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Abstract 

Glioblastomas are the most aggressive and most common type of primary brain neoplasms 

and are associated with poor prognosis despite advances in surgical and oncological 

treatments.  Currently available treatments include surgical resection, fractionated external 

beam radiotherapy and chemotherapy.  This study aimed to investigate markers of cell 

division cycle, apoptosis and autophagy flux in an attempt to identify biomarkers with 

prognostic and/or predictive significance.   

The cell cycle markers studied included: Mcm2, expressed throughout the cell cycle; Cyclin 

A, an S-phase cyclin; Geminin, a protein that prevents re-initiation; and Phosphohistone H3 

(PHH3), a marker of mitosis.  Apoptotic markers included two anti-apoptotic proteins, Bcl-2 

and Bcl-xl; a pro-apoptotic protein, Bak; and a final executioner caspase, caspase 3.  

Markers of autophagy flux included LC3B, a ubiquitin like protein that form part of the core 

autophagy machinery; and p62, a mammalian autophagy receptor that binds ubiquitinated 

proteins. 

A total of 66 patients were recruited to the study between 2007 and 2009.  Data were 

collected on patient demographics, pre-operative Karnofsky score, surgical and adjuvant 

treatment and survival.  A tissue micro-array, constructed using glioblastoma tissue was 

immunohistochemically-stained using antibodies against a panel of markers against the 

molecules described above.  A semiquantitative labelling index (LI) was calculated for cell 

cycle and apoptotic markers using an average of 18 high power fields (hpf) in three replicate 

cores.  Staining scores were calculated for markers of autophagy flux on the basis of 

cytoplasmic staining intensity (1-3) and percentage of cells with nuclear staining (1<50%, 

2>50%).  

Cell cycle marker LI were calculated from a cohort of 66 patients, who were further 

subdivided into two groups: Group 1 (n=50) underwent surgery and radiotherapy with 24 

patients receiving temozolomide; and Group 2 (n=16) received surgical treatment only.  In 

group 1, a LI, higher than the median value for Geminin and Cyclin A correlated with 

prolonged survival when tumours received adjuvant treatment (Kaplan Meier test, p=0.0046 

and p =0.0063 respectively).  In group 1, Mcm2 and PHH3 LI did not correlate significantly 

with survival.  There was no relationship between patient survival and LI for any marker in 

group 2.  A reduction in the LI of Mcm2, Geminin and Cyclin A was observed following 

administration of adjuvant treatment in three patients with recurrent glioblastoma. 

Apoptotic marker LI were calculated in 28 patients, due to limited tissue availability; values 

below the median for Bak expression conferred a survival advantage in these patients by 

Kaplan Meier analysis (p = 0.0039).   

LC3b and p62 staining scores were calculated in 45 patients and correlated significantly 

with each other.  Whilst no significant correlation was observed between LC3b staining 

score and patient survival, p62 staining above the median conferred a survival disadvantage 

(Kaplan Meier analysis, p =0.017).   

Geminin and Cyclin A, each showed potential as independent prognostic markers in 

glioblastomas receiving adjuvant treatment.  This may reflect the fact that geminin and 

cyclin A both estimate proliferating cell sub-populations sensitive to 

radiotherapy/chemotherapy.  The addition of these markers could therefore contribute 

valuable prognostic information if added to the glioblastoma diagnostic panel.  The 

association of high Bak expression with survival advantage suggests a possible, as yet 

unknown, role of this pro-apoptotic protein in glioblastoma oncogenesis.  The association of 

high p62 expression with decreased survival confirms the important role of autophagy flux 

in glioblastoma resistance to treatment and suggests a target for future research and targeted 

therapy. 
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Chapter 1 

Introduction 

Glioblastoma: Background and challenges - Cell division cycle - Cell 

cycle: phases - Cyclins, CDKs and CDKIs - G1 phase and restriction 

point - S phase - G2 and M phases – Markers of cell division cycle and 

role in cancer - Cell Cycle phase distribution in Glioblastoma - 

Apoptosis - Pathways of apoptosis - Intrinsic pathway - Extrinsic 

pathway - Apoptosis and Glioblastoma - Autophagy - Autophagy 

Flux - Autophagy in cellular homeostasis - Autophagy in cell death - 

Autophagy pathway - AKT/mTOR pathway - p62 and autophagy – 

Autophagy in glioma - Measurement of autophagy flux – Project 

aims 

 

1:1) Glioblastoma: Background and challenges 

Primary brain tumours account for approximately 2% of all primary tumours.  Glioblastomas 

are the most aggressive and most common type of primary brain neoplasms (figure 1.1) 

representing 12-15% of all primary intracranial neoplasms with an annual incidence of 3-

4/100000 population per year (Louis et al., 2007).  Although they can present at any age the 

peak incidence is between 45 and 75 years of age with a slight male preponderance. 

The presentation of patients with glioblastoma can be highly variable and depends on the 

location and size of the tumour.  Symptoms can occur secondary to raised intracranial 

pressure (headaches, nausea, vomiting), focal mass effect (hemiparesis, aphasia/dysphasia, 

hemiparesis, sensory symptoms, visual disturbance), mood and personality changes or 

seizures (Preusser et al., 2011).   

 

 



 10 

 

Figure 1.1: Relative frequencies of gliomas.  Adapted from Preusser et al., 2011) 

 

Primarily on the basis of their clinical presentation, glioblastomas are classified as primary or 

secondary.  This distinction between primary and secondary glioblastomas was first described 

in 1940 by a german neuropathologist, Hans-Joachim Scherer (Peiffer and Kleihues, 1999).  

Primary glioblastomas represent the vast majority (more than 90%) of glioblastomas, usually 

in older patients, and these have a relatively short clinical presentation (Ohgaki and Kleihues, 

2007); occuring without clinical or histopathological evidence of pre-existing less malignant 

precursor lesion. Secondary glioblastomas develop through progressive transformation from 

diffuse astrocytoma (WHO Grade II) or anaplastic astrocytoma (WHO Grade III) (Ohgaki et 

al., 2004; Ohgaki and Kleihues, 2007).  Secondary glioblastomas are less frequent (less than 

10% of all glioblastomas) and tend to occur in younger patients (Ohgaki et al., 2004; Ohgaki 

and Kleihues, 2005).  Approximately 70% of diffuse astrocytomas will progress to 
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glioblastoma over an interval which varies from 1-10 years with a mean period of 4-5 years 

(Ohgaki and Kleihues, 2007).  Primary and secondary glioblastomas are clinically and 

morphologically indistinguishable and when adjusted for patient age, carry a similar 

prognosis (Ohgaki et al., 2004; Ohgaki and Kleihues, 2005).   Ohgaki and Kleihues have 

described the genetic alterations that occur during the evolution of primary and secondary 

glioblastoma (Ohgaki and Kleihues, 2007); these are summarized in figure 1.2  More recently 

Nobusawa et al. (2009) have described IDH1 mutations in primary and secondary 

glioblastoma.  In their study, IDH1 mutation was found in 3.7% of primary glioblastomas 

whereas 73% of secondary glioblastomas exhibited IDH1 mutation.  Nobusawa et al. further 

reported that IDH1 mutation as a genetic marker of secondary glioblastoma corresponded to 

respective clinical diagnosis in 95% of the cases (Nobusawa et al., 2009).     

 

Figure 1.2:  Genetic pathways to primary and secondary glioblastomas at the 

population level (Ohgaki and Kleihues, 2007).   

 

Histologically, glioblastoma is characterized by poorly differentiated astrocytic tumour cells 

exhibiting nuclear atypia, cellular pleomorphism and brisk mitotic activity. The tumours are 



 12 

also associated with vascular thrombosis, microvascular proliferation and necrosis (Louis et 

al., 2007).  While most glioblastomas are unilateral occupying much of the lobe, those 

located in corpus callosum and brain stem can be bilaterally symmetrical.  They are also 

characterized by rapid spread through neighbouring structures particularly the corpus 

callosum, fornix, internal capsule, anterior commissure and optic radiations (Louis et al., 

2007).   Another clinically important feature is the location of invading cells outside the 

contrast-enhancing rim of the tumour as seen on cranial imaging (Figure 1.3a and 1.3b). This 

allows these cells to escape surgical resection and evade the higher doses of radiation during 

radiotherapy (Louis et al., 2007).  This feature has implications in term of future local 

recurrence and hence poor outcome.  

 

1.3a 1.3b 

Figures 1.3a and 1.3b: Axial T1 Gadolinium enhanced (figure 2a) and axial FLAIR 

(figure 2b) MRI images demonstrating a  right parietal glioblastoma (confirmed on 

histology).  The tumour demonstrates characteristic peripheral contrast enhancment with 

Gadolinium (Figure 2a).  Note the extension of FLAIR signal beyond the contrast 

enhancing tumour margins in figure 2b suggesting the presence of invading tumour cells.   
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Histologically up to 2.4% of all glioblastomas are truly multifocal (Batzdorf and Malamud, 

1963; Russel and Rubinstein, 1989).  Distinct histological subtypes of Glioblastoma are 

recognized and described (Louis et al., 2007).  These include Giant cell glioblastoma, 

Gliosarcoma and Glioblastoma with oligodendroglial components.   

Giant cell glioblastoma accounts for up to 5% of glioblastoma (Homma et al., 2006) and is 

histologically characterized by predominance of multinucleated giant cells with an abundant 

stromal reticulin network.  Giant cell glioblastomas carry a relatively poor prognosis (Huang 

et al., 1996) although some studies (Shinojima et al., 2004) suggest a better outcome in 

comparison to usual glioblastoma, possibly due to less infiltrative nature.   

Gliosarcoma is a histological variant of glioblastoma characterized by glial and mesenchymal 

differentiation conferring a biphasic tissue pattern.  It comprises of 2% of all glioblastomas 

and has been suggested to carry a favourable prognosis as compared to the usual 

glioblastomas (Maiuri et al., 1990).   

Glioblastoma with oligodendroglial component has been recognized as a distinct entity in 

WHO classification 2007.  As the name suggests, these tumours exhibit foci resembling 

oligodendrogliomas and have been suggested to carry a better prognosis as compared to 

standard glioblastoma (Kraus et al., 2001), possibly due to relative chemosensitivity of the 

oligodendroglial component.   

Glioblastoma is associated with a poor prognosis as compared to other common malignancies 

including prostate, breast, lung and colon cancer and has a median survival of approximately 

12 months, despite recent advances in surgical and oncological interventions (Westermark, 

2012).  Currently available treatment options include surgical resection (where feasible), 

fractionated focal external beam radiotherapy and chemotherapy.   
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Gross total resection (GTR), where feasible, remains the first and most important step in 

treatment of glioblastoma (Mineo et al., 2007; Filipini et al., 2008; Gorlia et al., 2008) and 

has been shown to enhance patient survival (Stummer et al., 2008; McGirt et al., 2008; Sanai 

and Berger, 2008; McGirt et al., 2009; Dea et al., 2012).  Surgery provides a cytoreductive 

treatment, helps to alleviate tumour mass effect, reduces intracranial pressure and contributes 

to increase the efficacy of oncological treatments.  Blurring of margin between tumour tissue 

and healthy brain in the infiltration zone and the presence of tumour cells beyond the contrast 

enhancing tumour margin make the achievement of GTR very challenging.  At the same time, 

the advantages associated with attempts at GTR have to be balanced with the risk of causing 

neurological deficits especially when the tumour is located close to or in an eloquent location.  

Recent advances in preoperative and intraoperative advanced MRI imaging (Gonzalez-

Darder, 2010), use of high resolution intraoperative ultrasonography, 5-Aminolevulinic acid 

aided tumour resection (Stummer et al., 2006; Feigl et al., 2010) and intraoperative 

neurophysiological monitoring (Feigl et al., 2010) have all helped to achieve GTR 

particularly when the tumour is located in eloquent areas.  

Before the widespread clinical use of temozolomide chemotherapy for glioblastoma over the 

past 7 years, radiotherapy following surgery was the only available treatment.  The addition 

of radiotherapy following surgery improves survival as compared with radiotherapy alone 

having been demonstrated to improve patient survival from 3-4 months to 7-12 months 

(Stupp et al., 2005).  Currently, radiotherapy with concomitant and adjuvant temozolomide is 

the mainstay of oncological treatment for glioblastoma and has been demonstrated to enhance 

median patient survival by more than two months when compared with radiotherapy alone 

(Stupp et al., 2005; Stupp et al., 2009).  Temozolomide is an oral alkylating agent with good 

penetration across the blood brain barrier and causes DNA damage by generating methylation 

at N-7 or O-6 position of guanine residues.   Some tumour cells are able to repair this 
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methylation by expressing an enzyme O-6-methylguanine-DNA methyltransferase (MGMT).  

Epigenetic silencing of MGMT by promoter methylation compromises tumour cells’ ability 

to repair DNA and increases their susceptibility to temozolomide.  MGMT promoter 

methylation can occur in approximately 45% of glioblastomas and has been shown to confer 

a survival advantage when treated with radiotherapy and temozolomide (Hegi et al., 2005).   

In addition to Temozolomide, surgically implanted BCNU (Carmustine) polymer wafers 

(Gliadel) have been approved by NICE and have been shown to improve patient survival in 

Glioblastoma (Westphal et al., 2006; Dixit et al., 2011; Barr and Grundy, 2012).  Recently a 

few retrospective and prospective trials (Lechapt-Zalcman et al., 2012; Noel G et al., 2012; 

Bock HC et al., 2010; McGirt MJ et al., 2009) have reported the safety and efficacy of the 

use of BCNU at the time of primary surgery followed by radiotherapy with concomitant and 

adjuvant temozolomide.  Most of these trials have reported no significant increase in serious 

toxicity and an incremental gain of 2-3 months in median survival in comparison with 

published results using carmustine wafers or concomitant and adjuvant temozolomide alone 

(Dixit et al., 2011).  However, these studies have small numbers of patients and in the 

absence of any phase III trials, the sequential use of carmustine wafers followed by 

radiotherapy with concomitant and adjuvant temozolomide is currently not the standard of 

care in the treatment of glioblastoma.    

Apart from temozolomide and BCNU, other anti-neoplastic agents have been used in the 

treatment of glioblastoma but with limited success at best. PCV chemotherapy is a 

combination chemotherapy of Procarbazine, Lomustine (CCNU) and Vincristine and has 

been used extensively for the treatment of glioblastoma for over 30 years (Levin and Wilson, 

1976).  A Medical Research Council randomized control trial involving 674 patients with 

grade 3 and grade 4 astrocytomas (67% with histologically confirmed glioblastoma) showed 
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no significant survival benefit with PCV chemotherapy after radiotherapy versus radiotherapy 

alone (MRC brain tumour working party, 2000).  Kappelle et al. (2001) have reported the 

results of PCV chemotherapy in 63 patients with recurrent glioblastoma.  In this study, PCV 

chemotherapy resulted in complete response in 3%, partial response in 8%, stable disease in 

25% of the patients and progression free survival at 6 months in 29%.  Schmidt F et al. 

(2006) however reported only 3 partial responses in 86 patients with recurrent glioblastoma 

and progression-free survival at 6 months in 38.4%.  More recently Brada M et al. (2010) 

have reported a prospective randomized trial comparing the results of temozolomide (in two 

different dose regimens) versus PCV chemotherapy in 447 chemotherapy-naive patients with 

recurrent high grade glioma.  Brada M et al. did not show any clear benefit of temozolomide 

over PCV chemotherapy.  Currently PCV chemotherapy is mostly used as a second line 

chemotherapy agent in recurrent glioblastoma.   

In summary, patient age, Karnofsky performance score, tumour location, gross total 

resection, radiotherapy, temozolomide, MGMT status are factors known to influence 

outcome in glioblastoma (Lamborn et al., 2004; Mineo et al., 2007).  The overall prognosis 

however continues to remain poor with most patients dead within 15 months of diagnosis 

(Westermark, 2012).     

The focus of this thesis is to study markers of cellular proliferation, survival and cell death in 

glioblastomas and to identify specific biological markers which could be used on paraffin-

embedded surgical biopsy specimens in an effort to predict the likely response of individual 

tumours to adjuvant treatment and thus aid in clinical decision making and better targeting of 

currently available treatments. 
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1:2) Cell division cycle 

The cell division cycle is a series of exquisitely controlled processes leading to cell 

reproduction (Murray and Hunt, 1993; Nasmyth, 1996; Stillman, 1996; Csikasz-Nagy A, et 

al. 2006; Budirahardja and Gonczy, 2009; Uhlmann et al., 2011). The timing and 

coordination of these events is controlled by a complex regulatory network to ensure that cell 

division is accomplished without the introduction of deleterious mutations, chromosomal 

abnormalities and unequal distribution of chromatin between daughter cells (Bell and Dutta, 

2002; Coverley and Laskey, 1994; Sun and Kong, 2010; Uhlmann et al. 2011).  Defective 

cell cycle arrest at the respective checkpoints is associated with genomic instability and 

oncogenesis (Loeb, 1991; Bartek and Lucas, 2001; Nyberg et al., 2002; Aguilera and Gomez-

Gonzales, 2008; Langerak aand Russell, 2011). 

1:3) Cell cycle: phases  

Cells in active state of proliferation are said to be in cell cycle.  The cell cycle has four 

distinct phases namely G1, S, G2 and M.  G1 and G2 are gap phases which prepare the cell 

for the next phase and precede S and M phases respectively.  Chromosomal duplication 

occurs in the S (for synthesis) phase and chromosomal segregation occurs in the M (for 

Mitosis) phase (Murray and Hunt, 1993; Morgan, 2007).   

Following the cell division cycle, the cell either enters a quiescent or specialized resting 

phase called G0 or re-enters the cell cycle.  Most cells in terminally differentiated tissues are 

in G0 phase and re-enter the cell cycle upon appropriate stimulation including cellular injury 

and growth factors.     

The M phase has four distinct phases namely prophase, metaphase, anaphase and telophase.  

DNA chromosomes condense and the mitotic spindle is assembled in prophase.  The 
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chromosomes align upon the spindle in metaphase.  The chromosomes then segregate by 

releasing cohesion and reel in the spindle (anaphase) until they decondense and form nuclei 

(telophase).  Together G1, S and G2 phases are also called interphase (Morgan, 2007).   

Progression through the cell cycle follows an organized pattern to ensure that DNA 

replication occurs once and only once through the cell cycle and precedes chromosomal 

segregation which in turn precedes cytokinesis.  Throughout the cell cycle, inbuilt 

mechanisms in the form of checkpoints ensure that the genetic information is transferred 

completely and correctly to the daughter cells (Murray and Hunt, 1993; Morgan 2007) (figure 

1.3).  Detection of irreparable genetic damage at these checkpoints results in activation of 

apoptosis or programmed cell death.  Cells lacking effective checkpoints display genomic 

instability, faulty DNA replication or aberrant segregation (Loeb, 1991).   

 

Figure 1.4:  Sites of important cell cycle checkpoints in mammalian cell cycle.   
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1:4) Cyclins, CDKs and CDKIs 

Progression through the cell cycle is controlled by the synthesis, degradation and state of 

phosphorylation of proteins called cyclins (Evans et al., 1983).  The cyclins form complexes 

with Cyclin dependent kinases (CDKs) and these cyclin-CDK complexes then control 

progression through the cell cycle by activating a variety of proteins by phosphorylation 

(Budirahardja and Gonczy, 2009).  The cyclin-CDK complexes are the core controlling 

mechanism that drives the eukaryotic cell cycle (Budirahardja and Gonczy, 2009).  The 

cyclins display periodic oscillatory changes in concentration during different phases of the 

cell cycle and this helps to generate CDK activity that forms the foundation of the cell cycle 

control system cells and also ensures a unidirectional cell cycle progression (Budirahardja 

and Gonczy, 2009; Morgan, 1997; Nurse, 1990).  CDK regulation is achieved by association 

with cyclins and inhibitor proteins, phosphorylation-dephosphorylation and cyclin synthesis 

or degradation. The cyclins are divided into four classes based on their expression, timing in 

the cell cycle and their function: G1, G1/S, S and M phase cyclins.  The cyclin concentration 

in turn is regulated by cyclin gene expression and destruction of cyclins by proteolysis.  The 

CDK activity is modulated by a variety of cyclin dependent kinase Inhibitors (CDKI).  These 

include p21, p27 and p57 with a broad inhibition activity and p15, p16 and p19 (INK family) 

with specific inhibition of CDK4 and CDK6. 
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Figure1.5:  Cyclin-CDK complexes and their distribution at different phases of the cell cycle.  

Cyclin D1 is expressed in the latter third of G1 and together with cyclins E and A is involved 

in progression through the G1/S transition. Cyclin A is expressed in S and to a variable extent 

into G2. In S-phase, cyclin A is complexed to CDK2, however, in G2 and early M, it is 

complexed to CDK1. Cyclin B1 is expressed in both G2 and prophase of M. In G2, cyclinB1 

is identified as a cytoplasmic molecule, in prophase of M the molecule is found in the 

nucleus until, with breakdown of the nuclear membrane, staining becomes diffuse. 

 

Different models of cell cycle control have been proposed (Chen et al, 2004; Csikasz-Nagy et 

al., 2006).  More recently, Gerard and Goldbeter have proposed an integrated computational 

model for the network of CDKs that control the dynamics of the cell cycle (Gerard and 

Golbeter, 2009 and 2011).  The CDK network consists of four coupled members including 

cyclin D/CDK4-6, cyclin E/CDK2, cylcin A/CDK2 and cyclin B/CDK1 and sequential 

activation of these complexes respectively control progression through G1, transition to DNA 

replication in S, transition to G2 and finally G2/M transition allowing entry into M phase 

(figure 1.4).  The model also includes retinoblastoma gene (pRb) and transcription factor E2F 

which inhibit and promote progression through cell cycle respectively.  Another feature of the 

model is the existence of restriction point beyond which the cell cycle progression continues 

independent of growth factors.   
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1:5) G1 phase and restriction point 

During G1 phase, nucleotide and proteins of the replicative machinery are synthesized and 

the expression of genes associated with deoxynucleotide synthesis are upregulated in 

preparation for DNA synthesis.  G1 cyclin (Cyclin D in vertebrates) helps coordinate cell 

growth with entry into the new cell cycle and together with the G1/S cyclin (Cyclin E) 

triggers progression into a new cell cycle at the restriction point (start point in Yeast).  This 

leads to processes culminating in DNA replication.  The level of cyclin D rises early in G1 

and is limited to late G1 whereas the expression of cyclin E is limited to late G1 and early S 

phase.  Cyclin D forms complexes with Cdk4 or Cdk6 to yield active protein kinase (Hunter 

and Pines, 1994) which phosphorylates Rb which is a key event in G1/S transition (Buschges 

et al. 1999; Hunter and Pines, 1994; Lei et al., 1997; Sawa et al., 1998).  There is also 

increasing evidence to suggest that cyclin D activity is required for activation of cyclin E 

whose complex with CDK2 is required for transition through G1/S checkpoint (Coverley et 

al., 2002).  During early G1 the hypophosphorylated form of pRb binds and inactivates E2F 

transcription factor.  Following phosphorylation of pRb, E2F is released which then 

stimulates transcription of genes required for DNA replication.  In particular E2F leads to 

further expression of cyclin E in a positive feedback loop fashion.    

G1 DNA damage results in a strong and often irreversible block of cell cycle progression at 

restriction point.  The G1 DNA damage response is of two types. The “Rapid” response 

occurring in minutes is mediated by inactivation of Cyclin E-CDK2 causing cell cycle arrest 

in G1 by preventing progression past the restriction point.  p53 activation constitutes the 

“Delayed” or maintenance response.  p53 is a gene regulatory protein that plays a central role 

in cellular response to DNA damage and other stressors, with activation leading to apoptosis 

(Levine., 1997; Harris and Levine, 2005).  It binds directly to the promoters of its target 
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genes and alters the rate at which their transcription in initiated.  In most cases the expression 

of target genes is stimulated and the overall result of p53 is increased production of proteins 

that stimulate cell cycle arrest and promote apoptosis.  At the same time, p53 increases 

transcription of genes encoding apoptosis inhibitors.  In the absence of DNA damage, Mdm2, 

an E3 ubiquitin-protein ligase ubiquitinates p53 thereby promoting its destruction by the 

proteasome.  Upon DNA damage, phosphorylation of Mdm2 and p53 disrupts their 

association, resulting in stabilization and activation of p53.  Phosphorylation of p53 also 

increases its interaction with histone acytylase, p300.  This results in increased acetylation of 

histones and p53, both of which act to increase p53 dependent gene expression.   

1:6) S phase  

During the late M and early G1 phase, a complex of initiator proteins, the Pre-replicative 

complex (Pre-RC), assembles at discrete sites on the chromosome called origins of 

replication (figure 1:5).  Pre-RC is composed of Origin Recognition complex (ORC), Cdt1 

(Chromosomal licencing and DNA replication factor 1), Cdc6 (cell division cycle 6) and the 

Mini-chromosomal protein complex (MCM2-7).  Pre-RC prepares the origins for “licensing” 

(Bell and Dutta, 2002; Coverley and Laskey; 1994, Lei and Tye, 2001).  During the S phase, 

the Pre-RC is transforms into an active Pre-initiation complex by the activity of Cyclin 

E/Cdk2 and Cyclin A/CDK2 complexes.  Once activated, MCM2-7 acts as a DNA helicase 

and unwinds the DNA enabling access to the DNA synthesis machinery (figure 1.5).  Once 

the MCM2-7 complex initiates DNA unwinding and DNA replication commences, re-

replication is prevented by Cyclin A/CDK2 complex which phosphorylates MCM2-7 

rendering it inactive.  Another key factor in preventing re-replication is Geminin, this 

molecule binds to Cdt1, inhibits its association with Cdc6 and prevents reloading of MCM2-7 

complex at the origins (Madine and Laskey, 2001; Wohlschegel et al., 2000; Wohlschlegel et 
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al., 2002).  In mammals, Cyclin A expression is limited to S phase whereas Geminin in 

expressed in S, G2 and M until the anaphase/telophase transition when it is degraded by 

proteolysis mediated by the Anaphase Promoting Complex (APC).  This inactivation then 

releases Cdt1 which is available for the following round of the cell cycle.  These mechanisms 

ensure that Pre-RC reassembly is prevented until the next G1 phase and thus DNA replication 

occurs once and only once during the cell cycle.  

 

 

 

Figure 1.6:  Mcm proteins and licencing of DNA for replication.  In G1 phase, the 

pre-replication complex is assembled which allows Mcm proteins 2-7 to form a 

hexamer at the origins of replication.  Mcm complex acts as a DNA helicase and 

unwinds the DNA.  Cyclin A/Cdk2 then inactivates Mcm complex.  Geminin 

inhibits Cdt1and helps to prevent re-initiation.     
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1:7) G2 and M phases 

During G2, regulatory factors for mitosis are synthesised and modifications occur in the 

chromatin structure to support mitotic chromosomal condensation.  At the onset of mitosis, 

chromosome condensation is mediated by cyclin B/CDK1 Complexes.  Phosphorylation of 

histone H1 by CDK1/cyclin B modifies chromatin structure through alterations in 

nucleosome interactions (Nigg, 1998). CDK1/cyclin B promotes completion of chromosomal 

condensation (Murray and Hunt, 1993) by phosphorylating and consequently activating 

casein kinases and phosphorylating condensins.  In addition it is also thought to stimulate 

centrosome separation and nuclear envelope breakdown and spindle assembly during 

prophase.  The effects of Cyclin B-CDK1 are irreversible once set in motion.  This is due to 

the “all or none” irreversible nature of cyclin B-CDK1 activation (Morgan, 2007).   

At the end of S phase, the cells contain a duplicate set of chromosomes in a tightly associated 

pair called sister chromatids.  During the M phase the sister chromatids are separated and one 

of each pair is distributed to each daughter cell (Nasmyth et al., 2000).   During prophase, the 

chromosomes undergo condensation and the sister chromatid cohesion is loosened by 

removal of DNA catenation and partial loss of cohesion protein that hold the sister 

chromatids together.   

Also in prophase, the centrosome separates, each nucleating its own radial microtubule array 

eventually resulting in the formation of the bipolar microtubule array of mitotic spindle.  

Prometaphase begins when the nuclear envelope breaks down and lasts until the sister 

chromatids are completely attached to the spindle and have migrated to the central spindle.  

Specialised regions of the chromatin called kinetochores form sites by which the sister 

chromatids become attached to the spindle microtubules (Alberts et al., 2002; Murray & 
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Hunt, 1993).  When all the chromosomes are lined up on the mitotic spindle, the cell is said 

to be in metaphase and the structure is referred to as a metaphase plate.   

Cyclin B is the primary M phase cyclin.  Cyclin B/CDK 1 activation begins in G2-phase 

when Wee1 (a nuclear kinase) phosphorylates CDK1.  When phosphorylated at three sites 

(amino acids 14, 15 and around 160) CDK1 is inactive.  However, at the G2/M transition, 

Cdc25 phosphatase dephosphorylates the cyclin B/CDK1 complex (at amino acids 14 and 15 

but not at 160), thus activating it by removing the two phosphate groups from the active site 

of the CDK1 kinase.  Cdc25 is activated by at least two sets of protein kinases.  The first is 

cyclin B/CDK1 forming a positive feedback loop and a second signal is provided by a group 

of kinases, originally described in Drosophila, known as Polo kinases (Nigg, 1998).   

Cyclin A-CDK1 and Cyclin B-CDK1 complexes trigger entry into M phase. Early in mitosis 

Cyclin B-CDK1 stimulates centrosome separation and chromosomal condensation. Later 

Cyclin B-CDK1 controls progression in mitosis by phosphorylation of proteins that control 

spindle assembly and phosphorylation of lamins results in breakdown of the nuclear envelope 

at the end of prophase and events leading to assembly of sister chromatids on the spindle.  

Both cyclin A/CDK1 and cyclin B/CDK1 promote microtubule formation from centrosomes 

(Alberts et al., 2002; Murray & Hunt, 1993; Nigg 1998).  Also Cyclin B-CDK 1 complex 

activates Anaphase Promoting Complex (APC) which acts as a ubiquitin-protein ligase.  APC 

causes destruction of securin, a protein that binds the sister chromatids together (figure 1.6).  

This event is mediated by the APC induced proteolysis of the protein securin.  Securin binds 

to and inactivates a protein known as separase.  Destruction of securin allows activation of 

separase, which is then free to cleave one of the subunits of the cohesin complex, thus 

allowing the sister chromatids to separate (Nasmyth et al., 2000; Morgan, 2007). Fully active 

APC appears to require activation by Cdc20, active cyclin B/CDK1, and completion of 
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correct metaphase alignment of chromatid pairs, although other, as yet unknown, factors may 

be important.  Importantly, APC also promotes the destruction of Cyclin B thereby acting as 

a negative feedback loop for Cyclin B-CDK1 activity (figure 1.7).   

As described above, Cyclin B/CDK1 complex is inactivated upon Cyclin B destruction by 

APC during metaphase.  There are at least two checkpoints during mitosis.  G2/M checkpoint 

controls mitotic entry.  Damaged DNA or stalled DNA replication fork sends inhibitory 

signals that block mitotic entry by preventing activation of CDK1.     

 

 

 

Figure 1.7:  Regulation of sister chromatid separation by APC.   APC mediates 

proteolysis of securin liberating seperase which in turn cleaves cohesion resulting in 

sister chromatid separation.  APC-Cdc20 also mediates the degradation of Cyclin B 

which in turn activates Seperase.   
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Thus, early in prophase, progression into mitosis is tightly regulated by the integrity and 

replication status of the DNA and the activity of the Cdk1/cyclin B complex.  The second 

checkpoint within mitosis is at the metaphase to anaphase transition and involves the APC.  If 

sister chromatids are not attached to the spindle correctly, kinetochores send out inhibitory 

signals to the APC thereby preventing further progression of mitosis until correct spindle 

attachment has been achieved.  Failure of these checkpoints may lead to mis-segregation of 

chromosomes with subsequent generation of daughter cells with chromosomal abnormalities 

and aneuploidy (Kaplan et al., 2001; Shichiri et al., 2002). 

1:8) Markers of cell division cycle and their role in Cancer 

Cancer is a heterogenous group of disease processes characterized by accumulation of genetic 

lesions which translate into increased activity of genes that drive cellular proliferation and 

reduced activity of genes that normally inhibit it.  Markers of the cell division cycle can be 

used to estimate tumour cell populations in different phases of the cell cycle and this, in turn, 

may be important in predicting response to treatment because of varying sensitivity of cells in 

different phases of the cell cycle to adjuvant treatment (Terasima et al., 1963; Hama et al., 

2003; Gravina et al., 2010) (figure 1.7).   

Cells are most radiosensitive in G2 and M phase of the cell cycle.  Cells in G1 are relatively 

resistant to radiotherapy whereas cells in S phase are the most radioresistant (Quitet et al., 

1991; Tell et al., 1998).  Quitet et al. investigated two squamous cell lines and found the 

radioresistant cell line to contain twice the number of cells in S-phase in comparison with the 

radiosensitive line.  On a similar note, Tell et al. reported that peripheral blood lymphocytes 

from patients with head and neck cancer who are non-responsive to radiotherapy had a higher 

level of cells in the S-phase compared with partial and complete responders.    
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Figure 1.8:  Cell cycle phases and sensitivities to various therapies at different phases 

of the cell cycle.  Debulking surgery results in more of the remaining tumour cells 

entering the cell cycle due to better availability of substrates (oxygen and nutrients).  

Cells are more sensitive to radiotherapy in G2 and M phases.  Chemotherapy agents 

work primarily during S or M phases of the cell cycle.   

 

The markers of cell cycle phase distribution studied in this thesis include minichromosome 

maintenance protein-2 (Mcm-2), cyclin-A, geminin and Phosphorylated Histone H3 (PHH3), 

these markers have previously been used as surrogate markers of cell phase distribution in a 

variety of tumour types.  The expression of these markers in gliomas is discussed separately 

in 1:9. 
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Figure 1.9:  Schematic diagram demonstrating the distribution of Mcm2, Cyclin 

A, Geminin and PHH3 in the cell division cycle.  

 

Mcm-2 is a 100kDa nuclear protein that is part of a multimeric heterohexamer complex 

comprising Mcm proteins 2-7 (Lei and Tye, 2001; Madine and Laskey, 2001; Kearsey and 

Labib, 1998).  Mcm-2 is expressed abundantly throughout the cell cycle but is broken down 

rapidly on exiting the cycle or in quiescence
 
(Kearsey and Labib, 1998; Maiorano et al., 

1996; Musahl. et al., 1998) making it a reliable marker of cell cycle entry.  Whilst Ki-67 is 

more a more widely used proliferative marker, Mcm2 offers superior detection of actively 

replicating cells as Ki-67 fails to detect cell in most of G1 phase.  High Mcm2 expression has 

been shown to correlate with poor patient survival in diffuse large B-cell Lymphoma (Hou et 

al., 2011) and gastric carcinoma (Yang et al., 2012), whilst a higher expression is associated 

with better prognosis in colorectal carcinoma (Zhao et al., 2011) and high grade sarcoma 

(Matsubara et al., 2008).      
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Cyclin A, a 60kDa nuclear protein, acts as a surrogate marker of S-phase in mammalian 

eukaryotic cells that in astrocytomas is largely confined to S-phase (Scott et al., 2005).  In 

some cell lines, expression of cyclin A is maximal in S-phase with low expression in G2-

phase (Pines and Hunter, 1992).  The expression pattern, therefore, tends to vary with the 

type of cell or cell line, with some lines showing low level of cyclin A expression into early 

metaphase (Pines and Hunter, 1992; Xouri et al., 2007).  High cyclin A expression has been 

associated with poor prognosis in breast cancer in a study by Poikonen et al. however 

interestingly in this study, high Cyclin A was associated with a favourable response to 

anthracycline and antimetabolite chemotherapy although this did not impact on overall 

patient survival.  This is thought to be because Cyclin A labels cells in S-phase of the cell 

cycle and this fraction of cells togther with cells in G2/M phase are considered to be more 

sensitive to the effects of chemotherapy.  High cyclin A expression has also been reported to 

be associated with poor prognosis in pediatric embryonal brain tumours (Moschovi et al., 

2011).   

Geminin is a 25kDa protein whose nuclear expression is restricted to S-phase, G2-phase and 

the prophase and metaphase of mitosis (Madine and Laskey, 2001; Wohlschlegel et al., 2000; 

Wohlschlegel et al., 2002; Nishitani et al., 2001).  High Geminin expression has been 

reported to be associated with poor prognosis in small cell lung cancer (Haruki et al., 2011), 

salivary gland carcinoma (Yamazaki M et al., 2010), colorectal cancer (Nishihara et al., 

2009).    

Phosphorylated Histone H3 (PHH3) protein, though not a cyclin, is a useful marker that is 

present throughout mitosis (Shibata and Ajiro, 1993).  Phosphorylation at serine 10 of 

Histone H3 has been shown to correlate with chromatin condensation during mitosis and is a 

sensitive and specific marker of mitosis (Hendzel et al., 1997; Goto et al., 1999).  PHH3 
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Labelling indices (LI) are known prognostic factors in tumours like breast cancer (Skaland et 

al, 2009), malignant melanoma (Ladstein et al, 2012) and meningiomas (Kim et al., 2007).   

1:9) Cell Cycle phase distribution in Glioblastoma: 

Expression of Mcm-2, cyclin A and geminin have been investigated previously in 

oligodendrogliomas (Wharton. et al., 2004) and astrocytomas (Scott et al., 2005; Hara et al., 

2008; Shresta et al., 2007; Margraf et al., 2011) and, although all these studies have reported 

increased expression of these markers with increasing tumour grade, a correlation with 

patient prognosis and treatment response has not been reported in the literature for 

glioblastomas.  Margraf et al. (2011) studied the expression of Mcm2 and PHH3 in pilocytic 

astrocytomas and found no significant association of either marker with prognosis.  Wharton 

et al reported expression of Mcmc2 and Geminin in 55 cases of oligodendrogliomas (25 

Grade II and 30 Grade III) and observed increased expression of Geminin with increasing 

tumour grade.  Scott et al. analysed expression of multiple cell cycle markers in astrocytomas 

and found the expression of Mcm2, Cyclin A and PHH3 increased with increasing tumour 

grade but the expression of these markers did not correlate with patient survival.  Of note is 

the study by Shresta et al. (2007) who investigated the expression of Geminin in 51 cases of 

high grade astrocytomas (19 anaplastic astrocytomas and 31 glioblastomas) and although 

they reported an improved survival with higher geminin LI, on further analysis, the 

prognostic significance was only observed in the whole group and in anaplastic astrocytomas 

but not in Glioblastomas.  Interestingly, Coleman et al. (2006) found a positive association 

between PHH3 LI and survival in a study involving 103 patients with grade II and III 

astrocytomas.  However, a recent study by Habberstad et al. (2011) involving twenty seven 

patients with anaplastic astrocytomas found no significant correlation between PHH3 LI and 
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overall survival on Kaplan Meier analysis, although the small cohort size may be an issue 

(Habberstad et al., 2011).   

 In this thesis, Mcm2, Cyclin A, Geminin and PHH3 expression in glioblastomas have been 

investigated and the expression correlated with patient survival and response to adjuvant 

treatment.  It is possible that identification of a subpopulation of glioblastomas with a high 

replicative fraction may isolate a group of tumours that are more susceptible to therapies 

dependent upon active replication for their efficacy (Sallinen et al., 1994).  This in turn can 

provide clinicians with prognostic information and can aid in clinical decision making 

particularly in equivocal cases.    

1:10) Apoptosis 

Apoptosis or programmed cell death (Lockshin and Williams, 1965) type I (PCD I) is an 

important component of normal development and health of multicellular organism.  

Dysregulation of apoptosis is involved in various steps in the pathogenesis and progression of 

cancer, including increase in tumour size due to reduction in programmed cell death, 

accumulation of genetic instability and resistance to ischemia, chemotherapy and 

radiotherapy.  

1:11) Pathways of apoptosis 

Apoptosis is a tightly scripted death programme which results in activation of multiple 

groups of proteases and nucleases which breakdown various components of the cell including 

nuclear lamina, parts of cytoskeleton and DNA.  The process is characterized by certain 

morphological features (Kerr et al., 1972).  Upon induction of apoptosis, cells shrink due to 

breakdown of actin and laminins in the cytoskeleton.  The nucleus condenses following 

breakdown of chromatin and often takes a “horse-shoe” appearance.  The cells loosen from 
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neighbouring cells and eventually package themselves into a form by means of plasma 

membrane changes that allows for phagocytosis by macrophages, or allows the apoptotic 

cells to be engulfed by neighbouring cells or extruded from the tissue.  The latter stages are 

characterized by formation of membrane blebs and blisters processes.  Also characteristic but 

not universal, is the appearance of small vesicles called apoptotic bodies.    

Apoptotic cell death is mediated through intracellular (osmotic stress, DNA damage) and 

extracellular cues (growth factor withdrawal, matrix detachment and direct cytokine mediated 

killing).  Two main pathways of apoptosis are recognized.  The extrinsic pathway is death 

receptor mediated whereas the intrinsic pathway is mediated via the mitochondria.   

Both pathways involve a family of cysteine aspartate-specific proteases called caspases 

(Daniel and Korsmeyer, 2004).  Caspases are synthesized as inactive zymogens or Pro-

caspases and consist of a variable length pro-domain, a smaller p10 unit and a larger p20 unit.  

Caspase activation involves proteolysis at specific asparagines residues resulting in 

generation of an activated caspase which is a heterotetramer of two p10 and two p20 

subunits.  Apoptotic caspases are functionally divided into initiator caspases (Caspase 2, 8, 9 

and 10) and effector or “executioner” caspases (Caspase 3, 6 and 7) (Adams, 2005).   

Caspases are inactivated by Inhibitor of Apoptosis proteins (IAPs).  These include XIAP, 

cIAP1, cIAP2, ILP2, ML-IAP, NIAP, SUVIVIN and BRUCE (Krastad and Chekenya, 2010).  

These proteins inhibit apoptosis by binding to and directly inhibiting Caspase 9 in the 

intrinsic pathway and also to downstreamj effector caspases 3 and 7.  In addition they also 

promote caspase degradation by via ubiquitin-proteosome pathway.  (Verhagen et. al., 2002; 

Srinivasula and Ashwell, 2008; Krastad and Chekenya, 2010).    
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1:12) Intrinsic pathway 

The intrinsic pathway of apoptosis is triggered by a number of factors including UV or 

gamma radiation, growth factor withdrawal and chemotherapeutic drugs.  The central event 

in this pathway is mitochondrial outer membrane permeabilization (MOMP).  MOMP leads 

to release of multiple proteins from the mitochondrial intermembrane space (IMS) into the 

cytoplasm.  MOMP results in release of pro-apoptotic factors from the IMS.  These include 

cytochrome c, AIF (Apoptosis inducing factor), Smac/DIABLO, endonuclease G and 

omi/htra2.  Cytochrome c in association with APAF-1 (Apoptotic protease activating factor-

1) and dATP form Apoptosome.  The apoptosome then activates caspase-9 which in turn 

leads to activation of effector caspases in particular caspase 3 and commits the cell to 

apoptotic death.  Caspase 3 then cleaves the inhibitor of caspase-activated DNA (ICAD) 

activating CAD which then breaks DNA into fragments.  Smac (Diablo) and HtrA2 (Omi) 

facilitate caspase activation by inhibiting inhibitors of apoptosis proteins, which are 

endogenous caspase inhibitors (Wolf and Green, 2002; Wang, 2001).        

Members of Bcl-2 (B-cell lymphoma) protein family are important regulators in MOMP.  

The Bcl-2 family of proteins share sequence in 4 alpha-helical Bcl-2 homology (BH) regions, 

namely BH1, BH2, BH3 and BH4.  The Bcl-2 proteins can be divided into two groups, pro-

apoptotic and anti-apoptotic members 

The pro-apoptotic members are subdivided into two main groups. Bax and Bak share BH1, 

BH2 and BH3 domains.  Bid, Bim, Bik, Bad, Bmf, Noxa, Puma and Hrk are homologous in 

BH3 domain only (Tsujimoto, 2003; Danial et al., 2004).  The BH3 only proteins are further 

subdivided into activator pro-apoptotic members including Bid and Bim and sensitizer pro-

apoptotic members including Bad, Bik, Bmf, Hrk, Noxa and Puma.   
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The anti-apoptotic members include Bcl-2, Bcl-xl, Bcl-w, Mcl-1, and Bfl-1 and these share 

homology in all BH1-BH4 domains.   

Upon cytoskeleton or DNA damage or other apoptotic stimulation, BH3 only proteins 

including Bid and Bim are activated.  Bid and Bim acting as death signal sensors then lead to 

oligomerization of Bax and Bak and antagonize the anti-apoptotic effects of Bcl-2, Bcl-xl and 

other anti-apoptotic members of Bcl-2 family.  Bax and Bak then mediate MOMP by protein-

conducting pore formation in mitochondrial outer membrane (Wei, 2001).   The levels of pro- 

versus anti-apoptotic BCL-2 proteins play a critical role in regulating the apoptotic process 

(Lessene et al., 2008; Krastad and Chekenya, 2010).  

 

Figure 1.10:  The mitochondrial pathway of apoptosis with involvement of 

different pro-apoptotic and anti-apoptotic proteins with the central event being 

the process of mitochondrial outer membrane permeabilisation (MOMP).  

(Spierings et al., 2005) 
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1:13) Extrinsic pathway 

The extrinsic pathway of apoptosis begins with activation of certain death receptors e.g. 

Tumour necrosis factor receptor (TNFR) superfamily, by corresponding ligands e.g. Fas, 

TNF.  These receptors are characterized by the presence of an intracellular death domain and 

upon appropriate stimulation undergo oligomerization.  The activated receptors then form a 

death-inducing signalling complex (DISC) in association with a death domain containing 

adaptor molecule FADD (Fas associated death domain), procaspase 8 and the cellular 

FLICE-inhibitory proteins (FADD-like IL-1β-converting enzyme inhibitory protein (c-FLIP).  

The type of further response divides this pathway into two types.  In type I cells, this leads to 

extensive activation of caspase 8, sufficient to activate downstream execution or effector 

caspases 3 and 7.  These effector caspases subsequently target various cytoskeleton and 

nuclear substrate proteins, a step leading to culmination of apoptotic cell death.   

In type II cells, extrinsic or death receptor mediated apoptosis leads to MOMP via the BH3 

protein Bid.  Activated Caspase 8 can cleave Bid to form truncated-Bid (tBid) which can 

activate Bax and Bak leading to MOMP leading to release of cytochrome C and Apoptosome 

formation followed by activation of caspase 9.  Activated caspase 9 then leads to activation of 

effector caspases 3 and 7.  This pathway leads to apoptotic signal amplification in cells 

characterized by low levels of DISC and active caspase 8 (Scaffidi et al., 1998; Krastad and 

Chekenya, 2010).      

1:14) Apoptosis and Glioblastoma 

Dysregulation of apoptosis is a major contributor to the pathogenesis and progression of 

tumours in many ways.  (Stenner-Liewen and Reed, 2003) 

1. Failure of normal cell turnover leads to cell accumulation 
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2. Genetic instability and oncogene activation accumulates 

3. Increased resistance to immune attack 

4. Resistance to chemotherapy and radiotherapy 

5. Resistance to hypoxia and angiogenesis based targeted therapies 

6. Cellular survival in a detached state contributes to metastasis 

Apoptotic pathways in glioblastomas are subject of ongoing research.  Kuijlen et al. (2006) 

studied the expression of TRAIL (Tumour necrosis factor Related Apoptosis Inducing 

Ligand) and TRAIL receptors in a series of 62 patients with primary glioblastoma, and found 

an independent correlation between its expression and patient survival.  Studies investigating 

Bcl-2 expression in glioblastomas have led to contrasting results both in terms of expression 

and correlation with patient prognosis.  Strik et al. (1999) reported an up-regulation of Bcl-2, 

Bcl-xl and Mcl-1 and down regulation of Bax in recurrent glioblastomas independent of 

treatment (Strik et al., 1999).  In contrast, Martin et al. (2002) reported increased Bcl-2 and 

Bax expression in low grade astrocytomas and low expression in glioblastoma when studied 

by immunohistochemistry and vice versa on immunoblotting, indicating that the proteins are 

expressed at different levels in the cell.  The same study found no difference in Bcl-xl 

expression between low grade astrocytomas and glioblastomas.  Overexpression of Bcl-2 or 

Bcl-xl in glioblastoma cell lines leads to resistance to apoptosis and has also been linked to 

increased tumour cell motility (Wick et al., 1998).  This leads to enhancement of tumour cell 

migration and invasion by altering the expression of a set of metalloproteinases and their 

inhibitors (Wick et al., 1998, 2001, & 2004).  A series of studies have reported no correlation 

between Bcl-2 expression and patient survival (Kraus et al. 2001; Shrik et al., 1999; Martin et 

al., 2001).  Ruano et al. (2008)  found that several apoptosis genes are dysregulated in 

glioblastoma and negative expression of Bax correlates with adverse clinical outcome.  

Carlton et al. (2002), reported that N-truncated form of Bax; Bax-Gamma correlated with 
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longer survival in patients with glioblastoma.  From the above discussion, it can be inferred 

that higher expression of pro-apoptotic proteins (e.g., Bax and Bak) is likely to confer a 

survival advantage whereas an increased expression of anti-apoptotic proteins (e.g., Bcl-2 and 

Bcl-xl) is likely to be associated with poor prognosis.   

Caspase 3 immunohistochemical expression has been reported to correlate positively with 

increased tumour grade and early recurrence in intracranial meningiomas (Konstantinidou et 

al., 2007). Similarly Caspase 3 immunohistochemical expression has been associated with 

increasing tumour grade in gliomas but not significantly correlated with patient survival 

(Kobayashi et al., 2007).  While Caspase 3 is not strictly a “point of no return” on the route to 

apoptosis as further caspase activity can be inhibited by IAP, cIAP1 and Survivin (Salvesen 

and Duckett, 2002; Mellai and Schiffer, 2007), its place downstream in the apoptotic pathway 

makes it an indirect but effective marker of apoptosis (Mellai and Schiffer, 2007). 

This thesis has analysed the immunohistochemical expression of four members of the Bcl2 

family including Bcl2, Bcl-xl, Bax and Bak.  These proteins play a major role in 

mitochondrial pathway of apoptosis and as discussed previously, have an important role in 

oncogenesis.  The expression of final executioner caspase, Caspase 3, has been studied as an 

indirect marker of apoptosis.   

1:15) Autophagy 

The word autophagy derives from Greek words, “auto” oneself and “phagy” to eat.  

Autophagy refers to a cellular degradation pathway that involves the delivery of cytoplasmic 

substrates to the lysosomes.   Three forms of autophagy are described (Klionsky 2005; 

Reggiori 2012). These include chaperone mediated autophagy, microautophagy and 

macroautophagy. These forms are involved in different physiological functions and also 

differ in the mode of delivery of cytoplasmic substrates. 
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In eukaryotic cells, macroautophagy (herein referred to as Autophagy) is the main regulatory 

degradation pathway and is involved in breakdown of long lived proteins and cellular 

organelles (Klionsky 2005; Reggiori 2012).  Autophagy is a highly conserved multi-step 

pathway, in which cytoplasmic substrates sequestered inside double membrane vacuoles are 

delivered to lysosomes. This involves formation and expansion of an isolation membrane 

called phagophore, which then fuses to form a double membrane vesicle called an 

auotphagosome.  The autophagosome then fuses with a lysosome to form an 

autophagolysosome, where the sequestered cytoplamic substrate is then catabolized by 

lysosomal enzymes (Klionsky and Ohsumi 1999; Klionsky 2005; Reggiori et al., 2012).   

 

Figure 1.11:  Schematic model for formation of the autophagosome or Cvt 

vesicle.  In the model shown on the left, a membrane sheet from a pre-existing 

organelle such as Endoplasmic reticulum (ER) is induced to separate, undergo 

deformation and form a spherical shape that eventually seals.  In this model, no 

additional membrane is needed for subsequent vesicle expansion.  In the second 

model shown on the right, a portion of membrane forms the nucleus of the 

autophagosome or Cvt vesicle. In Yeast this nucleus is called Pre-

autophagosomal structure (PAS).  Additional membrane of unknown origin is 

then added to allow subsequent membrane expansion (Klionsky, 2005). 
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1:16) Autophagy Flux 

Autophagy flux refers to the complete process of autophagy including the delivery of 

substrate to lysosomes and its subsequent breakdown and recycling.  It is important to note 

here that autophagy is a dynamic, multistep process that can be positively and negatively 

modulated at several levels.  Monitoring autophagy flux requires cautious interpretation.  For 

example, an accumulation of autophagosomes could reflect either increased autophagosome 

formation due to increased autophagic activity or reduced turnover of autophagosomes.  The 

latter can be due to defective autophagolysome formation or inefficient degradation of 

substrate (Reggiori et al., 2012).   

1:17) Autophagy in cellular homeostasis 

Autophagy is involved in protein and organelle turnover and bulk degradation in virtually all 

cells and is regulated in accordance with the intracellular energy and nutrient demands, 

structural remodelling and in degradation of accumulated toxic cytoplasmic aggregates.  This 

makes it an important component of cellular homeostasis in basal conditions and an adaptive 

response in response to nutrient depletion, growth factor withdrawal, high energy demands 

and conditions of cellular stress, for example during infection, oxidative stress and protein 

aggregate accumulation (Shintani et al., 2004; Rubinsztein 2007).  This degradation of 

proteins generates amino acids which can then be used for de novo synthesis of proteins or 

together with fatty acids used to maintain cellular Adenosine Triphosphate production.  

Autophagy is been implicated in limitation of DNA damage and chromosomal damage, 

however, the precise mechanism and the extent of its role is unclear and subject of ongoing 

research.   
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1:18) Autophagy in cell death 

Autophagy under most circumstances is an important part of cellular adaptive pathway that 

promotes cell survival during periods of cellular stress.  Paradoxically it is also considered to 

be an important contributor to non-apoptotic cell death or Programmed Cell Death Type II 

(PKD II) (Bursch et al., 2004).  PKD II has a well defined phenotype characterized by 

abundance of autophagosomes and autolysosomes in the dying cell and differs from apoptotic 

cell death in that the dying cell is degraded by its own lysosomes rather than by phagocytosis.  

While Apoptosis or Programmed Cell Death type I is the main mechanism of cell death, 

certain stimuli or conditions seem to induce Autophagy or PKD II as the main mode of 

cellular demise.   Also, certain stimuli can induce either apoptosis or autophagy in a mutually 

exclusive way, possibly due to different thresholds required for both processes (Maiuri et al., 

2007).  

 

Figure 1.12: Autophagy and apoptosis can be induced by similar stressors in a 

context-dependent fashion.  The exact mechanism of this process is not known 

however it could involve different sensitivity thresholds of the two processes or a 

degree of mutual inhibition between the two processes.  Also in some cases a 

mixed phenotype can be detected.  The prime function of autophagy remains 

adaptation to cellular stress but massive autophagy can result in cell death.   

(Maiuri et al., 2007) 
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1:19) Autophagy pathway 

The process of autophagy is governed by a diverse set of protein encoded by Autophagy 

related genes (ATG).  Most of these genes have been characterized and studied in Yeast and 

subsequent studies have identified highly conserved mammalian homologues.  Thirty six 

ATG proteins have been identified thus far and 16 of these are essential for all autophagy 

related pathways.  Upon induction, specific ATG proteins govern a tightly regulated 

hierarchal process (Itakura and Mizushima, 2010; Suzuki et al., 2007).  This involves 

formation of the phagophore with subsequent expansion into an autophagosome (Xie and 

Klionsky, 2007; Yoshimori and Noda, 2008).  The proteins are classified into four groups.  

1. The Atg1/ULK complex 

2. The phosphatidylinositol 3-kinase (PI3K) complex 

3. The Atg9 trafficking system  

4. 2 parallel ubiquitin like conjugation systems. 

The Atg1/ULK complex comprises of Atg1, Atg 13 and Atg 17 in yeast with the mammalian 

equivalents being ULK1/2, Atg 13 and Atg 101.  The complex has a central role in induction 

of autophagosome biosynthesis and is a terminal target of various signalling cascades 

including TOR, insulin, PKA and AMPK pathways (He and Klionsky, 2009).  Activation of 

Atg1/ULK kinase induces and upregulates autophagy.  ULK kinases (ULK 1, 2 and 3) are 

stimulated through phosphorylation and dephosphorylation modifications of various subunits 

of the Atg1/ULK complex.  The PI3K complex in mammals exist in three forms: class I, II 

and III.  Class I and III are involved in autophagy whereas the function of class II is currently 

unknown.  Class I is involved in modulation of signalling cascades and Class III PI3K 

regulate organelle biosynthesis.  Class III PI3K has three common components hVps34, p150 

(Vps 15 in yeast) and Beclin 1 (Atg 6 in yeast).  The fourth component can be either Atg 14L 
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or UVRAG (Atg 14 and Vps38 in yeast respectively) (Itakura et al., 2008; Liang et al., 2006; 

Sun et al., 2008).    

 The Atg14L containing complexes work by directing the Class III PI3K complex I to 

phagophore to produce phosphatidyl-inositol-3-phosphate (PI3P) which in turn initiates 

recruitment of other Atg proteins.  Atg14L exist on endoplasmic reticulum in all states of 

autophagy (Matsunaga et al., 2010).  Upon induction of autophagy, Atg14L localizes to 

autophagosome membranes (Itakura et al., 2010).  Depletion of Atg14L reduces PIP3 

production and impairs formation of autophagosome precursor proteins and inhibits 

autophagy.  

 

Figure 1.13:  Autophagy pathway in mammals. a.) Autophagy can be induced via 

mTOR dependent or independent pathways which stimulate the nucleation and 

expansion of the phagophore/isolation membrane. b.) A multi-protein complex 

surrounding BECN1 with PI3K activity (mediated by PIK3C3) is important for the 

formation of the autophagosomal membrane. c.) Two ubiquitin-like modification 

systems are essential for mammalian autophagy;  ATG12 is activated by ATG7 (E1 

step), transferred to ATG10 (E2 step), conjugated to ATG5 and subsequently forms a 

complex with ATG16. This step is necessary early in autophagy for the formation of the 

phagophore or isolation membrane. MAP1LC3 (LC3) is cleaved by ATG4, activated by 
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ATG7 (E1 step), transferred to ATG3 (E2 step), and conjugated to the phospholipid 

phosphoethanolamine (PE). This form known as MAP1LC3-II (LC3-II), localizes to the 

autophagosome membrane and is subsequently degraded in the lysosome. ATG4 

cleaves off a C-terminal arginine (R) to expose a glycine residue that is then being 

linked to PE. Rapamycin (Rap) inhibits mTOR and activates macroautophagy, while 3-

methyladenin (3-MA) and wortmannin (WM) inhibit the PI3K activity and de-activate 

macroautophagy.  (Jaeger and Wyss-Coray, 2009) 

 

The UVRAG containing class III PI3K complexes interact primarily with the endosomal 

transport pathways.  UVRAG initially associates with BAR-domain protein Bif-1 which may 

regulate mAtg9 trafficking from the trans-Golgi network (TGN) (Takahashi et al., 2007; 

Takahashi et al., 2011).  UVRAG then promotes the fusion of autophagolysosomes with late 

endosomes and/or lysosomes by interacting with class C vps/HOPS protein complex.  Lastly 

UVRAG-containing class III protein complex binds to Rubicon, a late endosomal/lysosomal 

protein that reduces hVps34 activity and thereby suppresses autophagosome maturation.   

Of note, both Atg14L and UVRAG containing PI3K complexes interact through Beclin 1 

with Ambra 1, which in turn tethers these protein complexes to the cytoskeleton via an 

interaction with dynein.  Once autophagy is induced, ULK1 phosphorylates Ambra 1 thereby 

resulting in the release of Class III PI3K complexes from dynein (Bartolomeo et al., 2010; 

Fimia et al., 2007).  PI3K class III complexes then trigger autophagosome formation.  Ambra 

1 thus constitutes the direct regulatory link between Atg1/ULK1 and the PI3K complexes 

(Bartolomeo et al., 2010).   

Atg9 is a highly conserved transmembrane protein that is essential for autophagy.  It is 

distributed to the phagophore assembly site (PAS) and multiple additional cytoplasmic 

tubulovesicular compartments derived from the Golgi (Noda 2000; Ohashi and Munro 2010; 

Reggiori et al., 2004).  Atg9 is thought to act as membrane carrier providing lipid building 
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blocks for the expanding phagophore (Reggiori et al., 2004) and is one of the first factors to 

localize to PAS together with Atg1/ULK and PI3K complexes. 

Two closely interconnected ubiquitin-like proteins Atg12 and Atg8/microtubule-associated 

protein (MAP1)-light chain 3 (LC3) form part of the core autophagy machinery (Ichimura, et 

al., 1998; Mizushima et al, 1998; Yang and Klionsky, 2010).  Atg12 is conjugated to Atg5 

through the activity of Atg7 (E1-like) and the Atg10 (E2-like) enzymes.  The Atg12-Atg5 

conjugate then interacts with Atg16 which then oligomerizes to form a large multimeric 

complex.  Atg4 protease cleaves the C-terminus of Atg8/LC3 and generates a cytoplasmic 

LC3-I with a C-terminal glycine residue. LC3 I then conjugates to phosphatidylethanolamine 

(PE) in a reaction that requires Atg7 and the E2 like enzyme Atg3.  This generates LC3 II, a 

lipidated form which is attached to both faces of the phagophore membrane.  Once the 

autophagosome is formed, Atg4 removes LC3 II from the outer autophagosome surface.   

The two systems are partially overlapping and closely interconnected.  The multimeric 

Atg12-Atg5-Atg16 complex localizes to the phagophore and acts as an E3-like enzyme 

determining the site of Atg8/LC3 lipidation.  On the other hand, Atg8/LC3 lipidation is 

essential for optimal function of the Atg12 conjugation system.  There is also evidence to 

suggest that these two conjugation systems function together during expansion and closure of 

the phagophore.   
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Figure 1.15:  Atg proteins and their interaction to form autopgaosome in response 

to mTORC1 or other environmental cues.  (Regiorri et al., 2012).   

 

Recent evidence suggests that autophagy is a highly selective process relying upon specific 

cargo-recognizing autophagy receptors which connect the cargo to the autophagic 

membranes.  Autophagy receptors are proteins capable of interacting with autophagosome 

cargo and the Atg8/LC3 family members through a specific (WxxL) sequence (Noda et al., 

2008), called LC3-interacting region (LIR) motif or LC3 recognizing sequence (LRS).  The 

autophagy receptors interact with specific adaptors which in turn function as scaffolding 

proteins that bring the cargo-receptor complex in contact with the core Atg machinery and 

allows for specific sequestration of the substrate.  Here, it is important to note that that the 

selective types of autophagy rely on the same molecular core machinery as non-selective 

(starvation-induced) bulk autophagy.  Also it seems that the autophagy receptors and 

specificity receptors are not required for non selective autophagy (Reggior, et al., 2012).   
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1:20) AKT/mTOR pathway 

An important regulator in the autophagy pathway is mTOR (mammalian target of 

Rapamycin) which directly phosphorylates Atg 13 thereby modulating its binding to Atg 1 

and Atg 17. Inactivation of TOR leads to rapid dephosphorylation of Atg 13 which increases 

Atg1-Atg13-Atg17 complex formation which in turn stimulates Atg 1 kinase activity leading 

to induction of autophagy (Kamada et al., 2000; Yang, and Klionsky, 2009).   Thus the 

activated PI3K/AKT/mTOR pathway negatively regulates autophagy.  The activity of the 

PI3K/Akt and the mTOR pathway is often constitutively up regulated in tumours as a result 

of stimulation by growth receptors and mutations of the PTEN (Phosphatase and Tensin 

homologue deleted on chromosome ten) tumour suppressor gene.  The tumour suppressor 

activity of PTEN is mainly implemented through its inhibitory effect on the PI3K-dependent 

activation of Akt signalling (McCubrey et al., 2006). 

As discussed previously, class III PI3K plays a role in early stages of autophagosome 

formation.  Class I PI3K activity inhibits autophagy and its effect is partly mediated via the 

mTOR pathway.  

In addition, Beclin 1 which is a part of Class III PI3K complex, also binds Bcl-2 pro-

apoptotic family members (Pattingre and Levine, 2006).  It is interesting to note here that the 

interaction of Beclin 1 with class III PI3K stimulates autophagy and inhibits oncogenesis 

while its interaction with Bcl-2 inhibits autophagy and stimulates oncogenesis (Pattingre and 

Levine, 2006).   

1:21) p62 and autophagy 

One of the best studied mammalian autophagy receptors is p62/sequestosome 1 (SQSTM1).  

It binds ubiquitinated protein aggregates through an ubiquitin associated (UBA) domain and 



 48 

to LC3 via LIR motif.  This triggers aggregate formation through the oligomerization of p62 

via its Phox and Bem1p (BP1) domain, thereby promoting specific autophagic degradation of 

ubiquitinated proteins.  Ubiquitination of proteins and organelles serves as a signal for 

recognition by p62 which are then themselves degraded together with the associated 

substrate.   P62 has been implicated in degradation of other substrates for example bacteria, 

viral capsid proteins, peroxisomes, damaged mitochondria and bacteriocidal precursor 

proteins.  Suppression of autophagy leads to accumulation of p62 in large aggregates which 

are also positive for ubiquitin (Komatsu et al., 2007; Nezis. et al., 2008).  P62 inclusion 

bodies have been detected in neurodegenerative conditions, liver disorders and also cancer, 

including malignant gliomas (Zatloukal et al., 2002, Moscat and Diaz-Meco, 2009).    

Recent evidence points to a much more central role of autophagy in tumour cell biology with 

influences on cell growth, survival and mitosis.  It biochemically links nutrient sensing to 

signalling cascades that regulate inflammation and reactive oxygen species (ROS) levels, an 

important mechanism for tumour cell survival  in conditions of autophagy defect (Moscat and 

Diaz-Meco, 2012).  Also recent evidence points to a role of p62 in cell cycle transit by means 

of its interaction with CDK1 (Moscat and Diaz-Meco, 2012). 

1:22) Autophagy in Glioma  

Resistance to apoptosis is characteristic of many cancer cells (Viktorsson et al., 2005; Ricci 

and Zong, 2006).  This has implications not only for tumourogenesis but also resistance to 

treatment including radiotherapy and chemotherapy (Okuda and Mak, 2004).   

Recent evidence suggests that gliomas are resistant to apoptosis or programmed cell death 

type I but seem to be less resistant to autophagic cell death or programmed cell death type II.  

Indeed Temozolomide, the most successful chemotherapeutic agent in glioblastoma, seems to 

work by inducing autophagic cell death in glioma cells rather than apoptosis (Kanzawa et al., 
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2004).  Kanzawa and colleagues demonstrated this in glioblastoma cell lines by 

demonstrating the induction of autophagy, recruitment of LC3 to autophagosome membranes, 

inhibition of tumour cell vibility and induction of G2/M arrest in malignant glioma cells 

when treated with clinically achievable dose of Temozolomide.  When autophagy was 

prevented in these cells at an early stage by PI3K inhibitor, LC3 localization to 

autophagosomes and antitumour effects of Temozolomide were suppressed.    

Other agents that induce autophagic cell death in cancer cells include tamoxifen, rapamycin, 

adenoviruses, and gamma irradiation (Ito et al., 2005; Paglin et al., 2001).  Radiotherapy and 

Temozolomide are important in this context as they are the mainstay of adjuvant treatment 

for glioblastoma.  Radiotherapy seems to induce autophagic cell death at least in glioma cell 

lines in vitro (Ito et al., 2005).  Temozolomide causes glioblastoma cells to undergo G2/M 

arrest and induce autophagic cell death (Kanzawa et al., 2004, Kanzawa et al., 2003).  Part of 

Temozolomide activity also seems to be by induction of late apoptosis.  This seems to be 

dependent on p53 and MGMT (methylated O
6
-methylguanine-DNA methyltransferase 

promoter) status.  Although contradictory, autophagy and apoptosis can be triggered by 

common upstream signals (LeFranc et al., 2007).  In certain circumstances apoptosis and 

autophagy can occur simultaneously whereas in other situations the cell switches between 

them in a mutually exclusive manner (LeFranc et al., 2007).    

1:23) Measurement of autophagy flux: 

Autophagy flux can be calculated by measuring the accumulation of autophagosomes as 

measured by electron microscopy image analysis, using green fluorescent protein (GFP) tag 

at the N-terminus, GFP-LC3, which is then reflected as an increase in punctuate dots under 

flouresecent microscope or western blot analysis of LC3 lipidation (conversion of LC3 I to 

LC3 II).  In mammals the LC3 subfamily contains LC3A, LC3B, LC3B2 and LC3C.  LC3 II 
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is the only protein marker that is reliably associated with completed autophagosomes and is, 

therefore, the most commonly used biomarker to calculate autophagy flux.  LC3B 

immunohistochemical expression has been described previously in glioblastoma (Aoki et al., 

2008). This thesis aims to investigate autophagy flux in glioblastoma by analysing the 

immunohistochemical expression of both LC3B and p62 in glioblastomas.   

1:24) Project aims: 

Glioblastoma oncogenesis is an area of active research and whilst our understanding of this 

subject continues to progress, the development of effective therapies remains slow and 

patient prognosis remains poor.  Markers of cell division cycle and apoptosis have been 

shown to be of prognostic and predictive value in other cancers, and the role of autophagy in 

oncogenesis is a subject of topical current research.  This thesis aims to analyse markers of 

cell division cycle, apoptosis and autophagy flux in Glioblastoma and to identify prognostic 

and/or predictive markers that can be employed in everyday practice to stratify and support 

clinical decision making in the management of patients with Glioblastoma.   
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Chapter 2 

Materials and Methods 

 

Ethical approval and patient consent – Collection of patient data - Tissue 

collection - Fixation - Processing - Paraffin embedding - Section cutting - 

Preparation of tissue micro-array - Haematoxylin and Eosin (H&E) 

staining - Immunohistochemistry for markers of apoptosis, autophagy and 

cell cycle phase - Quantification of immunohistochemistry results - 

Statistical analysis. 

  

2:1) Ethical Approval and patient consent:  

Approval to conduct the study was sought from the Local Research Ethics Committee, Hull 

and East Yorkshire Hospitals NHS Trust
1
.  This approval was initially obtained in 2002 to 

investigate the dysregulation of immune system in patients with intracranial tumours.  A 

further approval was obtained in 2008 to include research on markers of apoptosis and cell 

cycle phase distribution.  Patients were recruited following informed consent in accordance 

with the recommendations issued by the General Medical Council
2
.   

 

 

 

 

 

1
PIS/Studygroup/Version4 12/05/2008. Ww/CJB/JEP/10.04.00/version1/informed consent/r&ddept/ HEYHT 

2
General Medical Council – Research: The role and responsibilities of doctors, 2002. http://www.gmc-

uk.org/guidance/current/library/research.asp 
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2:2) Collection of patient data:  The data was collected on: 

 Patient demographics 

o Age 

o Sex 

 Pre-operative Karnofsky performance score 

 Date of diagnosis, taken as the date of first diagnostic biopsy  

 Date of surgery 

 Type of surgery (Based on surgeon’s observations recorded in the operative note) 

o Image guided biopsy 

o Debulking 

 Radiotherapy 

 Chemotherapy  

o PCV (Procarbazine, Lomustine and Vincristine) chemotherapy 

o Temozolomide chemotherapy  

 Date of death 

 Patient survival in days, calculated from the date of diagnosis 

 

The data was collected retrospectively for patients recruited to the study between 2002-

2007, using hospital notes, Neuro-oncology Multidisciplinary team meeting records, 

outpatient clinic letters and the information on Patient Centre
®3

.  Data was collected 

prospectively for patients recruited from June 2007 onwards.  All data was collected on 

Microsoft
®
 Excel spreadsheets and was stored in compliance with the Data protection Act 

1998
 4

.   

 

 

3
iSOFT PatientCentre 3.12.1102. Hull and East Yorkshire Hospitals NHS Trust intranet patient information 

software. 

4
Data Protection Act 1998. http://www.opsi.gov.uk/Acts/Acts1998/ukpga_19980029_en_1 
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2:3) Tissue collection:   

Tumour tissue was obtained from recruited patients intra-operatively and sent to the 

Neuropathology Unit at Hull Royal Infirmary for further diagnostic work.  Where possible, 

the tissue was sent fresh and upon receipt in the Neuropathology Unit, where feasible, 

approximately 1cm
2
 blocks of tumour tissue were snap frozen in a vial of liquid nitrogen and 

then transferred to a minus 75
o
C freezer (New Brunswick Scientific freezer, Scientific 

Laboratory Supplies).  The remainder of the tumour tissue was processed and embedded in 

paraffin wax as described later.  The frozen and paraffin embedded tissue were stored in the 

diagnostic archives of the Neuropathology Unit, Hull Royal Infirmary.  For the purpose of 

this research work, tissue blocks and stained diagnostic slides were removed and archived in 

accordance with the Human Tissue Act 2004
5
.  Stained research slides produced from the 

above material were catalogued and stored in locked cabinets at the Neuropathology Unit, 

Hull Royal Infirmary.     

 

2:4) Fixation:   

Neutral buffered formalin
6
 was used as for fixative for the biopsied tumour tissue.  

Depending on sample size, biopsies were fixed for 12-24 hours prior to processing and 

embedding. 

 

 

 

5
Human Tissue Act 2004. http://www.opsi.gov.uk/ACTS/acts2004/ukpga_20040030_en_1 

6
Neutral buffered Formalin: 40% formaldehyde 100ml, distilled water 900ml, sodium dihydrogen phosphate 

monohydrate 4g, disodium hydrogen phosphate anhydrous 6.5g. 
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2:5) Processing:   

Tissue processing allows tissue fixed in water based fixatives to be impregnated by paraffin 

wax.  The wax embedded tissue allows thin sections to be cut using a microtome.  This 

process involves the following steps: 

Dehydration:  This step moves the fixative and water from the tissue and replaces them with 

dehydrating fluid, usually using a series of alcohols of increasing concentration. 

Clearing:  This step involves the replacement of dehydrating fluid with a fluid that is totally 

miscible with both the dehydrating fluid and the embedding medium.  Chloroform is the 

agent used for clearing in our laboratory. 

 Impregnation:  The step replaces the clearing agent with the embedding medium. 

A typical automated 16 hour processing schedule, as used in our laboratory, is as follows: 

10% formalin starting solution (60 minutes), 70% alcohol (60 minutes), 90% alcohol (60 

minutes), Absolute Ethanol (4 cycles of 60, 90, 90 and 90 minutes), Chloroform (3 cycles of 

60 minutes), Histowax (Leica) (3 cycles of 90, 60 and 60 minutes).  Automated processing 

was performed using Leica TP1050 automated processing machine.   

 

2:6) Paraffin wax embedding:  Tissues were embedded in paraffin wax (Histowax, Leica) 

using a Leica EG1166 embedding station.  
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2:7) Section Cutting:  Sections of 4m thickness were cut using a cut using a rotary 

microtome (Leica RM2135).  The sections were cut onto coated glass slides
7
, dried on a hot 

plate and then transferred to a 37
o
C incubator till they were ready to be stained. 

 

2:8) Preparation of tissue micro-array:   

The tumour tissue blocks and slides were obtained from the diagnostic archive and were 

reviewed to ensure that the diagnosis of Glioblastoma conformed to the WHO 2007 

guidelines.  The representative tissue was identified by the author together with Dr IS Scott 

and the tissue slides and blocks were marked.  A tissue micro-array was then constructed by 

the author with a manual Tissue Micro-Arrayer
8
 using a 6mm needle. This was performed at 

the Neuropathology Department, Queen’s Medical Centre, Nottingham University Hospitals 

NHS Trust.  Sections (4µm) were then cut off the tissue micro-array block using a rotary 

microtome as described before. 

 

 

 

 

 

 

 

7
Superfrost

®
 Plus Slides, Menzel-Glaser, Menzel GMBH & Co KG, Braunschweig. 

8
Manual Tissue Arrayer 1, Beecher Instruments, Inc. USA. Supplied by Mitogen, UK. 
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2:9) Haematoxylin and Eosin (H&E) staining:   

The sections from the tissue micro-array on coated slides were heated on a hotplate for a 

minimum of 15 minutes, dewaxed in xylene over 5 minutes and then rehydrated by taking 

through a series of alcohols. The slides were stained with Gill III Haematoxylin
9
, rinsed in 

running tap water and differentiated with 1% acid alcohol
10

.  The sections were then rinsed in 

running tap water and blued in ammonia solution.  This was followed by counter stain with 

Eosin
11

.  The sections were then mounted in DPX
12

 (refractory index 1.52).  The H&E 

stained tissue micro-array slides were then analyzed to re-confirm the presence of 

representative Glioblastoma tissue in the arrays. 

 

 

 

 

 

 

 

 

 

09
Gill III Haematoxylin solution, Surgipath Europe Ltd. Peterborough, UK. 

10
Eosin Solution: Prepare a 1% solution of eosin and add a crystal of phenol to inhibit mould formation. Filter 

prior to use.  

11
1% Acid alcohol: 1% hydrochloric acid, 70% alcohol. 

12
BDH DPX mountant (VWR International, Poole, UK. Cat. No. 360294H) 
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2:10) Immunohistochemistry for markers of cell cycle phase, apoptosis and autophagy:  

Formalin fixed, paraffin-embedded tissue micro-array tissue sections on coated slides were 

stained using a technique standard in the Neuropathology Laboratory at Hull Royal 

Infirmary.  The slides were heated on a hotplate for a minimum of 15 minutes, dewaxed in 

xylene over 5 minutes and then rehydrated by taking through a series of alcohols.  The slides 

were rinsed in running tap water and placed in a solution of 3% hydrogen peroxide
12

 in 

distilled water for 30 minutes to quench endogenous tissue peroxidase activity.  The slides 

were then placed in a slide bath containing antigen retrieval citrate buffer solution
13

 and 

antigen retrieval was carried out by heating the slide bath in a microwave oven at 800 Watt 

for 4 minutes and 150 Watts for 16 minutes.  Following antigen retrieval, the slides were 

rinsed with running cold water.  The slides were then loaded on cover plates, placed into 

Sequenza racks and rinsed in phosphate buffered saline
14

 (Bio-stat Diagnostics system) for 7 

minutes.  5% Normal goat serum
15

 in phosphate buffered saline (PBS) was then applied to the 

slides for 20 minutes to block non-specific antibody binding sites.  Primary monoclonal and 

polyclonal antibodies were prepared to appropriate dilutions in PBS and applied to the slides 

(Table 2:1).  The slides were incubated with primary antibodies at room temperature for 60 

minutes.  Following incubation, the slides were rinsed with PBS for 7 minutes. 

 

 

 

12
3% Hydrogen peroxide solution: 3ml of H2O2 (30% w/v, Merck, Germany) in 100ml distilled water. 

13
Antigen retrieval citrate buffer concentrate. Preparation by adding 10ml of the buffer concentrate to 1000ml of 

distilled water, adjust pH to 6.0±0.1. (Cat. No. HDSO5, HD Supplies, Aylesbury, Bucks)   

14
Phosphate buffered saline (Lot number 450040, J T Baker, London UK).  

15
Normal Goat Serum (Dako): Preparation by diluting in phosphate buffered saline to make a 5% solution. 
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Secondary antibody (Dako REAL
TM

 Envision
TM

/HRP. Rabbit/Mouse ENV)
16

 was then 

applied to the slides and the slides incubated for 30 minutes.  The slides were rinsed with 

PBS for 7 minutes and this was followed by application of DAB+ Chromogen
17

.  The slides 

were incubated with DAB for 5 minutes.  The slides were then rinsed in PBS and Copper 

sulphate solution
18

 was applied to the slides for 5 minutes following which the slides were 

rinsed again with PBS.  Following this, the slides were removed from the Sequenza racks, 

rinsed in running tap water and counter stained in Gill III Haematoxylin for 30 seconds.  The 

slides were then rinsed in running tap water, differentiated in 1% acid alcohol
19

 and blued in 

ammonia solution.  This was followed by dehydration of slides and mounting as described 

before.  Details of individual primary antibodies, their suppliers, optimal concentrations and 

positive controls are given in the table 2:1.  The immunohistochemical staining was 

performed by the author of the thesis.   

 

 

 

 

 

16
Dako REAL

TM
 Envision

TM
 Detection System, Peroxidase/DAB+, Rabbit/Mouse. Code K5007.  The kit 

contains:  

1. Dako REAL
TM

 Envision/HRP Rabbit/Mouse (ENV). Dextran coupled with peroxidase molecules and 

goat secondary antibody molecules against rabbit and mouse immunoglobulins. 

2. Dako REAL
TM

 Substrate Buffer. Bufferred solution containing hydrogen peroxide and preservative. 

3. Dako REAL
TM

 DAB+ Chromogen. 3,3’-diaminobenzidine tetrahydrochloride in organic solvent.  

17
20µl of DAB+ Chromogen in 1000µl of substrate buffer.   

18
Copper sulphate solution: 4g hydrated copper II sulphate, 7.2g sodium chloride in 1000ml of distilled water. 
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Antibody Name Cataloque No. Description Final 

Dilutions 

Positive 

control 

MCM-2 antibody CRCT2.1 

(D1.9H5) 

Abcam ab6153 Mouse monoclonal 1:150 Tonsil* 

Geminin antibody 

 

Abcam ab12147 Rabbit polyclonal 1:100 Tonsil* 

Cyclin A antibody [6E6] 

 

Abcam ab16726 Mouse monoclonal 1:50 Tonsil* 

Histone H3 (phospho S10) 

antibody – Mitosis Marker  

Abcam ab5176 Rabbit polyclonal 1:200 Tonsil* 

Bcl-2 Clone 124 

 

Dako Mouse Monoclonal 1:50 Tonsil* 

Bcl-xl Clone 2H12 Sigma Batch No. 

B9429-0.2mL 

Mouse monoclonal 1:100 Hodgkin’s 

Lymphoma 

Bax antibody 

 

Abcam ab10813 Rabbit polyclonal 1:500 Tonsil* 

Bak antibody 

 

Abcam ab32371 Rabbit monoclonal 1:200 Tonsil* 

Active and pro Caspase 3 

antibody 

Abcam ab47131 Rabbit polyclonal 1:1500 Tonsil* 

LC3b Abcam ab51520 Mouse monoclonal 1:2000 Renal cell 

carcinoma 

p62 BD transduction 

Lab 610833 

Mouse monoclonal 1:50 Renal cell 

carcinoma 

*The tonsil used as a positive control denotes to normal human tonsil tissue. 

Table 2.1: Antibody details and dilutions. 
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2:11) Quantification of immunohistochemistry results:   

The number of stained cells per high power field (X40 objective, magnification X400) were 

counted and a semi-quantitative labelling index was calculated for markers of cell cycle and 

apoptosis using the following formula.  

Labelling index (LI) = Number of stained cells per high power field/Total number of cells per 

high power field.   

At least 9 high power fields were counted for each case.  

The staining of LC3B and p62 was calculated using a semi-quantitative staining score.  Both 

cytoplasmic and nuclear staining was taken into account.  The staining score was zero if 

negative and from 2-5 if positive, based on a sum of cytoplasmic staining intensity (1-3) and 

percentage of nuclear staining (1:less than 50%, 2:more than 50%).  Staining score of 0-2 was 

considered as low and 3-5 as high protein expression.     

The slides were reviewed independently by the author of the thesis, Dr IS Scott and Mrs 

Catherine Hills and the inter-observer variation was less than 5%.   

2:12) Statistical analysis:   

SPSS
20

 version 20 software was used for Univariate statistical analysis on the labelling 

indices of markers of apoptosis and cell cycle phase. Cox regression and Kaplan Meier 

survival curves were then calculated to demonstrate the association between patient survival, 

response to treatment and markers of apoptosis and cell cycle phase. 

 

 

20
SPSS. Statistical Package for the Social Sciences. www.spss.com/s 
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Chapter 3 

Results – Markers of cell division cycle 

Cell cycle markers - Clinical data - Labelling Indices & Prognosis - 

Cell cycle markers in recurrent Tumours - Phosphohistone H3 

(PHH3) - Discussion 

 

3:1) Clinical data 

A total of 66 patients were included in the study between 2007-2009.  All patients underwent 

neurosurgical intervention in the form of either a biopsy or debulking surgery,  and were 

further subdivided into two groups based on the administration of adjuvant treatment.  In 

group 1 (n=50), all patients underwent surgery and radiotherapy  with 24 of these patients 

also receiving temozolomide chemotherapy. Of note, 84% (n=42) of this group of patients 

underwent debulking surgery.  Patients in group 2 (n=16) underwent surgery only,  as 

adjuvant treatment, although planned, was not offered due to poor post-operative 

performance score.   A similar percentage of patients in  this group  also underwent debulking 

surgery (87.5%, n=14).  Table 1 gives the clinicopathologic details of patients in the two 

groups.   It was observed that the two groups although not completely homogenous, have 

similar median age (61 years vs. 67 years) and similar percentage of patients undergoing 

debulking surgery (84% vs. 87.5%).  This is important because as noted in chapter 1, age and 

debulking surgery are important prognostic factors in Glioblastoma.   

There were three cases of recurrent tumour that were studied in greater detail.  Two of these 

patients underwent debulking surgery, radiotherapy and temozolomide chemotherapy.  The 

third patient underwent debulking surgery on three occasions and radiotherapy was 

administered after first surgery. 
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 Group 1 Group 2 

N 50 16 

Median age (yr) 61 67 

Male : Female 33 : 17 7 : 10 

Median Survival (days) 258 65 

Debulking surgery (number of patients) 42 14 

Preoperative median Karnofsky performance score 60 50 

Image guided biopsy (number of patients) 8 2 

Radiotherapy (number of patients) 50 0 

Temozolomide chemotherapy (number of patients) 24 0 

Table 3.1: Clinical data of patients in cell cycle marker study 

 

3:2)  Labelling Indices & Prognosis 

Representative array sections for each marker are shown in Figure 3.1.  The median labelling 

indices of all three markers for group 1 and 2 are summarised in Table 3.2.  The median 

Mcm-2 labelling index (LI) in group 1 was 36.7% Kaplan Meier analysis (Figure 3.2a) did 

not reveal any association of this factor with survival (Log Rank p= 0.522) although linear 

regression analysis did reveal a positive correlation with survival (p=0.0376).  The median 

value of cyclin A LI in Group 1 was 4.2% and Kaplan Meier analysis (Figure 3.2b) showed a 

survival advantage for patients with a higher LI (Log Rank p=0.0063) and linear regression 

analysis showed a positive correlation with survival (p=0.004).  The median level of geminin 

LI in Group 1 was 7.8%.  Kaplan Meier analysis (Figure 3.2c) demonstrated a survival 
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advantage on patients with a higher geminin LI (Log Rank p=0.0046).  Linear regression 

analysis showed a positive correlation between geminin LI and survival (p=0.0006).  Survival 

correlations are shown in Figure 3.4. 

In group 2, there was no statistically significant relationship between patient survival and LI 

for Mcm-2, cyclin A and geminin (Figure 3.3a-c), although an association between high 

geminin expression and poor survival was observed (Log Rank p=0.1325).  The survival 

correlation curves for Mcm2, Geminin and Cyclin A labelling indices in group I and 2 are 

illustrated in Figure 3.5. 

 

 

 Group 1 

(n = 50) 

Group 2 

(n = 16) 

Mcm2 36.7 (22.9-51.8) 43.8 (33.5-51.1) 

Cyclin A 4.2 (2.4-6.9) 4.8 (3.8-6.4) 

Geminin 7.8 (5.8-10.5) 7.6 (5.9-9.1) 

Table 3.2:  Median Labelling indices (%) with interquartile range of cell cycle 

markers in group 1and Group 2 
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3.1a

3.1b 

Glioblastoma - H&E 

Figure 3.1a-h: Representative tissue micro-array discs showing tumours in which there has been 

greater than median survival following adjuvant therapy (a, c, e, g) and tumours showing a poor 

response after adjuvant therapy (b, d, f, h).  Adjacent levels in the array are shown to allow 

comparison of similar areas of the tumour.  It can be seen that in tumours where there is a good 

response to adjuvant therapy, there is elevated cyclin A and Geminin expression indicating a greater 

proportion of cells actively progressing through the cell cycle.  The total number of cells in cycle is 

also greater (Mcm-2 expression).   
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3.1c

3.1d 

Glioblastoma - Cyclin A (S-phase) 
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3.1e

3.1f 

Glioblastoma – Geminin (S-phase, G2-phase and Mitosis) 
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3.1g

3.1h 

Glioblastoma - Mcm-2 (Cell Cycle Entry) 
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3.2a p=0.522 

3.2b p=0.0063 

3.2c p=0.0046 

Figure 3.2a-c:  Kaplan Meier survival curves for Mcm2, Cyclin A and Geminin in 

Group 1 (n=50).  Kaplan-Meier curves calculated on the basis of marker LI being 

greater than (green) or less than (red) the median level.  



 69 

3.3a p=0.6209 

3.3b p=0.1325 

3.3c p=0.7847 

 

Figure 3.3a-c:  Kaplan Meier survival curves for Mcm2, Cyclin A and Geminin in 

Group 2 (n=16).  Kaplan-Meier curves calculated on the basis of marker LI being 

greater than (green) or less than (red) the median level.  
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 Figure 3.4:  Correlation curves for Mcm2, Geminin and Cyclin A LIs in Group 1 
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 Figure 3.5:  Correlation curves for Mcm2, Geminin and Cyclin A LIs in Group 2 
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3:3) Cell cycle markers in recurrent tumours  

In the three patients with recurrent tumour, the LIs of Mcm2, Cyclin A and Geminin reduced 

by more than 50% after administration of adjuvant treatment (radiotherapy and temozolomide 

in 2 cases and radiotherapy alone in the third case).  In the third case, the LIs of all three 

markers reduced after radiotherapy but these increased again by the time of third surgical 

procedure (figure 3.5). 

 

 

 

Figure 3.6: Mcm2, Cyclin A and Geminin labelling indices in three cases of recurrent 

Glioblastomas, (numbered 1, 2 and 3) and represented in three different colours.   The 

three biopsies are represented by a, b and c for each case (Only case 3 had three 

biopsies). 
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3:4)  Phosphohistone H3 (PHH3): 

Phosphohistone H3 (PHH3) is a marker of mitosis.  Analysis of PHH3 was performed in 30 

patients due to lack of representative tumour tissue micro-array cores.  A representative 

example of PHH3 immunohistochemical staining is shown in Figure 3.6.  The median LI for 

pH3 was 8.3% with an IQR of 4.5-13.7%.  On Kaplan Meier survival analysis, no significant 

correlation was observed between pH3 LI and patient survival (Log Rank p=0.819, figure 

3.7).  Linear regression also failed to show any significant relationship between PHH3 LI and 

patient survival (p=0.702, R
2
=0.0057, figure 3.8).  Here, it is important to note that the LIs of 

cyclin A and Geminin still correlated significantly with patient survival in these 30 patients 

(Log Rank p=0.004 and p=0.0006 respectively). 

 

 

Figure 3.7: IHC staining of Glioblastoma tissue with PHH3 identifying mitotic cells 

– (Objective 40X) 
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Figure 3.8: Kaplan Meier survival curve for PHH3. Kaplan-Meier curves calculated on the 

basis of marker expression being greater than (green) or less than (blue) the median level.  

Log rank p=0.819.   

 

 

Figure 3.9: Survival correlation curve for PHH3 LI 
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3:5) Discussion: 

Mcm-2 is a marker of cell cycle entry and is more inclusive than the widely used marker 

Ki67 in this regard because Ki67 fails to detect cells in the greater part of G1-phase (Scott et 

al., 2005).  Mcm-2 expression increases with increasing tumour grade in oligodendrogliomas
 

(Wharton et al., 2004) and astrocytomas
 
(Scott et al., 2005) and correlates well with the Ki67 

labelling index
 
(Wharton et al.,2004; Scott et al., 2005).  The expression of Ki-67 was 

therefore not studied in this thesis.  A high level of expression of Mcm-2, representing a 

proliferating population of cells in glioblastoma is not unexpected as these are biologically 

aggressive tumours and thereby represent an important challenge in terms of treatment.  No 

significant relationship between Mcm-2 expression and patient prognosis was identified 

however.  This is possibly due to the fact that Mcm-2 is expressed by all cells that have 

entered cycle.  It has been shown previously that a number of these cells will be stably 

arrested in the G1-phase of the cycle where they are not susceptible to adjuvant therapy 

(Scott et al. 2005).  Thus, a high Mcm-2 LI may not correlate with increased susceptibility to 

adjuvant therapy if a large proportion of the cells detected by this marker are arrested in G1-

phase.  It is a well established fact that radiation sensitivity varies with different phases of the 

cell cycle with cells at the G1/S transition and prophase of Mitosis being the most sensitive 

(Hama et al., 2003; Tersima & Tolmach, 1963).  These phases will be specifically detected 

by cells expressing cyclin A (S-phase) or geminin (S-phase through to Mitosis); markers that  

were found to correlate with survival following adjuvant therapy. 

In mammalian cells, cyclin-A expression is limited to the S-phase of the cell division cycle 

where it forms a complex with cdk2 and is important in the initiation of DNA 

replication(Pines and Hunter, 1992).  Cyclin-A expression has also been reported to increase 

with increasing tumour grade in astrocytomas (Scott et al., 2005) and higher expression has 
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been shown to correlate significantly with patient prognosis in low-grade astrocytomas but 

not in high grade astrocytomas (Shresta et al., 2007).  Here, an elevated level of cyclin-A 

expression was associated with improved patient survival only in patients receiving adjuvant 

treatment.  This suggests that an elevated S-phase fraction, as estimated by cyclin-A 

expression, predicts those tumours that are more sensitive to adjuvant treatment because they 

have an increased proportion of cells in S-phase, replicating DNA.  In patients not receiving 

therapy, a high cyclin A LI may be detrimental to survival as the tumour is likely to grow 

more rapidly.  Mammalian cells express nuclear geminin in S-phase, G2-phase and in mitosis 

until the stage where the nuclear membrane breaks down (Wohlschlegel et al. 2002).  

Increased geminin expression has been found in many types of human neoplasm including 

oral squamous cancer (Tamura et al., 2010), colorectal cancer (Nishihara et al. 2009), breast 

cancer (Gonzales et al., 2004), oligodendrogliomas (Wharton et al. 2004) and astrocytomas 

(Shresta et al., 2007).  High geminin expression has been demonstrated to correlate 

significantly with patient survival in anaplastic astrocytomas but not in glioblastomas 

(Shresta et al., 2007).  Again, this study demonstrated a strong association between geminin 

expression and patient survival, but only in patients who received adjuvant treatment.  In a 

similar way to that proposed for cyclin A, this correlation is likely to be because geminin is 

detecting actively proliferating cells; that population of tumour cells most sensitive to 

chemo/radiotherapeutic intervention.  The failure of these markers to predict survival in 

patients not receiving adjuvant therapy implies that the effect being detected is related to 

therapy rather than features relating to the intrinsic biology of the tumour.  Indeed, a high LI 

for cyclin A &/or geminin in untreated tumours confers an adverse prognosis due to rapid 

tumour growth.  Previous studies have suggested that geminin in tumour cells is most often 

present in a non-mutated form with a low mutation frequency and there is no evidence for 

amplification of the gene in breast cancer (Gonzales et al., 2004).  Thus it would appear that 
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the predictive properties of geminin expression are related to its normal biological function in 

cell cycle replication rather than a mutation or amplification causing loss of suppressor 

function; indeed, dysregulation of geminin during G1 may suppress tumour growth (Yoshida 

et al., 2004). 

Traditionally, counts of mitotic figures have been used to identify grade  in gliomas whereby 

increased number of mitotic figures suggests higher tumour grade and therefore poor 

prognosis.  However, mitotic figures only detect a subpopulation of cells in mitosis i.e., those 

that have progressed beyond the formation of metaphase plate.  Phosphohistone H3 (PHH3) 

is a surrogate marker of mitosis and overcomes this disadvantage by identifying cells in 

prophase; cells which are considered sensitive to effects of adjuvant treatment.  Mitotic figure 

counts and PHH3 LIs are known prognostic factors in tumours like breast cancer (Skaland et 

al., 2009) and malignant melanoma (Ladstein et al., 2012).   In this study, no significant 

correlation of PHH3 LI with patient survival was observed, both on Kaplan Meier analysis 

and linear regression.  PHH3 analysis was however possible in only 30 patients due to lack of 

representative tissue sample and this could have impacted on the results due to the relatively 

small cohort size.  It is important to note here that even in this cohort of 30 patients, Geminin 

and Cyclin A expression correlated positively with survival.    

The expression of Mcm-2, cyclin-A and geminin in the three recurrent cases decreased after 

the administration of adjuvant treatment.  This reinforces the above observations that the 

effects of adjuvant treatment is likely to be cell phase specific and the cell populations that 

are removed by treatment are those cells that are actively replicating.  The cell population in 

G1 does not appear to be affected by treatment.  In case 3, there was an increase in the 

expression of all three markers at the time of the third surgical procedure, suggesting that 

although radiotherapy was able to reduce the number of actively replicating cells at the time 
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of second surgery, the effect was not sustained,  suggesting biological recovery of the tumour 

after the cessation of therapy.  These data also provide a histological explanation for the 

common observation that the treatment effects, while effective in the initial stages, eventually 

fail to control the disease process. 

In summary, the data show that high cyclin-A and geminin expression in glioblastomas was 

able to predict post-operative survival following adjuvant therapy by identifying those 

tumours with a high S-phase fraction or proliferating cell component.  Cyclin A and geminin 

were superior Mcm-2 as markers of survival in these tumours, as Mcm2 also detect cells 

resident in G1-phase which are not actively proliferating and are thus contributing little to 

tumour growth.  The incorporation of geminin into diagnostic panels for glioblastoma is 

therefore likely to assist oncologists in the selection of appropriate adjuvant 

chemo/radiotherapy especially where the decision is equivocal or complicated on other 

grounds.   
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Chapter 4 

Results – Markers of apoptosis 

Markers of Apoptosis – Discussion 

 

4:1)  Markers of Apoptosis: 

Due to the limitation of available representative tumour tissue micro-array cores, markers of 

apoptosis  could only be analyzed in 28 patients.  The clinical details of these patients are 

summarized in table 4.1.  A total of 5 apoptotic markers were used: Bcl2, Bcl-xl, Bak, Bax 

and Caspase 3.  The representative examples of glioblastoma immunohistochemical staining 

are illustrated in Figures 4.1 a-e.   

N 28 

Median age (yr) 61 

Male : Female 17 : 11 

Median Survival (days) 258 

Debulking surgery (number of patients) 25 

Preoperative median Karnofsky performance score 70 

Image guided biopsy (number of patients) 3 

Radiotherapy (number of patients) 24 

Temozolomide chemotherapy (number of patients) None  

Table 4.1:  Clinical data in patients in apoptotic markers study 
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Bax staining was too diffuse to be considered as credible staining (figure 4.1c) and in spite of 

using antibodies from 2 different sources, different dilutions and different 

immunohistochemistry protocols, the staining was not deemed to be quantifiable.  Bcl2, Bcl-

xl, Bak and Caspase 3 produced specific cytoplasmic staining (figures 1b-1d) and the 

labelling indices were calculated as detailed in Table 4.2.   

Fig 4.1a: Bcl2 

Fig4.1b: Bclxl 

 Fig 4.1c: Bax 
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Fig 4.1d: Bak 

Fig 4.1e: Caspase 3 

Figures 4.1a-e:  Representative examples of Glioblastoma IHC staining with Bcl2, 

Bcl-xl, Bax, Bak and Caspase 3 (Objective 10X).   

 

 Labelling Index % with interquartile range 

Bcl2 8.1 (2.3-11.8) 

Bcl-xl 1.84 (0.87-3.7) 

Bak 16.1 (6.9-25.2) 

Caspase 3 50.2 (34.56-72.9) 

Table 4.2: Median Labelling indices (%) with interquartile range of apoptosis 

markers 
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The survival correlation curves of Bcl2, Bcl-xl, Bak and Caspase 3 labelling indices are 

shown in Figure 4.2.  On Kaplan Meier survival analysis only, Bak LI correlated significantly 

with patient survival (Log rank p=0.0039, Figure 4.3c) with Bal LI values above median 

conferring a survival disadvantage.  Linear regression Bcl2, Bcl-xl and Caspase 3 Labelling 

indices did not correlate with patient survival (Figure.  4.3a, 4.3b, 4.3d, table 4.3). 

 

 

 

 

 

Figure 4.2: Survival correlation curves for Bcl2, Bcl-xl, Bak and Caspase 3 labelling 

indices 
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4.3a

4.3b



 84 

4.3c

4.3d 

Figures 4.3a-d:  Kaplan Meier survival curves for Bcl2, Bcl-xl, Bak and Caspase 3 LIs. 

Kaplan-Meier curves calculated on the basis of marker LI being greater than (green) or 

less than (blue) the median level.   
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 Log rank  

(p value) 

Linear regression  

(p value) 

Bcl2 0.166 0.389 

Bcl-xl 0.876 0.307 

Bak 0.0039 0.011 

Caspase 3 0.596 0.869 

Table 4.3:  Log rank and linear regression p values for markers of apoptosis 

 

4:2) Discussion: 

The sample size for analysis of apoptosis was limited to 28 patients due to lack of 

representative tumour tissue.   The labelling indices for two anti-apoptotic (Bcl-2, Bcl-xl) and 

two pro-apoptotic (Bax, Bak) members of the Bcl-2 protein family were analysed.  Bcl-2 and 

Bcl-xl over-expression in glioma cell lines  has been shown to be linked with increased 

tumour cell motility and resistance to apoptosis (Wick et al. 1998).  Also, Bcl-2 inhibitor 

ABT-737 was shown recently to induce apoptosis in glioblastoma cells both in vivo and in 

vitro by inducing the release of BAX from its partner Bcl-2 (Tagscherer et al. 2008).  Bcl-2 

and Bcl-xl protein expression, however, had not been significantly correlated with survival by 

previous investigators (Martin et al., 2001; Kraus et al., 2001; Strik et al., 1999).  In keeping 

with the existing literature, no significant correlation between Bcl-2 and Bcl-xl LIs with 

patient survival was observed in the current study.  Whilst this could be due to the small 

sample size of the study, an important point in this regard is the observation made by Martin 

et al. (2002) who observed low expression of Bcl2 and Bax in glioblastoma with 
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immunohistochemistry but vice versa on immunoblotting suggesting a differential expression 

of these proteins in different cells.   

Negative expression of pro-apoptotic Bax protein has been linked to adverse clinical outcome 

by Ruano et al (2008) in a DNA microarray study study on 20 Glioblastoma samples.  Here 

problems were encountered with quantification of Bax immunohistochemical staining.  This 

was in spite of trying two different antibodies from different sources and using different 

immunohistochemistry protocols.  This could be due to the fact that Bax exists in different 

isoforms (Cartron et al., 2003) and current available antibodies are unable to differentiate 

between the different isoforms thereby producing a diffuse cytosolic staining which is 

difficult to quantify.   

Bak is an important pro-apoptotic member of the Bcl-2 family that plays a role similar to Bax 

in the intrinsic pathway of apoptosis.  Bak protein expression has been studied in 

glioblastoma tissue (Cartron et al., 2003) and glioblastoma cell lines (Cartron et al., 2003; Jin 

et al., 2006).  Cartron and colleagues have described the severe impairment of the apoptotic 

pathways when glioblastoma cell lines were deficient in both Bax and Bak.  There are 

however no studies which have correlated Bak protein expression with survival.  The current 

study, a significant correlation of Bak expression with patient survival with higher expression 

of Bak correlating with poor prognosis, in spite of the small sample size was discovered.  

This result is contrary to what was expected as increased Bak expression has been previously 

shown to be associated with increased sensitivity to apoptosis - inducing therapies which in 

turn translates in to enhanced patient survival.  The results will therefore have to be verified 

by studying the protein expression in a larger sample size and with other methods.  These 

results may suggest a so far unknown role of Bak in glioblastoma oncogenesis and therefore 

needs to be investigated further. 
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Caspase 3 is the final effector caspase in the apoptosis pathway and its position as the last 

common step in apoptotic pathway makes it a useful indirect marker of apoptosis (Mellai et 

al., 2007).  Increased immunohistochemical expression of caspase 3 has been associated with 

increasing tumour grade and early recurrence in meningiomas (Konstantinidou et al., 2007).  

In gliomas, immunohistochemical analysis of caspase 3 expression increases with increasing 

tumour grade but no significant correlation with prognosis has been observed (Kobayashi et 

al., 2007).  Here, in agreement with previous work no correlation of caspase 3 LI with patient 

survival was observed.  Here it is important to note that Kobayashi et al. have used an 

antibody specific to cleaved caspase 3 in 21 patients with glioblastoma whereas the antibody 

used in this project identifies both the pro- and cleaved or activated form of caspase 3.  Also 

important to note is that Vakkala et al. used an antibody similar to ours but use a staining 

score system rather than a labelling index,   the former is generally considered to be a lot 

more subjective.  Based on the results in this thesis, a study on larger number of patients with 

an antibody against the cleaved form of caspase 3 is recommended. 
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Chapter 5 

Results – markers of autophagy flux 

Markers of autophagy flux – Autophagy markers in Giant 

cell glioblastoma – Autophagy markers in recurrent 

glioblastoma - Discussion 

 

5:1) Markers of Autophagy  

Immunohistochemical staining of autophagy flux markers, LC3b and p62, was analysed in 45 

of the total 66 patients, due to lack of representative tumour tissue cores.  Of the 45 patients, 

39 patients underwent debulking surgery.  All patients had cranial irradiation and 20 patients 

received temozolomide.  The clinical details are summarized in Table 5.1.   

 

N 45 

Median age (yr) 61 

Male : Female 30 : 15 

Median Survival (days) 269 

Debulking surgery (number of patients) 39 

Preoperative median Karnofsky performance score 60 

Image guided biopsy (number of patients) 6 

Radiotherapy (number of patients) 45 

Temozolomide chemotherapy (number of patients) 20 

Table 5.1:  Clinical data of patients in Autophagy markers study 
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Representative microarray immunohistochemical staining of LC3B and p62 is illustrated in 

Figure 5.1.  LC3B and p62 staining was quantified as described in chapter 2 and figure 5.1 

also demonstrates the representative samples for each criterion in the quantification method.  

LC3b and p62 have similar staining characteristics and a significant correlation was observed 

between LC3b and p62 staining scores (Linear regression p=0.001, R
2
=0.22, Figure 5.2).  

 

   LC3B   p62 

Cytoplasmic 

staining Intensity 1 

  

Cytoplasmic 

staining Intensity 2 

  

Cytoplasmic 

staining Intensity 3 
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Nuclear staining 

<50% 

  

Nuclear staining 

>50% 

  

 

Figure 5.1: Immunohistochemical staining of LC3B and p62 IN Glioblastoma cores 

(Objective 10X).  Illustrated are examples of each criteria used in calculating the 

staining score oh LC3B and p62 staining scores. 

 

 

Figure 5.2: Correlation between p62 and LC3b staining scores. Linear regression p=0.001. 
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The survival correlation curves for the staining scores of both markers are shown in figure 

5.3.  Linear regression analysis did not show any significant relationship between p62 and 

LC3b staining scores with survival (p=0.29 and p=0.92 respectively).  Kaplan Meier survival 

analysis revealed a significant negative relationship between raised p62 staining score and 

patient survival (Log rank p=0.017, figure 5.4a). LC3b staining score however did not 

correlate significantly with patient survival on Kaplan Meier analysis (Log rank p=0.68, 

Figure 5.4b).   

 

 

 

Figure 5.3:  Survival correlation curves for LC3B and p62.  
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Fig 5.4a 

Fig. 5.4b 

Figure 5.4: Kaplan Meier survival curves for LC3b and p62.  Kaplan-Meier curves 

calculated on the basis of marker staining score being greater than (green) or less 

than (red) the median level.  

 

 



 93 

5:2) Autophagy markers in Giant cell Glioblastoma 

In this regard, an interesting finding was the distinct and heavy staining patterns of both LC3b 

and p62 observed in Giant cell glioblastomas as illustrated in Figure 5.5.  Giant cell 

Glioblastomas have a worse prognosis as compared with the usual glioblastoma phenotype 

and the suggested survival disadvantage for higher p62 staining score would be in keeping 

with this.   
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Figure 5.5: Staining patterns of LC3B and p62 in usual and Giant cell Glioblastoma 
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5:3) Autophagy markers in recurrent tumours: 

Analysis of LC3B and p62 staining scores in the three cases of recurrent glioblastoma did not 

show any significant variation (Figures 5.6 and 5.7).  As described in Chapter 3:1:1, case 1 

and case 2 underwent debulking surgery, radiotherapy and temozolomide chemotherapy.  

Case 3 underwent debulking surgery on three occasions and radiotherapy was administered 

after first surgery. 
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Figure 5.6: Representative staining examples and staining scores LC3b in three cases of 

recurrent glioblastoma. 
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Figure 5.7: Representative staining examples and staining scores p62 in three cases of 

recurrent glioblastoma. 
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5:4) Discussion: 

LC3b and p62 analysis was possible in only 45 patients.   Here, LC3B staining was not 

significantly associated with patient survival by either linear regression or Kaplan Meier 

survival analysis.  It is important to note here that the antibody used detects both cellular 

forms of LC3b i.e., LC3b I and LC3b II.  Whilst LC3b I is cytosolic in distribution, LC3b II 

is associated with autophagosome membrane and autophagy induction leads to an increase in 

LC3b II.  This probably explains the diffuse but punctate staining that was observed in our 

study.  The two cellular forms of LC3b can be detected by immunoblotting but a 

commercially available antibody which differentiates between the two forms on 

immunohistochemistry is currently not available.  To date, a study by Aoki et al. (2008) is the 

only previous study to have reported LC3b immunohistochemical analysis in glioblastomas.  

The study involved 65 patients with Glioblastoma and both immunoblotting and 

immunohistochemical analysis of LC3b was performed.  Whilst they reported a significant 

relationship between LC3B and Karnofsky performance scale score, there was no significant 

relationship with survival.  It is important to note here that Aoki et al. did not take into 

account the nuclear staining of LC3b and secondly the cytoplasmic staining was classified as 

weakly positive or strong positive.  In  this thesis, both nuclear and cytoplasmic staining were 

taken into account as nuclear presence of LC3b and LC3b shuttling between nucleoplasm and 

cytoplasm is a well known although poorly understood concept (Drake et al., 2010).  Also, 

the thesis has employed a more quantitative method of analysing the staining, thereby 

reducing the extent of subjectivity in analysis.  The study found no association between 

cytoplasmic staining scores and patient survival.   

Interestingly a positive association between LC3b and p62 staining scores was observed.  

Similar immunohistochemical analysis in glioblastomas has not been reported before.  This 
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observation is in keeping with the study by Shvets et al. (2008) who described how LC3 

recruits p62 into autophagosomes, the role of this interaction requires further investigation.   

A significant negative correlation between p62 staining and patient survival on Kaplan Meier 

survival analysis but not on linear regression was discovered.  To the author’s knowledge, 

this has not previously been reported in glioblastoma.   Similar observations have however 

been made in non-small-cell lung cancer where higher levels of p62 are associated with poor 

prognosis (Inoue et al., 2012).  Also p62 expression increases with increasing grade in breast 

Cancer (Rolland et al., 2007).  The role of p62 in oncogenesis remains a subject of active 

current research (Puissant et al., 2012).   p62 accumulation is not only an indication of 

autophagy blockade but is also associated with an amplification of pre-tumoural signalling 

with its presence at crossroads between multiple pro-oncogenic tumoural pathways (Puissant 

et al., 2012).   

Another interesting observation is the high staining scores of LC3b and p62 observed in giant 

cell glioblastoma.  This has not been reported before and probably contributes to the poor 

prognosis associated with these tumours as compared with the usual glioblastoma (Louis et 

al., 2007).   

Analysis of three cases of recurrent Glioblastoma did not reveal any significant change in the 

staining scores of LC3b or p62.  Although the number of cases is too small to draw definite 

conclusions, this observation suggests that adjuvant treatments including radiotherapy and 

temozolomide, do not affect the autophagy flux in the surviving tumour cells.    

This analysis of immunohistochemical expression of LC3b and p62 suggests that autophagy 

plays an important role in glioblastoma oncogenesis and probably contributes to the high 

degree of resistance that these tumours exhibit towards available treatments.  As described in 

chapter 1, immunohistochemical analysis of LC3b and p62 provides an indication and not the 
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exact state of autophagy flux and our results certainly encourage the need for further research 

in this field in Glioblastoma and other CNS tumours possibly with addition of more methods 

of protein quantification.     
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Chapter 6 

Conclusions and future work 

Improving patient survival remains a challenge in the management of Glioblastoma and in 

spite of advances in neuroradiology, image guided neurosurgery, neuropathology and 

neurooncology, prognosis remains poor.  Age, performance score, gross total surgical 

resecttion, radiotherapy, temozolomide, MGMT status and IDH-1 are well described and 

established prognostic markers in glioblastoma.  Whilst clinical experience and published 

data suggest that most patients with glioblastoma will be dead within fifteen months of 

diagnosis, in spite of maximal treatment, approximately 3-5% will survive much longer and 

seem to respond to the established treatments better than would be predicted (Krex et al., 

2007) with isolated case reports of patient surviving up to 20 years after diagnosis (Sperduto 

et al., 2009).  This clearly points to biological differences which, if identified, would help to 

predict treatment response and drive future research in to targeted therapy.   

The analysis of complex pathways of cellular proliferation, differentiation, apoptosis, stress 

response, survival and DNA damage response are the subject of intense current research with 

an aim of identifying unique molecular signatures and biomarkers of prognostic and 

predictive significance in cancer.  Identification of such markers will enable more focused 

targeting of existing therapies to patients who are likely to respond well to them.  The aim of 

this thesis was to study the expression of a panel of cell division, autophagy and apoptosis 

markers in glioblastoma in an attempt to identify biomarkers prognostic and/or predictive 

significance.  The markers used are readily available and can be applied to routine diagnostic 

immunohistochemistry (IHC) and neuropathology practice. 

This study involved construction of tissue micro-array for IHC analysis of a panel of 

biomarkers.  This not only proved cost effective in terms of antibody use but also allowed 
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standardised IHC staining as all representative glioblastoma tissue samples could be analysed 

on three slides which were processed together. 

This study has its limitations.  Firstly, the sample size was small which prevented the 

application of more advanced statistical analysis.  Secondly, only a single semi-quantitative 

method of protein expression was used.  The results will therefore need further validation by 

the use of another techniques particularly immunoblotting and also real time reverse 

transcription quantitative PCR (polymerase chain reaction) for mRNA expression of the 

studied markers.  Thirdly, none of the patients in the study had charactererization of MGMT 

and IDH-1 which are now known to be important prognostic markers.  This was due to the 

fact that MGMT analysis was not in clinical use at Hull Royal Infirmary at the time of this 

study and IDH-1 was only reported as a prognostic marker in glioblastoma in 2009.  Inspite 

of these limitations, this work has led to some interesting and significant results.    

Whilst IHC expression of cell cycle markers has been studied previously in glioblastoma, a 

marker of prognostic significance has not been reported.  This work has identified two cell 

cycle markers, Cyclin A and Geminin to be of prognostic significance in glioblastoma and 

the results also point to a significant predictive value.   

The study also reconfirms the observation that the effects of adjuvant treatment is cell cycle 

phase specific and seems to target cell populations in S and G2 phase of the cell cycle; 

populations identifiable by cyclin A and geminin expression.  The incorporation of cyclin A 

and Geminin in the neuropathology diagnostic panel would therefore provide neurooncology 

multidisciplinary teams with additional prognostic information that could aid in decision 

making and help to better target currently available adjuvant treatments.  

Apotosis has been a subject of extensive research in cancer in general and glioblastoma in 

particular.  The current study used five common, important, markers of apoptosis and showed 
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a negative correlation between Bak IHC expression and patient survival, in spite of the small 

sample size.  To the author’s knowledge, this correlation has not been reported previously in 

the literature.  This observation however needs further investigation as it suggests a role of 

Bak in glioblastoma oncogenesis beyond its known pro-apoptotic function; such a function 

could have major implications for understanding key biological processes as well as 

prognostic value. 

Autophagy flux and autophagic cell death is an extremely “hot topic” currently in cancer.  

IHC analysis of autophagy flux is difficult and this study is the first to analyse and quantify 

the IHC expression of two markers (LC3b and p62) of autophagy flux in gliblastoma.  A key 

finding was the significant negative correlation between p62 expression and patient survival; 

this clearly points to autophagy flux playing a major role in glioblastoma onncogenesis.  

Whilst a recommendation for routine clinical use of p62 as a prognostic marker cannot be 

made at this stage, the study clearly identifies an area for future research and suggests a 

possible target for interventions.   

Currently glioblastoma oncogenesis and targeted therapy is the subject of ongoing research 

(Westermark, 2012; Ohka et al., 2012).  The Cancer Genome Atlas (TCGA) project 

catalogues genomic abnormalities involved in the development of cancer using wide ranging 

techniques and its analysis has led to a recent description of glioblastoma subclassification in 

to four types based on gene expression, somatic mutations and DNA copy number (Cancer 

Genome Atlas Research Network, 2008; Verhaak et al., 2010).  These subtypes are 

characterized by PDGFRA, IDH1, EGFR and NF1 pathway abnormalities.  This sub-

classification will need to be considered in relation to other studies such as those conducted 

here as a focus on cell cycle and autophagy machinery is relevant as these pathways act as an 

integration point for information transduced through upstream pathways.  The results of this 
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thesis are not only likely to be useful in every day clinical practice and management of 

patients with glioblastoma but they also provide material for further research into cell cycle 

and in particular autophagy machinery in an effort to identify prognostic and predictive 

biomarkers and targets for future therapies.    
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Table 1:  Group 1 cell cycle markers 

No.  Sex Date of 

Diagnosis 

Survival 

(days) 

Age at 

Diagnosis 

(years) 

Procedure  

1-Debulk, 

2-Bx 

Geminin 

% 

MCM-

2 % 

Cyclin 

A % 

Karnovsky 

Score 

Radiotherapy PCV 

Chemo-

therapy 

Temozolomide 

1 F 20/11/2002 170 53 1 16.15 20.40 7.68 80 Yes No No 

2 F 01/02/2003 144 61 1 4.68 43.73 3.97 70 Yes No No 

3 M 13/02/2003 285 55 1 4.50 27.99 2.72 60 Yes No No 

4 M 02/07/2003 386 58 1 7.34 22.13 4.13 70 Yes No No 

5 M 21/07/2003 150 63 1 6.42 15.56 0.39 70 Yes No No 

6 M 31/07/2003 437 50 1 7.66 30.04 5.02 90 Yes Yes No 

7 F 22/10/2003 173 74 1 6.47 38.18 4.21 60 Yes No No 

8 M 19/11/2003 408 47 1 14.83 23.24 6.56 80 Yes Yes No 

9 M 27/11/2003 401 56 1 10.66 19.99 6.94 90 Yes No No 

10 F 01/12/2003 540 54 1 13.63 68.25 11.81 70 Yes No No 

11 M 02/12/2003 204 59 1 5.18 15.38 0.94 70 Yes No No 

12 F 22/12/2003 143 69 1 5.11 33.78 2.43 60 Yes No No 

13 F 15/01/2004 453 60 2 9.46 26.59 3.58 80 Yes No No 

14 M 04/02/2004 279 63 1 6.47 30.66 6.23 70 Yes No No 

15 M 13/09/2004 336 64 1 5.82 28.40 3.50 60 Yes No No 

16 M 05/10/2004 87 61 1 2.85 15.26 2.41 70 Yes No No 

17 M 24/01/2005 210 43 1 4.26 21.72 3.08 70 Yes No No 

18 F 09/02/2005 169 79 1 3.88 22.90 2.48 50 Yes No No 

19 M 18/05/2005 314 81 2 10.39 40.29 5.09 70 Yes No No 

20 F 19/05/2005 237 58 1 2.93 23.85 1.65 60 Yes No No 

21 M 12/08/2005 388 64 2 10.47 54.86 5.10 60 Yes No No 

22 F 13/09/2006 689 40 1 9.55 73.32 7.55 80 Yes No Yes 

23 M 05/07/2007 165 29 2 5.11 9.45 2.00 60 Yes No Yes 

24 F 15/08/2007 417 66 1 7.79 44.69 2.36 60 Yes No No 
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25 M 28/08/2007 177 69 1 2.88 9.22 0.83 60 Yes No No 

26 F 11/09/2007 325 38 1 9.57 50.83 7.90 60 Yes No Yes 

27 M 04/10/2007 300 64 1 7.80 49.33 4.07 50 Yes No No 

28 M 15/11/2007 270 56 1 13.19 77.98 7.04 60 Yes No No 

29 M 28/11/2007 378 57 1 7.87 54.40 4.51 60 Yes No Yes 

30 F 30/01/2008 145 58 1 8.60 42.03 3.63 60 Yes No Yes 

31 M 03/03/2008 129 61 1 9.26 33.25 6.04 50 Yes No Yes 

32 M 03/03/2008 269 61 1 12.48 47.95 10.13 60 Yes No Yes 

33 M 07/03/2008 180 65 1 13.22 55.52 6.52 60 Yes No Yes 

34 M 25/03/2008 246 65 1 10.71 56.75 7.83 60 Yes No Yes 

35 M 31/03/2008 220 64 1 4.76 40.67 4.08 60 Yes No Yes 

36 M 28/04/2008 104 56 2 6.09 43.59 3.53 60 Yes No Yes 

37 M 30/04/2008 144 61 2 9.25 51.78 6.86 60 Yes No Yes 

38 M 17/06/2008 153 67 2 6.16 57.45 5.06 60 Yes No Yes 

39 M 30/06/2008 111 62 2 6.41 31.14 1.99 50 Yes No Yes 

40 M 02/07/2008 159 69 1 11.53 55.97 3.99 60 Yes No Yes 

41 M 05/08/2008 166 72 1 3.69 21.15 1.96 60 Yes No Yes 

42 M 25/02/2006 1059 19 1 8.70 34.64 7.37 70 Yes Yes No 

43 M 06/08/2007 596 28 1  - 44.59 14.75 80 Yes No Yes 

44 M 07/08/2007 595 46 1 10.29 19.69 4.50 60 Yes No Yes 

45 F 15/02/2008 405 70 1 17.60 74.04 8.76 60 Yes No Yes 

46 F 06/04/2008 355 60 1 15.99 68.09 11.59 70 Yes Yes Yes 

47 F 27/03/2008 365 54 1 9.67 19.27 1.12 60 Yes No Yes 

48 F 24/04/2008 337 36 1 19.67 54.41 4.50 70 Yes No Yes 

49 M 01/09/2008 208 50 1 6.33 29.31 1.98 60 Yes No Yes 

50 F 01/09/2008 208 62 1 6.29 41.21 2.00 60 Yes No Yes 
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Table 2:  Group 2 cell cycle markers 

No. Sex Date of 

Diagnosis 

Survival 

(days) 

Age at 

Diagnosis 

(years) 

Procedure  

1-Debulk, 

2-Bx 

Geminin 

LI % 

MCM-

2 LI  % 

Cyclin 

A LI  

% 

Karnovsky 

Score 

Radio-

therapy 

PCV 

Chemo-

therapy 

Temozolomide 

1 F 29/12/2003 53 70 2 8.60 32.34 6.655 50 No No No 

2 F 13/03/2004 47 50 2 7.61 47.24 5.25 50 No No No 

3 M 25/06/2003 89 73 1 3.43 10.04 0.82 60 No No No 

4 F 13/10/2003 87 62 1 6.08 14.49 2.40 50 No No No 

5 M 27/04/2005 111 64 1 9.38 73.75 9.61 60 No No No 

6 F 04/08/2005 37 75 1 5.86 43.76 4.76 50 No No No 

7 F 13/10/2005 36 75 1 5.86 43.76 4.76 50 No No No 

8 F 13/12/2005 128 77 1 5.40 34.71 3.53 60 No No No 

9 M 31/07/2007 27 74 1 8.88 28.05 4.02 40 No No No 

10 M 09/08/2007 66 63 1 5.82 43.02 5.22 60 No No No 

11 F 07/01/2008 63 73 1 12.50 56.34 8.67 60 No No No 

12 F 29/04/2008 34 51 1 9.25 51.78 6.86 20 No No No 

13 F 27/05/2008 68 70 1 8.76 45.93 4.69 50 No No No 

14 M 24/06/2008 35 52 1 12.76 58.95 4.04 50 No No No 

15 M 18/09/2008 137 63 1 7.65 50.36 6.09 40 No No No 

16 F 21/10/2008 72 61 1 7.64 35.06 1.73 50 No No No 
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Table 3: Markers of apoptosis 

No. Sex Date of 

Diagnosis 

Survival 

(days) 

Age at 

Diagnosis 

(years) 

Procedu

re  1-

Debulk, 

2-Biopsy 

Bcl-2 

LI % 

Bcl-xl 

LI % 

Bak 

LI % 

Caspase

3 LI % 

Karnovsky 

Score 

Radio-

therapy 

PCV 

Chemo-

therapy 

Temozolomide 

1 F 20/11/2002 170 53 1 4.20 2.01 23.22 23.39 80 Yes No No 

2 M 23/01/2003 616 64 1 12.59 1.60 6.91 34.56 70 Yes No No 

3 F 01/02/2003 144 61 1 2.87 1.23 9.41 22.88 70 Yes No No 

4 M 13/02/2003 285 55 1 1.36 3.91 18.81 26.42 60 Yes No No 

5 M 25/06/2003 89 73 1 7.39 5.19 18.89 38.31 60 No No No 

6 M 02/07/2003 386 58 1 11.69 0.76 7.96 43.36 70 Yes No No 

7 M 21/07/2003 150 63 1 8.38 1.37 25.20 48.90 70 Yes No No 

8 M 31/07/2003 437 50 1 1.04 1.39 14.64 52.92 90 Yes Yes No 

9 F 13/10/2003 87 62 1 12.85 1.70 21.35 45.48 50  No No No 

10 M 16/10/2003 384 56 1 3.65 5.06 9.09 64.95 90 Yes No  No 

11 F 22/10/2003 173 74 1 2.43 0.87 19.41 75.26 60 Yes No No 

12 M 19/11/2003 408 47 1 8.30 4.36 6.71 47.69 80 Yes Yes No 

13 M 27/11/2003 401 56 1 22.76 1.98 1.46 14.56 90 Yes No No 

14 F 01/12/2003 540 54 1 9.24 2.40 3.26 59.05 70 Yes No No 

15 M 02/12/2003 204 59 1 7.92 10.19 48.83 72.97 70 Yes No No  

16 F 15/01/2004 453 60 2 10.51 3.58 32.92 69.69 80 Yes No No 

17 M 04/02/2004 279 63 1 13.43 0.84 4.21 17.79 70 Yes No No 

18 F 24/02/2004 282 59 1 0.14 0.53 3.17 90.06 60 Yes No No 

19 M 13/09/2004 336 64 1 21.99 3.71 42.90 50.18 60 Yes No No 

20 M 05/10/2004 87 61 1 10.98 3.54 50.06 73.68 70 Yes No No 

21 M 24/01/2005 210 43 1 0.66 0.86 11.62 31.62 70 Yes No No 

22 F 09/02/2005 169 79 1 14.55 -  24.26 53.63 50 Yes No No 

23 M 27/04/2005 111 64 1 3.28 2.28 50.24 68.40 60 Yes No No 

24 M 18/05/2005 314 81 2 11.87 1.06 5.16 75.85 70 Yes No No 

25 F 19/05/2005 237 58 1 1.55 0.67 10.27 77.39 60 Yes No No 
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26 M 12/08/2005 388 64 2 0.17 0.57 16.13 97.72 60 Yes No No 

27 F 13/10/2005 36 75 1 10.83 - - - 50 No No No 

28 F 13/12/2005 128 77 1 2.15 14.09 31.54 38.02 60 No No No 
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Table 4: Markers of autophagy 

No. Sex Date of 

Diagnosis 

Survival 

(days) 

Age at 

Diagnosis 

(years) 

Procedure  

1-Debulking, 

2-Biopsy 

LC3B 

staining 

score 

p62 

staining 

score 

Karnovsky 

Score 

Radio-

therapy 

PCV 

Chemo-

therapy 

Temozolomide 

1 F 20/11/2002 170 53 1 3 2 80 Yes No No 

 F 01/02/2003 144 61 1 3 3 70 Yes No No 

3 M 13/02/2003 285 55 1 5 4 60 Yes No No 

4 M 02/07/2003 386 58 1 5 3 70 Yes No No 

5 M 21/07/2003 150 63 1 5 4 70 Yes No No 

6 F 22/10/2003 173 74 1 4 3 60 Yes No No 

7 M 19/11/2003 408 47 1 3 3 80 Yes Yes No 

8 M 27/11/2003 401 56 1 3 2 90 Yes No No 

9 F 01/12/2003 540 54 1 4 3 70 Yes No No 

10 M 02/12/2003 204 59 1 3 3 70 Yes No No 

11 F 22/12/2003 143 69 1 4 4 60 Yes No No 

12 F 15/01/2004 453 60 2 3 3 80 Yes No No 

13 M 04/02/2004 279 63 1 4 3 70 Yes No No 

14 M 13/09/2004 336 64 1 5 4 60 Yes No No 

15 M 05/10/2004 87 61 1 5 5 70 Yes No No 

16 M 24/01/2005 210 43 1 4 3 70 Yes No No 

17 F 09/02/2005 169 79 1 5 4 50 Yes No No 

18 M 18/05/2005 314 81 2 5 3 70 Yes No No 

19 F 19/05/2005 237 58 1 3 2 60 Yes No No 

20 M 12/08/2005 388 64 2 3 2 60 Yes No No 

21 F 15/08/2007 417 66 1 4 2 60 Yes No No 

22 M 28/08/2007 177 69 1 4 2 60 Yes No No 

23 F 11/09/2007 325 38 1 4 2 60 Yes No Yes 

24 M 04/10/2007 300 64 1 4 3 50 Yes No No 
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25 M 15/11/2007 270 56 1 5 4 60 Yes No No 

26 M 28/11/2007 378 57 1 5 4 60 Yes No Yes 

27 F 30/01/2008 145 58 1 4 3 60 Yes No Yes 

28 M 03/03/2008 129 61 1 5 3 50 Yes No Yes 

29 M 03/03/2008 269 61 1 5 3 60 Yes No Yes 

30 M 07/03/2008 180 65 1 5 3 60 Yes No Yes 

31 M 25/03/2008 246 65 1 5 3 60 Yes No Yes 

32 M 31/03/2008 220 64 1 5 2 60 Yes No Yes 

33 M 28/04/2008 104 56 2 5  60 Yes No Yes 

34 M 17/06/2008 153 67 2 2 2 60 Yes No Yes 

35 M 30/06/2008 111 62 2 5 2 50 Yes No Yes 

36 M 02/07/2008 159 69 1 5 4 60 Yes No Yes 

37 M 05/08/2008 166 72 1 4 2 60 Yes No Yes 

38 M 25/02/2006 1059 19 1 5 3 70 Yes Yes No 

39 M 06/08/2007 596 28 1 4 2 80 Yes No Yes 

40 M 07/08/2007 595 46 1 4 2 60 Yes No Yes 

41 F 15/02/2008 405 70 1 5 3 60 Yes No Yes 

42 F 06/04/2008 355 60 1 5 3 70 Yes Yes Yes 

43 F 27/03/2008 365 54 1 5 3 60 Yes No Yes 

44 F 24/04/2008 337 36 1 5 2 70 Yes No Yes 

45 M 01/09/2008 208 50 1 4 2 60 Yes No Yes 

 

 


