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Summary of the thesis for the PhD degree 

by Sayed Md. Akhter Zobayed 

on 
"The use of natural pressurised Forced Ventilation in Plant Micropropagation" 

A new, uncomplicated system for the forced ventilation of plants and cultures has been investigated 

in terms of both its efficiency of ventilation and its effects on the growth and physiology of various 

plant species, including cauliflower, tobacco, Annona (custard apple) and potato. 

This new system, which has no moving parts or artificial energy requirement, provides a 

sustained, pressurised stream of sterile, humidified air (RH = 70-94%) driven by humidity-induced 

diffusion. This process depends upon the maintenance of a gradient of water vapour across a 

microporous partition for inducing the diffusion of air into the apparatus. Flows up to 5 cm3 mini' can 

be produced and the atmosphere in a 60 cm3 culture vessel can be renewed every 12 min Compared 

to the standard conventional diffusive method of ventilation, e. g. by capping the vessel with a 

polypropylene disc, this new system has proved to be 18X more efficient in removing accumulated 

ethylene and in keeping CO2 and 02 levels in culture vessels close to atmospheric. 

This forced ventilation system has also been shown to be very effective in the in vitro 

cultivation of seedlings or cuttings of cauliflower, tobacco, Annona and potato for improving growth 

and preventing symptoms of vitrification such as leaf epinasty, reduction of leaf area and production 

of abnormal stomata. In potato cuttings the induction and production of microtubers have been 

promoted and the growth of abnormal callus prevented. In Annona cuttings flower bud production, 

leaf and shoot growth and micropropagation have been promoted and leaf and flower bud abscission 

have been reduced. In cauliflower, tobacco and Annona the leaf chlorophyll contents, rates of 

photosynthesis and yields were improved by this forced ventilation. These beneficial effects have been 

variously attributed to the efficient removal of ethylene, the maintenance of near to atmospheric levels 

of CO2 and 02 by day and night and to the reduction of humidity levels in the vessels to below 100% 

RH. 

It is hoped that this new ventilation system, which is comparatively inexpensive and requires 

very little maintenance might have some useful applications in the field of tissue culture and perhaps 

particularly in developing countries. 



ABBREVIATIONS 

ACC 1- aminocyclopropane- I -carboxylic acid 
AOA aminooxyacetic acid 
AVG aminoethoxyvinylglycine 
BAP 6-benzyl amino purine 
CCCP carbonyl cyanide m-chlorophenylhydrazone 
CH casein hydrolysate 
Dk Knudsen diffusion coefficients 
DNP 2,4-dinitrophenol 
Do mutual diffusivity 

HIC humidity-induced convection 
IAA indole-3-acetic acid 
IBA indole-3-butyric acid 
J, diffusion rate 
MPD membrane pore diameter (p. m) 
MPDi inflow membrane pore diameter (µm) 
MPDo outflow membrane pore diameter (µm) 
MS Murashige and Skooge (1962) medium 
NAA a naphthalene acetic acid 
PAR photosynthetically-active radiation (. tmol m-2 s"') 
RH relative humidity (%) 
SAM S-adenosylmethionine 
SEM scanning electron microscopy 
W distance between water surface and membrane (mm) 
Wr distance between water-reservoir surface and membrane (mm) 
Wo distance between water-saturated Oasis and membrane (mm) 

w/v mass to volume ratio 
APd dynamic pressure differential 
AP. static pressure differential 
AC concentration difference 
Plantlet In vitro-grown shoot with root system 
Cutting In vitro-grown shoot without any root system 
FF-ventilation Fast flow forced ventilation (Flow = 3.5 - 5.0 cm3 min-') 
SF-ventilation Slow flow forced ventilation (Flow = 1.0 - 2.0 cm3 min'') 
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CHAPTER-I 

GENERAL INTRODUCTION 

Micropropagation is a particularly useful research tool and is a popular and expanding area 

for the commercial production of plants in vitro. The major goal of commercial 

micropropagation is to achieve, in as reduced a time period and at as low a cost as possible, 

a large number of genetically identical, physiologically uniform, and developmentally normal 

plantlets, preferably with high photosynthetic or photoautotrophic potential (utilizing CO2 in 

the air as the carbon source) and the ability to survive comparatively harsh ex vitro 

conditions (Jeong, Fujiwara and Kozai 1995). However, the commercial application of plant 

micropropagation is still limited, mainly due to high production costs, low growth rates, and 

ultimately to poor percentage survival during the acclimatization period. 

Growth and development of plantlets or explants produced in vitro depend not only 

on the composition of the nutrient medium but may also be affected by the composition of 

the gaseous atmosphere (Jackson el al. 1987; Blazkovä ei al. 1989). Recently, extensive 

research and effort have been focused in areas such as automation and robotization of 

micropropagation processes (Aitken-Christie and Jones 1987, Johnson 1989; Aitken-Christie 

1991; Brown 1992; Jeong 1992), plant image recognition and processing, microcutting 

growth, transplanting (McElroy and Brown 1992), handling and manipulation of culture 

vessels (Gautz and Wong 1992) and modification of nutritional components and growth 

regulators in the medium. However, the various aspects of the gaseous atmosphere of the 

culture vessels have received relatively little attention (Buddendorf-Joosten and Woltering 

1994). 

The conventional protective conditions under which plant materials are grown to 

prevent microbial contamination and retard desiccation of the tissues and the nutrient 

medium can cause unintentional restriction of the exchange of gases between the vessel 

atmosphere and the outside air (Buddendorf-Joosten and Woltering 1994). Sealing materials 



normally used in vitro are cotton plugs, cellulose stoppers, screw caps, aluminium foils, 

transparent films such as polypropylene, parafilm, cling film etc. Therefore, the gaseous 

environment in vitro is often abnormal when compared with the ex vitro environment. The 

major characteristics of the gaseous environment in vitro in conventional tissue culture 

systems are high relative humidity, large diurnal fluctuation in CO2 concentration and the 

accumulation of ethylene and other toxic substances (Kozai et al. 1992). As a consequence 

the photosynthesis, transpiration, and uptake of water, nutrients and CO2 can be suppressed 

and dark respiration enhanced, resulting in poor growth (Jeong, Fujiwara, and Kozai 1995) 

and physiological and morphological disorders of the cultured plantlets (Debergh and Maene 

1984, also Table 1.01 and Fig. 1.01) including undesirable morphogenetic changes (Table 

1.01; Fig. 1.01) that are varied and species dependant (Jackson et al. 1987). 

For healthy growth, all parts of a plant must exchange their internal gases readily 

with those in the surrounding air. Nevertheless, in conventional tissue culture systems the 

exchange of gases between tissues and the air is frequently restricted and often severely so 

(Jackson et al. 1987). Many plant species when grown in vitro release a variety of 

substances which may accumulate and have significant effects on growth and development 

(Heyser and Mott 1980). The most widely studied gaseous product from cultures is ethylene 

(Gamborg and LaRue 1968, Huxter, Reid and Thorpe 1979). This gas is associated with 

various physiological responses such as induced epinasty (Crocker, Zimmerman and 

Hitchcock 1932), leaf abscission (Burg 1968, Lemos and Blake 1994, Armstrong el al. 

1996), flower and fruit maturation and senescence (Yang and Hoffman 1984; Reid 1987) 

during plant growth and development. A number of tissue culture stages can be affected by 

ethylene and result in, for example, poor cell differentiation (Miller and Roberts, 1984), an 

absence of somatic embryogenesis (Meijer and Brown, 1988; Purnhauser el al. 1987; 

Roustan, Latche, and Fallot 1990; Wochok and Wetherell 1971), reduced shoot height and 

leaf area (Jackson et al. 1987 and 1991) and poor callus proliferation and growth (Adkins, 
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Shiraishi, and McComb 1990). Some of these effects on cultured tissue are summarised in 

Table 1.01. 

The accumulation of ethylene in the culture vessels is also responsible for the 

vitrification of a number of species (Jackson et al. 1991). Symptoms of vitrification include 

chlorophyll deficiency, cell hyperhydricity, hypolignification, reduced deposition of 

epicuticular waxes, and changes in enzymatic activity and protein synthesis (Ziv 1991a, b). 

Vitrified propagules of plants appear "glassy", with thick, translucent, and brittle leaves and 

showing excessive basal growth and callus formation (Paque and Boxus 1987; Ziv 1991b). 

As a result, such plantlets desiccate rapidly and die when transferred to soil. Vitrification is 

considered to be a serious problem in micropropagation of many species (Williams and Taji 

1991). 

The pathway of ethylene biosynthesis and the mechanism of its biological activity are 

not yet fully understood, but for many years it has been known that methionine is the 

principal biological precursor for ethylene biosynthesis (Lieberman 1979). The tracer studies 

of Adams and Yang (1977) showed that S-adenosylmethionine (SAM) is an intermediate 

between methionine and ethylene. Adams and Yang (1979) identified 1-aminocyclopropane- 

1-carboxylic acid (ACC) as the immediate precursor and thus proposed a pathway for 

ethylene biosynthesis from methionine to SAM to ACC to ethylene (Fig 1.02). ACC is then 

rapidly converted to ethylene in air and this step requires oxygen. However, the oxygen- 

dependent conversion of ACC to ethylene still remains to be explained at CO2 

concentrations higher than 20% and when fermentation products are formed (Righetti 

1990). CO2 may also play a role in the conversion of ACC to ethylene (Philosoph-Hadas, 

Aharoni, and Yang 1986). 

The biosynthesis of ethylene from methionine is enhanced by carbohydrates (e. g 

sucrose - used in culture media) (Philosoph-Hadas, Meir and Aharoni 1985), light, 

cytokinins (Lieberman 1979) and CO2 (Kumar, Reid and Thorpe 1987). Photosynthesis and 

respiration are the main processes modulating the concentrations of three of the most 
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important components of the culture vessel atmosphere: C02,02, C2H4. These processes 

depend in turn on light intensity and quality, photoperiod, redox potential of the liquid-solid 

substrate, the partial pressures affecting chemical interaction, and enzymatic equilibria during 

incubation (Righetti and Facini 1992). Gaseous pollutants may also be introduced into the 

atmosphere inside culture vessels during transplanting operations (Righetti et al. 1990). 

Agar, the gelling agent in the culture medium, itself can discharge ethylene (Mensuari-Sodi, 

Panizza and Tognoni 1992). 

FLOODED ROOTS AEROBIC SHOOT 

methlonine 

Low 02 
1 

02 
I SAM 

XYLEM 
II 

methionine --º SAM ý- XU ACC ACC N-mm*h ' ethylene -+ biological 

1% 
TRANSPORT /I action 

AVG N-malonyt-ACC 
I/ 

Co2- AID 

Fig 1.02. Scheme for ethylene physiology of flooded plants. The heavy arrows indicate 
that the process is promoted, whereas the diagonal lines signify inhibition. ACC, I- 
Aminocyclopropane-l-carboxylic acid; Ag`, silver ion; AVG, aminoethoxyvinylglycine; Co2', 
cobaltous ion; SAM, S-adenosylmethionine (From - Reid and Bradford 1984). 

The effects of ethylene can often be reduced by the addition of AgNO3 to the culture 

medium or of Norbornadiene to the atmosphere. Other ethylene `inhibitors' are salicylic 

acid, analogues of ACC e. g. d, -aminoisobutyric acid, pyridoxyl enzyme inhibitors such as 

AVG, AOA, inorganic ions Co2+ and Nie-, free radical scavengers e. g. n-propyl gallate, 

polyamines i. e. spermidine and spermine, and membrane disrupting agents e. g. DNP and 

CCCP etc, but how these inhibitors reduce or deactivate ethylene is not always fully 

understood. Bradford and Yang (1981) and Bradford, Hsiao, and Yang (1982) reported that 

ACC production could be inhibited by AVG and the conversion of ACC to ethylene could 
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be inhibited by Coe+(Fig 1.02). Chi and Pua (1989) reported that the inhibitory effect of Ag' 

is believed to be due to an interference with the binding of ethylene. Adams and Yang 

(1977) reported that the receptor site of ethylene is believed to contain Cu', and Ag+ was 

thought to alter ethylene action by substituting for Cu' at the receptor site. AVG strongly 

inhibited the conversion of methionine to ACC (Fig. 1.02), but it did not block the 

conversion of ACC to ethylene. That is AVG inhibits the conversion of SAM to ACC and 

the conversion is mediated by a pyridoxal enzyme (Adams and Yang 1977). AOA is another 

well-known inhibitor of the pyridoxal enzyme (Adams and Yang 1979, Table 1.01) which 

also inhibits the conversion of SAM to ACC and thus inhibits ethylene biosynthesis. Cobalt 

(Co") and nickel (Ni") are both commonly used as ethylene inhibitors (Table 1.01). Yu and 

Yang (1979) demonstrated that Co2+ inhibits ethylene biosynthesis by inhibiting the 

conversion of ACC to ethylene. Bradford, Hsiao, and Yang (1982) reported that Co2+ 

effectively inhibits ethylene production without affecting the increase in ACC level in the 

tomato shoot. Cobalt, in the form of CoC12, can be used as an inhibitor of ethylene 

production (Table 1.01). 

Free radical inhibitors such as n-propyl gallate are known to inhibit ethylene 

production (Table 1.01). Konze el al. (1980) and Apelbaum et al. (1981) indicate that it 

inhibits the conversion of ACC to ethylene, which is sensitive to free radical scavengers. 

Recently polyamines have been used as ethylene inhibitors both in vivo (Shih et al. 

1982) and in vitro (Table 1.01). Yang and Hoffman (1984) demonstrated that the 

biosynthesis of ethylene and polyamines share a common precursor, SAM, and thus ethylene 

biosynthesis is inhibited by polyamines. Suttle (1981) found that Spermidine inhibits ethylene 

production (also shown in Table 1.01) by inhibiting the conversion of ACC to ethylene in 

Soyabean hypocotyls. Low concentrations of DNP inhibits ethylene biosynthesis by blocking 

the conversion of ACC to ethylene without affecting the conversion of methionine to SAM 

(Yu and Yang 1980). L-aminoisobutyric acid acts as structural analogue of ACC and thus 

inhibits ethylene production. 
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Large amounts of carbon dioxide have been measured in many species grown in vitro 

and often high concentrations are found in association with ethylene (Zobel 1987) Where 

cultures are grown under a day: night regime, carbon dioxide concentrations fluctuate due to 

the respiration and photosynthesis of the plants. During the dark period, due to respiration, 

CO2 concentrations increase and during the light period the photosynthetic activity of 

chlorophyllous plantlets results in a decline in CO2 levels. The enhancement of the CO2 

concentration in darkness has been reported by many authors (De Profi, Maene and Debergh 

1985; Fujiwara, Kozai and Watanabe 1988, Jackson et al. 1991). However, the 

concentrations of CO2 very much depend upon the ways in which the culture vessels are 

sealed. Jackson et al. (1991) demonstrated that Picas lyrata cultures with loose, 

intermediate and tightly sealed vessels, contained respectively 0.5.3.4 and 8.5% CO2 in the 

dark period. 

Depletions of the CO2 concentration during the photoperiod were also reported by 

Desjardins et al. (1988, Kozai et al. (1987) Kozai and Iwanami (1988) and Solärovä et al. 

(1989) In sealed conditions the concentration may drop to levels that are generally considered 

to be limiting (Buddendorf-Joosten and Woltering 1994). However, others have 

demonstrated an enhancement of CO2 concentration in the culture atmosphere in the light. 

Woltering (1989) found 1.3% and 13% CO2 with Gerbera jasmesonii in semi-closed and 

tightly sealed containers respectively. Righetti, Magnanini and Maccaferri (1988) found 20% 

CO2 in Prunus shoot cultures grown in the light in (probably sealed) jars. Jackson et al. 

(1991) also reported 8.5% CO2 in the dark in sealed vessels containing Ficus lyrata and this 

decreased to 0.2% and 1% at the end of the light period with loose and intermediate sealing 

of the culture vessels respectively. These higher CO2 concentrations (>]%) are generally 

considered to be toxic for plants (Buddendorf-Joosten and Woltering 1994). 

Generally, with increasing CO2 concentrations in the culture vessels in darkness, a 

comparable decrease in oxygen can be expected (Buddendorf-Joosten and Woltering 1994). 

The production of ethylene may also accompany the depletion of oxygen in the culture head- 
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space. Only a few studies have been performed on the measurement of oxygen 

concentrations in the head-spaces of culture vessels. Doi, Oda, and Asahira (1989) found 

that in culture vessels containing either Caladium bicolor (C-3 plant) or Dendrobium 

phalaenopsis (CAM plantlets) 02 concentrations during the dark period decreased in 

accordance with an increase in CO2 concentration. During the dark period, the decrease in 

02 concentration was approximately equal to the increase in CO2 concentration in some 

plantlets like Caladium bicolor. However, with others, (like Dendrobium phalaenopsis 

plantlets), the decrease in 02 concentration was markedly larger than the increase in CO2 

concentration (Fujiwara and Kozai 1995). Righetti and Facini (1992) investigated the time 

course of 02 concentration for 30 days in air-tight jars containing Prunurs aviwn shoots, and 

showed that a large decrease in 02 concentration was accompanied by increases in both CO2 

and ethylene concentrations. 

The availability of oxygen in any tissue culture system is very important for 

respiration and subsequent tissue growth (Adkins 1992). Oxygen availability has limited the 

growth of cell cultures such as Catharanthus roseus (Tate and Payne 1991) and rice callus 

(Adkins, Shiraishi and McComb 1990). Kumar, Reid and Thorpe (1987) showed that in the 

absence of oxygen excised cotyledons Pius radiata failed to develop shoot buds. Low 

oxygen levels might lead to the production of toxic compounds such as ethanol and 

acetaldehyde (Adkins 1992). 

Other volatile substances released in vitro are ethane, ethanol, methane, acetylene 

and acetaldehyde (Thomas and Murashige 1979a, b). Rice (0ryza salis L. ) callus culture 

modified the atmosphere of the culture vessel by producing carbon dioxide, ethylene and 

ethanol, while utilizing oxygen (Adkins, Shiraishi and McComb 1990). These changes in the 

gaseous atmosphere of the culture vessel can suppress the growth of callus and promote 

necrosis (Adkins 1992). 

Relative humidity in the culture vessel is an important environmental factor that 

affects the water relations of cultured tissues (Jeong, Fujiwara and Kozai 1995). Relative 
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humidity is normally high in the culture vessel and may have some deleterious effects on 

cultured plantlets (see Fig. 1.01). Several studies have demonstrated that lowering RH in the 

culture vessel improved the resistance of tissues to water loss (Wardle, Dobbs and Short 

1983; Smith, Roberts and Mottley 1990; Smith et al. 1992). 

Recently, there has been much interest in improving the aeration of plant tissues in 

cultures to overcome the adverse effects of ergastic gases. Adkins, Shiraishi and McComb 

(1989) pointed out that the inability of callus/tissue to grow well in culture has greatly 

hampered tissue culture research, and that to overcome the adverse effects of accumulated 

gases, culture vessels that would provide better gaseous exchange need to be developed. 

Debergh and Vanderschaeghe (1990) suggested that vitrification of in vitro grown plantlets 

may be overcome by improving ventilation and/or aeration in culture vessels. Rossetto, 

Dixon, and Bunn (1992) reported that by improving the diffusive aeration of in vitro grown 

rare Australian plants (species of Conostylis, Diplolaena, Drumrnondila, Lechenwnltra and 

Sowerbaea), vitrification could be reduced, shoot quality improved significantly and the 

plants more easily acclimatized when transplanted into soil They also suggested that 

diffusive aeration may be a simple and efficient method for improving a large number of 

plant species. The benefits of enhanced diffusive ventilation for Malts domes/wa seedlings 

as well as potato explants were emphasized in a subsequent paper (Jackson, Belcher and 

Brain 1994). 

An alternative to diffusive ventilation is to use forced ventilation of the culture 

vessels, and it is becoming increasingly apparent that forced ventilation can have a number of 

advantages over conventionally sealed systems or those relying on gaseous diffusion (Kozai, 

Kitaya and Kubota 1995): growth of cuttings, seedlings and callus can all be improved. For 

example, Kozai, Kubota & Nakayama (1989) found higher photosynthetic rates and growth 

of strawberry plants in vitro with forced ventilation than with conventional in vitro 

conditions, as did Yue, Gosselin and Desjardins (1993) using Pelargonium cuttings. Adkins 

(1992) found that rice callus benefited from a forced ventilation of the head-space of the 
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tissue culture vessels and attributed the improved performance to ethylene removal and an 

improved oxygen regime. However, the systems used to achieve forced ventilation are 

usually rather complex and require compressed gases or electrically-driven pumps, filtration 

systems, and often gas-mixing/metering devices to maintain the flow balance to the culture 

vessels 

The main aim of the present study was explore the potential of a newly patented and 

simple system for force-ventilating plant tissue cultures with sterile humidified air, a system 

not requiring an electricity supply, pumps or compressed gases (Armstrong and Armstrong 

1994a) The apparatus provides gas-flow by the processes of humidity-induced diffusion and 

convection: mechanisms which require only the establishment and maintenance of humidity 

differentials across a microporous partition (see Chapters II & III). 

Humidity-induced diffusion was first recorded by Dufour (1874) He found that 

when a porous wall separates two air masses of differing humidity, then two opposed and 

unequal diffusion flows occur across the wall; he referred to this phenomenon as "diffusion 

hygrometrique". Kundt (1877) mentioned that "abundant flow moves from the drier air to 

the damper air" In particular circumstances the flow of dry air can result in a pressurisation 

of the damper air and cause a pressure flow - humidity-induced convection More recently 

humidity-induced convective flows have been found to occur in wetland plants Dacey 

(1981) described a pressurised flow-through ventilation system of gas transport in water- 

lilies (Nuphar lutea) and referred to the mechanism as Hygrometric Pressurisation 

Subsequently a number of papers have been published showing evidence of humidity- 

induced convective throughflows of gases in other species: Nymphoides peltata (Grosse and 

Mevi-Schutz 1987) and Nelumbo nucifera (Dacey 1987; Mevi-Schutz and Grosse 1988a, b), 

and substantial flows in the leaves of Nymphaea alba were recorded by Armstrong et al 

(1991) The first direct evidence of a convective throughflow of gases in a grass was 

reported for Phragmites australis (Cav) Trin. ex Steud. (Armstrong and Armstrong 1990). 

In this study they examined the effect of light on the convection in Phragmites and 
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demonstrated how humidity-induced throughflow convection can substantially increase 

rhizome and root aeration. It was also reported that in Phragmites this type of convection 

was particularly rapid under conditions of low atmospheric humidity and warm, sunny 

conditions (Armstrong and Armstrong 1991). Humidity-induced convection in Phragmiies 

was mimicked using a physical model in which a Nuclepore membrane was used to imitate 

the leaf sheath stomatal surface of the plant (Armstrong 1992; Armstrong and Armstrong 

1994b). This model, which was used to investigate the mechanism of the convective process 

(Armstrong, Armstrong & Beckett 1996a) forms the basis of the forced ventilation systems 

described and used in this thesis. The features which help induce the humidity-induced 

diffusion, also prevent the entry of fungal spores and bacteria and provide a humidified 

stream of air which has the potential to flush potentially toxic gases, e. g. ethylene from the 

culture vessels, and eliminate the need for the use of ethylene inhibitors or antagonists Such 

a system requires no pumps, compressed gas or electricity supply. 

Two kinds of the new throughflow ventilation system have been used and these, and 

the theory underpinning them, are described in Chapter II together with other systems 

reported in the literature. Chapter III reports on the physical performance of the new 

apparatus, and the remainder of the thesis is concerned with their use in the culture of 

seedlings and micro-cuttings of several plant species: cauliflower (Chapter IV), tobacco 

(Chapter V), Annona (Chapter VII) and potato (Chapter VIII). Chapter VI is concerned 

with effects of the various ventilation treatments on leaf anatomy of tobacco and cauliflower 

plantlets. 

Chapter IV describes the effects of the different types of ventilation system on the 

growth and development of cauliflower seedlings. The plants were cultured in the presence 

or absence of ethylene inhibitors and a precursor (ACC), and ethylene and CO2 levels were 

monitored with the aim of establishing whether endogenous ethylene has a significant effect 

on growth and whether CO2 supply with conventional capping systems can be limiting. The 

results of similar investigations on tobacco are reported in Chapter V. In Chapter VII a 
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system for the micropropagation of Annona squamosa and Annona muricata using nodal 

explants of green house grown plants is described. The effects of forced and diffusive 

ventilation on micropropagation, leaf and flower-bud abscission, growth and development, 

chlorophyll contents of the leaves and photosynthetic rate are examined. In Chapter VIII an 

in vitro tuberization technique for potato is described, and to improve the culture conditions 

a forced ventilation was introduced into the culture vessels by using the throughflow 

ventilation. Finally, Chapter IX summarises the main findings of the project, indicating that 

there are obvious beneficial effects to be gained from the use of the new and simple 

ventilating system. 
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CHAPTER-11 

THE STRUCTURE AND THE MECHANISM OF THE VENTILATION SYSTEM 

2.1. INTRODUCTION 

Forced ventilation of the culture vessel head-space in plant tissue culture or 

micropropagation is a comparatively recent development. This chapter reviews various 

methods which have been used to achieve head-space ventilation, describes in detail a new 

type of apparatus for generating flows, and discusses the mechanism and mathematics 

underlying its operation. Its physical behaviour is further explored in Chapter III and the 

remainder of the thesis is concerned with studies of its application to plant 

micropropagation. 

The new apparatus has been built in two forms and is covered by British Patent No. 

9302932.0 (Armstrong & Armstrong 1994a). In its original form, (called here System I), it 

was first described in the literature by Armstrong el al. (1996) and has separate inflow and 

outflow turrets with polycarbonate Nuclepore membranes (pore diameter 0.03 µm and 0.2 

gm respectively). The inflow membrane provides the porous partition to achieve pressurised 

throughflow by humidity-induced diffusion, while comparatively free venting is allowed 

through the outflow membrane (see below). The major disadvantage of this system is the 

need to adjust daily the water level of the inflow turret to keep it as near to the membrane as 

possible. Another drawback is that the turrets are connected to the culture vessel by means 

of flexible tubing which makes it necessary to use two separate clamps to hold the inflow 

and the outflow turret. The second, more compact system, (System II), was designed 

specially for the current study and combines the inflow and outflow parts in a single unit. 

This model requires less regular attention. With both types of model the membrane pore 

sizes are sufficiently small to exclude bacterial and fungal spore contamination and the 

forced ventilation produced by the apparatus is in the form of a sustained stream of sterile 



humidified air at flow rates of 1-2 cm3 min" (with inflow membrane diameter = 25 mm), or 

about 5.0 - 9.0 cm3 min-'(with inflow membrane diameter = 50 mm) 

2.2. HISTORICAL BACKGROUND 

Plant tissue culture has a long history, dating back to the work of Gottlieb Haberlandt and 

others at the end of the 19th century, but the concepts and techniques of forced ventilation 

developed for plant tissue culture are less then a decade old. Probably the first system 

developed to give a favourable ex vitro environment of cultures grown in l'iiro was 

demonstrated by Kozai et al. (1987); this was later developed by Hayashi and Kozai (1987) 

(Fig. 2 01) Although this computer-controlled unit was only for the improvement of 

plantlets during the acclimatization period, it was able to control temperature, humidity, light 

intensity, CO2 concentration, air velocity and nutrient solution temperature of the culture 

vessels 

In the following year (1988) Shimada, Tanaka and Kozai described another 

ventilation system to estimate net photosynthetic rates of C-3 plants (Primula malacoides) 

cultured in vitro (Fig. 2.02). In the same year Fujiwara, Kozai and Watanabe developed a 

forced CO2 enrichment technique for plant tissue culture (Fig 2 03) using a specially 

equipped growth chamber. The chamber contains a CO2 control unit consisting of a 

container with pure liquid C02, an electric solenoid valve with a relay for opening and 

closing the solenoid, and an infrared type CO2 controller with an air pump for air sampling. 

Two identical transparent acrylic boxes containing culture vessels were placed in the 

chamber. Air mixing was operated by a microfan in each box to provide an even distribution 

of CO2 concentration. Air exchange between the inside and the outside of the growth 

chamber was provided to a certain degree to maintain the CO2 concentration in the chamber 

at more or less the same level as the atmospheric CO2 concentration (350 ppm). 

In 1989 another apparatus was reported by Walker, Heuser and Heinemann to 

determine the effect of ventilation on Stage 11 micropropagation of Rhododendron `P. J M. '. 
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Fig. 2.01. Schematic diagram of an acclimatization unit for increasing the percent stirv ival ex nitro of' 
plantlets cultured in vitro and for accelerating the subsequent growth cv vitro (Fia}ashi and Kozai 

ß)Y7). 
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Fig. 2.02. Schematic diagrain of an apparatus capable of estimating the net photosvnthetic rates of plantlets 
u l'irro at I different O concentrations. The moistened gas with ß(i6 µn1ol niol' CO, and 
different O: concentrations (the rest being nitrogen gas) is passed across the glass dar (culture 
vessel) at a 11ovN rate of 1-4 ml s' (Shimada. Tanaka and Kocai 1988). 
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Fig. 2.03. Schematic diagram showing a configuration of photoautotrophic tissue culture system (Fujiwara, 
Kozai and Watanabe 1988). Gas and culture solution flow lines are represented by solid lines and 
electrical signal lines by dashed lines. 
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Fig. 2.04 Schematic diagram of the experimental apparatus developed by Walker, Heuser and Heinemann 
(1989) to determine the effects of forced ventilation on stage II micropropagation of 
Rhododendron `P. J. M. ', 
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To provide 0,300 and 1000 ppm carbon dioxide gas treatments, gas mixtures were provided 

from different gas cylinders (Fig. 2.04), and the atmospheric air treatment was supplied by a 

diaphragm-type air pump. The ventilation gas for each treatment was bubbled through two 

water baths to saturate it with water vapour and prevent dehydration of the agar and 

cultures. 

At the same time (1989) Adkins, Shiraishi and McComb developed a continuous gas- 

flow system for the study of callus growth. The system allows for several gases to be mixed 

and passed through culture tubes containing callus on Miracloth boats placed on a filter 

paper bridge as shown in Fig. 2.05. Exiting gases can be monitored for ethylene (and other 

hydrocarbons), ethanol (and acetaldehyde), 02 and CO2. 

To generate low (30-65%), medium (70-95%) and high (97% and above) relative 

humidities in the culture vessels Kozai et al. (1990) developed a forced ventilation system 

(Fig. 2.06). In this system a desiccant (silica gel) contained in a flask was used to dehumidify 

the air which was blown through it by an air pump. The major draw back of this system is 

the desiccant which must be replaced with new desiccant or re-dried after a certain time 

interval to maintain its water absorbing capacity. 

In the following year (1991) Nakayama, Kozai and Watanabe set up an experiment 

for measuring CO2 exchange rates or net photosynthetic rates of cultures under forced 

ventilation (Fig. 2.07). Oxygen, CO2 + N2, and N2 gases from separate containers are mixed 

and then humidified with distilled water and finally introduced into the vessel at 

predetermined flow rates and predetermined CO2 and 02 concentrations. The C02 and 02 

concentrations can be changed by changing the mixing ratio of the 02, (CO2 + N2) and N2. 

In the same year (1991) Fujiwara, Ota and Kozai developed a device to estimate 

simultaneously transpiration and photosynthetic rates of cultures under forced ventilation 

(Fig. 2.08). A feature of this device is that it is possible to measure the temperature and 

relative humidity of incoming and outgoing air to/from the culture vessels with temperature 

and the relative humidity sensors. Another similar type of experiment was set up by the same 
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Fig. 2.05. The gas-flow system used in the constant environment study. The tests are carried out in culture 
tubes attached to a gas loop housed in a dark constant-temperature room (30±2°C). Callus is 
growing on a Miracloth boat and placed on a filter paper bridge soaked in liquid medium. 
Features of the gas-(low system include 1) wash bottles to scrub incoming gases, 2) (low meters 
to mix gases. 3) filters to keep cultures sterile. 4) traps to collect and concentrate volatiles and 5) 
injection valves to sample for 02 and CO2 (Adkins, Shiraishi and McComb 1989). 
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Fig. 2.06. Schematic diagram showing a simple method for generating low, medium and high relative 
humidities in culture vessels (Kozai et al. 1990). Treatment A (culture vessel A) : high relative 
humidity (97% and above), ). Treatment B (culture vessel B) : low relative humidity (30-65%), 
treatment C (culture vessel C) : medium relative humidity (70-95%). 

20 

C Itwe too. cnf bup 



Pressure ua e 
ator Flow rate controller 

1v Flow meter 11 

02 

7 
COz+Nz 

V 

L jc 
o 

N2 

Distilled water 
Gas container 

Valve Water bath \ for humidification 

Fig. 2.07. Schematic diagram of a system for estimating net photosynthetic rates of explants/shoots/plantlets 
in vitro under forced ventilation conditions (Nakayama, Kozai and Watanabe 1991). 
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vitro plantlets at different relative humidities (Fujiwara, Ota and Kozai 1991). Temperature and 
relative humidities of incoming and outgoing air into/from the culture vessel are measured with 
temperature and relative humidity sensors 11 by turning 3-way cocks I and II properly. A quarter 
milliliter of air is sampled at points A and B with a gas-tight syringe for measurements of CO2 

concentration of incoming and outgoing air with a gas chromatograph. 
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authors (Fujiwara, Kira and Kozai 1992) to measure concurrently net photosynthetic rates 

for three different culture (vessel) conditions (e. g. medium composition, plant species, 

growth stage etc. ). As shown in Fig. 2.09 diluted CO2 gas with N2 can be further diluted by 

air, and the CO2 concentration of the incoming air was lowered by a CO2 absorbing agent 

before being sent to the culture vessels. A similar system has been developed for measuring 

the CO2 exchange rate of in vitro plantlets by Ebert, Karstens and Ludders (1993) (figure 

not shown). 

Fujiwara et al. developed another device in 1993 for experiments on the physical 

environmental effects on growth and development of cultures (Fig. 2.1 Oa). This device was 

70 cm wide, 45 cm deep and 70 cm high The upper part of this device consists of a light 

source and a culture box containing culture vessels The lower part is the control box with a 

control panel (Fig 2.10b). The CO2 is maintained at a certain level by adjusting the flow rates 

of pure CO2 from the container (volume 
. 450 ml) and/or incoming air. 

Kitaya and Sakami (1993) made a system for CO2 enrichment of chlorophyllous 

callus by utilizing the respiratory CO2 produced by a crop of mushrooms. As shown in Fig. 

2.11 a plant tissue culture box was connected to a mushroom culture box using a semi- 

closed piping (silicone tube) system attached with ethylene absorbent, air pump, solenoid 

valve, etc. This system was designed as a prototype to use in space farming in the 21st 

Century (Kozai et al. 1995) but like others it is rather complex and requires electricity, 

microcomputer and sophisticated valve and air pumps. However one important feature was 

that, unlike others, the source of CO2 was free of cost and did not require any gas cylinder. 

To control relative humidities in the culture vessels Fujiwara, Aitken-Christie and 

Kozai (1993) developed another system where R1H's of the culture boxes were maintained to 

control the vessels' RH (Fig. 2.12). This was achieved by connecting the box through an 

inlet pipe to either distilled water or saturated salt solutions in large Erlenmeyer flasks. 

In the same year Yue, Gosselin and Desjardins (1993) developed a forced ventilation 

system (Fig. 2.13) in which the RH of the culture vessels could be controlled by adjusting 
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Fig. 2.13. Schematic view of an apparatus used to ventilate culture vessels with air of diftcrent relative 
humidities. Only one unit for one level of relative humidity is shown in this figure. Air from 

outdoors (A) entered through an air-Ilm, controller (13) and a variable-air flowmeter (C) and was 

sent to three bubblers (D) to adjust the humidity. Depending on the relative humidity required for 

each treatment. bubblers contained distilled water or a saturated solution of KCI. NaCl or K, CO;. 

Actual relative humidities were approximatchv 100.91.78 and 46`%ß at a temperature of 23°C. Air 

was then sent to a container (E) and delivered to four culture vessels (G, 6X6X9.5 cm) through 

membranes filters (F. 0.2 p. m). In this experiment. air Ilovi through each culture vessel v%as 100 

nit. min') (Yue, Gosselin and Desjardins 1993) 
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the RH of inlet outdoor air (385 - 420 ml 1-' C02) to each of four constant levels, i. e., 100, 

91,78 and 46%. 

However, the mutifarious systems described here to achieve forced ventilation have 

not been successful enough to be used widely This is probably due in no small measure to 

their complexity and mechanisation requiring compressed gases or electricity-driven pumps, 

filtration systems, and often gas-mixing/material devices to maintain the flow balance to the 

culture vessels. The forced ventilation systems used in the current study and described below 

are much simpler. However, as will be shown in subsequent chapters, they have proved to be 

very effective. 

2.3. THE HUMIDITY-INDUCED DIFFUSION BASED VENTILATING SYSTEMS 

The two systems described are . 

a) System I (Fig 2.14, Plate 2.01) having separate inflow and outflow turrets, and 

b) System II (Fig 2.15, Plates 2.02,2.03) having the inflow and outflow turret membranes in 

the same unit. 

2.2.1. System I. 

Polycarbonate Nuclepore membranes of known pore size (diameter 25 mm, thickness 10 gm 

and porosity 10%) are attached by silicone rubber compound across the `mouths' of 

specially made cylindrical glass turrets (internal diameter 20 mm; outer diameter 24 mm; 

length 26 mm) which forms the inflow and the outflow parts of the ventilation system (as 

shown in Fig. 2.14). One inflow and one outflow turret is each connected by PVC tubing 

(ID = 4.0 mm; OD = 5.5 mm) to each tissue culture vessel (length = 77 mm; ID = 32 mm, 

total capacity = 60 cm). 

The inflow turret is topped by the smaller-pored membrane (membrane pore 

diameter, MPD = 0.03 um) and has a side tube for filling the turret with sterile water to 

maintain the water level close to, but not touching the membrane. A glass tube (OD = 6.75 
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Fig. 2.14. Schematic diagram of the ventilation apparatus (System I) for plant tissue culture. 
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PLATE : 2.01 

Forced ventilation apparatus (System I) for plant tissue culture; flow rate 1.0 - 
1.5 cm3min'). Inflow turret (upper) containing water with syringe for refilling; 
outflow turret (lower) dry. Inflow membrane pore diameter = 0.03 gm; outflow 
membrane pore diameter = 0.2 µm; both membrane diameters = 25 mm. (X 1.2). 
cf. Fig. 2.14 
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Fig. 2.15. Schematic diagram of the ventilation apparatus (System II) for plant tissue 
culture. Pore diameter: inflow membrane = 0.03 - 0.05 µm; outflow membrane = 0.2 µm. 
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PLATE : 2.02 

Forced ventilation apparatus (System II) for plant tissue culture. Inflow turret 
(upper) containing green Oasis material surrounded by water reservoir; outflow 
turret (lower) with outflow membrane to the side. cf. Plate 2.03 and Fig. 2.15. 

Left hand side : System IIF (fast flow apparatus; flow rate 3.5 - 5.0 cm3 min' 
inflow membrane pore diameter = 0.05 µm; outflow membrane pore 
diameter = 0.2 µm; inflow membrane diameter = 50 mm; outflow 
membrane diameter = 25 - 35 mm (X0.85). 

Right hand side: System IIS (slow flow apparatus; flow rate 1.0 - 2.0 cm3 min-'); 
inflow membrane pore diameter = 0.03 µm; outflow membrane pore 
diameter = 0.2 µm; both membrane diameters = 25 mm; (X0.85). 
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PLATE : 2.03 

Forced ventilation apparatus (System IIF) for plant tissue culture with flow rate 
of 3.5 - 5.0 cm3min-'; inflow membrane pore diameter = 0.05 µm; outflow 
membrane pore diameter = 0.2 µm; inflow membrane diameter = 50 mm; 
outflow membrane diameter = 25 - 35 mm (X1.8). 
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mm; ID = 3.75 mm) opening into the humidified head-space of the inflow turret, just below 

the membrane directs the incoming gas flow into the culture vessel 

Another glass turret, acts as an outflow turret, for the venting gases. The outflow 

turret is bounded by a larger-pored membrane (MPD = 0.2 µm). The pore size is large 

enough to allow reasonably free venting by both Poiseuille flow and diffusion, but 

sufficiently small to prevent contamination by bacteria and fungal spores. This turret is dry 

and provides the path of least resistance between the inflow turret and the atmosphere. 

For throughflow ventilation, the culture vessel is fitted with a silicone rubber bung 

penetrated by two glass tubes (ID 3.0 mm; OD = 6.0 mm). The longer tube (length = 90 

mm) is connected to the inflow turret and the shorter one (length = 60 mm) to the outflow 

turret. Flexible PVC tubing (ID = 4.0 mm; OD = 5.5 mm) is used to connect the turrets to 

the tubes The evaporating water level of the inflow turret is always adjusted to within 2 mm 

of the membrane at the beginning of each day. The level tended to fall by I-4 mm during a 

24 h period, hence the necessity for re-adjustment. 

The major disadvantage of System -I is the need to adjust daily the water level of the 

inflow turret to keep it as near to the membrane as possible. Another drawback of this 

design is that, as the turrets are connected to the culture vessel through flexible tubing, it is 

necessary to use two separate clamps to hold the inflow and the outflow turrets To 

overcome these drawbacks and to simplify the system, a new design was developed 

combining the inflow and outflow turrets into one unit. 

2.2.2. System II : 

The new model has been made in two sizes, one, System IIF, having a larger inflow 

membrane (D = 50 mm; MPD = 0.05 µm and producing a faster flow), and a smaller edition 

System IIS, having a smaller inflow membrane (D = 25 mm and MPD = 0.03 pm and 

producing a slower flow). The diameter of the outflow membranes for IIS is 25 mm, and for 

28 



IIF is 25-40 mm with similar MPD (0.2 µm) in each case. The dimensions of the larger 

version System IIF are described here. 

This system is a single unit, consisting of an inflow and an outflow turret connected 

to each other with a silicone rubber bung (as shown in Fig 2.15). The inflow turret consists 

of a cylindrical double layered glass chamber (OD = 65 mm; ID = 45 mm; length = 82 mm). 

Inside the turret there is Oasis material which is highly porous (Plate 2.04), and able to 

absorb ca. 98% of its own volume of water. The double walled chamber acts as a water 

reservoir and has 3 small holes (diameter =5 mm). The outer hole, at the top of the outer 

wall, is used for injecting sterile water into the water reservoir by means of a hypodermic 

syringe. The water then passes through the inner holes at the bottom of the chamber and 

wets the Oasis, the water rising by capillary action and / or water pressure to the top of the 

Oasis. The polycarbonate Nuclepore membrane functioning as the inflow membrane 

(diameter = 50 mm; pore diameter = 0.05 µm; porosity 10%) is positioned centrally over a 

glass ring (thickness =2 mm; diameter of the hole = 47 mm) and attached to the rim by 

silicone rubber compound. The ring supporting the membrane is fixed by silicone grease to 

the edge of the inflow turret. The gap, containing air, between the membrane and Oasis is 

called the head-space and is very narrow (<2 mm in depth). At the centre of the turrets there 

is a thin glass tube which opens to the head-space and directs the incoming gas flow to the 

culture vessel 

The outflow turret is also made of glass (OD = 48 mm; ID = 45 mm; length = 78 

mm) and has a hole at one side (diameter = 21 mm). Another membrane, the outflow 

membrane (MPD = 0.2 µm; diameter = 25 - 40 mm; porosity = 70%) attached by silicone 

rubber compound across the `mouth' of a specially made glass funnel (max. ID = 38 mm; 

length = 26 mm), is fixed to the hole of the turret through a silicone rubber bung. The 

elongated end (length = 35 mm, OD = 10 mm; ID =7 mm) of the outflow turret enters the 

culture vessel through another silicone rubber bung. The gases flow from the culture vessel 

to the outflow turret through the narrow space between the glass tube and wall of the 
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PLATE : 2.04 

Sections of oasis material photographed in green light : 
above : low power to show highly porous material (X ca. 100). 
below : high power with a porous membrane filling a small, only partially expanded 

gap on the structure (Xca. 1000). 





elongated end of outflow turret and are finally released to the atmosphere through the 

outflow membrane. 

2.4. THE ORIGIN OF THE VENTILATION SYSTEM 

Much of the convective gas-flow which aerates wetland plants such as the floating leaved 

water-lilies and the emergent macrophytes Phragmites australis and Typha sp. depends 

upon humidity-induced diffusion of air into the plant under the influence of a concentration 

gradient caused by the humidity differential which exists between the humid gases inside the 

plant and the comparatively dry atmosphere outside (Dacey 1980,1981; Armstrong and 

Armstrong 1990,1991, Armstrong, Armstrong & Beckett 1996a, Brix, Sorrell and Orr 

1992; Tornbjerg, Bendix and Brix 1994, Bendix, Tornbjerg and Brix 1994). The lower the 

relative humidity in the atmosphere, the steeper is the gradient and the faster the convection. 

In Phragmites australis, the humidity-induced convection (HIC) is driven by a 

diffusion of dry air across the stomatal surfaces of the leaf sheaths into the humid 

atmosphere of the sub-stomatal cavity (Armstrong and Armstrong 1990,1991; Armstrong 

1992; Armstrong, Armstrong and Beckett 1992). The constant humidification of the 

internal atmosphere (up to 2-3% by volume) within the gas spaces of the leaf sheath creates 

and maintains water vapour levels, thus diluting the atmospheric gases oxygen and nitrogen 

and producing a concentration gradient for their inward diffusion. If the stomatal resistance 

to inward diffusion is effectively less than any Poiseuille resistance to backflow to the 

atmosphere, the inwardly diffusing air will cause a pressurisation within the plant. If there 

was no other path for gases to escape, the total pressure within the leaf sheath gas space at 

equilibrium would be greater than atmospheric by an amount numerically equal to the water 

vapour partial pressure beneath the stomata. In plants like Phragnute's, however, there is an 

alternative outflow path of low resistance, and the tendency to pressurise drives a convective 

flow (pressure flow) of gases into the underground parts from where they vent back to the 
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atmosphere through the broken ends of old dead flowering shoots - hence the term 

convective throughflow. 

The ventilation system for plant tissue culture described here is based on the 

humidity-induced convection normally found in wetland species (e g. Phrag"nites) and 

provides a sterile flow of humid air to the culture vessel. 

2.5. TIIE MECHANISM 

The mechanism of the throughflow ventilation system is based on the principle of 

"humidity-induced convection". For simplicity this process will be explained with 

reference to System I (Fig. 2.14), but it equally well applies to System II 

The passage of atmospheric gases into the inflow turret takes place through a 

microporous partition, a Nuclepore membrane, whose pores (diameter =0 03 - 0.05 µm) 

have a greater resistance to Poiseuille (pressurised) flow than to diffusion. The constant 

evaporation of water from the free-water surface (System I) or the saturated Oasis surface 

(System II) humidifies the head-space of the inflow turret and consequently dilutes the 

combined oxygen and nitrogen concentrations close to the water surface by up to 2-3%, and 

below the membrane by somewhat less than this. The result of this is the establishment of a 

concentration gradient for the inward diffusion of these gases across the membrane from the 

drier outer air. Since the membrane is very thin (<10 µm), the gradient can be very steep and 

the diffusion rate fast. The lower the RH of the ambient air and the closer the water surface 

is to the membrane, the steeper is the gradient for the inward diffusion of oxygen and 

nitrogen, and the faster is the flow. Although a more than reciprocal outward diffusion of 

water vapour takes place through the membrane, the water vapour is constantly replaced by 

evaporation Hence, since the membrane has a very significant resistance to any pressurised 

outflow, the inward diffusion coupled to the constant humidification creates a pressurisation 

of the gases occupying the head-space of the inflow turret. A glass tube opening into the 

humidified head-space of the inflow turret (Fig. 2.14) directs the pressurised incoming gases 
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to the head-space of the culture vessels and a flow will be maintained as long as (a) the RH 

of the outer air is <100%, and (b) internal evaporation continues to butler the water vapour 

components of the head-space of the inflow turret. The latter depends upon the water 

availability in the Oasis material and availability of latent energy for evaporation. The venting 

of gases occurs via the larger pored membrane of the non-humidified outflow turret The 

pores (diameter - 0.2 µm) of the outflow membrane, are sufficiently large to allow 

reasonably free venting by both Poiseuille flow and diffusion, but small enough to prevent 

contamination of the system from bacteria and fungal spores. 

It should be noted that if the escape of gases through the larger pored membrane 

could be prevented, the gases entering via the small pored membrane would create a 

substantial pressure, the static pressure 'Ps (< vapour pressure of water vapour beneath the 

membrane). Under flow conditions, i. e. with gases escaping via the larger pored membrane, 

a much lower pressure, the dynamic pressure OPd, is developed, just sufficient to drive the 

flows. Details are presented later (see Chapter III). 

2.6. THE MATHEMATICS OF THE VENTILATION SYSTEM 

As mentioned earlier the ventilation system is based on one of the pressurised gas-flow 

systems occurring naturally in plants, namely "humidity-induced convection", and the 

pressure and flow generation is driven by what has been termed humidity-induced diffusion 

(Armstrong et al. 1991). Since the flows can be generated by the use of physical models, 

the process is perhaps best explained in detail by reference to a simple model system (Fig 

2.16). The figure shows sectional views through a cylindrical chamber having a micro- 

porous partition at one end, which at first (Figs 2.16a, b, c) is temporarily sealed from the 

atmosphere by a cover; passing through the base of the chamber is a venting pipe which may 

be closed by means of a tap. It is assumed that the pore diameters in the partition are very 

small and well within the Knudsen diffusion regime (Leuning 1983) e. g. « 0.1 Pm, tile 

mean free path length of the gas molecules. Such a partition, while allowing the diffusion of 
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Fig. 2.16. Stages in the development of pressurisations and humidity-induced covective flows in a 
simple model by the process of humidity-induced diffusion across a microporous membrane. C, refers 
to the concentration of atmospheric gases (excluding water vapour) inside the chamber, and C. the 
concentration in the outside atmosphere. It is assumed that the atmosphere above the membrane is 
dry and the isothermal conditions prevail throughout. It should be noted, however, that convections 
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(relative humidity) was 100% inside and out, provided that T>T. Pý, is the saturated water vapour 
pressure. For (a) - (e) see the text. (After Armstrong, Armstrong and Beckett 1996a). 
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gases through it, will effectively offer infinite resistance to pressurised flow (Armstrong, 

Armstrong and Beckett 1996a). 

Details of the stages, which are outlined in Fig. 2.16, are as follows: 

(a) If the chamber first contains dry air, is surrounded by an atmosphere of dry air at 

atmospheric pressure, is at the same temperature as its surroundings, and the tap open, it can 

be deduced that the concentrations of oxygen and nitrogen (plus the rare gases) within, Ci, 

and without, Ca, will be equal, i. e. Ci = Ca and their percentage volumes inside and out will 

be 100%; similarly the total pressure inside and out will be the same, i. e. Pi = Pa. 

(b) If water could now be introduced into the chamber without immediately entering the 

vapour phase, and the tap instantaneously closed, some water will subsequently enter the 

vapour phase. If the temperature control is such as to maintain Ti = Ta, then a situation will 

be created in which the concentrations of oxygen and nitrogen will be unchanged, i e. Ci = 

Ca. However, due to the additional presence of the water vapour, the internal pressure will 

rise so that Pi > Pa (Fig 2.16b). Since the system is presently gas-tight, the eventual value of 

Pi will be Pa + Pwv, where Pwv is the saturated water vapour pressure at that temperature, 

e. g. 2.337 kPa at 20°C. 

(c) If the tap is now opened briefly to equalise the two pressures, and then closed once 

more, some gas will be vented and the new conditions will be Ci < Ca, and once more, Pi = 

Pa (Fig. 2.16c). The amount of gas vented will approximate to the water vapour volume that 

had accumulated. At 200C the combined percentage volume of the oxygen and nitrogen and 

rare gases (Ci) will now be 97.7% and the volume of water vapour 2.3%. In the dry air 

outside Ca remains equivalent to 100%. 

(d) If the seal is now removed from above the porous partition (Fig. 2.16d), then because - 

Ca > Ci, the external gases will diffuse into the chamber. Similarly water vapour will diffuse 

out, but, because of the water reservoir it will be instantly replaced. The diffusive entry of 

oxygen and nitrogen will thus once more cause an increase in Pi, and if partition pore size is 

such as to prevent a pressurised outflow, then as Ci approaches Ca so will Pi approach (but 
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not reach) Pa + Pwv. At equilibrium Pi - Pa will be what is termed the static pressure 

differential. If the atmosphere inside the chamber was totally saturated with water vapour, 

Pi - Pa would be equal to P. In practice, however, if water vapour can diffuse through the 

partition, then it could never reach complete saturation under the partition and, under 

isothermal conditions, water vapour this value of 2.337 kPa could only be approached and 

never fully realised. 

(e) If the tap on the venting tube is now opened, there will be a rapid initial outflow of gas 

from the chamber and Pi will fall. However, provided that the water vapour in the chamber 

is replaced by evaporation, the concentration of oxygen and nitrogen, Ci, will never reach 

Ca, and gases will continue to diffuse in across the partition to the extent that Pi will remain 

greater than Pa, and the pressure differential Pi - Pa, termed the dynamic pressure, will 

continue indefinitely to drive gases through the venting pipe. The rate at which this will 

occur will be equal to the rate of inward diffusion across the porous partition, and will be a 

function of (i) the partition thickness, (ii) partition porosity, (iii) partition pore diameters, 

(iv) the concentration difference across the partition which is in turn a function of the water 

vapour concentration maintained beneath the partition, and (v) the venting path resistance. If 

the partition is very thin and highly porous, and provided that a high water vapour 

concentration can be maintained at the lower surface of the partition, very high rates of flow 

can be realised. It should be noted that a supply of heat from the surroundings is necessary 

to provide the latent heat of evaporation for the water. Without this source of energy the 

humidity gradient could not be maintained and no flow would occur. 

Predictions of the static pressures and flows which can be generated in a system such 

as that shown in Fig. 2 16 can be made using a number of relatively simple equations 

(Armstrong, Armstrong & Beckett 1996a). For example it can be deduced that the static 

pressure differential generated (Fig 2.16d), although caused by the diffusive inflow of 

atmospheric gases as well as the replacement of any lost water vapour, will be numerically 

equal to that of the partial pressure of water vapour beneath the membrane. If the membrane 

35 



is `non-leaky', i. e. the pores will not allow a pressurised backflow, this pressure differential 

can be determined by first estimating the water vapour flux, Jwv, through the membrane. If 

Rh is the head-space diffusive resistance, Rmd the water vapour diffusive resistance of the 

membrane, and Rb, any boundary layer resistance, then: 

Jwv = (Pswv / Pa) / (Rh + Rmd + Rb), (2.01) 

where the saturated water-vapour pressure, Psuv, at 200C at the water surface is 2.337 kPa, 

Pa is 101.3 kPa, and 2.337/101.3 is therefore a concentration difference between the water 

surface and the dry air above the boundary layer (in fractional volume terms m3 m'), and 

Jwv has units of m3 s'. 

The partial pressure drop (in kPa) across the membrane itself (APw(m)), numerically 

synonymous with the static pressure differential, will be: 

APw(m) = Pa (rw X Rmd) (2.02), 

Similarly in Fig. 2.16e, the inward flow of atmospheric gases can be predicted. Since the 

presence of H2O-vapour is at the expense of the other atmospheric gases, their partial 

pressure drop across the membrane will be equal in magnitude to that of the water vapour 

but in the opposite direction. This will generate an inward flow of atmospheric gases, Jo, n, 
into the chamber according to the equation 

Jo, n = OPw(m) / Pa) xI/ R'md (2.03), 

where R'md is the diffusive resistance of the membrane to oxygen and nitrogen. If the 

venting tube is open and has no significant resistance, this flow will be sustained indefinitely 

and represents the maximum potential rate of convective gas flow. It should be noted that if 

pore sizes are < 0.1 gm, the resistances Rmd & R'md will involve Knudsen diffusion 

coefficients (DK). These will always be less than the normal mutual diffusion coefficient, Do, 

and are determined from the following equation: 

DK = (d/3)I[8RT/ (icM, )] (Leuning 1983) (2.04), 

where M, is the molecular mass of the diffusing species i. In Eq. 2 02 the Knudsen diffusion 
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coefficient for water vapour will be used, whereas in Eq. 2.03 it will be the average Knudsen 

diffusion coefficient for the gases oxygen and nitrogen appropriate to the pore diameters. 

If pore diameters are > 0.2 µm and therefore outside the Knudsen regime, Rmd and 

R'md, no longer depend upon pore diameter, only porosity, and they incorporate the use of 

the same mutual diffusion coefficient Do, and are therefore equal. However, because the 

pores are outside the Knudsen regime any tendency to pressurisation in the chamber (e. g. 

Fig. 2.16d) will be counteracted by a pressurised backflow ('leakiness') through the 

membrane 

The potential static pressure differential, Pa(Jw x Rmd) (equ. 2.02), will not now be 

realised; instead, there will be some lower value attained at which a diffusive inflow will 

become balanced by the Poiseuille backflow. This new pressure differential, the effective 

static pressure, tPs, can be determined using the following equation where the potential 

static pressure differential, Pa(Jw x Rmd) is represented as apps: 

(Apps - APS)/ Pa x 1/ Rmd = OPS / Rmp (2.05) 

where, for membranes with MPD > 0.2 µm, Rmp is the Poiseuille Flow resistance. 

The expressions used to determine Poiseuille Flow resistance, Rmy, of a porous 

partition (membrane) is: 

R= 81jL,, /(cArj2) (Armstrong, Armstrong and Beckett 1988) (2.06) 

where, il is the viscosity of air (18.4 x 10-6 kg s"1 m" =Ns m'2), Lm is the thickness of the 

partition, E its fractional porosity, A its cross-sectional area, and r, is the radius of an 

individual pore. For the venting tube resistance, Rvp the expression would be: 

R, p = 8rýL/(nr4) (2.07) 

The expression (OPps - OPs)/ Pa x 1/ Rmd, will be the diffusive inflow (m3 s'`) under 

the partial pressure gradient of atmospheric gases numerically equal to APps - 'Ps, while 

'Ps/Rmp will be the Poiseuille backflow (m3 s"') at the resultant effective static pressure 

differential APS 
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To predict the convective flow rates in Fig. 2.16e, it is necessary to embrace the 

resistance, if any, to venting through the outlet tube and any attached flow-meter. If pores 

are within the Knudsen regime, an equation having a similar form to equation (8) may be 

used, but in which Rmp is replaced by the resistance of the venting path, Rup, and in which 

LiPs falls to become the dynamic pressure, \Pd: 

(APps - APd)/ Pa x 1/R'md = OPd / Rvp (2.08) 

The convective flow, HIC, is then given by: 

HIC = , ý'Pd / Rvp (2.09) 

If the inflow pore diameters are outside the Knudsen regime there will be two Poiseuille flow 

resistances acting in parallel, that of the inflow membrane - Rmp, and that of the venting 

path - RVp. In Systems I& II - Rvp incorporates the outflow membrane It is necessary, 

therefore, to determine first the resultant resistance to pressure flow, Y-Rp. This can be 

obtained from the relationship: 

1/ERp = 1/ Rup + 1/ Rmp (210), 

and Y-Rp is then used in place of Rup in equation 2.08, and Rmd (as used in equation 2.05) 

will replace R'md. It should be noted that as Rup becomes very large, APd should approach 

4Ps. 

2.7. PUTATIVE FEATURES OF TIIE VENTILATING SYSTEM 

The mathematical treatment outlined in the previous section makes it possible to predict the 

degree of ventilation possible with humidity-induced based pressure flow systems and 

explore the likely effects of altering specifications such as head-space depth in the inflow 

turret, partition thickness, partition porosity, partition pore diameters and the atmospheric 

conditions surrounding the apparatus. The few examples presented here illustrate (a) the 

relationship between head-space depth in the inflow turret and potential for pressurisation at 

a fixed pore diameter (b) the relationship between pore diameters and the flows and potential 

static pressures at a fixed turret head-space depth, (c) the effect of head-space depth on the 
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humidity of the convective gas-stream, and (d) effects of inflow membrane porosity on 

flows. In Chapter III the effects of some different specifications are explored experimentally. 

2.7.1. The potential for pressurisation at a fixed pore diameter in relation to head-pace 

depth in the inflow turret 

It is evident from Fig 2.17 that the distance between the evaporating water surface and the 

membrane, i. e. the head-space depth, can exert considerable influence on the degree to 

which the apparatus can pressurise as a result of humidity-induced diffusion. Since for any 

membrane, no matter what its pore size or porosity, the potential to pressurise is directly 

related to the flow which can be generated (Armstrong 1992), it follows that it will be most 

desirable to maintain as short a head-space depth as is physically possible. In practice it can 

be difficult to make this space narrower than 1 mm because of the dangers of wetting the 

membrane. This was particularly the case with System I because of its free water surface 

which could so easily be moved if the apparatus was disturbed. The use of the Oasis material 

in System II removed this problem making it safe to achieve a1 mm head-space depth The 

slightly uneven surface of the Oasis material still means, however, that distances of less than 

1 mm are not to be recommended. 

2.7.2. Pore diameter, flow and static pressure at a fixed head-space depth 

Using the guideline given section 2.6 and assuming (i) a head-space depth of 4 mm between 

the membrane and the evaporating water surface in the inflow turret, (ii) a boundary layer of 

still air of 700 pm above the membrane, (iii) a surrounding atmosphere of completely dry air, 

(iv) a membrane of diameter 20 mm, porosity 10% and thickness 10 gm, and (v) no venting 

resistance, the dependency of convective flows and static pressures (interrupted flow) on 

pore diameter are predicted to be as shown in Fig. 2.18a & b. 

The results demonstrate some particularly interesting features concerning the 

processes of humidity-induced pressurisation and flow. Firstly, as pore size diminishes the 

potential to pressurise increases and the rise is particularly steep at pore diameters < 0.1 µm 
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Fig. 2.17. Predicted relationship between static pressure differential and head-space 
depth for a membrane having pores of 0.046 pm diameter. Assumptions were: T= 20°C; 
membrane porosity = 10%; boundary layer thickness = zero. (Modified from Armstrong 
1992). 

40 



500 

, -. co 

w b 

o.. 
U 

cd 
a-+ 

U7 

25 

20 400 

C7 

300 

200 

15 

10 

0 
C C) C) 
C 
(D 

O 

n 

w 
N 

`. 

100 

0 0 

0.01 0.10 1.00 

Pore diameter (µm) 

Fig. 2.18. Predicted relationships between (a) static pressures and pore diameter, and 
(b) convective flow generation and pore diameter. The data assume a head-space depth 
of 4 mm, a boundary layer thickness of 700 pm, a membrane diameter of 20 mm; 
porosity of 10% and thickness of 10 pm, and temperature of 20°C. (Modified from 
Armstrong 1992). 
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The value is approximately that of the mean free path length of diffusing gas molecules at 

normal pressures; below this is the Knudsen regime where the molecules will hit the pore 

walls more frequently than another gas molecule. Ziere diffusion rates are slowed and 

pressure flow is drastically reduced or prevented. Secondly, as a consequence of the lower 

diffusivities in the Knudsen regime it can be seen that the potential for convective flow 

diminishes at pore diameters below 0.1 µm. The third notable feature is that as pore size 

increases beyond 0.2 µm, flows diminish again. This is a function of membrane leakiness, i. e. 

the membrane allows more pressurised backflow because the holes are now big enough for 

more molecules to be involved in inter-molecular collisions. 

For the construction of flow systems such as System I and II it is desirable that the 

inflow turret should have an inflow membrane capable of inducing as fast a flow as possible 

while at the same time developing a sufficient pressure to drive gas through the outflow 

membrane. On the other hand the outflow membrane should have as little resistance to 

pressure flow and diffusive flow as possible. At the same time both membranes should help 

maintain sterile conditions in the culture vessels. The results in Fig. 2.18 show that for a 

membrane with a porosity of 10%, (the standard adopted by Nuclepore, Millipore etc. ), the 

flow and sterility conditions will be optimal with inflow membrane pore diameters of ca. 

0.05 µm, and outflow diameters of 0.2 µm. 

2.7.3. Membrane porosities 

Pressurisation and flow are both influenced by membrane porosities. Clearly flows will be 

optimised if the outflow membrane offers as little resistance to diffusive- and pressure-flows 

as possible, and thus the higher the porosity the better. As regards the inflow membrane 

there is also a need to induce sufficient pressurisation to drive the flows, although it must be 

noted that provided the venting path has a very low resistance, not much pressure would be 

required to drive the flows. The results shown in Fig. 2.19 show that at an inflow membrane 

porosity of 10 % the convective flow is already reaching an asymptote and that potential 

pressures are more than adequate to drive appreciable flows in a low venting resistance 
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2.7.4. Humidity of the convective gas stream 

Estimates of the relative humidity of the convective gas-flows coming from inflow turrets 

are possible using the equations in Section 2.6, and some examples are shown in Fig 2.20 

Both plots show that the humidity in the gas-stream should diminish as the head-space depth 

between the membrane and the evaporating water surface increases; further extrapolation 

would show, however, that the humidity could never fall below 50% RH. By reducing the 

distance between the membrane and the evaporating water surface it can be seen that the 

relative humidities could in theory be raised to approach 100%. The depth to the Oasis 

material in the turrets of Systems IIS &F was usually set at approx. 1-2 mm and hence, even 

with an external RH of 0%, the relative humidities in the convective gas streams should not 

fall lower than 55% By comparing plots (i) and (ii) in Fig. 2.20, it can be seen that higher 

external humidities will lead to higher humidities in the flows delivered by the inflow turrets. 

Thus if the relative humidity immediately above the inflow membrane were to be raised from 

zero to 35%, convective flow humidity should rise from 55 to 72%. Any boundary layer 

above the membrane would raise the humidity still further and so it can be expected that in 

practice under forced ventilation, vessel humidities should usually exceed 72%. 

2.7.5. Membrane areas 

Provided that the head-space diameter matches the diameter of the inflow membrane, it 

follows from the mathematical treatment in Section 2.6 that flow will be directly 

proportional to membrane area. Flows can thus be increased substantially by increasing 

inflow turret diameters; however, for ease of handling a limit must eventually be reached and 

it can be simpler to connect inflow turrets in parallel to achieve faster flows. 

44 



100 
,- 

90 

an 
N 

80 

0 
4-. 
O 

70 

G) 

60 

50 

Inflow turret head-space depth (mm) 
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2.8. FINAL COMMENTS 

The results presented above have briefly outlined some of the properties of the new 

apparatus on which this thesis is based. It is not within the scope of this thesis to explore 

fully the limits of the system, but in Chapter III experimental examples are presented; it will 

be seen that some of these compare closely with the predictions made above. It is clear, 

therefore, that further exploration of the systems' potential could readily be achieved by 

mathematical modelling based on the equations presented in Section 2.6. 
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CHAPTER-111 

THE PERFORMANCE OF THE VENTILATION SYSTEMS 

3.1. INTRODUCTION 

Convective pressurised flows of gases, static and dynamic pressure differentials (APs and 

ýPd), and other functional characteristics of the ventilation systems I and II are studied in 

this chapter. The static pressure differential (OP5), equivalent to the tendency for gases to 

enter the system, is the maximum pressure developed when the inflow chamber (turret) is 

connected only to the pressure transducer (non-throughflow condition). On the other 

hand, dynamic pressure, APd, the pressure driving the convected gases through the system 

during ventilation, is measured when convective flow is taking place by having the 

pressure transducer connected laterally to the flow path (i, e. in parallel). 

Some experiments were performed to estimate the effects of the following on the 

ventilation rates and in some cases on APs and APd of one or both of Systems I and II 

(Chapter II, Section 2.3): distance between the inflow membrane and evaporating surface 

(inflow head-space depth), interbatch variations of membranes, the presence and absence 

of agar and plantlets in the culture vessels, membrane pore diameters, exposed membrane 

area, wind speed and RH of the wind above the inflow membrane and resistance within the 

venting pathway. For both systems, the sustainability of flow rates without replenishment 

of water was also investigated. 

Additionally the effects of sealed, diffusive and forced-ventilation systems were 

investigated in relation to the humidity within the vessel, and the tso values for the 

retention of injected ethylene examined in relation to these different ventilation systems. 



3.2. MATERIALS AND METHODS 

The convective flows (HIC), APs and OPd differentials were studied by using the 

throughflow ventilation systems (Systems I and II) in a variety of ways i. e. varying the 

distance between the underlying water surface and membrane, increasing the resistance to 

venting, using different membrane areas, varying dry-air wind speed and the humidity of 

the wind across the inflow membrane. 

A soap film flow-meter (length 400 mm; bore 5 mm) placed in series in between 

the inflow turret and the culture vessel (Fig. 3.01), was used to measure the humidity 

induced convective flow (HIC) of System I. A pressure transducer (Furness Controls 

Limited) was connected to the inflow turret by means of a three-way tap to measure the 

static pressure and dynamic pressures. Flexible PVC tubing (OD = 5.5 mm; ID = 4.0 mm) 

was used to connect the turrets to the flow-meter and the pressure transducer. 

Static pressures and HIC flow rates of the two variants of System II were also 

measured. Again the flow meter (length 400 mm; bore 5 mm) was placed in series 

between the inflow turret and the culture vessel, and the central tube of the system which 

is normally used to direct the incoming gas, was connected to the flow meter and also to 

the pressure transducer through a three way tap (Fig. 3.02). An extra glass tube (length = 

30 mm; OD = 10 mm) with a side arm (as shown in Fig. 3.02) was connected at the 

elongated end of the outflow turret. The side arm could then connected to the other end of 

the flow-meter with a flexible tubing for measuring flows in the completely assembled 

system. 

3.3. EXPERIMENTS 

Experiments 3.3.1 to 3.3.4 and 3.3.8 to 3.3.10 were performed with the turrets exposed to 

ambient conditions of constant RH and temperature (measured using a 

humidity/temperature probe - Vaisala, Sweden). Experiments (3,3.5) - (3.3.7) were 

performed with the inflow membrane exposed within a wind tunnel (Fig. 3.03) into which 
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air at various humidities and speed ranges was delivered from an ADC humidity generator 

and compressed air cylinder. 

3.3.1. Effects of varying distance between membrane and evaporating water surface. 

Humidity-induced convection (HIC) and static pressure (OPs) values were measured with 

both Systems I and II for different distances (W) between the inflow-membrane and the 

evaporative water surface (head-space depth). The head-space depth of System I was 

varied over the range of 1.5 - 19.0 mm for a membrane with MPD of 0.03 µm. HIC and 

OPs were recorded each time. The RH and ambient temperature were also recorded 

during the experiment. 

Flow rates and static pressures (OPs) values of Systems IIF (Fast Flow) and IIS 

(Slow Flow) were also measured (i) for different head-space depths (varied from 1.5 -31 

mm) both with and without any Oasis material inside the inflow turret and (ii) for different 

distances between the inflow membrane and the Oasis. 

In each of these experiments no outflow membrane was fitted. 

3.3.2. Within batch variations of inflow and outflow membrane 

The advertised percentage porosity for Nuclepore membranes used in System I was 10%. 

However, previously, different batches of membranes had been found to vary in this 

respect (Armstrong 1992). 

This experiment was performed to examine any variation in the ventilation rates 

produced by different membranes of the same pore size, and the APd values. HIC flow 

rates and 6ýPd values were measured for different combinations of inflow and outflow 

turrets. Each of four different inflow turrets (MPD = 0.03 pm) was combined with each of 

four different outflow turrets (MPD = 0.2 µm; W=2 mm; RH = 38%; T= 20 °C). 
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3.3.3. Effects of presence or absence of agar or plantlets 

Culture vessels were capped with either the large (System IIF) or small (System IIS) 

ventilation apparatus, and flow rates were measured by connecting the flow meter in series 

between the culture vessel and the outflow turret (Fig. 3.02). The culture vessels were (a) 

empty, or (b) contained 10 cm3 agar (depth =8 mm), or (c) 10 cm3 agar with an in vitro- 

grown tobacco plantlet (FW= ca. 300 mg; leaf area ca. 9.0 cm2). 

3.3.4. Effects of exposed membrane area 

The standard inflow membrane areas of the ventilation apparatus were made progressively 

smaller by covering with Sellotape. Flow rates and static pressure values were measured 

for different inflow membrane areas of Systems I, IIS (slow flow) and IIF (fast flow). In 

each case a standard 25 mm diameter Nuclepore membrane (MPD = 0.2 pm) was used on 

the outflow turret. In the case of Systems I and IIS, in order to start with relatively high 

membrane areas, two inflow turrets were connected in parallel on the delivery side. 

Humidity induced flow rates were also measured for different outflow membrane 

areas using System IIF capped with a Duropore membrane (thickness = 100 µm) having a 

porosity of 70% and an MPD of 0.2 µm. 

3.3.5. Effects of pore diameter 

Here the membrane end of the inflow turret (System I) projected through a neatly fitting 

hole into a Perspex "wind" tunnel (Fig 3.03), so that a stream of dry air could be passed at 

a fixed speed over the membranes of various pore diameters. Flow rates and QPs were 

measured for the inflow turret, System I: MPD = 0.015 pm - 3.0 µm; W=4 mm. The 

wind speed of dry air across the membrane was 0.024 m s1; T= 19.4°C; RH = ca. 0% in 

wind tunnel. 
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3.3.6. Effects of varying wind speed of dry air across the membrane 

The inflow turret bf System I projected into a wind tunnel as in section 3.3.5. Through 

this, air at different wind speeds was blown horizontally over the membrane to develop a 

range of humidity gradients vertically across the membrane by varying the boundary layer 

thickness. Flow rates and static pressure values were measured for each value of wind 

speed (0 - 67 mm s') across the inflow membrane of the ventilation apparatus. W=4 mm; 

T= 19.4°C; RH = 0% in wind tunnel. 

3.3.7. Effect of varying the humidity of wind across membrane 

The inflow turret of System I was placed in the wind tunnel (as in the previous experiment 

Fig. 3.03) in a constant velocity air stream at constant temperature and at a range of 

humidities from 0% to 54% (by using an ADC humidity generator). Flow rates and static 

pressure values were measured for different humidities (W =4 mm; MPD = 0.03 µm). 

Wind velocity was 0.056 m s''. 

3.3.8. Effects of increasing the resistance to venting 

Using both System I and System IIF and S, HIC flow rates and AN values were measured 

for different resistances to outflow, by using different Nuclepore membranes (MPD = 

0.03,0.1,0.2,0.4 µm) as outflow membranes and also by introducing soap bubbles in 

series within the flow-meter. 

HIC flow rates and AN values were also measured for different resistances to 

venting by placing microcaps (each of 1 µl volume) in series between the exit tube and the 

flow meter. 

3.3.9. Sustainability of flow rates 

Both System I and System IIF (5 replicates of each) were set up under growth room 

conditions (ambient temperature 230C; RIi = 30+5 %) each being initially `full' of water. 

Flow rates were measured every 24 h. The drops in water level of the water reservoirs 
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were also measured each day. This experiment was done in order to compare the duration 

of flow in the two'systems without topping them up with water. 

3.3.10. Estimation of humidity in the culture vessel with the sealed, diffusive and 

forced ventilation systems 

Culture vessels (60 cm) were `capped' in various ways: (a) with the forced ventilation 

apparatus (System IIF; flow rate 5 cm3 min'), (b) with a conventional polypropylene 

membrane (thickness = 25 µm) and (c) with a silicone rubber bung. 

The RH (%) of the culture vessels in each case was determined by inserting a 

humidity probe (Vaisala) into the culture vessel through the side arm. 

3.3.11. Effects of different types of 'capping' of culture vessels on retention times, 

t50, for injected ethylene 

Glass culture vessels (60 cm3) were `capped' in various ways : 

(a) by System IIS; dry turret - producing only diffusive ventilation; (b) by System IIS - 

slow flow (flow rate 1.0 cm3 min''); (c) by System IIF; dry turret - producing only 

diffusive ventilation; (d) by System IIF - fast flow (flow rate 5.0 cm3 min'`); (e) by a 

conventional polypropylene membrane (thickness = 25 µm); (f) by a silicone rubber bung. 

The side arm was sealed with a silicone rubber `Suba-seal' to allow ethylene 

samples to be withdrawn by means of a hypodermic syringe. Silicone rubber was used 

since it does not itself produce ethylene although it will, to a certain extent be leaky to 

ethylene. Four of each type of assembly were used as replicates, and a 23 µl I"' ethylene/air 

mixture were injected through the `Suba-seals' of the side arms of the assembly. Ethylene 

concentrations were then determined at regular intervals by removing 500 µl samples of 

gas from the assemblies and analysing by means of gas chromatography (PYE Unicam). A 

Poropack Q column (60/80 mesh) was used in a glass column (2438 mm X 0.64 mm) and 

column, injector and flame ionisation detector temperatures were 100,150, and 1500C 
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respectively. The peak was identified by a retention time of about 1.4 min. Nitrogen was 

used as the carrier gas at a rate of 60 cm3min-'. The time taken for an assembled container 

to lose 50% of its content of ethylene gas (t50) was determined from plots of ethylene 

concentration against time. 
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3.4, RESULTS AND DISCUSSION 

3.4.1. Effects of varying distances between the inflow membrane and water surface 

System I 

The distance between the membrane and underlying water surface (W) in the inflow 

assembly has a very great influence on the magnitude of the static pressures and 

convective flows. It should be noted that the membrane could be easily wetted accidentally 

if the water level in the chamber is raised too high (W < 1.0 mm); therefore it was not 

possible to move the water level closer than 2 mm from the membrane. Static pressures 

and HIC flow rates increased as the distance between membrane and water level 

decreased. Maximum static pressures and HIC flow rate were recorded when W=2.0 mm 

(static pressure 140 Pa; HIC flow rate = 18.4 nm3 s-) (Fig 3.04b). The average ambient 

temperature and RH during the experiment were 26oC and 19.6 % respectively. 

System II 

In the absence of any Oasis material in the inflow assembly the distance between the 

membrane and the free water surface (W) has a very great influence on the magnitude of 

static pressure and convective flows. Static pressure and HIC flow rates increased as the 

distance between membrane and water level decreased. Maximum static pressure and HIC 

flow rates were recorded when W=1.75 mm (static pressure 62 Pa; HIC flow rate 150 

nm3 s'' ca. 9 cm3 min') (Fig 3.04a). This is a much higher rate than is normally obtained 

with System IIF but in this experiment external humidity was particularly low (18.5%), the 

ambient temperature relatively high (27°C), and the water surface domed so that the head 

space depth may have been effectively even less than 1.75 mm. A high temperature 

increases the atmospheric water vapour content of the inflow turret atmosphere; both this 

and a low external humidity increase the humidity differential across the membrane and 

hence the concentration gradient for the inward diffusion of oxygen and nitrogen to drive 

the convective flow. 
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Fig. 3.04. Showing the effects on static pressure (AP. ) and flow rates of distance between 
membrane and (a) water level of System IIF (without any Oasis in the inflow turret; MPDi = 
0.05 µm, membrane diameter = 50 mm) and (b) water level of System I (MPDi = 0.03 µm, 
membrane diameter = 25 mm). Each symbol represents a mean ± SE of 5 replicates. Head 
space depth is the distance between the membrane and free-water surface below. 
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Similarly, when the distance between inflow membrane and water saturated Oasis 

material (Wo) was increased, the static pressure and flow rate gradually decreased (Fig 

3.05b). Highest flow rate and static pressure values were recorded when Wo = 1.5 mm 

(ca. 150 nm3s' and 62 Pa respectively). 

For both Systems I and II, the nearer the inflow water surface, was to the membrane, the 

steeper was the diffusion gradient and hence the greater the tendency for the inward 

diffusion of dry gases from the atmosphere. Therefore, pressurisation and HIC flow rate 

increased simultaneously with decreasing values of water levels. 

It should be noted that when Oasis material was used in the inflow turret (System 

II), the distance between the membrane and the water surface (Wr) of the turret reservoir 

has only a small influence on the magnitude of APs and HIC flow rates (Fig. 3.05a). The 

Oasis material in the inflow turret (below the membrane) was always "saturated" with 

water and the distance between membrane and the surface of the water-saturated oasis 

material was < 2.0 mm, and this is the most important factor for developing a steep 

diffusion gradient across the membrane. The highest OPs and HIC flow rates in this 

instance were ca. 61 Pa and 133 nm3 s"' respectively, and this corresponded with a 

distance, Wr, between the membrane and the reservoir water level of 2 mm. On the other 

hand when Wr was 31.5 mm, AP5 and HIC flow rates were 56 Pa and 124 nm3 s-I 

respectively. Therefore, the influence of reservoir water level on APs and HIC flow rates is 

very little. The slight decreased in OPs and HIC with increase in Wr was probably due to 

the loss of water potential in the capillaries of the Oasis as the `free water' surface fell. 

Various of the equations in Section 2.6 can help to explain the observations of 

these experiments. The diffusion rate (m3 s'1), JW", for water vapour loss from the free 

water surface within the inflow turret (Fig. 3.06) can be calculated by using equation 2.01: 

viz. Jwv = (Pswv'a) / (Rh + Rmd + Rb), and following normal convention (Armstrong 
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Fig. 3.06. Inflow turret of through-flow ventilation apparatus (System 1); Rb 
= diffusive resistance with boundary layer; Rm = diffusive resistance of 
membrane (pore space); Rh = diffusive resistance of head-space. 
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1979), the diffusive resistance (s m"3) of the inflow turret head-space can be determined 

from following equation. 

Rh=Lh/DoAX (3.01) 

Where, Lh = the distance (m) between the water surface and the membrane, Do = the 

mutual diffusivity (m2 s'') of water vapour and air, AX = cross sectional area (m) of the 

head-space (equal to the membrane surface area). 

It follows from this equation that when the value of L is decreased (by raising the 

evaporating water surface of the inflow turret) the value of Rh is reduced. Also, according 

to the equation (2.01) a decrease in Rh means an increase of Jwv value and the diffusion 

rate will be higher when the distance between the evaporating water surface and 

Nuclepore membrane becomes lower (if Rb, Rm, and AC are considered as constant) 

Both OPs and HIC flow rate should increase with a decrease in Rh and hence the 

experimental result for System I accorded with this mathematical analysis. In case of 

System II, the results may at first seem not to correspond with this mathematical analysis 

but actually in this system iPs and HIC flow rate were not controlled by reservoir water 

level, but by the evaporating surface of the water-saturated Oasis material. The function of 

reservoir-water is only to make the Oasis water saturated. 

3.4.2. Within batch variation of inflow and outflow membrane 

The aim of this experiment was to find out whether membranes were reliable for inducing 

constant rates of inflow and outflow. 

There was very little variation in HIC flow rate and APd for different combinations 

of inflow and outflow membrane turret samples: standard errors were only ± 0.55 and ± 

1.95 % respectively (Table 3.01). It was concluded that such in-batch variation was not 

sufficient to be of any concern. 
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Table 3.01. Estimation of the ranges of humidity Induced convective flow rates and 
dynamic pressure (OPd) values produced by different turrets of System I; membrane 

diameter = 25 mm; distance between inflow membrane and water surface W=2 mm; 
average ambient T= 19.6 °C and RH = 38.5%. 

Inflow turret =A 

MPD = 0.03 µm 

Outflow turret =B 

MPD = 0.2 µm 

Dynamic 

pressure (Pa) 

Flow rate 

(nm3s-') 

Al BI 11.0 9.82 
Al B2 10.1 9.49 

Al B3 10.1 9.49 

Al B4 12.5 916 

A2 B1 10.6 9.16 

A2 B2 11.0 9.49 

A2 B3 09.5 9.49 

A2 B4 09.1 9.16 

A3 BI 09.6 9.33 

A3 B2 11.1 9.49 

A3 B3 10.1 9.49 

A3 B4 11.2 9.16 

A4 B1 11.0 9.49 

A4 B2 10.5 9.82 

A4 B3 10.5 9.33 

A4 B4 11.1 9.49 
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3.4.3. Effects of presence or absence of agar or plantlets 

This experiment was performed to see if there were any significant dillcrences in the 

ventilation rates produced in the culture vessels due to the presence or absence of a`.; <rr 

and/or plantlets. When the culture vessels were empty, flow rates (System III- and 

including outflow membrane) were 80 nm' s-' (Fig 3 07), and neither the presence of agar 

(10 ml) in the culture vessels or plantlets significantly altered the flow. 

The results confirm that the apparatus in its complete form (inflow + outtlow 

membranes in position) performs as anticipated and is unlikely to be influenced by the 

activity of the propagated material. 
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D 

Fig. 3.07. Showing the flow rates of ventilation system IIF : A) empty culture vessels, B) 

culture vessels with 10 cm3 agar, C) containing a tobacco plantlet + agar and D) 
containing a tobacco plantlet + agar, but with no water in the apparatus (non through 
flow condition); MPDi = 0.05 gm and MPDo = 0.2 µm; distance between membrane and 
water saturated oasis (Wo) in A, B and C was 1-2 mm from inflow membrane. Ambient 
temperature was 25°C and RH was 30%. Each symbol represents a mean ± SE of 5 
replicates. 
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3.4.4. Effects of membrane area 

Inflow turret 

Flow rates decreased substantially as the area of exposed membrane of the inflow turrets 

decreased. Static pressures, on the other hand, increased but by relatively small amounts 

(Fig 3.08). The latter is thought to have been due chiefly to the decreased escape of water 

vapour overall through the smaller areas of membrane, leading to higher concentrations of 

water vapour below the membrane. Thus, a decrease in the membrane area to head-space 

area ratio could be one way of increasing the humidity of the gas-flow delivered by this 

type of apparatus. 

The decrease in flow with decreased membrane area appears to be linear for each 

of the Systems, and as has already been mentioned, if membrane area and turret area are 

equal and decrease together in the same proportions (Section 2.7.4), flow rate should be 

directly proportional to membrane area. In the present examples, however, it can be seen 

that although the decreases in flow are linear with decreasing membrane areas, the 

extrapolated lines will meet the y-axis at a positive flow. Clearly there can be no flows 

with zero membrane areas, but the question arises as to why the flows do not fall linearly 

to zero at zero membrane area. The explanation is probably the same one offered to 

explain the rises in static pressure. As the ratios of membrane areas to turret areas decline, 

the increasing water vapour concentrations in the inflow turret head-spaces will increase 

the concentration gradients for gas entry and stimulate greater diffusive inflows per unit 

areas of membranes. 

Outflow turret 

It will be seen that the area of the outflow membrane can also significantly alter the flow 

rates (Fig. 3.08d): flow rates increased substantially with increasing outflow membrane 

area. However, the rise can be seen to be curvilinear and is approaching an asymptote at 

the membrane area normally used for the fast flow apparatus (ca. 17 cm2). Thus, in its 
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normal configuration, the flow rates with System IIF will not normally be much reduced 

by the presence of the outflow membrane. 

The effect of the outflow membrane in System I and System US was explored also 

(data not shown) and it was found that the resistance imposed by the presence of the 

outflow membrane does not greatly reduce the flow. 

3.4.5. Effects of pore diameter 

Convective flow rates increased with increasing pore sizes rising to a peak at 0.2 pm MPD 

(Fig. 3.09) and then declined again with further increase in pore size. This confirms 

experimentally the predictions reported by Armstrong 1992 and by Armstrong and 

Armstrong (1994b) and the implications have already been discussed at length in Section 

2.7.2. 

3.4.6. Effects of varying dry-air wind speed across the membrane 

Wind speed over the inflow membrane has a great effect on static pressure values and also 

on HIC flow rates (Armstrong 1992; Fig 3.10). With increasing wind speed both static 

pressure and HIC flow rates increased, the rises being particularly steep up to 0.01 m s'. 

At higher wind speeds the plots began to plateau and above 0.03 m s'' the slope became 

very shallow. This can be explained in terms of boundary layer thicknesses: the faster the 

dry air wind speed, the thinner will be the boundary layer, and the drier will be the air near 

to the membrane. This will steepen the humidity gradient across the membrane and 

simultaneously, the faster will be the flow rate and also higher the static pressure value. 

The results suggest that the apparatus will work best in conditions where wind speeds 

exceed 0.03 m s', and since wind flow in the growth room usually varied between 0.1 to 

0.3 m s" it may be deduced that wind flow conditions in the growth room were close to 

optimum for the functioning of the apparatus. 
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Fig. 3.09. The relationship between convective flow rate and pore diameter of the inflow 
membrane of System I (membrane diameter = 25 mm, W=4 mm). The wind speed of dry air 
across the membrane was 0.044 ms"'. The ambient temperature was 19.4°C and the RH was 
39.4%. Each symbol represents a mean ± SE of 5 replicates. 
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3.4.7. Effects of varying the humidity of wind across the membrane 

Static pressures and HIC flow rates were greatly reduced with increasing relative humidity 

(RH) in the external atmosphere above the membrane. At 0% external RH the static 

pressure and HIC flow rate were 181 Pa and 7.7 nm3 s' respectively, whereas at 54% RH, 

OPs was ca. 83 Pa and HIC, 3.6 nm3 s"' (Fig 3 11) At 100% RH, extrapolation of the 

graphs showed that there should be virtually no pressurisation or flow, because of no 

humidity gradient and hence no concentration gradient for the inflow of atmospheric gases 

(Fig 3.12). Conversely, the drier the outer air, the steeper will be the diflüsion gradient; as 

a result pressurisation and HIC flow rates increase. These results are in agreement with 

Armstrong (1992) and Armstrong and Armstrong (1990,1994b). It is interesting to note 

that the relationships between flow and RH and static pressure and RH are linear and thus 

the effects of humidity changes in the external atmosphere are relatively easily predicted. 

However, it must be borne in mind that the higher the ambient temperature the steeper the 

slopes. 

The implications of these data are that it is most desirable to have the apparatus 

situated in conditions of low humidity. Relative humidities in the growth room during the 

present study varied from a little under 20% to ca. 40% 

3.4.8. Effects of increasing the resistance to venting 

3.4.8.1. Outflow membrane resistance: System I. 

As the resistance to venting was increased stepwise by lowering the pore diameters of the 

outflow membrane the flow rate decreased (Fig 3.12c). Over the pore diameter range 0.4 

to 01 µm the decline was only small but below 0.1 pm the fall was dramatic. Conversely, 

but as expected, dynamic pressures rose with declining pore diameter and again in the 

range 0.4 to 0.1 µm the change was only small, and below 0.1 µm there was a steep rise; 

at MPD 0.03 pm the dynamic pressure reached 55 Pa. 

70 



200 

Cs 

t) 

aý 
W) 

U 

cei 

- 20 - r 

150 

100 

15 

0 

n 

10 
0 

E3, 

_, 
50 

0 

5N 

0 

Fig. 3.11. Showing the effects of humidity differential on static pressure (AP. ) and 
humidity-induced convective flow rates using System I (MPDi = 0.03 p. m, membrane 
diameter = 25 mm, W=6.0 mm). Ambient temperature was 19°C and RH was 36%. Each 
symbol represents a mean of 5 replicates. 

71 

0 20 40 60 80 100 
External relative humidity (% ) 



32 

24 

E16 
1.. U 

8 

0 0 
0123456 

Nu ih r of soap bubble 

9 90 
8 j80 

7 70 
6 60 

5 50 
4 

C 

40 
3 30 

2 20 

1 Apd 10 
0 L 

,,.. ._j ,-,, 10 
0,0 0.1 0.2 0.3 0.4 0.5 

Pore di. mnter of oid-flow nnnbmne (} r) 

JQ 
7 

Fig. 3.12. Showing the effects of altering the resistance to venting, either by placing soap 
bubbles in series (0,1,2,3,4,5,6) within the flow meter of (a) System IIF (MPDi = 0.05 µm, 
membrane diameter = 50 mm, Wo = 1.0 - 1.5 mm) and (b) System IIS (MPDi = 0.03 }. Lm, 
membrane diameter = 25 mm, Wo = 1.0 - 1.5 mm), or by using different outflow membranes 
(c) in System I; MPDi = 0.03 gm; MPDo = 0.03,0.1,0.2,0.4 gm. Ambient temperature was 
25°C and RH was 18%. Each symbol represents a mean ± SE of 5 replicates. 

3.2 20 

(b) 
24 15 

N t.. i 

N 

1.6 E1o 

g ýö 

ß. 8v_ p5 

2.0 

15 y 
cn 

d 
10 

5 

ResisUre 15 

72 

TIII10 

01234567 
Mm± of soap bubble 



These effects clearly demonstrate the changes in the attributes of the membranes when 

pore diameter falls into the Knudsen regime (section 2.6 and Armstrong, Armstrong and 

Beckett 1996a, b). At a pore diameter of 0.03 µm there is probably no pressurised flow 

through the membrane, hence the steep rise in dynamic pressure and increased gas density 

within the vessel. Thus, gas escape is probably due entirely to Knudsen diffusion from the 

outflow membrane; in volume terms the concentration gradient driving the outflow will be 

5S/101300 m3 m"3 i. e zPd / Pa At a pore diameter of 0.1 µm, outflow may again be 

chiefly diffusive but the diffusivity of the membrane will be very much greater, while at 0.2 

}im there will be significant pressure flow through the membrane. At 0.4 µm most of the 

outflow will probably be pressurised bulk flow (see also Armstrong, Armstrong and 

Beckett 1996a, b). 

It should be noted that although flows are increased further when using an outflow 

membrane of pore diameter 0.4 pm this is not possible for tissue culture. Instead an 

outflow membrane of pore diameter 0.2 pm must be used to prevent the entry of bacteria 

and fungal spores into the System. Viruses, however will not be excluded. 

3.4.8.2. Other venting path resistances 

Venting resistance can be increased, and hence dynamic pressure raised and flows 

reduced, by the soap films used in the soap film flow meters (Fig 3.12 a, b). However, it 

would seem that flows are not very much reduced by a single film which is the usually the 

norm when using such devices. 

More dramatically OPd can be increased by stepwise addition of I µl Microcap 

capillaries to the venting path (Fig 3.13). The result agrees with Armstrong (1992) and 

Armstrong and Armstrong (1994b) and demonstrates the importance of minimising the 

resistance of any pipe-work within this type of apparatus. 
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Fig. 3.13. Showing the effects of increasing the resistance to venting of System IIF on the 
development of dynamic pressure (APd) and the flow rates. Note that the static pressure 
(AP. ) for this membrane under these conditions was 51 Pa. Ambient temperature was 25°C 
and RH was 20%. Each symbol represents a mean ± SE of 5 replicates. MPDi = 0.05 gm, 
membrane diameter = 50 mm, Wo = 1.0 - 1.5 mm. 
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3.4.9. Sustainability of flow rates 

The aim of this experiment was to determine the ability of the forced ventilation systems to 

sustain the ventilation of the culture vessels without renewing with water. 

Using System I (Fig 3.14 b, d) the water level dropped each day, and simultaneously 

the flow rates decreased rapidly: even over the first day the flow fell by 25% and by day four 

the rate was only 30% of that at the start; this latter value was only 8% of the flow rate in 

System IIF after four days. After six days without attention, the flow rate from System IIF 

was ca. 70 nm3 s"', compared to only 4 nm3 s' from System I: i. e. System II at this stage is > 

17X more efficient Thus if a relatively constant flow rate is to be maintained with System I, 

the water level of the inflow turret should be adjusted daily to keep it as near to the 

membrane as possible. 

The results in Fig 3.14 a and b show that although the water level of the water 

reservoir of ventilation System IIF dropped each day, flow rates remained almost steady for 

up to 4 days. This is the result of the capillary action in the Oasis material. Even after 6 days 

the flows were still 70% of maximum. It is evident, therefore, that the new apparatus does 

not require such frequent attention and is much more efficient than System I. It can also be 

deduced that maximum flow rates could be further prolonged by a relatively small increase 

in the radial dimensions of the reservoir. For example, increasing the reservoir radius by only 

5 mm would double the period of maximum flow. 

3.4.10. Ventilation system and culture vessel humidity 

The relative humidity in an empty culture vessel (60 cm3) receiving convective gas flow from 

the fast-flow ventilation apparatus (System IIF - flow rate 5.0 cm3 min"') was found to be 

ca. 65-70% (Fig. 3.15). 

Very high relative humidities (98.3±1.2) were recorded in sealed vessels containing 

agar plus plantlets (Tobacco: F. W. ca. 210 mg). When the vessels were capped with 

polypropylene disc slightly lower humidities (93.2+1.1) were achieved. However, when 
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Fig. 3.14. (a) & (6): The sustainability of the flow rate without adding water to the 

systems, i. e. allowing the water levels to drop : (a) System IIF (MPDi = 0.05 µm, 
membrane diameter = 50 mm, Wo = 1.0 - 1.5 mm) and (b) System I (MPDi = 0.03 µm, 
membrane diameter = 25 mm). 
(c) & (d): The effects of time on water depths within (c) the water reservoir of System 
IIF and (d) the inflow turret of System 1. The ambient temperature was 25°C and the 
RH was 21%. Each symbol represents a mean of 5 replicates (Note that in system lIF 
the free water surface depend on the capillary action of the oasis material). 
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capped with the forced ventilation apparatus the RH fell to 85.2+0.9 % in the vessels 

containing agar + plantlets; in the absence of plantlets, (agar only), the RH was ca. 80%. 

Although very significantly higher than in the empty vessel, and due no doubt to (i) the 

transpiration and respiratory activity of the plantlets and (ii) the evaporation from the agar 

in the culture vessels, this is a very useful value in terms of plant performance. The 

literature shows that successful weaning of plants is much more likely if plants can be 

grown at humidities <94% (Smith el al., 1992). The humidity levels achieved in the 

culture vessels is also dealt with in Chapter VI. 
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Fig. 3.15. Effects of different types of ventilation on % relative humidity of the culture 
head-space; I= each vessel contained agar + plantlet and sealed with silicone rubber 
bung; 2= each vessel contained agar + plantlet and capped with polypropylene disc 
(diffusive ventilation); 3= each vessel empty (no agar or plantlets) and fitted with a FF- 
ventilation apparatus; 4= each vessel contained agar (no plantlet) and fitted with a FF- 
ventilation apparatus; 5= each vessel contained agar + plantlet and fitted with a FF- 
ventilation apparatus. Ambient RH was ca. 30% and the temperature was 25°C. Volume of 
culture vessels = 60 cm3; volume of agar medium = 10 cm3 ; tobacco plantlets were 20 
day-old (FW = ca. 210 mg); fast flow ventilation rate = 3.5 cm3 min-'. 
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3.4.11. Ventilation systems and t5o's for retention of injected ethylene 

A major reason for developing forced ventilation systems for use in plant 

micropropagation is to try to prevent, or at least minimise, the build up of gaseous 

products of metabolism. A principal consideration is the removal of ethylene, a potent 

plant hormone, which at high concentrations can be a growth inhibitor and a cause of 

senescence. 

The results shown in Fig. 3.16 demonstrate the efficacy of ethylene removal in the 

three types of microprop ventilation systems tested: completely sealed, diffusively 

ventilated by capping with a polypropylene membrane and forced ventilation 

Clearly forced ventilation was the most effective method for removing ethylene 

from the culture vessels: the fast-flow system was ca. 18 times and the slow-flow one ca 

4 times more efficient in removing ethylene (and presumably any other accumulated gases) 

compared with polypropylene membranes - one of the most commonly used diffusive 

methods for ventilating culture vessels in plant micropropagation. As would be expected, 

the dry turrets (large and small) had long t5o times (227 min and 285 min) since, when dry, 

they are unable to produce any convective flow and the gas loss can take place only by 

diffusion. 

Ethylene loss from the sealed vessels was very slow indeed- after nearly 800 

minutes there was still 80% of the injected sample present. Of the 20% that had been lost, 

it is possible that most had diffused through the relatively thin-walled Suba-seal on the 

vessel side-arm, but some may also have diffused out via the silicone rubber bung. 

The results suggest that the forced ventilation systems are the most effective for the 

removal of accumulated ethylene from the culture head-space. 
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Fig. 3.16. The influence of different types of `capping' of culture vessels on retention 
times, t50, for injected ethylene; initial concentration was 23 Al 1.1 of ethylene in air. 
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3.5. FINAL COMMENTS 

This part of the study has highlighted the improvements in the design of System II over 

System I. By incorporating a water reservoir and using Oasis material in the inflow turret 

of System II, there is little danger of wetting the membrane, and the maintenance of a 

steep diffusion gradient is facilitated. This, together with the use of an inflow membrane of 

larger diameter, has led to considerably faster flows (5 cm3 min'') and more sustained 

flows (> 5days), without the apparatus requiring attention. (System I must be filled with 

water daily. ) Even after a week the flow from System II was still 2X the maximum from 

System T. Flows with this new system can be 4X the maximum for System I (Fig. 3.14). 

Also the new model, being comprised of one unit, is a more convenient capping system for 

tissue culture vessels. 

In addition, the study has shown that membrane pore diameters, external RH, wind 

speed across the inflow membrane and resistance to venting can all have important effects 

on the velocities of flows through culture vessels. Clearly, these factors must be 

considered in future in further modifications to the system for the ventilation of tissue 

cultures etc. 

The t50 measurements for the escape of ethylene from 60 cm3 vessels have shown 

that System II used in the normal "throughflow mode" is > 25X more effective than when 

used as a simple diffuser; it is also > I8X more efficient for removing ethylene than 

conventional capping by a polypropylene membrane. 

Subsequent chapters provide data comparing the performance of the new System 

II with those of conventional capping systems, in relation to the growth and physiology of 

various plant species 
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CHAPTER IV 

EFFECTS OF CLOSED SYSTEM, DIFFUSIVE AND FORCED VENTILATION ON 
THE GROWTH AND PHYSIOLOGY OF CAULIFLOWER IN VITRO 

4.1. INTRODUCTION 

Growth and development of in vitro cultured plantlets or tissues depend not only upon 

the composition of the nutrient medium but may also be affected by the composition of 

the gaseous atmosphere (Blazkovä et al. 1989; Jackson et al. 1991). The conventional 

protective conditions under which the tissues are grown to prevent microbial 

contamination and retard desiccation of the plant and the nutrient medium may often 

unintentionally cause a restriction of gas exchange between the vessel atmosphere and 

the outside air (Buddendorf-Joosten and Woltering 1994). For example with 

polypropylene film over the mouth of the vessel, condensation droplets may develop on 

the inner surface and impede the diffusive exchange of gases through the pores. Similar 

effects might develop with cotton wool bungs. However, the complete sealing of culture 

vessels is often the normal practice and here, of course, there is very little, if any, 

gaseous exchange with the atmosphere. 

Further to this, tissue cultured plants themselves can release a variety of 

substances into the atmosphere of the culture vessels and these may accumulate under 

conditions of restricted ventilation and have significant effects on growth and 

development of in vitro cultures (Heyser and Mott 1980). The most widely studied 

gaseous product from cultures is ethylene (Gamborg and LaRue 1968, Huxter, Reid and 

Thorpe 1979) and this was first shown by Stewart and Freebairn (1967). The effects of 

ethylene can be prevented by potent inhibitors of both ethylene action and biosynthesis 

(Yang 1985) or by forced ventilation (Saltveit and Yang 1987). Other volatile substances 

released in vitro are carbon dioxide (Zobel 1987), ethane, ethanol, methane, acetylene 



and acetaldehyde (Thomas and Murashige 1979a, b; Adkins, Shiraishi and McComb 

1990). Changes in the gaseous atmosphere of the culture vessel can suppress the growth 

of callus and promote necrosis in rice (Adkins 1992), and in other species (Table 1.01). 

Large amounts of carbon dioxide in the culture vessel atmosphere have been measured 

for many species grown in vitro and often high concentrations are found in association 

with ethylene (Zobel 1987). The effects of CO2 and O2 availability and the presence of 

ethylene and other volatiles already have been reviewed (Chapter I: General 

Introduction). 

Cauliflower is one variety of the species Brassica oleracea L. that also includes 

cabbage, kale, kohlrabi, brussel sprouts and broccoli, which are important vegetables for 

human consumption as well as animal feed (Grout 1988). The poor growth and 

regeneration of cultured cells and tissues of Brassica spp. have been attributed to 

ethylene produced by the cultured plants (Chi et al. 1990). By using ethylene inhibitors 

many authors have shown that accumulated ethylene was one of the causes of 

recalcitrance in Brassica spp. (Chi and Pua 1989; Chi, Pua and Goh 1991; Lentini et al. 

1988 and Sethi, Basu and Guha-Mukherjee 1990). However, no reports have been 

published so far relating the possible roles of ethylene to the growth, regeneration and 

other physiological activities of in vitro-grown cauliflower. 

The aim of this part of the study was to compare the effects of a closed system 

(vessel completely sealed), diffusive ventilation system (vessels capped by polypropylene 

film) and the forced ventilation systems (SF and FF described in Chapters II and III) on 

cauliflower seedlings/plantlets grown in vitro. In particular, a major aim of the study was 

to see if forced ventilation might improve the growth of cauliflower seedlings/plantlets by 

flushing out the ethylene. To this end the effects of ethylene inhibitors (AgNO3, Ag2SZO2, 

and CoC12) and the ethylene precursor (ACC) were investigated. Also the effects of the 

different methods of ventilation on carbon dioxide, ethylene and oxygen concentrations 

inside the culture vessels were examined. The growth of the plants was studied in terms 
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of leaf number, fresh weight and area, stem fresh weight, length and diameter and root 

number and maximum length. The effects of ventilation and ±AgNO3 or ACC on leaf 

chlorophyll contents and rates of photosynthesis were also investigated. 
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4.2. MATERIAL AND METHODS 

4.2.1. Plant material 

Seeds of Cauliflower (Brassica oleracea var. botrytis L. ) were surface-sterilized by 

immersing in sodium hypochlorite solution (2% w: v) for 5 min, then rinsed three times with 

sterile water and sown at a density of four seeds per tube on to full strength MS medium in 

culture vessels where normally they germinated within 24 hours. 

Hypocotyl cuttings (5-7 mm in length) were obtained from 5 days old seedlings. 

The cotyledons were dissected out and discarded. 

4.2.2. Establishment of cultures 

Sterilized seeds or cuttings were inoculated into culture tubes containing 10 ml of MS 

medium. These vessels (60 cm) had a side arm sealed with a silicone rubber `Suba-seal' 

to allow ethylene, oxygen or CO2 samples to be added or withdrawn by a hypodermic 

syringe. Unless otherwise stated cultures were incubated at 23 - 250C under cool-white 

fluorescent light (a continuous light flux; PAR =150 pmol m2s'). 

The vessels (60 cm) were `capped' in various ways : (a) by silicone rubber bungs (b) 

by conventional polypropylene membranes (thickness = 25 pm) (c) by the slow flow (SF) 

ventilation apparatus (flow rate 1.5 cm3 min'), and (d) by the fast flow (FF) ventilation 

apparatus (flow rate 3.5 cm3 min') 

4.2.3. Media preparation 

MS (Murashige and Skoog 1962) basal medium was used for the culture of 

plantlets/seedlings under each of the different treatments. As different media constituents 

were required in different concentrations, separate stock solutions for the 

macronutrients, micronutrients, Fe-EDTA (Iron stock), vitamins and aminoacids, growth 

regulators etc. were prepared for ready use (Appendix I). For mixing the solutions a 

magnetic stirrer (Gallenkamp) was used. The pH of the medium was adjusted to 5.8 by 

the dropwise addition of 0.1M HCl or O. IM NaOH, whichever was necessary, and 
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gelling was achieved by addition of an appropriate quantity of Phytagel (Sigma)(3. Og 1"1). 

The culture vessels were then autoclaved at 15 psi pressure at 1210C for 15 minutes. 

4.2.4. Methods of measuring ethylene, carbon dioxide, and oxygen concentrations 

4.2.4.1. Ethylene 

For each experiment, when plants were ready for harvesting, the ethylene concentrations 

were determined by removing 500 µl samples of gas from the culture vessels and 

analysing by means of gas chromatography (PYE Unicam). Poropack Q (60-80 mesh) 

was used in a glass column (2500 mm X 6.5 mm) and temperatures of the column, 

injector and flame ionisation detector were 100,150, and 1500C respectively. The 

ethylene peaks were identified by a retention time of about 1.4 min. Nitrogen was used 

as the carrier gas at a rate of 60 cm3 mini 1. The identification of the ethylene peak was 

separately confirmed on other samples by repeating the injection after exposing the 

vessel atmosphere to potassium permanganate solution (0.1M), an ethylene absorber. 

Ethylene concentrations were calculated from peak area. 

4.2.4.2. Oxygen 

Oxygen concentrations in the culture vessels were obtained by injecting samples into a 

specially made `T' shaped glass chamber (Fig. 4.01a) fitted at one end with an oxygen 

micro-electrode (Clark type - tip diameter 10 gm)(Fig. 4.01b). The other end of the 

chamber was sealed with a rubber bung. The T-branch of the chamber was sealed with a 

`Suba-seal' through which gas samples were normally injected. 

The details of the design and construction of the ̀ Clark type' electrode have been 

described by Armstrong (1994) where a gold-plated low-melting point alloy was used as 

the cathode and a silver wire as the anode. To standardise the electrode it was polarised 

at a plateau potential (approx. -0.65V) to obtain the electrolysis current at air-saturation. 

The gas samples (I ml) from the culture head-space were removed by a hypodermic 

syringe and then injected into the chamber. The change in the oxygen electrolysis were 

then recorded. Calibration is usually linear with a zero oxygen content correspondingly 

giving zero residual current. 
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Fig. 4.01. A) Specially made glass chamber fitted with an oxygen electrode to 
measure oxygen concentration of the culture vessel; B) schematic diagram of a 
'Clark type' electrode (Armstrong 1994) 
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4.2.4.3. Carbon dioxide 

The carbon dioxide concentrations in the culture vessels were obtained by injecting (1 

cm3) gas samples into a closed circuit system (vol 40 cm) of an infra red gas analyzer 

(S. W. and W. S. Burrage, Hustingleigh, Ashford, Kent, UK) connected through a 

specially made chamber (Fig 4.02). Before injection the analyser had been calibrated 

using a 350 ppm CO2 supply, and the subsequent injection samples were added after 

scavenging the IRGA CO2 to zero. 

4.2.5. Chlorophyll and carotenoid contents 

Chlorophyll and carotenoid contents were determined when necessary as follows. 

Samples of chlorophyll from the fresh leaves of plantlets were prepared by homogenizing 

appropriate volumes of leaves in 80% acetone for 30s using an Ultra Turrax 

homogenizer, centrifuging at 300 rev. min' for 10 min, and measuring light absorption 

between 400 and 700 nm in a spectrophotometer (Pye Unicam SP 1800). From the 

absorption curves, the proportion of chlorophyll a (Ca), chlorophyll b (Cb), and 

carotenoids (CX+c), were evaluated according to formula of Lichtenthaler and Wellburn 

(1983). 

4.2.6. Photosynthetic rate 

The rates of CO2 uptake/output by seedling/plantlets/callus were measured using the IRGA 

described above as a closed system into which the vessels were plugged using syringe 

needles and three-way taps. The system was originally charged with air (CO2 concentration 

= 350 ppm) and this was circulated over the leaves by the pump system of the IRGA. The 

changes in CO2 concentrations with time were recorded using a flat-bed recorder. The net 

atmospheric photosynthetic rate (APR), and that at the CO2 levels created by the plants 

growing in that particular ventilating system (net working in vitro photosynthetic rate - 

IPR), were calculated in terms of mol plantlet' s" from the following equation: 

Photosynthetic rate = ACa*V / (T*Vm*N), 
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Fig. 4. O2 i Schematic diagram of a specially made chamber connected to an Infra red 
gas analyzer to measure CO2 concentration of the culture vessels. 
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where: OCa is the change in CO2 concentration (ml m1') over time interval T (s) over which 

CO2 concentration changes were recorded, V is the volume (ml) of the system + the volume 

of the culture vessel, Vm is the molar volume of CO2 at the growth room temperature, and 

N is the number of plantlets in the vessel. For APR the initial slope of the CO2 versus time 

decay curve was used, while for IPR, a tangent to the slope was drawn at the `working' CO2 

concentration. Rates were also expressed as mol M-2 leaf surface s'' by substituting total leaf 

surface area (m) for N in the equation or as mol m-' s"' by substituting plantlet / calli 

volumes. 

Leaf areas were measured on harvesting using a digital leaf area meter (Lambda 

Instruments Corporation). Plantlet and calli volumes were measured by sinking the plant 

material in the water in a measuring cylinder. 

4.2.7. Experiments 

4.2.7.1. Effects of presence and absence of various ethylene inhibitors and 

precursors on growth and development in closed system 

Silver nitrate (AgNO3 at 5,10 and 20 AM), cobalt chloride (CoC12 at 5,10 and 20 AM), 

and silver thiosulphate (STS at 1,5 and 10 AM) were used as ethylene inhibitors, and the 

ethylene precursor ACC (at 5,10 and 20 AM) as an ethylene stimulator, were used at the 

different concentrations in the MS medium (Appendix 2). Surface sterilized seeds were 

inoculated on to the culture tubes containing 10 ml of the MS medium (4 seeds per tube) 

and placed in continuous light (PAR 70 µmol m"2 s'1) in the growth room to germinate 

and grow. There were 10 replicates per treatment. 

Ethylene concentrations in the head-spaces of the culture vessels were measured 

(5 replicates per treatment) after 7 days. Growth measurements were performed after 18 

days. These included leaf number, fresh weight and area, stem fresh weight, length and 

diameter and root number and maximum length. 
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4.2.7.2. Growth and physiology of seedlings: the evaluation of the closed, diffusive 

and forced ventilation systems and the effects of AgNO3 and ACC. 

Silver nitrate (at 10 µM) or ACC (at 2 µM) were added to the medium (MS with 3% 

sucrose) as required after filter sterilization (Millipore, 0.22 µm). Four seeds were 

inoculated per tube; there were 5 replicates per treatment and placed in the growth room 

in continuous light. 

The following growth conditions were compared 

The vessels were: (a) sealed with silicone rubber bung (sealed control); (b) sealed 

with silicone rubber bung + AgNO3 (10 µM) added in the medium; (c) sealed with 

silicone rubber bung + ACC (2 µM); (d) the vessels were capped with polypropylene 

membrane (diffusive control), (e) capped with polypropylene membrane + AgNO3 (10 

µM); (f) capped with polypropylene membrane + ACC (2 µM); (g) capped with a Slow 

Flow (SF)-ventilation apparatus (1.5 cm3 min-') (SF-control); (h) capped with SF- 

ventilation apparatus + AgNO3 (10 µM);. (i) capped with SF-ventilation apparatus + 

ACC (2 µM); (j) capped with a Fast Flow (FF)-ventilation apparatus (3.5 cm3 min') 

(FF-control); (k) capped with FF-ventilation apparatus + AgNO3 (10 µM); (1) capped 

with FF-ventilation apparatus + ACC (2 µM). 

Ethylene and CO2 concentrations in the culture head-space were measured on the 

7th and 12th days respectively; photosynthetic rates were measured on 12-day-old 

seedlings; growth and chlorophyll contents were measured on the 18th day. Also in the 

sealed condition (with and without AgNO3 and ACC) ethylene concentrations were 

measured from days I- 12. In an additional experiment: sealed condition + ACC (2 

µM), CO2 concentrations were measured from days I- 20. 

4.2.7.3. Effects of different types of ventilation on growth and physiology of shoot 

cuttings 

Seeds were surface sterilized and inoculated in half strength MS medium and incubated 

under growth room conditions. Hypocotyl cuttings (5-7 mm in lengths) were obtained 
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from five days old seedlings; the cotyledons were dissected out and discarded. Cuttings 

were inoculated in 60 cm3 culture vessels containing 10 ml of full strength MS medium 

supplemented with BAP (1.0 mg l") and NAA (0.5 mg l"); this led to new shoot 

proliferation along with callus development. Each vessel was capped in one of the 

following ways: (a) a silicone rubber bung to seal the container, (b) a polypropylene disc 

to allow diffusive ventilation, or (c) a FF-ventilation apparatus for forced ventilation. 

Only one explant was inoculated per vessel. Five replicates were prepared for 

each treatment. Cultures were kept in growth room conditions. 

Concentrations of C02,02 and ethylene were measured throughout the 

experiment to the 30th day. Ethylene production rate for plant + callus, and callus alone 

were measured across 48 hours in the light on the 30th day. Photosynthetic rates and 

C02, production rates were measured on the 30th day. (For determining ethylene 

production rates, the culture vessels were uncapped to allow them to equilibrate with the 

atmosphere. For photosynthetic rates and CO2 production rates the vessels were first 

charged with air). Growth of plants and callus and leaf chlorophyll and carotenoid 

contents were measured on the 31st day. 
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4.3. RESULTS AND DISCUSSION 

4.3.1. Effects of ethylene inhibitors and precursors on seedling growth in the closed 

condition 

4.3.1.1. Ethylene inhibitors : AgNO3, CoC12 and Ag2SZO3 

Compared to the additive-free controls, the addition of ethylene inhibitors in the media 

was found to have had significant stimulatory effects on the growth and development of 

cauliflower seedlings (Table 4.01; Plate 4.01). The best response was observed with 10 

µM AgNO3 in the medium, and the fresh weight of leaves was 2.6X, and the leaf area 

2.8X those of the control. Here also the number of leaves was slightly higher than in the 

other treatments. The best root systems were also found in this treatment and the 

number of roots was 3.5X and maximum length of roots 2.2X those of the control. The 

fresh weights of the stems were also very much higher. 

The other inhibitor of ethylene action, STS, also stimulated the growth and 

development of the seedlings. STS at 5.0 µM concentration produced the best 

performance for leaf fresh weight and area, but stem fresh weights and root numbers 

were greatest in the 10 gM treatment. Apart from leaf number most other growth 

parameters were substantially greater than those of the control. In the 5µM treatment, 

leaf areas and fresh weights were approx. twice those of the controls. The numbers of 

roots in the 10 µM treatment were approx. 3X higher than in the control. 

The addition of cobalt in the form of cobalt chloride which inhibits ethylene 

formation also produced stimulatory effects on growth. The overall best performance 

was observed at the 20 . tM concentration. The most significant development was 

observed in the leaf system where leaf fresh weight per seedling was 2.4X and leaf area 

2.6X that of the control. The root systems were also better than the controls with root 

numbers at 20 gM concentration being approx. 3X those of the controls. 

The ethylene concentrations in the culture vessels were measured during the 

experiment (Fig. 4.03). Significant amounts of ethylene were found in the head-space of 

the culture vessels when silver was added either in the form of AgNO3 or STS. With 
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Table 4.01. Effects of ethylene inhibitors and precursor on growth and development 
of cauliflower seedlings. 

Control - 112.1+13.2 5.3+0.3 3.. 5+0.1 15.5+2.7 12.9+0.7 0.90+0.02 29.0+1.1 6.1+0.4 

ACC 5.0 µM 66.9+9.2 4.8+0.2 2.4+0.1 36.4+1.2 11.4+0.8 1.8+0.2 17.3+5.0 5.0+1.1 

10. tM 76.8+1.2 4.7+1.3 1.6+0.1 35.1+0.5 9.7+1.5 2.1+0.1 9.9+1.0 3.0+0.2 

20 µM 34.3+1.4 27+0.8 0.7+0.1 23.1+0.5 7.4±1.3 2.0+0.1 7.4+0.4 3.2+0.3 

AgNO3 5. () µM 219.9+10 4.0+0.2 6.8+0.9 12.3+2.7 11.9+0.2 1.1+0.1 53.2+3.7 12.0+1.2 

10 µM 289.8+14 5.7+0.5 9.9+0.9 23.1+0.9 13.7+1.9 1.2+0.1 62.9+1.8 21.4+0.3 

20 µM 212.0+11 4.1+0.8 6.7+0.9 11.1+0.5 9.4+1.3 1.6+0.1 57.4+0.4 11.2+0.3 

Ag2S2O3 1.0 µM 154.1+14 4.9+0.3 4.2+0.3 14.1+0.3 13.2+0.9 1.1+0.2 56.7±3.4 9.60+1.1 

50 µM 229.8+10 4.0+0.2 7.6+0.7 18.3+2.0 13.5+0.5 1.1+0.1 46.2+3.1 14.0+1.8 

10 µM 180.8+5.9 5.1+0.5 5.8+1.4 20.1+0.9 13.7+1.9 1.1+0.1 33.9+1.8 18.9+0.6 

COC I2 5.0 . tM 124.1+11 4.8+0.8 3.1+0.8 14.1+0.9 12.2+0.9 1.0+0.1 39.7+2.4 6.60+1.1 

10 µM 209.8+10 5.0+0.2 5.9+0.4 21.3+2.0 13.5±0.9 1.2+0.1 66.2+3.9 17.0+1.8 

20 µM 270.8+5 5.6+0.5 9.2+1.0 30.1+0.5 12.7+1.0 1.6±0.1 49.9+1.9 17.9+0.4 

*60 cm' culture vessels each containing four 18 days old seedlings; vessels were scaled with silicone rubber 
bungs; each value represents a mean ± SE of 20 seedlings: 

tmean maximum root length (3 roots from each 

seedling). Seedlings grown at ca. 25°C in continuous light ( PAR = 150 µmol m'2s"). 
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PLATS : 4.01 

Showing the effects of ethylene inhibitors (CoC12, AgNO3 and Ag2S2O3) and 
precursor (ACC) on growth and development of cauliflower seedlings (18 
days old) under sealed conditions. 

ACC treatment: note growth inhibition by ACC; best growth with ACC was 
at concentration of 5.0 µM. 

CoC12 treatment: note stimulation of growth at 10 µM (best root) and at 20 

µM (best shoot). Growth at 5.0 µM was almost the same as in control. 

AgNO3 treatment: note stimulation of growth at all concentrations used. 
Best growth was at 10 µM. 

Ag2S2O3 treatment: note stimulation of growth at all concentrations used but 
not as great as with AgNO3. Best growth was at 5.0 [M (Note rather thick 
laterals were apparently induced by 10 p. M Ag2S2O3. 

Leaf epinasty was present in the controls and in ACC treatments and was 
largely prevented by AgNO3 and 5.0 . tM Ag2S2O3. 
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was only 7.4 mm which was 0.3X that of the controls. The leaf fresh weights, numbers 

and leaf areas in this treatment were only 0.3X, 0.5X and 0.2X respectively those of the 

controls. However stem fresh weights and diameters were substantially increased in the 

ACC treatments compared to the controls (Table 4.01, Plate 4.01). 

All these effects on growth would seem to be typical responses to ethylene (Taiz 

and Zeiger 1991), and the concentrations measured during the experiment were very 

high (Fig 4.03), very much higher than in the additive-free controls. The highest 

concentration (>I 1 µl l"'), and the poorest growth recorded after 15 days of culture, was 

in 20 pM ACC treatment (Table 4.01). 

These results clearly indicate that ethylene can have inhibitory effects on the growth and 

development of cauliflower seedlings and that this can be overcome by the addition of 

ethylene inhibitors like silver nitrate, cobalt chloride or silver thiosulphate in the medium. 

The concentration of 10 gM AgNO3 in the rooting medium appeared to best for 

counteracting the inhibitory effects of ethylene. 

4.3.2. Growth and physiology of seedlings: the effects of closed, diffusive and forced 

ventilation systems with and without AgNO3 or ACC in the culture medium 

4.3.2.1. Growth (no additives) 

Taking account of all the parameters of growth and development within the various 

treatments, it is evident that seedlings grown in either diffusive or forced ventilation 

produce more vigorous shoot and root systems than those grown in sealed containers 

(Table 4.02, Plate 4.02). 

The diffusive and SF-ventilations produced almost the same growth of leaf, shoot 

and root. The best growth by far occurred with the FF-ventilation with larger leaf areas 

(2.3X) and higher leaf fresh weights, (2.5X) those of the controls. Better root systems 

were also observed with the FF-ventilation with root length and number twice as great as 

for the controls; root numbers were also greater than in the diffusive system. 
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TABLE 4.02. Effects of different types of ventilation, ACC and AgNO3 on the growth 
and development of cauliflower seedlings. 

Control Sealed 84.1+1 4 5 0+0 8 2 6+0 7 11 1 +03 9 2+0 9 0.76+0.1 36.8+3 4 5 6+1.3 

Diffusive 127.5+4.7 4.9+0 2 4.3+0.4 7.8+1 1 7.4+0.4 0.85+0.1 67 5+3 9 6 6+1 1 
ventilation 
Forced ventilation 126.1+5.6 5.0+0 7 4.5+11 7.7+0.3 7,5+05 0.92+01 71.2+2.7 7 8+1 3 
(Slow) 
Forced ventilation 209.5+12 62+09 6 1+1 1 12.5+4.4 9.9+1_3 0.95+0.2 74.3+3.5 10 8+2 7 
(Fast) 

ACC Sealed 78.5+2.2 6.7+0.8 2.0+0.1 19.2+0 4 111 +0 5 1.4+0.1 213+1 5 3 0+0 2 

(2.0 . tM) Diftüsive 119.8+2.2 5.3+0.5 3.3+0 6 9 8+1_5 6.7+0.5 11 +0.2 23.9±2 0 4 0+0 3 
ventilation 
Forced ventilation 134.3+30 5.2+0.8 46+08 13A+0,5 8.4+1.2 1.1 +01 24.0+0.4 4 2+0 8 
(Slow) 
Forced ventilation 215.0+1.8 6,2+08 6 5+1 4 13.5+3.3 10.9+2 0 1.0+0.2 67.5+3.3 8 7+1 5 
(Fast) 

AgNO3 Sealed 136.1+10,1 5.1+08 4.2+0.9 10.2+11 6.1 +0.1 0.9+0.1 75.6+2.8 6.8+0.5 

(10 µM) Diilüsive 138.8+42 5.3+0.6 4 4+0 6 9.5+0.6 6 6+0.7 0.9+0.1 77.7+9.9 8 8+0 8 
ventilation 
Forced ventilation 156.0+7.2 5 3+0 7 5.6+1 1 11.2+1.1 8.6+0.7 0.8+0.1 78.9+6 1 9 0+1 0 
(Slow) 

Forced ventilation 219.7+8 5 6.3+0.6 7.0+0.9 12.5+1.1 10.5+0.8 0.9+0.1 82.5+7 7 11 0+1 3 
(Fast) 

*12 days old seedlings (four seedlines ner 60 cm` culture vessel): each measurement is for the best 2 lout o 
4) seedlings from each of 10 tubes and represents a mean 3 SE of' 20 seedlings. 
*Flow rates of slow and fast flow ventilations were 1.0 cm' min' and 3.5 cin' min 1 respective[ y; IOr scaled 
and diffusive ventilation vessels were capped with silicone rubber bungs and polypropylene discs 

respectively: Seedlings grown at ca. 25°C in continuous light, PAR = 150 pmol m's-' 
tmcan maximum root length (3 roots from each seedling). 
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PLATE : 4.02 

Showing the effects of different types of ventilation on growth and 
development of cauliflower seedlings (18 days old). 

(A) sealed (no additives); 
(B) capped with polypropylene disc (no additives); 
(C) capped with slow flow ventilation apparatus (no additives); 
(D) capped with fast flow ventilation apparatus (no additives); 
(E) sealed + ACC (2 µM); 
(F) capped with polypropylene disc + ACC (2 µM); 
(G) capped with slow flow ventilation apparatus + ACC (2 µM); 
(H) capped with fast flow ventilation apparatus + ACC (2 µM); 
(1) sealed + AgNO3 (10 µM); 
(J) capped with polypropylene disc + AgNO3 (10 µM);. 
(L) capped with slow flow ventilation apparatus + AgNO3 (10 µM); 
(K) capped with fast flow ventilation apparatus + AgNO3 (10 µM); 

Note in the control (A - D) and ACC treatments (E - H) growth increased 
with the efficiency of ventilation. Leaf epinasty in sealed and diffusive 
ventilation occurred in both these treatments. 
AgNO3 stimulated growth in all the treatments but the biggest effects was 
seen in the sealed and the diffusive treatments, where there was also an 
absence of leaf epinasty. Growth was similarly good with fast flow 
ventilation in both ACC and AgNO3 treatments. 
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4.3.2.2. Growth (with and without ACC) 

Compared to the additive-free treatment, the ACC treatment with sealed ventilation 

produced some slight growth inhibition in the leaves but marked inhibition in root 

growth. Similar effects can be seen when comparing the additive-free and ACC diffusive 

treatments. In terms of root growth the same can be said of the SF-treatments, but ACC 

may have stimulated stem growth in the SF-treatment. However, the deleterious effects 

of ACC on growth and development of cauliflower seedlings appear to have been largely 

overcome by FF- ventilation (Table 4.02) with leaf fresh weights and areas and stem 

fresh weights equal to those of the additive-free treatment, and root numbers and lengths 

almost the same. As regards root development only the FF-ventilation was able to 

overcome the substantial root-growth inhibition found with ACC addition. However, it 

should be noted that the ACC concentration used was <0.5 times that of the lowest of 

the concentrations used in the previous experiment. The reason for this was because the 

ethylene concentrations found in that experiment were so very much higher than in the 

additive-free controls. It was hoped that 2 pM ACC would produce less ethylene but 

still sufficient to cause inhibition. 

4.3.2.3. Growth (with and without AgNO3) 

In all except the FF-treatments the presence of AgNO3 in the medium, led to better 

seedling growth than in the ACC or additive-free controls, this was especially evident 

when comparing plants from the sealed vessels. Seedlings grown under SF-ventilation 

showed slightly better growth than under diffusive ventilation but statistically the 

differences are barely significant (Table 4.02, Plate 4.02). With FF-ventilation, however, 

although growth was not significantly better than in the additive-free control it is 

substantially better than in the sealed, diffusive or SF-ventilation treatments. 

The increased growth even in the sealed system indicates that the silver ion 

behaved as expected as an ethylene inhibitor. Consequently, since no net photosynthesis 

is possible in the sealed systems (see later) and growth is entirely dependent upon the 
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sucrose in the culture medium, one may deduce that the difference in growth between 

the sealed and diffusive AgNO3 treatments on the one hand (where leaf fresh weights 

were approx. 137 mg plant-) and the additive-free sealed controls on the other (leaf 

fresh weights approx. 84 mg plant"') can be attributed to ethylene inhibition of growth. 

Further it seems almost certain that the further improved growth under FF-ventilation 

will be a function of the improved CO2 supply enabling the plants to benefit also from 

photosynthetic assimilate production. 

It should also be mentioned that the root systems in the silver treatments in all conditions 

(sealed, diffusive and forced ventilation) were best among the three treatments (silver, 

ACC and control) (Table 4.02). The results also indicate that the addition of ACC or 

silver has little effect on growth when the vessels were ventilated forcibly The leaf, 

shoot and the root systems of these two treatments were almost the same as those of the 

control when forced ventilation was applied in the culture vessels. Therefore, it can be 

concluded that the growth and development of cauliflower plants can be very 

significantly improved by applying forced ventilation in the culture vessels. These results 

are consistent with the findings of Kozai, Kubota, and Nakayama (1989) where better 

growth and higher photosynthetic rates of in vitro grown strawberry plants were found 

by applying forced ventilation. Yue, Gosselin and Desjardins (1993) also confirmed that 

forced ventilation (at a rate of 100 ml/min through each culture vessel, vol. = 340 cm) 

can improve the growth of geranium plantlets, In the present study rates of I-5 ml/min 

were used, but in much smaller vessels (vol. = 60 cm). 

4.3.2.4. Photosynthesis (with and without ACC or AgNO3) 

Photosynthetic rates were measured throughout the range of treatments in the present 

experiment and are presented in Table 4.03. The rates were those achieved (i) at 

atmospheric CO2 levels (i. e. net atmospheric photosynthetic rate - APR) where the vessels 

were temporarily charged with atmospheric air, and (ii) at the CO2 levels created by the 

plants in that particular ventilating system (net working irr vitro photosynthetic rate - IPR). 
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Table 4.03. Effects of different types of ventilation, ACC and AgNO3 on 
photosynthetic rates of cauliflower seedlings (12 days old). 

Control Sealed 500 ± 10 

Diffusive 990 ± 20 

ventilation 
Forced 1200 ± 18 

ventilation (slow) 
Forced 1410 ± 31 

ventilation (fast) 

ACC Sealed - (349 ± 12) 

(2.0 µM) Diffusive 980 ±9 
ventilation 
Forced 1090+16 

ventilation (slow) 
Forced 1130 ±8 

ventilation (last) 

AgNO3 Sealed 730 ± 50 

(10 ALM) Diffusive 750 ± 27 

ventilation 
Forced 970 ± 9.9 
ventilation (slo v) 

Forced 1 170 ± 15 

ventilation (äst) 

2 10t 0.04 <0 <0 

2.81 ±0.02 310110 0.86±0.01 

3.11± 0.03 550 t 12 1.40 ± 0.03 

3.92 ± 0.08 850 ± 12 1 90 ±0 04 

(1.47±0.04) <0 <0 

3.20±0.04 161 ±30 056± 001 

371 ±0.09 480± 17 1 30±001 

3.90±0.09 760±70 200±002 

2.90±0.01 <0 <0 

2.80±0.04 160±30 0.61 ± 0.02 

3.80±0.07 370 ± 40 1 20 ±0 03 

3.90±0.09 860±50 2.10±005 

. . avýv. 1ýlll. l ll. la\. I-I. IIII. üJU- ül . IJU PI 1 alllU /L FL111U1 111 J 115111 1111. \. I IIUIVJ}IIIIILIIL lalll. l 

measured at known CO: concentrations of the culture vessels during the experimental period. 
Each value represents a mean ± SE of 5 replicates. 
Flow rates of slow and fast flow ventilations were 1.0 cm' min 1 and 3.5 cºn' min' respectively: for 

scaled and diffusive ventilation vessels were capped with silicone rubber bungs and polypropylene discs 

respectively, volume of culture vessel = 60 cm'. Seedlings grown at ca. 25°C in continuous light. PAR 
= 150 µmol m `s-I 
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Each was measured in terms of CO2 exchange as (a) mol plant's-' and (b) mol m'2 leaf 

surface s'' and calculated from tangents to the curves shown in Fig 4.04 (see also Table 

4.05). 

Considering first the APR data it is not surprising to find that, since plant size tended 

to increase with increasing efficiency of the ventilating system, the APR per plant shows a 

similar trend; however, variability blurred any possible differences between diffusive flow 

and SF-ventilation and between FF- and SF-ventilation, On a leaf area basis photosynthetic 

rates were very similar across most treatments, but the rate in the additive-free controls were 

significantly lower while the data for ACC sealed treatment were extraordinary. It is 

particularly interesting to note that the plants in the additive-free sealed systems were 

photosynthetically fully-functional, but that in the ACC sealed system not only was there no 

net photosynthesis but, when these vessels were charged with air and re-sealed into the 

closed circuit of the IRGA, there was a net output of CO2 Perhaps this indicated an onset of 

senescence brought on by the prolonged exposure to high levels of ethylene (Table 4.04), in 

Fig. 4.04 it can be seen that the chlorophyll levels in these plants were very much lower than 

in the additive-free sealed treatment. 

The IPR data are a closer reflection of the normal in vitro metabolism and here the 

very significant differences between each of the systems of ventilation become apparent, 

with the FF-system clearly providing by far the best conditions for assimilation. At this stage 

of growth (15 days), because of the improved CO2 supply (Table 4.05), the rates of 

photosynthesis in the SF-systems (Fig. 4.04) were approximately double those with the 

diffusion-dependent ventilation, while FF-rates were substantially higher (= I. 4X) than rates 

under SF-ventilation; however, rates did not differ much between systems in equivalent 

additive and additive-free treatments except again in the case of the ACC sealed system. Net 

photosynthesis was zero in the sealed additive-free control and its AgNO3 counterpart 

emphasizing the dependency of growth upon the sucrose in the culture medium. The net 

CO2 output of the ACC sealed treatment has already been commented on. Again based both 
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Fig. 4.04. Showing the depletion of carbon dioxide concentrations in the culture 
head-space in seated condition (at 72 pmol m"2s 1 PAR) by the end of the experiment. 
12 days old seedlings were previously grown under different types of ventilation 
(sealed - with silicone rubber bung - ", diffusive - capped with polypropylene disc - A, slow forced ventilation - flow rate = 1.0 cm3 min" - 9; and fast forced ventilation 
- flow rate = 3.5 cm3 min''- "). 60 cm3 culture vessels each contained four seedlings, 
grown at ca. 25°C in continuous light; PAR = 150 Nmot m"2s"1. Each symbol represents 
a mean ± SE of 5 replicates. 
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upon the photosynthetic rates per plant it is clear that the FF-ventilation system is 

superior to the other systems. 

These results are consistent with the findings of some other authors who 

illustrated that enhancement of CO2 in the culture vessels increased photosynthetic rate. 

Solärovd et al. (1989) mentioned that successful cultivation needs an effective CO2 

supply inside the vessels, and in another investigation on the effects of forced ventilation 

on the growth of strawberry in vitro carried out by Kozai, Kubota, and Nakayama 

(1989) using PPF (photosynthetic photon flux) of 220 gmol m-2 s" and CO2 

concentrations of 350 - 2000 gl 1"', higher photosynthetic rates and better growth were 

observed. They also suggested that forced ventilation could increase diffusion and 

assimilation of CO2 by leaves. Yue, Gosselin and Desjardins (1993) observed that the 

growth of geranium was promoted by forced ventilation in which plantlets can carry out 

normal photosynthesis. 

With regard to the effects of ethylene on photosynthesis, it seems possible that 

there may have been some direct effect in the additive-free controls through effects on 

chlorophyll contents (see Fig. 4.05). In the ACC sealed treatment the net CO2 output in 

the light seems likely to have arisen from the long term influence of high ethylene levels. 

In forced ventilation ethylene cannot accumulate and CO2 was enriched in the culture 

vessels' atmosphere, stimulating the higher photosynthetic rates which are reflected in 

the growth. It seems very likely that if the experiment had been prolonged the differences 

between the ventilating systems might have become even more accentuated. In summary, 

considering all the parameters of growth and development of these in vitro-grown 

cauliflower seedlings, it seems clear that the growth is best under forced ventilation 

(flow rate 3.5 cm3 min' during the experiment) which facilitates increased CO2 supply 

and the removal of toxic gases like ethylene from the culture vessels. In Figure 4.04, it is 

likely that CO2 levels with the seedlings from the forced ventilation treatments remained 

rather higher than with those from the sealed or diffusive treatments towards the end of 

the measurement-period. This was probably because with forced ventilation the plants 
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were larger and there was mutual shading of the leaves. This did not occur with the 

smaller plants from the latter two treatments. 

4.3.2.5. Chlorophyll content (with and without ACC or AgNO3) 

The lowest chlorophyll content based on the fresh weight of the leaves was observed 

with sealed ventilation + ACC (240 µg g"1: Fig. 4.05); the highest values were in the FF- 

systems and were very much higher than this (4.3X), and were significantly greater than 

in the diffusive and SF-systems. In all cases SF-ventilation marginally increased 

chlorophyll contents above those with diffusive ventilation. 

The addition of silver substantially increased the chlorophyll contents under 

sealed ventilation but the effect was only slight within diffusive or forced ventilation 

systems. The rise in chlorophyll content which accompanied the silver addition in the 

sealed vessels strongly suggests the countering of ethylene action. Similarly the very low 

chlorophyll content (240 pg g-') in the sealed vessels + ACC (ethylene 1.7 µl 1''), and the 

low value (423 µg g"') in the additive-free sealed vessels (ethylene 0.3 µl 1''), suggests 

that ethylene may have depressed the chlorophyll levels. Since ethylene was undetected 

in the SF and FF systems it seems possible that the much higher chlorophyll contents in 

the FF-systems might have been linked in some way to the more equable levels of CO2 

content under FF. 

These findings were in agreement with the findings of Cournac el al. (1991) in 

Solanum tuberosum where in closed vessels lower chlorophyll contents were recorded. 

He also showed that the addition of silver in the form of Ag2S2O3 increased chlorophyll 

contents slightly However, in aerated vessels chlorophyll contents also increased 

significantly and this is similar to the present findings. 
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Fig. 4.05. Effects of different types of ventilation and the presence and absence of 
ethylene inhibitor (AgNO3) and precursor (ACC) in the medium on chlorophyll contents of 
18 days old cauliflower seedlings. For sealed and diffusive conditions culture vessels were 
capped with silicone rubber bungs and polypropylene discs respectively; the flow rates of 
slow and fast flow ventilations were 1.0 and 3.5 cm3 min"'. 60 cm3 culture vessels each 

contained four seedlings, grown at ca. 25°C in continuous light; PAR = 150 pmol m"2 s'' 
Each value represents a mean t SE of 5 replicates. 
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4.3.3. Effects of different ventilation systems on head-space gas composition in the 

culture vessels 

4.3.3.1. Ethylene (with and without ACC or AgNO3) 

The results for the growth of seedlings (Table 4.02) were consistent with the findings of 

ethylene concentrations in the head-space of the culture vessels in the different 

treatments (Table 4.04). In sealed vessels, the addition of ACC to the nutrient medium 

resulted in very high concentrations of ethylene (1.70 p1 1-1) after 7 days of culture in 

comparison to the additive-free controls (0.32 pl 1') or the silver treatment (0.94 p1 1-) 

(Table 4.04, Fig. 4.06). Since silver (the ethylene inhibitor) enhanced the growth it seems 

reasonable to conclude that the 0.32 µl l"' ethylene was sufficient to inhibit the plant 

growth. The value of 0.32 pl ]-'was therefore probably due in large measure to the tiny 

size of the plants, and the 0.94 pl I"' in the presence of silver, a function of the larger leaf 

and root systems and the insensitivity to ethylene because of the presence of the silver. 

However, the presence of silver may stimulate some ethylene production. Roustan, 

Latche and Fallot (1991) have reported that the addition of silver ions to the medium led 

to slight increases in ethylene production by the embryonic cells. Similarly Khalid ei al. 

(1991) found that high concentrations (25 pM) of silver nitrate in Helianthus arnru. s 

cotyledon cultures slightly stimulated ethylene production. 

The culture vessels with diffusive ventilation contained only low concentrations 

of ethylene: 0.09 µl l"' in the additive-free controls, 0.35 µl 1"' with ACC and 0.18 µl l'' in 

the silver treatment. All these data showed that the concentrations of ethylene in 

containers with diffusive ventilation were significantly lower than those of the sealed 

ones. This is most likely to be because of the diffusive escape of ethylene through the 

polypropylene membrane of the culture vessels; probably, as a consequence, better 

growth was observed in this capping system compared to the sealed one. 
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Fig. 4.06. Showing the ethylene concentrations in culture head-spaces under sealed 
condition (silicone rubber bung) and in presence of ACC (2.0 NM) or AgNO3 (10 NM) in 
the medium. 60 cm3 culture vessels each contained four seedlings, grown at ca. 25°C 
in continuous light; PAR = 150 pmol m-2s'. Each symbol represents a mean ± SE of 5- 
7 replicates. 

When the slow flow or fast flow ventilation apparatus was applied no ethylene was 

noticed in the head-space of the vessels. This indicates that the flushing out of the 

accumulated ethylene from the culture vessels may be partially responsible for the better 

growth compared with the sealed or diffusive ones. However, the ability of these 

ventilation systems to improve CO2 concentration in the culture vessels might have been 

largely responsible for the better growth. 

As shown in table 4.04 ethylene concentrations were relatively lower in the dark 

period compared with the light. This may have been due to high CO2 accumulation in the 

head-space of the culture vessels during the dark period. Similar findings were reported 

by Adkins (1992) in rice callus where in the dark, the rate of ethylene production was 

much lower than in the light. 
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Table 4.04. Effects of different types of ventilation, ACC and AgNO3 on ethylene 
concentration (pl F-1) in the culture head-space of in vitro grown cauliflower seedlings. 

Treatments Sealed with Diffusive Forced Forced 
silicone ventilation ventilation ventilation 

rubber bung (capped with (Slow flow) (Fast flow) 
polypropylene 

disc) 

Control Light 0.32 ± 0.02 0.09 ± 0.01 00 0.0 

Dark 0.24±0.06 0.06±0.01 00 00 

ACC Light 1.70±0.10 0.35±002 00 00 
(2.0 µM) 

Dark 1.07±0.15 0.19±001 00 00 

AgNO3 Light 0.94±0.02 0.18±003 00 00 
(10 µM) 

Dark 0.66±0.03 0.08±001 00 00 

*Seedlines grown at ca. 250C with continuous light neriod ( PAR -I SO umol in 's 1 Fthv lens 

concentrations at dark were measured only on the 7th day of (lie experiment aller (I) h darkness. Each 
value represents a mean ± SE of 7- 10 replicates. 

4.3.3.2. Carbon dioxide (with and without ACC or AgNO3) 

Carbon dioxide concentrations inside the vessels must depend upon the balance between 

respiration and photosynthesis and the efficiency of'the vessel's ventilating system. In the 

present investigation when the vessels remained sealed, very high CO., concentrations in 

dark and very low concentrations in light were recorded ("Table 4.0>) With diffusive 

and/or forced ventilation there was still a pattern of' higher CO.,, concentrations in the 

dark than in the light but the differences were much less. Generally in the dark ('O2 

concentrations inside culture vessels increase due to respiration (Fujiwara, Kozai and 

Watanabe 1988, Jackson et al. 1991, Solärova ei a/. I989) and during; the light period 

decrease depending on the photosynthetic activity of the plants (13uddendort; Josten and 

Woltering 1994). These findings accord with the present investigation where in the 

sealed condition respiratory CO2 is accumulated significantly during darkness I lowever, 

with diffusive ventilation much CO2 must escape by means of dillusion and with forced 

ventilation the CO2 concentration in darkness is dominated by the flushing through 01' 
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humidified atmospheric air: thus CO2 levels remained significantly lower than those in 

the sealed systems. 

Table 4.05. Effects of different types of ventilation, ACC and AgNO3 on carbon 
dioxide concentrations (pl 1-1) in the culture head-space of in vitro grown cauliflower 
seedlings after 12 day. 

Treatments Sealed with Diffusive Forced ventilation Forced ventilation 
silicone ventilation (Slow flow; rate = (Cast flow; rate 
rubber (capped with 1.0 cm'' min') 3.5 ems min'') 
hung polypropylene 

disc) 

Control Light 36.8±5 100.3±9 120 3±15 150±15 

Dark 27585±450 3979±78 1181±94 565±38 

ACC Light 138.9±9.0 90.7±15 100 7±23 149±23 

(2.0 ltM) Dark 28590±503 4390±93 1270±82 569±43 

AgNO3 Light 61.8±3.0 86.5±9.0 100 5±09 150 5±21 

(10 IIM) Dark 27980± 493 4013±88 1225±88 559±31 

*Seedlings grown at ca. 25°C in continuous lieht: PAR -- 150 uniol in s'. CO, concentrations in the 
dark were measured only on the 12th day of the experiment after 10 It darkness 
*Each value represents a mean f SE of 7- 10 replicates. 
t CO2 concentration on the 12th day which started increasing from 15th da\ and reached 7200 pl I' on 
20th day (sec Figure 4.07). 

In the light period due to photosynthetic activity, the ('02 concentration normally 

decreases, this has been reported earlier by many authors e. g l)esjardins ei u/. 1988, 

Kozai et al 1987, Kozai and Iwanami 1988 and Solarovä el id. 1080 In sealed vessels 

the effects may bring the CO2 concentration of the culture vessels to a very low level 

(ca. 40 µl 1-' in this experiment) which represents the ('02 compensation point, and this 

is generally considered to be the limiting factor for plant growth in these circumstances 

(Buddendorf - Josten and Woltering 1994). Buddendorf - . 
losten and Woltcring (1 994) 

argued that the retarded plant growth in tightly sealed vessels might be due to CO., 

deficiency, and this finding is consistent with the results presented in ']'able 4.02 which 

showed the deleterious effects of sealed vessels. On the other hand evidence has been 

109 



presented here which shows that ethylene might have been the immediaie cause of the 

reduced growth in the sealed vessels (section 4.3.3.1). 

When the vessels were capped with polypropylene membrane as a diffusive 

ventilator, CO2 concentrations increased significantly and possibly partly as a result 

better growth were observed (described earlier in Section 4.3,2. ). These results are 

similar to the findings of Blazkovä et al. (1989) where they suggested that the diffusion 

of CO2 into the vessel increased plant growth. Similarly, in forced ventilation the CO2 

concentration increased up to 150 µl 1.1 (Table 4.05) and as a result much more vigorous 

shoot and root systems were observed. 

Where there had been an addition of AgNO3 or ACC (except for the sealed system) 

to the medium, similar results were obtained. In the case of ACC addition in the sealed 

system the CO2 levels in the light varied considerably from days 1 to 20, depending on the 

stages of development of the seedlings (Fig. 4.07). From days I to 4, during germination, 

the CO2 levels rose from 350-5000 µl I' as a result of respiration. From days 4 to 7 when 

the cotyledons unfolded and were photosynthesising, the CO2 levels decreased to below the 

compensation point ca. 40 pl 1-1; these values were similar to those in the AgNO; and 

additive-free controls (data not shown). Around day 13 the levels again increased to reach 

7200 µl 1"' on the 20th day. This latter increase was thought to have been due to the 

accumulation of ethylene in the culture head-space, which impeded photosynthesis, so that 

respiratory CO2 accumulated; this also probably indicated the first stages of ethylene- 

induced premature senescence. 

4.3.4. Shoot culture : the effects of closed, diffusive and FF-ventilation systems 

4.3.4.1. Growth and development 

Inoculating shoot tips on to culture medium led to new shoot proliferation and callus 

development. Shoot growth in FF-ventilation was considerably better than in the sealed 

vessels, with those from the diffusive ventilation treatment being intermediate between 

the two (Table 4.06). For example the fresh weight of the stems from the forced 
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Fig. 4.07. Showing the changes in carbon dioxide concentrations in culture head- 
spaces under sealed condition (silicone rubber bung) and in the presence of ACC (2.0 
tM) in the medium. 60 cm3 culture vessels each contained four seedlings, grown at ca. 
250C in continuous light; PAR = 150 pmol m Zs'. Each symbol represents a mean ± SE 
of 5 replicates. 
Note the rise in concentration from days I-4 during germination. Between days 4- 
7 the cotyledons unfolded and the CO2 levels decreased to below the 
compensation point due to photosynthesis. After day 13 the levels increased to 
reach a very high concentration by day 20. This latter increase is thought to have 
been due to ethylene accumulation which impeded photosynthesis and induced 
premature senescence. 
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ventilation treatment was 5X that of the sealed controls an(] . 4X that of dit7üsive 

ventilation. The most noticeable differences, however, were in the leaf systems, where 

the fresh weight of leaves in forced ventilation was almost 19X that of sealed control and 

4.7X that in diffusive ventilation. There were similar differences between the treatments 

in respect of leaf numbers and areas. 

Table 4.06. Effects of different types of ventilation on growth and development of 
shoot cultures of cauliflower. 

Treatment Sealed 

(with silicone rubber 
hung) 

Diffusive 

ventilation 
(Capped with 

polypropylene) 

Forced 

ventilation 
(Flog rate 3.5 

cm'min") 

Morpholo2v 
Leaves 
Numbers 5.1±0.7 7.7±1.2 152+0.9 
F. W. (mg) 37.4±3 149+76 695±9.0 
Area (cm2) 2.1+0.1 3,1+02 16.2+2.1 

'Stem 
Length (mm) 6.4±0.1 7 8±0 9 129+1 2 

Diameter (mm) 1 5+0.2 1.9±0.3 2 3+03 
F. W. (mg) 29.0+3 45±3 5 1530+3 

*Callus 
FW(mg) 441±9.4 996±12 976+9 3 
Vol (cm) 1.20+0.1 2.6+0.6 2 50+05 

"Number of new 3 1+0.3 3 6+0 6 3 5±0 5 

shoots 

? Each measurement is for best 2 shoots from each of 5 tubes and rcnresents a mean i SF' of 10 
replicates. 
* each value represents a mean f SE of 5 replicates. 
60 cm' culture vessels each contained one cutting Cultures were grown at co 25°C in continuous light; 
PAR = 150 µmol m-2s-1. 

The texture of the calli in vessels with forced ventilation as well as with dillüsive 

ventilation was friable and without any necrotic spots, whereas in the sealed vessels the 

calli bore a number of necrotic spots and became compact in texture The colour of the 

calli grown in forced ventilation was greenish and/or creamy, whereas in the diffusive 

ventilation and sealed vessels calli became greyish. The volumes and fresh weights of 
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calli in forced and diffusive ventilations were significantly higher than those from sealed 

vessels (Table 4.06). 

4.3.4.2. Photosynthesis 

After 30 days of culture no net photosynthesis was shown by plantlets grown under dillüsive 

ventilation or in the sealed condition were (Table 4.07). This may have been due to the 

vitrification of plants caused by high ethylene and low oxygen concentration in the 

atmosphere of the culture vessels in sealed and diffusive condition The plants subjected to 

forced ventilation showed a net APR photosynthetic rate of 4.52 tmol m, 2s' and an IPR of 

0.81 pmol ms. Similar findings in strawberry were reported by Kozai, Kubota and 

Nakayama (1989) where forced ventilation improved the photosynthetic rates of plantlets. 

Table 4.07. Effects of different types of ventilation on photosynthetic rates of 30 days 
old cauliflower cultures (shoots + callus) expressed on a leaf area basis. 

Treatments *Net atmospheric tNet working in vitro 
photosynthetic rate -AYR photosynthetic rate -IPR 

ilnol ni"ZS"') (Wnol m"2Ä') 

Forced ventilation (fast 4 52±0 9 081+0 05 
flow - 3. S cm3 min') 

Diffusive ventilation <o0<0,0 
(capped with a 
polypropylene disc) 

Scaled with silicone 
rubber bung <00 <00 

* Photosynthetic rates measured at 350 ppm CO, and 72 lumol in s light Ilex 
t Photosynthetic rates measured at known CO, conceutrtuoils of the culture vessels during the 

experimental period. 
* Each value represents a mean ± SE of 5 replicates. Cultures were grown at co. 25°C in continuous light, 
PAR = 150 µmol m'2s'. 60 cm3 culture vessels each contained one cutting 
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4.3.4.3. Chlorophyll and Carotenoid contents 

The lowest chlorophyll content based on leaf fresh weight was observed in tightly sealed 

vessels (Table 4.08). Under forced ventilation it was very much greater: 3.3X and 2.9X 

higher than from the sealed and diffusive systems respectively. 

The lowest ratio of chlorophyll alb, (0.54), was found in plantlets grown in 

tightly sealed vessels; in those with diffusive and forced ventilation the ratios were 

significantly higher (1.2 and 1.4 respectively). 

Carotenoid content was also noticeably higher in forced ventilated (120 mg/g 

fresh weight) vessels; this compares with 69.5 and 23 mg/g for the diffusive and sealed 

vessels respectively (Table 4.08). 

Table 4.08. Effects of different types of ventilation on chlorophyll and carotenoid 
contents based on fresh weight of leaves from 30 days old cauliflower cultures. 

Pigments Sealed Diffusive ventilation Forced ventilation 
(«vith silicone (Capped with (Flow rate 3.5 cm3min-') 
rubber bung) polypropylene) 

Chlorophyll content 407.7+10.9 472.7+12.3 1342.7±45.2 

µg(g fresh wt)"l 

Chi. a/b ratio 0.5+0.1 1.2+0.3 1.4+0.2 

Carotenoid content 23.1+2.1 69.5+3.4 120.7+7.3 

µg(g fresh wt)"' 

* Each value represents a mean ± SE of 5 replicates. Cultures were grown at ca. 25°C in continuous light; 
PAR = 150 µmol m ̀s I. 60 cm3 culture vessels each contained one cutting. 

4.3.5. Gaseous atmosphere of the culture vessels 

4.3.5.1. Ethylene 

In sealed vessels very high ethylene concentrations (ca. 1.75 µl 1") were measured (Fig 

4.08a, c) and extrapolating from data in the previous experiment it may be deduced that 

this was largely the cause of what was the poorest plant growth among the treatments 

(Table 4.06). The production rate of ethylene shown in Fig. 4.08 indicates that 
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approximately half of this ethylene was produced by the callus and half by the shoot 

system. 

In culture vessels with forced ventilation the absence of ethylene was noted (Figs. 

4.09c, 408, c). The better growth of cultures in this treatments suggests that the flushing 

out of ethylene from the culture vessels may have been necessary for normal growth, 

although as demonstrated earlier for the seedlings, CO2 is likely to have been a most 

important supplementary cause of the better growth. Chi et al. (1990) reported on 

enhanced shoot regeneration from seedling explants of several Brassica genotypes in the 

presence of the ethylene inhibitors AVG and AgNO3 in the nutrient medium. They also 

suggested that poor regeneration of cultured cells and tissues of Brassica may be 

attributed, at least partially, to ethylene produced by cultured plants. By using ethylene 

inhibitors and a number of recalcitrant Brassica genotypes, other authors showed that 

ethylene was one of the causes of recalcitrance (Chi and Pua 1989; Chi, Pua and Goh 

1991; Lentini et al, 1988, Pua, Chi and Barfield 1991; Sethi, Basu and Guha-Mukherjee 

1990). 

4.3.5.2. Carbon dioxide 

The atmosphere in the head-space of the sealed vessels contained very high amounts of 

CO2 despite the continuous illumination (Fig. 4.09b). At 30 days, this was ca. 5% being 

215X that in vessels with forced ventilation, and 5.5X that in vessels with diffusive 

ventilation. Maximum CO2 output into the culture vessels originated from the callus, and 

from the sealed containers the production rate of callus plus plantlet in air was 4600 µM 

m3 callus s" (Fig. 4.10) The plantlets also were net CO2 contributors to the head-space 

(1737 tM m"3 plantlet s") Concerning the callus per se, a similar result was reported by 

Adkins, Shiraishi and McComb (1989) who observed about 20% CO2 in sealed petri- 

dish cultures of rice callus (IR42) after 20 days. 

After 30 days the head-space of the diffusively ventilated culture vessels 

contained 0.9% (9000 µl I") of CO2 (Fig. 4.09b), and in air the callus itself had a CO2 
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represents a mean ± SE of 5 replicates. 
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production rate of 836 µM M-3 callus s''; the plantlets themselves were only just net CO2 

contributors (54 µM m-3 plantlet s-'). In forced ventilation plantlets were taking up CO2 

at the rate of 1464 µM m"3 plantlet s", showing that plantlets were photosynthesising 

(Fig. 4.10). The CO2 production rate of the callus was 996 µM m'3 callus s' in this 

treatment. Similarly, high CO2 levels under sealed conditions in the light, have been 

reported for various species, for example with Prunus (Righetti et at. 1990), Pinus 

radiata (Kumar, Reid and Thorpe 1987) and Actinidia delicio. sa (Infante, Magnanini and 

Righetti 1989). 

It should be noted that CO2 production or uptake might have been different at the 

working levels of oxygen in the vessels, particularly in the sealed vessels. However, this 

possibility was not explored during this study 

4.3.5.3. Oxygen 

During the course of the experiment oxygen concentrations in the sealed and diffusively 

ventilated vessels fell as CO2 levels rose. With FF-ventilation, on the other hand, oxygen 

levels remained fairly constant at levels a little below atmospheric. In the sealed vessels, 

the oxygen concentrations eventually were reduced to only 7.1% after 30 days of culture 

compared to 15.1% and 19.2% in the diffusive- and FF- ventilation types respectively 

(Fig. 4.09a). It is evident that the major decline in oxygen did not take place until after 

10 days of treatment, and in the sealed case probably reflects the onset of vitrification of 

the plantlets in response to the higher levels of ethylene accumulation (Fig. 4.09c). It is 

possible that the lowered oxygen concentrations in the sealed system might have been 

accompanied by some anoxic core development in the calli; such an effect could have 

contributed to the higher CO2 levels found in this treatment by initiating anaerobic 

respiration. In any future study it would be interesting to test for anaerobic by-products 

in sealed systems with calli. 
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Fig. 4.10. Cauliflower shoot culture (shoot + callus; 30 days old): effects of 
different types of ventilation on carbon dioxide production/uptake rate. Cultures had 
been previously grown under sealed (silicone rubber bung), diffusive ventilation 
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60 cm3 culture vessels each contained one cutting, grown at ca. 25°C in continuous 
light; PAR = 150 pmol m-2s"'. Each symbol represents a mean ± SE of 5 replicates. 
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The results are consistent with the recent findings of some other authors. In tightly 

sealed vessels with Ficus plantlets alone, oxygen concentrations of approximately 10% 

were observed (Jackson et at 1991), while in sealed petri-dishes containing rice callus 

the oxygen concentration had declined to between 2 and 5% after 24 days of culture 

(Adkins, Shiraishi and McComb 1990). 
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4.4. FINAL COMMENTS 

The results indicate that in cauliflower seedlings the sealing of culture vessels can have 

serious inhibitory effects on growth and development and photosynthesis, induce leaf 

epinasty and vitrification and reduce leaf chlorophyll and carotenoid contents. To smaller 

extents these effects, which are associated with ethylene accumulation, were seen with 

both diffusive and slow flow ventilation, but they can be overcome to some extent in all 

these systems by the use of ethylene inhibitors, the best effects being with 10 µM 

AgNO3. It seems reasonable to conclude, therefore, that these adverse effects were at 

least partly due to ethylene accumulation in the head-spaces of the culture vessels. 

However, with the seedlings, the use of the fast-flow ventilation system per se, 

(3.5 cm3 min') and without any ethylene inhibitor, produced even better growth, rates of 

photosynthesis, chlorophyll contents, than did the use of silver nitrate with the sealed 

condition or with diffusive or slow flow ventilation. This could have been due not only 

to the complete flushing out of ethylene by the fast flow system, but also to the 

additional supply of CO2. 

Similarly good rates of growth were also produced with shoot culture in the fast 

flow ventilation, and without the use of ethylene inhibitors. The removal of ethylene by 

this system would be expected to be particularly beneficial to shoot culture, where callus 

can be an important source of the gas (see also Chapter VIII). 
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CHAPTER V 

EFFECTS OF CLOSED SYSTEM, DIFFUSIVE AND FORCED VENTILATION ON 
THE GROWTH AND PHYSIOLOGY OF TOBACCO IN VITRO 

5.1. INTRODUCTION 

To prevent microbial contamination and to reduce desiccation, tissue cultures vessels 

conventionally are protected in various ways e. g. with cotton-wool bungs, screw caps, 

polypropylene membranes etc. Under these protective conditions an exchange of gases 

between the tissues and the external atmosphere is limited; consequently the gaseous 

composition of the culture vessel may alter and differ considerably from that of the 

atmosphere e. g. in terms of water vapour, oxygen, carbon dioxide etc. (Buddendorf- 

Joosten and Woltering 1994). Depending on the type of tissue and species the culture 

itself may also produce various types of gases e. g. ethylene (Huxter, Reid and Thorpe 

1979; Adkins, Shiraishi and McComb 1990). 

It is well known that tobacco callus produces ethylene and that the actual 

quantity depends upon factors such as light and the age of the callus (Huxter, Reid and 

Thorpe 1979). However, the effects of ethylene on in vitro tobacco culture are diverse. 

Horner et al. (1977) found that the removal of ethylene by charcoal had no marked 

effect on plantlet formation from cultures of tobacco anther. Huxter, Thorpe and Reid 

(1981) demonstrated that a low concentration of ethylene speeds up the rate of shoot 

emergence in tobacco, but higher concentrations have the opposite effect. Earlier in 

1979, Huxter, Reid and Thorpe showed that a mercuric perchlorate sink (for the 

absorption of ethylene) had no significant effect on the growth of tobacco callus; 

however, he established that there was a strong positive correlation between ethylene 

production and growth rate. On the other hand, Bolton and Freebairn (1975) showed 

that large doses of exogenous ethylene inhibit tobacco callus growth. 



Very few studies have been concerned with the role of elevated CO2 concentrations on 

tobacco plant growth and development. Mousseau (1986) enhanced the CO2 

concentration from 450 to 900 µl 1-' and reported positive effects on the growth of all 

parts especially the roots. Solärovä et al. (1989) revealed that an increase in CO2 

concentration to 10 or 40 g m"3 (10 g M-3 = 7608 µl 140 gm3= 30435 µl 1"')* caused 

increases in plantlet growth rate, dry matter accumulation (especially in stems and roots), 

and leaf area and thickness. 

The aim of the work described in this chapter was to determine the effects of 

various methods of ventilation on the growth and development of in vitro-grown 

tobacco seedlings, particularly with a view to establishing whether endogenous ethylene 

has a significant effect on growth and whether CO2 supply with conventional capping 

systems can be limiting. To this end, the effects of ethylene inhibitors. and precursors 

were investigated, as were the effects of enhancing CO2 concentrations in the culture 

vessels. A major part of the investigation was to find ways of improving culture growth 

and development by introducing diffusive and forced ventilation into the vessels and by 

comparing plantlet growth with that achieved in sealed vessels. 

i 

t Atmos. CO2 = 0.46 gm3= 350 ppm (µl l- ') 
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5.2. MATERIALS AND METHODS 

5.2.1. Plant material and sterilization 

Seeds of tobacco (Nicotiana tabacum cv. White burley) were surface-sterilized by 

immersing in sodium hypochiorite solution (2% w: v) for 3 min, then rinsed three times 

with sterile water and sown at a density of 4 seeds per tube on to an MS medium in 

culture vessels as described in Chapter IV. Germination usually occurred within 5-7 

days. Unless stated otherwise, the plants were grown under continuous light at a growth 

room temperature of 250C and PAR of 150 µmol m2s1. Relative humidity was usually 

ca. 30-35% but since there was no humidistat it could vary from < 20% to ca. 50%. 

Unless stated otherwise, culture vessel size and volume, media preparation, and 

methods of measuring ethylene, carbon dioxide, oxygen, chlorophyll and carotenoid 

contents and photosynthetic rate etc., were as described in Chapter IV. The basal 

medium used was MS (Murashige and Skoog 1962) with various additions as described 

below. Stocks were filter sterilized (Millipore, 0.22 µm) and added where necessary in 

the medium (full strength MS) after autoclaving. 

5.2.2. Experiments 

5.2.2.1. Effects on growth and ethylene levels of the presence or absence of various 

ethylene inhibitors and precursors in closed vessels 

Silver nitrate (AgNO3 - 2.5,5,10 and 20 µM) and cobalt chloride (CoCl2- 5,10 and 20 

µM) as ethylene inhibitors and ACC (5,10 and 20 µM) as an ethylene precursor, were 

used at different concentrations in the rooting medium (Table 5.01); also, AgNO3 (5 

µM) and ACC (5 µM) were used in combination. Stock solutions were prepared and 

stored as described in Appendix II. 

Surface sterilized seeds were inoculated on to the culture tubes containing 1/2 

strength MS medium, sealed (Si-rubber bung) and transferred to the growth room. 

Ethylene concentrations in the head-spaces of the culture vessels were measured (5 

replicates per treatment) on the 10th day and then harvested. Growth measurements 
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included leaf number, fresh weight and area, stem fresh weight, and root number and 

maximum length. 

5.2.2.2. Growth and development of seedlings: the evaluation of the closed, 

diffusive and forced ventilation systems with and without AgNO3 or ACC in the 

culture medium 

The silver nitrate and ACC were added to the medium (half strength MS with 3% 

sucrose), as necessary, after filter sterilization (Millipore, 0.22 µm). Four seeds were 

inoculated per culture vessel (replicate) and the cultures were transferred to the growth 

room. 
In all, 16 treatments were examined with five replicates per treatment as follows: 

(a) controls without additives to 1/2 strength MS medium and with four types of 

ventilation: A` 

(i) sealed with silicone rubber bung, 

(ii) capped with polypropylene to give diffusive ventilation, 

(iii) capped with slow flow (SF) HIC ventilation apparatus (1.5 cm3 min''), and 

(iv) capped with fast flow (FF) HIC ventilation apparatus (3.5 cm3 min"). 

(b) '/2 strength MS medium with 2.5 µM AgNO3 plus ventilation types (I) - (iv) as above. 

(c) '/2 strength MS medium with 2.5 µM ACC plus ventilation types (i) - (iv) as above. 

Ethylene and CO2 concentrations in the culture head-space and photosynthetic 

rates were measured on days 9- 10, growth and chlorophyll contents were measured on 

days. 10 - 11. 

Photosynthetic rates were measured as required by the methods described in 

Chapter IV (Section 4.2.4.5). 

5.2.2.3. Growth and development of seedlings: effects of elevated levels of CO2 and 

ethylene 

Culture vessels, each capped with a polypropylene membrane and containing four 7 day- 

old seedlings growing in half strength MS medium, were exposed to various 
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concentrations of CO2 and / or ethylene by enclosing them in 5-litre glass chambers 

(desiccators without the desiccant) with five vessels per chamber and five 

replicates/treatment (Fig. 5.01). The chambers' atmospheres were adjusted every 12 h 

for the first 5 days, and every 4-6 hours thereafter, to be as follows: 

(1) 3000 µl 1"' CO2; (2) 1500 [111-1 C02; (3) 350 µl 1'' CO2; (4) 350 µl 1'' C02 + 1.5-2.0 

µl ]-ethylene, (5) 350 µl 1-' CO2 + 15 pl 1" ethylene; (6) 0- 5µl l"' C02- 

To maintain the lowest CO2 concentration (0 -5 pl I-'), a glass vial containing 

(50 cm) of soda lime was placed in the chamber To enrich the CO2 concentration (1500 

and 3000 pl 1"'), the chambers were supplied with air mixed with CO2 from a gas 

cylinder. For atmospheric levels (350 µl 1"' C02) air was supplied from a compressed air 

cylinder every 3 days. The ethylene : air mixture (350 µl l"' CO2 + 1.5 or 15 µl I-' 

ethylene) was created by injecting appropriate volumes of ethylene-enriched air (22.9 pl 

1") from a gas-cylinder (Fig. 5.01). Cultures were maintained in growth room conditions 

for 15 days. 

The carbon dioxide levels were monitored by means of IRGA analysis, and 

ethylene by GC, as described in Chapter IV. 

5.2.2.4. Shoot culture from cutting: the effects of closed, diffusive and forced 

ventilation systems 

For direct shoot regeneration, shoot tips of 7 days old seedlings were used. Explants 

were inoculated on full strength MS medium supplemented with BAP (0.5 mg 1') + 

NAA (0.1 mg 1"') for adventitious shoot induction. Vessels were capped with one of the 

following: (a) silicone rubber bung, (b) polypropylene membrane, (c) SF ventilation 

apparatus (flow = 1.5 cm3 min"'); (d) FF ventilation apparatus (flow = 3.5 cm3 min-). 

The cultures were incubated under growth room conditions. 

Concentrations of C02,02 and ethylene were measured on the 30th day. CO2 

production rate for plant + callus, were measured in the light on the 30th day. For 
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Treatment -1 
F-_1 3000 pl 1-1 CO2 in air 

Il 
Treatment -2 

__ _ 
F- 1500 NI I-1 CO, in air 

Treatment -3 

;: E- Air (350 p111 C02) 

Treatments -4 and 5 

< _T _ 
l= F- 

ý; - `;; 

15 pl 1-1 ethylene + 350 pl 1-1 CO2 
or 

1.5 -2 pI 1-1 ethylene + 350 pl I^ CO2 

Treatment -6 
0-5 ppm Carbon dioxide 

<ýºýýuýr ý.. "'--ý Soda lime 

Fig. 5.01. Showing the assembly for assessing the effects of enhanced C02 ± ethylene on tobacco seedling growth. 
Note that the drawings are not to scale and chamber volume was 5000 ml and culture vessel volume 60 ml. 
The chambers were recharged at intervals with the appropriate gas mixtures indicated and the chambers were 
then re-sealed. The culture vessels were capped with polypropylene membranes. 
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measuring CO2. production rates the vessels were first charged with air. Growth 

measurements of plants and callus were measured on the 31st day. 

5.2.2.5. Growth, chlorophyll contents and yellowing of leaves: the effects of closed, 

diffusive and forced ventilation systems 

Shoot tips derived from 15-day old seedlings were base-inserted on hormone-free 1/2 - 

strength MS medium in vessels each capped with a FF-ventilation apparatus (3.5 cm3 

min"). After 7 days of culture (FW approx. = 100 mg; leaf area = approx. 5.5 cm2), the 

FF-ventilation apparatus was replaced with the systems described in 5.2.2.4. 

Starting with 20 - 30 plants at the beginning of the experiment, harvesting 

proceeded throughout the experiment (days I- 15), by removing 2-3 plants each time 

for analysis of growth and chlorophyll contents. Measurements of ethylene and CO2 

concentrations in the head-spaces (5 replicates per treatment) were performed on a daily 

or alternate daily basis. 

5.2.2.6. Continuous exposure to ethylene under FF-ventilation 

As described in the previous experiment, plantlets were cultured on MS medium ('/s 

strength) in vessels fitted with the FF-ventilation apparatus. After 15-days when plantlet 

fresh weight was approx. 350 mg / plantlet, four vessels, with one plantlet per vessel, 

were transferred to continuous ethylene exposure by inserting the membrane ends of the 

FF-units into a stream of ethylene-enriched air (1.5 - 2.0 pl 1') in a `wind-tunnel' (Fig. 

5.02); four vessels remained untreated as controls. The plants were harvested on the fifth 

day and the fresh weights, leaf numbers, chlorophyll content etc., were recorded. 
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Fig. 5.02. The system for continuous ethylene (1.5 - 2.0 µl 1-1) exposure 
under fast forced ventilation (> 5.0 cm3 min-') in the culture 
atmosphere of in vitro-grown tobacco plantlets. For details of fast forced 
ventilation apparatus see Fig. 2.16. 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Effects of ethylene inhibitors and precursors on the growth and development 

of tobacco seedlings under closed system ventilation 

A. Silver nitrate and cobalt chloride 

The results from using these ethylene inhibitors did not show any clear evidence that 

endogenous ethylene production might be an inhibitor of growth in sealed conditions 

(Table 5.01). The silver may have marginally stimulated leaf growth at the lowest 

concentrations (2 and 5 pM Ag) but was apparently the cause of some growth inhibition 

at the higher concentrations (10 and 20 gM Ag). However, at these low silver nitrate 

concentrations the colour of the leaves remained fully green, whereas in the additive-free 

controls some of the leaves became yellowish. Cobalt may have stimulated leaf growth at 

each concentration and root numbers were generally increased. Root extension may have 

been enhanced by the silver. 

The ethylene concentrations in the head-spaces of the vessels were relatively low 

in all treatments (Fig. 5 03); this was probably due to the small size of seedlings. 

However, in the controls and in the presence of silver nitrate, ethylene levels were 

substantially more than in the presence of cobalt. Again, as described in Chapter IV, 

these findings are in agreement with those of Reid and Bradford (1984), who observed 

that the presence of cobalt can stop ethylene production, whereas silver simply inhibits 

its biological action. In the control vessels the ethylene had accumulated to a 

concentration of 0.31 pl I'' after 10 days and this was five times that of the cobalt 

chloride treatment (5µM). 

B. ACC 

The addition of the ethylene precursor (ACC) per se to the medium inhibited growth and 

development of seedlings, particularly in terms of the area and fresh weights of leaves. 

At both concentrations the latter were approx. half of those of the controls. 

Nevertheless, only at the higher concentration of ACC was the ethylene concentration in 

the head-space significantly higher (1.3X) than that of the control (Fig. 5.03). It is not 
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TABLE 5.01. Effects of ethylene inhibitors and precursor on the growth and development 
of tobacco seedlings. 

Control 1 6.2±0 80 9±0 04 17.2±0.8 12 5±0.1 1 3.6±0.07 9,9±0.3 

AgNO3 (20µM) 3.7±0.2 0 73±0.2 11.3±1.9 2.4±0.2 3.3±0.09 12.2±3.1 

AgNO3 (10µM) 3.9±0.4 0.8±0 5 16.9±2.1 2.2±0.3 2.3±0.03 11.6±1.1 

AgNO3 (5µM) 4 9±0 7 1 1±0.3 18.7±2.1 2.5±0.6 1.8±0.7 10.7±1.3 

AgNO3 (2µM) 7.5±0.3 1 2±0 6 18.9±0.7 2.7±0.5 2.5±0.7 10 9±1 0 

CoCI2 (20µM) 6 1±0 9 1.1±0 1 17.9±0.3 2.4±0.4 4.1±0.3 8.1±0.4 

CoCI2(1()iM) 6.9±0 2 0 97±0 1 18.3±0.6 2.4±0.3 4.3±0.2 10.1±0.7 

CoCIZ (59M) 7 2±0.7 0 99±0.2 18.4±0.7 2.5±0.1 4.5±0.7 10.9±0.5 

ACC (10µM) 53±0.2 0 45±0.1 8.2±0.7 2.3±0.8 3.3±0.5 3.9±0.6 

ACC (5µM) 6 1±0 1 0 46±0.2 9.1±0.3 2.4±0.4 4 1±0.3 6.8±1.0 

ACC (5µM) +16.9±0.2 0 67±0 3 9.9±0.3 1 2.7±0.4 1 5.7±0.6 6.7±0.5 

AgNO3 (5µM) 

10 days old seedlings: 60 nil pd: iss containers were sealed with silicone ribber bung: each value represents 

a mean f SE of 20 seedlings: 
i 

mean maximum root length (3 roots from each seedling). Seedlings grown at 

ca. 25°C in continuous light ( PAR 150 pmol nn-2s-1). 1). 
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Fig. 5.03. Effects of ethylene inhibitors and precursor in the rooting medium (MS - '/z 

strength) on ethylene concentration of the culture atmosphere of 10 days old tobacco 
seedlings grown in sealed condition; each bar represents a mean ± SE of 4-5 replicates. 
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possible, therefore, to correlate the inhibitory effect of the lower of the two ACC 

concentrations directly with higher ethylene levels; however, it might be that the ACC 

did produce higher concentrations of endogenous ethylene in this treatment than were 

found in the controls. The combination of 5 µM AgNO3 and 5 pM ACC restored leaf 

growth to the same as that of the control, although increasing the ethylene accumulation 

in the medium; this again pointed to some ethylene involvement in the growth of tobacco 

seedlings 

A major difficulty with this whole experiment was the poor growth made in these closed 

treatments which, as later treatments showed, may have been due as much to CO2 

limitation as to any ethylene effects. However, although the inhibitor treatments per se 

did not give very clear evidence for ethylene inhibition in sealed vessels, the ACC 

additions and the ACC plus silver do suggest that ethylene could be important. One of 

the difficulties may have been that the 2 pM silver was too high a concentration. Much 

later a trial was conducted using Ag at 0.01 and 0.06 µmol 1'1; here it was found that at 

an early stage (5 days) the plants in the 0.06 tmol l'' Ag treatment were noticeably larger 

than the controls (data not shown). Unfortunately, however, the better growth was not 

sustained and eventually there was little difference between the silver treatments and the 

controls. It may be that, if such low levels of silver are required to inhibit ethylene action 

and at the same time avoid silver toxicity, the silver activity in the medium may have 

been only short-lived: the silver in AgNO3 is a readily precipitated ion, especially in the 

light or in contact with organic matter. In the literature, however, there are some reports 

of tobacco being unresponsive to ethylene absorbers. For example Huxter, Reid and 

Thorpe (1979), showed that the use of mercuric perchlorate as an ethylene absorber had 

no significant effect on the growth of tobacco callus. Similarly Horner et al. (1977) 

found that the ethylene effect on adrogenesis in tobacco anther culture was unaffected by 

removal of ethylene from the gas phase by charcoal. In the present study the beneficial 

effects of silver on cauliflower (Chapter IV) were more obvious than on tobacco. 
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Cauliflower is less sensitive to high concentrations of silver and hence higher 

concentrations were used; the silver ion activity in the medium might, therefore, have 

been sustained for longer. Further evidence that endogenous ethylene might be a 

problem when tobacco is grown with restricted ventilation is provided by the data from 

other experiments reported below. 

Although the results for cobalt were somewhat better than for silver, cobalt was 

not used in subsequent experiments. This was for the reason that since it inhibits ethylene 

production, and since at least some ethylene is thought to be required for normal growth, 

it might be inappropriate to continue employing it. 

5.3.2. Growth and development of seedlings : the effects of closed, diffusive and 

forced ventilation systems with and without AgNO3 or ACC in the culture medium 

5.3.2.1. Growth (no additives) 

By far the best growth was observed in FF-forced ventilation (3.5 cm3 min'') and the 

poorest was in the sealed vessels (Table 5.02; Plate 5.01). 

In the FF-system the leaf area and fresh weights were respectively I OX and 16X 

those of the sealed controls; however, the numbers of leaves were only marginally 

higher. The diameters of the stems and their lengths were 4.1 X and 3.1 X those of the 

sealed treatments and stem fresh weight (20.1±2.0 mg) and root numbers (12±1.5) in the 

FF-system were respectively >15X and >3X those of the controls. Similarly, root lengths 

were also appreciably higher, being 3.6X those of the sealed vessels. Also, it should be 

noted that in the sealed vessels the leaves became pale yellow in colour, whereas in 

forced ventilation they remained a dark green. Furthermore, in the sealed condition the 

leaves showed epinastic curvature and the roots sometimes grew out of the medium. 

Plants grown with diffusive or SF-ventilation achieved growth which was 

intermediate between that of the FF-ventilation and sealed treatments. In all aspects, 

however, plants grew better with the SF-ventilation system than with the diffusive 

system (see Table 5.02). Even so, growth was much better with FF-ventilation- stem 
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TABLE 5.02. Effects of different types of ventilation, ACC and AgNO3 on the growth and 
development of tobacco seedlings. 

Treat- Leaves Stem Root 
ments 

No Area Fresh Diameter Length Fresh No 'Max. 

weight weight Length 
(crZ) (mg) (mm) (mm) (mg) (mm) 

Control 

Sealed 53+0.9 0.67+0.2 10.6+0.7 0.47+. 02 2.2+0.7 1.3+. 03 3.4+0.3 11.5+0 5 

Diff. 7.8+0.3 1.3+0.5 55.1+3.9 0.56+. 09 Z9+, 9 2.0+0.1 5.1+0.3 24 3+3 1 

vent. 
SF- 8.0+. 4 3.5+0.2 71.7+0.3 1.4+0.04 5.4+0 10.9+1 7.4+0.1 269+5.0 

v cnl. 
FF- 85+, 7 6.7+0.3 170.1+51 1.9+0.3 6.7+3 20 1 +2 12+1.5 41.9+73 

vent 
ACC 
(2.59M) 

Scaled 4.7+. 3 0.5+0.03 9.7+0.3 0.3+0.03 1.9+. 1 0.7+0.1 2.9+0.1 7.1 +0 5 

Di ff 7.1+. 5 0.7+0.03 43.1+1.7 0.50+. 08 3,1+. 1 1.3+0.5 3.1 +0.7 17.1 +1.9 

vent. 
SF- 7.7+. 4 3.6+0.3 69.7+0.3 1.4+0.02 5.2±0 9.9+0.1 3.4+0.1 26.9+5.0 

Vent. 

FF- 8.1+. 3 6.6+0.9 1671+3.7 1.7+0.5 6.1+. 7 18.9+3 10.9+2 34.7+2.6 

VeIlt. 

AgNO3 

(2.5µM) 
Sealed 5.4+. 4 0.7+0.5 12.2+0.3 0.4+0.03 2.3+0.1 1.4+0.1 3.3+0.1 17.9+51 

diff. 5.5+0.2 0.8+0.2 13.5+0.6 0.4+0.01 2 3+01 1,4+0.2 3.4+0.2 28.9+4 9 
vc11t. 

SF- 5.7+0.4 0.7+0.3 14.7+0.3 0.4+0.00 2.3+0.1 1 5±01 3.4+0.1 369. +50 

vent. 
FF- 6.0+. 3 1.1+0.2 15.9+0.3 0.4+0.02 24+1 1.6±0.1 3.5±0.1 472+31 

\lent 

* 10 days old seedlings: each measurement is for the best 2 (out of 4) seedlings from each of 10 tubes and 
represents a mean -f SE of 20 seedlings: SF-vent = slow now ventilation (flow rate = 1.5 cm; min'): FF-vent 
= fast flow ventilation (flow rate = 3.5 cm3 min"'); Diff. vent = capped with a polypropylene disc. Seedlings 

grown at ca. 25°C in continuous light ( PAR = 150 µmol m's'). 
tmean maximum root length (3 roots from each seedling ). 
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PLATE : 5.01 

In vitro tobacco seedlings, after 10 days, grown in 60 ml glass vessels containing 
half strength MS medium (10 ml) lacking any hormone, and under different 

treatments: 

(A) ACC at 2.5 gM concentration was added in the medium; each vessel was 
fitted with a fast flow (FF) convective flow unit (flow rate = 3.5 cm3 min-1); 
note leaves are large green and healthy (X2). 

(B) ACC at 2.5 gM concentration was added in the medium; each vessel was 
fitted with a slow flow (SF) convective flow unit (flow rate = 1.0 cm3 min'1); 
note leaves are quite large but starting to become yellow (X2). 

(C) ACC at 2.5 µM concentration was added in the medium; each vessel was 
capped with a polypropylene disc; note leaves are quite small and yellow (X2). 

(D) ACC at 2.5 pM concentration was added in the medium; each vessel was 
sealed with a silicone rubber bung; note leaves are very small and somewhat 
distorted with epinastic curvature of leaves; also roots sometime grew out of 
the medium (X2). 

(E) control without additives to the medium; each vessel was fitted with a fast 
flow (FF) convective flow unit (flow rate = 3.5 cm3 min-1); note leaves are 
large green and healthy (X2). 

(F) control without additives to the medium; each vessel was fitted with a slow 
flow (SF) convective flow unit (flow rate = 1.0 cm3 min-1); note leaves are 
quite large but starting to become yellow (X1.5). 

(G) control without additives to the medium; each vessel was capped with a 
polypropylene disc; note leaves are quite small and yellow but larger than those 
in the ACC treatment (C) (X2). 

(H) control without additives to the medium; each vessel was sealed with a 
silicone rubber bung; note leaves are very small and somewhat distorted with 
epinastic curvature of leaves; also roots sometime grew out of the medium 





lengths were almost double that with SF-ventilation, and although leaf numbers were not 

greatly different, leaf fresh weight with FF-ventilation was more than double that with 

SF-ventilation. 

5.3.2.2. Growth (with AgNO3) 

With silver nitrate at a concentration of 2.5 µM, growth was little different from that of 

the sealed controls without additives (Table 5.02). However, in all the ventilated 

treatments growth was substantially inhibited compared with their additive-free controls. 

For example, comparing FF-ventilation treatments, leaf fresh weights, stem fresh weights 

and root numbers were respectively <0.1 X, <0.1 X and <0.3X those of the additive-free 

controls. 

In contrast with the additive-free controls, improved ventilation only marginally 

improved the growth, the only comparatively large effect was on maximum root lengths. 

The poor growth in these treatments would appear to have been due to a toxicity 

effect of the silver nitrate at this concentration. 

5.3.2.3. Growth (with ACC) 

Growth in the sealed and diffusively-ventilated ACC treatments (Table 5.02; Plate 5.01) 

was less than in the additive-free controls; the leaves were yellow and showed epinastic 

curvature especially under sealed conditions; also the roots sometimes grew out of the 

medium. 

Growth inhibition was particularly evident with the diffusive ventilation 

treatments, and this suggests that there may have been some ethylene-inhibition of 

growth resulting from the presence of ACC. With convective flow ventilation, however, 

growth improved in a similar fashion to that observed with the additive-free controls, 

and this could be explained in terms of a flushing out of ethylene from the system. This 

accords with ethylene levels detected in the various treatments (see Fig. 5 04). 
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Comparing all the growth parameters of the seedlings (Table 5.02) it can be concluded 

that the fast flow ventilation system showed the best performance. It was also revealed 

that the growth of tobacco seedlings were completely retarded in sealed vessels probably 

because of CO2 deficiency in the head-space of the culture vessels although some 

contribution from accumulated ethylene in both the sealed and diffusive ventilation 

systems cannot be ruled out. For the diffusive ventilation system with ACC there was a 

marked lowering of leaf fresh weight compared with the additive-free control. 

Thus the enrichment of growth in both the diffusive and forced ventilation may 

have been a result of both enhanced CO2 concentration (achieved by diffusion and 

ventilation respectively) and the removal of accumulated ethylene from the culture 

vessels by the ventilation apparatus. 
f. 

5.3.2.4. Photosynthesis (with and without ACC or AgNO3) 

Seedlings subjected to diffusive or forced ventilation (both fast and slow) exhibited 

significantly higher photosynthetic rates than those grown in sealed vessels (Table 5.03). 

The photosynthetic rates presented in the table are those achieved (i) at atmospheric CO2 

levels (i. e. net atmospheric photosynthetic rate - APR) and (ii) at the CO2 levels created 

by the plants growing in that particular ventilating system (net working in vitro 

photosynthetic rate - IPR); each has been expressed in terms of mol plant-s" and mol m2 

leaf surface s"'. Carbon dioxide scavenging rates for the additive-free controls are shown 

in Fig. 5.06. 

In sealed conditions without additives, the CO2 scavenging activities of the plants 

had created an atmosphere with persistently low CO2 levels (e. g. 42 µl 1") and this 

corresponded with very poor growth (Table 5.02) presumably since it resulted in the 

plants permanently experiencing a CO2 supply at or close to the compensation point. 

Consequently the potential rate of photosynthesis (APR) and the actual rates (IPR) were 

very low (Table 5.03). 
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Table 5.03. Effects of different types of ventilation on photosynthetic rates of 
tobacco seedlings. 

Treat- Ventilation *Net atmospheric tNet working in vitro 
ments photosynthetic rate (APR) photosynthetic rate -IPR 

pmol plant's'' Ftmol m' s' pmol plant's tmol 

Control Sealed 39 t 10 0.78 t 0.01 <0 <0 

Diffusive 600190 8.6 ± 0.1 110 ± 46 1.59±003 

ventilation 

Forced 910 ± 20 5.2 ± 0.2 348 ± 20 1 99 ± 0.03 

ventilation (SF) 

Forced 2560 ± 35 10.9 ± 0.3 985 ± 70 4.96 ± 0.03 

ventilation (FF) 

ACC Sealed 30 ± 10 0.69 ± 0.1 <0 <0 

(2.5 µM) 
Diffusive 530 t 12 7.9 ± 0.14 104 ± 80 1.45 ± 0.04 

ventilation 

Forced 810±20 8.0±0.2 309±20 185±005 

ventilation (SF) 

Forced 2580±60 10.3±0.09 836±74 334±0.02 

ventilation (FF) 

AKNO, 3 Sealed 56 ± 10 0.89 t 0.09 0 <0 

(2.5 µM) 
Diffusive 279 ± 50 5.57 ± 0.04 95 ± 20 0 91 ±0 02 

ventilation 

Forced 360±20 5.98±009 188±20 093±001 

ventilation (SF) 

Forced 293±15 5.85±0.01 294±0.09 1.08±0.01 

ventilation (FF) 

iwwJýnuýcuý, iatc wcasuicu dt 3-3V X11 1 1. v2 Mill IL Ftutut III S tlgtll uu. N. I uvway..... -. . awa 

measured at known CO_ concentrations of the culture vessels during the experimental period. Each 
value represents a mean ± SE of 5 replicates. 
NSF slow flow ventilation (flow rate = 1.0 - 1.5 cm' min-'): FF - last flow ventilation (flow rate = 3.5 
cm3 min'), for sealed and diffusive ventilation vessels were capped with silicone rubber bungs and 

polypropylene discs respectively; volume of culture vessel = 60 cm`. Seedlings grown at ca. 25°C in 

continuous light: PAR = 150 pmol m"s". 
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Also, in the additive-free treatments, increasing ventilation (diffusive 4 SF -3 FF) was 

accompanied by corresponding increases in CO2 levels (Table 5.04), photosynthesis 

(Table 5.03) and growth (Table 5.02): photosynthesis reached the highest levels with FF 

ventilation. For example, with FF, the APR and IPR were remarkably 14X and 29X 

respectively those in the sealed vessels. Furthermore, with the forced ventilation the CO2 

levels were relatively high despite the larger size and hence greater CO2 scavenging 

activities of the plants. This result is a particularly good illustration of the beneficial 

effects of forced ventilation. Illustrated differently: with FF-ventilation the IPR in the 

additive free treatment is 0.45X the rate at atmospheric levels of C02, with SF 

ventilation this figure is 0.38X, with diffusive ventilation it falls to 0.18X;. in the sealed 

treatment it is of course zero. 

Similar effects were evident in the ACC treatments except in the diffusive and SF 

systems where potential photosynthesis was somewhat lower than in the additive-free 

controls. Even so in the FF treatment, APR and IPR were 15X and 24X higher than in 

the sealed system. In the case of the diffusive system it can be seen that higher ethylene 

levels had accompanied the ACC addition (see Fig. 5.04), and this might account for the 

result. In the case of the SF system no ethylene was detectable in the gas-space, but this 

does not rule out some slight endogenous inhibitory effect. 

As expected, the poorly developed plants in the 2.5 µM silver nitrate treatment 

exhibited comparatively low rates of photosynthesis per plant and this probably accounts 

for the higher CO2 levels in the diffusive and forced ventilation compared with additive- 

free controls. The CO2 concentrations in the sealed vessels with silver were marginally 

greater than in the additive-free controls, although it is not clear what might have been 

the reason for this. On the other hand photosynthesis per plant was greater where there 

was diffusive or forced ventilation since the plants were bigger and presumably 

benefiting from a more favourable CO2 Supply- 

i These results are in agreement with the findings of Fujiwara, Kozai and 

Watanabe (1987), Fujiwara, Kozai and Watanabe (1988), Kozai and Iwanami (1988), 
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Kozai, Koyama and Watanabe (1988) and Solärovä et al. (1989) who postulated that the 

elevation of CO2 inside culture vessels should increase net photosynthesis. 

5.3.2.5. Chlorophyll and carotenoid contents 

Thelowest chlorophyll content, based on fresh weight of leaves, was observed in the 

sealed vessels in all of the treatments (control, ACC and AgNO3) (Fig. 5.04). The 

addition of silver at 2.5 pM in sealed conditions may have slightly increased the 

chlorophyll a content but the difference was barely significant. However, the addition of 

ACC resulted in a lower chlorophyll content under diffusive ventilation compared with 

the additive-free control. With forced ventilation, but particularly FF, chlorophyll 

contents were highest: in both additive-free controls and the ACC treatments chlorophyll 

contents with FF ventilation were >6.5X those in the sealed vessels. The difference in 

chlorophyll contents between slow flow and diffusive flow ventilation was greater in the 

ACC treatment where the diffusive flow system had significant ethylene accumulation 

(see Fig. 5.05) but none could be detected in the SF ventilation treatment because of the 

flushing effect of the throughflow convection. Indeed the presence of ACC in the 

medium had no effect on chlorophyll content with either FF or SF ventilation. In both 

additive-free and ACC treatments, FF ventilation resulted in chlorophyll contents which 

were >1.5X those in the SF ventilation. Conversely it is apparent that 2.5 . tM silver had 

a markedly depressing effect on chlorophyll contents in SF, FF and diffusive ventilation 

treatments; one reason could be the toxicity effect of silver at this concentration. 

Similar relationships were observed for carotenoid contents except that in the 

additive-free and ACC treatments carotenoid levels were almost equally increased by 

both types of forced ventilation. In the presence of 2.5 pM silver the carotenoid 

concentrations were severely depressed in all treatments. 

1 
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Fig. 5.04. Effects of closed, diffusive and forced ventilation systems and presence and 
absence of ethylene precursor (2.5 4M ACC) and inhibitor (2.5 tM AgNO3) in the rooting 

medium (MS -V2 strength) on chlorophyll and carotenoid contents of the leaves of in vitro- 
grown 10 days old tobacco seedlings; (1 = FF-ventilation apparatus, 2= SF-ventilation 
apparatus, 3= diffusive ventilation - capped with polypropylene disc and 4= sealed with 
silicone rubber bung; each bar represents a mean ± SE of 5 replicates; SF - slow flow 
ventilation (flow rate=1.0-1.5 cm3 min"); FF - fast flow ventilation (flow rate=3.5 cm3 min"). 
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5.3.3. Effects of different methods of capping on gaseous atmosphere in the culture 

vessels 

5.3.3.1. Ethylene 

Highest concentrations of ethylene were found in the sealed vessels in presence of ACC 

in the nutrient medium (Fig. 5 05). The concentration, 0.41 pl I"', was >2X that of the 

additive-free sealed control and silver treatments. Compared to the sealed vessels those 

with diffusive ventilation contained even lower concentrations of ethylene: 0.07 µl 1", in 

the additive-free control, 0.12 µl l-' with ACC, and 0.058 µl 1"' in the presence of 2.5 µM 

silver. 

Wherever the SF or FF ventilation apparatus was employed, virtually no ethylene 

was found in the head-space of the culture vessels. 

p The results seem to demonstrate a significant impedance to ethylene loss with the 

diffusive flow ventilation and an efficient flushing with both types of forced ventilation. 

5.3.3.2. Carbon dioxide 

During the light period the atmosphere of the head-space of sealed vessels in all the 

treatments (ACC, AgNO3 and control) contained significantly lower concentrations of 

CO2 when compared with those having diffusive and forced ventilation (Table 5.04). 

This was almost certainly due to the photosynthetic activity of the seedlings; since the 

only additional source of CO2 would be respiratory in origin, severe CO2 depletion must 

result in such a system. The equilibrium concentration was about 42 µl l" CO2 in the 

additive-free control and ACC treatments, and a little higher in the sealed plus silver 

treatment. These figures represent the CO2 compensation values (Fig. 5,06) and the 

results strongly correlate with the findings presented in Table 5.02 which demonstrated 

that growth was very poor in sealed vessels. 

With the vessels capped with polypropylene membrane to provide diffusive 

ventilation, CO2 concentrations increased significantly in the additive-free and ACC 

treatments. The concentrations increased with increasing efficiency of ventilation, the 
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Fig 5.05. Effects of closed, diffusive and forced ventilation and presence and absence of 
ACC (2.5 NM) and AgNO3 (2.5 NM) in the rooting medium (MS - V2 strength) on the ethylene 
concentrations in the culture head-space; tobacco seedlings were 10 days old; (D = fast 
flow ventilation (flow rate = 3.5 cm' min"'); ©= slow flow ventilation (flow rate=1.0-1.5 cm3 
min''); ®= diffusive ventilation capped with polypropylene disc; ®= sealed with silicone 
rubber bung; each bar represents a mean ± SE of 5-7 replicates. Seedlings were grown at 
ca. 25°C in continuous light; PAR = 150 p mol m'2 s"'. 
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Fig. 5.06. Showing the depletion of CO2 in the head-space of culture vessels containing 
10-day-old tobacco seedlings (at 72 pmol m"2 s'' PAR); seedlings had been previously 
grown under fast flow ventilation (flow rate=3.5 cm3 min's) ("), slow flow ventilation (flow 

rate=1.0 - 1.5 cm3 min'') (0), diffusive ventilation (capped with polypropylene disc) (A), and 
under sealed condition (with silicone rubber bung) (f). 
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highest being reached with the FF ventilation (>3.5X those in the sealed treatments) and 

concomitantly, higher rates of photosynthesis (Table 5.03) and better growth ('f'able 

5.02) occurred. Again it should be noted that despite the better growth and higher 

photosynthetic rates the FF treatment was able to sustain higher CO2 levels than the 

diffusive or SF systems. However, an even faster flow would be required to füllt' satisfy 

the scavenging capability of the plant (see Table 5.03). 

Table 5.04. Effects of different types of ventilation, ACC and AgNO3 on carbon 
dioxide concentrations (p1 1-1) in the culture vessel atmosphere of tobacco seedlings (10 
days old) exposed to continuous light (150 Nmol m-2 s-1 PAR). 

Treatments 
Sealed with Diffusive Forced ventilation Forced ventilation 

Silicone ventilation (Slow flow; rate = 1.0 (Fast flow; rate = 3.5 
rubber (capped with cm3 min'') cln3 min-') 
bung polypropylene 

disc) 

Control 41.7±7.0 62.3±11.3 108.3±7.5 146.0 ± 12.1 

ACC 42.1±5.4 64.5±101 1101±7.2 149.8±12.5 

(2.5 µM) 

AgN03 59.8 ± 6.6 143.8 ± 13.1 235.8 3 19 334.5 ± 15 

(2.5 µM) 

* Each value represents a mean ± SE of 7- 10 replicates. 

With the addition of 2.5 pM AgNO3, CO2 levels again increased with increasing 

efficiency of ventilation. However, the actual levels were much higher than above and 

these can be explained in terms of lower rates of photosynthesis, lower chlorophyll 

content and poorer growth of the plants due to silver toxicity. 

From these results it seems reasonable to suppose that although there is some 

evidence that ethylene can have a suppressing effect on growth e. g. in the diffusive flow 

system, it is the elevation of CO2 concentrations produced by the ventilation apparatus 

which was probably mainly responsible for the increased growth and development of 

tobacco seedlings. To explore further the effiects of CO2 enhancement, another 
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experiment was conducted by applying higher concentrations of CO2 in the atmosphere 

of the culture vessels (see Section 5.3.4). 

5.3.4. Growth and development of seedlings with diffusive ventilation: elevation of 

CO2 and exogenous ethylene 

It should first be noted that in this experiment although the ventilation was diffusive, the 

system may not be directly comparable with the previous examples in this chapter since 

the external atmosphere was confined within a large sealed glass chamber. Consequently, 

there was more chance of boundary layer effects developing above the polypropylene 

membrane and a greater possibility of endogenous ethylene accumulation in the culture 

vessels. Indeed ethylene levels in the culture vessels in this experiment varied between 

0.1 and 0.4 1111"' with 350 1111"' CO2 in the chamber compared with only 0.07 µl 1" when 

the vessels were in the open growth room (Section 5.3.3.1). It is not known what levels 

were achieved at the higher CO2 concentrations. 

5.3.4.1. Growth 

The best performance was observed in the 3000 µl 1.1 CO2 treatment (Figs. 5.07 and 

5.08; Plate 5.02). Here the fresh weight of leaves was 6.4X and the leaf area 3.6X those 

of the controls where the seedlings were subjected to atmospheric levels of C02: 350 µI 

1''. The number of leaves at 3000 911-' CO2 was also higher: 1.3X than that of the 350 µl 

l"' CO2 control. Also, the root systems were remarkably better with 22 roots per plant 

equivalent to 3X that of the control; similarly, stem fresh weights and lengths were 

increased: respectively 8X and 19X those of the controls. At 1500 p1 1"' C02, growth 

was generally intermediate between the 350 and 3000 p1 1'' CO2 treatments except for 

maximum root lengths which were similar to those in the 3000 pl 1'' treatment. At 0-5 

PI 1"' C02, growth was very poor but was appreciably increased at 350 p11-1 CO2. 

It is interesting to note that the growth attained under normal additive-free FF- 

ventilation (see Table 5.02) lies approx. between that of the 1500 and 3000 µl l-, CO2 

treatments. Thus, throughflow ventilation can compensate for a lack of CO2 enrichment. 
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Fig. 5.07. Effects of elevation of C02 and exogenous ethylene in the culture head-space 
on stem and root growth of 15 days old, in vitro-grown tobacco seedlings; 60 ml culture 
vessels were each capped with a polypropylene disc and enclosed in a 5000 ml glass 
chamber; each chamber was recharged as intervals (Section 5.2.2.3. ) with appropriate gas 
concentrations; each symbol represents a mean ± SE of 10 replicates. 
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Also, however, it may be seen that the vessel CO2 levels in the 350 µl 1'' CO2 treatment 

are similar to those of the SF-ventilation in the earlier experiments. This possibly 

indicates some ethylene-inhibition of growth in the present experiment. 

When exogenous ethylene (15 µl 1'') was added with the 350 pl C' CO2 

concentration, then all the growth factors apart from stem fresh weight and number of 

leaves were appreciably reduced in comparison to the controls (350 µl 1"` CO2 with no 

exogenous ethylene). Also one effect of the ethylene seemed to be to make the petioles 

elongate (Plate 5.02). The most significant growth retardation was found in the root 

systems where numbers of roots were 0.12X and the maximum lengths were 0.17X 

those of the controls. At a concentration of 1.5 µl 1" ethylene, which is much closer to 

values naturally attained in sealed cultures, it can be seen that there was again some 

growth inhibition; the effect was greatest on root numbers and lengths, and there was a 

small but significant reduction in leaf area. These results clearly show that high dosages 

of ethylene can have very deleterious effects on the growth and development of tobacco 

seedlings, but also that the concentrations, likely to occur in sealed containers can cause 

some growth retardation. Huxter, Thorpe and Reid, (1981) and Bolton and Freebairn 

(1975) have also reported on the deleterious effects of high ethylene dosage. 

From these results it can be concluded that there is a very strong positive 

correlation between CO2 concentration in the culture vessels and the growth of in vitro 

grown tobacco seedlings. Also, however, there are again strong indications that the small 

levels of ethylene accumulating in diffusive ventilation treatments may be sufficient to 

depress growth significantly. Again, the data strongly support the need for the forced 

ventilation of culture vessels. 

5.3.4.2. Effective carbon dioxide concentration 

The CO2 concentration in the culture vessels and the chamber were measured every 3 

days during the experimental period. As shown in Fig. 5.09, except for the 0-5 pl 1` 

treatment, the CO2 concentrations measured in the culture vessels atmospheres became 
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PLATE : 5.02 

In vitro tobacco seedlings, after 15 days, grown in 60 ml glass vessels containing 
half strength MS medium (10 ml) lacking any hormone, and under different CO2 
and ethylene concentrations in the culture head-space: 

(A) 0-5p. 1 I"' CO2 concentration; note extremely stunted seedlings and yellow 
leaves (X2.7). 

(B) 350 µl 1"' CO2 concentration; seedlings stunted but larger than in (A) and still 
the leaves are yellow (X2.7). 

(C) 350 µ1 1'' CO2 concentration + 1.5 pl 1" ethylene; note seedlings are very 
stunted but slightly larger than (D); leaves are yellow with more elongated 
petioles than in (A) (X2.7). 

(D) 350 [tl ]'I CO2 concentration + 15 pI 1'' ethylene; note seedlings are very 
stunted, leaves are yellow with more elongated petioles than in (A) (X2.7). 

(E) 1500 p1 1' CO2 concentration; note good growth; leaves remained green 
(X2.7). 

(F) 3000 p] I" CO2 concentration, note good growth; leaves remained green 
(X2.7). 

*Culture vessels were each capped with a polypropylene disc and enclosed in 5000 ml 
glass chamber; each chamber was recharged at intervals (Section 5.2.2.3. ) with 
appropriate gas concentrations, each symbol represents a mean ± SE of 10 replicates. 
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significantly lower towards the end of the experiment (8 - 15th day). The reason is 

undoubtedly due to the increasing CO2 demand of photosynthesis coupled to the 

membrane diffusive resistance Another important factor which might have influenced 

the result was transpirational water from the leaf which condensed on the inner side of 

the polypropylene membrane, which would presumably have increased its resistance. As 

a consequence diffusion rates through the polypropylene would decrease as would the 

level of CO2 within the vessel. During the present study it became increasingly apparent 

that condensation on the polypropylene membranes could be an important drawback to 

this type of ventilation system. 

As described earlier, very small shoot and root systems developed when 0-5 µl 

1-' of CO2 was supplied and thus photosynthetic rate and transpiration rates would also 

be very low. As a result the inside CO2 concentration was almost similar that of the outer 

atmosphere (i. e. within the chamber) (Fig 5.09). 

5.3.4.3. Chlorophyll and carotenoid contents 

The chlorophyll contents based on the fresh weight of the leaves of the seedlings 

increased with increasing CO2 concentrations in the atmosphere of the culture vessels. 

The greatest difference was between 0 and 350 µl 1" concentrations (Fig 5.1Oa). At 350 

µl l"' CO2 the chlorophyll content was 488 pg g"' fresh weight and this was >40X that at 

0-5 µl 1'' CO2 concentration. From these results it could be concluded that atmospheric 

CO2 concentration is directly related to the chlorophyll contents of tobacco leaves. 

In the presence of exogenous ethylene in the culture vessels (i e. 15 pl I" plus 

350 µl 1'l C02) the chlorophyll content was appreciably reduced to 0.67X that of the 

control without ethylene. However, even the 1.5 µt 1'' CO2 treatment caused a significant 

decline: the chlorophyll content was 0.76X that of the control. This suggests that 

ethylene was responsible for the decline in chlorophyll contents of the tobacco leaves. 

These findings are in agreement with the results of Cournac et a!. (1991) where the 
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at intervals (Section 5.2.2.3) with appropriate gas concentrations; each symbol represents a 
mean ± SE of 10 replicates. 
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chlorophyll contents of Solarrum luberosum leaves increased when ethylene inhibitors 

(Ag2S2O3) were added in the medium. 

Similar relationships to those for chlorophyll content were found also in the case 

of the carotenoids. (Fig. 5.10b). They were remarkably low at the lowest CO2 

concentration and were more than halved by ethylene in air at 15 pl l''. 

5.3.4.4. Photosynthesis and irradiance 

After 15 days in the various CO2 treatments the relationships between net photosynthesis 

(pmol CO2 M-2 leaf surface s-') and irradiance (PAR, tmo1 m"2 s'') at atmospheric CO2 

levels were measured and the results are shown in Fig. 5.11. 

The highest rate of photosynthesis (3.88 µmol m'2 s"' at 360 µM01 M-2 s' PAR) 

occurred in the plants taken from the 3000 µl 1"I CO2 treatment, the rates for the other 

plants decreased in accordance with the CO2 concentration at which they had been 

previously grown. The lowest rate (0 23 pmol M-2 s'' at 360 pmol m'2 s' irradiance) was 

for the plants originally grown at 0-5 p1 1'' CO2. The photosynthetic capacity of these 

plants was therefore only 0 06X of that of the plants from the 3000 p11'' CO2 treatment. 

The results suggest that the photosynthetic potential of tobacco plants can be strongly 

dependant upon the CO2 concentration in atmosphere in which they have been cultured. 

However, the net photosynthetic rates found in this experiment were considerably lower 

than those in the previous one. For example in the 350 PI 1"' CO2 treatment the net rate at 

ca. 75 pmol m'2 s'' was approx. 0.9 pmol m"2 s' compared with 8.6 pmol M-2 s'' in the 

previous experiment. However, the comparable chlorophyll contents in the current 

experiment (430 pg g"' F. W. ) were only 0.55X that of the diffusive treatment in the 

previous experiment. Why this should have been so is not clear but, in the present 

experiment, the culture vessels were enclosed and the ethylene concentrations were 

greater during the growth period. It seems possible that endogenous ethylene might have 

been indirectly responsible for the lower rates of photosynthesis. This is supported by the 

results from the treatments with added ethylene, where photosynthesis declined with 
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increasing ethylene concentrations (Fig. 5.11) and where chlorophyll and carotenoid 

contents similarly declined (Fig. 5.10). However, it is rather puzzling that although the 

1500 and 3000 pl 1'' CO2 treatments more than doubled the potential for photosynthesis, 

the chlorophyll contents rose by only 1.14X and the carotenoid contents did not change. 

To summarise, a strong positive correlation seems to exist between the CO2 

concentration in the culture atmosphere and the potential developed for photosynthesis 

of tobacco seedlings. It can be seen also, that an increased light flux might be beneficial 

to growth. On the other hand, higher light fluxes can cause greater condensation in the 

culture vessels, and particularly on polypropylene membranes and hence in the long term 

might depress growth in diffusively ventilated treatments through impeded ventilation. 

5.3.5. Shoot culture from cutting: the effects of closed, diffusive and forced 

ventilation systems 

5.3.5.1 Growth and development 

Shoot tips inoculated on to culture medium led to new shoot proliferation and callus 

development. Considering all the growth parameters, the best performance occurred in 

the cultures subjected to forced ventilation (FF). As shown in Fig. 5.12 and Plate 5.03 

the best shoot system was found in forced ventilation with 12.5 mg callus and 297 mg 

shoot (including leaf) fresh weight; the latter compared with only 120 mg in the sealed 

system and 125 mg with diffusive ventilation. The number of leaves and maximum length 

of each shoot also increased remarkably in this treatment and were respectively 2.2X and 

4. OX those in the sealed vessels. However, the number of shoots was not significantly 

higher than that of other two treatments. 

Cultures grown under diffusive ventilation exhibited an intermediate growth 

pattern between that of the forced ventilation and closed system. Therefore, it could be 

concluded that forced ventilation showed the best performance for improving the growth 

and development of in vitro grown tobacco shoot culture. 
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PLATE : 5.03 

30 days old in vitro grown tobacco shoot cultures grown in 60 ml glass 
vessels containing full strength MS medium (10 nil) supplemented with 
BAP (0.5 mg 1-) + NAA (0.1 mgl"). Vessels were capped as follows: 

(Left hand side): silicone rubber bung; note poorer growth and yellowing 
leaves (1.5X). 

(Middle): polypropylene membrane; note poorer growth and yellowing 
leaves (1.5X). 

(Right hand side): fast flow ventilation apparatus (flow = 3.5 cm' min'); 
note good healthy growth and green leaves (1.5X). 





5.3.2.4. Carbon dioxide uptake/production rate 

The carbon dioxide uptake/production rates were measured after 30 days of culture. The 

results showed that the plantlets subjected to forced ventilation were absorbing CO2 at 

the rate of 12 X 10-6 m3 s' m"3 (culture) which was 8X that of the diffusive grown 

cultures. Under sealed conditions, however, there was at this stage no net absorption of 

C02, rather they were producing CO2 at the rate of 10.8 X 10-6 m3 s'' M-3 (culture) (Fig. 

5.13). This was no doubt due to the small size and the yellow nature of the leaves. These 

results were consistent with the findings shown in Fig. 5.14 where high amounts of CO2 

were noticed in sealed vessels. 

5.3.2.5. Gaseous atmosphere of the culture vessels 

In sealed vessels the ethylene levels (0.1 pl 1"') were 5X greater than those in the 

diffusive vessels (Fig. 5.14a), while with forced ventilation there was almost no ethylene 

in the atmosphere of the culture Although the effects of such ethylene accumulation on 

overall growth of the culture are not clear, the levels are so low that it is tempting to 

assume that the gas has no deleterious effects, at least not on the callus fresh weight and 

number of shoots developing (Fig 5.12). 

On the other hand, however, the concentration of CO2 was very high in the 

sealed vessels (2411 pl 1-1) (Fig. 5.14b), being respectively 5.6X and 12.4X higher than 

those of diffusive and forced ventilation systems. (This is a quite different result from 

that with the tobacco seedlings where, in the absence of callus, there was a net 

absorption of C02). As shown in Fig. 5.13 the cultures in the closed system were net 

producers of CO2 rather than net absorbers. In the case of the seedlings, however, 3000 

911-1 CO2 was associated with better growth and hence this raises the possibility again 

that even the relatively low level of ethylene in these callus plus shoot cultures might 

have been sufficient to have depressed growth to some extent. Indeed the poorer growth 

in the diffusive vessels might have been induced in such a way. It seems reasonable to 

assume that respiratory activity in the callus of the sealed vessels was masking the 
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photosynthetic effect of the green shoots, and in the diffusive vessels the relatively high 

CO2 levels again suggest that callus respiration was making a very significant 

contribution Alternatively it may be that tobacco callus produces other volatiles capable 

of suppressing shoot growth. Unfortunately, with tobacco it was not possible to separate 

the callus and the shoots; however, the results for cauliflower (Chapter IV: Fig. 4.10) 

show how important a contribution callus respiration can make to net CO2 exchange. 

With forced ventilation the CO2 concentration was noticeably lower (195.2 µI 1"') 

indicating the more effective scavenging activity of the larger plants. 

The concentrations of oxygen were very low in the closed vessels, only 7.5 per 

cent at the end of the experiment (Fig. 5.14c). Although this was unexpected, it is 

consistent with the dominance of respiration over photosynthesis noted above. With 

diffusive ventilation the oxygen concentrations were slightly lower (at 17%) than 

atmospheric, whereas with forced ventilation the value was just below atmospheric. 

These values no doubt reflected the balance between respiration, photosynthesis and the 

differences in ventilating efficiency of the two treatments. 

5.3.5. Growth, chlorophyll contents and yellowing of leaves : the evaluation of the 

closed system, diffusive and forced ventilation 

During the experiments on tobacco seedlings, cuttings or cultures it was interesting to 

note that the ledves started to become yellow in colour after only a few days of culture in 

sealed and sometimes in diffusive vessels (Plate 5.04); in the sealed treatment the leaves 

also showed epinastic curvature. To explore further the responses, an experiment was set 

up in which the treatments were applied to equally sized plants grown first under forced 

ventilation. By the end of the experiment it was found that the plantlets subjected 

subsequently to the closed system or diffusive system had became completely yellowish 

in colour. The plantlets in slow flow ventilation also showed some signs of yellowing but 

not to a great extent. It was also established that the fast flow ventilation system was 
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able to maintain the natural green colour of the leaves in tobacco culture (Plates 5.04; 

5.05). 

5.3.5.1. Growth 

Among the treatments the best growth and development were observed in the plantlets 

subjected to FF ventilation (Figs. 5.15 and 5 16 and Plate 5.05) After only eight days 

the leaf systems were remarkably better than the plants with closed ventilation (Plate 

5.04): the numbers, area and fresh weight of leaves per plant with FF ventilation were 

approx. 1.4X, 3.3X and 3. OX greater than those of the closed treatments. Similarly root 

systems were also enhanced significantly in this treatment. The mean maximum length of 

roots was ca. 39 mm compared with only 16 mm in the sealed system. Even more 

strikingly, however, it can be seen that there were few new leaves and no increase in leaf 

area, and few roots produced neither was there any extension of the longest roots, when 

plants were transferred from FF to closed ventilation. 

Plantlets subjected to diffusive and slow flow ventilation also exhibited better 

growth (both leaf and root system) than that of sealed grown plantlets. However, as 

shown in Figs. 5.15 and Fig. 5.16 the overall growth in slow flow ventilation was slightly 

better than that in the diffusive one. 

5.3.5.2. Ethylene and carbon dioxide concentration 

Before applying the treatments i. e. under forced ventilation, no ethylene accumulation 

was found in the culture vessel atmosphere. However, as shown in Fig. 5.17a, on the 

2nd day of the treatment (9th day of culture) in sealed conditions ethylene concentrations 

had already become high (almost 0.8 pl 1'1) and by the end of the experiment had reached 

a concentration of 1.28 µl 1.1. Under diffusive ventilation the concentration of ethylene 

also increased but not to such a great extend (0.54 pl 1'`). However, in forced ventilation 

(fast and slow) the head-space of the culture vessels did not accumulate any ethylene. 

Almost immediately after applying closed ventilation the CO2 concentrations in 

these culture vessels became very much lower and at the end of the experiment were ca. 
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PLATE : 5.04 

In vitro tobacco cuttings, after 7 days, grown in 60 ml glass vessels containing 
half strength MS medium (10 ml) lacking any hormone, and under different 
conditions of ventilation. (The plants had been previously grown 7 days in fast 
flow ventilation (flow = 3.5 cm3 min") 

upper : vessels were sealed with silicone rubber bungs; note 
that the leaves became very yellow and distorted with 

epinastic curvature of leaves (X2). 

lower : vessels were capped with polypropylene disc; note 
that the leaves became yellow (X2). 
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PLATE : 5.05 

In vitro tobacco cuttings, after 7 days, grown in 60 ml glass vessels containing 
half strength MS medium (10 ml) lacking any hormone, and under different 
conditions of ventilation. (The plants had been previously grown 7 days in fast 
flow ventilation (flow = 3.5 cm' min") 

upper : each vessel was fitted with a slow flow convective 
flow unit (flow rate = 1.0 cm' min"); note leaves becoming 
only very slightly yellow (X2). 

lower: each vessel was fitted with a fast flow convective flow 
unit (flow rate = 3.5 cm' min"); note leaves remained 
healthy and green (X2). 
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Fig 5.16. Effects of closed (s), diffusive (") and forced ventilation - slow flow ventilation 
(flow rate=1.0-1.5 cm3 min-) ("); fast flow ventilation (flow rate=3.5 cm3 min'') (A); on (a) 
number of roots and (b) maximum length of roots (mean maximum root length, 3 roots 
from each plantlets) of in vitro tobacco cuttings grown in 60 ml glass vessels containing 
half strength MS medium (10 ml) lacking any hormone. (The plants had been previously 
grown 7 days in fast flow ventilation). 
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164 

IIIi L_L II 



44 µl 1-', i. e. at or close to the CO2 compensation point (Fig. 5.17b). With diffusive 

ventilation, CO2 concentrations in the culture vessels were eventually reduced 67 µl 1''; 

this was still 1.5X greater that of the sealed ones, and probably still above the CO2 

compensation point. With FF-ventilation the CO2 concentrations had equilibrated at ca. 

200 µl l'', and this was substantially higher than that of even the SF system (105 pl 1''). 

5.3.5.3. Chlorophyll contents 

Total chlorophyll contents based on the fresh weight of leaves declined steadily in sealed 

vessels with the passage of time (Fig. 5.18), and was only 70 µg g" fresh weight at the 

end of the experiment, a very low value. In contrast, plantlets grown under forced 

ventilation exhibited much higher chlorophyll contents (1337 µg g' fresh weight). 

Chlorophyll content also decreased in the diffusive and SF ventilation treatments, but 

there were substantial differences between them and values with diffusive flow were 

<0.5X that in the SF system. 

The conclusion drawn from the above results is that the yellowing of the leaves of 

tobacco plantlets which was observed mainly in the sealed and diffusive systems may be 

due to the higher ethylene concentration accumulated in the head-space of the culture 

vessels. The epinastic curvature of the leaves was evidence of that. However, to some 

extent the lower CO2 concentration noticed in these two treatments might also be 

responsible since under SF-ventilation some leaves became yellow in colour but ethylene 

did not accumulate 

The results obtained point to the need for further experiments in which ethylene 

should be applied to the FF-ventilation system to determine whether it will induce 

yellowing and reduce growth under conditions where CO2 levels remain high and 

volatiles other than ethylene cannot accumulate. The results of such an experiment are 

reported in the next section. 
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Fig 5.18. Effects of closed (U), diffusive (") and forced ventilation - slow flow ventilation 
(flow rate=1.0-1.5 cm3 min-) ("); fast flow ventilation (flow rate=3.5 cm3 min') (A); on 
chlorophyll contents (based on leaf fresh weight) of in vitro tobacco cuttings grown in 60 
ml glass vessels containing half strength MS medium (10 ml) lacking any hormone. (The 
plants had been previously grown 7 days in fast flow ventilation). 
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5.3.6. Continuous exposure to ethylene under FF-ventilation 

Plants were first grown under FF-ventilation and then, at 15 days, were subjected to 

either FF with ethylene (1.5-2.0 pl I-) or FF only (control). Of the two treatments the 

better growth subsequently occurred in the control (Table 5.05). After only 4-days both 

the area and fresh weights of leaves per plantlet in the controls were approx. I. 8X 

greater than those in the continuous ethylene treatment. The numbers of leaves and the 

stem fresh weights were the same from both treatments, root numbers and maximum 

lengths of roots were slightly higher in the controls. In the continuous ethylene with 

forced flow ventilation, the leaves went yellow within the four days of treatment and the 

young leaves were showing signs of epinasty, whereas in the controls the natural green 

colour of the leaves was largely maintained and there was no epinasty (Plate 5.06). 

TABLE 5.05. Effects of continuous exposure of ethylene (1.5 - 2.0 tl I-) under fast 
flow (FF) ventilation (5.0 cm3 min-) on the growth of tobacco plantlets after 4 days 
(plantlets had been previously grown with fast flow ventilation for 15 days). 

Treatments Leaves Stem Root 

No. Area Fresh Fresh No. Max. 

Weight weight length (mm) 
(em2) (mg) (mg) 

Control 9 0±0 6 21 4±1.0 7588+608 38.3±0 5 20.331.0 68.1±1.5 

(FF- 
ventilation) 

FF- 8 7±0 3 11.8±0.3 427 4± 13.1 39.3±0.6 18.0±0.7 58 3±1 76 

yentilatio+ 
Ethylene 

itieau maximum root icngin (-i roots irotn cacti sceattngs): 
*cultures iNere groitin in continuous light condition (150 tmol ni s-'). 

The chlorophyll contents based on the fresh weights of leaves were substantially lowered 

in the continuous ethylene treatment. In contrast much higher chlorophyll contents (a 

and b) and carotenoids were recorded in the controls: respectively 4.6X, 8.2X and 55X 

greater than in the continuous ethylene treatment (Table 5.06). 
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PLATE : 5.06 

Tobacco cuttings in vitro: effects of continuous exposure to ethylene (1.5 

- 2.0 µl 1-' in air) with fast flow ventilation (5 cm3 min-1) after 5 days. 

The plants had been previously grown for 15 days in 60 ml glass vessels 
containing half strength MS medium (10 ml) lacking any hormone and 
with fast flow ventilation. 

A, C, and E: The inflow turrets were inserted into a `wind-tunnel' (Fig. 
5.02) through which the ethylene mixture was passed (speed = 3.7 
ms'). Note the leaves became very yellow from the base upwards 
(X1.4). 

B, D and F: Here the inflow turrets were in the air. Note leaves remained 
healthy and mostly green (X1.4). 

Growth room conditions: T= 25°C and continuous light (PAR =150 . xmol 
m"2 s-1). 





These results reveal that ethylene can indeed exert very deleterious ellects on 

tobacco at concentrations which might readily occur in sealed and diflüsively ventilated 

culture systems. They lend support to the view that it probably exerted significant ctlccts 

in most of the experiments reported in this chapter. 

TABLE 5.06. Effects of continuous exposure of ethylene (1.5 - 2.0 µl 1-1) under fast 
flow (FF) ventilation (5.0 cm3 min-) on chlorophyll and carotenoid contents of leaves of 
tobacco plantlets after 4 days (plantlets had been previously grown with fast flow 
ventilation for 15 days). 

Characteristics Control FF- ventilation + 

(FF- ventilation) Ethylene (1.5 - 2.0 µI I !) 

Chlorophyll a 1228.6± 62.3 144.8± 10.3 

Etg(g fresh W) 

Chlorophyll b 268.6 ± 12.3 176+ 21 

µg(g fresh Nvt)"ý 
313.8 ± 19.3 56.7+5.3 

Carotenoids contents 
µg(g fresh awt) 

Lail IIII CS ý%ere grown III GUIILIl1UUUS IIgitt CUllül[loll k I7U 411101 111 si. 
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5.4. FINAL COMMENTS 

The results have shown that the growth of tobacco plantlets can be substantially 

improved by means of forced ventilation of the culture vessels and in general the best 

growth was achieved with the higher flow. In sealed vessels the growth was extremely 

retarded probably because of (a) C02 deficiency in the culture atmosphere and (b) an 

accumulation of ethylene. The results from ethylene inhibitors did not show any clear 

evidence of an ethylene effect, but the ACC additions and the ACC plus silver do 

suggest that ethylene could have been important. Moreover, the continuous exposure of 

plantlets to exogenous ethylene (1.5 - 2.0 p1 1") under FF-ventilation revealed that 

ethylene can severely depress the growth of tobacco plantlets. Aharoni and Lieberman 

(1979) pointed out that in tobacco endogenous ethylene plays a considerable role in the 

regulation of leaf senescence. Endogenous ethylene within mature leaves of tobacco 

range between 0.1 and 0.2 pl 1" (Aharoni, 1978; Aharoni and Lieberman 1979) and 

threshold values for an ethylene effect on leaf senescence were reported to be 0.01 to 0.1 

µl I-'. In the present investigation the accumulation of endogenous ethylene in the culture 

atmosphere varied from 0.03 to 0.54 µl 1'' in diffusive ventilation and 0.2 to 1.2 µ1 1"' 

under sealed conditions. The flushing out of the accumulated ethylene from the culture 

vessels solved this problem and thus was partially responsible for the better growth 

compared with that in the sealed or diffusive treatments. However, the ability of the 

forced ventilation systems to improve CO2 concentrations in the culture vessels might 

have had large effects in producing better growth in tobacco. 

It is already well known that ethylene and ethylene-releasing chemicals have been 

used to attain a bright yellow colour and to reduce the curing time of tobacco leaves 

(Abeles 1973). The ethylene-induced chlorophyll loss has been also reported in orange 

(Shamoute orange) and other fruits (Apelbaum, Goldschmidt and Yehoshua 1976) and 

also in leaves of tobacco (Burg 1968, Pratt and Goeschl 1969). In the present 

investigation, tobacco leaves became yellow in the sealed vessels and in the forced 

ventilation with added ethylene but normal CO2 concentrations. Thus, accumulated 
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endogenous ethylene was possibly a more immediate cause of senescence and epinasty in 

sealed vessels than any lack of CO2. The chlorophyll was also depleted substantially in 

the diffusively ventilated vessels and SF-ventilation showed some signs of yellowing but 

not to a great extent. Although in the case of the SF-ventilation system no ethylene was 

detected in the head-space, this does not rule out some slight endogenous inhibitory 

effect. However, the fast flow ventilation system per se was able to maintain the natural 

green colour of the leaves in tobacco plantlets. 

Therefore, considering all the factors represented in this chapter, it could be 

strongly recommended that forced ventilation is necessary for the substantial growth and 

long term survival (up to three to four weeks) of in vitro grown tobacco cultures. 
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CHAPTER VI 

LEAF ANATOMY OF TOBACCO AND CAULIFLOWER PLANTLETS: 
EVALUATION OF CLOSED SYSTEM, DIFFUSIVE AND FORCED VENTILATION 

6.1. INTRODUCTION 

Poor survival rates of plantlets during the period of acclimatisation can greatly limit the 

application of micropropagation techniques (Marin, Gella and Herrero 1988). The 

reasons for this difficulty include reduced amounts of epicuticular wax (Grout 1975; 

Sutter and Langhans 1982), poor cuticle development and improperly functioning 

stomata (Brainerd and Fuchigami 1981,1982; Fuchigami, Cheng and Soeldner 1981) 

which results in excessive water loss, poor photosynthetic capacity (Donnelly, Vidaver 

and Colbox 1984, Grout and Millam, 1985) and anatomical abnormalities (Wetzstein and 

Sommer 1982). 

Investigations have also been made to see whether leaves were modified 

internally as a consequence of developing in the culture environment. Comparisons were 

made between leaves produced in culture, leaves produced by the in vitro grown 

plantlets after transplanting and those of greenhouse-grown seedlings (Wetzstein and 

Sommer 1982; Grout and Aston 1978). In all these investigations it was revealed that in 

regenerated plants normal structure and function of stomata did not appear until one to 

several months after removal from culture. 

The aim of the present study was to see if internal leaf anatomy, epicuticular 

waxes and stomatal function of tobacco and cauliflower plantlets is improved by 

introducing forced ventilation in the culture vessels. To this end plantlets grown under 

forced ventilation have been compared with those produced in sealed conditions, in 

diffusively ventilated vessels and in vivo. 



6.2. MATERIALS AND METHODS 

6.2.1. Plant material 

Aseptically grown cauliflower (Brassica oleracea var. botrytis L. ) and tobacco 

(Nicotiana tabacum, White Burly) seedlings were used as experimental material. Shoot 

tips from 5 days old seedlings were cut into 4-5 mm lengths and inoculated on to the 

medium. 

6.2.2. Establishment of culture 

Half strength MS (Murashige and Skoog 1962) medium was used as the basal medium. 

Glass tubes (60 cm) with a side arm were used as culture vessels, each of which 

contained 10 ml of medium. The side arm was sealed with a silicone rubber `Suba-seal'. 

Each vessel was capped with either a) a silicone rubber bung to seal the container or b) a 

disc of polypropylene membrane for diffusive ventilation or c) a single FF-ventilation 

apparatus for fast forced ventilation (flow rate = 5.0 cm; min-') or d) two sets of FF- 

ventilation apparatus arranged in parallel (flow rate = 9.0-10.0 cm3 min-) for very fast 

forced ventilation. Plants grown in soil under normal growth room conditions were 

employed as an in vivo control Cultures were incubated at ca. 250C with 8 hour dark 

and 16 hour light periods (PAR = 150 µmol m2 s'`). 

6.2.3 Measurements of ethylene and CO2 concentrations and RH 

These were performed according to methods described in Chapter IV: Section 4.2.4.1. 

The ethylene and CO2 concentrations and percentage of RH of the head-spaces of the 

culture vessels were measured every 7 days at the end of light period. The experiments 

ran for 28 days. 

6.2.4. Anatomy 

Unless otherwise stated the anatomical studies were conducted on plants which had been 

cultured for 4 weeks 
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6.2.4.1. Light microscopy: stomatal measurements and cuticular waxes 

For studying stomata, the lower epidermises of the fresh third or fourth leaf from the 

apex of tobacco and cauliflower plants were prepared in one of two ways and examined 

by light microscopy: either (a) epidermal peels were taken from the abaxial (lower) 

surfaces of the leaves, mounted in water and then studied and photographed using a 

precalibrated microscope (Olympus BX40), or (b) the lower epidermis was examined 

from peels or from entire pieces of leaf, stained in 0.02% aqueous auramine and 

photographed under blue light to show waxes fluorescing yellow (using a Zeiss photo 

microscope). 

Densities (no. per mm2), lengths and widths of stomata (with guard cells) and 

pore dimensions were measured, directly under the microscope, for each treatment, using 

method (a). Areas of stomatal pores and of entire stomata, relative to leaf areas were 

measured from photographs according to methods (a) and (b), by tracing and the use of 

a leaf area meter (Lambda Instruments Corp. ). 

For studying epicuticular waxes hand-cut transverse sections of fresh leaves were 

stained in auramine and examined as in (b) 

6.2.4.2. Resin embedding 

Samples of leaves (2 X5 mm pieces) were first preserved in 6% glutaraldehyde over- 

night at 4°C (pH 6.8); this was then replaced with 0.05 M Cacodylate buffer to help the 

fixative to penetrate the tissues. The leaf samples were then transferred to 1% osmium 

tetroxide fixative for 4 hours, washed several times with distilled water, and then 

dehydrated, first using 30% ETON followed by a gradual increase in percentage, and 

finally with 100% ETOH. The samples were next placed in a mixture of 100% ETON 

and LR white resin for 3 hours, then embedded in LR white resin (medium grade acrylic 

resin) in Beem capsules, and finally incubated at 60°C for 2-3 days. Transverse sections 

were obtained using an ultramicrotome (Reichart OMU2) with a glass knife. The 

sections (2-4 µm) were stained with toluidine blue (1% w/v in 1% Borax solution) and 

examined by light microscopy. 
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6.2.4.3. Scanning electron microscopy 

Cauliflower leaf stomata were also examined by SEM from plants grown under sealed, 

diffusive, slow flow ventilation (1.0 cm; min-') and fast flow ventilation (5.0 cm3 min'') 

for 15 days. Small leaf samples (ca. 2X5 mm), from the third or fourth leaf from the 

apex were taken from the plant and immediately placed into fixative: a mixture of 3% 

glutaraldehyde and 15% paraformaldehyde in phosphate buffer (pH 6.8) for 5 days. This 

was followed by dehydration in acetone. Finally they were dried by the CO2 critical-point 

drying technique, and coated in gold. The lower epidermal surfaces were examined by 

SEM. 
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6.3. RESULTS AND DISCUSSION 

6.3.1. Culture atmosphere 

6.3.1.1. Relative humidity 

The RH values of the culture vessels subjected to sealed and diffusive ventilation were 

significantly higher than in the other treatments (Fig. 6.01). In sealed as well as in the 

diffusive treatments, nearly 100% RH was observed in the culture vessel atmospheres 

throughout the experiment with both cauliflower and tobacco. In contrast, with normal 

fast flow ventilation, the RH recorded in the culture atmosphere for both species was 

initially ca. 88%, but by the end of the experiment (4 weeks) the values had risen to 

around 97%. With very fast flow ventilation, however, the initial RH values were lower, 

i. e. only ca. 75% after 2 weeks, and for both species had increased only to 92% by the 

end of the experiment. 

The rapid increases in RH after 2 weeks with forced ventilation were no doubt 

because the plants were becoming larger and the transpiration rates higher 

6.3.1.2. Ethylene concentration 

In sealed containers ethylene concentrations increased rapidly and during light periods 

reached peak levels of 1.4 µl l"' in cauliflower and 1.05 µI 1"' in tobacco by the end of the 

experiment (Fig. 6.02). During the dark period the concentrations decreased by ca. 30% 

for both species (data not shown). 

Compared to the sealed treatments the ethylene concentrations during light 

periods under diffusive ventilation were significantly lower, ca. 01 µl C' for both species. 

With both fast and very fast forced ventilations no ethylene accumulation was recorded 

in the culture vessels. 

Although ethylene accumulation was much less in the diffusive treatment 

compared to the sealed system it is interesting that the accumulation was more evident 

after 15 days rising in parallel with the relative humidity, and presumably plant size. 
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Fig. 6.01. Showing the percentage of relative humidity in the culture head-space during 
the light period of (a) cauliflower plantlets and (b) tobacco plantlets grown in vitro under 
different types of ventilation; closed (each vessel was sealed with a silicone rubber bung 
"), diffusive ventilation (each vessel was capped with a polypropylene disc A), fast forced 
ventilation (each vessel was fitted with a single ventilation apparatus) - flow rate was 5 cm3 
min's  , very fast forced ventilation 'each vessel was fitted with two sets of ventilation 
apparatus) - flow rate was 10 cm3 min' f) and in vivo (growth room conditions`). Cultures 

were grown at ca. 25°C with 8 hour dark and 16 hour light periods; PAR = 150 pmol m'2s'1. 
Volume of culture vessel = 60 cm3. Each bar represents a mean ± SE of 5 replicates. 
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Fig. 6.02. Showing ethylene concentration in the culture head-space during the light 
period of (a) cauliflower plantlets and (b) tobacco plantlets grown in vitro under different 
types of ventilation; closed (each vessel was sealed with a silicone rubber bung "), 
diffusive ventilation (each vessel was capped with a polypropylene disc A), fast forced 
ventilation (each vessel was fitted with a single ventilation apparatus) - flow rate was 5 cm3 
min"'  , very fast forced ventilation each vessel was fitted with two sets of ventilation 
apparatus) -flow rate was 10 cm' min-' f) and in vivo (growth room conditions7). Cultures 

were grown at ca. 250C with 8 hour dark and 16 hour light periods; PAR = 150 pmol m'2 s". 
Volume of culture vessel = 60 cm3. Each bar represents a mean ± SE of 5 replicates. 
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6.3.1.3. Carbon dioxide concentration 

For both cauliflower and tobacco in the sealed condition CO2 concentrations in the 

culture vessels measured during the photoperiod had decreased to ca. 65 µ1 l after 14 

days, and finally reached 40 µl 1"1 after 28 days (Fig 6.03). In contrast, during darkness 

CO2 concentrations increased and reached levels of ca. 1.4% at the end of the dark 

periods (4th week -data not shown). 

Under diffusive ventilation the concentrations of CO2 decreased down to 100 and 

130 µl 1"1 after 14 days, and to 88 and 109 µl I"' after 28 days in cauliflower and tobacco 

respectively during the light periods. 

Under fast flow ventilation CO2 concentrations measured in the light remained 

high (>320 µi 1") for 14 days. Thereafter they decreased, but only to ca. 220 pi 1"'. At 

night the higher concentration of respiratory CO2 was also controlled by the apparatus 

and the highest concentration at the end of the dark period was ca. 650 µ1 1" in both the 

species (data not shown). In vessels with very fast flow ventilation, light period CO2 

concentrations remained high and close to atmospheric (325 Al l") for both species, even 

after 28 days. During the dark periods concentrations were slightly in excess of 

atmospheric at ca. 360 - 400 µl 1'', (data not shown). 

6.3.2. Characteristics of stomata from lower epidermis of leaves 

6.3.2.1. Arrangement and density 

A noticeable feature of leaf stomata of both cauliflower and tobacco plants grown under 

the sealed condition and in diffusive ventilation was that they were so densely arranged 

that they were sometimes found adjacent to one another. (Plates 6.01,6.02). This was 

not the case in the other treatments. 

As shown in Fig 6.04 and Fig 6.05, the density of stomata in both the species, 

especially in the cauliflower, was significantly higher in plantlets subjected to sealed and 

diffusive treatments, and densities decreased with increasing efficiency of ventilation. 

With very fast flow ventilation densities were 0.32X and 0,63X the values for the sealed 
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PLATE : 6.01 

Cauliflower : Shoot cuttings and stomata from leaves after 28 days; culture vessel 

volume was 60 cm3. Growth room conditions : ca. 250C with 8 hours dark and 16 

hours light periods; PAR = 150 pmol m -2s"; RH = 26 - 32%. 

(A - E) Stomata of lower epidermis of 3rd or 4th leaf from apex from dark period; 
plantlets were grown under different types of ventilation and also in vivo 
condition; slivers of lower epidermis were taken to show stomata (X468). 

(A) sealed condition (silicone rubber bung); note that relatively larger stomata 
were densely arranged and gaping widely open . 

(B) diffusive ventilation (polypropylene disc), note that large stomata were 
less densely arranged than above and also gaping widely open . 

(C) fast forced ventilation (flow rate =5 cm3 min'); note that slightly smaller 
stomata were less densely arranged and stomatal pores were narrower in width 
than in (A) and (B). 

(D) very fast forced ventilation (flow rate = 10 cm3 min' ); note that stomata 
were smaller, less densely arranged and stomatal pores were narrower in width 
than in (A), (B) and (C). 

(E) in vivo (growth room conditions); note low density of stomata which were 
much smaller in size with very narrow stomatal pore width compared to (A), 
(B) (C) and (D). The majority of the stomata were closed. 

(F - I) Plantlets grown under different types of ventilation; (X1.2): 

(F) sealed condition (silicone rubber bung); note leaves with very small area 
and showing epinastic curvature; some leaves had dropped. The root 
system was very poor in this treatment. 

(G) diffusive ventilation (polypropylene disc), note leaves of moderate area 
and showing epinastic curvature; root system better developed than in (F). 

(H) fast forced ventilation (flow rate was 5 cm3 min"'); note larger leaf area 
than in (F) and (G) and absence of epinasty. Leaves looked blue-green due to 
the presence of epicuticular wax (evident as a white powdery coating). Root 
system better developed than in (F) and (G). 

(I) very fast forced ventilation (flow rate was 10 cm3 min 1); note even larger 
leaf area, absence of epinasty and better root development than in (H). Leaves 
looked more blue-green and had more epicuticular wax (evident as a white 
powdery coating) than in (H). 

In vivo grown plants (not shown) were similar to (H) but larger (X1.5) and more and 
larger leaves. 
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PLATE : 6.02 

Tobacco : Stomata from leaves of shoot cuttings after 28 days; culture vessel volume 
was 60 cm3. Growth room conditions : ca. 250C with 8 hours dark and 16 hours light 
periods; PAR = 150 µmol m"2s'; RH = 26 - 32%. 

Stomata of lower epidermis of 3rd or 4th leaf from apex from dark period; 
plantlets were grown under different types of ventilation and also in vivo; 
slivers of lower epidermis were taken to show stomata (X468). 

(A) sealed condition (silicone rubber bung); note that relatively larger stomata 
were densely arranged and remained gaping widely open. 

(B) diffusive ventilation (polypropylene disc), note that large stomata were 
less densely arranged than in (A) and also remained widely open. 

(C) fast forced ventilation (flow rate was 5 cm3 min 1); note smaller stomata 
and less densely arranged than in (A); stomata pores were narrower in width 
than in (A) and (B). 

(D) very fast forced ventilation (flow rate was 10 cm3 min'1); note that smaller 
stomata were less densely arranged than in (A) and (B) and also stomatal pores 
were narrower in width than in (A), (B) and (C). 

(E) in vivo (growth room conditions); note that few stomata which were 
smaller in size than in (A) - (D) and almost all closed. 
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Fig. 6.03. Showing the CO2 concentration in the culture head-space during the light 
period of (a) cauliflower plantlets and (b) tobacco plantlets grown in vitro under different 
types of ventilation; closed (each vessel was sealed with a silicone rubber bung "), 
diffusive ventilation (each vessel was capped with a polypropylene disc A), fast forced 
ventilation (each vessel was fitted with a single ventilation apparatus) - flow rate was 5 cm3 
min-'  , very fast forced ventilation (each vessel was fitted with two sets of ventilation 
apparatus) - flow rate was 10 cm3 min f) and in vivo (growth room conditions`). Cultures 
were grown at ca. 25°C with 8 hour dark and 16 hour light periods; PAR = 150 pmol M , 2S-1. 
Volume of culture vessel = 60 cm3. Each bar represents a mean i SE of 5 replicates. 
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Fig. 6.04. Cauliflower : stomata of lower epidermis of 3rd or 4th leaf from apex : (a) 

stomata) pore area expressed as % of leaf area, (b) pore area per stomatal area (c) total 
stomatal area expressed as a% of leaf area and (d) stomatal density (numbers per mm2 
leaf area). 28 days old plantlets were grown under 0 sealed condition (each vessel was 
sealed with a silicone rubber bung), 0 diffusive ventilation (each vessel was capped with a 
polypropylene disc), ® fast forced ventilation (each vessel was fitted with a single 
ventilation apparatus) - flow rate was 5 cm3 min"' ® very fast forced ventilation (each vessel 
was fitted with two sets of ventilation apparatus) - flow rate was 10 cm3 min" and W in vivo 
(growth room conditions). Volume of culture vessel = 60 cm3. Cultures were grown at ca. 
250C with 8 hour dark and 16 hour light periods; PAR = 150 pmol m"2s-'. Each bar 
represents a mean ± SE of 3-4 samples (ca. 20 stomata each). 
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Fig. 6.05. Tobacco: stomata of lower epidermis of 3rd or 4th leaf from apex : (a) 
stomatal pore area expressed as % of leaf area, (b) pore area per stomatal area (c) total 
stomatal area expressed as a% of leaf area and (d) stomatal density (numbers per mm2 
leaf area). 28 days old plantlets were grown under (D sealed condition (each vessel was 
sealed with a silicone rubber bung), 9) diffusive ventilation (each vessel was capped with a 
polypropylene disc), ® fast forced ventilation (each vessel was fitted with a single 
ventilation apparatus) - flow rate was 5 cm3 min" (A) very fast forced ventilation (each vessel 
was fitted with two sets of ventilation apparatus) - flow rate was 10 cm3 min" and © in vivo 
(growth room conditions). Volume of culture vessel = 60 cm3. Cultures were grown at ca. 
25°C with 8 hour dark and 16 hour light periods; PAR = 150 pmol m"2s"1. Each bar 
represents a mean ± SE of 3-4 samples (ca. 20 stomata each). 
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treatment for cauliflower and tobacco respectively. For the in vivo treatments the 

corresponding values were even lower at 0.18X and 0.21 X respectively. 

These findings are in accordance with the results of Wetzstein and Sommer 

(1983) where stomatal densities of Liquidambar styraciflua were shown to be 

significantly greater in cultured than in field-grown or acclimated plantlets. Sciutti and 

Morin (1993) also reported that stomata] density could be markedly increased in leaves 

of in vitro grown plum plantlets by increasing the relative humidity in the culture 

atmosphere. In this study, also, the highest stomatal densities were associated with the 

treatments with the highest RH, and vice versa (Figs. 6.04,6.05). 

The concentration of carbon dioxide may also have played a major role in 

influencing stomatal density in leaves of both cauliflower and tobacco plantlets. As 

described in Figure 6.03, for both species the CO2 concentrations were significantly 

lower in both sealed and diffusive treatments where the highest density of stomata were 

noticed. Also in fast flow and very fast flow ventilation treatments lower densities of 

stomata were associated with higher CO2 concentrations. This would accord with the 

findings of Woodward and Kelly (1995), who investigated a hundred species and found 

reductions in stomatal density (ca. 14%) in 74% of the species. The CO2 enrichment was 

350- 700 µmol molt' and the effects were especially marked in the members of 

Hamamelidae and Rosidae. 

The ethylene concentration in the culture vessels is another factor that may have affected 

stomatal densities. In the present study the accumulation of ethylene was noted in culture 

vessels subjected to sealed and the diffusive ventilation (Fig. 6.02) where the highest 

stomata] densities were recorded, and ºvice versa. 

6.3.2.2. Stomata! size 

Note: Stomatal length refers to the distance between the ends of the guard cells, and the 

width is the distance transversely "across" them. 
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In general stomatal sizes appeared to be inversely related to efficiencies of ventilation 

(Figs 6.06,6.07). For example, in the sealed condition in darkness, in both cauliflower 

and tobacco, the average length of each stoma was 31 and 13.6 µm respectively; these 

were 1.9X and 1.7X greater than those from the in vivo treatment. The most significant 

differences were observed in stomata] widths which were, in the dark period, for 

cauliflower and tobacco respectively, 2.3X and ca 3. OX the values for the in vivo 

condition. It should also be mentioned that in the sealed and to some extent in the 

diffusive treatments in some parts of the leaves some of the stomata were narrow in 

width and resembled those from the better ventilated treatments. These might have been 

immature stomata which had not yet opened (Plates 6.03a, 6.04a, 6.05a, 6.11). Also, in 

diffusive ventilation, the very young, green, immature leaves of tobacco were found to 

have this type of stoma. 

6.3.2.3. Stomatal area 

Relatively larger areas were occupied by stomata in both the closed and diffusive systems 

in both the species (Figs. 6.04c, 6.05c). In the dark, in cauliflower and tobacco 

respectively in the sealed treatment, 70% and 34.5% of the leaf areas were occupied by 

stomata compared to 33% and 28% in diffusive treatments. The stomatal area was 

significantly lower in in vivo grown plantlets and also in very fast flow ventilation 

treatment (Figs. 6.04c, 6.05c; Plates 6.01,6.02). These effects were no doubt due to the 

lower stomatal density and the smaller size of the stomata found in the latter two types 

of treatment (described above). The fast flow ventilation treatment exhibited a higher 

stomatal area than those of the very fast flow ventilation and in vivo treatments, but very 

much lower than the sealed or diffusive ones. 

6.3.2.4. Stomatal opening and pore sizes 

In both species, one very noticeable feature between treatments was that in the sealed 

and diffusive treatments a large proportion of the stomata seemed to be gaping wide 

open, so that the width of the stoma and of the pore were greater than the corresponding 

183 



45 

40 
If 

35 

30 
25 

2 

15 

10 

5 

0 

18 1 

16 

14 

12 

10 
8 

6 
4 

2 

0'` 
0 

(b) 

I A' 
th 

(Juli) WiddI q 1I11) 

Fig. 6.06. Cauliflower : stomata of lower epidermis of 3rd or 4th leaf from apex : (a) 
length and width (Nm) of stomata and (b) length and width (pm) of stomatal opening. 28 
days old plantlets were grown under 0 sealed condition (each vessel was sealed with a 
silicone rubber bung), © diffusive ventilation (each vessel was capped with a 
polypropylene disc), 0 fast forced ventilation (each vessel was fitted with a single 
ventilation apparatus) - flow rate was 5 cm3 min-' 0 very fast forced ventilation (each vessel 
was fitted with two sets of ventilation apparatus) - flow rate was 10 cm3 min-' and 0 in vivo 
(growth room conditions). Volume of culture vessel = 60 cm3. Cultures were grown at ca. 
25°C with 8 hour dark and 16 hour light periods; PAR = 150 pmol m"ZS"'. Each bar 
represents a mean ± SE of 20 replicates. 
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Fig. 6.07. Tobacco : stomata of lower epidermis of 3rd or 4th leaf from apex : (a) 
length and width (pm) of stomata and (b) length and width (pm) of stomatal opening. 28 
days old plantlets were grown under 0 sealed condition (each vessel was sealed with a 
silicone rubber bung), © diffusive ventilation (each vessel was capped with a 
polypropylene disc), 0 fast forced ventilation (each vessel was fitted with a single 
ventilation apparatus) - flow rate was 5 cm3 min"' 0 very fast forced ventilation (each vessel 
was fitted with two sets of ventilation apparatus) - flow rate was 10 cm3 min'l and 0 in vivo 
(growth room conditions). Volume of culture vessel = 60 cm3. Cultures were grown at ca. 
250C with 8 hour dark and 16 hour light periods; PAR = 150 pmol m"2s". Each bar 
represents a mean ± SE of 20 replicates. 
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PLATE : 6.03 

Cauliflower : Stomata of lower epidermis of 3rd or 4th leaf from apex from shoot 
cuttings after 28 days and from light period. Culture vessel volume was 60 cm3. 
Growth room conditions: ca. 250C with 8 hours dark and 16 hours light periods; PAR 

= 150 gmol m'2 s1; RH = 26 - 32%. Plantlets were grown under different types of 
ventilation and also in vivo condition as indicated bellow (X275). 

Slivers of lower epidermis were stained in 0.02% aqueous auramine and photographed 
under blue light to show waxes fluorescing yellow (also chlorophyll shown fluorescing 
red). 

(A) sealed condition(silicone rubber bung); note that relatively larger stomata, 
were densely arranged and gaping widely open. Some stomata, perhaps 
immature were smaller and appeared partially open or closed. 

(B) diffusive ventilation (polypropylene disc); note that large stomata were 
slightly less dense than in (A) and also gaping widely open. Note apparently 
immature stomata as in (A). 

(C) fast forced ventilation (flow rate was 5 cm3 min's); note that relatively 
smaller stomata were less densely arranged than in (A) and (B) and stomatal 
pores were generally narrower in width. 

(D) very fast forced ventilation (flow rate was 10 cm3 min-' ); note that 
stomata were smaller less dense than in (A) and (B) and also stomatal pores 
were generally narrower in width. 

(E) in vivo (growth room conditions); note that stomata were far less dense 
and with considerably narrower stomatal pores than in (A) - (D). 
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PLATE : 6.04 

Cauliflower : Stomata of lower epidermis of 3rd or 4th leaf from apex from shoot 

cuttings after 28 days and from light period. Culture vessel volume was 60 cm3. 

Growth room conditions: ca. 250C with 8 hours dark and 16 hours light periods; PAR 

= 150 µmol m 2s i; RH = 26 - 32%. Plantlets were grown under different types of 
ventilation and also in vivo condition as indicated bellow (X688). 

Slivers of lower epidermis were stained in 0.02% aqueous auramine and photographed 
under blue light to show waxes fluorescing yellow (also chlorophyll shown fluorescing 

red). 

(A) sealed condition (silicone rubber bung); note that relatively larger stomata, 
were densely arranged and gaping widely open. Some stomata, perhaps 
immature were smaller and appeared partially open or closed. 

(B) diffusive ventilation (polypropylene disc), note that large stomata were 
slightly less dense than in (A) and also gaping widely open; stomatal waxes 
were less apparent than in the other treatments. Note apparently immature 

stomata as in (A). 

(C) fast forced ventilation (flow rate was 5 cm3 min''); note that relatively 
smaller stomata were less densely arranged than in (A) and (B) and stomatal 
pores were generally narrower in width. 

(D) very fast forced ventilation (flow rate was 10 cm3 min"' ); note that 
stomata were smaller less dense than in (A) and (B) and also stomatal pores 
were generally narrower in width. Epicuticular waxes are fluorescing yellow 

(4) 
(E) in vivo (growth room conditions); note that stomata were far less dense, 
smaller and with considerably narrower stomatal pores than in (A) - (D). 
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PLATE : 6.05 

Tobacco : Stomata of lower epidermis of 3rd or 4th leaf from apex from shoot 
cuttings after 28 days and from light period. Culture vessel volume was 60 cm3. 
Growth room conditions: ca. 250C with 8 hours dark and 16 hours light periods; PAR 
= 150 µmol m 2s''; RH = 26 - 32%. Plantlets were grown under different types of 
ventilation and also in vivo condition as indicated bellow (X275). 

Small pieces of leaf were stained in 0.02% aqueous auramine and the lower epidermis 
photographed under blue light to show waxes fluorescing yellow (also chlorophyll 
shown fluorescing red). 

(A) sealed condition (silicone rubber bung); note that relatively larger stomata, 
were densely arranged and widely open. Some stomata, perhaps immature 
were smaller and appeared partially open or closed. 

(B) diffusive ventilation (polypropylene disc), note large open stomata; 
densities varied and were some times as high as (A). 

(C) fast forced ventilation (flow rate =5 cm3 min'); note stomata were more 
closed than in (A) and (B) and less densely arranged than in (A). Epicuticular 
waxes are fluorescing yellow (4) 

(D) very fast forced ventilation (flow rate = 10 cm3 mini 1 ); note that stomata 
were similar to those in (C) but generally more closed. 

(E) in vivo (growth room conditions); note that few stomata which were 
smaller in size with very narrow stomatal pores. Epicuticular waxes are 
fluorescing yellow (4) epidermal hair (h) also has waxy wall. 
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lengths; this was particularly obvious in cauliflower. The reverse was true of plants 

grown in forced ventilation or in vivo; (Figs. 6.06,6.07; Plates 6.01,6.02,6.04). 

In the sealed and diffusive treatments stomata of both tobacco and cauliflower 

remained widely open in the dark as well as in the light period (Figs. 6.04 and 6.05) as a 

consequence larger pore area were noticed in the sealed condition in cauliflower and 

tobacco respectively in darkness. The result indicates that the normal functioning of 

stomata was inhibited or that the stomata failed to mature to a normally functioning 

state. The non-functional stomata of in vitro-grown leaves of apple and plum from 

conventional tissue culture systems were also observed by Brainerd and Fuchigami 

(1981,1982) and Fuchigami, Cheng and Soldner (1981) respectively. 

On the other hand, stomata from the fast flow and in vivo treatments appeared to 

function normally and to close in darkness. Stomata of the plantlets grown under forced 

ventilation (fast and very fast flow), and also particularly those grown in the in vivo 

condition, exhibited remarkably lower pore areas. In these treatments the measured pore 

areas were relatively larger in light and smaller in darkness which points out the normal 

functioning of stomata in these treatments. Furthermore, it was very noticeable that the 

stomata from the in vivo treatments in the light did not gape, but appeared to be only 

partially open. This may well have been due to comparatively low RH (30%) in the 

growth room 

Most of the stomata were completely closed in darkness when grown under very 

fast flow ventilation and in vivo conditions. In contrast only few stomata were found in 

the closed condition by the end of dark period in plantlets subjected to the sealed 

condition or diffusive ventilation. 

It has been already demonstrated by Willmer (1983) that generally stomata 

remained closed if the leaf water content became too low and opened as the leaf water 

content increased. Stomata of some species also respond to changes in atmospheric 

humidity by opening as humidity increases and closing as the culture atmosphere 

becomes drier (Watts and Neilson 1978). These results accord with the present findings 

of cauliflower and tobacco plantlets which showed widely open stomata under sealed 
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conditions or with diffusive ventilation, possibly as a response to very high RH (ca. 

100%) in the culture vessels, but some normally functioning stomata were also observed 

in the plantlets grown under very fast forced ventilation. 

6.3.3. Leaf Internal Anatomy 

6.3.3.1. Cauliflower 

Transverse sections of leaves from the sealed condition often showed a lack of well 

defined palisade and spongy mesophyll layers (Plate 6.06). In all the tissues of the leaf 

the cells were very small; in the mesophyll layers the cells were more closely packed and 

with smaller intercellular spaces than those of the other treatments 

In contrast, leaves from plantlets subjected to diffusive or forced ventilation and 

from those in vivo had definite palisade and spongy mesophyll layers, the latter with 

large intercellular spaces; all the cells were generally much larger than those from the 

sealed treatment. 

6.3.3.2. Tobacco 

There were obvious differences in internal anatomy between leaves from the sealed and 

diffusive treatments and those from the forced ventilation and in vivo treatments after 28 

days (Plate 6.07). The leaves from the former two treatments were senescing, and as a 

consequence, (a) the cells may have already been disrupted, or (b) the cells may have 

been delicate and comparatively easily distorted by the preserving and embedding 

processes. The sections indicate that leaf thickness was greatest in the in vivo treatment 

and that there was more structural integrity in the leaves from this and from the forced 

ventilated treatments. The sections also suggest that the chloroplast contents of the 

mesophyll layers in these treatments were much greater than those from the sealed and 

diffusive treatments. This would agree with the results in which the chlorophyll contents 

of the leaves were compared (Chapter V). 
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6.3.4. Epicuticular and cuticular waxes in cauliflower 

Plantlets developed under different treatments exhibited different degrees of epicuticular 

wax which were also observed under the microscope. The leaves from in vivo grown 

plantlets and FF-ventilation treatment (e. g. Plate 6.04D), and to some degree from the 

SF-ventilation treatment showed intense epicuticular wax development which was 

evident as a white powdery coating and gave the leaves a blue-green colour (Plate 6.01 H 

and I); these effects were absent from plants in the sealed and diffusive treatments. 

These observations agree with earlier investigations which showed that 

regenerated cauliflower plantlets did not have any epicuticular wax; this normally 

develops during the hardening period (Grout 1975). It was also reported by Grout 

(1975) that the leaves from cauliflower culture and also from the plantlets grown in 

culture vessels showed less epicuticular wax when compared with seedlings grown in the 

green house or culture room. The development of epicuticular wax is already known to 

be advantageous for the plantlets during the acclimatisation period (Grout 1975; Sutter 

and Langhans 1982); it probably helps to protect the plants from desiccation. 

The leaves from the sealed and diffusive treatments also exhibited thinner layers of 

cuticular waxes (Plate 6,08). Also in the present study, in plantlets grown in vivo or with 

forced ventilation, the cuticular waxes were more obvious and fluoresced more in blue 

light, especially when compared to those of plants grown in diffusive ventilation. 

It seems possible that these effects were responses to the lower humidities in the 

forced ventilation and especially in the in vivo treatments; the higher rates of 

photosynthesis may also have played a part by facilitating the production of lipids. 

6.3.5. Leaf hairs in tobacco 

In all treatments the lengths and densities of leaf epidermal hairs varied according to their 

position on the leaf (Fig. 6.08). 

Epidermal hairs were shortest on shoots in the sealed treatment and increased in 

length with increasing efficiency of ventilation. For example, comparing those from the 

basal mid-rib region, they were at least 2.6X as long in very fast flow ventilation and 4X 
f 
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PLATE : 6.06 

Cauliflower: transverse sections of 3rd or 4th leaves from apex of plantlets grown 
under different types of ventilation and also in vivo condition for 28 days as indicated 
bellow (X160). 

(A) sealed condition (silicone rubber bung); note lack of well defined palisade and 
spongy mesophyll layers; cells are smaller and with less intercellular space. 

(B) diffusive ventilation (polypropylene disc). 

(C) fast forced ventilation (5 cm 3 min"). 

(D) very fast forced ventilation (flow rate was 10 em3 mint ). 

(E) in vivo (growth room conditions). 

Note in B, C, D and E the palisade and spongy mesophyll layers are well defined and 
with large intercellular spaces in the spongy mesophyll. 

Culture vessel volume was 60 cm3. Cultures were grown at ca. 250C with 8 hours 
dark and 16 hours tight periods ; PAR = 150 µmol m 2s-`. 





PLATE : 6.07 

Tobacco: transverse sections of 3rd or 4th leaves from apex of plantlets grown under 
different types of ventilation and also in vivo condition for 28 days as indicated bellow 
(X 160) 

I (A) sealed condition (silicone rubber bung). 

(B) diffusive ventilation (polypropylene disc). 

(C) fast forced ventilation (5 cm3 min'). 

(D) very fast forced ventilation (flow rate was 10 cm3 min-` ) 

(E) Al vivo (growth room conditions). 

Note in A and B the cells appear disrupted and with very large spaces in the palisade 
layers. This may have been a consequence of the senescence of the leaves and / or the 
delicate nature of the cells, which made them more easily distorted by the preserving 
and the embedding processes. Also the chloroplasts are not very obvious. 

Note in C, D and E cell integrity was preserved, the cells are not disrupted and the 
chloroplasts are obvious. The leaf thickness in the in vivo treatment was markedly 
greater than in the other treatments. 

Culture vessel volume was 60 cm3. Cultures were grown at ca. 250C with 8 hours 
dark and 16 hours light periods ; PAR = 150 µmol m 2s''. 





PLATE : 6.08 

Cauliflower : Transverse sections of upper epidermis of fresh 3rd or 4th leaf from 
apex of 28 days old plantlets; sections were stained in 0.02% aqueous auramine and 
photographed under blue light to show waxes fluorescing yellow. Culture vessel 
volume was 60 cm'. Growth room conditions : ca. 250C with 8 hours dark and 16 
hours light periods; PAR = 150 pmol -2S-1 ; RH = 26 - 32%. Plantlets were grown 
under different types of ventilation and also in vivo as indicated bellow (X688). 

(A) sealed condition (silicone rubber bung). 

(B) diffusive ventilation (polypropylene disc). 

(C) fast forced ventilation (flow rate was 5 cm3 miri-'). 

(D) very fast forced ventilation (flow rate was 10 cm3 min"'). 

(E) in vivo (growth room conditions). 

Note in (A) and (B) the cuticles appeared thinner and fluoresced to a smaller degree 
than in (C), (D) and (E). The lack of fluorescence was particularly obvious in (B). 





Table 6.01. Tobacco : measurement of hairs from the lower (abaxial) side of leaves 
(3rd or 4th); plantlets developed in vivo and in vitro (sealed, diffusive and forced 
ventilation). 

Ventilation Characteristics Region A Region B Region C Region D 

Sealed Length (µm) 261 t 51 503 ± 98 350± 24 135 ± 11.0 

Number (per mm2 19.912.1 34i 5.0 7519.0 12.8 ±08 
leaf area) 

Diffusive Length (µm) 351 ± 41 710185 625 t 51 232.5 ± 21 

ventilation 
Number(permm2 11.812.0 18.1 ± 2.0 77.1 ±83 48±0.9 

leaf area) 

Forced Length (pm) 461 t 51 862.5 ± 49 725 ± 23 311 t 32 

ventilation 
(fast) 

Number (per mm2 7.3 t 0.6 15.3 t 1.1 25 1113 3 1± 07 

leaf area) 

Forced Length (µm) 519 ± 23 1329 1230 931 ± 93 335 5± 41 

ventilation 
(very fast) 

Number (per mm2 6.9±0.5 13.9 ± 0.7 14.3 ±21 2.9±0.6 

leaf area) 

In vivo Length (µm) 601± 53 2087 ± 191 1075 ± 119 409 ± 21 
Number (per mm2 6.0 t 0.3 11.2 ± 1.3 22.3 t13 14±0.4 

leaf area) 

*28 days old plantlets. 
*Each value represents a meant SE of 10 - 15 replicates. 
°Flow rates of fast and very fast flow ventilations were 5.0 cm3 miri-' and 10 cm3 min"' respectively, for 
sealed and diffusive ventilation vessels were capped with silicone rubber bungs and polypropylene discs 

respectively. Volume of culture vessel = 60 cm3. Cultures were grown at ca. 25°C with 8 hour dark and 
16 hour light periods, PAR = 150 µmol m"ZS"'. Each bar represents a mean ± SE of 20 replicates. 

Region A 

Fig. 6.08. Showing the regions in the lower (abaxial) side of tobacco leaf where the 
number and lengths of leaf hairs were measured. ( re. Table 6.01). 
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as long in the field grown plants as those from the sealed treatment (Table 6.01). This 

could well be a reflection of the humidity around the plantlets, hairs being longest where 

RH was low especially at the beginning of the experiments (Fig. 6.01). The hairs of 

tobacco leaves had waxy walls (Plates 6.05E, 6.09). 

However, the number of hairs per mm2 was highest in the sealed treatment, and 

decreased with increasing efficiency of the ventilation, being lowest in the in vivo grown 

plantlets. This could well have been an effect of the comparatively small cells in the 

leaves of the sealed treatment and lack of leaf expansion. 

6.3.6 SEM: stomata in cauliflower 

Note. The slower forced ventilation rate used for plants in this section was only 1.0 - 1.5 

cm3 min"; the faster flow rate was 5.0 cm3 min-', this being equivalent to the "fast flow" 

rate used elsewhere in the chapter. 

The SEM micrographs (Plates 6.10 - 6.12) highlighted the differences between 

treatments in respect of stomatal densities, which were found to decrease with 

increasing efficiency of ventilation (Figs. 6.04). 

If the fixative used in preparing the specimens had indeed fixed the stomata in 

position, then the micrographs also illustrated the extremely open nature in the light of 

the pores in the sealed condition and with diffusive ventilation, compared to the partially 

open conditions in plants from the forced ventilation treatments (Plates 6.13 - 6.14). 

These same effects were also found in stomata examined from fresh material by light 

microscopy (Section 6.3.2). 

Another interesting feature of Plates 6.10,6.11 is that the stomata from the 

sealed and diffusive treatments appeared to be in "elevated" positions, whereas those 

from the forced ventilation treatments (Plate 6.12) appeared to be slightly "sunken". 

These effects were also reported in Section 6.3.2. Furthermore, the degree of epidermal 

cell organisation and expansion appeared to be greater with increasing efficiencies of 

ventilation. 

190 



PLATE : 6.09 

Tobacco : Features of upper epidermis of fresh 3rd or 4th leaf from apex of28 days 
old plantlets grown in forced ventilation (very fast flow; rate = 10 cm3 miff). 
Specimens stained in 0.02% aqueous auramine and photographed under blue light to 
show waxes fluorescing yellow (also chlorophyll fluorescing red). 

(A) Epidermal hairs have waxy walls and globular tips; note that the hairs are waxy at 
the tip (X150). 

(ß) Enlarged base of hair from (A) and note also fluoresce of cuticle of epidermal 
cells; the wall of the hair is also waxy (X688). 





PLATE : 6.10 

Cauliflower : scanning electron micrograph of lower epidermis of 3rd leaf from apex 
of 15 days old plantlet grown in continuous light (PAR = 150 imol M -2S-) and in the 
sealed condition. 

Note large stomata, densely arranged and mostly gaping widely open. Stomata 
appeared to be in `elevated' positions; some, perhaps immature ones, were quite small 
and relatively closed. 



- 0.1 mm 



PLATE : 6.11 

Cauliflower : scanning electron micrographs of lower epidermis of 3rd or 4th leaf 
from apex of 15 days old plantlets grown in continuous light (PAR = 150 µmol m"ZS') 
and under different types of ventilation as follows: 

(above) sealed condition (silicone rubber bung); note larg stomata, densely 
arranged and many gaping widely open. 

(below) diffusive ventilation (polypropylene disc), note large stomata, less 
densely arranged than above and some gaping widely open, 

In both of these treatments the stomata appeared to be in `elevated' positions; 
some, perhaps immature ones were quite small and relatively closed. Also the 
epidermal cells, (other than the guard cells), were less highly organised than in Plate 
6.12, where the ventilation of the plantlets was more efficient. 





PLATE : 6.12 

Cauliflower: scanning electron micrographs of lower epidermis of 3rd or 4th leaf 
from apex of 15 days old plantlets grown in continuous light (PAR = 150 µmol M, 2 S-1) 
and under different types of ventilation as follows: 

(above) slow flow ventilation (flow rate = 1.0 - 1.5 cm3 min-t); note that 
stomata were smaller and less densely arranged than in Plate 6.11 and stomatal 
pores were narrower in width. 

(below) fast flow ventilation (flow rate = 5.0 cm3 min' ); note that smaller 
stomata, less densely arranged than in Plate 6.11 and also stomatal pores 
were narrower in width. 

In both of these treatments the stomata appeared to be slightly sunken; also the 
epidermal cells, (other than the guard cells), were far more highly organised than in 
Plate 6.11, where the ventilation of the plantlets was less efficient. 





PLATE : 6.13 

Cauliflower : scanning electron micrographs showing enlarged stomata from Plate 
6.11. (Plants grown in continuous light). 

(above) sealed condition (silicone rubber bung) 

(below) diffusive ventilation (with a polypropylene disc) 

Note large size of stomata and pores compared to Plate 6.14. 





PLATE : 6.14 

Cauliflower : scanning electron micrographs showing enlarged stomata from Plate 
6.12. (Plants grown in continuous light). 

(above) slow flow ventilation (1.0 - 1.5 cm3 min'). 

(below) fast flow ventilation (5.0 cm3 min-'). 

Note smaller stomata and narrower pores compared to Plate 6.13. 





6.4. FINAL COMMENTS 

It should be stressed that the anatomical investigation described in this chapter was a 

preliminary one. This was because the study was undertaken during the final stage of the 

project, when time was short. To draw definite conclusions about the open or closed 

state of the stomata under different conditions of ventilation, would require studies using 

a porometer. Also, ideally, more replication would be necessary in the methods in 

general. 

However, the study has pointed the way to further investigations and has 

indicated that poor ventilation, (sealed and diffusive treatments), within culture vessels 

can lead to the development of anatomical features which could prevent or reduce the 

plant's ability to acclimatise. These include an absence or reduction in leaf epicuticular 

and cuticular waxes in cauliflower, and in tobacco a reduction in lengths of epidermal 

hairs, and in both species, permanently widely-open stomata which do not respond 

normally by closing in the dark or under conditions of low RH, and which are in 

abnormally exposed positions on the leaf. It would be reasonable to conclude that all 

these features would lead to abnormally and inherently high rates of transpiration, which 

could not be controlled during a period of acclimatisation into conditions of lower RH, 

and which could jeopardise the plant's chances of survival. There are indications that 

these anatomical and physiological modifications may be induced in culture vessels with 

poor ventilation because of very high humidity, and/or low CO2 concentrations and/or 

high concentrations of ethylene. 

On the other hand, with forced ventilation and in the in vivo condition the 

stomata behaved more normally by closing in the dark and when exposed to low RH. 

Finally, the study indicates that these adverse effects can be prevented or reduced 

by the introduction of forced ventilation within the culture vessels. 
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CHAPTER VII 

EFFECTS OF DIFFERENT TYPES OF VENTILATION ON GROWTH, LEAF AND 
FLOWER-BUD ABSCISSION, PHOTOSYNTHETIC RATES AND ETHYLENE AND 

CO2 CONCENTRATIONS IN ANNONA CULTURES 

7.1. INTRODUCTION 

Annona, Rollinia and Asimina are members of the Annonaceae family which produce 

edible fruits (George and Nissen 1993). The genus Annona includes about 100 species, 

of which the main commercial ones are the sugar apple comprising (Annona squamosa 

L. ), the cherimoya (Annona cherimola Mill. ), and the hybrid, atemoya (Annona 

cherimola Mill. X Annona squamosa L. ), and the soursop (Annona muricata) (Rasai, 

George and Kantharajah 1995). The first three fruits are generally known also as ̀ custard 

apples' (Brown et al. 1988), while A. muricata is sometimes called the `prickly apple'. 

The custard apple or sugar apple (Annona squamosa L. ), a tropical fruit tree 

native to South America, the West Indies and now cultivated also in India, has the 

potential to become a major horticultural crop (George and Nissen 1987). Prickly 

custard apple (Annona muricata) is an evergreen tree, native to tropical America, and 

also widely cultivated in the tropics for its fruit (Bejoy and Harihran 1992). Cherimoya is 

native to the subtropical highlands of Peru and Ecuador and is commercially grown in 

Chile, Spain, California and New Zealand (George and Nissen 1993). Atemoya is grown 

commercially in Florida (USA) and Australia (George, Nissen and Brown 1987). 

Currently the Annona spp. are propagated through grafting and budding (Rasai, 

George and Kantharajah 1995), since for almost all of the species of Annona the clonal 

propagation by cutting or air layering has not been very successful (Rasai, George and 

Kantharajah 1995). Seedling rootstocks used for vegetative propagation are highly 

variable in vigour and disease resistance and consequently scion growth and productivity 

are also variable (George and Nissen 1987). Seed germination of Annona squamosa 

species in nature is only about 30 - 40%. Tree improvement in Annona muricala 

becomes difficult because no success has been achieved so far in crossing this species 

with other Annona species (Samson 1986). A. muricata has normally been propagated 



from seeds because vegetative propagation through conventional methods is very slow 

and costly. Alternatively, for the rapid multiplication of new genotypes and for the 

elimination of viral and disease infection of horticultural species, tissue culture is an 

important tool (Frey 1981). However, there have been some problems concerning in 

vitro propagation of Annonas (Rasai, George and Kantharajah 1995). These include (i) 

browning of media (Nair, Gupta and Mascarenhas 1983; Rasai, Kantharajah and Dodd 

1994), (ii) very low success rate of rooting (Jordan 1988) and shoot multiplication, (iii) a 

high rate of ethylene-induced leaf abscission (Rasai, Kantharajah and Dodd 1994; Lemos 

and Blake 1994; Armstrong et al. 1996) and (iv) low rate of bud opening (Lemos and 

Blake 1994). 

The present investigation was instituted in the hope of overcoming some of these 

problems. To this end a system for the micropropagation of Annona squamosa and 

Annona muricata using nodal explants of greenhouse grown plants was developed using 

forced ventilation of the culture vessels. This chapter describes the propagation methods 

and compares effects of sealed-, diffusive- and forced-ventilation on micropropagation, 

leaf and flower-bud abscission, growth and development and photosynthetic rate etc. on 

the two species. The effects of ventilation on the concentrations of ethylene and CO2 in 

the culture head-space and the influence of various hormones on shoot regeneration and 

flower-bud initiation are also described. 
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7.2. MATERIALS AND METHODS 

7.2.1. Plant materials and sterilization 

Experimental material originated as nodal explants taken from 2 to 3 years old 

greenhouse-grown plants Annona squamosa and A. muricata, Explants with 4 to 5 

nodes were cut from young shoots, and to remove dirt were brushed lightly and carefully 

so as not to break or damage the axillary buds. Nodal segments were separated, washed 

under running tap-water and surface-sterilized by dipping into sodium hypochlorite 

solution (2% w: v) for 5 min. They were then rinsed three times with sterile water, cut 

into 12 -15 mm lengths and finally inoculated on to agar media in culture vessels. 

Unless stated otherwise, the establishment conditions, culture vessel size and 

volume, media preparation, methods of measuring ethylene and CO2 concentration, 

chlorophyll and carotenoid contents, photosynthetic rates etc., were as described in 

Chapter IV The basal medium used was MS (Murashige and Skoog 1962). 

7.2.2. Experiments 

7.2.2.1. Micropropagation 

To discover a suitable medium for shoot induction, surface-sterilized nodal segments of 

both A. squamosa and A. muricata were inoculated into culture vessels containing media 

supplemented with different combinations and concentrations of BAP and NAA (Table 

7.01 and 7.02). Each vessel was capped with a polypropylene disc and only one explant 

was inoculated per vessel. Cultures were incubated at 250C under a continuous light flux 

of ca. 80 µmol m"2 s'. Harvesting was after 7 weeks; measurements included % of tubes 

with shoots or buds, number of buds per explant % of elongated shoots, lengths of 

elongated shoots. 

7.2.2.2. Effects of different types of ventilation on multiple shoot induction 

Surfaced-sterilized nodal segments of both species were inoculated onto MS medium 

supplemented with BAP (1.5 mg 1") + CH (1.0 g 1") for A. squamosa and BAP (1.0 mg 

1') + NAA (0.1 mg 1'') for A. muricata (the species had shown the best responses in 
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these combinations). Each vessel was capped with either (a) a silicone rubber bung 

(sealed control), (b) a silicone rubber bung and injected with 10 ml of 22 µ1 1"' ethylene 

gas, (c) a disc of polypropylene membrane to allow diffusive ventilation, (d) a FF- 

ventilation apparatus (flow rate = 5.0 cm3 min' produced by having a larger outflow 

membrane and closer evaporating surface than in Chapters IV and V) for forced 

ventilation, or (e) grown under diffusive ventilation and then transferred to forced 

ventilation. 

Ten replicates were prepared for each treatment and the cultures were incubated 

in growth room conditions. On the 35th day the ethylene concentrations were measured 

in the vessels. The dates of bud initiation were noted. Harvesting was after 35 days; 

measurements included number of buds, % of elongated shoots, length of shoots, 

number of leaves per shoot, leaf area per shoot and number of nodes per shoot. 

7.2.2.3. Effects of different types of ventilation on leaf abscission 

For this experiment, 14-day-old A. squamosa and A. muricata plantlets cultured in MS 

medium supplemented with BAP (2.0 mg 1') and aerated by forced ventilation (5.0 cm3 

min") were used. Only 1-2 main shoots were allowed to grow and the rest were chopped 

off. The plantlets were then sub-cultured into fresh medium and each vessel was capped 

with either (a) a silicone rubber bung (sealed control), (b) a silicone rubber bung and then 

injected with 10 ml of 22 pl Y' ethylene gas, (c) a disc of polypropylene membrane for 

diffusive ventilation, (d) a FF-ventilation apparatus (flow rate = 5.0 cm-1 min'') for forced 

ventilation. Ten replicates were prepared for each treatment. The percentage leaf 

abscission was measured from days I- 45. Ethylene concentrations were measured on 

day 45. 

7.2.2.4. Flower-bud development 

Nodal segments of A. muricata were inoculated onto MS medium supplemented with 

different combinations and concentrations of BAP and CH. Only one explant was 

inoculated per vessel and the vessels were capped with a FF-ventilation apparatus. 
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Cultures were incubated for 60 days under the growth room conditions described earlier. 

Dates of flower bud initiation were noted. Harvesting was on day 45 and measurements 

included % of tubes with flower-bud development, numbers of flower-buds and fresh 

weight of each flower bud. 

7.2.2.5. Effects of different types of ventilation on flower-bud development and 

abscission 

Annona muricata plantlets (20 days old) cultured in MS + BAP (2.0 mg 1"1) + CH (1.0 g 

Ii) medium and grown under forced ventilation were used as experimental material. 

Plantlets were subcultured into fresh medium and, to provide different ventilation 

treatments, the vessels were capped and grown as described in 7.2.4. Initially five 

representative plants were harvested and the number of flower-buds and their weights 

were recorded. For the "treatment plants" the number of new flower-buds developed and 

abscissions and the fresh weights of dropped flower-buds were recorded throughout the 

experiment. Harvesting was at 21 days: ethylene concentrations were measured and fresh 

weights of flower-buds recorded the at the end of the experiment Five replicates were 

prepared for each treatment 

7.2.2.6. Effects of different types of ventilation on growth, photosynthesis, and 

chlorophyll and carotenoid contents 

Nodal segments of both Annona squamosa and A. muricata were inoculated onto MS + 

BAP (2.0 mg I') and, to provide the different ventilation treatments, the vessels were 

capped and grown as described in Section 7.2.4. Initially the fresh weights of the cuttings 

were taken. Cultures were incubated in growth room conditions. The number of 

replicates was 10 for each treatment. The photosynthetic rates and chlorophyll and 

carotenoid contents were determined after 45 days of growth. Harvesting was after 45 

days and the following measurements made: number, fresh weight and area of leaves 

(including dropped leaves), stem fresh weights, lengths, number of new nodes, total 

number of buds and number of opened buds. 
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7.2.2.7. Effects of different ventilation types on the gaseous composition of the 

head-space of the culture vessels 

Plantlets of both A. squamosa and A. muricata, 35 days old and with 1-3 shoots, having 

been grown under fast forced ventilation were subcultured to a fresh medium in new 

vessels. The effects of the plantlets in each case on the gas composition of the head- 

spaces were then investigated under the various ventilation treatments. Five replicates for 

each treatment were prepared for each species. Each vessel (+plantlet) was subjected in 

turn to the three types of ventilation viz. (i) forced flow (FF-apparatus), (ii) diffusive 

(polypropylene disc capping), and (iii) closed (sealed using silicone rubber bung). 

Cultures were incubated at 250C and at a PAR of 80 pmol m" s" with an 18 h 

photoperiod; there were 5 replicates per treatment. 

For both species CO2 concentrations in the culture vessels were measured at 

intervals throughout the day and night. The measurement procedure has been described 

in Chapter IV. 

Also for both species ethylene concentrations in the light were measured in each 

culture vessel at intervals during the first 48 hours. 

In an extra experiments on A. squamosa, 5 replicates, similarly prepared as 

above, were sampled for ethylene during 29.75 hours in the light. The vessels were then 

uncapped and flushed with sterile air and then recapped. Ethylene concentrations were 

again measured during the following 29.75 hours, and the procedure was repeated. 
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7.3. RESULTS AND DISCUSSION 

7.3.1. Micropropagation 

Annona squamosa : To regenerate shoots from nodal segments of mature plants 

without an intervening callus phase, up to 18 different hormonal treatments were given 

of which only 5 stimulated adventitious shoot buds (Table : 7.01) The best response was 

recorded in medium I MS + BAP (1.5 mg 1-1) + CH (1.0 g 1-'). Within 7-10 days one 

or two shoots developed from the leaf axil, and after 3 weeks of culture new lateral buds 

were initiated in this medium With the passage of time the number of buds increased and 

reached a mean of cri. 70 within 5 weeks At the end of the experiment, however, only 

39% of shoots had elongated. After 8-9 weeks, longer shoots (> I mm) were detached 

and transferred onto the rooting medium (data not shown). The original explants were 

then subcultured to fresh medium where elongation of old shoots and initiation of new 

shoots took place It should he mentioned that from a single explant it was possible to 

regenerate more than 100 new shoots Regenerated shoots from the explant were also 

used as a source of secondary explants and these exhibited a similar response. In this way 

the shoot multiplication cycle can be repeated indefinitely. 

Table 7.01. Effects of different hormonal treatments on regeneration of shoots from 
nodal segments of mature Annona squamosa after 7 weeks of culture. 

used 

Medium -1 97 6 

Medium -2 83 4 

Mcdium -3 51.0 

Medium -4 33.1 

Medium -5 28 2 

No. 

432±96 

24 3±4.2 

19 1±5.7 

15 2±1.9 

3 7±0.7 

39 9*5 3 0 93±0.05 

40 4±3 1 0.81±0.08 

42.2±3.5 0.92±0.11 

34 8±3 2 1.01±0.07 

89 2±8.1 1 27±0 15 

"Icuunu -IIIt öHr (I. J mgi )tJ. r1 (I u gI ): vicuiuI[I -L. VI, -5 T Drir (L. %) II igi )r Lr ( I. v gI ), 
Medium -3 MS + BAP (2.0 mgI'): Medium -4 MS + BAP (2.5 mgI') t NAA (0. I mg]') + CH (I. 0 g 
I'): Medium -S: MS + BAP (2.5 mgl') + NAA (0 5 mgf-') 
*60 cm' vessels, each containing one cutting. were capped with polypropylene disc. Cultures grown at ca 
25°C in continuous light : PAR - 80 limo) in s'. Fach value represents ,i mean t SF, of 5 replicates. 
mean maximum length (3 -5 best shoots horn each tube). 

r clon . atcd clam? 

------- ---------------- -- --------- ------- --- 
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Medium 2 [MS + BAP (2.0 mg 1-) + CH (1.0 g 1-1)], and medium 3 [MS I BAP (20 mg 

1-1)], also showed noticeable numbers of shoots (Table 7.01), but when compared with 

those of medium 1, the number and percentage of shoots in each tube was lower. 

However, percentages of elongated shoots were slightly higher in these treatments 

Medium 4 with a mean of only 15 shoots per explant was only one third of that of 

medium I In the case of medium 5. however, the mean number of shoots was only 3.7 

(i. e. only 0.085X) that of in medium I), and this was probably a function of' the NA-1 

addition 

Annone nuuricata: Among the treatments the five best responses are represented in 

Table 7 02 In medium 1, the mean number of buds was approx. five out of which only 

46% elongated with an average shoot length of cu. I1 mm by the end of the experiment 

In medium 2 the number of buds was again 5.0 but this was reduced significantly when 

NAA was not added in the medium (mediums 3,4 and 5), but here the growth was better 

with at least double length of shoots and significantly higher numbers of elongated 

shoots ( 75%). It should be mentioned that, in general, leaf abscission is a major 

problem in A. mnricata (described later) and when NAA was added in the medium 

abscission was increased (data not shown). 

Table 7.02. Effects of different treatments on regeneration of shoots from nodal 
segments of mature Annona muricata after 7 weeks of culture. 

* Media 'yo of tunes will, No. of buds %, hoots 'length of 

used shoots /buds de%'elopet) per eltmgaled ciougated shoots 
developed explant (mm) 

Medium -I 79 1 5.2±1.6 46.3±3.7 11 3±0 5 

Medium -2 73.7 5.0±4.2 39.9±3.4 11 9±0 8 

Medium -3 89 0 3.1± 0.7 75.0±7.1 21 0± 31 

Medium -4 83.0 2.3± 0.5 73.0±6.9 19 3±4 1 

Medium -S 750 1 7± 03 59.1±46 1854.25 

* Medium -1. MS f BAP (1.0 mgl 1) + NAA (0. I mgl 1). Medium -2: MS t BAP (2 0 ingl 1) NAA 

(0 I nigl ' ), Medium -3. MS + BAP (I. 0 mgl 1): Medium -4: MS + BAP (2.0 nmgl ' ). Medium -5 
MS i 13AI' (25 mgl 1) + NAA (0.5 ingl '). *60 cnt' vessels, each containing one culling. were capped 

NNitli polvpropYtcnc disc. Cultures grown at ca. 25°C in continuous light; PAR xO tiniol ni s' Fach 

value represents a mean f SE of -5 replicates. imcan maximum length. 
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Similar results were described by Nair ei al. 1984 where in the presence of auxin (NAA, 

IAA and IRA) in the medium, the leaves of A. squamosa were dropped. It is well known 

that additions of auxin can promote ethylene production in plants by stimulating the 

biosynthesis of ACC (Yang and Hoffman 1984). 

7.3.2. Effects of different types of ventilation on multiple shoot induction 

Shoot length was sometimes difficult to measure, but was possible using digital 

electronic callipers. 

Annona 
. squaniosa : The results are summarised in Table 7.03. Among the treatments, 

bud initiation was observed within 7 days in the sealed vessels but the number was only 

2.3 (data not shown), and with the passage of time these buds became brown in colour 

with some necrosis and ultimately died. Ethylene concentrations in the head-space of 

these sealed culture vessels after 50 days was 0.76 pl l-' (Fig. 7.01). Fxplants cultured in 

an atmosphere with added ethylene showed no bud or shoot development. 

Table 7.03. Effects of different types of ventilation on multiple shoot induction of 
Annona squamosa after 7 weeks of culture. 

Characteristics Scaled Sealed + Diffusive Forced Grown under 
with injected r'euli1Ation Ventilation diffusive vent. 

silicone ethylene (polvprup)- (flow rate and than 
rubber lese disc) 5.0 cm') transferred tu 
bun;; forced 

centi18tion 

UaNs to hod initiation 5 -7 No buds 7-10 12 - 15 -- 

dcvclopcd 
Number of buds per plant --- --- 

487+67 255+1 3 39 2 +49 

°/o of hurls elongated --- --- 
387 74.1 69 2 

tLength 
of Young shoots --- --- 

05±01 1 67+02 1 2+02 

(mm) 
No. of Ica%es per young; --- --- 

1.4+0.2 5.5+0.6 5 2+0 4 

shoot 
Leaf area per young shoot --- --- 

05+0 1 2.0+03 1 ? +0 3 

(cm') 
No. of nodes per young --- --- 

1 1+0.3 3.0+0.7 1 6+0 5 

shoot 
nlran m: '. imlm Irnath of i chant frnni rech tnhc P10 

cm3 of 23 id I1 ethylene in air was iniectcd 

*60 cin' \csscls, each containing one cutting. Cultures grown at ca. 25°C in continuous light. PAR t(t 

pmol in s' Fach value represents a mean i SE of 5 replicates Elongated buds become \oung shoots 
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- 
1.0 - 
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0.0 
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F- 

1 
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- L LJ O O OO 

Flg, 7.01. Effects of different types of `capping' on ethylene concentrations in the head- 
space above 50 days old (a) A. squamosa L. and (b) A. muricata L. cultures in 60 cm3 
vessels; cultures were grown under continuous light at 80 pmol m-2 s-1 (PAR), 25°C and 21% 
RH. Each symbol represents a mean ± SE of 5 replicates. 0= sealed with silicone rubber 
bung; 0= sealed with silicone rubber bung and 10 cm3 ethylene (23 pl 1-' ethylene in air) 
was injected in each vessel immediately after sealing; 0= capped with polypropylene disc 
(diffusive ventilation) and 0= capped with fast forced ventilation apparatus (flow rate = 5.0 
cm3 min"). 
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With continuous diffusive ventilation bud initiation took place within 7- 10 days, 

compared to 12 - 15 days with continuous forced ventilation. Although the most buds 

were recorded with the former treatment, with forced ventilation 74% of buds had 

elongated after 7 weeks (Plate 7.01c), compared to only 39% with diffusive ventilation. 

In the latter case few buds remained unopened, and some ultimately died (Plate 7.01b). 

Similarly all other parameters were increased by forced ventilation, with shoot length 2X, 

number and area of leaves 4X and number of nodes 3X those from the diffusive 

treatment. 

For plants transferred from diffusive into forced ventilation (Plate 7.02b), apart 

from the number of buds, all parameters were intermediate between those for the 

continuous diffusive and the continuous forced ventilation treatments. This showed that 

forced ventilation, even when applied at a late stage (after 25 days) can still improve 

growth and development, particularly here in the case of the percentages of elongated 

shoots and numbers of leaves, which were close to those from the continuous forced 

ventilation treatment. 

Annona muricata: This species, in contrast to A. squamosa, did not show any sign 

whatsoever of bud or shoot development in the sealed containers either in the presence 

or absence of exogenous ethylene (Table 7.04). 

The pattern of responses to the ventilation treatments was similar to that for A. 

squamosa, with all growth parameters, apart from the number of buds, being increased 

by forced as opposed to diffusive ventilation. However, in A. muricala the numbers of 

buds were much smaller (< 0.16X those of A. squamosa), but the lengths of shoots were 

greater (>1OX those for A squamosa). Here again the late application of forced 

ventilation had beneficial effects, particularly in the cases of percentage of elongated 

shoots and numbers of leaves per shoot. 

Ethylene concentrations measured at the end of the experiments were similar in 

both A. squamosa and A muricala (Fig. 7.01) with respectively 0.95 - 0.62 pl l in 

202 



PLATE : 7.01 

Annona squamosä L. : multiple shoot induction from nodal segments. Medium used : 
MS + BAP (1.0 mgl-') + NAA (0.1 mgl-'). Culture vessel volume = 60 cm3. Each 

vessel contained one cutting. Cultures grown at ca. 25°C in continuous light; 
PAR = 80 pmol m'2s'. 

(a) 5 weeks old culture: vessels were capped with polypropylene disc (X5); note 
the development of numerous buds. 

(b) 7 weeks old culture, vessels were capped with polypropylene disc; note 
some buds were elongating and partially opening and some had already died 
(X5). 

(c) 7 weeks old culture; vessels were capped with fast forced ventilation 
apparatus (flow rate =5 cm3 min'); note elongated new shoots with expanding 
leaves cf. (b) (X3). 





PLATE : 7.02 

Annona squamosa L. : multiple shoot induction from nodal segment. Medium used : MS 
+ BAP (1.0 mgl-') + NAA (O. lmgl-'). Culture vessel volume = 60 cm3. Each vessel 
contained one cutting. Cultures grown at ca. 25°C in continuous light; PAR = 80 

µmol m'2s'. 

(A) 10 weeks old culture; vessels were capped with fast forced ventilation 
apparatus (flow rate =5 cm3 min"'); note elongated shoots with large leaf area 
(X5). 

(B) 7 weeks old culture; explants cultured under diffusive ventilation 
(polypropylene disc) for 25 days and then transferred to fast forced 
ventilation; note numerous shoots which were shorter and with smaller leaf areas 
than in (A) (X5). 
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sealed containers, 5.8 - 5.7 pl 1-' in sealed containers with exogenous ethylene, 0.03 -0.05 

pl 1-' in the diffusive condition and no detectable amounts with forced ventilation 

Table 7.04. Effects of different types of capping on multiple shoot induction of 
Annona muricata after 7 weeks of culture. 

led + Diffusive Forced Grown under 
cted ventilation ventilation diffusive wnt. and 
'lese (polypropy'- (flow rate than transferred to 

lent disc) - 5. (t ems) forced %cutilation 

DaNs to bud initiation --- No buds 7-12 15 --- 
developed 

Number of buds per --- --- 5.6 ± 0.8 41±10 52 +09 

plant 

'rb of buds clongatcd --- --- 43.5 831 739 

length 
of young --- 

9.3 ± 0.4 175±21 14.3±21 

shoots (mm) 

No. of leaves per --- 
3.5 ±03 51 ±0.4 47+08 

young Shoot 

Leaf area per young --- --- 
1.1±02 26± 0.3 20±04 

shoot (cm') 

No. of nodes per young --- --- 1.1 ±01 3 1+05 19±03 

shoot 
mean maximum tengtn of snoots from eacn tube. 
10 cm'of 23 pI 1' cthvlene in air was injected. 

*0)) cm' vesscls. each containing one cutting. Cultures grown at ca 2W(' in continuous light; PAR 8 
Ioniol in 's 1 Each value represents a mean ± SE of 5 replicates. Elongated buds become Noung shoots 

On balance the growth from explants was appreciably better under forced ventilation 

than under diffusive ventilation only. The results also demonstrate very clearly that the 

sealed system is very detrimental for both species of' Atmomr 'T'here are strong 

indications that they are adversely affected by ethylene and that especially forced 

ventilation improves growth and development because of' its flushing eflict on the 

culture vessels. 
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7.3.3. Effects of different ventilation types on leaf abscission 

After 45 days of culture, forced ventilation proved to have been by far the most effective 

treatment to prevent leaf abscission: both A. squamosa and A. muricata showed no leaf 

abscission at all with FF-ventilation. 

For plantlets cultured under dif asive ventilation the percentage of leaf abscission 

was 69% for A. squaniosa and 95% for A. muricata after 45 days of culture (Fig 7.02a). 

In sealed conditions almost 100% abscission was recorded within only 10 and 15 days of 

culture in A. muricata and A. squamosa respectively. As expected, where plantlets were 

cultured in sealed vessels with ethylene added to the head-space, all the leaves of the 

cultured explants of both species dropped within 3-5 days. 

The ethylene concentration above the culture was also measured during the 

experiment, and in the sealed vessels it was 1.01 pl I"' and 0 93 pl l*' in A. squamosa and 

A. muricaia respectively at the end of the experiment. Culture vessels containing plantlets 

grown under diffusive ventilation accumulated very low concentrations of ethylene (0.06 

pl I-' and 0.04 µI 1'' in A. squamosa and A. muricata respectively but it seemed to have 

been sufficient to induce physiological changes like leaf abscission. As expected with the 

forced ventilation no ethylene was accumulated in the vessels during the experimental 

period (Fig. 7.02b). 

These results are consistent with the leaf abscission phenomena found in this 

experiment, i. e. the higher the concentration of the accumulated ethylene (exogenous or 

endogenous) in the culture atmosphere the greater was the abscission rate of the species. 

Similar findings were reported by Lemos and Blake (1994) where leaf abscission 

A. squamosa was reduced by using an ethylene inhibitor. They also recorded that in 

vessels capped with cling film and polypropylene discs this species showed 86% and 

70% leaf abscission after 4 weeks of culture. Ethylene-induced leaf abscission in A. 

squamosa was also very recently reported by (Amstrong et al. 1996), where forced 

ventilation and the ethylene inhibitor (STS) were introduced to control abscission. 

Earlier, in 1973, Abeles also showed that ethylene is particularly important in the 
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Fig. 7.02. Effects of different types of 'capping' on (a) percentage of leaf abscission and 
(b) ethylene concentrations (after 45 days of treatment) in the head-space of Annona 
squamosa L. and A. muricata L. cultures in 60 cm' vessels; cultures were grown under 
continuous light at 80 pmol m"2 s-' (PAR), 25°C and 21% RH. Each vessel contained only one 
plantlet. Each symbol represents a mean ± SE of 5- 10 replicates. 0&0= sealed with 
silicone rubber bung; 0&Q= sealed with silicone rubber bung and 10 cm3 ethylene (23 Pl 
I" ethylene in air) was injected in each vessels immediately after sealing; 0&A= capped 

with polypropylene disc (diffusive ventilation) and 0&V= capped with fast forced (FF) 
ventilation apparatus (flow rate =5 cm3 min-'). Plantlets were previously grown under FF- 
ventilation apparatus for 14 days. 
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sequence of abscission phenomena. Therefore, it seems reasonable to conclude that 

accumulated ethylene is responsible for the leaf abscission of in vitro grown Annviia 

squamosa and A. muricata plantlets and that it can be successfully controlled by FF- 

forced ventilation. 

7.3.4. Flower-bud development in ,1 nnona muricata 

7.3.4.1. Flower-bud initiation 

Firstly, a variety of hormonal treatments (12) were devised to try and initiate flower-bud 

development in Annonce muricata, of these only five were successful (Table 7.05). 

The best performance was observed using medium I [MS+BAP (2.0 mg 1_')-+CH 

(2.0 g 1-')) in which, within 35 days of culture, flower-buds were initiated from the tips of 

the shoots (Plate 7.03a). Eventually a mean of 4.7 flower-buds were produced with a 

fresh weight of ca. 48 mg per flower-bud (Plate 7 03b) When CH was not added in the 

medium (media 3,4 and 5) fresh weights of the flower-buds were very significantly less 

(Table 7.05). There was also some indication that an increase or decrease in BAP 

concentration (media 4 and 5) reduced flower bud numbers. 

Table 7.05. Effects of different hormonal treatments on in vitro flower-bud 
development in Annona muricata after 60 days of culture. 

* Media used '% of tubes with Dates of flower- No. of flower- Fresh weight of 
flower-bud bud initiation buds each flower-hud 

Medium -1 81 0 35-40 47+0.2 47.6+4 5 

Medium -2 
78 9 40-45 4.5+0.2 40.1+2.9 

Medium -3 67 1 40-45 4.3+0.3 30.1+5 1 

Medium -4 
669 40-45 3,3+05 30.3+35 

Medium -5 71 8 50-60 2,8+01 29 5±4 0 

*]".. A.. - t. K Al -------- 1K AL' ýoA I) 11 /\ ..... t I It Iit1 
........ u... ...... ) ' Lift ýc... . uff. '.. I ýý.. v ýI I. I.. a anu. u -r... v v... ý....., ... t,. i .. ý..., 

gl ' ): Medium -3 MS + BAP (2 0 mgl 1). Medium -4. MS + I3AP (I. 0 mgl ): Medium -5 MS i 
BAP (2.5 mgI'). 
t60 ciu' vessels, each containing one cutting, were capped with polypropylene disc. Cultures grown at 
ca. 25°C in continuous light: PAR - 2i(ß Itinol in "s'. Each %aluc represents a mean f SF of '5 replicates. 
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PLATE : 7.03 

Annona muricata L.: flower-bud development from nodal segments. Medium used : 
MS + BAP (2.0 mgl-1) + CH (1.0 gl-1). Culture vessel volume = 60 cm3. Each vessel 
contained one cutting and capped with fast forced ventilation (flow rate =5 cm3 min") 
apparatus: Cultures grown at ca. 25°C in continuous light; PAR = 80 µmol m 2s 1. 

(A) 5 weeks old culture; note flower-bud initiation from the tip of the shoot 
(X2.3). 

(B) 2 weeks old flower-buds of Annona muricata L developed in vitro (X10). 





7.3.4.2. Effects of different types of ventilation on flower-bud abscission and 

development 

Compared with all other treatments, the forced ventilation (5.0 cm3 min") showed the 

best performance in controlling abscission of in vitro grown flower-buds: per cent 

abscission was zero (Fig. 7.03; Plate 7.04a). After 21 days of culture a mean of 3.1 new 

flower-buds had developed and this was 2.6X higher that of diffusive ventilation. Also, 

the total fresh weight of flower-buds was significantly greater (1.7X) than in the diffusive 

treatment (Table 7.06). 

100 

ö 80 

60 

ö 40 

2C 

C 

Fig. 7.03. Effects of different types of 'capping' on percentage of flower-bud 
abscission (after 21 day of treatment) of Annona muricata L. cultures in 60 cm3 vessels; 
cultures were grown under continuous light at 80 pmol m'2 s1 (PAR), 25°C and 21% RH. 
Each vessel contained only one plantlet. Each symbol represents a mean ± SE of 5- 10 
replicates. 0= sealed with silicone rubber bung; 0= sealed with silicone rubber bung 
+ 10 cm3 ethylene (23 pl I" ethylene in air) was injected in each vessel immediately after 
sealing; 0= capped with polypropylene disc (diffusive ventilation) and 0= capped 
with fast forced (FF) ventilation apparatus (flow rate =5 cm3 min's). Plantlets had been 
previously grown under FF-ventilation apparatus for 20 days. 

Under diffusive ventilation a total of 3.2 (mean) flower-buds had been observed of which 

three-quarters had dropped by the end of the experiment (Fig. 7.03; Plate 7.04b). In the 

sealed vessels 100% flower-bud abscission was observed and plants ultimately died by 

the end of the experiment. Similarly, in presence of exogenous ethylene in the 
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PLATE : 7.04 

Annona muricata L.: flower-bud development from nodal segments. Medium used : 
MS + BAP (2.0 mgl') + CH (1.0 gl"'); Culture vessel volume = 60 cm3. Each vessel 
contained one cutting. Cultures grown at ca. 25°C in continuous light; PAR = 
80 . imol m'2s''. 

(A) four weeks old culture grown under fast forced (FF) ventilation (flow rate 
=5 cm3 min-'), note flower-buds were not dropped in this treatment 
(X2.4). 

(B) four weeks old cultures (3 weeks under FF ventilation and then transferred 
to diffusive ventilation (capped with polypropylene disc); note some 
flower- buds and leaves has already dropped (X3). 





Table 7.06. Effects of different types of ventilation on flower-bud development and 
fresh weight of Annona muricata. 

Initial 
number 

New flower- 
buds 
developed 

tFinal 

number 

Sealed vessels 2.2±0.3 0.0 --- 

Sealed + 2.1±0.2 00 --- 
injected ethylene 

Diffusive 2.0±0.2 1.2±0.3 3.2±0.2 
ventilation 

Forced 2.1±0.4 3.1±0.2 5.2±0.6 

ventilation 

-- --- - ---- ----- ---------------------- ------------------------------ 
Total fresh weight of flower-buds 

(mg) 

ý"Initial ººei} ht ! Final weight 

32.3±3.3 --- 

33 0±5 1 --- 

31 8±2.7 66.7±6.4 

33.7±4 3 113 5±9.3 

-MA Li udwý) ui uuatweUt kineluwlIg uruppeu uuwei-uuuNl, tnanucis udu uecu ples IuusIy gIU wiui 

bläst 
flow ventilation for 20 days. 

Initial numbers and weights of flower-buds were taken from extra plans harvested at the beginning of 
experiment. 
10 cm' of 23 ttl I-' ethylene in air was injected. 

*60 cm' vessels, each containing one cutting. Cultures grown at (u. 25"(' in continuous light: PAR - HO 
µmol nos'. Flow rate of forced ventilation (fast flow) was 5 cnt+ min', lör sealed and diffusive 
ventilation, vessels were capped with silicone rubber bungs and polypropylene discs resl)Cctnvrl} Fach 
value represents a mean ± SE of 5 replicates. 
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atmosphere of the sealed culture vessels all the flower-buds (100%) abscised, but buds 

continued to be formed throughout the experiment. As in the sealed controls, plantlets 

cultured in this treatment became brown in colour with some necrosis and ultimately 

died. It should be mentioned that in the latter two treatments almost all the buds had 

dropped within only three days of the start of the experiment (data not shown). 

The ethylene concentrations in the head-space of the culture vessels were also 

measured at the end of the experiment. As shown in Fig. 7.04 the ethylene concentration 

in sealed conditions was 0.59 gl 1"'; under diffusive ventilation although it was quite low 

(0.035 pl 1'') it was still apparently sufficient to alter the physiological activity in the 

plant. A complete absence of ethylene was noted in forced ventilated vessels. 

It has been reported elsewhere that low levels of ethylene promote abscission of 
fruits, leaves and buds of many species (Sisler and Yang 1984). Although flower-bud 

abscission of in vitro grown plantlets have not previously been described, many authors 

have shown that the treatment of young flower-buds of plants such as carnation and 

morning glory with external ethylene accelerated senescence (Yang and Hoffman 1984) 

and ultimately terminated the functional life of the flower-buds. However, these findings 

does not tell us anything about the abscission of in vitro grown flower-buds. In the case 

of A. squamosa, the ethylene data above accord with pattern found in the degree of in 

vitro grown flower-bud abscission, and taken in conjunction with the literature reported 

above they suggest a causal link with accumulated ethylene. 

7.3.5. Effects of different types of ventilation on growth, photosynthetic rate, and 

chlorophyll and carotenoid contents 

7.3.5.1. Growth 

Annona squamosa: From a consideration of all the parameters of growth and 

development of plantlets in the various treatments, it is evident that explants grown 

under forced ventilation were more vigorous than in the other treatments (Table 7.07). 

Thus, after 45 days of culture, the fresh weights and numbers of attached leaves were 

139 mg and 13.5 respectively, which were 3.5X and 3X greater than those in diffusive 
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Fig. 7.04. Effects of different types of 'capping' on ethylene concentrations in the head- 
space of Annona muricata L. cultures (after 21 day of treatment) in 60 cm3 vessels, grown 
under continuous light at 80 pmol m'2 s-' (PAR), 25°C and 21% RH. Each symbol represents 
a mean ± SE of 5 replicates. 0= sealed with silicone rubber bung; 0= sealed with silicone 
rubber bung and 10 cm3 ethylene (23 pl 1-' ethylene in air) was injected in each vessel 
immediately after sealing; 0= capped with polypropylene disc (diffusive ventilation) and 
0= capped with fast forced ventilation apparatus (flow rate =5 cm3 min'). Plantlets had 
been previously grown under FF-ventilation apparatus for 20 days. 
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Table 7.07. Effects of different types of ventilation on growth and development of 45 
days old in vitro-grown Annona squamosa cuttings. 

------------------- 

Diffusive Sewed 

"entiLitiolº 

Leaves 

tNumber 13.5±2.3 

Number on plants 13.5±2.3 

tTotal FW (mg) 139.3±14 1 

FW (mg) on plant 139.3±14.3 
tArea (cm`) 12.5±1.8 

Stem 

Total FW (mg) 287.8±15.9 

Increase in FW (mg) 188.3±10 2 

Length (mm) 133+1 1 

No. of new nodes 5.3±0 7 

12.8±1.1 

4.7±0.4 

123.5±8.9 

39.5±4.6 

9.3±1.2 

259.51 12.8 

160.219.9 

9.9±1.0 

3.9±0.3 

1 02t0.5 

0510.5 

10.5±1.9 

1 4±0.3 

09±0.2 

109±1.8 

10.1±09 

"y Sealed f' 

In icctC1) 

clhylcnc 

Buds 

Total no. of buds 51±1 3 6.0±0.9 -- 

No. of buds opened 4 7±0 6 3.1±07 -- 

% of opened buds 92.2 51.7 -- 

Including the dropped leaves. 
10 cm'of 23 pI I' ethylene in air v. as injected. 

*60 cnt' vessels, each containing one cutting. Cultures grown at cu. 25"(' in continuous light. PAR X0 

lunol in s'. Flow rate of forced Ncntilation (fast (low) was 5 ctn' ruin'; for sealed and ditlu. tiivc 
ventilation vessels were capped with silicone rubber bungs and polypropylene discs resp cuvek I; tch 
value represents a nican ± SE of 5-7 replicates. 
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ventilation; stem fresh weight was marginally higher as were the numbers of new nodes. 

The numbers of new buds (incuding those developed subsequently on the original 

explant and on the new shoot) were similar in the FF- and diffusive-ventilation 

treatments, but the numbers of these which opened was marginally higher in the FF- 

treatment and at least half of those in the diffusive treatment either remained unopened 

or died. 

In sealed conditions there was little new growth of leaves or stems (Table 7.07), 

and by the end of the experiment most of the small leaves formed, or originally present, 

had fallen. Explants in sealed vessels with added ethylene developed no further shoot or 

leaf system and were dead after only 10 days. 

Annona nzuricata : The patterns of growth in this species under the different types of 

ventilating system were very similar to those of A. squamosa, except that there was no 

growth whatsoever in the sealed systems and the plants died in both (Table 7.08). 

Healthy leaf and shoot systems were observed in the plantlets grown under 

forced ventilation: all the leaves survived and their numbers and fresh weights at the end 

of the experiment were 10.2 and 108.6 mg respectively, compared to 2 and 14.1 mg in 

the diffusive treatment where all but a fifth of the leaves had fallen. Again, stem fresh 

weight was more than with the diffusive treatment and the numbers of buds which 

opened was greater but perhaps not significant. 

7.3.5.2. Photosynthesis 

The relationships between net photosynthetic rate (µmol m-2 leafs'') and PAR (pmol m'2 

s"') are shown in Fig. 7.05. Here, it is evident that net photosynthetic rate per unit leaf 

area is highest in plantlets grown under forced ventilation, lowest in the sealed 

treatments (data for A. squamosa only), and intermediate under diffusive ventilation. Net 

photosynthetic rate in A. squamosa was 3.12 pmol m2 leaf s" at PAR = 220 pmol m'2 

swhich was 1.3X and 4.9X greater that in diffusive ventilation and scaled vessels 

respectively. However, at the normal growth room PAR (80 µmol m'2 s'') it can be seen 
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Table 7.08. Effects of different types of ventilation on growth and development of 45 
days old in vitro-grown Annona muricata cuttings. 

Leaves 

+Number 102±2.0 9.7±1 3 -- 

Number on plants 10.2±2.0 2.0±0.3 -- 
t Fotal FW (ing) 108.6±18.4 91.3±6.8 

FW (mg) on plant 108.6±18.4 14.1±0.9 

tArea (cm) 9.5±1.6 6.3±1.0 -- -- 

Stem 

Total FW (nig) 224.8±13.4 198.3±14.6 

Increase in FW (mg) 134.7±9.3 107.2±11.2 

Length (mm) 10-9±1.4 7.1±0.6 

No. of new nodes 3.8±0.5 15±0.4 

Buds 

Total no. of buds 5 0±1 0 5Z±&5 

No. of buds opened 3 6±0.6 2 3±0 7 

"r; of opened buds 72.0 41 1 

TIncluding the dropped leaves. 
-e I () cm' of 23 pl l-1 ethylene in air was injected. 
*60 cm3 vessels. each containing one cutting Cultures grown at (a ? 5"(' in continuous light. PAR 80 

)unol in -s 1. Flow rate of forced ventilation (fist flow) was 5 cm` 111111 1. fur scaled and diffuser 

ventilation vessels were capped with silicone rubber bungs and polvprop. Nlcne discs respecu' eh Fach 

value represents a mean ± SE of 5-7 replicates 
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(b) Annona muricala 

Fig. 7.05. Effects of different types of ventilation on net photosynthetic rates (based on 
leaf area) in different irradiances of (a) Annona squamosa L. and (b) Annona muricata L. 
after 45 days of culture in 60 cm3 vessels; A= sealed with silicone rubber bung; 0= 
capped with polypropylene disc (diffusive ventilation) and 0= capped with fast forced (FF) 
ventilation apparatus (flow rate =5 cm3 min''). Cultures had been previously grown under 
continuous light at 80 imot m2 s'' (PAR), 25°C and 21% RH. Each vessel contained only one 
plantlet. Each symbol represents a mean ± SE of 4-5 replicates. Photosynthetic rates were 
measured at 350 p1 1"1 CO2. 
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that net photosynthesis under FF-ventilation was 1.7X that with diffusive ventilation and 

that there was no net assimilation in the sealed condition; on the contrary, respiratory 

activity masked any photosynthetic assimilation at this light flux. This latter response is 

probably the result of there being few (and small) leaves but still a significant amount of 

original explant stem material. 

Whether these photosynthetic rates reflect a difference in the photosynthetic 

fitness of the leaves from the various treatments is not unequivocally revealed by the 

current data. For example, since the stem fresh weights are similar in the FF and diffusive 

treatments, but the leaf numbers are much smaller with diffusive ventilation, the stem 

respiratory activity will exert a proportionately greater effect on the photosynthetic data 

from this treatment and lower the readings. It is interesting, however, that chlorophyll 

and carotenoid contents were generally higher under FF- than under diffusive-flow 

ventilation (see Section 7.3.7.3). 

When photosynthesis rate is expressed on a per plantlet basis the greater vigour 

of the FF-treatment plants becomes even more evident (Fig. 7.06a ). Under normal 

growth room PAR (80 µmol m-2 s-'), the net photosynthetic rates with FF-ventilation 

were 15X those with diffusive ventilation. In the sealed condition no net assimilation 

took place. 

In A. muricata the maximum photosynthetic rate in plantlets subjected to forced 

ventilation was 1.6X that in the diffusive treatment, but plantlets died only after 7- 15 

days of culture in the sealed system and as a consequence it was not possible to measure 

photosynthetic rates in this treatment 

When photosynthesis rate is expressed on a per plantlet basis the greater vigour 

of the FF-treatment plants becomes even more evident (Fig. 7.06b). At 80 . tmol m'2 s' 

PAR the net photosynthetic rate for plantlets grown under FF-ventilation was 24X that 

of those grown with diffusive ventilation Again it is interesting that chlorophyll and 

carotenoid contents in non-abscised leaves were generally higher under FF- than under 

diffusive-flow ventilation. 
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Fig. 7.06. Effects of different types of ventilation on net photosynthetic rate per plant in 
different irradiances of (a) Annona squamosa L. and (b) Annona muricata L. after 45 days of 
culture in 60 cm3 vessels; A= sealed with silicone rubber bung; El = capped with 
polypropylene disc (diffusive ventilation) and 0= capped with fast forced (FF) ventilation 
apparatus (flow rate =5 cm3 min''). Cultures had been previously grown under continuous 
light at 80 pmol m-2 s' (PAR), 25°C and 21% RH. Each vessel contained only one plantlet. 
Each symbol represents a mean ± SE of 4-5 replicates. Photosynthetic rates were 
measured at 350 pl I" CO2. 
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Further observations on photosynthesis under the various ventilation systems are to be 

found in section 7.3.8.2. 

7.3.5.3. Chlorophyll and Carotenoid contents 

In the non-abscised leaves, plantlets of A squamosa had higher chlorophyll contents 

under forced ventilation than under diffusive ventilation but the differences were not very 

significant. In A. muricata, on the other hand, the differences were greater and 

significant, the chlorophyll b being 1.6x greater in the FF-treatment (Fig. 7.07). The 

nearest comparison found in the literature concerns Solarrum tuberosum: Cournec et al. 

(1991) showed that diffusive aeration of culture vessels increased chlorophyll contents 

above those in sealed vessels. 

Carotenoid contents of FF- and diffusively-ventilated A squamosa were similar 

whilst those of A. muricata were very different: under forced ventilation they 1.3X 

greater It should be mentioned that due to the lack of leaves in the sealed vessels (with 

and without exogenous ethylene) it was not possible to determined the chlorophyll and 

carotenoid contents. 

In the case ofA. muricata it is possible that the lower chlorophyll and carotenoid 

levels in the diffusive treatment are a reflection of the effects of the endogenous ethylene 

found in this treatment. 

7.3.6. Effects of different types of ventilation on the gas composition of culture 

vessel head-space 

In these experiments the same plants were subjected to the three ventilation systems and 

hence none of the differences observed are attributable to differences in plant 

morphology. 

7.3.6.1. Ethylene 

In sealed containers ethylene concentrations increased rapidly and reached peak levels 

(1.3 pl 1" in A. squamosa. and 1.15-1.17 µl 1" in A. muricala) within only 24 - 48 hours 

of culture For both the species the pattern of the changes in ethylene concentration 
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rate = 5.0 cm' min-) on chlorophyll (a & b) and carotenoid contents of (a) Annona 
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under diffusive ventilation was similar to that in the sealed vessels (Fig 7.08), but the 

peak concentration was only 0. I22 µl 1-1 for A. squamosa. and 0.113 µ1 1', for A. 

muricata. Under forced ventilation no ethylene accumulation was observed in the culture 

vessels, probably because any ethylene (or other toxic gases) produced by the plantlets 

was flushed out by the FF-ventilation. 

It is interesting that even in the sealed vessels ethylene concentrations reached an 

equilibrium: in this case net production also ceased rather abruptly and this strongly 

suggests the switching-in of a negative feed-back mechanism. It is also interesting that 

the potential for ethylene production by a separate batch of plantlets did not diminish 

significantly with time over 3 days (Fig. 7.08b): repeated re-exposure to air followed by 

re-sealing resulted in similar production rates and peak levels. However, although the 

ethylene production did not noticeably diminish in this time the experiment was 

concluded because of leaf-fall at ca. 80-90 hours. 

7.3.6.2. Carbon dioxide 

Results were similar for both A. squamosa and A. muricata (Fig. 7.09). 

The C02 concentration in the sealed vessels rose rapidly during any dark period 

and fell rapidly at the onset of any subsequent photoperiod. By the end of the dark 

period the CO2 was very high (approx. 1.5%), while in the light it reached approx. 40 

µ1 1` and, because gas-exchange with the outside atmosphere was totally restricted, this 

represents the CO2 compensation point for these plantlets. 

Under diffusive ventilation the CO2 concentration in the atmosphere of the 

culture vessels decreased during light period to approx. 88 pl 1'' which was 2.4X that of 

sealed vessels and above the CO2 compensation point (see Fig. 7.10). It should noted 

that the rate of photosynthesis at 88 pi 1-1 is significantly less than at atmospheric levels 

of C02; at 70 p mol M-2 s"' PAR, with atmospheric CO2 (350 µl I''), the net 

photosynthetic rate was 1.26 µmol M-2 s" (leaf area); with 88 pi 1" CO2. the rate was 

only 0.003 pmol m'2 s''. 
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Fig. 7.08. (a) Effects of different types of ventilation on ethylene accumulation in the 
culture head-space of cuttings of Annona squamosa L. (leaf area = 8.5 cm2; total fresh 
weight = 423 mg) and Annona muricata L. (leaf area = 7.9 cm2; total fresh weight = 382 mg); 
(b) ethylene accumulation in the culture head-space of Annona squamosa L. (leaf area = 8.2 
cm2; total fresh weight = 416 mg) in sealed vessels. Vessels were uncapped, flushed with 
sterile air and recapped approx. every 30 hours. 
45 days old cultures, previously grown in FF-ventilation in 60 cm3 vessels; cultures were 
grown under continuous light at 80 pmol m2 S -I (PAR), 25°C and 21% RH. Each vessel 
contained only one plantlet. Each symbol represents a mean t SE of 5 replicates. "_ 
sealed with silicone rubber bung;  = capped with polypropylene disc (diffusive 
ventilation) and I. = capped with fast forced (FF) ventilation apparatus (flow rate =5 cm3 
min''). 
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Fig. 7.09. Effects of different types of ventilation on CO2 concentrations in the culture 
head-space of cuttings of (a) Annona squamosa L. (leaf area = 8.5 cm2; total fresh 
weight = 423 mg) and (b) Annona muricata L. (leaf area = 7.9 cm2; total fresh weight = 
382 mg); 45 day old cultures were grown in 60 cm3 vessels; Cultures were grown under 
continuous light at 80 pmol m-2 s'' (PAR), 25°C and 21% RH. Each vessel contained only 
one plantlet. Each symbol represents a mean ± SE of 5 replicates. "= sealed with 
silicone rubber bung;  = capped with polypropylene disc (diffusive ventilation) and A 
= capped with fast forced (FF) ventilation apparatus (flow rate =5 cm3 min''). 
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With FF-ventilation in the light the C02 levels were sustained at even higher 

levels, 200 µl 1'', than in the diffusive system despite an appreciably higher rate of 

consumption (i. e. higher photosynthesis rate: Fig. 7.05 and 7.06). The difference reflects 

the impedance to gas exchange of the polypropylene membrane in the diffusive system. 

In the dark the CO2 levels in the diffusive system did not rise as steeply as in the 

sealed vessels but attained levels of 2800 pl 1'1, and again reflecting the impedance to gas 

exchange of the polypropylene membrane. However, the more effective gas-exchange 

accompanied by FF-forced ventilation prevented the CO2 concentrations from exceeding 

atmospheric levels (350 pl r'). Thus, night-time concentrations in the FF-system were 

0.13X and 0.023X those in the diffusive and sealed systems respectively. 

The findings described in this section and earlier suggest that in tightly sealed vessels low 

CO2 concentrations will severely limit the photosynthetic rate and this should 

considerably hinder growth; it is likely also that this would eventually cause the death of 

plantlets. However, the sugar source in the supporting medium is probably sufficient to 

keep the plantlets viable considerably longer than has been the case in these experiments. 

Ethylene on the other hand severely depressed growth and caused senescence, and it 

must be concluded that the effects of endogenous ethylene accumulation in sealed vessels 

is a more immediate cause of senescence and death. Forced ventilation thus brings at 

least two major benefits: it prevents the accumulation of damaging quantities of ethylene 

and at the same time increases the supply of CO2 which enhances photosynthetic rates 

(Figs 7.05 and 7.06) and stimulates growth (Tables 7.06 and 7.07). This will have 

positive feed-back properties and accentuate the benefits accruing from FF-ventilation. It 

is possible also that FF-ventilation may have a third advantage: that of preventing the 

build up of physiologically depressing levels of CO2 during dark periods (ßuddendorf- 

Joosten and Woltering 1994). 
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7.4. FINAL COMMENTS 

Currently Annona spp. are propagated through grafting and budding, since for almost all 

of the species of Annona the clonal propagation by cuttings has not been very successful 

(Rasai, George and Kantharajah 1995). However, for rapid propagation and for the 

elimination of viral and other disease infections of horticultural species, tissue culture is 

an important tool (Frey 1981). Therefore, the micropropagation technique demonstrated 

in this chapter for Annona spp. may contribute towards their large scale propagation. 

However, further investigations are necessary to develop and improve the rooting 

systems of cuttings of both Annona squannosa and A. muricata. 

In this study high rates of ethylene-induced leaf abscission were observed in both 

Annona squamosa and A. muricata plantlets/cuttings grown under conventional tissue 

culture systems (capped with polypropylene or sealed condition). Thus it was very 

difficult for the cuttings to become established. Similar results have also been found by 

Lemos and Blake(1994)and Armstrong et al. (1996) It was also revealed that A. muricata 

is more sensitive to ethylene, and higher rates of leaf abscission were recorded in this 

species. However, forced ventilation is an effective method for controlling leaf and 

flower-bud abscission and yield was also enhanced. Therefore, forced ventilation seems 

to be necessary for the effective flushing out of the ethylene from the culture vessels and 

for the establishment of Annona culture. 
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CHAPTER - VIII 

EVALUATION OF CLOSED, DIFFUSIVE AND FORCED VENTILATION SYSTEMS 
ON GROWTH AND TUBERIZATION OF POTATO 

8.1. INTRODUCTION 

The propagation of potato in vitro by the serial culture of axillary shoots on separated 

nodes has been reported by a number of workers, and is now becoming established as an 

effective means of rapidly multiplying new or existing cultivars in disease-free conditions 

(Hussey and Stacey 1984). However, a major drawback to the procedure is that the 

potato plant is highly sensitive to ethylene, and ethylene accumulation in vitro strongly 

inhibits the growth and development of shoots. It is known that growth of potato 

plantlets can be distorted by concentrations of ethylene of 0.1 µ1 C` or even less (Jackson 

et al 1987). Hussey and Stacey (1981) reported that in tightly closed culture vessels 

potato shoots become stoloniferous and leaves become small. Jackson et al. (1991) 

found that shoot height of Solanum ruberosum is reduced by 64% after 14 days of 

culture in tightly sealed vessels. They also concluded that accumulated ethylene is 

responsible for these effects. To remove ethylene from potato culture vessels, Jackson et 

al (1987) used mercuric perchlorate and thus increased shoot height. In this chapter, it 

was observed that the growth and development of root / shoot systems of potato 

(plantlets) was increased significantly by using AgNO3 in the culture medium. 

In recent years the in vitro tuberization phenomenon has become important for 

the rapid propagation of disease-free potatoes (Levy, Seabrook and Coleman 1993) and 

this has attracted the attention of a number of other researchers e. g. Akita and Takayama 

(1994) and Garner and Blake (1989). Miniature tubers (microtubers) formed on potato 

grown in vitro are useful also because they are very convenient for the maintenance and 

handling of disease-free material: microtubers are easily stored, transferred and 

distributed (Akita and Takayama 1994, Levy, Seabrook and Coleman 1993). 

This chapter describes an in vitro tuberization technique, and an improvement in 

the culture conditions by the introduction of forced ventilation into the culture vessels 



using the through-flow ventilation apparatus described in Chapter II and III. The chapter 

also describes investigations into the growth of this ethylene-sensitive and commercially 

important species with different types of ventilation and, in some cases, with and without 

the ethylene inhibitor silver nitrate or the ethylene precursor ACC. The aim of the 

experiments was to find ways of improving the culture conditions. 
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8.2. MATERIALS AND METHODS 

8.2.1. Establishment of plantlets from tubers 

Tubers of Solanum tuberosum L. `cara' were washed clean with tap-water, cut into small 

pieces, approx. 15 mm3, each containing a sprout, and were placed in paper bags inside 

an incubator at 210C to allow rapid development of white etiolated sprouts which 

provided a source for the initial explants. These sprouts were sterilized with 10% v/v 

sodium hypochlorite solution, and cut into 1 cm nodal sections each containing a single 

axillary bud. For initial establishment and routine maintenance of cultures, these sections 

were inoculated on MS medium without any hormone. The cultures were kept at 230C 

with a light flux of 100 µM01 m'2 s'1 (PAR) and a 16 h photoperiod Under these 

conditions a new shoot would develop from each node and at the four to five node stage 

these in turn were segmented into nodal sections to provide the experimental explant 

material. 

Unless otherwise stated, establishment conditions of culture, culture vessels size 

and volume, media preparation, methods of measuring ethylene and CO2 concentration 

etc., were as described in Chapter IV. The basal medium used was MS (Murashige and 

Skoog 1962). 

8.2.2. Experiments 

8.2.2.1. Effects of the ethylene inhibitor (AgNO3) on the growth of nodal stern 

cuttings 

Single-node stem cuttings (F. W = ca. 40 mg and with one leaf) from potato plantlets 

grown in vitro were used as experimental material. The explants were subcultured on to 

MS medium containing silver at either 0.59,2.96 or 5.9 pmol l (AgNO3 = 0.1,0.5 and 

1.0 mg 1''). At least five explants were inoculated for each treatment (one explant per 

vessel). The vessels were tightly sealed with silicone rubber bungs. Each vessel contained 

10 ml of medium and 45 cm3 of head-space. The cultures were incubated for 14 days 

under the same conditions described for the establishment of cultures. Growth 

measurements were performed after 14 days. These included total fresh weights of the 
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plants, leaf number and fresh weight, stem fresh weight and length and root number, 

fresh weight and maximum length. 

8.2.2.2. Effects of closed, diffusive and forced ventilation systems on growth and 

development with and without silver in the culture medium 

Explants (nodal segments: mean fresh weights ca. 40 mg) were subcultured into glass 

vessels (as above) with the MS medium (10 ml) lacking any hormone, and six different 

treatments were given. These were: 

(a) AgNO3 was added in the medium to a concentration of 2.96 µmol 1-' (0 5 

mgl"') and the vessels were sealed with silicone rubber bungs. 

(b) No AgNO3 was added and the vessels were sealed with silicone rubber 

bungs. 

(c) No AgNO3 was added and the vessels were capped with polypropylene 

membranes. 

(d) AgNO3 was added to a concentration of 2.96 pmol 1'' and the vessels were 

capped with polypropylene membranes. 

(e) No AgNO3 was added and each vessel was fitted with a fast flow (FF) 

convective flow unit (flow rate ca. 3.5 cm3 miri 1, see Chapter II). 

(f) No AgNO3 was added and each vessel was fitted with a slow flow (SF) 

convective flow unit (flow rate ca. 1.0 cm3 min'). 

Five vessels were prepared for each treatment (one explant per vessel) and the cultures 

were incubated for 18 days under continuous light in the same conditions described for 

the establishment of cultures. Harvesting was performed on the 18th day and growth 

measurements were as in Section 8.2.2. 
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8.2.2.3. Effects of ventilation types and the ethylene inhibitor (AgNO3) and the 

ethylene precursor (ACC) on the growth of nodal stem cuttings. 

Nodal stem cuttings were inoculated into the culture vessels as described in Section 

8.2.2, and grown under the different treatments described below, where, in these 

experiments the FF-system delivered a flow rate of ca. 5 cm3 min': 

(a) vessels were sealed with silicone rubber bungs, 

(b) vessels sealed with silicone rubber bungs and AgNO3 in the medium at 2.96 

µmol 1-', 

(c) sealed with silicone rubber bung and ACC in the medium at 2.0 µmol F', 

(d) vessels capped with polypropylene membrane, 

(e) vessels capped with polypropylene membrane and AgNO3 in the medium at 

2.96 gmol F', 

(f) vessels capped with polypropylene membrane and ACC in the medium at 2.0 

pmol i4, 

(g) fitted with FF-ventilation apparatus, 

(h) fitted with FF-ventilation apparatus and AgNO3 in the medium at 2.96 pmol 1-1, 

(i) fitted with FF-ventilation apparatus and ACC in the medium at 2.0 pmol I". 

Carbon dioxide, oxygen, ethylene and relative humidities were measured at certain 

intervals over the first 21 days of the experiment. In contrast to the previous experiment 

the plants were grown under continuous illumination as for the tocacco and cauliflower 

described in Chapters IV and V. Plants were harvested after 25 days. Growth 

measurements included leaf number, area and fresh weight, stem fresh weight and length, 

root number and maximum length and volume of callus. 

8.2.2.4. Tuberization in vitro 

To ascertain the best concentrations of sucrose and BAP for tunerization, explants 

(nodal segments) were inoculated in 60 cm3 culture vessels on MS medium 

supplemented with BAP (0.0 - 2.0 mg 1-') and different sucrose concentrations (4%, 8%, 
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and 12%). The cultures were incubated under growth room conditions with a 16h 

photoperiod. 

Having determined the optimum concentrations of sucrose and BAP for 

tuberization the different ventilation treatments were tested. The cultures were grown on 

MS medium supplemented with BAP at 1.0 mg 1"1 and 8% sucrose, for optimum growth, 

and replicates (five per treatment) were cultured for 6-8 weeks, each vessel fitted with 

either (a) a silicone rubber bung (b) a polypropylene membrane (c) a FF-ventilation 

apparatus (5.0 cm3 min'`) and (d) a SF-ventilation apparatus (1.0 cm3 min'). Cultures 

were inoculated under growth room conditions with a 16h photoperiod.. Plants were 

harvested after 8 weeks; growth measurements included fresh weights and numbers of 

tubers. 
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8.3. RESULTS AND DISCUSSION 

8.3.1. Effects of the ethylene inhibitor (AgNO_3) under sealed conditions 

Silver nitrate at 0.59 and 2.96 µmol I' in the medium had a significant stimulatory effect 

on the growth and development of the potato shoots per . s: e (Table 8.01, Plate 8.01) the 

increases in fresh weights in these treatments were substantially greater than those in the 

control (Table 8.01). On the other hand 5.9 µM silver seemed to have marginally 

depressed shoot growth. Again, the best root systems were developed in the 0.59 and 

2.96 pmol (-'treatments: fresh weights were ca. 2-3 times greater than the control ("Table 

8.01). Also, root growth was depressed by 5.9 pM silver 

TABLE 8.01. Effects of ethylene inhibitor (AgNO3) on the growth and development of 
potato (Solanum tuberosum L. ) stem cuttings after 14 days in sealed vessels; 60 cm3 
culture vessels were sealed with silicone rubber bungs. Each value represents a mean ± 
SE of 5 replicates. 

Characteristics Control . AgNO, AgNO3 AgNO3 
(0.59 }tM) (2.96 01) (5.9 µI11) 

Leaves 

Number 4.0±1.0 6.0±1.0 16 r! 1 .' 
6 5±0.6 

Fresh weight (nag) 0.96±0.1 2 1±0 5 . 10+1 12 1 6±0 3 

Shoots 

Length (mm) 14.4±5.0 47 2±7 4 9 6+_0 3 

*Fresh weight (mg) 5.9±1.9 15 9±6 3 18 0+2 3 3 6±0 2 

Roots 

Length (mm) 21.4±5.2 35 2±4 9 ßi9 3+. 6 9 16 2! -0 8 

Number 3.3±0.9 6 3±1.2 7 3±0 6 3 3±0 6 

Fresh eight (nig) 2.8 ±0.2 7 6±0 7 9 5±2 8 2 1±1 4 

*Total Fresh weight 9.8±2.8 29 6±11 5 'i1 /+6 6 (3 .! 03 

* incrcased fresh wcight; r Mean maximum root Icm, Ih ( 10 roots) 

The clearest difference to emerge between the () 5o) and 2% Eunol I' treatments was in 

the numbers of leaves produced: leaf numbers in the 2 90 Itniul I' treatment were more 

than double those at the lower of these concentrations Leaf'area was also greatest in this 

treatment compared with the others (data not shown) "fhc highest shoot Icii th was 
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PLATE : 8.01 

Potato (Solanum luberosum L. ) plantlets obtained from stem cuttings and 
cultured in MS medium supplemented with different concentrations of the 
ethylene inhibitor (AgNO3); 60 cm3 culture vessels were sealed with silicone 
rubber bungs. Note stimulation of growth by AgNO3 at 0.1 mgl'1(0.59 µM) and 
0.5 mgl''(2.96 µM), but slight inhibition at 1,0 mgl-' (5.9 µM) (X0.8). 





recorded in the 0.59 µmol 1-' AgNO3 treatments but here the shoots were noticeably 

narrower than in the 2.96 µmo[ -'treatment. 

After studying all the parameters of growth and development it was concluded 

that the potato plantlets showed their best performance at a AgNO3 concentration of 

2.96µmol 1-' (0.5 mg 1-'). At the highest silver concentration growth was generally 

depressed below that of the control (Plate 8.01). 

By using mercuric perchlorate to remove ethylene from the potato culture vessel Jackson 

et al (1987) were able to improve shoot height (72 mm compared to 62 mm in the 

control). In the above experiment, by using AgNO3 (0.59 µmol 1'' = 0.1 mgl') shoot 

height was 2-3 times greater than the untreated control. Jackson el a! (1987) also 

pointed out that when potato shoots are grown in tightly sealed culture vessels, stems 

become swollen, leaves become small and root systems are very poor. Similarly, in the 

present experiment in the control, shoots were short, and stems became very thick with 

tiny leaves. These are said to be typical of the effects of ethylene. 

8.3.2. Effects of closed, diffusive and forced ventilation systems and the ethylene 

inhibitor, silver nitrate, on growth and development 

In this investigation, after studying all the parameters of growth and development within 

the various treatments, it is evident that explants tended to grow better with forced- 

ventilation (Table 8.02; Plate 8.02). After 18 days of culture, the best leaf, stem and root 

growth were observed in explants grown with the more rapid convective ventilation (3 5 

cm3 min-' flow rate); the values of most parameters were higher even than those with 

diffusive ventilation plus silver. In a number of respects the effects of SF-forced 

ventilation were also superior to those of diffusive-flow e. g. in terms of root numbers, 

leaf numbers and fresh weight, and stem lengths. However, with the addition of silver in 

the diffusive flow treatment, shoot fresh weights were similar to those of the SF- 

treatment and root lengths and fresh weights were greater. 
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FLUTE: 8.02 

The influence of different methods of capping of culture tubes on shoot culture' 
of potato (Solarrum luberosum L. ) plantlets (18 days old); cultures were kept at 
23°C with a light flux of 100 Etmol m'2 s"' (PAR) and a 16 h photoperiod (X0.7). 

The treatments are : 
(A) AgN03 added (2.96 tmol I" : 0.5 mgI-I) and the vessels were sealed with 
silicone rubber bung. 
(ß) No AgNO3 added and the vessels were sealed with silicone rubber bungs. 
(C) No AgNOj added and the vessels were capped with polypropylene 
membrane. 
(D) AgNO3 added (2.96 µmol I" , 0.5 mgl-t) and the vessels capped with 
polypropylene membrane. 
(E) No AgN03 added and each vessel was fitted with a fast flow (FF) 
convective flow unit (flow rate ca. 3.5 cm-1 min-1). 
(F) No AgN03 added and each vessel was fitted with a slow flow (SF) 
convective flow apparatus (flow rate ca. 1.0 cm; min-I) 

Note poor growth in sealed condition and with diffusive ventilation, but in each 
case ASNO3 stimulated growth. However, in the absence of AgNO3 both fast 
and slow flow ventilations stimulated the best growth. 





TABLE 8.02. Effects of closed, diffusive and forced ventilation systems on growth and 
development of in vitro-grown potato (Solanum tuberosurn L. ) plantlets (18 days old); 
cultures were kept at 23°C with a light flux of 100 mmol m-2 s-' (PAR) and a 16 h 
photoperiod. Each value represents a mean ± SE of 5 replicates. 

r111. Sealed Scaled + 
AgNO3 

(2.96 µM) 

Diffusive 
ventilation 

Diffusive 

ventilation 
+ AgNO3 
(2.96 pM) 

Forced 

ventilation 
(flow mite = 

1.0 Cm3min") 

Forced 

ventilation 
(t1olº rate = 

3. S cm'min-º) 

Leaves 
Number 2.7±0.6 6 0±1.0 5.6±0 6 6 3±0 6 9 0±1.0 10 3±2 1 

FW (mg) 0.6±0.01 5.8±0 3 6 5+04 6 8±0 2 12 1±1.4 17 2±1 1 

Shoots 
Length (nun) 30.7±1.5 32 3±0 1 37.7±7.0 51 6±3 2 58.5±3.8 73 8±6 1 

*FW (mg) 27.5±0.4 34.1±0.4 37 5±0 5 40.9±0 2 39.9±6.4 53 7±9.3 

Roots 
(Length (mm) 35.4±3.5 33.7±1 9 26.6±4.6 42 9±5.9 30 2±7 5 61 3±11 6 

Number 3.7±0.6 5.0±1.0 4.3±0.9 4.7±0.6 8.0±2.7 9 0±1 0 

FW (nag) 7.6±0.5 10 4±1 2 7.5±0.5 16.3±0.2 10.0±1.3 17.3±0 7 

...,,.,,.. 1,,,, .. w.. VV/45ui, ivi/aII Iua. XIiuuui I JUL ILubIII kIv It W LDJ. 

The suppression of ethylene activity by silver was also very evident elsewhere in the 

sealed condition the addition of silver led to a doubling o1' the leaf' number, while leaf 

fresh weight increased six-fold and the fresh weight of the roots also increased. In the 

case of diffusive ventilation the addition of silver increased root and shoot lengths and 

approximately doubled the root fresh weight, other parameters showed a tendency to 

increase but in terms of significance only marginally 

When plantlets were grown in the tightly scaled condition, shoots were short (exp. 

3I mm in length) swollen and the leaves small with it tendency to be fbldcd. Stem apices 

became hooked in shape, and root systems were stunted. Some shoots became brown at 

the tips. These results are consistent with earlier observations of' Jackson eq at (10)87) 

and I lussey and Stacey (1984) and associated with the eflccts of' ethylene In contrast, 

plantlets grown under forced ventilation had the best developed shoot and tool svstcnts, 

and morphologically the plants were normal with normal steer apices (Plate 8 02) 
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Jackson et al (1991) acknowledged that the problem of ethylene accumulation can be 

lessened by the use of larger culture vessels. However, the system described here would 

enable the use of smaller vessels. A further possible advantage of forced ventilation is 

that the aerating gases are humidified, and this should help to reduce losses of water 

vapour from both plants and medium. 

It is likely that with longer-term growth under micropropagation the differences 

found in this experiment would become even more accentuated. for example it is 

probable that CO2 levels will have been nearer to the compensation point in the diffusive 

flow system than in the forced flow systems (see Chapters IV and V). Consequently 

photosynthetic rates in the forced-flow systems will have been greater and the positive 

feed-back effects of this might well be cumulative beyond the 18-day growth period 

adopted here. 

8.3.3. Effects of ventilation types and the ethylene inhibitor (AgNO3) and the 

ethylene precursor (ACC) on the growth of nodal stem cuttings. 

8.3.3.1. Growth 

As in the previous experiment the potato responded very favourably to forced ventilation 

and the differences between treatments and the effects of silver additions also were very 

similar. In the present experiment, however, there were also ACC additions to some 

treatments and it is interesting to note that despite a stimulation of ethylene production 

(see Fig. 8.01 and below) the ACC did not, within ventilation treatments, noticeably 

reduce further the growth of leaves or shoots. On the other hand ACC additions very 

much reduced root growth; this may have been because the roots were the major site of 

ethylene production and, because the roots were embedded in agar, its escape would be 

hindered. Thus, endogenous concentrations might have reached very inhibitory levels. 

Silver nitrate alleviated these effects (Table 8.03). 
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The higher shoot fresh weights found in the additive-free sealed controls and in the 

sealed + ACC systems compared with their diffusive counterparts may be accounted t')r 

by ethylene-induced swelling of the shoots. 

Table 8.03. Effects of different types of ventilation on growth and development of in vitro- 
grown potato (Solanum tuberosum L. ) stem cuttings (25 days old); cultures were kept at 25°C 
with a light flux of 150 µmol m-2 s' (PAR) and a 24 h photoperiod. 

ventilat 

Control sealed 

f 

Stein 

I 

Root 

II 
Callus 

amber Area F. W Length Length Number Vol 

(ctn') (mg) (111111) iTim)) (cm'} 

0.9+0.2 4 6+0 8 0.6+0.1 138.1+5.3 31.3+4.3 1 20 7+3 1 112 8+3 411 9+0 3 

Ditlüsivc 7.5+1.3 5,3+05 3.0+0.3 27.8+4.1 36.3+4.2 55 1 +4 1 10 5+3 90 6+0 1 

ventilation 

Forced ventilation 19.5+1.2 82+09 4 7+1.1 42.5+4.4 41 8+5.1 95.2+9.2 12 3+3 5- 
( Fast) 

ACC Sealed 1 1.2+0.3 4.9+0.8 0.7±0.1 140.2+4.4 32.4+5 21 11.4±2.1 117 3±5 512 7+0 2 

(2.0 FiM) Diftitsivc 5.3+1.2 5.1+0.3 2.1+0.5 25.8+3.5 29.7+31 13.1+2.2 139+20 09+03 

ventilation 

Forced s entilation 20.0+1.8 79+08 4.8+14 4 45.5+_3.3 40.9+20 101 0+10 125+33 - 
(Fast) 

- AgN03 Sealed 1 6.1+11 50+0.5 2.9+0.4121.2±3.1 32.1+41 188.9+81 17.6+28 1 

(2.95 )LM) 0111üsilc 10.8+4.2 6.3±0.6 4.4+0 6 35.5+4.6 34 6+3 7 99 9+10 7 7+9 9 

ventilation 

Forced ventilation 21.7+8.5 6.9+0.4 5.0+0.9 46.5+4.1 41 5+3.8 1109+15 12 2+4 7 
(Fast) 

* callus fresh weight were not included; 'Mean maximum root length (Iu roots) 
*fast floN% ventilation rate = 3.5 cm` min' , Irr scaled and diffusive \cntih iron vessels were c; ippcd mtIi 
silicone rubber bungs and polypropylene discs respectively 
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A major effect noted in this experiment was the development of callus in the sealed and 

diffusive treatments, with or without the addition of ACC (Plate 8.03); however, ACC 

appeared to increase the quantity of callus produced. Silver prevented callus induction, 

as did forced-flow ventilation. It should be noted that, where (as in this case) the culture 

medium has not been designed to stimulate callus development, its production is 

commonly associated with vitrification (Paque and Boxus, 1987; Ziv, 1991b). None of 

the plants here had brittle leaves but they did develop hooked shoot tips which is another 

symptom associated with vitrification (Jackson et al. 1987). Again both silver and 

forced-flow ventilation prevented the formation of hooked tips. 

8.3.3.2. Head-space atmosphere 

Ethylene: 

In sealed vessels, the addition of ACC in the medium resulted in very high concentrations 

of ethylene: after only 12 days 1.45 µl 1.1 had accumulated and this was 2.3X that of the 

sealed control (Fig. 8.01). Subsequently the ethylene levels in the ACC treatment fell 

back while in the sealed controls they continued to rise so that by 21 days the differences 

between the two were much smaller than before. In the sealed silver treatment the 

ethylene concentration was higher than that of the sealed control; it is presumed that this 

was a function of the much larger plant size in the silver treatment. Diffusive ventilation 

resulted in much lower ethylene accumulation (0.032 pl 1-' in control and 0.086 µl 1' in 

the silver treatment), although the ACC addition produced significantly higher levels 

(0.41 pl 1-'). Unfortunately due to the wide variability it is not possible to deduce from 

the effects of silver addition whether any of these concentrations in the diffusive systems 

were physiologically active. Nevertheless it is clear that the polypropylene membranes 

helped reduce ethylene accumulation markedly. On the other hand, forced ventilation 

was even more effective at minimising ethylene accumulation and the gas was virtually 

undetectable even in the ACC treatments. 
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PLATE : 8.03 

The influence of different methods of capping of culture tubes on shoots 
culture of potato (Solanum tuberosum L. ) plantlets (25 days old); 
cultures were kept at 25°C with a light flux of 150 pmol m-2 s"' (PAR) 
and a 24 h photoperiod (X1.3). 

(A) vessels were sealed with silicone rubber bungs. 
(B) sealed with silicone rubber bungs and 2.0 p. M ACC in the medium. 
(C) vessels sealed with silicone rubber bungs and 2.96 µM AgNO3 in the 

medium. 
(D) vessels capped with polypropylene membranes. 
(E) vessels capped with polypropylene membranes and 2.0 gM ACC in the 

medium. 
(F) vessels capped with polypropylene membranes and 2.96 gM AgNO3 in 

the medium. 
(G) fitted with FF-ventilation apparatus. 
(H) fitted with FF-ventilation apparatus and 2.0 gM ACC in the medium. 
(I) fitted with FF-ventilation apparatus and 2.96 µM AgNO3 in the medium. 

Note that (1) in absence of additives, A, D, G, growth and leaf expansion 
improved greatly, but callus growth decreased with increased 
ventilation; callus growth is a sign of vitrification; (2) in sealed and 
diffusive treatments B, E, ACC stimulated growth of callus and root 
numbers and in the latter reduced leaf area, (3) AgNO3 stimulated 
growth in sealed and diffusive treatments C, F; and (4) with forced 
ventilation growth was best in all treatments; neither ACC nor AgNO3 
had any large effects and there was no callus growth; (5) in the sealed 
treatment only, ± ACC the shoot tips were hooked (a sign of 
vitrification), but AgNO3 produced normal apical growth. 
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Fig. 8.01. Effects of different types of ventilation and ACC (2 NM) and AgNO3 (2.96 NM) 
on ethylene concentrations in the head-space above potato cultures In 60 cm3 vessels; 
cultures were grown under continuous light at 150 pmol m'2 s'' (PAR), 25°C and 31% 
RH. Each symbol represents a mean ± SE of 5 replicates. Sealed = sealed with silicone 
rubber bung; diff. = diffusive ventilation; forced ventilation rate =5 cm3 min 1. 
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Oxygen: 

In terms of the temporal patterns in head-space oxygen regime, the results in Fig. 8.02 

reveal very distinct differences between forced ventilation and the other two ventilating 

systems. Thus, with each of the forced-flow treatments concentrations remained constant 

and close to atmospheric for the whole period, whereas with diffusive and sealed 

ventilation they declined at varying rates from a little above atmospheric. The initial 

concentrations presumably reflected some photosynthetic enhancement of oxygen within 

the head-space. Also, within the diffusive and sealed treatments, and presumably due to 

their effects on the plants, silver nitrate or ACC additions can be seen to have influenced 

the rate of decline in the oxygen levels. 

In the sealed-control and -ACC treatments, the oxygen concentrations fell substantially 

during the experiment: after 21 days of culture there were respectively only 14.8% and 

11.6% oxygen in the head-spaces compared to ca. 20% in the equivalent forced 

ventilation treatments (Fig. 8.02). With AgNO3 in the culture medium the oxygen 

concentration in the head-space of the sealed vessels was very much higher than that of 

ACC or control treatments and only a little lower than treatments having forced 

ventilation. 

The diffusively ventilated treatments showed a similar pattern to their sealed 

counterparts but the differences were less. Thus, in the ACC treatment the oxygen 

concentration had dropped to approx. 16% over 21 days, while in the control and silver 

treatments the values were ca. 17.5% and 19.5% respectively. 

In view of the data obtained with cauliflower (Section 4.3.5.3), and the growth 

parameters recorded in Table 8.03 and Plate 8.03, it seems likely that the gradual 

depression in the oxygen concentrations in the sealed and diffusive treatments lacking 

silver will have been due to (a) increased respiratory demands associated with the 

production of varying quantities of non-photosynthetic callus, and the development of 

the root systems, and possibly (b) to some degree of senescence affecting the 

photosynthetic tissues. 
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Fig. 8.02. Effects of different types of ventilation and ACC (2 NM) and AgNO3 (2.96 NM) 
on oxygen concentrations in the head-space above potato cultures in 60 cm3 vessels; 
cultures were grown under continuous light at 150 Nmol m'2 s'' (PAR), 25°C and 31% 
RH. Each symbol represents a mean # SE of 5 replicates. Seated = sealed with silicone 
rubber bung; diff. = diffusive ventilation; forced ventilation rate =5 cm3 min''. 
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These results are consistent with the findings of some other authors. In tightly sealed 

vessels with Ficus plantlets, oxygen concentrations of approximately 10% were observed 

(Jackson et al., 1991). In a sealed petri-dish with rice callus the oxygen concentration 

was 2 to 5% after 24 days of culture (Adkins, Shiraishi and McComb 1990). 

Carbon dioxide: 

On a scale of zero to 4% (Fig. 8.03a) changes in carbon dioxide concentration are barely 

noticeable until day 14 by which time the level in the sealed control plus ACC had 

reached 0.9%; by day 21 the concentration was nearly 4%. The effect here and in the 

sealed control and diffusive treatments with and without ACC are probably attributable 

to the respiratory activity of the callus which developed. Thus, the balance between 

photosynthesis and respiration was moved in favour of respiratory CO2 output. 

In the other treatments: forced ventilation controls and forced-, diffusive- and 

sealed-ventilation with silver nitrate addition, callus did not form and CO2 levels 

remained relatively constant or declined with time (Fig. 8.03b) with the decline being 

greatest where ventilation was poorest. Thus, in the sealed controls + AgNO3, CO2 

levels were at or close to the compensation point (45 gl 1") by 21 days. Diffusive 

ventilation improved this position and after 21 days there was still a C02 concentration 

of 200 pl I-' in silver treatment. In all the forced-ventilation treatments the CO2 

concentrations remained above 300 pl 1" despite the greater CO2 demand associated with 

the greater productivity. 

Again, therefore, the results confirm the benefits of forced ventilation. 

8.3.4. Development of an in vitro tuberization technique for potato 

Shoots were grown in MS medium with different hormonal treatments to develop an 

ideal tuberization medium. In the control (without any hormone) no tuberization was 

observed but shoot systems were well developed. When a low concentration of BAP (0,5 

mg l) was present in the medium, the percentage of tuberization was very low. The best 

tuberization was observed in medium containing 1.0 mg C" BAP (Table 8.04; Plate 8.04). 
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PLATE : 8.04 

above : (A) In vitro tuberization of potato (Solanum tuberosum L. ) obtained 
from shoot cutting and cultured in MS + BAP (1.0 mgl"' + 8% 
sucrose (after 6 weeks of culture; X3). 

below : In vitro grown microtubers of potato (Solanum tuberosum L. ) obtained 
from shoot cutting cultured in MS medium supplimented with : 
(B) BAP 1.0 mgl" + 8% sucrose; (C) BAP 1.0 mgr-' + 4% sucrose 
(after 8 weeks of culture; X2). 

Plants grown in all case with diffusive ventilation. 



A 



When the concentration of BAN was greater than 15 nag I' the growth of' roots and 

shoots was inhibited, and at very high concentration (-2 5 mgl-) no tuberization was 

observed. 

Tuberization was promoted by increasing sucrose concentration in the medium 

(Table 8.04), and the best response (4.3 per explant) was observed at a concentration of 

eight per cent. Higher sucrose concentrations (12%) delayed the onset of tuberization 

and slightly reduced the size and number of the tubers. Normally one tuber was produced 

at each node from a `rhizome' offshoot (Plate 8.04), and often one formed also at the tip 

but again this was probably nodal in origin. In some plantlets the central axillary shoot 

first grew upright and then bent downwards. Tubers formed at the apices of some of 

these shoots (not shown). 

TABLE 8.04. Effects of BAP and sucrose on tuber number per replicate after 8 weeks; 
the culture vessels were capped with polypropylene membrane. Each value represents a 
mean ± SE of 5 replicates. 

BAP (mgl a) 

4% 

Sucrose 

8% 12'Vo 

No tubcrization No tubcrization No tubcntalion 
0.0 Well developed Well developed WelI developed 

shoot system shoot System shoo( system 

0.5 1.1±0.1 1.6±0 1 0.9±0.1 

1.0 3.7±0.4 4.3±0.3 3 1±0 2 

2.0 2.1±0.2 2.2±0.2 2.0±0 2 

2.5 0.5±0.0 1 0±0.2 0 7±0 1 

In the present investigation, a forced ventilation of natural gases in the culture vessel was 

applied to try to improve the tuberization technique The results indicate that while 

forced ventilation did not significantly increase the number of tubers, it markedly 

improved the fresh weight of the tubers which was almost double when conmpared with 

that of diffusive one (Fig. 8.04) In the ditlüsive treatment some of the shoots became 
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swollen in places after four weeks of culture (Plate 8.05), However, during the 

experiment in sealed condition no tuberization occurred. 

The findings suggest that forced ventilation does improve tuberization. This may be due 

to increase supply of CO2 during the light period and/or to the removal of accumulated 

ethylene from the culture vessel head-space. Although Jackson et al (1987) found no 

effect of ethylene on the induction of tuberization, in contrast, Hussey and Stacey (1984) 

reported that addition of the ethylene inhibitor 2-chloroethyl-trimethylammonium 

chloride (CCC) to the medium markedly increased tuberization in potato. They also 

reported that the presence of ethylene tended to make the shoots become stoloniferous 

(Hussey and Stacey 1981). Mingo-Castel, Smith and Kumamoto 1976 also reported that 

ethylene inhibits tuberization. Moreover, they showed that CO2 promotes tuberization. In 

the present investigation no specific attempt was made to find whether ethylene had 

affected tuberization. However, since the numbers of tubers were not influenced by the 

diffusive ventilation it seems likely that the beneficial affects of forced ventilation will 

have been through the supply the CO2 necessary for tuber growth rather than the 

removal of ethylene. The poor tuber initiation in sealed vessels might have been direct, 

i. e. due to ethylene inhibition of tuber formation or indirect, i. e. growth inhibition of the 

plants may have delayed their attainment of tuber-producing physiological age. 
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PLATE : 8.05 

Potato stem grown-in vitro under diffusive ventilation (capped with a 
polypropylene disc) in a 60 ml culture vessel and cultured in MS + BAP (1.0 
mgl"1 + 8% sucrose; note shoots has developed a localised swelling after 4 
weeks of culture (X4). 





8.4. FINAL COMMENTS 

The results have shown that the growth of potato stem cuttings can be substantially 

improved by means of forced ventilation of the culture vessels, and in general the best 

growth was achieved with the higher flow. Ethylene removal is clearly an important 

contributory factor in the better growth found with diffusive and forced-flow ventilation, 

but additionally CO2 supply clearly contributes to the even better growth found with 

forced-flow ventilation. 

Similarly tuberization was improved by forced ventilation with tuber size being 

the major beneficiary. Again, it is difficult to separate the contributions made by CO2 

enhancement on the one hand and ethylene removal on the other. However, the results 

have shown a positive contribution of CO2 on shoot growth over and above that of 

ethylene removal (Table 8.02). Consequently, it seems very likely that the greater yield 

with forced ventilation will have owed much to the greater photosynthate production of 

the larger plants. 

Finally it should be noted that in potato, generally, tuberization is favoured by 

short days and low temperature. In these experiments a 16-hour light period was 

provided and the temperature was 23°C. It is anticipated that the tuberization might be 

further improved by providing the shorter light period (e. g. 6-8h rather than 16h) and 

cooler temperatures: 15-180C. 
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CHAPTER-IX 

FINAL DISCUSSION 

During the last decade there has been an increasing awareness that plant tissue cultures 

can benefit from improvements in ventilation (General Introduction). With conventional 

plant tissue culture capping systems the exchange of gases between tissues and the outer 

air can become often seriously limiting to the growth and development of callus and 

plantlets. This inability to grow well in culture has been said to have greatly hampered 

tissue culture research. Thus, establishing a method for effectively controlling the 

gaseous environment in the culture vessel should contribute towards high production 

efficiency and improve product quality, thereby considerably expanding the application 

of plant tissue culture techniques. 

The work presented in this thesis has shown that obvious improvements in the 

rate of growth and quality of plant product can be produced by means of a simple 

method of increasing gas exchange between the culture vessel and the external 

atmosphere. The apparatus described and investigated here has some definite advantages 

over conventional systems of forced ventilation, being based upon humidity-induced 

diffusion it requires no complex and expensive mechanical parts e. g. pumps/cylinders, 

metering devices etc., little maintenance and no pipework between vessels. It requires no 

artificial energy supply and therefore could be useful under conditions where such a 

supply is difficult to obtain and thus may be particularly valuable in developing countries. 

Also, since the system is designed for ventilating individual vessels the risk of cross 

contamination is minimised. 

The prototype (System I) had certain disadvantages (described in Chapter II): it 

was cumbersome, had a relatively slow flow rate and needed daily attention. In the new 

apparatus (System II) such disadvantages have been largely overcome by combining the 

inflow and outflow turrets in one unit, by the use of the highly water absorbent ̀ Oasis' 

material, and by a large reservoir, refilled only every 5 to 7 days. Also, in the new system 



there is virtually no danger of wetting the inflow membrane and flow rates have been 

increased by 3 to 5-fold by using larger sized membranes and by maintaining the 

evaporating surface very close to the membrane. With an inflow membrane diameter of 

50 mm a flow of about 5.0 cm3 rain-' can be achieved and hence the air in a 60 cm3 

culture vessel can be "renewed" approximately every 12 min or less. Also, both the 

inflow and the outflow membrane can be separated from the system before sterilization 

(by autoclaving) and thus it is possible to re-use the membranes for much longer periods. 

At present the inflow membrane assembly is fitted to the apparatus with the aid of 

silicone grease. An obvious improvement would include some form of screw attachment. 

Also, the present system is made of glass and it would be much more convenient if it 

could be manufactured using a light-weight material such as an autoclavable plastic. 

Experiments with System II have shown promising results and improvements on 

conventional ways of vessel capping (using either bungs or polypropylene membranes), 

in terms of the gaseous composition of the culture vessel atmosphere and the growth, 

development and physiology of cultures and plantlets as follows (see also Fig. 9.01): 

(a) CO2 depletion in the light can be considerably reduced, and depending on the plantlet 

size, CO2 concentrations can be enriched and maintained up to atmospheric levels 

(Chapters V, VI and VII). Theoretically, in the light, CO2 levels could be enriched above 

atmospheric by increasing concentrations outside the vessels, and thereby increasing 

photosynthesis and giving better yield. This aspect should be examined in future. 

Forced ventilation also adequately reduced the accumulation of CO2 in the dark, 

so that levels in the vessels were 350 - 650 pl I" (Chapter VI). 

(b) As found in cauliflower and tobacco culture (callus + plantlets) Oz concentration in 

the sealed and diffusively ventilated vessels fell as CO2 levels rose. The unavailability of 

oxygen has limited the growth of cultures in many species (Tate and Payne 1991; 

Adkins, Shiraishi and McComb 1990). Although 02 was monitored only occasionally in 

the current experiments, on these occasions it was found that in darkness with tobacco 
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seedlings the 02 concentration was 3-4% under sealed conditions, 4-10% with diffusive 

ventilation and near to atmospheric level with forced ventilation (data not shown). 

(c) Using t50's as indicators, the forced ventilation apparatus was found to flush the 

vessels free from ethylene, and this also would probably apply to any other potentially 

toxic gases. Thus the need for the use of ethylene absorbents or antagonists was 

eliminated (Chapter III). 

(d) With forced ventilation the adverse effects of ethylene accumulation, including many 

aspects of vitrification, were prevented. These included depressed growth of stems, 

leaves and roots in cauliflower, tobacco, Annona and potato (Chapters IV, V, VII, VIII), 

leaf epinasty and the yellowing of leaves in cauliflower and tobacco (Chapters IV, V), 

leaf vitrification in cauliflower and potato (Chapters IV, VIII), leaf and flower-bud 

abscission in Annona (Chapter VII), failure of leaves to unfold in cauliflower and potato 

(Chapters IV, VIII) and poor shoot maturation in Annona (Chapter VII). 

Also, various anatomical abnormalities were apparently prevented by applying 

forced ventilation. These included the production of stomata of unusually high 

frequency, and which were apparently permanently wide open, even in the dark 

(cauliflower and tobacco), comparatively small amounts of leaf epicuticular waxes in 

cauliflower, and short epidermal hairs in tobacco (Chapter VI). 

Although the removal of ethylene was clearly an important factor contributing to 

the better growth found in these species when forced ventilation was applied, it was also 

clear that CO2 enrichment in the light was also very important (Chapters IV, V) 

(e) Ethylene apparently contributed also towards depressing the leaf chlorophyll levels in 

cauliflower, tobacco and Annonce: Chapters IV, V, VII; the chlorophyll contents 

increased significantly in forced ventilation and these, together with the CO2 enrichment 

were no doubt responsible for the higher photosynthetic rates and higher yields observed 

with the throughflow ventilation (Chapters IV, V). 
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(f) With forced ventilation, humidities in the culture tubes ranged between 70% RH and 

ca. 94%. The vitrification of cultured plantlets commonly occurring in conventional 

systems has also partly been correlated with too high humidities in the head-spaces, 

which in this study have commonly been ca. 100%. By changing the ratio of membrane 

area : head-space volume, and using different sizes of outflow membrane, controlled 

humidities between 50 and ca. 100% should be attainable. These aspects should be 

explored further in future, particularly in connection with the "weaning" of plants and the 

reduction of vitrification. 

In future it would be desirable to determine the water loss from the agar culture 

medium. It could be anticipated that with long-term culturing with diffusive ventilation, 

such water loss might prove to be a significant problem. For example Buddendorf- 

Joosten and Woltering (1996) found it necessary to control the external humidity in a 

new system involving a throughflow of air over vessels capped with diffusive- 

membranes. The forced ventilation system described in this thesis, because it can deliver 

humid air, might reduce water loss from the medium to an acceptable level. 

Also, in any future study it would be interesting to investigate further the 

optimum values for CO2 levels, RH and flow rate in vessels for the growth of cultures 

and plantlets and how these might be attained, particularly in connexion with the 

culturing of recalcitrant species. With this in mind it should be possible by both 

experiment and mathematical modelling to see how a balance could be achieved between 

(i) the area of inflow membrane, (ii) the area of subtending free-water surface, (iii) the 

depth of head-space, (iv) the area of the outflow membrane, (v) relative membrane 

porosities, and (vi) ambient RH and growth room temperatures and air-circulation rates. 
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APPENDIX -I 

MURASHIGE AND SKOOG (MS) MEDIUM, 1962 

CONSTITUENTS CONCENTRATION 

(ing 1'1) 

Macronutrients 

KNO3 1900.00 

NH4NO3 1650.00 

KH2PO4 170.00 

CaC12,2H20 440.00 

MgSO4,7H20 370.00 

Micronutrients 

FeSO4,7H20 27.80 

Na2-EDTA 37.30 

MnSO4,4H20 22.30 

H3BO3 6.20 

ZnSO4,4H2 8.60 

KI 0.83 

Na2Mo04,2H20 0.25 

CuSO4,5H20 0.025 

CoC12,6H20 0.025 

Vitamins 

Glycine 2.00 

Nicotinic acid 0.50 

Pyridoxine HCl 0.50 
Thiamine HCI 0.10 
M-Inositol 100.0 

pH adjusted to 5.8 before autoclaving. 



APPENDIX -2 

STORAGE OF STOCK SOLUTIONS (ETHYLENE INHIBITORS) 

Silver nitrate (AgNO3): stock solution (0.1 M) was stored in dark at room 

temperature. 

Cobalt chloride (CoC12): stock solution (0.1 M) was stored at room temperature. 

Silver thiosulphate (STS, Ag2S2O3): STS was prepared from stock solutions of 0.01 M 

AgNO3 and 0.04 M Na2S2O3; equal volumes of each solution were mixed to produce 

fresh STS for each experiment. 

The pH of the all the three stock solutions were adjusted to 5.8. Stocks were filter 

sterilized (Millipore, 0.22 gm) and added to full strength MS medium as required after 

the autoclaving step. 


