to inhibit aggregation and 

adhesion. In platelets little is known about the role of AMPk. Although 

Fleming and colleagues (Fleming et a/., 2003) suggested that AMPk 

activation by 5-aminoamidazole 4-carboxamide ribonucleoside (AICAR) 

increases platelet cyclic GMP levels and attenuates platelets activation. 

Using immunoblotting we found AMPk was expressed at high levels in 

platelets and under these conditions was indistinguishable from that in 

endothelial cells. Although its downstream target, ACC, was not detected 

under these conditions. Incubation of platelet with a pharmacological inhibitor 

of AMPk, AICAR, induced phosphorylation of AMPk, which attenuated 

platelet aggregation in response to collagen and thrombin. Interestingly, 

peroxynitrite also induced AMPk phosphorylation in a time-dependent 

manner. Peroxynitrite-mediated AMPk phosphorylation was partially Ca2"" 

and nitration dependent but Src independent. This data demonstrate that 

intracellular calcium release, and subsequently AMPk activation, is mediated 

in a manner that is independent of Src kinase activation. These preliminary 

data indicated that AMPk might play an important role in the regulation of 

platelet function. Unfortunately, during this progress of this study it became 

apparent that the specificity of AICAR and the purported AMPk inhibitor, 

compound C, may have a plethora of none specific effects (Emerling et a/., 

2007). In the absence of these tools we were unable to continue these 

experiments.
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3.3.9 Conclusion.
The effects of peroxynitrite are not simply the accumulation of random 

damage to cells as specific responses determine how cells behave in vivo. 

There is a biological specificity to the effects of oxidants, and given the 

localization and the level of peroxynitrite generation in both physiological and 

pathological conditions, it will be of an interest to re-view peroxynitrite 

contribution to haemostasis.
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CHAPTER 4. INVESTIGATION OF THE ROLE OF 
PROTEIN KINASE C (PKC) IN NITRIC OXIDE 
(NO) SIGNALING.
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ABSTRACT

INTRODUCTION: Endothelial derived nitric oxide (NO) is a short-lived 
secondary messenger, which acts as an endogenous platelet inhibitor. The 
primary signalling events underlying the inhibitory actions of NO occur 
through cyclic guanosine monophosphate (cGMP), dependent activation of 
protein kinase G (PKG). Once activated PKG phosphorylates vasodilator- 
stimulated phosphoprotein (VASP), an actin binding protein that plays a 
major role in negatively regulating adhesive events in platelets. It has been 
shown that PKC can also phosphorylate VASP, leading to inhibition of 
platelet function. In the present study we used immunoprecipitation 
combined with immunoblotting techniques to examine the potential role of 
PKC in NO-mediated inhibition of platelet function.

RESULTS: NO induced a time- and concentration-dependent 
phosphorylation of VASP on serine 1577239 . As expected this was blocked by 
the PKG inhibitor Rp-8-pCPT-cGMPS. However, the presence of PKC 
inhibitors BIM I (bisindolylmaleimide I) and RO-31-8220, but not inhibitors of 
Src kinases or phosphoinositide 3-kinase-dependent kinase also blocked 
NO-mediated phosphorylation of VASP serine157'239 . In contrast PKC 
inhibitors had no effect on VASP phosphorylation induced by the direct PKG 
activator 8- bromoguanosine 3',5' cyclic monophosphate (8-Bromo-cGMP; a 
PDE-resistant cGMP analogue), indicating that the effects of PKC lay 
upstream of cGMP formation and PKG. To further understand the potential 
role of PKC in NO-mediated signaling we examined PKC activity using a 
phospho-PKC substrate antibody. NO caused a modest but significant 
increase in PKC substrate phosphorylation that was sensitive to inhibitors of 
PKC, suggesting a role for NO in activating PKC.

CONCLUSION: These data indicate that PKC may regulate NO signaling 
upstream of cGMP, possibly via NO-sGC axis, or may affect cGMP 
bioavailability via regulating cyclic nucleotide phosphodiesterases (PDEs).
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4. Introduction.

4.1 Protein Kinase C (PKC).
Protein kinase Cs are members of the extended AGC (protein kinases A, G, 

and C) family of differentially expressed serine/threonine kinases implicated 

in a diverse array of cellular functions. Human platelets express 

predominantly 4 isoforms of PKC a, p, 6 and 6. The PKC family has long 

been known to positively regulate a number of platelet processes. Using 

biochemical approaches, PKCa has been identified as an essential factor in 

positively regulating a-granule and dense-granule secretion in platelets 

(Yoshioka et a/.), as well as platelet aggregation (Tabuchi et a/., 2003). 

However, using genetic and pharmacological approaches, PKC5 has been 

shown to play a negative role in regulating filopodia formation and platelet 

aggregation in response to collagen through a functional interaction with the 

actin regulatory protein VASP (Crosby et a/., 2003; Pula et a/., 2006), and 

SHIP-1 (Chari et a/., 2009). In the previous section, peroxynitrite was 

demonstrated to activate a PKC isoform. Since peroxynitrite also increased 

cGMP levels in platelets, the relationship between cGMP-elevating agents 

and PKC was explored.
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Aims of study

• To determine the effect of cGMP-elevating agents such as NO on 

PKC activation in platelets.

o PKC activation will be investigated by immunoblotting of 

proteins from NO-treated platelets with an antibody that 

recognizes phosphorylation of PKC substrates.

• To investigate the role of PKC in NO-mediated signaling and NO- 

mediated inhibition of platelet function.

o NO signaling in platelets will be investigated by looking at NO- 

mediated VASP phosphorylation in the presence of PKC 

inhibitors.

o Inhibition of platelet aggregation by NO will be assessed in the

presence of PKC inhibitors. 

Materials and methods of study

• 8-Bromo-cGMP and RO 31-8220 were purchased from Calbiochem 

(Nottingham, UK). GSNO was obtained from Tocris Bioscience 

(Bristol, UK). For complete list of chemicals and antibodies 

(Appendix ll/lll).

Methods of study

• Platelet aggregation.

• Immunoblotting.
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4.2 Results.

4.2.1 Nitric oxide activates PKC in platelets.

NO has been shown to activate PKC in kidney and cardiac cells (Liang et 

a/., 1999; Yoshida et a/., 1999), and cause nitration of PKC in platelets 

(Balafanova et a/., 2002a). By using an antibody that recognizes 

phosphorylation of the preferred PKC consensus phosphorylation motif 

[RXXS/TXRX (Pearson et a/., 1991)], we were able to investigate whether 

treatment of platelets with NO or 8-Bromo-cGMP, a cGMP analogue, 

activate PKC.

Treatment of WP with GSNO (0-50uM) led to a concentration-dependent 

increase in phosphorylation of one potential PKC substrate with an 

apparent molecular weight of ~75kDa (figure 4.1). Phosphorylation was 

initiated at 10|aM GSNO and maximal at 50nM. Phosphorylation occurred 

within 60 sec and was maintained for up to 120 sec. Importantly, 

phosphorylation of this substrate was blocked by PKC inhibitor RO31- 

8220(10piM).
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F/gure 4.f. A//fr/c oxide and 8-Br-cGMP activate PKC.

WP (3x108) treated with GSNO (1, 10, and 50pM for 1min) (a), or pre- 

incubated first with PKC inhibitor, RO31-8220 (10{jM) for 20min before 

treatment with GSNO (50fjM (b). Reactions were stopped with an equal 

volume of 2xLaemmli buffer. Proteins (15ug) were separated in 10-18% 

gradient gels and immunoblotted with anti-PKC substrate antibody. Blots are 

representative of two experiments.
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4.2.2 PKC is required for Nitric oxide-mediated VASP 

phosphorylation.

We have previously in figure 4.1 suggested that PKC is a substrate for NO. 

Balafanova and colleagues demonstrated that PKC localization is regulated 

by NO (Balafanova et al., 2002a), while others suggest that NO negatively 

regulates PKC activity (Gopalakrishna et al., 1993). In this study, utilizing the 

widely used pharmacological inhibitors of PKC we assessed the potential 

role of PKC in NO-mediated signaling. According to the manufacturer 

(Calbiochem), RO31-2880 is a cell-permeable pharmacological inhibitor 

selective for isotypes of PKC at concentrations 100- to 1000-fold below its 

known effects on other intracellular signaling molecules such as PKA and 

Ca2+/calmodulin-dependent protein kinase. First, we tested whether RO-31- 

8220 has any affect on NO-induced VASP phosphorylation. To our surprise, 

RO-31-8220 (10|iM) inhibited VASP phosphorylation by GSNO (10nM), in a 

time and dose-dependent manner. Also, by using structurally distinct PKC 

inhibitor, BIM I, the inhibition of NO-mediated VASP phosphorylation was 

maintained. By using two structurally distinct PKC inhibitors this data confirm 

that NO signals through PKC (figure 4.2).

To insure that these observations were not specific to GSNO, the 

experiments were repeated with other structurally distinct NO donors. DPTA- 

NONOate induced VASP phosphorylation only at a concentration of 10|aM; 

nevertheless, VASP phosphorylation was abolished in the presence of PKC 

inhibitor (figure 4.3).
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Figure 4.2. Nitric oxide-mediated VASP8*'239 is PKC-dependent
WP (3x108) pre-incubated with PKC inhibitor, RO31-8220/20min, at indicated 
concentrations before treatment with GSNO (10/jM) for 1min (a). WP (3x108) 
pre-incubated with PKC inhibitor, RO31-8220 (10/jM), for indicated time or 
BIM I (10uM) before treatment with GSNO (10fjM) for 1min (b). Reactions 
were stopped with an equal volume of 2xLaemmli buffer. Proteins (15ug) 
were separated in 10-18% gradient gels and immunoblotted for anti- 
phospho-VASP3^239. Blots are representative of two experiments.
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Figure 4.3. Nitric oxide- mediated VASP3^239 phosphorylation (using 

DPTA-NONOate and GSNO) is PKC-dependent.

WP (3x108) pre-incubated with PKC inhibitor, RO31-8220 (10uM), for 20mm 

before treatment with increasing concentrations of GSNO (a), or DPTA- 

NONOate (b) for 1min. Reactions were stopped with an equal volume of 

2xLaemmli buffer. Proteins (15ug) were separated in 10-18% gradient gels 

and immunoblotted for anti-phospho-VASP8^239 . Blots are representative of 

two and one experiment, respectively.
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4.2.3 PKC is required for PKG but not PKA mediated 

phosphorylation of VASP by nitric oxide.

The effect of PKC inhibitor (RO31-8220) on NO-mediated VASP 

phosphorylation has been established in the previous figures. We next 

investigated whether other cyclic nucleotide-dependent kinases were also 

affected by RO31-8220. In platelets, cAMP levels are elevated in response 

to PGEi (German et at., 1977), which lead to VASP phosphorylation on 

Ser157 (Aszodi et a/., 1999). Also, the increase in cGMP levels by NO inhibits 

PDE3> leading to the increase in cAMP levels (Schwarz et a/., 2001a). We 

examined whether PKC played a role in PKA mediated VASP 

phosphorylation. As expected (figure 4.4), treatment of WP with PGEi 

(50ng/ml) caused increase in VASPSer157 phosphorylation, which was slightly 

inhibited by RO31-8220 (lOpiM). However, within the same experiment in the 

presence of RO31-8220, NO-mediated VASPSer157 phosphorylation was 

completely abolished. This data demonstrate the specificity of RO31-8220 

toward NO signaling.
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Figure 4.4. RO31-8220 inhibits cGMP, but not cAMP mediated VASP8*'157 

phosphorylation.

WP (3x108) pre-incubated with PKC inhibitor, RO31-8220 (WuM), for 20min 

before treatment with increasing concentrations ofGSNO (WuM for 1min), or 

PGE, (50ng/ml for 3min). Reactions were stopped with an equal volume of 

2xLaemmi, buffer. Proteins (15ug) were separated in 10-18% gradient gels 
and immunoblotted for anti-phospho-VASP5*^ B,ot is representative of a 

single experiment.
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4.2.4 PKC is required for nitric oxide but not 8 Bromo- 

cGMP mediated phosphorylation of VASP.

Since NO mediated its effects through sGC and PKG, experiments were 

performed to determine whether PKC may lie in this pathway. To further 

assess the role of PKC in NO signaling, we needed first to use PKG 

inhibitors. The specificity of PKG inhibitors has previously been questioned 

by others (Gambaryan et a/., 2004). Thus prior to further experiments, the 

PKG inhibitor, RP-8-pCPT-cGMPs (biomol) was characterized. In figure 4.5, 

RP-8-pCPT-cGMPs affectively inhibited NO-mediated VASP phosphorylation 

only at 500uM concentration.

To further assess the role of PKC in NO signaling, we tested the ability of 

RO31-8220 to inhibit 8-Bromo-cGMP (1mM), a PDE resistant cGMP analog. 

Incubating WP with 8-Bromo-cGIVIP caused a robust increase in VASP 

phosphorylation which was not affected by RO31-8220 but inhibited in the 

presence of RP-8-pCPT-cGMP. However, at the same time RO31-8220 did 

inhibit NO-mediated VASP phosphorylation. This data suggests that either 

PKC signaling is upstream sGC or that PKC is regulating PDE/s following 

NO treatment; thus 8 Bromo-cGMP signaling was not affected (figure 4.5c).
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Figure 4.5. Nitric oxide-mediated VASP8*239 is PKC and PKG-dependent.

WP (3x10s) pre-incubated with increasing concentrations of PKG inhibitor, 

Rp-8-pCPT-cGMPS, for 20min before treatment with GSNO (lOyM for 1min) 

(a). WP (3x108) pre-incubated with PKG inhibitor [Rp-8-pCPT-cGMPS 

(SOOuM) for 20mm] before treatment with increasing concentrations of GSNO 

for 1min (b). WP (3x108) pre-incubated with PKC inhibitor, RO31-8220 

(10jjM), or Rp-8-pCPT-cGMPS (500pM) for 20min before treatment with 

GSNO (lOfjM for 1min), 8-Bromo-cGMP (1 mM/ml for 15min), or PMA (300nM 

for 5min) (c). Reactions were stopped with an equal volume of 2xLaemmli 

buffer. Proteins (15fjg) were separated in 10-18% gradient gels and 

immunoblotted for anti-phospho-VASP86"239 . Blots are representative of two 

experiments.
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4.2.5 PDE activation reverses the inhibitory effect of 

RO31-8220.

We hypothesized that PKC activation following treatment of platelets with NO 

may lead to inhibition of PDEs, presumably PDE5 , in order to keep cGMP 

levels high enough to activate PKG. To test this theory, we incubated 

platelets with a non-specific PDE inhibitor (IBMX 100uM) in the presence or 

absence of RO31-8220. As seen in figure 4.6, GSNO-stimulated a robust 

increase in VASP phosphorylation which was inhibited by RO31-8220 

(10nM). In contrast, IBMX did not significantly influence VASP 

phosphorylation induced by GSNO. Further IBMX alone did not increase 

VASP phosphorylation. However, the ability of RO31-8220 to inhibit GSNO- 

mediated VASP phosphorylation was reduced if platelets were preincubated 

with IBMX. This data suggest that PKC may be switching off PDE/s in 

platelets following treatment with NO, and that treatment of platelets with 

IBMX compensated for PKC activity which was inhibited by RO31-8220. Blot 

is representative of one experiment.
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F/gure 4.6. Protein kinase C negatively regulates PDEs.

WP (3x108) pre-incubated with PKC inhibitor, RO31-8220 (10uM) alone or 

with PDEs inhibitor IBMX (100uM) for 20min before treatment with GSNO 

(WijM for 1min). Reactions were stopped with an equal volume of 

2xLaemmli buffer. Proteins (15ug) were separated in 10-18% gradient gels 

and immunoblotted for anti-phospho-VASP56™9. Blot is representative of a 

single experiment.
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4.2.6 Inhibition of platelet aggregation by nitric oxide 

is PKC/VASP-independent.

The physiological functional significance of PKC in the regulation of platelet 

function by NO was investigated using platelet aggregation. Collagen 

induced platelet aggregation was inhibited by the presence of RO31-8220, 

where aggregation was reduced from 85.5 ± 0.5 to 46.5 ± 6.5 %, consistent 

with a mechanism that is PKC dependent and independent (Atkinson et a/., 

2001). GSNO also caused an inhibition of aggregation from 85.5 ± 0.5 to 67 

± 9 %. However, the addition of NO to RO31-8220 treated platelets had a 

further inhibition (85.5 ± 0.5 to 21.5 ±1.5 %), when compared to when the 

inhibitors were used alone. These data indicates that NO-mediated inhibition 

of aggregation were not PKC dependent (figure 4.7).
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Figure 4.7. Nitric oxide inhibits platelet aggregation independently of PKC.

WP (3x108) stimulated with collagen at indicated doses, or pre-incubated first 

with PKC inhibitor [RO-31 2880 (10uM for 20min)] or GSNO (10uM for 1min) 

before stimulation. Response was recorded for 5min and expressed as % 

aggregation. Data of 3 independent experiments as in (a) are quantified in a 

graph (b). (n=3) P value compared to basal. **P < 0.01 vs. collagen sample.
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4.3 Discussion.
It is well established that PKC is required for platelet activation; however, the 

specific function of each PKC isoforms remains unclear. More recently it has 

been suggested that some isoforms such as PKC6 may play an inhibitory 

role (Pula et a/., 2006). Since NO has been shown to regulate PKC in kidney 

cells (Liang et a/., 1999), its role in NO signaling cascade in platelets was 

investigated.

The use of genetically modified animals to define these functions is essential. 

However differences in regulation of some PKC isoforms between species 

are a drawback. For example different roles of PKCe between human and 

mice platelets have been described (Pears et a/., 2008). Also the presence of 

some isoforms such as PKC£ in human platelets is still controversial 

(Buensuceso et a/., 2005; Pears et a/., 2008). Using pharmacological 

inhibitors is of a great benefit when proper concentrations are carefully 

applied. In a study carried out by F.S London (London, 2003), the author 

concluded a regulatory role for PKC in thrombin-mediated prothrombinase 

activity. However, the use of high concentrations of RO31-8220 (100uM), 

without the use of proper controls leaves the outcome of the study 

questionable. Our study demonstrates a selective role for PKC in NO 

signaling in human platelets. The effect of PKC was tested using two 

structurally distinct inhibitors and the use of inhibitors from more than a 

source.

In our study we used pharmacological inhibitors at concentrations that are 

known to regulate PKC (Davis et al., 1989). To our surprise the PKC inhibitor
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RO31-8220 (10uM), reduced NO-mediated phosphorylation of VASPSer239/157 . 

The vast majority of the work was done with GSNO, but it is important to 

notice that DPTANONOate-mediated VASP phosphorylation was also 

blocked. These data are important since they suggest that the role of PKC is 

related to NO rather than to a specific donor. A reduction of NO-mediated 

VASP phosphorylation could be accounted for by (1) inhibition of sGC, (2) 

increased cGMP degradation, (3) Inhibition of PKG. Therefore experiments 

were performed to assess which aspect of these pathways PKC could 

potentially modulate. By means of widely used inhibitors for PKC, we were 

able to establish investigate the role for PKC in NO signaling.

Our first piece of evidence demonstrated that NO-mediated VASPSer239/157 

phosphorylation was blocked in conditions where PKC activity was inhibited 

with RO31-8220 or BIM I, two structurally distinct inhibitors. Since VASP is 

also phosphorylated by PKA in response to elevations in cAMP, the role of 

PKC in this pathway was also evaluated. PGErmediated phosphorylation 

was not significantly affected by inhibition of PKC, suggesting that the direct 

activation of cAMP/PKA cascade does not involve PKC. However, NO 

increases cAMP indirectly through cGMP-mediated inhibition of PDE3A 

(Schwarz et a/., 2001 a). The data that PKC inhibition does not influence 

PGEi-mediated phospho VASPSer157 but abolish NO-mediated phospho 

VASpSen57 may a | so suggest that the role of PKC in NO-mediated signaling 

is related to its ability to regulate cGMP formation and ultimately cAMP 

levels. Our data also suggests that PKC regulates cGMP-mediated PKG 

activation. To further assess this, we next examined whether PKC regulates
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cGMP formation and/or PKG activity. Platelets were incubated with RP-8- 

pCPT-cGMP (PKG inhibitor) and RO31-8220 prior to treatment with 8- 

Bromo-cGMP, a cGMP analog that directly activates PKG and bypass sGC 

activation and cGMP formation.

Using this approach, we were able to confirm that PKG and PKC played role 

in NO signaling. However, only PKG inhibitor blocked the effect of 8-Bromo- 

cGMP, where the PKC inhibitor had no effect. These data indicate that PKC 

lies upstream of PKG in the NO signaling cascade.

Since inhibition of PKC influenced the ability of NO to induce VASP 

phosphorylation, it suggested that PKC must be activated by NO. To test 

this, a phospho-(Ser) PKC substrate antibody that detects endogenous 

levels of cellular proteins only when phosphorylated at serine residues 

surrounded by Arg or Lys (Cell Signaling), the preferable phosphorylation 

site of PKC (Kishimoto et a/., 1985; Pearson et a/., 1991) was used. 

Treatment of platelets with NO and 8-Bromo-cGMP resulted in a modest 

increase in the phosphorylation of a protein of ~80kDa. The identity of this 

protein is unknown and requires identification. However, the overall effect of 

NO was modest when compared to that by PMA or thrombin. This increase 

in phosphorylation by NO and PMA was equally inhibited by RO31-8220. On 

the other hand, blocking sGC activation by ODQ has no effect on PMA- 

mediated PKC activation indicating that PKC activation and signaling does 

not require cGMP. Our data contradict that of (Murohara et a/., 1995), since 

these authors suggested that NO down-regulates PKC activity. Here a slight 

increase in PKC activity in the membrane fraction of feline platelets, in
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conditions where eNOS was blocked, assuming that any increase in PKC 

activity would be due to the inhibition of NO production. The reason for this 

unclear but probably reflects differences between species or perhaps 

between endogenous NO and exogenous NO.

It is possible that PKC could influence PDE activity regulating cGMP levels. 

We hypothesized that PKC may inhibit PDE activity following sGC activation 

by NO. To test this theory we used IBMX as a general PDE inhibitor. IBMX 

was able partially to reverse the inhibitory effect of RO31-8220 on NO- 

mediated VASP phosphorylation. Treatment of platelets with IBMX alone 

did not increase VASP phosphorylation, this is because several folds 

increase in cGMP are needed to activate a small proportion of PKG 

(Schwarz et ai, 2001 a). These data suggest that upon PKC activation by 

NO, PKC is negatively regulating PDE as suggested by others (Bian et a/., 

1998; Bian et a/., 2000; Udovichenko et a/., 1994), in order to keep cGMP 

levels high enough to activate PKG.

The biological significance of PKC activation by NO was suggested by 

ischemic preconditioning (IPC) studies, where the initial ischemic stimulus by 

NO induced selective translocation of 2 novel PKC isoforms (e/rj) from 

cytosolic to the particulate fraction and the inhibition of PKCe resulted in 

abrogation of late IPC (Ping et ai, 1999). To assess the physiological 

relevance of PKC activation in response to NO in platelets, we investigated 

the inhibitory effect of NO on platelet aggregation in conditions where PKC 

was blocked. Consistent with several studies, NO caused inhibition of 

platelet aggregation induced by collagen and that PKC inhibition by RO31-
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8220 blocked platelet aggregation in response to collagen by 50%, as did 

NO. However, in the presence of both RO31-8220 and NO there was an 

additive inhibitory effect on platelets aggregation. If NO mediated inhibition 

of aggregation required PKC then the inhibitory effects if NO would have 

been lost under these conditions. This suggests that inhibition of platelet 

aggregation by NO was independent of PKC.
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Figure 4.8. Schematic diagram of PKC-mediated nitric oxide signaling in 

olatelets.

NO synthesized by A/OS diffuses into platelets, activates sGC which leads to 

cGMP formation. NO also activates a PKC isoform, which in turn transiently 

inhibits PDE5, in order to keep cGMP levels several folds high to activate 

PKG.
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4.4 Conclusion.
PKC has long been viewed as a key kinase for platelet activation, however, 

recent studies suggest a negative regulatory role for PKC. Our preliminary 

data also suggest PKC may negatively regulate PDE, allowing rapid increase 

in cGMP formation following sGC activation by NO.

Future work

The following experiments to be conducted to reach more conclusive results

• cGMP formation measurement. WP will be incubated with RO31- 

8220, BAPTA-AM prior to treatment with NO donor. Intracellular 

cGMP will be measured in the lysates.

• To assess which PKC isoform mediates NO signaling; WP will be 

incubated with GO6976, rottlerin, BAPTA-AM prior to treatment with 

NO donor. VASP phosphorylation status will be determined.
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CHAPTER 5. DYNAMICS OF PROTEIN KINASE A 
(PKA) AND PROTEIN KINASE G (PKG) 
SIGNALING CASCADES IN PLATELETS. ROLE 
OF LIPID RAFTS.
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ABSTRACT

INTRODUCTION: Synergism between NO and PGI2 signaling is most 

evident in platelets via activation of protein kinase G (PKG) and protein 

kinase A (PKA), respectively. While only PKGIp isoform is believed to be 

present in platelets, four isoforms of PKA (PKA Rla , Rl p , Rll a , and Rllp) are 

identified in other cells. Lipid rafts are microdomains within the plasma 

membrane that are rich in cholesterol and sphingolipids, and have been 

implicated in the stimulatory mechanisms of platelet agonists. We sought to 

determine the importance of subcellular localization of elements of the 

NO/cGMP/PKG and PGI2/cAMP/PKA signaling cascade, with particular 

emphasis on lipid rafts

METHODS: Platelets were separated into particulate and soluble fractions 

by ultracentrifugation, while lipid rafts were isolated by sucrose density 

gradient ultracentrifugation. The presence of specific proteins was detected 

by immunoblotting. To examine the function of lipid rafts, platelets were 

treated with methyl-3-cyclodextrin (MpCD).

RESULTS: Both PKA R I and PKA Rh were found in platelets in both fractions 

of the cell. In contrast, only PKA Ri was partially located in lipid rafts. 

Importantly, depletion of cholesterol by M(3CD had little effect on PGI2 

signaling in platelets. Immunoprecipitation experiments revealed that soluble 

guanylyl cyclase (sGC) and heat shock protein-90 (HSP-90) were associated 

in a complex in the non raft fraction. However, disruption of lipid rafts 

abolished NO-mediated VASP phosphorylation.

CONCLUSION: The combined results suggest that lipid rafts play an 

important role in NO signaling in platelets. While PKA isoforms have a non- 

redundant role in PGI 2 signaling in platelets.
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5. Introduction.

5.1 Lipid rafts and platelets.
It is now established that the localization of kinases and substrates within 

distinct cellular compartments is important for signaling events to take place. 

In particular, membrane associated protein complexes are required to 

transduce extracellular stimuli. Within the cellular membrane structure, lipids 

are asymmetrically distributed over the exoplasmic and cytoplasmic leaflets 

of the membrane (Van Meer, 1989). The lipids contained within the cellular 

plasma membrane include glycerophospholipids, glycosphingolipids, and 

sterols. Lipid rafts consist of sphingolipids and cholesterol, which can move 

through the more liquid-disordered phase of the membrane containing 

glycerophospholipids (Morley et a/., 2001). Because of their lipid 

constituents, lipid rafts have also been referred to as glycosphingolipid- 

enriched membrane microdomains or (GEMs). The lipid rafts are also 

characterized by their resistant to solubilisation in non-ionic detergents at low 

temperatures (Brown et a/., 1998b). Lipid rafts were estimated to have a 

mean diameter of 44nm that occupy 35% of cell surface (Prior et a/., 2003). 

However, they have the capacity to coalesce into larger rafts (Kono et a/., 

2002). Lipid rafts are not only found at the plasma membrane, but also as 

part of the internal membrane of granules, Golgi complex and even 

phagosomes (Dermine etal., 2001; Gkantiragas etal., 2001). 

In platelets, a variety of specific proteins are concentrated in raft domains, 

including many glycophosphatidylinositol-anchored proteins, Src family 

kinases, linker for activation of T cells (LAT) (Ezumi et a/., 2002), Gai protein
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(Quinton et a/., 2005), GPVI and GPIb-IX-V complex (Shrimpton et a/., 2002). 

QnbPa on the other hand does not utilize lipid rafts to initiate signaling or 

support platelet aggregation (Wonerow et a/., 2002a). 

Also in platelets, Heijnen and colleagues (Heijnen et a/., 2003), 

demonstrated that upon interaction with fibrinogen, cholesterol accumulated 

at the tips of filopodia and at the leading edge of spreading cells, and that 

stimulation with thrombin receptor activating peptide (TRAP) resulted in a 

similar redistribution of cholesterol towards filopodia. The adhesion- 

dependent raft aggregation was accompanied by concentration of the 

tyrosine kinase c-Src and CD63 in these domains, whereas in contrast to 

(Shrimpton et a/., 2002), glycoprotein Ib (GPIb) was not selectively targeted 

to the raft clusters. While components of platelet activatory cascades are 

bow thought to be localized to rafts which is important to their function. Little 

is known about whether components of the inhibitory cascades require rafts 

for effective function.
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Aims of study

The aim of this study is to assess the role of lipid rafts in the dynamics of 

PKA and PKG signaling cascades. This is achieved using a combination of 

ultracentrifugation, immunoblotting and functional assays.

Materials of study

• Prostacyclin (PGI 2 ), prostaglandin (PGEi) and methyl beta 

cyclodextrin (M(3CD) were all purchased from Sigma (UK). For 

complete list of chemicals and antibodies (Appendix ll/lll).

Methods of study

• Platelet aggregation.

• Lipid rafts isolation.

• Immunoblotting.

• Phosphoflow cytometry.
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Figure 5.1. Schematic diagram oflipid rafts.

Proposed structure and organization of a lipid raft microdomain in the 

plasma membrane. Sphingolipids, which include both sphingomyelin 

and glycosphingolipids, associate with cholesterol to form a more 

tightly packed domain. The regions rich in phosphatidylcholine and 

other glycerol-based phospholipids are less densely packed, and form 

fluid regions outside the raft microdomains. Lipid rafts are enriched in 

GPI-anchored proteins and enzymes at their external surface, and 

acylated proteins, such as tyrosine kinases of the Src family at the 

cytoplasmic surface. Transmembrane integral proteins are generally 

excluded from rafts, and are found in the more fluid phospholipid-rich 

regions of the membrane.
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5.2 Results

5.2.1 Protein composition of cytoskeleton and 

cytosolic fractions from unstimulated platelets and 

prostacyclin treated platelets.

In order to investigate signaling compartmentalization in platelets, first, the 

presence of proteins known to be attached to the cytoskeleton or soluble 

fractions was assessed. Consistent with previous studies, subcellular 

fractionation of untreated platelets revealed that, In agreement with others, 

Integrin p3 (Obergfell et a/., 2002), Src (Courtneidge et a/., 1980) and LAT 

(Tanimura et a/., 2006) were all found in the particulate fraction of the cell, 

while SLP-76 (Boerth ef a/., 2000) and the majority of PLCy (Billah et a/., 

1980) were found in the cytosolic fraction (figure 5.2a).

In addition, the distribution of proteins known to be associated with PGI2 

signaling was assessed. PKARM was found in both fractions but was more 

abundant in the cytosolic fractions. PKAR[ was also present in both fractions 

but more evenly disturbed (figure 5.2b). Csk, a known target for PKA in T- 

cells, was largely present in the cytosolic fractions, and although Csk does 

not possess a membrane anchoring motif, a proportion was found associated 

with the cytoskeletal fraction. These data confirm the presence of both PKA 

isoforms in platelets.
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Figure 5.2. Localization PKA signaling components in platelets.

WP (5x108) were added to fractionation buffer (1:1). Cells were subjected to 

freeze-thaw cycles. Lysate was centrifuged first at 3000g/5min. supernatant 

was further subjected to ultracentrifugation. 10ug of supernatants and 

cytoskeleton fractions were loaded on SDS-PAGE followed by Western blot. 

Membrane blotted with indicated antibodies. n=4.
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5.2.2 Protein kinase A dynamics and localization of 

protein kinase A substrates.

Having established the presence of PKA isoforms in platelets, subcellular 

localization of proteins was investigated upon activation of GPCRs by PGI 2 or 

PGEi. Western blot analyses of fractionated platelets after treatment with 

PGEi or [PGI2 (not shown)] revealed a transient translocation of PKARM p 

from cytoskeletal to cytosolic fractions. The small amount of PKARnp present 

in the membrane fraction was completely lost after SOsec, but had returned 

to basal by 90sec. In contrast, the relative proportion of PKAR | Q in each 

fraction remained constant after treatment with PGEi (figure 5. 3a). Since 

there seemed to be PKA isoforms in each fraction of the cell, it was likely that 

there were PKA substrates in each cellular fraction. To test this, platelets 

were treated with PGE-, (50ng/ml), fractionated and blotted for phospho PKA 

substrates. Immunoblotting revealed a distinct difference in distribution of 

PKA substrates between cytoskeletal and cytosolic fraction. For instance, 

phosphorylation of proteins that contained the phospho PKA substrate motif 

in untreated platelets, specially a doublet of 90 and 100kDa was 

phosphorylated basally and after treatment in both fractions. In the 

particulate fraction, proteins of 55 and 45kDa were basal phosphorylated, 

while in soluble fraction a 50kDa was basally phosphorylated. In addition, a 

protein of ~200kDa was highly phosphorylated at the cytosolic fractions than 

in the particulate fractions. While one protein of ~65kDa was only present 

phosphorylated at the cytosolic fraction within SOsec and declined back to 

basal after 90sec of treatment with PGEi. Another protein in the particulate

fraction at ~50kDa was phosphorylated within 30 sec of treatment with PGEi.
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This phosphorylation was maintained for 2min (longest time tested) (figure 

5. 3b).
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Figure 5.3. PKA dynamics in platelets.

WP (5x108) were treated with PGE1 (50ng/ml) for 90sec, (1:1) fractionation 

buffer was added to stop reaction. Cells subjected to freeze-thaw cycles. 

Lysate was centrifuged first at 3000g/5min. supernatant was further 

subjected to ultracentrifugation then subjected to subcellular fractionation. 

10ug of supernatants and cytoskeleton fractions were loaded on SDS-PAGE 

followed by Western blot. Membrane blotted with indicated antibodies. n=3
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5.2.3 Detergent-sensitive localization of LAT in lipid 

rafts from unstimulated platelets.

Combination of lipid raft isolation and subcellular fractionation would allow a 

more complete picture of the temporal regulation of plasma membrane- 

based signaling complex. In the absence of a raft-deficient animal model, 

biochemical approaches using non-ionic detergents such as Triton X-100 

and Brij 98 are being deployed to study rafts. Lipid rafts are insoluble in non- 

ionic detergents and because of their high lipid content, they float at a low 

density during gradient centrifugation (Simons et a/., 1997). 

Since isolation of proteins associated with lipid rafts and preservation of lipid 

rafts structure depends on protein/detergent ratio. Initially, the ability of Triton 

X-100 to isolate and preserve lipid rafts in platelets and associated proteins 

was assessed. The purity of the raft fractions are estimated using platelet 

proteins that are known to be found in rafts or excluded from them. In this 

case, distribution of LAT was used as a marker for lipid rafts fraction, while 

the soluble fraction contained non-lipid rafts associated proteins was 

identified by the presence of (3 3 integrin (Lee et a/., 2006; Wonerow et a/., 

2002a).

It has been established by others (Lee et a/., 2006), that lipid rafts fractions 

are found at the interface between 5-36% sucrose. However, 36% sucrose 

was replaced by 30% sucrose for clearer separation of fractions. In the first 

instance, lipid rafts were isolated using a range of concentrations of Triton X- 

100, the proteins separated by SDS-PAGE and immunoblotted. Upon lipid

raft isolation in the presence of low concentrations of Triton X-100 (0.025%)

211



(figure 5.4a), a high proportion of LAT was recovered in the lipid rafts 

fraction. However a proportion of (3 3 integrin was also recovered in the same 

fractions, indicating incomplete solubilisation of cell membrane. As the 

concentration of Triton X-100 increased (0.04%), the amount of (33 integrin 

recovered in lipid rafts fractions decreased (figure 5.4b). At Triton X100 

(0.045%), integrin (33 was redistributed to the soluble fractions (figure 5.4c), 

while LAT remained in the raft fraction. At slightly higher concentrations of 

Triton X100 (0.05%) there was a complete redistribution of LAT to the 

soluble fraction (figure 5.4d). Thus, Triton X100 (0.045%) allowed the 

optimal redistribution of LAT to lipid raft fractions and (3 3 integrin to the 

soluble fraction, these conditions were used for future experiments.
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Figure 5.4. Optimizing conditions for lipid rafts isolation.

450ul of WP (1x109) were lysed with a lysis buffer containing the indicated 

concentrations of Triton-X100. Mixture was mixed with 80% sucrose (1:1) 

and loaded at the bottom of polyethen clear tube. 5ml of 30% sucrose was 

layered on top followed by 5ml 5% sucrose. Tubes were spun at 200000 g 

for 18hrs at 4 °C. Starting from top, 12 fractions (1ml each) were collected. 

Laemmie buffer was added to reach 1x. Fractions from 3 to -12 were loaded 

on SDS-PAGE followed by Western blot. Membranes were blotted with anti- 

(33 integrin for soluble fraction or anti-LAT for insoluble fraction. n=1
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5.2.4 The role of lipid rafts in localizing PKA in 

unstimulated platelets.

Having established that Triton X-100 (0.045%) was to be used, lipid rafts and 

soluble fractions were characterised further by Western blotting for proteins 

known to be or potentially involved in PGI2 signaling. Under basal conditions 

PKAR n were detected in the soluble fractions but not rafts. In contrast, a 

proportion of PKAR | were found to be distributed in lipid rafts and the 

remainder in soluble fractions (figure 5.5). Csk (C terminal Src kinase), 

which is known to be a substrate for PKA signaling (Vang et a/., 2001), was 

only found in the soluble fractions. These data establish for the first time the 

differential localization of PKA isoforms in lipid rafts in platelets.
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Figure 5.5. PKARI is present in lipid rafts and soluble fraction.

450ul of WP (1x109) were lysed with a lysis buffer containing 0.045% Triton- 

X100. Mixture was mixed with 80% (1:1) sucrose and loaded at the bottom of 

polyethen clear tube. 5ml of 30% sucrose was layered on top followed by 

5ml 5% sucrose. Tubes were spun at 200000 g for 18hrs at 4 °C. Starting 

from top, 12 fractions (1ml each) were collected. Laemmle buffer was added 

to reach 1x. Fractions from 3 to -12 were loaded on SDS-PAGE followed by 

Western blot. Membranes were blotted with anti-PKARna, PKAR^, PKARt, or 

CSK antibody. n=1
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5.2.5 The effect of cholesterol depletion on inhibition 

of platelet aggregation by prostacyclin.

To assess the significance of PKA isoform distribution between lipid rafts and 

soluble fractions, the integrity of lipid rafts was disrupted by depleting 

cholesterol from cell membrane using methyl-(3 cyclodextrin (M(3CD) as a 

cholesterol-depleting agent (Christian et a/., 1997). When platelets were 

incubated with MpCD (5mM) for GOmin, their response to stimulation with 

collagen at low and medium concentrations (0.3 and 3ug/ml) was lost (figure 

5. 6a). Using higher concentrations of collagen, platelets were able to 

overcome the effect of M(3CD and aggregation was close to control levels 

(78% in the presence of MpCD compared to 82% in the absence of M(3CD). 

If the presence of PKApi in lipid rafts was important for VASP 

phosphorylation, disruption of lipid rafts with M|3CD would be expected to 

abolish or at least inhibit PGIa-mediated VASP phosphorylation. Treatment of 

platelets with PGI2 (100nM/90sec) predictably led to an increase in 

VASPSer157 phosphorylation. When platelets were cholesterol depleted, PGI2- 

mediated VASPSer157 phosphorylation was not affected (figure 5. 6b). 

To further investigate the significance of lipid rafts in PKA signaling, the 

inhibitory effect of PGI2 on platelet aggregation under conditions of 

cholesterol depletion was also investigated. Treatment of WP with PGI 2 prior 

to stimulation with collagen reduced platelet aggregation by 70%. However, 

under conditions of lipid rafts disruption by MpCD, PGI 2 -mediated inhibition 

of platelet aggregation was slightly reduced to 51.5% (figure 5. 6c).
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Figure 5.6. The effect of cholesterol depletion on prostacyclin signaling.

WP (3x108) were depleted of cholesterol by preincubation with M(3CD 

(5mM/1hr). WP were stimulated with collagen and aggregation response was 

recorded (a). WP (3x108) treated with PGI2 prior to stimulation with collagen 

and data represented as % of platelet inhibition (n=2)(b). WP (3x108) treated 

with PG/2 (100nM/90sec), reactions were stopped with an equal volume of 

2xLaemmli buffer. Proteins were separated in 10-18% gradient gels and 

immunoblotted for anti-phospho- phosphoser157 (n=4)(c). Densitometry 

analysis of 4 independent immunoblot assays (d). Data=mean±SEM.
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5.2.6 The role of AKAPs in PKA signaling in blood 

platelets.

Control of specificity in cAMP signaling is achieved by AKAPs, which 

assemble PKA into multiprotein signaling complexes (Carlson et a/., 2006). 

We hypothesized that this could contribute to the localization of PKA 

isoforms in platelets. To assess this we performed preliminary experiments 

with three different peptides that have been reported to disrupt AKAP-PKA 

binding. RIAD (Rranchoring disrupter) (LEQYANQLADQIIKEATEK (5- 

carboxyfluorescein)-CONH2), and StHt-31 (AKAP-Rn anchoring disrupter) 

(N-stearate-DLIEEAAS RIVDAVIEQVKAAGAY) (Burton et a/., 1997; Gold et 

a/., 2006; Herberg etal., 2000; Stokka etal., 2006).

Western blot of platelets revealed that treatment with PGI 2 (50uM) induced 

increase in VASPser157 phosphorylation and phospho PKA substrate 

phosphorylation, as evidenced by using an antibody that recognizes 

phosphorylation of PKA substrates. Preincubation of platelets with RIAD led 

to inhibition of PGI 2-mediated VASPSer157 phosphorylation and phospho PKA 

substrate activity in a concentration dependent manner, with maximal effect 

observed at 10uM (figure 5. 7a). In order to determine the specificity of the 

RIAD effect, the experiment was repeated with a scrambled version of RIAD 

(IEKELAQQYQNADAITLEK (5-carboxyl fluorescein)-CONH2). Importantly 

scrambled RIAD peptide had only a minor effect on PGI2- mediated 

VASpseri57 phosphorylation and phospho PKA substrate activity. 

Preincubation of platelets with StHt-31 had less inhibitory effect on PGI 2- 

mediated signaling than RIAD (figure 5. 7b).
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Figure 5.7. AKAP disruption causes inhibition ofPKA signaling.

WP (2.5x107) pre-incubated with RIAD (1-10uM) for 3hrs before treatment 

with PG/2 50uM for 90sec) (a). WP (2.5x107) pre-incubated with RIAD, 

scrambled RIAD (10uM) or StHt-31 (10uMO for 3hrs. before treatment with 

PG/2 50uM for 90sec (b). Reactions were stopped with SxLaemmli buffer. 

Proteins were separated in 10-18% gradient gels and immunoblotted for 

anti-phosphoser157 orPKA substrate antibody. n=1
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5.2.7 Disruption of AKAP -Rl causes inhibition of PGI 2 - 

mediated phosphorylation of VASP and PKA 

substrates: analysis using phospho-flow.

In these experiments, we compared data obtained from analyzing samples 

treated with PGI2 in the presence and absence of AKAPs disrupting peptides 

by Western blot, with those obtained by using phosphoflow. Samples from 

figure 5.7 were split into two; one set was analyzed by Western blot while 

the other half was analyzed with phosphoflow. Figure 5.8a shows that 

platelets treated with PGI2 show a significant increase in VASPSer157 

phosphorylation, and also increase in phosphorylation of PKA substrates. 

Preincubation of platelets with RIAD led to inhibition of phospho PKA 

substrate and VASP phosphorylation in a dose dependent manner. 

Interestingly, RIAD was much more effective against VASP compared to 

overall PKA substrates, suggesting some potential target specificity of PKAR |. 

Disruption of AKAP/RI tethering by RIAD (10nM) inhibits PGI2-mediated 

phosphorylation of vASPSer239/157 (figure 5. 8b) while S.RIAD had no effect. 

This data demonstrate the specificity and accuracy not only of results 

obtained with RIAD, but also of results obtained with phosphoflow.
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Figure 5.8. AKAP disruption causes inhibition ofPKA signaling.

WP (2.5x107) pre-incubated with RIAD (1-10uM) for 3hrs before treatment 

with PG/2 50uM for 90sec) (a). WP (2.5x1'O7) pre-incubated with RIAD, 

scrambled RIAD (10uM) for 3hrs. before treatment with PGI2 50(jM for 90sec) 

(b). Reactions were stopped by with Fix buffer. Samples were permeabilised 

and analyzed with phosphoflow using fluorescent antibodies against VASP 

ser239/i57 Qn(j anti.p^ substrates antibody. n=1
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5.2.8 Localization of soluble guanylyl cyclase in 

unstimulated platelets (subcellular fractionation).

NO diffuse freely across cell membrane to reach its receptor, sGC, which 

raises intracellular cGMP levels. sGC has been purified from various tissues 

from the cytosolic fractions (Theilig et a/., 2001). However, NO has a very 

short half-life (Lancaster, 1997), and is approximately nine times more 

soluble in a hydrophobic environment than in water (Shaw et a/., 1977). This 

results, at least in vitro, in an NO gradient with high concentrations at or near 

membranes and a lower concentration in the aqueous environment (Malinski 

et a/., 1993). This suggests that it is not the cytosol, but instead cellular 

membranes, that may be the preferred site of NO action. We therefore 

examined the subcellular distribution of the sGCa i and sGCpi subunits of 

heterodimeric sGC in platelets by subcellular fractionations. 

Analysis of unstimulated platelets revealed that the majority of sGC is found 

in the soluble fraction consistent with its classification as a cytosolic enzyme. 

However, a substantial proportion of total sGC01 and sGCpi was also 

detectable in the particulate fraction (figure 5. 9a). In addition, HSP-90, a 

protein thought to stabilize sGC structure (Nedvetsky et a/., 2007; 

Papapetropoulos et a/., 2005), was found to be physically associated in a 

complex with both sGCQ i and sGCp1 . The accuracy of sGC and HSP-90 

localization was confirmed by blotting for integrin (33 and PLCY2 (figure 5. 

9b).
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Figure 5.9. Soluble guanylyl cyclase and heat shock protein-90 are 

present in soluble and particulate fractions of platelets.

WP (5x108) were added to fractionation buffer (1:1). Cells subjected to 

freeze-thaw cycles. Lysate was centrifuged first at 3000g/5min. supernatant 

was further subjected to ultracentrifugation then subjected to subcellular 

fractionation. 10ug of supernatants and cytoskeleton fractions were loaded 

on SDS-PAGE followed by Western blot. Membrane blotted with indicated 

antibodies. n=1
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5.2.9 Localization of soluble guanylyl cyclase and heat 

shock protein-90 in unstimulated platelets (lipid rafts 

isolation).

In the previous section 5.2.9 we have shown that proportion of sGCa i/pi were 

located in the particulate fraction. Next we investigated whether these 

isoforms are located within lipid rafts. Analysis of unstimulated platelets 

shows that sGCa1 and sGCpi were localized in the soluble fractions, 

furthermore, HSP-90 was also physically associated with sGCa i and 

(figures. 10a/b).
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Figure 5.10. Soluble guanylyl cyclase and heat shock protein-90 are 

present in soluble fractions of platelets.

450ul of WP (1x109) were lysed with a lysis buffer containing 0.045% Triton- 

X100. Mixture was mixed with 1:1. As in figure (1), HSP-90 was 

immunopreciptaed from fractions (4+5) and (11+12) (a). Or sGCai and sGC/v 

were immunopreciptaed from fractions (4+5) and (11+12) (b). Proteins were 

loaded on SDS-PAGE followed by Western blot. Membranes were blotted 

with anti-sGCai, orsGC^ antibody. n=1
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5.2.10 The effect of cholesterol depletion on inhibition 

of platelet aggregation by nitric oxide.

Having established that sGCai/p i were not associated with lipid rafts, we 

sought to determine the effect of membrane cholesterol depletion on PKG 

signaling. When platelets were incubated with M(3CD (5mM) for 60min, the 

level of NO-induced vASPSer239/157 phosphorylation was reduced (figure 5. 

11 a). On the other hand, there was no difference in level of VASP 

phosphorylation in platelets treated with cGMP analogue, 8-Bromo-cGMP 

under conditions of lipid rafts disruption (figure 5.11b). 

Treatment WP with GSNO for 1 min prior to stimulation with collagen caused 

inhibition of platelet aggregation by 77.5 ± 14.5%. However, under conditions 

of lipid rafts disruption by MpCD, the ability of GSNO to inhibit platelet 

aggregation in response to collagen was significantly reduced to 14.5 ±9.2% 

(P<0.05) (figure 5.11c).
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Figure 5.11. The effect of cholesterol depletion on nitric oxide signaling.
WP (3x1O8) were depleted of cholesterol by preincubation with MfiCD

(5mM/1hr). WP were treated with either GSNO (10 and 50uM/1min) (a), 8- 

Bromo-cGMP at indicated concentrations for 15min (b) and reactions were 

stopped with an equal volume of 2xLaemmli buffer. Proteins were separated 

in 10-18% gradient gels and immunoblotted for anti-phospho-VASP5^239 or 

phosphoser157. Densitometric analysis of 3 independent immunoblot assays 

(c). WP (3x108) stimulated with collagen or NO prior to stimulation with 

collagen and aggregation response were recorded (d). Graph representative 

of 3 independent experiments (e). Data=mean±SEM. *P<0.05.
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5.2.11 Prostacyclin inhibits outside-in signaling in 
platelets.

Src-family kinases (SFKs) play initiating and critical roles in signaling through 

GPVI and integrin an bp3 receptors on platelets. The enzymatic activities of 

SFKs are regulated by tyrosine phosphorylation, with the phosphorylation of 

a conserved tyrosine in the activation loop generating an active form of the 

enzyme, and phosphorylation of a conserved tyrosine in the C-terminal tail 

resulting in an intramolecular binding event causing inactivation (Harrison, 

2003; Sicheri et a/., 1997; Xu et a/., 1997). Activation loop phosphorylation is 

mediated by the SFKs themselves, while the C-terminal Src kinase (Csk) and 

family member Chk are responsible for the inhibitory phosphorylation 

(Veillette et a/., 2002). In T-cells, Csk has been identified as a PKA substrate 

(Vang et a/.; Vang et a/.). Since it has been shown that Csk is associated 

with Src kinase and integrin p3 in a complex and Csk is a PKA substrate in T- 

cells (Obergfell et a/., 2002), we investigated whether PKA targets integrin 

diibPs- downstream signaling. We examined this by adding PGI2 at different 

times relative to the stimulation of platelets with fibrinogen. Stimulation of WP 

with fibrinogen (0.5mg/ml) for 10min caused a significant increase in tyrosine 

phosphorylation at ~ 30, 70 and 95 kDa [figure 5. 12a (lane 2)]. Treatment 

of WP with PGI 2 (40uM) for 5mins prior to stimulation with fibrinogen reduced 

tyrosine phosphorylation of protein(s) at ~70k and 95 kDa [figure 5. 12a 

(lane 3)]. Simultaneous treatment addition of PGI2 and fibrinogen to WP 

caused a modest inhibition of tyrosine phosphorylation of the same protein(s) 

[figure 5. 12a (lane 4)]. Furthermore, treatment of WP with PGI 2 5min after 

stimulation with fibrinogen also caused inhibition of tyrosine phosphorylation
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[figure 5. 12a (lane 5)]. In addition, examination of Csk immune precipitates 

from untreated platelets and PGI2 -treated platelets showed a time- 

dependent increase in association of Src kinase and PKA catalytic subunit 

with Csk (figure 12. 5b). Due to the close approximately of the molecular 

weight of Csk (50kDa) and heavy chain (50kDa), it was difficult to distinguish 

between the Csk and the heavy chain on Western blot membranes.
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Figure 5.12. Prostacyclin downregulates outside in signaling in platelets.

WP (5X108) stimulated with fibrinogen (0.5 mg/ml) for 10min, or treated with 

PG/2 (40uM) 90sec prior stimulation with fibrinogen (-90sec), simultaneously 

(Osec) or 90sec after stimulation with fibrinogen (+90sec) Samples were 

loaded on SDS-PAGE followed by Western blot. Membrane blotted with anti 

phosphotyrosine (a). WP (7X108) were treated with PGI2 (WOnM) for 30 and 

60sec. Csk was immunopreciptated from lysates and samples were loaded 

on SDS-PAGE followed by Western blot. Membrane blotted with PKAC 

antibody, stripped and reprobed with Src antibody (b). n=1
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5.3 Discussion.

In living cells, changes in the molar ratio of cholesterol/phospholipid of cell 

membranes induced by a change in cholesterol content affect a number of 

important membrane properties, including permeability, transport functions, 

membrane enzyme activities, the availability of membrane components as 

substrates, conformation of membrane proteins, and exposure of proteins 

(Aloia, 1983; Shinitzky, 1984; Yeagle, 1985). These alterations are mediated 

either by the change in membrane cholesterol content itself or by a 

concomitant change in membrane fluidity. Elegant studies have highlighted 

the importance of lipid rafts in platelet response to agonists (Bodin et a/., 

2005; Bodin et a/., 2003; Lee et a/., 2006; Shrimpton et al., 2002; Wonerow 

et al., 2002b). The role of lipid rafts in GPCR-mediated signaling via Gai 

protein (ADP) has also been demonstrated (Ostrom et al., 2004). However, 

little is known about the role of lipid rafts in signaling downstream AC and 

sGC.

5.3.1 Subcellular localization of PKA.

PKA is a heterodimer composed of two regulatory and two catalytic subunits.

The regulatory (Ria , Rip, Rna , Rnp) and catalytic domains (CQ , CP ,CY ) are 

differentially expressed giving rise to different isoforms of the haloenzyme 

(Tasken et al., 2004). PKA isoforms are categorized by their R-subunit giving 

rise to two main classes of isozymes type I and type II PKA. While the 

presence of PKA isoforms have been identified and studied in numerous cell 

types, little is known about their presence in platelets. Data from this thesis 

confirms for the first time that both isoforms of PKA are present in platelets,
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although their subcellular distribution showed differences. PKARn was found 

to be present in particulate and cytosolic fractions of platelet, but was more 

abundant in the cytosolic fraction. In contrast PKAR , was more evenly 

distributed between each fraction. In platelets, activation of cAMP signaling 

by prostacyclin involves binding to IP receptors [a G protein-coupled receptor 

(GPCR)], which through Gs proteins regulates one of several isoforms of 

adenylyl cyclase leading to generation of cAMP. However, the pools of 

cAMP generated are determined by the localization of receptors and shaped 

by phosphodiesterases. It is feasible that a cAMP gradient elicited by a 

distinct receptor is specifically organized to follow a distinct route of PKA 

signaling by reaching and activating single isoform of PKA to mediate a 

biological effect. To this end treatment of platelets with PGE! or [PGI2 (not 

shown)] led to transient delocalization of PKApn to cytosolic fractions while 

PKAR | localization was unchanged. Consistent with these findings we found a 

distinctive distribution of PKA substrates between particulate and cytosolic 

fractions after stimulation with PGE1. Although it is not clear which PKA 

isoform(s) target which downstream substrates, these data suggest that PKA 

isoforms may mediate their effects in discrete locations of the cell.

In order to try and examine this issue we tried to evaluate the role of Csk, a 

substrate of PKA in T-cells. Shattil and colleagues (Obergfell et a/., 2002), 

demonstrated that Csk is constitutively associated with integrin p3 in resting 

platelets, and released upon fibrinogen binding. In platelets Csk was found 

associated with Src kinase, and though to regulate Src activation by 

phosphorylation of the C-terminal inhibitory tyrosine reside on Src; causing it 

to fold back in its an active confirmation (Hirao et a/., 1997; Okada et a/.,
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1991). Other Csk binding proteins including Cbp/PAG and Paxillin family 

members are tyrosine phosphorylated following platelet activation, creating a 

binding site for the SH2 domain of Csk that brings it into proximity with SFKs 

(Rathore et a/., 2007). Critically the release of Csk upon fibrinogen binding 

allows the activation of an bpYmediated outside signaling. In immune cells, 

Csk phosphorylation on serine residues by PKA leads to Csk activation 

which in turn cause inhibition of Src kinase (Vang et a/., 2001; Yaqub et a/., 

2003), a signaling cascade which leads to dysfunctional T-cells and 

defective immune response (Tasken, 2009). Thus it was possible that 

phosphorylation of Csk by PKA may represent a potential target for the 

regulation of platelets. Subcellular localization of proteins in platelets under 

resting conditions showed that high proportion of Csk was recruited to the 

cytosolic fraction, whereas a smaller proportion was found in the particulate 

fraction. Since Csk does not contain any posttranslational modifications for 

membrane attachment (Rafnar et a/., 1998). Interestingly stimulation of cells 

with PGEi showed that Csk localized to the same fraction as PKARII and 

with the same kinetics. Studies suggested that prostacyclin inhibits integrin 

diibPs activation (inside-out signaling) via inhibition of VASP anti-capping 

activity (Siess et a/., 1989; Wise et a/., 2000). Out preliminary data revealed 

that treatment of platelets with prostacyclin inhibits integrin a^ps-mediated 

tyrosine phosphorylation (outside-in signaling). PKA catalytic subunit was 

physically associated in a complex with Csk in platelets. Upon treatment of 

platelets with PGI2 , slightly higher proportion of PKA catalytic subunit was 

associated with Csk. We hypothesis that cAMP levels increase following 

prostacyclin treatment, leading to activation of PKA, which in turn activates

240



Csk. Active Csk forms a complex with Src and negatively regulates integrin 

QiibPa- However, further experimentation is required to characterize this 

potential mechanism for platelet regulation by cAMP/PKA signaling.

In this study we have also demonstrated a distinct role for lipid rafts in 

regulating PGI2 signaling, the most studied inhibitory pathways in platelets. 

Lipid raft isolation data revealed that PKAR| was redistributed in lipid rafts and 

non-lipid rafts domains, whereas PKAR n was localized only in non-rafts 

fraction. This unique distribution of PKAR| and PKARn is not cell specific as 

our data matches those obtained by others in T-cells (Carlson et a/., 2006). 

In order to examine whether lipid rafts affected signalling by PKA we used, 

methyl-p-cyclodextrin, to disrupt rafts. Consistent with previous studies, 

depletion of cholesterol, the main component of lipid rafts, from platelet cell 

membrane caused inhibition of platelet response to collagen, thrombin and 

vWF (Lee et a/., 2006; Shrimpton et a/., 2002). Cholesterol depletion 

modestly but significantly reversed the inhibitory effect of PGI2 on platelet 

aggregation. However, it failed to influence PGI 2-mediated VASP 

phosphorylation. These data could suggest that lipid rafts are important for 

platelet inhibition by PGI2 , but it is independent of VASP phosphorylation, 

and the modest loss of the inhibitory effect of PGI2 could be attributed to a 

loss in another inhibitory pathway such as inhibition of Ca2+ mobilization.
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5.3.2 The role of AKAPs in PKA-mediated signaling in 

platelets.

In cells, additional factors such as localization, accessibility of the 

phosphorylation sites and concentration of protein kinases or phosphatases 

and their activators or inhibitors might affect VASP phosphorylation. For 

example, although Ser157 is quantitatively phosphorylated by PKG in vitro, 

the endogenous nitric oxide (NO)- cGMP-PKG pathway maximally 

phosphorylates -50% of the available Ser157 sites in human platelets and 

fibroblasts (Reinhard etal., 2001).

Eukaryotic cells express multiple forms of PKA regulatory subunit isoforms, 

of which Rl and Rll are widely present in cells and tissue. PKA catalytic 

subunits share common kinetic features and substrate specificity (Edelman 

et a/., 1987; Taylor et a/., 1992); Therefore it is likely that localization of PKA 

isoforms determines their substrate specificity. PKA isoforms are localized 

through interaction with a family of structurally distinct but functionally 

homologous A kinase anchoring proteins (AKAPs). These proteins are 

grouped into Rl and Rll specific AKAPs depending on which isoforms of PKA 

they interact with. Critically in a number of cell types AKAPs act to focus PKA 

isoforms to distinct substrates thereby allowing specificity of PKA signaling. 

Having identified both isoforms of PKA in platelet we wished to understand 

they played redundant or non-redundant roles. However, the inhibitors used 

to evaluate PKA signaling have well-documented non-specific actions 

(Davies et a/., 2000; Gambaryan et a/., 2004). Therefore a different approach 

was used. A peptide that disrupted PKAI-AKAP interactions was used to try
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and evaluate the effects of PKAI (Carlson et a/., 2006). Although it is 

noteworthy that the use of RIAD only delineates cAMP signaling events that 

depend on anchoring of PKAR, to an AKAP rather than all PKAR|.

Western blot data of WP incubated with RIAD (Rl-anchoring disrupter) prior 

to treatment with PGI2 revealed almost complete inhibition of VASPSer157 , 

however phosphorylation of PKA substrates was less affected. Data with 

RIAD was reproducible and the concentration ranged from 1uM to 10uM, 

consistent with other cell types (Carlson et a/., 2006). Crucially results 

obtained by RIAD have to be compared with the negative control Sr.RIAD. 

To confirm these findings we used alternative methodology, phosphoflow. 

Pretreatment of platelets with RIAD led to a dose-dependent inhibition of 

PGI 2-mediated VASPSer157 phosphorylation. While RIAD almost completely 

abolished PGI 2-mediated VASP phosphorylation, RIAD had less effect on 

PGI 2-mediated PKA substrates phosphorylation. In addition, preliminary 

platelet aggregation data show the ability of RIAD to reverse the inhibitory 

effect of PGI2 and PGEi on platelets stimulated with collagen (not shown). 

These data mirrored the data obtained from Western blotting analysis. 

Together, these data suggest a non-redundant role for PKA isoforms in a 

manner that PKA substrate phosphorylation is mediated by PKAR , and PKARn 

isoforms.

5.3.3 New insights into nitric oxide signaling in 
platelets.
Subcellular localization data of unstimulated platelets show that sGCa i and

sGCpi are unevenly distributed between particulate and cytosolic fractions,
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where the majority of sGCa1/p1 are present in the cytosolic fraction, a 

proportion of the enzyme was found in the particulate fraction - Subcellular 

distribution of sGC receptors may reflect a physical compartmentation of the 

signal transduction cascade, rather than regulation of their sensitivity to NO. 

However, this is still controversial (Theilig et a/., 2001; Wykes et a/., 2004). 

The presence of sGC in lipid rafts was also investigated. Our data also 

reveal that sGCa i and sGCpi are localized in the non-raft fractions of the cell. 

Importantly, in support to our previous observations (Riba et a/., 2008), HSP- 

90 was found to be colocalized in a complex with both sGC isoforms. This is 

consistent with its classification as a stabilizer of sGC (Nedvetsky et a/.; 

Papapetropoulos et a/.). Interestingly, disruption of lipid rafts by cholesterol 

depletion compromised the inhibitory effect of NO on platelet aggregation. In 

addition, in conditions of cholesterol depletion only NO-mediated VASPSer239 

phosphorylation was abolished but not VASPSer157 phosphorylation. 8- 

Bromo-cGMP-mediated VASP phosphorylation was not affected by 

cholesterol depletion. This is an important observation as it confirms that 

sGC/PKG-mediated signaling cascade is disrupted upon cholesterol 

depletion, while PKA signaling cascade is less affected. Our results, 

however, contradicts those of another study (Miersch et a/., 2008), as the 

author demonstrated a decrease in NO diffusion in conditions where 

cholesterol levels were increased, and an increase in NO-mediated VASP 

phosphorylation in conditions of cholesterol depletion. It is noteworthy that 

since PGI2-mediated VASP phosphorylation was maintained under 

conditions of cholesterol depletion it indicates that VASP localization was not 

affected, which rules out delocalization of VASP as the reason for the partial
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loss of the inhibitory effect of NO. It is possible that if PKG is either located in 

or recruited to lipid rafts and that loss of raft structure disrupts the formation 

of complexes important for PKG mediated signaling. It would also be 

important to ascertain whether cGMP formation requires competent lipid 

rafts. Thus cholesterol deletion is required for NO signaling but not that by 8- 

Bromo-cGMP-mediated VASP phosphorylation. This disparity required 

further investigation.

5.4 Conclusion.
Protein kinase A (PKA) is a key regulatory enzyme that, on activation by 

cAMP, modulates a wide variety of cellular functions. PKA isoforms type Rl 

and type Rll possess different structural features and biochemical 

characteristics, resulting in non redundant function. However, how different 

PKA isoforms expressed in the same cell manage to perform distinct 

functions on activation by the same soluble intracellular messenger, cAMP, 

remains to be established.

Future work

The work to be carried out will attempt to reinforce the preliminary data that 

has already been accumulated which has indicated a possible role for lipid 

rafts in mediating PKA and PKG signaling.

• To show the effect of lipid rafts isolation on cyclic nucleotides 

formation.
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o To assess this, Intracellular cAMP and cGMP formation will be 

measured in conditions of cholesterol depletion.

To show that the effect is not due to internalization of IP receptors.

o To tackle this, surface expression of IP receptors after 

cholesterol depletion will be assessed using flow cytometry.

To test the ability of other detergents to reproduce data obtained from 

Triton X-1 00.

o To test this, other detergents will be tested as a mean for lipid 

rafts isolation. Lurbol WX and CHAPS as milder detergents to 

preserve rafts that might be solubilized by Triton X-100. Brij98 

will be used for lipid rafts isolation at 37°C.

To assess the possible recruitment of sGC and/or SHP-90 to lipid 

rafts.

o To demonstrate this, WP will be treated with NO donors in time 

course. Distribution of sGCQ i/pi and HSP-90 will be determined 

by immunoprecipitation from rafts and non-rafts fractions.

To investigate whether the inhibitory effect of PGI2 on other platelet 

functional aspects such as adhesion and calcium mobilization is 

mediated by PKAR,, PKARn or both.

To investigate whether PKA intersects Src kinases activation by 

targeting Csk.
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o To assess this WP will be treated with PGI 2 before stimulation 

with fibrinogen+Mn2+ , Src kinase family SKF (Lyn, Fyn and 

Src) will be immunopreciptated and status of tyrosine 

phosphorylation on the activatory site will be determined. SKF 

association with Csk will be assessed as well.
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CHAPTER 6. GENERAL DISCUSSION.
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6. General discussion.

The adhesion and activation of blood platelets at sites of vascular damage is 

essential for haemostasis, but can also initiate thrombosis. Vascular injury 

leads to exposure of prothrombotic extracellular matrix (ECM) proteins like 

von Willebrand factor (vWF) and collagen, which trap and activate platelets. 

Activation of platelets leads to the release of soluble platelet agonists, 

adenosine diphosphate (ADP) and thromboxane A2 (TXA2 ), which act in a 

paracrine fashion to further enhance platelet function and ensure rapid 

haemostasis(Ruggeri, 2002b). In healthy or undamaged blood vessels 

platelet activation is counterbalanced by negative signaling cascades that 

modulate excessive activation. This is achieved primarily through 

endothelial-derived nitric oxide (NO) and prostaglandin (PGb). The biological 

effects of NO and PGI 2 are mediated through the formation of cyclic 

nucleotides, cyclic guanosine 3',5'monophosphate (cGMP) and cyclic 

adenosine 3',5'monophosphate (cAMP). The elevated cyclic nucleotide 

concentrations activate protein kinase G (PKG) and PKA, which in turn blunt 

platelet activation(Schwarz et a/., 2001 b). More recently PKC another 

member of the AGC family of protein kinases has also been shown to inhibit 

platelet activation. Although in this case it was independent of cyclic 

nucleotides. Of particular relevance to the resent study was NO, which is a 

major regulator of platelet function and signals through both PKA and PKG. 

On the other hand, accumulated experimental evidence suggests that 

secondary oxidants derived from NO are rather responsible for cytoxicity and 

associated tissue injury. In particular, there has been a key interest in the
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role of peroxynitrite, a powerful oxidative and nitrating agent formed in vivo 

through the reaction of NO with superoxide.

In this study, evidence was presented that peroxynitrite inhibits platelet 

aggregation, adhesion and spreading to collagen. The data in the field has 

often been contradictory, with both activatory and inhibitory actions shown. 

To some degree this is exemplified in our studies where peroxynitrite, 

induced tyrosine phosphorylation and the release of secondary platelet 

agonists, but also caused functional inhibition. The reasons for this are 

unclear but must reflect the inhibitory actions of peroxynitrite are 

quantitatively more important than the activatory effects. The inhibitory 

effects of peroxynitrite have also proved controversial, however data 

produced in this thesis may go some way to explaining it. The cGMP- 

dependent effects of peroxynitrite on platelets were completely dependent 

upon the presence of HEPES in the resuspenesion buffer. Since this is 

widely used by many groups for analysis of platelet function, it is likely to 

have a direct influence of platelet regulation by peroxynitrite. Importantly in 

the absence of significant cGMP formation we found that inhibition of platelet 

function by peroxynitrite was mediated, at least in part, by the direct 

phosphorylation of VASP. This occurred through PKC rather than PKA or 

PKG. Therefore it is possible to speculate that is a compensatory mechanism 

for the loss of NO. The formation of peroxynitrite diminishes the antiplatelet 

effects of NO, however, the formation of peroxynitrite activates an alternative 

pathway in platelets PKC, which results in the same outcome, that is, the 

phosphorylation of VASP and therefore inhibition of platelet function.
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The actin cytoskeleton is required for many important processes during 

haemostasis and blood vessel preservation. Therefore, the function of actin 

cytoskeleton must be tightly regulated. VASP functions as an anti-capping 

protein that binds and regulates the actin cytoskeleton. As a regulator of 

actin ultrastructure, VASP is involved in crucial platelet functions, such as 

shape change, adhesion and aggregation. The molecular function of VASP 

at the extremity of lamellipodia and filopodia is that VASP can bind the 

barbed end of actin filaments and protect them from being capped by 

capping proteins. Three phosphorylation sites were identified on VASP; 

Ser157 , Ser239 , Thr274 , all of which can be phosphorylated by either PKA or 

PKG. In addition, PKC has also been reported to phosphorylate VASP at 

Ser157 .

VASP phosphorylation has different consequences. Phosphorylation of 

VASP results in down regulation of its filament bundling and anti-capping 

activities (Harbeck et al., 2000). VASP phosphorylation by cAMP and cGMP- 

elevating agents inhibits a\\b (3 3 receptor and fibrinogen binding (Horstrup et 

al., 1994). VASP phosphorylation could therefore represent a general 

negative feed-back regulatory mechanism for the control of platelet 

aggregation. The production of NO and prostacyclin in endothelial cells and 

their release in the bloodstream negatively regulate the activity of platelets 

and prevent thrombosis by increasing intracellular cGMP and cAMP levels, 

respectively.

It is noteworthy that Clopidogrel, an antiplatelet therapy for the prevention of 

adverse consequences during coronary intervention, is a P2Yi 2 antagonist
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that inhibits the GI protein-dependent signaling, potentiates the cAMP/PKA 

(Schwarz et al., 1999). Cilostazol, a cyclic nucleotide phosphodiesterase 

(PDE) inhibitor used for the treatment of chronic peripheral arterial occlusion 

and stroke, also enhances the phosphorylation of VASP at both Ser157 and 

Ser239 (Sudo et al., 2003) et al. 2003). Dipyridamole, another PDE inhibitor 

that in combination with aspirin is very effective in preventing recurrent 

stroke, amplifies the NO/cGMP-dependent phosphorylation of VASP (Aktas 

efa/.,2003).

In living cells, NO exerts its effect primarily through a sGC/cGMP-dependent 

mechanism. In platelets, activation of PKG leads to numerous 

phosphorylation events that blunt platelet activation. However, PKG 

phosphorylates and activates PDE§ to engineer a feedback mechanism 

shaping the cGMP response (Mullershausen et al., 2003). In this study 

evidence was presented that NO caused a modest increase in PKC 

activation and that NO mediates VASP phosphorylation in a manner that 

requires PKC. The presence of PDE activator (IBMX) reversed NO-mediated 

VASP phosphorylation close to control levels. Our data presented indirect 

evidences that NO-mediated VASP phosphorylation may occur in a manner 

that requires inhibition of PDE via PKC.

Since NO activates PKA, PKC and PKG in platelets it indicates the potential 

for the presence of multiple cyclic nucleotide signaling pathways. The 

downstream signaling, regulation and physiological importance of these 

individual pathways are unclear. Thus, whilst it is clear that cyclic nucleotides 

inhibit a number of physiological processes required for platelet activation, a

co-ordinated understanding of how these pathways interact, achieve target
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specificity and respond to different stimuli is unknown. In other cells, 

enzymes that generate, propagate and terminate AGC kinase signaling are 

organized into restricted cellular domains facilitating formation of distinct 

pools of cyclic nucleotides that aid target specificity. This 

"compartmentalization" of cyclic nucleotide signaling has not been described 

in platelets and in the final part of the work preliminary experiments were 

performed to begin to address this issue. Two related plasma membrane 

domains that compartmentalize GPCR signaling complexes are lipid rafts 

and caveolae. Unlike platelets, caveolae have been described in other cells 

such as endothelial cells (Spisni et a/., 2001), and cardiac myocytes (Feron 

et al., 1996). In addition, the localization of individual PKA isoforms is further 

regulated by A-kinase anchoring proteins (AKAPs).

In our study, PKA isoform localization and dynamics were presented for the 

first time in platelets. Lipid raft domains were found to be critical for signaling 

through NO and PGb. Although NO signaling cascade was more dependent 

on lipid rafts integrity as VASP phosphorylation in response to NO was 

inhibited under condition of lipid rafts disruption, VASP phosphorylation in 

response to PGI2 or PGEi was not affected. Further studies however are 

required to investigate the role of lipid rafts in inhibition of platelet adhesion 

and calcium mobilization by NO and prostacyclin.

The importance of AKAPs in regulating PKA signaling in platelets was 

presented for the first time in this study. Subcellular fractionation data 

revealed that PKA substrates were uniquely distributed between cytosolic 

and particulate compartments. This strongly suggested a separation of PKA

substrates into distinct regions of the cell and therefore PKA must also be
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differentially distributed. Our data suggest a non-redundant role for PKA 

isoforms signaling in platelets, since phosphorylation of the major PKA 

substrates was inhibited by the loss of PKAm interactions with AKAPs. This 

was assessed by synthetic peptides that disrupt AKAP-RI tethering. These 

data are preliminary, but first to demonstrate a regulatory role for AKAPs in 

PKA signaling in platelets. It will be important in the future to determine if 

AKAPS allow PKA isoforms to interact with specific down stream substrates.
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Figure 6 1:. Schematic diagram of regulation ofPKG and PKA signaling 

in platelets.

NO crosses plasma membrane and activates sGC, which lead to an 

increase in cGMP levels. NO also activates PKC, which may down 

regulate PDE5 allowing sufficient increase in cGMP levels to activate 

PKG. Upon activation by NO, sGC may subsequently localize to lipid 

rafts, hence lipid rafts disruption inhibit NO-mediated VASP* 

phosphorylation but not 8-Bromo-cGMP-mediated VASP8 

phosphorylation. PGI2 activates AC via Gs proteins coupled to IP 

receptors, which leads to an increase in cAMP levels. Increased cAMP

\er239 

\er239

255



levels activate PKARi/Ru isoforms. PKARi is the main isoform activating 

VASP on Ser157 residues. Because PKARi is localized in lipid rafts and 

non rafts domains. Lipid rafts disruption has little effect on PKARt- 

mediated VASP5*157 phosphorylation.
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Appendix I

1- Isolation and preparation of human blood platelets. 

PGEi method.

Buffers

• Acid-citrate dextrose (ACD): Glucose (113mM), Tri-sodium-citrate 

(29mM), NaCI (72mM), citric acid (3mM), pH 6.4

• Tyrode's buffer: NaCI (137mM), KCI (2.7mM), MgCI2 (1mM), Glucose

(5.6mM), NaH2P04 (3.3mM), HEPES (20mM), pH 7.4 

Equipment

• Butterfly-21 Venisystems.......................... Abbot Laboratories

• Falcon Tubes (15 and 50ml)..................... Falcon, Becton Dickinson

• Centrifuge

pH method.

Buffers

• 0.3M citric acid, pH 6.5

• Wash buffer: Citric acid (0.036M), EDTA (0.1 M), Glucose (0.005M), 

KCI (0.005M), NaCI (0.09M)

Equipment

. Butterfly-21 Venisystems.......................... Abbot Laboratories

. Falcon Tubes (15 and 50ml)..................... Falcon, Becton Dickinson

• Centrifuge
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2- Determination of platelet concentration.

Buffers

• Ammonium oxalate: Ammonium oxalate (1 % w/v) in dH2O 

Equipment

• Improved Neubauer cell counter 

Inverted light microscope

3- Measurement of protein concentration.

Buffers

• Tyrode's buffer: NaCI (137mM), KCI (2.7mM), MgCI2 (1mM), Glucose 

(5.6mM), NaH2PO4 (3.3mM), HEPES (20mM), pH 7.4 : lysis buffer 

containing phosphatase and protease inhibitors: NaCI (150mM), Tris 

base (10mM), EDTA (1mM), EGTA (10mM), ( 1:1). 

Assay kit

• DC protein assay kit.................................. Bio-Rad

Equipment

Costar 96-well cell culture plate................ Corning Incorporated

Multiplate reader with 750nm filter
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4- Measurement of platelet aggregation.

Buffers

• Tyrode's buffer: NaCI (137mM), KCI (2.7mM), MgCI2 (1mM), Glucose 

(5.6mM), NaH2PO4 (3.3mM), HEPES (20mM), pH 7.4

• Phosphate buffer: NaCI (137mM), KCI (2.7mM), NaH2PO4 (4.2mM),

NaHCO3(11.9mM). 

Equipment

• Aggregation Module-Dual Channel........... Payton

• Aggregation cuvettes

5- cGMP Enzymeimmuno Assay Biotrak System.

Buffers

• Assay buffer: containing on dilution 0.05M sodium acetate buffer (pH 

5.8), 0.02% (w/v) BSA and 0.5% (w/v) preservative.

• Standard: reconstituted by addition of lysis reagent 1 (2.5ml) to give a 

concentration of cGMP (10.24pmol/ml).

• cGMP antibody: reconstituted by addition of lysis reagent 2 (11 ml).

• HRP-labelled cGMP conjugate: reconstituted by addition of diluted 

assay buffer (11ml).

• Wash buffer: containing on dilution 0.01 M phosphate buffer (pH7.5) 

and 0.05% (v/v) Tween-20.

• 3,3',5',5'-Tetramethylbenidine (TMB)/hydrogen peroxide substrate

• Acetic anhydride

• Triethylamine.
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• Lysis reagent 1: containing dodecyltrimethylammonium bromide.

• Lysis buffer A: this buffer was prepared from lysis reagent 1 and 

contains 0.5% solution of dodecyltrimethylammonium bromide.

• Lysis reagent 2: containing chemicals to sequester the key 

components of the lysis reagent 1 and ensures cGMP is free for the 

analysis.

• Sulphuric acid (1M): 1ml of sulphuric acid was diluted in 19ml of dH2O

• Microplate: 96 wells plate coated with donkey anti-rabbit IgG. 

Equipment

• Glass test tubes

• Glass aggregation cuvettes

• Microplate shaker

• Plate reader

6- Analysis of phosphorylation based signaling in platelets.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS- 
PAGE).

Sample preparation.

Buffers

• Laemmli sample buffer (2x): Tris base (50mM), SDS (4% w/v), 

Glycerol (20% v/v), bromophenol blue (trace), 2-mercaptoethanol (5% 

v/v) pH 6.8 

Equipment

• Aggregation Module-Dual Channel........... Payton

• Aggregation cuvettes
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7- Sodium dodecyl sulphate-polyacrylamide gel electrophoresis fSDS- 
PAGE)

Method.

Buffers

• Buffer 1 : Tris base (0.5M), SDS (0.4% w/v), pH 8.8

• Buffer 2: Tris base (1.5M), SDS (0.4% w/v), pH 6.8

• Ammonium persulfate (APS): APS (10% w/v) in dH2O

• Running buffer: Tris base (25mM), Glycine (192mM), SDS (0.1% w/v) 

Equipment

• Miniprotean 3 Cell..................................... Bio-Rad (UK)

• Gradient mixer.......................................... Bio-Rad (UK)

• Peristaltic pump

• Butterfly-21 Venisystems.......................... Abbot Laboratories

• Plastic tubing

• Biotin-protein ladder.................................. Cell Signaling Tech. (UK)

Gradient gel compositions for 1.5mm casting plates.

Compound
dH20
Acrylamide 30%
Buffer I
Buffer II
APS 10%
TEMED

3% stacking gel
4.87ml
0.75ml

—
1.87ml
75ul
10ul

10% resolving gel
1.418ml
1.182ml
0.886ml

—
18|jl
2ul

18% resolving gel
0,708ml
1.961ml
0.886ml

—
18ul
2ul
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10% gel compositions for 1.5mm casting plates.

Compound
dH2O
Acrylamide 30%
Buffer I
APS 10%
TEMED

3% stacking gel
4.87ml
0.75ml

—
75[jl
10|jl

10% resolving gel
6.48ml
5.3ml
4ml
65ul
5.3ul

8- Immunochemical investigation of platelet proteins.

Immunoprecipitation.

Classical method.

Buffers

• lysis buffer containing phosphatase and protease inhibitors: NaCI 

(150mM), Tris base (10mM), EDTA (1mM), EGTA (10mM), Igepal (1% 

v/v), PMSF (1mM), Aprotinin (5ug/ml), Leupeptin (5ug/ml), Pepstatin 

(0.5ug/ml), Na 3VO4 (2.5 mM), pH 7.4

• Tris buffered saline containing Tween (0.1%): NaCI (100mM), Tris 

base (10mM), Tween 20 (0.1% v/v), pH 7.4

• Laemmli sample buffer (2x): Tris base (50mM), SDS (4% w/v), 

Glycerol (20% v/v), bromophenol blue (trace), 2-mercaptoethanol (5% 

v/v) pH 6.8 

Equipment

• Rotator

• Microcentrifuge
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9- Cross-linking method.

Buffers

• BPS: see different protocol.

• Dilution buffer: 1 mg/ml BSA in PBS

• Cross linking reagent: Dimethyl pimelimidate (DMP) Sigma D-8388. 

Stock concentration 13 mg/ml DMP in W-Buffer.

• Wash buffer: Triethanolamine Sigma T-1377 Stock concentration 0.2 

M triethanolamine in PBS (3.04 ml triethanolamine per 100 ml buffer).

• Quenching buffer: Ethanolamine Sigma E-9508 Stock concentration 

50 mM ethanolamine in PBS (311.7 ul per 100 ml).

• Elution reagent: 1 M glycine (Add cone. HCI to correct pH to pH3)

10- Immunoblotting.

Buffers

• Transfer buffer: Tris base (25mM), Glycine (192mM), methanol (20% 

v/v)

• Tris buffered saline containing Tween (0.1%): NaCI (100mM), Tris 

base (10mM), Tween 20 (0.1% v/v), pH 7.4

• Stripping buffer: SDS (2% w/v), 2-mercaptoethanol (5% v/v) in Tris 

buffered saline containing Tween (0.1%)

• ECL 1: Luminol (250mM), p-coumaric acid (90mM), Tris base 

(100mM, pH 8.5), in 100ml using dH20

• ECL 2: Tris base (100mM, pH 8.5), 64ul of H2O2 (30%), in 100ml 

using dH2O

• ECL 1 and ECL 2 were mixed fresh at a ratio of 1:1 before use.
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• Developing solution: diluted 1:5 prior to use in dH20

• Fixing solution: diluted 1:5 prior to use in dH2O 

Equipment

• Hybond-P PVDF membrane..................... Amersham Pharmacia

Biotech

• Mini Trans-Blot elctroph. transfer cell....... Bio-Rad (UK)

• Exposure cassette .................................... Sigma Ltd (Poole, UK)

• Hyper film.................................................. Amersham Biosciences

(UK)

• Microplate shaker

11- Subcellularfractionation.

Buffers

• Fractionation lysis buffer: Sucrose (320mM), HEPES (4mM),

Protease Inhibitors cocktail, pH 7.4.

• Pellet buffer: Tris-HCL (10mM), NaCI (158mM), EGTA (1mM), 

SDS (0.1% w/v), Sodium deoxycholate (1% w/v), Protease 

Inhibitors cocktail, pH 7.2. 

Equipment

• 1.5 ml eppendorf

• Ultracentrifuge

• Liquid nitrogen
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12- Lipid rafts isolation.

Buffers

• Tris-base (20mM), NaCI (100mM), sodium pyrophosphate 

(60mM), sodium glycerophosphate (20mM), sodium azide (0.02% 

w/v), triton X-100 (0.045%), Protease Inhibitors cocktail, pH 8.0. 

Equipment

• Thin wall tubes, ultraclear (ultracentrifuge tubes). Beckman coulter. 

344059

• Ultracentrifuge

13- Phosphoflow studies.

Buffers

• Perm Buffer III ................................ (BD Biosciences, 558050).

• Fix Buffer I ..................................... (BD Biosciences, 557870).

• Flow-washing buffer (PBS 392.4ml, FCS 4ml, 10% sodium azide

3.6ml). 

Equipment

• 96-well plate

• Centrifuge

• Flow Cytometer
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Appendix II

Inhibitors/Activators

Compound
AICAR
R031-8220
Indomethacin
Apyrase
PN
PP2
PP1
BAPTA
EGTA
EGCG
Wortmannin
ODQ
L.NIO
GSNO
Forsklin
H89
PGE!
RIAD
Super AKAP
StHt-31
PGI 2
KT 5720
PMA dH2O
MpCD

Concentration
100|jM-1mM

10|jM
10uM
1p/ml

100|jM
20|jM
20|jM
20MM
1mM

100|jM
100nM
20(jM
1mM
1mM
10(jM

100nM
50ng
10uM
lOpM
10|jM
50uM
10|jM

SOOnM
5mM

Target
AMPk
PKC
TxA2
ADP

VASP
Src
Src

Intracellular Ca2+
Extracellular Ca2+

Nitration
PI3k
sGC

eNOS
sGC
AC

PKA
PKA

Rl binding AKAPs
Rll binding AKAPs
Rll binding AKAPs

PKA
PKA
PKC

Lipid rafts
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Chemicals list. All other chemicals were from Sigma

Chemical
Acrylamide/Bis 
Solution 30%
BAPTA-AM
BIM-I
Citric Acid
Collagen Reagent 
Horm
GSNO
Guanosine 3'-5'- 
cyclic 
monophosphate 
8-bromo-sodium 
salt
H-89 
dihydrochloride 
(protein kinase A 
inhibitor)
ODQ
PN
PKA inhibitot 
(PKI)
PP1 (scr kinase 
inhibitos)
PP2 (Src kinase 
inhibitor)
PP3 (4-amino-7- 
phenylpyrazol[3,4- 
d]pyrimidine)
Ro 31 -8220 
mesylate
Ro-31-8220(PKC 
inhibitor)
Spermine 
NONOate
StHt-31

RIAD

Scr. RIAD

PcBlue

PC Orange

Company

Biorad

Calbiochem
Calbiochem
BDH AnalaR

Nycomed (AXIS SHIELD 
UK)

Tocris

Calbiochem

Calbiochem

Calbiochem
Calbiochem

Calbiochem

Biomol

Calbiochem

Calbiochem

TOCRIS

Calbiochem

Axxora

Invitrogen
Kind gift from Prof. 

Tasken
Kind gift from Prof. 

Tasken

BD Biosciences

BD Biosciences
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Appendix
Antibody list

Antibody
Anti-rabbit lgG:HRP
Anti-AMPK and ACC Ab sampler kit
Anti-Biotin-protein ladder
Anti-CSK antibody
Anti-guanylyl cyclase a1, soluble (sGC)
Anti-Hsp90 (Clone 68)
Anti-integrin b3
Anti-LAT
Anti-mouse Ig HRP
Anti-phospho-AMPK(thr172) Ab
Anti-phospho-AMPK(thr172) Ab

Anti-phospho-PKA substrate (RRXS/T)

Anti-phosphotyrosoine clone 4G10

Anti-phospho-VASP (Ser 157)
Anti-Phospho-Vasp (Ser 239 )
Anti-PKA
Anti-PKC substrate phospho Ser
Anti-PLCy2 (Q20)
Anti-rat lgG:HRP
Anti-SLP76
Anti-Syk mAb
Anti-|3-tubulin

Company
Amersham

Cell signalling
Cell signalling

BD Transduction Labs
Sigma

BD Transduction Labs
Cemfret analytics

Upstate
Amersham

Cell signalling
Upstate

New england bio-labs

Upstate

Cell Signalling
Cell signalling

BD Transduction Labs
Cell signalling

Santa Cruz
Amersham

Upstate
Santa Cruz Biotechnology

Upstate
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