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Abstract 

The registration of 3D preoperative medical data to patients is a key task in devel­

oping computer assisted surgery systems. In computer assisted surgery, the patient 

in the operation theatre must be aligned with the coordinate system in which the 

preoperative data has been acquired, so that the planned surgery based on the preop­

erative data can be carried out under the guidance of the computer assisted surgery 

system. -

The aim of this research is to investigate registration algorithms for developing 

computer assisted bone surgery systems. We start with reference mark registration. 

New interpretations are given to the development of well knovm algorithms based on 

singular value decomposition, polar decomposition techniques and the unit quaternion 

representation of the rotation matrix. In addition, a new algorithm is developed based 

on the estimate of the rotation axis. For non-land mark registration, we first develop 

iterative closest line segment and iterative closest triangle patch registrations, similar 

to the well known iterative closest point registration, when the preoperative data are 

dense enough. vVe then move to the situation where the preoperative data are not 

dense enough. Implicit fitting is considered to interpolate the gaps between the data . 
• 

A new ellipsoid fitting algorithm and a new constructive implicit fitting strategy are 

developed. Finally," a region to region matching procedure is proposed based on our 

novel constructive implicit fitting technique. Experiments demonstrate that the new 

algorithm is very stable and very efficient. 
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Main Contribution 

1. A constructive implicit fitting technique has been developed to fit a set of scat­

tered points using gate functions. With this technique, the data are first par­

titioned with geometric primitives into small data sets such that each sub-data 

set can be described well by a low degree algebraic surface. These locally fitted 

shapes are then combined with gate functions to obtain the overall fitting. 

2. The iterative closest line segment (leL) and iterative closest triangle patch 

(ICT) algorithms have been developed along similar lines to the ICP algorithm. 

Compared with the lep algorithm, the leL and the ICT algorithms are much 

less sensitive to the initial orientation. Our main work in these areas has been 

published in Computers and Mathematics with Applications[57]. 

3. A technique for fitting an ellipsoid to a set of scattered points is given. It is 

known that an equation of the second degree in three variables represents an 

ellipsoid when the leading form is positive definite. To fit an ellipsoid based on 

this constraint leads to a nonlinear optimization procedure with multiple con­

straints, which in general cannot guarantee an optimal solution. The presented 

fitting algorithm is a very simple and very stable procedure based on salving 

a generalizedeigen system. It is almost a closed form solution, in the sense 

that in most cases, it takes just one iteration. This part of the work has been 

submitted for publication and is currently under review. 

4. A region to region matching procedure is proposed for non landmark registration 

using our constructive implicit fitting techniques. 

xiv 



xv 

5. For reference mark registration, the conventional algorithms based on singular 

value decomposition, the unit Quaternion and Polar decomposition have been 

shown in more compact and direct ways. In addition, a new algorithm based on 

an estimate of the rotation axis is given, which involves only the computation 

of eigenvectors of a real 3 x 3 symmetric matrix. 

6. Conventional reference mark registration has been extended to general geomet­

ric primitive registration, such as line segments, plane patches, straight lines and 

planes in 3D. In addition, a method for fitting straight lines based on geometric 

distance is given by solving a simple eigen system. 



Chapter 1 

Introduction 

Matching a preoperative medical image with intraoperative data is a fundamental task 

in developing a computer assisted operation system. In computer assisted surgery, 

images that are taken from patients preoperatively at different times and by differ­

ent sensors or from different viewpoints are input into computers. With computer 

graphics, image processing and image registration techniques, these images are ana­

lyzed, compared and synthesized to obtain sufficient information for diagnosis, sur­

gical planning, carrying out surgical procedures and post-operative evaluation. In 

order to apply the pre-designed operation plan based on preoperative images during 

the operation, the preoperative data need to be registered with the patient in the 

operation theatre. That is, the virtual coordinate system corresponding to the com­

puter graphics model must be aligned with the physical coordinate system used in 

the operation theatre for obtaining intraoperative data. Once two such coordJnate 

systems are aligned, the operation can be carried out under the guidance of the com­

puter assisted operation system. As can be seen, such a matching must be accurate 

and quick enough to be carried out in real time. 

1 
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1.1 Survey of Current Techniques 

In the last ten years or so, various techniques have been developed to deal with 

medical data matching problems in general, not only in the medical field, but also 

in computer vision. A survey of image registration techniques in general has been 

presented in [14] and [41]. 

Medical image registration is a wide research area. It is so diversified that it can 

be subdivided into many sub-areas, any of which has its own specific type of medi­

cal data to be registered. First of all, the images to be registered can have different 

modalities. For example, in medicine a body can be imaged through computed tomog­

raphy(C~!, magnetic resonance imaging(MRI), positron emission tomography(PET), 

single photon emission computed tomography(SPECT), and ultrasound. Secondly, 

the image can have different dimensionalities. It can be two dimensional or three 

dimensional. Thirdly, the transformation that links the images to be registered can 

be rigid, affine, projective, or curved. Finally, during the registration procedure, ex­

ternal land marks might be used. All these aspects make the registration problems 

very much diversified. Any combination gives a different type of registration problem. 

In computer assisted surgery, registration approaches can be roughly classified 

either as landmark registration or as non-landmark registration according to whether 

external artificial fiducial markers are used or not. Usually, the markers used in.com­

puter assisted surgery systems can be either frames or a set of points[69]. In reference 

marker registration, external marks are attached to the operation area of patients be­

fore preoperative data are taken, in order to establish precise correspondence among 
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the measurements made in the different image modalities. As reference mark reg­

istration techniques are usually quick and efficient, they are widely implemented in 

computer assisted operation systems. 

Finding the relationship between two coordinate systems by using pairs of mea­

sured coordinates of a number of points in both systems is a classical problem. The 

solution has application in computer vision, robotics, and computer assisted surgery 

systems. In practice, an iterative algorithm can be used to compute the unknown 

rigid transformation. Since a good correspondence is known to exist, a good initial 

guess can be obtained directly either by a geometric method or a linear algebraic 

method. This initial guess is then applied to an iterative optimization procedure to 

refine th~initial guess. Since the initial guess is likely to be very close to the true 

value, a very accurate result can be found by this method. The problem is that, with 

the increase in the number of data points, the optimization procedure becomes very 

slow. 

The first closed-form solution for the problem was given by Farrell and Stuelp­

nagel using polar decomposition in 1966 [29]. However, their result is not known to 

most of us and is seldom mentioned in literature in the area of computer vision and 

medical data registration. In 1987, Horn established an algorithm by representing a 

rotation with a unit quaternion [39]. This is a complete and also a closed-form solu­

tion for the problem. But this algorithm is not popularly used in computer aS13isted 

surgery systems. The problem may be that the author used too much space to discuss 

the theory of quaternions which is not closely related to the algorithm. Actually, all 

the algorithm needs is just the quaternion representation of a rotation (formed by 

Rodrigues parameters) which has been long established[92]. In Chapter 3, we will 
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see how directly the rigid transformation can be estimated accurately by using the 

unit quaternion representation. In the same year, Arun, Huang and Blostein devel­

oped another algorithm based on Singular value decomposition(SVD) [4], which was 

immediately welcomed by researchers in the area of robotics and computer vision as 

well as computer assisted surgery. The reason is not that the algorithm is better than 

the quaternion algorithm, but because the algorithm has been stated more directly. 

This first version of the SVD algorithm does not work properly when the data points 

are almost coplannar. In this case, a reflection rather than a proper rotation may 

be returned with the SVD algorithm. The SVD algorithm was later improved by 

Uneyama in 1991 [99]. The modified SVD algorithm will always return a rotation no 

matter how the data points are distributed in space. In 1988, Horn et al. developed 

another algorithm by using polar decomposition [40]. But this algorithm is not new 

because the solution given by Farrell and Stuelpnagel in 1966 is more general and 

more complete. In fact, Horn's algorithm given in [40] has the same problem as the 

original version of the SVD algorithm when the data sets are almost coplanar. In 

1994, Kanatani [44] revised the three algorithms in a refined form and modified the 

polar decomposition algorithm. 

Though the reference mark registration technique is widely used in many com­

puter assisted operation systems, there is more and more interest in non-landmark 

registration. This is because reference mark registration techniques are invasive. ·Over 

the past few years, 'great efforts have been made towards non-landmark registration, 

which uses information extracted purely from images to be registered [10] [31] [15] [54] 

[53] [52] [65] [94]. For 3D-3D data matching, the non reference-marker registration 

methods can basically be grouped either as surface matching or as volume matching. 
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As the volume matching method is not quite suitable to our problem, it is not consid­

ered in this thesis. As far as surface matching techniques are concerned, they can be 

further classified into two categories: the iterative closest point (ICP) methods and 

the 'Head-Hat' methods. The idea of the ICP algorithm is to turn non-landmark reg­

istration problems into landmark registration problems by iteratively calculating the 

closest points for one data set to another. During the procedure, reference mark reg­

istration techniques are repeatedly used to find new transformations. This procedure 

is always convergent, but the problem is that it does not always converge correctly 

to the optimal solution. Unlike the Iep technique, the Head-Hat methods treat one 

data set as 'hat' and the second data set as 'head'. The transformation is found by 

matching the hat to the head with the help of some numerical minimizing procedures. -. 
As can be seen, when iterative numerical optimization is used, there is always a risk 

that the solution falls into a local minimum, and hence the true transformation can­

not always be found correctly if a good initial guess is not available. In addition, 

in order to speed up the registration procedure, most 'Head-Hat' algorithms involve 

computing distance maps, and they are inevitably computationally expensive. 

1.2 The focus of this research and research method­
ology 

This research will focus on the development of 3D medical data registration techniques 

for computer assisted orthopaedic surgery systems. As the surgical objects can be 

treated as rigid, our problem can be formally addressed as follows: 



Let two sets of points Dpre and Dintra. be sampled from same surface of a 

rigid human bone according to different coordinate systems C pre and Cintra 

respectively. We wish to estimate the rigid transformation that links the two 

coordinate systems from the information provided by Dpre and Dintra. 

6 

In computer assisted surgery, preoperative 3D medical information is often pro-

vided by CT, MRI, X-ray or any synthesized data with different types of formats. It 

is usually a very large and dense data set. In most cases, the overall shape of the sur­

gical object can be reconstructed with predictable accuracy from preoperative data. 

On the other hand, the intraoperative data are much smaller. Sometimes the data set 

just contains very few points. This is because during an operation, the exposure of 

patients to radiation should be kept as low as possible. Secondly, once the patient is 

on the operation table, some data scanners such as the CT might be too cumbersome 

to be used any more. However, small numbers of points from the surface of the sur­

gical object can be obtained much more easily. For example, the 3D position can be 

reconstructed from two orthogonal x-ray images, or can be directly obtained using a 

surgical pointer. In any of these cases, it is difficult to obtain a huge quantity of data 

points, and so the precise shape of the surgical object cannot be reconstructed. This 

implies that the algorithms based on feature matching, statistical correlation analysis 

techniques cannot be used. 

For the above shape matching problem, one solution could be the use of the ICP 

algorithm. However, this algorithm has the drawback that it does not always converge 
'. 

to the expected orientation [43]. vVhen an initialization does not lead to an expected 

convergence, a new randomly specified initial guess should be applied again until a 

satisfactory result is obtained. Therefore the ICP algorithm must be improved to 

increase its stability and efficiency, as the registration problem in consideration must 
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be sufficiently accurate and capable of finishing in a very short time. One possible 

extension for the ICP algorithm is to provide geometric information in the matching 

data such as the distance between two points. When two data sets are linked by 

a rigid transformation, the distance between any pair of points in one data set will 

be very close to the distance between their closest counterparts in the second data 

set. Instead of searching for the closest points in each iteration in the ICP algorithm, 

closest line segments or closest triangle patches can be considered. Following this idea, 

algorithms called iterative closest line segment and iterative closest triangle patches 

will be developed. 

Another consideration for our registration problem follows the idea of 'Head-Hat' 

matching: The conventional 'Head-Hat' matching technique models the 'head' as a 

mesh surface. The matching procedure is basically a minimization of a sum of dis­

tances. As the computation of distance for each point to this kind of model surface is 

obtained by searching all the possible polygons in the mesh, the computation is very 

costly [69]. The way to improve the matching procedure is to compute the distance 

map and store it in computer memory before the optimization starts. Though this 

will greatly shorten the registration time, it requires the computer to have an ex­

tremely large memory, as the distance map can be as large as hundreds of megabytes 

[48]. Most Head-Hat matching techniques are used in the area of pattern recognition, 

image analysis, medical diagnosis, but not widely used in developing comput~r as­

sisted surgery systems. In fact, when the intraoperative data are too sparse and the 

surface of the operation object is too rough and too bumpy, it is almost impossible to 

recover the orientation precisely. On the other hand, when the surface of the object is 

quite smooth, it might be able to approximate the surgical surface with some simple 
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'distance' functions, and thus the massive computation involved in computing the 

distance from a point to the surgical object can be avoided. 

However, fitting a set of scattered points with a distance function is a very difficult 

task. In practice, we often fit the data with an implicit function, as it is compara­

tively easier than fitting a distance function. In mathematics, the implicit surface is 

represented as the roots of a function, which naturally divides the space into three 

parts: the points that lies on the surface and the two data sets that lie on either side 

of the surface, according to whether the value of the function is 0, larger than 0 or 

less than O. When the function is represented by a polynomial, the corresponding 

shape is usually called an algebraic surface. Most fitting techniques currently avail­

able are r:elated to algebraic surface fitting. Some good discussion and investigation 

on implicit polynomial fitting can be found in [94] [95] [46] [93] [47]. However, pure 

implicit polynomial fitting methods have drawbacks in representing general geometric 

shapes. The main problem is that the shapes of low degree polynomials are too simple 

for general shapes and the shapes of high degree polynomials are unpredictable. The 

shape fitted can be much more complicated than the shape actually represented by the 

data. One feasible strategy is to break the whole data set into small pieces, with each 

subset of data fitted with a low degree algebraic surface, and then combine all these 

individually fitted shapes together to obtain the overall fitting. In this procedure, the 

key technique will be how to combine different implicitly represented shapes together. 

In this thesis, a constructive procedure to fit surface data with implicit functions has 

been developed. 
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1.3 Thesis organization 

The main part of the dissertation is organized as follows. In Chapter 2, we provide 

some mathematical background and formulations for the problem. The concept of 

matrix scalar product is introduced, and some its properties are investigated. This 

is followed by a survey on the parameterization of a rotation matrix. The results 

are not new, but the survey reflects our own understanding of the problem. As the 

rotation matrix will be one of the main objects discussed in later chapters, some of 

its properties are discussed. The most important result we obtained is that the trace 

of a rotation matrix cannot be larger than n - 2 + 2rii for any diagonal element Tii 

of the matrix. Chapter 3 will review the three main algorithms used in the refer­

ence mark registration problem. We will see that all these algorithms can developed 

more directly and simply. In addition, a new algorithm based on an estimate of the 

rotation axis will be presented. Chapter 4 will discuss some generalizations of the 

result presented in Chapter 3. We will discuss how to estimate the rigid transfor­

mation from the correspondence of geometric primitives, such as from straight lines 

correspondence and plane correspondence. Chapter 5 address the iterative closest 

line segment registration and the iterative closest triangle patch registration, which 

are developed similarly to the conventional iterative closest point algorithm. The 

remaining two chapters are about implicit fitting. Chapter 6 will mainly discuss how 

to fit a set of 3D data with an ellipsoid, the only central quadric which is bounded. 

This fitting technique is extremely useful for fitting local implicit surface in our con­

structive implicit surface fitting method given in Chapter 7. It is also useful for 

establishing an initial guess in our region-to-region matching strategy, which will be 
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discussed in Chapter 8. In Chapter 7, a constructive implicit fitting method is devel­

oped using gate functions. With this technique, a complex shape can be fitted with 

an implicit function by combining locally fitted implicit shapes. The fitted implicit 

function can served as an approximation to the distance function from a point to 

the surface in the 'Head-hat' matching algorithm. In Chapter 8, we will discuss the 

region to region matching strategy with the help of the constructive implicit surface 

fitting algorithm. Finally, Chapter 9 contains a summary and Chapter 10 contains 

possible future work. 



Chapter 2 

Mathematical preliminaries 

2.1 The matrix scalar product and the Frobenius 

norm 

Definition 2.1.1. Let A = (aij) be an n x m matrix. The Frobenius norm is defined 

by 
n m 

IIAII= LLa;j. (2.1.1) 
i=l j=l 

The following properties for Frobenius norm for any n x m matrices are obvious 

[91]: 

where a is a real number. 

A =f 0 if and only if IIAII > 0, 

lIaAl1 = lalilAII, 

IIA+BII ~ IIAII + IIBII, 

The matrix norm has been defined in different ways in mathematics. In this thesis, 

the matrix norm always means the Frobenius norm defined above. 

11 
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Definition 2.1.2. Let A = (aij) and B = (bij ) be two n x m matrices. The scalar 

product of the two matrices, denoted by A . B, is defined as 

n m 

A· B = I: I: aijbij . (2.1.2) 
i=l j=l 

It is evident that this definition is a natural generalization of the scalar product 

of two vectors. 

Let A, B be n x m real matrices. Let A h , A2., ••• , An. and A.lI A.2, ••• , A.m 

be the row vectors and column vectors of A, and let B h , B2., ••• , Bn. and B.lI B.2 , 

... , B.m the row vectors and column vectors of B. 

Proposition 2.1.1. 

(2.1.3) 

(2.1.4) 

Proposition 2.1.2. (1) For the identity n x n matrix I and any n x n matrix A, 

I· A = tr(A). (2.1.5) 

(2) For any n x m matrices A and B, 

A·B=B·A. (2.1.6) 

(3) For any n x m matrices A,B and C and any real numbers a and {3, 

(aA + (3B) . C = a(A· C) + (3(B· C). (2.1.7) 

(4) For any n x m matrices A and B, 

(2.1.8) 
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(5) For any matrix A, 

(2.1.9) 

Proposition 2.1.3. Let A = (aij) be an nxm matrix, and let X be an m-dimensional 

vector, and Y an n-dimensional vector. Then 

y. (AX) = A· (YXT). (2.1.10) 

Proof 
n m n m 

y. (AX) = LYi L aijXj = L L aijYiXj = A . (Y XT). 
i=l j=l i=l j=l 

o 

Proposition 2.1.4. Let A, B, C be n x m, n x k and k x m matrices respectively. 

Then 

A· (BC) = (ACT) . B = (BT A) . C. (2.1.11) 

Proof From Proposition 2.1.2 (4), 

In a similar way, we can show that 

A· (BC) = (BT A) . C. 

o 

Proposition 2.1.5. Let A, B be n x m matrices. Then 

IIA - BII2 = IIAI12 + IIBI12 - 2A· B. (2.1.12) 



Proof According to the definition of the Frobenius norm, we have 

m 

IIA - BI12 = L IIA*i - B.i 11
2 

i=l 
m 

- I)IIA*iIl2 + IIB*jI12 - 2A*j· B*j) 
j=l 

_ IIAI12 + IIBII2 - 2A· B. 

Corollary 2.1.6. If R is a real orthogonal matrix, then 

Proof T~~ proof follows directly from propositions 2.1.5 and 2.1.4. 

2.2 Representation of rotation 

14 

(2.1.13) 

(2.1.14) 

(2.1.15) 

o 

(2.1.16) 

o 

Let {el' e2, e3} be a set of mutually orthogonal unit vectors which start at the origin 

in three dimensional Euclidean space. If e3 = el x e2, such a set of vectors estab-

lishes a right-handed orthonormal system. Let {rl' r2, r3} be another right-handed 

orthonormal system. A transformation F such that Fei=ri, (i = 1,2,3) can be rep­

resented by an orthonormal matrix R, Le., RRT = I, det(R) = 1. Conversely, any 

orthonormal matrix R with det(R) = 1 maps a right-handed orthogonal system to . 
a right-handed orthogonal system. This kind of transformation is called a rotation 

" 

transformation. Let G be the collection of all possible rotation transformations, G 

then forms a group with respect to the matrix product. This mathematical structure 

is normally referred to as SO(3) (Special Orthogonal 3 x 3 matrices) in the theory of 

group representation. 
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Rotations represented by 3 x 3 matrices need nine parameters with the constraint 

that RRT = I and det(R) = 1. In practice, it is possible to represent a rotation 

by a set of fewer than nine parameters. In this section, we present some of the 

parametrizations of the rotation matrix that are in common use, each of which has 

certain advantages and disadvantages. 

2.2.1 The rotation matrix in terms of the Euler angles 

There are different ways to represent a rotation matrix with Euler angles. Let 

R3('Y)R2({3)R1(a) denote the result of the following three consecutive rotations: first 

rotate by an angle a around axis 1, then a rotate by an angle {3 around axis 2, and 

finally rotate by an angle 'Y around axis 3. Then any rotation can be accomplished 

by one of the following 12 ways [87]: 

Rx ("t )Ry(f3)Rz ( a), Rx ("t )Ry(f3)Rx (a), Rx ("t )Rz (f3) Ry( a), Rx ("t) Rz (f3)Rx (a), 

Ry( 'Y)Rx(f3)Rz ( a), Ry( "I )Rx(f3)Ry( a), Ry( "I )Rz(f3)Rx( a), Ry( "I )Rz(f3)Ry( a), 

Rz( "I )Rx(f3)Ry( a), Rz( "I )Rx(f3)Rz( a), Rz( "I )Ry(f3)Rx (a), Rz ('Y)Ry(f3)Rz( a). 

where Rx, Ry and Rz represent the rotation around x-axis, y-axis and z-axis respec­

tively. Here we chose the form Rz("t)Rx(f3)Rz(a), which appears now to be the most 

popular Euler angle representation, where angle {3 is between [0,7r] and other two 

angles are within [0,27r} The rotation R can be written as 

R(a, f3, "I) = Rz ("t)Rx (f3)Rz(a) 

( CIC, - SIC,S, 81 C3 + 0 10 283 S,S, ) 
- -0183 - 810 203 -8183 + 0 10203 820 3 , (2.2.1) 

8182 -0182 O2 
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where 

Cl = cos a, C2 = cos;3, 

51 = sin a, 8 2 = sin;3, 53 = sin,. 

A major problem of representing a rotation with Euler angles is the loss of one 

dimension in some special cases and this means that smooth rotation does not always 

correspond to smooth parametrization. 

2.2.2 The rotation matrix in terms of the rotation axis and 

the rotation angle 

Let R be a rotation matrix. Then there must exist a unit vector n such that Rn = n. 

In fact, let A be an eigenvalue of R, and let n be the unit eigenvector associated with 

A, i.e., Rn = An. Since R is real, we must have Ru = .xu, where .x and u represent 

the complex conjugates of number). and vector n. Therefore, we have 

1 = fiT RT Rn = AAnfi = AA. 

Thus, IAI = 1. Let the three eigenvalues of R be All A2 and A3. As complex eigenvalues 

will appear pairwise, from det(R) = ).1).2).3 = 1 we know that there must exist at 

least one real eigenvalue, whose value is 1. 

For any rotation matrix, we call the unit eigenvector associated with the eigenvalue . 
1 the rotation axis and is denoted by n. This unit vector can then be expanded into 

a right-handed orthonormal system n, nI, n2. Let matrbc P = (n, nl, n2), then P is 

a rotation and 

(
1 0 0) 

p T RP = 0 cosB -sinB . 

o sinO cosO 
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where 0 is the rotation angle of R by axis n. From this we have 

(
1 0 0) 

R = P 0 cose -sine PT.. 

o sine cose 

The geometric meaning of this decomposition is evident. To rotate, we could first 

rotate the rotation axis n with pT such that it coincides with x-axis el = (1,0, of, 
followed by a rotation about the x-axis by an angle e, finally rotating n back to its 

original position with the inverse rotation of pT. 

For any 3D vector r, 

Rr - P (~ co~O -s~no) pTr (2.2.2) 

o sinO cosO 

- (n· r)n + cos e((nl . r)nl + (n2 . r)n2) + sin O((nl . r)n2 - (n2 . r)nl) 

- cos Br + (1 - cos B)(n . r)n + sin B(n x r), (2.2.3) 

since 

For n = (a, (3,,",{)T, if we set 

(2.2.4) 

then equation (2.2.2) can be further written as 

Rr = (cosB! + (1- cos8)nnT + sinON) r. (2.2.5) 
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from which the rotation matrix R can be presented in the following way 

R = cos()] + (1- cos ())nnT + sin()N. (2.2.6) 

The above representation can also be obtained geometrically [3J. Here we work 

mainly from the algebraic point of view. 

2.2.3 The rotation matrix in terms of a 3D Vector 

A rotation matrix can also be represented by a 3D vector r = (u, V, w)T with Ilrll > O. 

For r, let () = II r II, and let n = r / () = (CI., (3, '1 f. From r, A skew-symmetric matrix 

S can be constructed as: 

where 

Let 

s= (: 
-v 

o 
-w 

u 

N=(~ 
-(3 

-'1 

o 

R S 122 1 33 = exp =] + ()N + -() N + -() N + ... 
2! 3! 

Then R has following properties 

Rn=n. 

(2.2.7) 

(2.2.8) 

(2.2.9) 

(2.2.10) 

(2.2.11) 

since for N, ~ = -N and Nn = n x n = O. This shows that R is orthonormal and 

has a rotation axis n. Note that the characteristic function of N is det(A] - N) = 
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,X3 +,x, N 3 = -N, (2.2.9) can be further simplified as 

R = I + sinON + (1 - cosO)N2
• (2.2.12) 

To show that R is a rotation, we need only to show that R transforms a right-handed 

coordinate system into a right-handed coordinate system. Let {n, nr, n2} be a right­

handed coordinate system expanded from n. Then from equation (2.2.12), it can be 

seen that 

Hence, 

Rnl = sin On2 + cos Onl, 

Rn2 = - sin Onl + cos On2' 

Rnl x Rn2 - cos20(nl x n2) - sin2 O(n2 x nd 

- nl x n2 = n = Rn. 

(2.2.13) 

(2.2.14) 

(2.2.15) 

That is, R maps a right-handed orthogonal system into a right-handed orthogonal 

system. 

Conversely, let R be a rotation. From section 2.2.2, R has a rotation axis n = 

(a, {3, If and a rotation angle O. If the value of 0 is set to be 27r when R = l, then the 

vector r = On will never be zero. Let S be the skew-symmetric matrix constructed 

from r according to (2.2.7) and let the rotation Rl be defined as (2.2.9), then 

Rl = I + sinON + (1- cosO)N2• 

However, N 2 = nnT - I. Thus 

Rl = cosOl + (1- cosO)nnT + sinON, 

(2.2.16) 

(2.2.17) 

which is exactly the same as (2.2.6). This shows that any rotation matrix R can 

always be expressed by a 3D vector. 



20 

2.2.4 Cayley's parameterization of the rotation matrix 

Cayley's parameterization, also using a skew-symmetric matrix, is another way to 

parameterize a rotation matrix. If S =f 0 is a skew-symmetric 3 x 3 matrix defined 

by (2.2.7), with a vector r = (u, v, w), and 

R = (1 - S)(1 + S)-l, (2.2.18) 

then, 

RT R - (I - st1(I + 8)(1 - 8) (I + 8t1 

- (1 - S)-l(1 - 8)(1 + S)(1 + 8)-1 = I. 

This shows that R defined in (2.2.18) is orthogonal. Let vector n = ria = (a,j3,'Y), 

where a = Ilrll =f O. Let N be defined according to (2.2.8) from n, then 

_ 1 _ 20" N + 20"2 N2 

1 + a 2 1 + 0"2 
(2.2.19) 

2 2 2 

- 1 - 1 + a28 + 1 + 0"2 S , 

since N 3 = - N. To see that R is a rotation, we need only to show that R transforms 

a right-handed coordinate system into a right-handed coordinate system. Expand n 

into a right-handed coordinate system {n, n1, n2}. Then from equation (2.2.19), it 

can be shown directly that n = Rn = Rnl x Rn2 as n = n1 x n2. This show~ R is 

indeed a rotation. 

Conversely, if R is a rotation. When R does not have ). = -1 as its eigenvalue, 

R + I will be non-singular. Let 

(2.2.20) 



21 

then 8 will be skew-symmetric. In fact, from equation (2.2.20), 

8(I + R) = 1 - R, 

which implies that 

(R + 1)8T = R - 1, 

since RRT = 1. Thus 

8T = (R + J)-I(R - J) = (R - I)(R + I)-I = -8 

and the fact that 

R = (1 - 8) (I + 8)-1 

follows directly from this reversible relation between Rand S. 

It can be seen from equation (2.2.18) that a rotation that can be expressed in this 

way cannot have eigenvalue -l. 

From equation (2.2.19), any rotation matrix that does not have eigenvalue -1 can 

be expressed in the following way 

( 

1 + u2 - v2 - w2 2(uv - w) 

R = p 2(uv + w) 1 - u2 + v2 - w2 

2(uw - v) 2(vw +u) 

2(uw +v) ) 
2(vw - u) , 

1- u2 - v2 + w2 

(2.2.21) 

2.2.5 Rotation in terms of quaternions 

The quaternion, invented by Hamilton [3], has a similar form to a complex number. 

Hamilton had been interested in complex numbers since the early 1830s. In 1833, he 

first showed that complex numbers form an algebra of couples, Le., they can be put in 
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the form a + bi with i2 = -1. Over the next ten years, he tried to extend this concept 

to define a triplet, with one real and two imaginary units, i and j. However, he could 

not do this . In 1843, when he was walking past a bridge, he suddenly realized that 

three, rather than two, imaginary units were needed, with the following properties: 

·2 ·2 k2 1 1 =J = = - , ij = k, ji = -k. 

A mathematical object in the form q = a+bi+cj +dk, with a, b, c, d real numbers, 

has been defined by Hamilton and is called a quaternion. 

Extending the idea of a complex number, a quaternion can be thought of as a 

point in 4 dimensional space, or as a composition of a scalar and an ordinary vector, 

or as a complex number with three different imaginary parts. 

The multiplication of two quaternions is also similar to the multiplication of two 

complex numbers. To see such a similarity, let 1 = (i,j, k)T be column vector with 

components i,j, k. A quaternion can then be represented as 

q = 8+V· I, 

where 8 is a real number and v is a 3 x 1 real vector. 

Let q1 and q2 be two quaternions, then 

q1q2 - (81 + VI· 1)(82 + V2 • I) (2.2.22) 

- 8182 + (81V2 + 82Vl) • I + (V1 • I)(V2 . I). 



Since 

(VI' I)(v2 . I) - (vlxi + Vlyj + vlzk)(V2xi + V2yj + v2zk) 

from (2.2.22), we have 

- -(VlxV2x + Vl yV2y + Vl zV2z) + (Vl yV2z - Vl zV2y)i 

+(VlzV2x - VlxV2z)j + (Vl xV2y - Vl yV2x)k 

- -VI' V2 + (VI X V2) . I, 

23 

(2.2.23) 

As with complex numbers, the conjugate of a quaternion q = s + V • I can be 

defined ~. q* = s - V· I. From (2.2.23), we can see that 

which is just the squared norm of vector (8, vx , Vy, vz)T and y'qq* is called the mag­

nitude of the quaternion and is denoted by IIqll. 

For any quaternion ql = 81 + VI . I, q2 = 82 + V2 . I, we have 

(2.2.24) 

In fact, from (2.2.23), we have 

IIqlq211 2 = (S182 - Vl . V2)2 + IIsIV2 + S2VI + VI X v211 2 

- sis~ + (VI' V2? + sillv211 2 + s~llvll12 + Ilvl X v211 2 

- (si + IIvII12)(s~ + Ilv2112) = Ilql1l211q211 2, 

since 
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A quaternion with a magnitude of one is called unit quaternion. It can be seen, for 

any non-zero quaternion q, there always exists a quatenion q-l such that qq-l = 1 

and q-l is called the inverse of quaternion q. The set of all non-zero quaternions plu'! 

the operation defined above form a group. Since ql q2 #- q2ql in general, the group is 

non-commutative. From equation (2.2.24), it can be seen that the multiplication of 

two unit quaternions will still be a unit quaternion, and so all unit quaternions form 

a subgroup, which, we will see later, is closely related to rotation. 

The matrix representation of a unit quaternion 

Any quaternion can always be represented by a 4 x 4 matrix. Let quaternion q = 

s + v· I ?e a quaternion with v = (vx, vY' vz)T, let 

s -Vx -vy -Vz 

Q= 
VX S -Vz Vy (: _v

T 
) (2.2.25) -

sI3x3 + Cv ' Vy Vz S -Vx 

V z -vy Vx s 

where 

( 

0 -Vz vy ) 
Cv = Vz 0 -Vx • 

-vy Vx 0 

The remarkable,thing is that this representation establishes a one-to-one mapping 

between the set of quaternions and the set of matrices that have form (2.2.25) which 

preserves the quaternion operation. More precisely, the matrix representation for the 

product of two quaternions is just the matrix product of their corresponding matrix 

representations. Mathematically, we have 
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Proposition 2.2.1. Let ql = 81 + VI' I and q2 = 82 + V2 . I be two quaternions, and 

let Ql and Q2 be their matrix representations. If qlq2 = S + V . I, then we have 

Ql Q2 = (V
S 

-V

T

) , (2.2.26) 
sI3x3 + Cv 

which corresponds to quaternion qlq2. 

Proof. Let Ql, Q2 be the matrices representations of quaternions Ql, q2 respectively. 

Then 

(2.2.27) 

(2.2.28) 

It can be shown that 

Thus 

(2.2.29) 

-(SlV2 + S2Vl + VI X V2f) . 

CS1 V2+S2 V1 +V1 XV2 

o 
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Proposition 2.2.2. Let Ql be the matrix representation of a quaternion Ql, then 

(2.2.30) 

where quaternions are treated as four dimensional vectors. 

The proof is direct. 

Let Q be the matrix representation of quaternion q = s+v·I. From the definition 

of the matrix representation, the matrix representation for q* is just the transpose of 

matrix Q, i.e., QT. The interesting thing is that 

(2.2.31) 

which m~ans that the matrix Q will always be orthogonal whenever q =F O. 

As we know, multiplying a unit complex number by another complex number is 

equivalent to a rotation in the 2D plane. Similarly, multiplying a unit quaternion by 

another quaternion is equivalent to a rotation in 4D space. In fact, when quaternion 

Q is unit, the matrix Q will represent a rotation in four dimensional space, as we have 

Proposition 2.2.3. For a unit quaternion, its corresponding matrix representation 

is a rotation. That is 

QQT = 14x4 , det(Q) = 1. (2.2.32) 

Proof. If q = s + v· I is a unit quaternion, then S2 + IIvl\2 = 1. According to (2.?25), 

Q= 
(

s _v
T

) 

V S!3x3 + Cv ' 

( 

S v
T

) 

-v S!3x3 - Cv 
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Thus, 

T (82 + IIvl12 
QQ = 

o 
It follows from 

that 

In addition, 

s -Vx -vy -vz 

Vx 8 -vz Vy 
det(Q) - det 

Vy v z 8 -vx 

Vz -vy Vx S 

- 8 X det 8 -vx + Vx x det Vy s 

,-Vy x det Vy Vz -Vx + Vz x det Vy Vz 8 
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o 

Similarly, for each quaternion q = s + v . I, let 

_ ( S v
T

) 

Q = -v S]3x3 + Cu • 
(2.2.33) 

It is clear that it has similar properties to Q, defined in (2.2.25). When q is unit, Q 

is also a rotation in four dimensional space, that is, we also have 

QQT = ] and det(Q) = 1. (2.2.34) 

Quaternions and rotations in 3D space 

In the previous section, we saw that any unit quaternion corresponds to two rotational 

matrices in four dimensional space. In this section, we discuss how a quaternion is 

related to an ordinary rotation matrix in three dimensional space. There are several 

ways to establish the link between unit quaternions and rotations. Here we provide a 

direct and natural approach using the matrix representation. The information about 

quaternions and other methods to establish the correspondence between a quaternion 

and a rotation can be found in [3] [104] [61] [105]. 

For a unit quaternion q = s+v·!, let Q and Q be defined by (2.2.25) and (2.2.33). 

It follows that both Q and Q are 4 x 4 rotation matrices and therefore that QQ is a 
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4 x 4 rotation matrix. However, 

QQ = (V
S VT) ( S VT) 

S!3x3 + Cv -v S!3x3 + Cv 

= G VVT + (S;'XJ+ C,),) . (2.2.35) 

Therefore, the 3 x 3 matrix vvT + (S!3X3 + Cv )2 must be a rotation matrix, of the 

following form: 

R(q) - vvT + (S!3X3 + Cv )2 

- (2s2 - 1)!3x3 + 2(sCv + vvT ) 

(

S2 + v2 - v2 _ v2 
:J! y Z 

= 2( VxVy + sVz ) 

2( vxvz - sVy) 

2( VxVy - sVz ) 

S2 - v2 + v2 _ v2 
x y z 

2( vyvz + svx) 

Now we see that any quaternion corresponds to a rotation that has a matrix 

representation given by (2.2.36). 

Conversely, for any given rotation R, there always exists a quaternion q, such that 

R(q) = R. Let 

R = (::: ::: :::) 

r3l r32 r33 

be an arbitrary rotation matrix and let q = s + vxi + vyj + vzk be the unit quaternion 

corresponding to the rotation matrix R. Then from (2.2.36), we should have 

482 - 1 - tr(R), 

R(q) - R(q? - R - RT. 

(2.2.37) 

(2.2.38) 
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From (2.2.37), the value of 8 can be obtained either as y'tr~R)+l or as _ y'tr~R)+l • 

When tr(R) =I- -1, and 8 =I- 0, the values of vx , vY' Vz can be obtained directly from 

(2.2.38) as 

r13 - r3l 
Vy = 

48 
(2.2.39) 

When tr(R) = -1, 8 = 0 and q will have the form v·1 and its corresponding rotation 

matrix given in (2.2.36) can be written in the form R(q) = 2vvT - I. On the other 

hand, it can be shown that rotation R can also be written in form as 2nnT - I when 

tr(R) = -1, where n is a unit vector corresponding to the rotation axis. In fact, if 

R is a rotation, it always has a unit eigenvalue and an associated unit eigenvector n. 

Let the other two eigenvalues be >'1 and >'2, then 

1 + Al + A2 = tr(R) = -1 

This implies that Al = -1 and A2 = -1. Let C;, 'f} be the eigenvectors corresponding 

to Al and A2 respectively, and let 3 x 3 matrix P = (n,~, 'f}) be formed with unit 

column vectors n,~, 'f}, then we have 

where 

~ ) pT = P (2E - I) pT = 2nnT - I, 

-1 

E = (~ ~ ~). 
Thus, to find v, we need only compute the rotation axis n from R by solving the 

equation (R - I)n = O. 
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The unit quaternion that corresponds to the given rotation R can also be given 

in terms of a rotation axis n and a rotation angle (), as q = (cos~, sin ~n). In fact, 

for a unit quaternion q = (s, v), we can write 8 = cos ¢ and v = sin ¢ u for a real 

number ¢ and a unit 3D vector u = (a, (3, ,), since 8
2 + IIvl1 2 = 1. Let U be defined 

from u similar to Cv from vector v. From (2.2.35), The rotation from q is 

vvT + (sl + Cv )2 _ sin2(¢)uuT + (cos(¢)1 + sin(¢)U)2 

- cos(2¢)1 + sin(2¢)U + (1 - cos(2¢))uuT • 

Comparing this representation with the rotation represented with rotation axis and 

rotation angle given in (2.2.6), it can be seen that the rotation represented by a unit 

quaterniQn q = (cos~, sin ~n) is exactly the same as the rotation R which has rotation 

axis n and rotation angle (). 

2.3 Some properties of the rotation matrix 

In the previous section, we discussed the definition and different ways to represent a 

rotation matrix. In this section, we will investigate some of the properties possessed 

by a rotation matrix. The rotation matrices considered in this section are completely 

general, so as to emphasize the complete generality of the discussion. 

Definition 2.3.1. A n x n real matrix R is called a rotation, if RRT - 1 and 

det(R) = 1. 

We have shown in section 2.2 that for a rotation in 3D Euclidean space there 

always exists a vector called a rotation axis. This result is no longer true for higher 

dimensional rotation matrices in general. 
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Lemma 2.3.1. Let R be an orthogonal matrix, and A = a + bi be an eigenvalue of 

R. Then IAI = 1. 

Proof. Let 

(2.3.1) 

where e is the unit eigenvector associated with A. If ,X and ( are the conjugates of A 

and e respectively, 

R{ = ,x{. 

Therefore, 

(2.3.2) 

(2.3.3) 

o 

Lemma 2.3.2. Let R be an orthogonal matrix, and A = a+bi be a complex eigenvalue 

of modulus 1 with b =I- O. If vector e = x + yi is the eigenvector associated with A, 

then IIxll = lIyll, and x . y = O. That is, vector x and yare perpendicular to each 

other and have same length. 

Proof From 

(2.3.4) 

and the orthogonality of R, we have 

(2.3.5) 

where ,X denotes the complex conjugate of A. From equation (2.3.4), we have 

(2.3.6) 
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where A = IIxl12 - IIyl12 and B = 2x· y. From equation (2.3.5), we have 

~T RT~ = ,X~T~ = 'x(A + Bi). (2.3.7) 

But ~T R~ = ~T RT e, and this implies that 

(,\ - 'x)(A + Bi) = 2bi(A + Bi) = O. 

Thus A = 0, B = 0 since b =J O. That is Ilxll = Ilyll, x . y = O. o 

Lemma 2.3.3. Let R be an orthogonal matrix. Then there exists an orthogonal 

matrix P such that 

pTRP= (2.3.8) 

±1 

±1 

Proof. Proceeding inductively, we need only show that for any n X n orthogonal matrix 

with n > 1, there exists an orthogonal matrix P, such that R can be either reduced 

to the form 

or to the form 

cos e1 sin ()l 

pT RP = - sin ()l cos ()l 

. 
(2.3.9) 

(2.3.10) 
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where Rl is also an orthogonal matrix. 

Let A be a eigenvalue of R. From lemma 2.3.1, IAI = 1. 

(1) If A is real, A = ±1. Let ~ be the unit eigenvector associated with A. Then ~ 

can be expanded into an orthogonal base {~,6,'" '~n-l}' Let P = (~'~l"" '~n-l) 

be the n x n matrix, then P is orthonormal when ~l' ... ,~n-l are all unit vectors. 

For P, we have 

T (±1) P RP = R
1

' (2.3.11) 

Since Rand P are both orthogonal, Rl must also orthogonal. 

(2) If A is complex, A = cos () + sin ()i with sin () i= O. Let ~ + 7]i be the eigenvector 

associated with A, then ~,'f/ are orthogonal. With lemma 2.3.2, we can assume that 

both ~ and 'f/ are unit vectors. 

Hence, 

and 

R(~ + 'f/i) - (cos () + sin ()i) (~ + 'f/i) 

- (cosO~ - sinO'f/) + (sin()~ + cos (}'f/)i. 

R~ - cos ()~ - sin ()'f/, 

R7] - cos e~ + sin ()'f/, 

R( ~, 'f/) = (~, 'f/) ( cos () sin () ) . 
- sin () cos () 

(2.3.12) 

Let {~, 'f/, ~l ••. '~n-2} be the orthonormal system expanded from ~,'f/ and let the 



n x n matrix P = (e, "l, 6 ... ,en-2), then from equation(2.3.12), 

cos(h sin(h 

pT RP = - sin 01 cos 01 

35 

(2.3.13) 

o 

Proposition 2.3.4. For any rotation R, suppose that pT RP has the form (2.3.8) for 

some orthogonal matrix P. Let Co be the smallest diagonal element of p T RP, then 

rii > Co for any diagonal element rii of R. 

Proof. Let D denote the matrix give in (2.3.8), then R = P DpT. The diagonal 

element T-n of R can thus be written as rii = v DvT , where v = (Xl, X2,' •• ,xn ) is the 

ith row of P. As D is a rotation, the number of diagonal elements equal to -1 in D 

must be even. Thus we can use cos 7r to replace -1. Without loss of generality, we 

assume that the smallest element of D is cos 01, therefore 

V DVT - (x~ + x~) cos Ol + ... + (X~k-l + X~k) cos Ok + X~k+l + ... + x~. 

> (x~ + x~ + ... + X~k-l + X~k) cos Ol + X~k+l + ... + x~. 

Setting 

2 2 2 2 1 .. 2 
Xl+X2+"'+X2k_l+X2k= -u, 

and hence 

(2.3.14) 

o 
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Theorem 2.3.5. For any n x n rotation matrix R and any its diagonal element rii, 

we have the inequality 

tr(R) - 2rii :::; n - 2. (2.3.15) 

Proof. vVhen R is a rotation, from lemma 2.3.3, we know that -1 must occur in pairs 

in the diagonal of matrix in equation (2.3.8). Assuming that the number of -Is in 

(2.3.8) is 2m, then 

tr(R) = tr(pT RP) = 2(cos(h + ... + COS(}k) + n - 2(m + k) - 2m. (2.3.16) 

(1) Ifm > 1, 

tr(R) :::; n - 4m ~ n - 4 < n - 2 + 2rii 

for any rii' 

(2) If m = 0, let Co = min{cos(}i : 1 :::; i :::; k} and Co = 1 when k = O. It follows 

from equation 2.3.16 that 

tr(R) - 2(COS(}1 + ... + COS(}k) + n - 2k 

< 2co + n - 2 :::; n - 2 + 2rii' 

o 

Remark 1. For a 3D rotation, the above property is almost obvious. In fact, for any 

rotation matrix R, tr(R) = 1 + 2 cos (} for some (} and it is always less than or'equal 

to 1 + 2rii, where rii is any diagonal element of R. 

Remark 2. In [63j, a similar result is given by Mirsky for the absolute values of the 

diagonal elements of a proper rotation matrix. Our findings given in theorem 2.3.5 

seem more definite. In fact, Mirsky's result can be directly inferred from the inequality 
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2.3.15. For any rotation matrix R = (rij)nXn, let diagonal matrix U be defined as 

U = diag(s(rll), s(r22),··· ,s(rnn )), where s(r) = 1 if r > 0, else s(r) = -1. When 

the number of negative diagonal elements of R is even, U will be a rotation and 

n 

tr(U R) = L /rii/' 
i=l 

From inequality 2.3.15, for any diagonal element Irkk I of U R, we have 

n 

L Iriil ~ n - 2 + 2lrkkl· 
i=l 

W"hen the number of negative diagonal elements of R is odd, let n x n matrix J = 

diag(l,··· ,1, -1). Then JU will be a rotation and 

n-l 

tr(JU R) = L Iriil -Irnnl· 
i=l 

From inequality 2.3.15, for diagonal element -Irnnl of JUR, we have 

n-l 

tr(JU R) = L Iriil-Irnnl ~ n - 2 - 2lrnnl, 
i=l 

or equivalently, 
n 

L Iriil :5 n - 2. 
i=l 

This is the result given by Mirsky in [63}. 

Now we discuss how to obtain the rotation matrix which best approximat.es an 

arbitrary square matrix. 

Proposition 2.3.6. For any real n x n matrix A, let the singular value decomposition 

of A be 

A=UWVT , (2.3.17) 
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where 

and 0'"1 2: 0'"2 2: ... O'"n 2: O. Let n denote the set of all n x n rotation matrices. Then 

(l}When det{UVT) = I, the best rotation approximation of A in the sense of the 

Frobenius norm is attained by UVT, that is: 

(2.3.18) 

(2}When det{UVT) = -I, the best rotation approximation of A in the sense of 

the Frobenius norm is attained by U JVT, that is: 

(2.3.19) 

where 

J = (In-1 0 ) 
o -1 

(2.3.20) 

and In - 1 is the (n - 1) x (n - 1) identity matrix. 

Proof. Let W be the diagonal matrix 

(2.3.21) 

with 0'"1 > 0'"2 2: ... '~ O'"n > 0, i = 1,2, ... ,n. 

(l)When det(UVT) = 1, URVT is a rotation for any rotation matrix R. In this 

case, we have 

min IIA - RII2 = min IlvV - R112. 
REn REn 
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For any rotation matrix R, it is immediately evident that 
n n 

IIW - RII2 = n + I: a; - 2 I: aiTii' (2.3.22) 
i=l i=l 

Since 

we have Tii ::; 1, i = 1,2, ... ,n. Therefore 

With this inequality, 
n n 

IIW - RI12 - n + 2: a; - 22: aiTii 
i=l i=l 
n n 

> n+ :La; - 2:Lai = IIW _111 2
, (2.3.23) 

i=l i=l 

and it is obvious that IIA - UVTII2 = IIW - 1112 since U and V are both orthogonal. 

(2)When det(UVT) = -1, URJVT is a rotation for any rotation matrix R. In 

this case, we have 

min IIA - RII2 = min IIW J - R1I2. 
REO REO 

For any rotation matrix R, 
n n-l 

IIvV J - RII2 = n + I: a; - 2(I: aiTii - anTnn) 
i=l i=l 

- n + t u; - 2 (~(U, -un)rd un(~; r" - rnn)) . · 
Since ai - an > 0, ai 2: 0, Tii < 1, i = 1,2", . ,n, it follows from theorem 2.3.5 that 

n-l n-l n-l 

L(ai - an)Tii + an (I: Tii - Tnn) < 2:(O'i - an) + (n - 2)an 
i=l i=l i=l 

n-l 

- Lai - an· 
i=l 
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It follows from (2.3.24) that 

n n-l 

IIWJ _RII2 > n+ La; - 2Lai+2an = IIvV - JII2. (2.3.24) 
i=l i=l 

It is obvious that IIA - U JVTII 2 = IIW - JII2 since U and V are both orthogonal. 0 

As a corollary, we show that the condition that rank(ABT) > m-l in the Lemma 

given by Uneyama in [99] can be removed. 

Proposition 2.3.7. Let A and B be m x n matrices, and R an m x m rotation 

matrix, and UWVT a singular value decomposition of ABT where UUT = VVT = I, 

andW = diag(ai) withal ~ a2 > .. ·(In ~ O. Then the minimum value ofliA-RBII2 

with respect R is 

min IIA - RBII2 = 
R 

Proof From proposition 2.1.4, 

and 

IIA - RBII2 - IIAII2 + IIBII2 - 2A· (RB) 

_ IIAII2 + IIBII2 - 2(ABT) . R 

(2.3.25) 

(2.3.26) 

(2.3.27) . 
Thus, minimizing (2.3.26) is equivalent to minimizing IIABT - RII2. From proposition 

2.3.6, 

IIW - 111 2, det(UVT) = 1 

(2.3.28) 

IIW - JII 2, det(UVT) = -1. 



Therefore, 

min IIA - RBII2 = 
R 
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(2.3.29) 

(2.3.30) 

o 

Remark-3. Note that when detA > 0, det(UVT) = 1, when detA < 0, det(UVT) = 

-1, and when detA = 0, IIW - III = IIW - JII. Hence, this corollary is more general 

than the Lemma given in [99} since the condition that the rank(ABT) 2:: m - 1 has 

been removed. 

Proposition 2.3.8. For two sets ofmx 1 vectors All A21 ... I Am and B I , B 2,'" ,Bm, 

m 

rrBn I: IIAi - UBill
2 subject to uuT =1 

i=l 

is equivalent to maximizing 

n 

mgxU'LAiB[ subject to uuT = I. (2~3.31) 
i=l 
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Proof. According to the definition of the Frobenius norm of a matrix, and from propo­

sition 2.1.3, we have 

m n 

L II Ai - UBil12 - L(IIAill2 + IIBill2 - 2Ai . UBi) 
i=l i=l 

n n 

- I)IIAiI12 + II Bi112) - 2U . L AiBl) 
i=l i=l 

n 

- const - 2U· (LAiBD. 
i=l 

o 

To summarize, in this chapter a concept of matrix scalar product is introduced. 

This is followed by a survey on the parameterization of a rotation matrix, especially 

for the quaternion representation. We showed in a novel way that how a quaternion 

is linked with a 3D rotation and obtained a more compact form of representation 

of a rotation matrix with respect to a unit quaternion. For the properties of the 

rotation matrix, we showed that the trace of a rotation matrix can not be larger than 

n - 2 + 2rii for any diagonal element rii of a rotation matrix. With this property, 

the condition that the rank(ABT ) ;::: m - 1 in the Lemma given in [99] has been 

removed. 



Chapter 3 

Coordinate system alignment using 
reference points 

3.1 Introduction 

In a computer assisted surgery system, aligning a virtual computer image with a pa­

tient in the operating theatre is one of the key problems which needs to be solved. 

One common technique in establishing such an alignment is the use of fiducial mark­

ers. A fiducial marker is a kind of tiny object inserted onto the surgical surface in 

advance of operation, so that its position is available to both preoperative data and 

intraoperative data. Therefore, a precise correspondence between preoperative data 

and intraoperative data can be established by using fiducial markers. However, due 

to measurement errors, such a correspondence is not exact, and a mathematical al­

gorithm is then needed to estimate the unknown rigid transformation that links the 

two data sets. More precisely, this problem can be stated as follows: 
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Let {Pn};{=l be a set of 3D points presented in both coordinate systems Cpre 

and Cintra respectively. Let {Xn}~=l' {Yn}~=l denote the corresponding 

measured positions of these points for the two coordinate systems. Let F 

be the unknown rigid transformation that links the two coordinate systems. 

We wish to estimate F by minimizing the sum 

N 

!:1 = L p{Yn , F Xn ), (3.1.1) 
n=l 

where p denotes some measure of closeness between the two sets of coordi­

nates. !:1 = 0 if there are no experiment errors. 
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To estimate the unknown transformation F, it is first necessary to define p to 

establish a criterion to measure the closeness between the two data sets. It is obvious 

that different criteria will lead to different algorithms. The commonly used criterion 

is the LSE{ Least Square Estimate ), by which F is estimated by minimizing the sum: 

N 

L IIFXn - Yn11 2
• (3.1.2) 

n=l 

where II . II denotes the Euclidean distance between two points. Algorithms like 

the one developed with quaternion theory [39](called the Quaternion algorithm) and 

the one realized with the singular value decomposition technique [4] (called the SVD 

algorithm) are based on this idea of optimization. 

As a rigid transformation, F is a combination of a translation T and a rotation 

R, Le., F X = RX + T. With least squares estimation, let 

N 

F{R, T) = L IIRXn + T - Yn1l 2
• (3.1.3) 

n=l 
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By setting 
{)F(R, T) = 0 

aT ' (3.1.4) 

the optimal translation T can be estimated from 

T=Y-RX, (3.1.5) 

where X = ~ 2::=1 Xn, Y = ~ 2::=1 Yn are the centroids of data set {Xn}~=1 and 

data {Yn}~=1 respectively. This means that once the rotation R is estimated, the 

translation can be obtained by equation (3.1.5) immediately. Now let 

The sum in (3.1.3) can now be written as 

N 

I: IIRXn - Yn1l 2
• 

n=l 

From proposition 2.3.8, minimizing (3.1.8) is equivalent to maximizing 

(3.1.6) 

(3.1.7) 

(3.1.8) 

(3.1.9) 

Another way of estimating the rotation matrix can be considered by observing 

that the effect of translation can be removed by viewing each set of coordinates as a 

polyhedron. For each pair of points PI, P2 in space, a directed line segment, from Pl 
'. 

to P2, can be defined. Let E and E' be a pair of corresponding line segments in the 

two coordinate systems respectively, then the rotation that links the orientation of the 

two coordinate systems should match orientation of line segment E in one coordinate 

system with that of line segment E' in another as closely as possible. With this idea, a 
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strategy based on edge-matching can be developed. As we are only interested in how 

two directed line segments differ in orientation, the position information for the two 

line segments will not be considered. One obvious choice is to use the scalar product 

of the two directed line segments to measure the closeness in orientation of the two 

line segmentation, that is, E . E'. The closer the two edges in orientation, the larger 

the scalar product. Therefore the transformation can be estimated by maximizing 

the sum 
M M 

LREm' E:n = R· LE:nE;. (3.1.10) 
n=l n=l 

where {Em}!I=l, {E:n}!I=l denote all possible edges of the object, and !vI is the 

number of edges in the two systems. 

The closeness in orientation of two edges can also be measured by the angle be­

tween the edges. It can be seen that the closer the two edges in orientation, the 

smaller the angle between them is, and thus the bigger the cosine value will be. With 

this in mind, the rotation transformation can be estimated by maximizing the sum 

of cosine values of angles between each pair of edges. That is, rotation matrix R can 

be estimated by maximizing the sum: 

(3.1.11) 

where 8m represents the angle between m-th pair of edges REm and E:n. As 

where Em and E:n'represent the normalized edges of Em and E:n, the sum (3.1.11) 

can be written as 

M M 

LREm' E:n = R· LE:nE;. (3.1.12) 
n=l n=l 
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In the final part of this section, we would like to point out that sum (3.1.9) can 

also be obtained from the idea of edge matching. In fact, (3.1.9) can be put in the 

form 

(3.1.13) 
n=l 

If we regard each data set {Xn}:{=l and {Yn}:{=l as a set of directed line segments 

starting from their centroids, then estimating R by maximizing (3.1.9) is just to find 

the rotation R such that all corresponding line segments Yn and RXn are as close as 

possible. 

3.2 Least squares estimate of the rotation 

In this section, we discuss how to compute the optimal rigid transformation based 

on the criterion of L8E. In the previous section, we saw that the optimal solution for 

translation can be obtained directly from the centroids of the two corresponding sets 

of coordinates when the rotation has been estimated. Thus the main problem now 

remaining is how to estimate rotation. As has been shown in (3.1.9), (3.1.10) and 

(3.1.12), the least squares estimate of rotation R can be obtained by maximizing a 

matrix scalar product 

R·A (3.2.1) 

with the rotation matrix R for a known matrix A. In practice, the matrix A can 

. ' N - -T M,T 
be obtamed from (3.1.9) as l:n=l Yn . Xn , or from (3.1.10) as l:n=l Em Em , or from 

(3.1.12) as l:!1 E'mE'!;.. In the following discussion, we will focus on how to obtain 

the maximum solution for rotation matrix R from R . A, assuming that the matrix A 

is known. As can be seen from the method of reasoning, the 8VD algorithm given by 
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Arun, et al. in 1987 [4] and later improved by Uneyama in 1991 [99], the quaternion 

algorithm given by Horn in 1987 [39J, and the polar decomposition algorithm given 

by Horn et al. in 1988 [4 OJ can all be developed in a much simpler way with the 

exception of the polar decomposition algorithm given by Farrell and Stuclpnagel in 

1966 [29]. Although a similar discussion has been given in the work of Kanatani[44J, 

he used the concept of an infinitesimally small rotation, which makes his method of 

inference complicated. 

3.2.1 The SVD algorithm 

Let Ai and I4 denote the ith column of A and R respectively, then (3.2.1) can be 

written in the form: 

.6. = Al . Rl + A2 . R2 + A3 . R3 

= IIAlll cos(h + IIA211 cos O2 + IIA311 cos 03 , 

(3.2.2) 

where Ol, O2, 03 have their obvious meanings. This way of representing equation (3.2.1) 

suggests that three orthogonal vectors R 1, R2 and R3 of rotation R should be chosen 

to be as close as possible to the vectors Al , A2 and A3 respectively. This geometrical 

intuition immediately leads to the SVD algorithm. Now let us see how the technique 

of singular value decomposition is used to locate the rotation matrix based on such 

geometric intuition. 

Let the singular value decomposition of matrix A be: 

A=UWVT , (3.2.3) 

where U and V are orthogonal matrices and W is a diagonal matrix with non-negative 

elements. From corollary 2.1.6, maximizing (3.2.2) subject to RRT = I is equivalent 
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to minimizing IIA-RI12 subject to RRT = I. From proposition 2.3.6, the best rotation 

approximation to matrix A can be attained from UVT when det(UVT) = 1, and from 

U JVT when det(UVT) = -1. Thus, to find the rotation matrix that maximizes 

(3.2.2), we can first carry out singular decomposition on A to find U and V in (3.2.3) 

after A has been calculated. Then the rotation matrix estimated will be UVT or 

U JVT depending on whether det(UVT) = 1 or -1. 

From our method of reasoning, it can be seen that our development is more natural 

and more intuitive compared with that has been given in [99]. Some discussions on 

this algorithm can be found in [4] and [99]. Note that the matrix 

N 

A= LYnX~ 
i=l 

in (3.1.9) is the transpose of the corresponding matrix in [4], if we ignore whether 

matrix A is calculated from {Xn - X} and {Yn - Y} or from {Em} and {E:n}. 

Therefore, the orthogonal matrix estimated in [4] is represented as VUT rather than 

UVT. 

3.2.2 The polar decomposition algorithm 

A square matrix A can also be decomposed into an orthogonal matrix P with a 

symmetric semi-positive definite matrix S such that A = PS or A = SP. This 

kind of matrix decomposition is called polar decomposition [88]. The algorithin for 

estimating a rotation matrix by minimizing the sum of squares (3.1.8) using the matrix 

polar decomposition technique has long been established by Farrell and Stuelpnagel 

in 1966 [29], where the algorithm has been used to estimate satellite attitude. This 

is an elegant closed-form solution. In [40], Horn et al. re-developed the algorithm 
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specifically for 3D rotation. However, Horn's polar-decomposition algorithm can only 

guarantee an orthogonal matrix and does not always return a proper rotation matrix. 

This algorithm is improved by Kanatani in [44] by using the concept of infinitesimally 

small rotations. In fact, this algorithm can be obtained very simply as can be seen 

from [29] or from our following inference. 

Let 

A=PS (3.2.4) 

be a polar decomposition of matrix A, where P is orthogonal and S is symmetric and 

semi-positive definite. For matrix S, let VI, V2, V3 be its eigenvectors corresponding 

to eigenvalues 0"1,0"2,0"3 respectively. Since S is symmetric and semi-positive definite, 

all its eigenvalues are real and non-negative. We assume that 0"1 2:: 0"2 > 0"3 > o. 
Now let V = (Vb V2, V3) and let VV be the diagonal matrix with diagonal elements 

0"1,0"2,0"3, then 

s=vwvT
. (3.2.5) 

Combining equation (3.2.4) and equation (3.2.5), we have 

A=PVWVT • (3.2.6) 

Let U = PV, then U is orthogonal and thus (3.2.6) is a singular value decomposition 

of matrix A. With the result we obtained from the SVD algorithm in section 3.2.1, 

we know that the rotation maximizing R . A will be 

(3.2.7) 

when det(P) = 1, and 

R=PVJVT (3.2.8) 
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when det(P) = -1. 

Since 

(3.2.9) 

(3.2.8) can be further written as 

(3.2.10) 

Solution (3.2.8) and (3.2.10) obtained in different cases can be put together as 

given in [44]: 

R = P(I + (det(P) - 1)v3vf). (3.2.11) 

If the polar decomposition of A is given in the form A = SP, as with the above 

discussion, the corresponding solution will be in the form 

R = (I + (det(P) - 1)v3vf)P. (3.2.12) 

This gives the polar decomposition algorithm. To estimate the rotation R that 

maximizes R . A under polar decomposition, we need first to compute the polar 

decomposition of matrix A = PS(or A = SP). If P is already a rotation, P will be 

the solution; if P is not a proper rotation, we need further to modify the orthonormal 

matrix P with R = P(I - 2vvT) (or R = (I - 2vvT)P) where v is a unit vector of 

S associated with the smallest eigenvalue. 

The methods of computing the polar decomposition of a matrix can be found in 

[40] and [88]. 

'. 

Remark 4. As have been seen, the polar decomposition algorithm has been given as a 

corollary of the SVD algorithm. Conversely, the SVD algorithm can also be regarded 

as a corollary of the polar decomposition algorithm. In fact, let 

A=UWVT 
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be the singular value decomposition of matrix A, where U, V are orthogonal and IV = 

diag( (J1, (J2, (J3) with (J1 ~ (J2 ~ (J3 ~ O. Let 

P = UVT, 

Then S is symmetric and semi-positive definite and P is orthogonal. Therefore 

A=PS 

is a polar decomposition of matrix A. According to the polar decomposition algorithm, 

the rotation matrix R maximizing R . A is P = UVT when P is a proper rotation, 

and is P(I - 2V3V3) = UVT (V JVT) = U JVT when P is not a proper rotation. This 

gives the _~VD algorithm. 

3.2.3 The Quaternion algorithm 

From section 2.2.5, the rotation matrix R in (3.2.1) can be further represented by a 

unit quaternion(the components of a unit quaternion are also called Euler-Rodrigues 

parameters). Since the elements in the rotation matrix represented by a quaternion 

are all quadratic forms, it follows that the matrix scalar product R . A in (3.2.1) 

is actually a quadratic form and the maximization problem can be solved using an 

eigen-technique. More specifically, let q = (qo, q1, q2, q3)T be the unit quaternion 

corresponding rotation matrix R, then from (2.2.36), rotation R can be given as: 

( 

q2 + q' 2 q2 q2 o 1-2-3 

R = 2(q1q2 + Qoq3) 

2(q1q3 - qOq2) 

2(q1Q2 - QOQ3) 

Q5 - qr + q~ - qj 

2( q2Q3 + qoqd 

(3.2.13) 
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Set 

all + a22 + a33 a32 - a23 a13 - a31 a21 - a12 

s= a32 - a23 all - a22 - a33 a12 + a21 a13 + a31 

a13 - a31 a12 + a21 -all + a22 - a33 a23 + a32 

a21 - a12 a13 + a31 a23 + a32 -all - a22 + a33 

(3.2.14) 

where {aij} are the elements of matrix A obtained in (3.2.1). 

From (3.2.1) and (3.2.13). 

(3.2.15) 

where q = (qQ. q1, Q2, Q3)T is the unit quaternion corresponding to the unknown rota-

tion R. 

It is known that the unit eigenvector of S corresponding to the largest eigenvalue 
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maximizes R . A [91]. This result leads to the quaternion algorithm. \Vith this 

algorithm, to compute the rotation matrix that maximizes R . A, we need only con­

struct a matrix S using the elements of matrix A in (3.2.1), and then compute the 

unit eigenvector q = (qQ, ql, q2. q3)T associated with the largest eigenvalue of S. The 

rotation estimated will be the one corresponding to q. 

The quaternion algorithm has been discussed by Horn [39] in great detail. As 

can be seen from the above discussion, the algorithm is simple and direct and only 

involves the computation of the eigenvector associated with the largest eigenvalue of 

a 4 x 4 matrix. 

3.2.4 The algorithm based on estimation of the rotation axis 

The quaternion algorithm is developed by representing a rotation by a unit quater­

nion. In this section, we will develop another algorithm by representing the rotation 

matrix in terms of rotation axis and a rotation angle. From section 2.2.2 or section 

2.2.3, rotation can be represented by a rotation axis n and a rotation angle (J as 

R - cosO[ + (1- cos (J)nnT + sin(JN. (3.2.16) 

Thus 

R·A - cosB[.A+(l-cosO)(nnT).A+sinON.A (3.2.17) 

- (nnT). A + sinON· A + cosO (tr(A) - (nnT) . A) . 

Let 
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Once the rotation axis is known, it follows from equation (3.2.17) that R· A can be 

maximized by choosing the rotation angle () satisfying 

(3.2.18) 

In this case, R . A can reach its maximum value 

However, it is not that direct to compute the rotation axis n that maximizes 8(n). A 

numerical method could be used to find the optimal solution, but at the expense of 

computational speed and accuracy. Here we provide a technique for estimating the 

rotation axis from matrix A directly by solving a simple eigen system. Let 

A=SP 

be a polar decomposition of A, where 8 is symmetric and semi-positive definite and 

P is orthogonal. When A is nonsingular, P is uniquely defined. When A is singular, 

P is not unique, but it can be taken to be a proper rotation. From section 3.2.2, the 

rotation that maximizes R· A is P when P is a rotation, and is (I - 2vvT )P when 

P is not a proper rotation, where v is a unit eigenvector of S associated with the 

smallest eigenvalue. Thus matrix A can be decomposed in the following way: • 

where R is a rotation and 81 is either S or 8(1 - 2VVT) • Suppose n is the rotation 

axis of R, then, we must have 
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or 

which can be easily solved. Since det(A - 8d = det(81)det(R - J) = 0, n is actually 

the eigenvector of A - 8 1 corresponding to eigenvalue 0. 

Based on this idea, we obtain the following algorithm (called 'the rotation axis 

based algorithm' ). 

Algorithm 3.2.1. (1) Compute the eigenvalues and eigenvectors of matrix AAT 

such that AAT = PApT, where P is the matrix consisting of eigenvectors and A the 

diagonal matrix with elements equal to the eigenvalues. Find the eigenvector v of 

AAT associated with the smallest eigenvalue. 

(2) L~t A 1/2 be the matrix whose elements are square roots of matrix A, and let 

8 = PA1/ 2p T • 

• if det(A) ~ 0, set 81 = 8, and compute unit vector n from (A - 81)n = 0; 

• else if det(A) < 0, set 8 1 = 8(1 - 2vvT ), and compute unit vector n from 

(A - 81)n = 0; 

(3) Compute the cosB,sinB from equation (3.2.18) and construct the rotation 

matrix with equation (3.2.16). 

As can be seen from the experimental results shown in the next section, the 

above algorithm is equivalent to the SVD algorithm and the quaternion algorithm. 

However, this algorithm only involves computing the eigenvalues and vectors of a 3 x 3 

symmetric matrix, which is more stable than computing the singular decomposition. 
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Remark 5. The rotation axis can also be estimated by observing that the difference 

vector between each corresponding pair of coordinates is perpendicular to the rotation 

axis once the effect of translation has been removed from the data sets. Thus, rotation 

axis can be estimated by minimizing the sum 

T = t,«Yn -Xn)· n)' = n (t,(Y. - Xn)(Yn -Xnf) n, (3.2.19) 

assuming that the data have been moved to their centroids. Experiments have shown 

that the rotation axis estimated with this method is much less accurate than that 

computed by the algorithm presented earlier. 

3.2.5 The Affine approximation and the iterative algorithms 

The rotation matrix R can also be estimated by first finding an affine approximation 

and then using the singular value decomposition technique to find the closest rotation 

matrix to the affine approximation. 

In addition, iterative optimization procedure can be considered. As correspon­

dences between data sets are known, a good initial estimate can be obtained easily 

either from geometric intuition or from algebraic equations. Therefore, the rotation 

matrix R can be estimated accurately with conventional minimization procedures. 

Compared with the four closed form solutions described above, these two methods 

are less computationally efficient in general and are no longer much used in applica­

tion. 
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3.3 Experimental Results 

All the algorithms given in this chapter have been tested both with randomly gener­

ated data and real data measured with the OPMS ( Optical Position Measurement 

System) and CMM (Coordinate Measuring Machine). For randomly generated data 

sets, a set of random points is first generated uniformly within a cuboid with size 

of 100 by 100 by 100. To obtain the corresponding data set, it is then transformed 

by a rigid transformation. Both data sets are further modified by adding a normally 

distributed random error N(O, (J2) with standard deviation (J in the range [0,1]. The 

algorithm developed with SVD, polar decomposition, unit quaternion and the algo­

rithm based on rotation axis estimation are then applied to the data sets in turn. 

The estimated rotation is then compared with the true rotation by calculating the 

Frobenius norm of the difference matrix between the two matrices in each case. The 

results of the experiments are summarized in Tables 3.1 to 3.6. It can be seen from 

these tables that the performances of the Quaternion algorithm, the SVD algorithm 

and the algorithm based on the estimate of the rotation axis given in section 3.2.4 

work almost equally well. As the equivalence between the polar decomposition algo­

rithm and the SVD algorithm is guaranteed in theory, relevant testing results are not 

listed. The SVD algorithm and the Quaternion algorithm have also been compared 

with the algorithm given in section 3.2.4 by testing their performances with data sets . 
measured with the OPMS, where system measurement errors are around lmm, and 

the CMM, where the system error is less then 0.05mm. The test result shows that 

the matching accuracy is quite satisfactory for all these methods. Real data sets are 

obtained by measuring a demonstration block in different positions and orientations. 

For each position and orientation, 12 points are sampled, among these, up to 8 points 
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are used as reference marks and other four are used as verification points. It can be 

seen from the statistics listed in the following tables that the performances of all the 

methods are quite similar. 

As far as speed is concerned, all the algorithms based on closed form solutions 

are quite similar. Some experiments have also been given on the algorithm based 

on an iterative optimization procedure. It is shown that this way of estimating the 

rotation matrix also performs very well. The only disadvantage of this method is its 

computing speed, which is much slower compared with any previous algorithm when 

the number of reference points becomes large. 

It is also important to know how many reference points are needed to guarantee 

an accurate estimate. From Figure 3.1, it can be seen that with the increase in the 

number of reference points, the errors between the estimated rotation matrices and 

the true rotation matrices tend to become smaller and smaller, and the number of 

reference points needed really depends on the accuracy of measurements. Figure 3.2 

shows that maximum errors do not change significantly when the number of reference 

points is larger than 10. 

Method quaternion svd rot-axis-Est 
Max 2.44273 2.44273 2.44037 
Min 0.79894 0.79895 0.79493 

Mean 1.54632 1.54632 1.54630 

Trmean 1.54632 1.54632 1.54630 

,Median 1.46744 1.46746 1.46784 

Stdev 0.42589 0.42589 0.42589 

Table 3.1: The summary of maximum error for OPMS data(mm) 



60 

Method quaternion svb rot-axis-Est 
Max 1.73574 1.73574 1.72179 
Min 0.63870 0.63870 0.63177 

Mean 1.08744 1.08744 1.08744 

Trmean 1.08744 1.08744 1.08744 

Median 1.01565 1.01565 1.00956 

Stdev 0.27315 0.27315 0.27311 

Table 3.2: The summary of average maximum error for OPMS data(mm) 

Method quaternion svd rot-axis-Est 
Max 0.90948 0.90948 0.90948 
Min 0.49513 0.49513 0.49477 
Mean 0.68134 0.68134 0.68134 
TrMean 0.68134 0.68134 0.68134 
Median 0.68156 0.68156 0.68154 
Stdev 0.11087 0.11087 0.11086 

Table 3.3: The summary of average error for OPMS data(mm) 

Method quaternion svd rot-axis-Est 
Max 0.18721 0.18722 0.18722 
Min 0.01238 0.01238 0.01238 
Mean 0.06827 0.06849 0.06849 
Trmean 0.06451 0.06536 0.06536 

Median 0.06047 0.06316 0.06316 

Stdev 0.03639 0.03609 0.03609 

Table 3.4: The summary of maximum error for CMM data(mm) 

Method quaternion svb rot-axis-Est 
Max 0.09319 0.09319 0.09139 
Min 0.01226 0.01238 0.01215 

'Mean 0.04311 0.04222 0.04222 

Trmean 0.04192 0.04140 0.04140 

Median 0.04076 0.04076 0.04076 

Stdev 0.01639 0.01757 0.01757 

Table 3.5: The summary of average maximum error for CMM data(mm) 



Method quaternion svd rot-axis-Est 
Max 0.05844 0.05844 0.05844 
Min 0.01016. 0.00859 0.00859 

Mean 0.02717 0.02688 0.0.02725 

TrMean 0.02639 0.02625 0.02616 

Median 0.02593 0.02593 0.02593 

Stdev 0.01103 0.01142 0.01113 

Table 3.6: The summary of average error for CMM data(mm) 
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Figure 3.1: Average errors between estimated rotation and true rotation with the 
increase of noise level for the rotation axis based algorithm 
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Figure 3.2: Maximum errors between estimated rotation and true rotation with the 
increase of noise level for the rotation axis based algorithm 



Chapter 4 

Coordinate system alignment using 
reference geometric primitives 

4.1 Introduction 

In order to obtain the expected registration accuracy and realize real time matching 

between preoperative images and patients, most computer assisted surgical systems 

at the movement use artificial fiducials to establish the precise matching between 

preoperative image and intraoperative data. Reference markers are one of the common 

fiducials used but other kind of fiducials are also used such as fiducial frames. In this 

case, the reference markers are attached on a frame rather then directly implanted 

onto the surface of the patients' bone. For some reference frames, the frame itself 

can be detected in both preoperative data and intraoperative data. For instance, the 

neuro-surgical system developed by Rwoh et al. [49], uses a modified stereotactic 

head-frame fitted with N-shaped fiducials. Cross-sections of the fiducials appear in 

each CT image. During operation, the head-frame is mounted at a known location 

with respect to the robot, providing a fixed relationship between the patient and 

63 
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robot. Among all the fiducial frames, a polyhedron frame like a rectangular box­

shaped frame, is undoubtedly the simplest. For this kind of frame, we usually know 

exact correspondences at the level of the reference frame rather than at the level of 

reference points. That is, we know exactly on which edge a reference marker is located 

for each image. As the reference frame can be detected in both preoperative data 

and intraoperative data, it is possible to use the features of the reference frame such 

as the vertices or edges of the frame to align the preoperative image coordinate with 

intraoperative patient coordinate. The registration based on such types of fiducial 

can be carried out as follows. First, from the preoperative data and intraoperative 

data, some features of the fiducial frame such as vertices and edges can be estimated. 

Then the}egistration can be established by the technique of feature matching. In this 

chapter, we will focus on the simplest frames that are composed of points, straight 

lines and planes. Since the directions of lines and the normal directions to planes 

can be detected by a specially designed reference frame, the straight lines and planes 

dealt with in this chapter are assumed to be directed. 

Suppose for a given polyhedral object, two sets of points are sampled with the 

object in different positions and different orientations. These two data sets can then 

be further divided into subsets according to the geometric features (vertices, edges 

and faces) of the frame. To align the two data sets, each subset is first fitted with 

a straight line or a plane according to whether the corresponding subset is· from 

an edge or from a face of the object. From this procedure, two groups of geometric 

primitives containing points (representing frame vertices), straight lines (representing 

frame edges) and planes (representing frame faces) are obtained for estimating the 

unknown rigid transformation that links the preoperative data and the intraoperative 
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data. This work is also the first attempt for our region to region registration problem 

where the region is known to consist of directed straight lines or directed planes. The 

matching problem for more general geometric features will be dealt with in Chapter 

8. This chapter has been organized as follows. In sections 2 and 3, algorithms for 

matching two sets of directed lines and two sets of directed planes are discussed 

respectively. In section 4, we discuss how to match two geometric primitives mixed 

up with points, straight lines and planes. Some mathematical results used in this 

chapter, together with the techniques for fitting a straight lines and a plane, are put 

into appendices at the end of this chapter. 

4.2 Matching two sets of directed lines 

For a line in 3D space, the rotation of the line by an angle 7r will be the line itself 

when the rotation axis is perpendicular to the line and intersects it. Thus when no 

direction is specified, the rotation transformation cannot be determined properly in 

some cases. In this chapter, a line is defined as a pair of vectors .c(P, v) in space, 

where vector P is a point on the line and vector v is unit, representing the direction 

of the line. Though the discussion is mainly on 3D lines, the algorithm obtained in 

this section can also be used in the 2D case. 
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4.2.1 The distance from a point to a line 

Let Q be a point and C(P, v) be a line in space. The distance between the point and 

the line can be represented in the following way: 

D(Q,C) - II(Q - P) - ((Q - P)· v)vll 

_ II(Q - P) - vvT(Q - P)II 

- 11(1 - vvT)(Q - P)IL 

where I represents the 3 x 3 identity matrix. 

(4.2.1) 

For a unit vector v = (a, (3, ,)T, let Cu be the skew-symmetric matrix constructed 

from v in the following way, 

(4.2.2) 

Then 

C; =vvT -I. (4.2.3) 

Hence, the distance between a point Q to a straight line C( P, v) can also be put into 

the form 

D(Q, C) = IIC;(Q - P)II. ( 4.2.4) 

4.2.2 The centre of a set of lines 

For a set of directed straight lines {£i(Pi , Vi)}?::l' it is possible to determine the centre 

of these lines. The centre of the line set is defined as a point C such that the sum of 

squared distances from C to each line is smallest among all the points in the space, 
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i.e., 
n n 

2:: D2( C, .ci ) = m)n 2:: D2(P, .ci ). ( 4.2.5) 
i=1 i=1 

Now we investigate, for a given set of lines, how to compute their centre. Let 
n 

8(C) = I:: D2(C, .ci ) 

i=l 
n 

- 2:: I/(I - ViV[)(C - Pi) 1/
2 

i=l 
n 

- I::(C - Pif(I - ViV[)T(I - ViV[)(C - Pi). (4.2.6) 
i=l 

Since Vi is a unit vector, I - ViV; is idempotent and symmetric. Thus 
n 

S(C) = I::(C - Pif(I - ViV[)(C - n). (4.2.7) 
i=1 

Set 

We have 

(4.2.8) 

Now, if matrix 
n 

r = nI - 2::ViV; (4.2.9) 
i=1 

is nonsingular, then the centre of the set of lines can be uniquely determined as 

( 

n ) -1 n 

.0 = nI - ~ViVr ~(I - ViVnPi • (4.2.10) 

It is worth knowing when a set of lines has a unique centre for our registration 

problem. Obviously, when all lines are parallel to each other, the centre of the set 

of lines cannot be uniquely determined. To know when a set of lines has a unique 

centre, we need only to know when the matrix r in (4.2.9) is nonsingular. 
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Proposition 4.2.1. 
n 

r = nI - I:ViV; 

i=l 
will be nonsingular when there exist at least two non-parallel lines in the line set, 

where Vi is the direction of line .ci(i = 1,2"" ,n). 

Proof. Let {.ci(Pi , Vi)}?:l be a set of lines. Assume that there are at least two non­

parallel lines in the line set {.ci}~l' Let V = (VI, V2,'" ,vn ) be the matrix with 

Vi its ith column. Then rank(V) 2: 2. According to Proposition 4.6.2 given in 

Appendix C, rank(VVT) 2: 2. Note that the matrix VVT is symmetric and semi­

positive definite, its eigen-value must be non-negative. Suppose that the eigenvalues 

of VVT are AI, A2, A3' Then 

since Vi is unit, i = 1,2, ... ,n. 

Due to the fact that rank(VVT) 2: 2, there exist at least two non-zero eigen­

values. Thus for all Ai, we have ).i < n, (i = 1,2,3). This means that n cannot be 

the eigenvalue of matrix VVT and thus nI - 2:7=1 vivT is non-singular. In fact, let 

U be the orthogonal matrix such that 

then 
n 

det(nI - I: ViVT) - det(nI - VVT) 
i=1 

- det(nI - U(VVT)UT) 

- (n - ).l)(n - ).2)(n - ).3) > O. (4.2.11) 
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Figure 4.1: The centre of two straight lines 

o 

This result shows that the centre of a set of lines can be uniquely determined 

whenever non-parallel lines are present. 

Remark 6. When all lines £i(Pi, vi)(i = 1"" ,n) are all mutually parallel, then 

Vi = VI for i = 2,··· ,n and equation {4.2.8} can be written as 

n 

n(I - VIVnC = (I - VIVn L Pi' 
i=1 

The centre of this set of lines can be any point on the line £( Co, VI), where Co is the 

centre of gravity of all points {Pi}~I' 

Proposition 4.2.2. The centre of a set of lines does not depend on the represen~ation 

of the lines. 

Proof. It is evident that the centre is independent of the signs of line directions. We 

show further that it does not depend on which point the line passes through either. 

Suppose (Pi, Vi) and (PI, Vi) represent the same line, i = 1,2"" , n. Then there exist 
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real numbers oi(i = 1,2"" ,n) such that PI = Pi + 0iVi. Thus 

n n n 

L(I -ViVf)Pi - 2:(1 - ViVnp: + L(I - ViVn(~ - Pi) 
i=l i=l i=1 

n n 

- L(I - ViVf)P: + 2:(I - ViVf) (OiVi) 
i=l i=l 

n 

- I:(I - ViVf)P!, 
i=l 

since (I - ViV[)Vi = O(i = 1,2," . ,n). o 

Proposition 4.2.3. Let Rand T be the rotation matrix and the translation vector. 

If C is the centre of line set .ci(Pi, vi)(i = 1,2"" ,n), then the centre of line set 

.c~(RPi +- T, RVi) will be RC + T. 

Proof It follows from (4.2.10) that the centre of the line set .c'(RPi + T,Rvi),i = 

12 .. · nis " , 

( nI - t; Rv,v; RT ) -1 t; (I - Rv,v; RT)( RP, + T) 

( 

n ) -1 n 

- R nI - ~ ViV: RT ~ R(I - vivf)RT (RPi + T) 

- R (nI - t;v,v;) -1 t;(I - v,v;)(P, + RTT) 

- RC + R (nI - t, v,v; ) -1 t,(I -v,vilRTT 

- RC+T. 

o 
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4.2.3 Method of registration 

Now we consider how to register the two sets of lines. Let {.ci(~' vi)}i=l and 

{.c~ (Qi' Ui) }i.:l be two sets of lines. It is assumed that there exist an unknown rotation 

R and translation T such that 

(4.2.12) 

errors. 

Since the direction of a line is independent of translation during a rigid transfor­

mation, the rotation can be found directly from {Vi}i.:l and {Ui}i.:l by maximizing 

which can be further rewritten as 

n 

LUi· RVi, 
i=l 

n 

R· LUiVr. 
i=l 

( 4.2.13) 

The rotation R can thus be estimated by one of the four closed form solutions 

provided in Section 3.2 from the matrix 

n 

A= LUiVf. 
i=l 

Once the rotation has been found, the translation can be found using Proposition 

4.2.3 as 

T=C'-RC, ( 4.2.14) 

where C and C' are the centres of the line sets {.ci}i=l and {£ai=l respectively. 
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As can be seen from the method of registration, the rotation matrix R is estimated 

from matrix A by maximizing the matrix scalar product R· A. Since the matrix A 

is obtained from the corresponding directions of Vi and Ui, changing the direction of 

Vi or Ui but not both will change the sign of matrix UiV[ and therefore change the 

matrix A. To obtain the correct rotation R, the correct correspondences in directions 

between the two line sets must be known in advance. When the directions of the 

two sets of straight lines are not known, the correspondences in directions for the 

two line sets need to be specified by using a carefully designed frame. Note that 

in some cases, the orientation of an object cannot be determined by two undirected 

lines or three orthogonal undirected lines, as in this case we have several ways in 

which to _match the two undirected line sets. For example, for two undirected lines, 

their rotation by an angle 7r will have no apparent effect when the rotation axis is 

perpendicular to them and the extended axis of rotation passes through two lines. 

However, there are some situations where there will be only one way to match the 

two line sets. We will discuss this problem later in Chapter 8. Now suppose we can 

chose three corresponding lines in the frame that are not mutually orthogonal. Since 

there is only one possible matching in this case, a proper rotation matrix R can be 

found by comparing the matching errors for the rotation matrix that are obtained 

by using all possible correspondences for the three lines. After a proper rotation is 

estimated, this rotation is applied to each direction of a line in the first set and then 

compared with its corresponding direction. If the dot product of a rotated direction 

with its corresponding direction is negative, the direction of the corresponding line 

in the second set is changed to its opposite. This will synchronize the directions of 

the two line sets, since, with proper rotation, the angle between the rotated direction 
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in the first data set and its corresponding direction in the second data set should be 

less than 90 degrees. 

vVhen only two or three lines in the line set are available, new pairs of corre­

sponding directions can be constructed from non-parallel lines for each line set by 

calculating their vector product. This will make the rotation estimated more accu­

rate, especially when matrix (nI - L~l ViVf) is almost singular. 

Algorithm 

Let {.ci(Pi , Vi)}i::l and {.c~(Qi' ui)}i=l be two sets of lines. 

• Synchronize the directions of the two sets of lines. 

• Find the centre for each line set: C, C'. 

• Use the techniques provided in section 3.2 to estimate rotation R from matrix 

A which maximizes R . A . 

• Calculate translation T: 

T=C'-RC. 

4.3 Matching two sets of directed planes 

vVhen there are fiat areas on the surface of an object, these areas can be approximated 

with planes. Thus differences between two data sets due to rigid transformation can 

be estimated by matching the corresponding planes. 
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Figure 4.2: Estimate rigid transformation by line matching 

4.3.1 The distance between a point and a plane 

There are several ways to represent a plane. One way is to represent the plane with 

a point and a direction (called the normal of the plane). Let Po be a point on the 

plane and the unit vector n be the normal of the plane. Then for any point P on the 

plane, we have 

(P - Po) . n = O. (4.3.1) 

A plane is denoted by P(Po, n ). 

Let Q be a point, and let P (Po, n ) be a plane. The distance between the 'Point 

and the plane can be represented as 

D(Q, P ) = II(Q - Po) . nil· (4.3.2) 
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4.3.2 The centre of a set of planes 

As with line matching, to register two sets of directed planes, we need to estimate 

their centres. Let Pi (Pi, lli)(i = 1,2,··· ,n) be a set of planes. As in the case of a 

set of lines, the centre of a set of planes is defined as a point C such that the sum of 

squared distances from C to each plane is smallest among all points in space, i.e., 

n n 

L D2(C, Pi) = m)n L D2(P, Pi). (4.3.3) 
i=l i=l 

Now we discuss how to compute the centre of a set of planes. Let 

n 

S(C) = L D2 (C, Pi) 
i=l 
n 

- L II(C - Pi)· llil1 2 

i=l 
n 

- L(C - Pi)T llillf(C - Pi). 
i=l 

(4.3.4) 

Set 

we have 

n n 

Lllinfc = LninfPi. (4.3.5) 
i=l i=l 

From proposition 4.6.2 in Appendix C, if there exist three linearly independent plane 

normals, sum E~l nin; will be nonsinguIar, and the centre of the set of planes will 

be 

(4.3.6) 
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• 

Figure 4.3: The centre of six planes 

As with the centre for a set of lines, the centre of a set planes has the following 

properties. 

Proposiiion 4.3.1. The centre of a set of planes does not depend on the represen­

tation of planes. 

Proposition 4.3.2. Let Rand T be the rotation and translation. If C is the centre 

of plane set {Pi (Pi, ni)}i::l1 then the centre of planes {P(RPi + T, Rni)}i=l will be 

RC+T. 

4.3.3 Registration of two sets of directed planes 

The algorithm to register two sets of planes will be similar to the algorithm to register 

two sets of straight lines and will be described only briefly. Unlike line matching, we 

need at least three pairs of directed planes to determine the rigid transformation. 

First, the rotation R can be estimated directly from the corresponding normals with 

the techniques provided in section 3.2. Then the translation can be found as T = 

C' - RC, where C and Cf are the centres of the two plane sets. 
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4.4 Matching two sets of geometric primitives 

In practice, a frame can be designed to combine fiducial markers, fiducial lines and 

fiducial planes. In this section, we discuss how to estimate the rigid transformation 

when frame features are a mixture of points, lines and planes. 

4.4.1 The centre of a set of geometric primitives 

Let 

be a set of geometric primitives consisting of points {Pd~=l' straight lines {C(Pj, Vj) }~l 

and planes {P(Pt:, nk}k=1. The centre of the set of geometric primitives is defined as 

a point C such that the sum of squared distances from C to each of these geometric 

primitive is least. Let 
1 m n 

S(P) = LIIP-~112+ LD2(p,Cj ) + LD2(P,Pk) 
i=1 j=1 k=1 

1 

- L liP - Pi l12 
i=l 
m 

+ L(P - Pjl(I - VjVn(p - Pj) 
j=l 

n 

+ L(P - p~')Tnknnp - P;). 
k=1 

Then the centre C should satisfy 

S( C) = min S(P). 
p 

As in the previous sections, we can show that the centre C will be 
I m n 

C = W-1(LI{ + L(I - VjVnPj + Lnknrp~') 
i=1 j=1 k=1 

( 4.4.1) 

( 4.4.2) 

(4.4.3) 
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when matrix 

m n 

W = 1I + L (I - VjVn + L nknk (4.4.4) 
j=1 k=1 

is nonsingular. 

Now we discuss the circumstances in which the matrix ~V will be nonsingular . 

• 1 > o. In this case, matrix 

m n 

W = 1I + L(I - VjvJ) + Lnknk 
j=l k=l 

will be nonsingular as 

m n 

I:(I - VjVn + I:nknz 
j=1 k=l 

is semi-positive definite. 

• 1 = O. This means that the set of primitives contains only lines and planes. In 

this case, matrix 
m n 

W = I:(I - VjVn + I: nknf. 
j=l k=l 

Note that both the matrix 2:7=1 (I - Vjv]) and the matrix 2::=1 nknk are 

semi-positive definite. Thus, from Proposition 4.2.1 and Proposition 4.6.1 in 

Appendix C, matrix W cannot be singular when there are at least two lin­

early independent line directions or there are three linearly independent }:>lane 

normals. Thus we know that the centre of this set of geometric primitives is 

uniquely defined if and only if one of the following three conditions is satisfied. 

1. There exist at least two lines that are not parallel to each other. 

2. There exist three linearly independent plane normals. 
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3. There exist a line and a plane such that the line is not parallel to the plane. 

When one of these conditions is satisfied, the centre will be uniquely determined. 

The sufficiency of the first two conditions is obvious. For the third condition, 

it is also very direct. Let matrix V = (VI, V2, .•. ,vm ) be formed with line 

directions VI, V2,'" ,Vm • When rank(V) = 1, matrix L,~l (I - VjvJ) will be 

m(I - VIVO· Let 

U = 1- vlvi 

and let VI = (a,(3,,)T. When replacing one of columns of U with a plane 

normal n, it can be shown with simple algebra that det(n, U2, U3) = a(vl • n), 

det(Ul, n, U3) = f3(Vl • n), and det(ul, U2, n) = 1'(Vl . n), where Ul, U2, U3 are 

the--first, second and third column of matrix U. This means that whenever 

the direction VI is not perpendicular to n, rank(U, n) = 3 since n 1- O. This 

confirms the sufficiency of condition 3. 

4.4.2 Method of matching two sets of geometric primitives 

Let 

be a data set consisting of points, lines and planes, and let 

be their rigid transformation. The procedure to register the two sets of geometric 

primitives is similar to that of registering two corresponding directed line sets or two 

corresponding directed plane sets. First, the rotation can be found from the corre­

spondences between the points, the directions of lines and the normals of planes. \Ve 
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Figure 4.4: Estimate rigid transformation by line and plane matching 

first compute the centres C and Cf of the two sets of geometric primitives according 

to (4.4.3). Then, we calculate the correlation matrix 

I m n 

A = Z)X: - Cf)(Xi - cf + Lvjvl + Ln~nkT. 
i=l j = l k= l 

The rotation R can then be estimated by maximizing the scalar product R . A with 

the techniques provided in Section 3.2. The translation is calculated as T = C' - RC. 

It should be noted that when only a line and a plane are available and the line is 

perpendicular to the plane, the rotation can not be determined properly, as in this 

case the normal of the plane is the same as the direction of the line. 

4.5 Experimental results 

In this section some tests on the line matching algorithm are given to demonstrate the 

performance of the algorithm. Due to the limitation of space, the results of testing 
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Figure 4.5: Errors in rotation against the noise level for line matching algorithm 
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the general primitive matching algorithm will not be discussed here. In testing the 

line matching algorithm, three line data sets are used. The first line data set consists 

three lines which are generated with random positions and random orientations. The 

second and the third line data sets contain four lines and five lines respectively which 

are also randomly generated. Each line is about 200mm long. For each line data set, 

two groups of points are sampled from each line corresponding to different positions 

and different orientations of the line set. The number of points sampled from each 

line range from 10 to 20. Then the noise conforming to the normal distribution with 

standard deviation ranging from O.l(mm) to l(mm) is added to the three components 

of each sampled points. Straight lines are then fitted with the given data sets line by 

line. The direction correspondence for each pair of corresponding lines is determined 

by the order in which the points are sampled. Figure 4.5 shows the mean errors 

in rotation, measured by the Frobenius norm of the difference matrix between the 

estimated rotation and the true rotation over 5000 experiments, against different 

levels of standard deviation. As can be seen from the figure, the overall error increases 

nearly linearly with the increase of error level. The figure also shows that with an 

increase in the numbers of lines the error in rotation declines. Figure 4.6 shows the 

mean errors in translation over 5000 experiments against different levels of standard 

deviation. As can be seen, it has similar graph to the error in rotation. 

The number of points sampled from each line also affects the matching accuracy, 

as shown in Figures 4.7 and 4.8, where three lines are considered. The greater the 

number of points used, the greater the accuracy in estimates of individ uallines, and 

hence the greater the accuracy in the estimate of the transformation. Experiments 

on line distributions are also given and it is shown that the translation error will be 
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affected significantly by the line orientations. "VeIl separated line orientations tend 

to give more accurate estimates. 

To summarize, experiments have shown that when more then 4 lines are used, and 

when the positions and orientations of these lines are well separated, the line matching 

algorithm will give a very accurate estimate of the actual rigid transformation, if 

enough points are sampled for each line. 

4.6 Appendices 

In the previous sections, we have given some methods for matching two sets of geo­

metric primitives consisting of points, lines and planes. These methods are based on 

the fact that the lines and planes can be accurately estimated from a set of points. 

Traditionally, line fitting is mainly based on algebraic distance. In this section, a line 

fitting technique based on geometric distance is developed using an eigen-technique, 

which is more robust and more accurate. 3D straight line fitting can also be provided 

with the algorithm given by Taubin in [94], by solving generalized eigen systems. 

However, our algorithm is simpler than Taubin's. 

Appendix A: Least-squares Line Fitting 

Let {Pi }f::l be a set of points, and let £(Po, v) be the line to be estimated, where Po 

is a point on the line, and v is a unit vector representing the direction of the line. 

For each Pi, the square of the distance from the point to the line is 

i = 1,2"" ,n 
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and we wish to estimate Po and v by minimizing the sum 

n 

S = 2:(Pi - PO)T(I - VVT)(Pi - Po). (4.6.1) 
i=l 

vVe first discuss how to estimate Po. Setting dS/dPo = 0, we obtain 

n 

n(I - vvT)po = (I - vvT) 2: ~. (4.6.2) 
i=l 

The solution for Po is not unique as matrix I - vvT is singular. An obvious choice 

for Po is the centre of gravity of the data set {Pi}' Let 

We will use Po as the estimate of Po. 

Substituting Po for Po in (4.6.1) and noting that 

it follows from equation (4.6.1) that 

where 
n 
'" A T A 

W = L-(Pi - Po) (Pi - Po) 
i=l 

is a real number and 

is a 3 x 3 matrix. 

(4.6.3) 
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It is evident that minimizing( 4.6.3) is equivalent to maximizing 

subject to Ilvll = 1. (4.6.4) 

The solution to 4.6.4 is well known as the unit eigenvector of "vV associated with 

the largest eigenvalue. 

The algorithm to estimate the straight line from a set of points follows. 

Algorithm for estimating the line 

• Po is estimated as the centre of gravity of the data set: 

A 1 n 

Po = - LPt. n. ,=1 

• Compute the matrix W: 

n 
~ A A T vV = L..,,(Pi - PO)(Pi - Po) . 
i=1 

• The direction of the line can be found as the unit eigenvector of matrix ~V 

associated with the largest eigenvalue. 

Appendix B: Least-squares plane Fitting 

Fitting a plane from a set of points is much easier than fitting a line a.c; for a plane 

P, the Euclidean distance from a point P to P is the same as the algebraic distance. 

Therefore, for a given data set, {Pt(Xi, Yi, zi)}f=l' the plane can be fitted directly by 

minimizing 
n 

L (axi + byi + CZi - d)2 , 
i=l 

as a function of a, b, c, d, subject to a constraint, such as a2 + b2 + c2 + d2 = 1. 
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Here we provide another way of estimating a plane from a set of points by esti-

mating a point that the plane passes through and the normal of the plane. This way 

of estimating a plane, though it is not as direct in computing as the first one, fits our 

geometric intuition better. As can be seen from the following discussion, the point 

that the plane passes through can be chosen as the centroid Po of the data set, and the 

normal n of the plane can be estimated by minimizing the sum of squares of all scalar 

product of vector n and vector Pi - Po, which is supposed to be perpendicular to the 

plane normal. In fact let {~}i::l be a set of points, and let P(Po, n) be the plane to 

be estimated, where Po is a point on the plane, and n is a unit vector represented the 

normal of the plane. For each Pi, the squared distance from the point to the plane 

can be p~t in the form 

i=12··· n " , 

and we want to estimate Po and n by minimizing the sum 

n 

B = L)Pi - PofnnT(Pi - Po). 
i=l 

By setting dB / dPo = 0, we obtain 

n 

nnnT Po = nnT L Pi. 
i=l 

(4.6.5) 

(4.6.6) 

The solution for Po is not unique as matrix nnT is singular. An obvious choice 

for Po is the centre of gravity of the data set {Pi}f=l' Let 
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We will use Po as the estimate of Po. 

As 

it follows from equation (4.6.5) that minimizing S subject to Ilnll = 1 is equivalent 

to minimizing the quadratic form 

(4.6.7) 

where 

i=l 

The solution to 4.6.7 is the unit eigenvector of W associated with the smallest 

eigenvalue. 

The algorithm to estimate the plane from a set of points follows. 

Algorithm for estimating the plane 

• Po is estimated as the centre of gravity of the data set: 

• Compute the matrix W: 

i=l 

• The normal ii of the plane can be found as the unit eigenvector of matrix VV 

associated with the smallest eigenvalue. 

Above two methods for estimating a plane from a set of points are equivalent in 

accuracy as they are based on the same optimization criterion. 
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Appendix C: Some mathematical results 

In this part, we provide two fundamental results in matrix algebra that have been 

used in our proof given in Sections from 4.2 to 4.4 

Proposition 4.6.1. Let A be an n x m matrix, then AT A is nonsingular if and only 

if A has linearly independent columns. 

Proof Let A = (al,a2,'" ,am), where aj - (alj,a2j,'" ,anj)T represents an n­

dimensional vector(j = 1,2"" ,m). Then 

Therefor~, det(AT A) = 0 if and only if there exist AI, A2, "', Am, L:j:l A; > 0, such 

that 

This is equivalent to 

or equivalently 

AlaI + A2Q2 + ... + AmQm = O. 

• 
That is, the columns of matrix A are not linearly independent. o 

Proposition 4.6.2. rank(AT A) = rank(A). 

Proof We need only to show that rank(AT A) ;;:: rank(A). Let the rank of A is k. 

Without loss of generality, we assume that the first k columns of A, denoted by All 
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are linearly independent. Let A2 represent the remaining columns of A, then 

According to Lemma 4.6.1, Af Al is non-singular. Thus we have rank(AT A) > k = 

rank(A}. o 



Chapter 5 

The iterative closest line segment 
registration and the iterative 
closest triangle patch registration 

5.1 Introduction 

In the previous two chapters, we investigated some registration algorithms assuming 

that some links between the data sets are known, like point to point correspondence 

or directed line to directed line correspondence. Registration techniques like these are 

usually referred to as fiducial marker registration, which are efficient and accurate. 

However, to collect the reference data sets, external fiducial markers or fiducial frames 

have to be implanted or fitted to the area where surgery will be carried out. This 

brings about further trauma to the patient on the one hand and will put additional 

burden onto the surgeons by requiring them to set up the environment for collecting 

data from the markers on the other. 

In this chapter we will consider how to compute the rigid transformation that 

link two given data sets without using fiducial markers or fiducial frames. In this 

case, the only information available is that the two data sets are collected from the 

91 
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same surface of a rigid object. Often, one data set (called the model data) has far 

more points than the other one {intra-operative data from the actual patient). As no 

exact correspondence information is known about the two data sets, non-landmark 

registration techniques are required to match the two data sets. These are much 

more complicated than the landmark registration techniques due to the nature of the 

problem. In this case, an iterative optimization procedure is unavoidable for data 

matching. Therefore, non-landmark registration techniques are slower, less efficient 

and less accurate in general compared with landmark registration. 

Current non-landmark registration techniques can be classified roughly either as 

surface matching or as volume matching. The idea of volume matching will not be 

consider~~ in this thesis for the following reasons. Firstly, volume data are compu­

tationally expensive as the size of the data set can often be as large as hundreds of 

megabytes. Secondly, as the intraoperative data are assumed to be sampled from the 

surface of a bone, the data position within a bone will not actually relate to the in­

traoperative data collected. Thirdly, volume data always contains too much detailed 

information that might not be an advantage for our registration problem. It should 

be noted that we only have very few points sampled from the surface of the surgi­

cal object for intraoperative data. If the surface of the bone is not smooth enough, 

the rigid transformation that matches the intraoperative data with the volume data 

might not be unique and therefore it might not always be possible to estimate the 

actual orientation correctly. 

In this thesis, we will follow the idea of surface matching to investigate non­

landmark registration techniques. Amongst all surface matching algorithms, the ICP 

algorithm [10] has been one of the most popular techniques. The main advantage of 
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the lep algorithm is that it always converges. However, in many cases, it does not 

converge to the expected transformation if a good initial estimate is not available. 

In this chapter, we first generalise the reference line segment registration technique 

presented in [43] from equal length line segments to general line segments. Then we 

develop reference triangle patch registration by extending the concept of line segment 

to triangle patches. The iterative closest line segment (ICL) registration algorithm 

and the iterative triangle patch (leT) registration algorithms are developed along 

similar lines to the conventional iterative closest point (lCP) registration algorithm, 

and are shown to be more likely to converge to the true rigid transformation than the 

ICP algorithm. 

5.2 Closed-form Line Segment Registration 

Definition 5.2.1. Let PI, P2 E }R3 be two points. The ordered pair [g, P2] is called 

a line segment in lR3. The set of aU line segments on ]R3 is denoted by L. 

Definition 5.2.2. Let L E L be a line segment in lR3, and let F be a transformation 

on space ]R3. Then F can be extended to be a line segment transformation by defining 

(5.2.1) . 
[F PI, F P2] is called the transformation of the line segment lL. For translation, we will 

write T[PI , P2] = [PI + T, P2 + T] more naturally as [PlI P2] + T. 

Similarly, the meanings of other operations on ]R3 can also be extended to include 

operations on line segments. 
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Definition 5.2.3. Let lLl = [H, P2], lL2 = [Q1, Q2] E L be two line segments, and 

a, b two real numbers. We define 

(5.2.2) 

It should be noted that this definition is different from the set operation obtained 

with the conventional extension principle. 

Let lLl = [PI, P2], lL2 = [Q1, Q2] E L be two line segments. Geometrically, lLl 

and lL2 can be represented as functions in the form: h()..) = PI + )"(P2 - Pd, and 

12()..) = Q1 + )..(Q2 - Ql) respectively, where 0 < ).. ~ 1. If).. is incremented by d).., 

then hand 12 are incremented by (P2 - P1)d)" and (Q2 - QI)d)" respectively. The 

distance between these two line elements can be approximated by the area of the 

trapezium that has height IIh()..) - 12()..) 112 with top-edge and bottom edge defined 

by (P2 - P1)d)" and (Q2 - Q1)d)" approximately, i.e., 

~(IIP2 - PIli + IIQ2 - Qd)lIf1()..) - 12()..)1I 2d)". 

We choose to use Ilh()..) - 12()..)11 2 rather than IIfl()..) - 12()..)11 to measure the distance 

between points /I()..) and 12()..) only for convenience of computation. The distance 

between the two line segments can thus be described by the following integration: 

it + 12 r1

I1f1 ()..) _ h()..) 112 d)" 
2 Jo 

- it; 12 (11P1 - Q1112 + IIP2 - Q2112 + (PI - Ql) . (P2 - Q2)) , (5.2.3) 

where II = IIP2 - PIli, and 12 = IIQ2 - Qd· 

Definition 5.2.4. Let 1L1 = [PI, P2], lL2 = [Q1, Q2] be two line segments. The distance 

between the two line segments is defined as (5.2.3) and is denoted by D(lL1, lL2)' 
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It should be noted that the value of the above integration depends on the cor­

responding relations between the ends of the two line segments. Thus, the distance 

between two line segments defined above is direction dependent. 

In [43], the distance between line segments has been defined for the case where 

the lengths of the line segments are equal. ,\Ve will show that our definition is more 

general. 

Proposition 5.2.1. LetlLl = [P1,P2],lL2 = [Ql,Q2] E L be two line segments. Then 

(5.2.4) 

where 0 1 = (PI + P2)/2, O2 = (Ql + Q2)/2 are the centres of the two line segments, 

the unit vectors Vi, 'V2 are their directions and ll' l2 their lengths. 

The geometric meaning of the measure is clear. The first term of equation (5.2.4) 

measures the difference between the two line segments in position, the second term 

measures the difference in direction, and the third term measures the difference in 

length. 

Proof 

l1l211Vi - 'V2112 + (h -l2)2 = 

IIP1 - Q1112 + IIP2 - Q2112 - 2(P1 - Qd . (P2 - Q2), 
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and so 

II + 12 (11 0 1 _ 02112 + l1l21IVi _ V212 + ~(ll -12)2) 
2 12 12 

- it; 12 (II PI - Q1112 + IIP2 - Q2112 + (PI - Ql) • (P2 - Q2)) . 

o 

When 11 = 12 = 1, it follows from (5.2.4) that 

D(lL1, lL2) - 11101 - 0 2 11
2 + ~~ II VI - Vi 112 

[3 
- lllOI - 0 2 11

2 + "6(1 - Vi . Vi). 

This is the definition given in [43]. 

Though (5.2.4) is more direct than (5.2.3), we will mainly use (5.2.3) as it is easier 

to compute from points. 

N ext, we will establish a line segment registration algorithm. Let 

be two sets of line segments. Suppose that there exists a rotation R and a translation 

T such that 

n = 1,2,···,N 

where [en' e~], n = 1,2,··· , N, are experimental errors. vVe estimate Rand T by . 
minimizing 

N 

2: - 2: D( R[Pn , P~] + T, [Qn, Q~] ) 
n=l 
N 

_ 2: lIn; 12n ( IIQn - RPn - TII2 + IIQ~ - RP~ - TII2 
n=1 

+(Qn - RPn - T) . (Q~ - RP~ - T) ), (5.2.5) 
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where lIn' 12n are the lengths of [Pn, P~] and [Qn, Q~] respectively. 

For a minimum value, ~~ = O. It follows immediately that the optimal translation 

should be chosen as 

T=Q-RP, 

where 

P
- _ .;-. Pn + P~ 

- ~wn 2 ' 
n=l 

Q- _.;-. Qn + Q~ 
- ~wn 2 ' 

n=l 
N 

W = L(lln + 12,..), and 
n=l 

Let 

n = 1,2"" ,N. Substituting (5.2.6) into (5.2.5), we have 

N 

~ = L lIn; 12n ( IIQn - RPnll2 + IIQ~ - RP~1I2 
n=l 

This sum can be further written as 

N 

~ = tJ. - R . L lIn; 12n ( 2QnPJ + 2Q~P'~ + QnP'~ + Q~PJ ), 
n=I 

where 

(5.2.6) 

(5.2.7) 

(5.2.8) 

(5.2.9) 

tJ. = f itn ; 12n ( IIQnl12 + IIPnl12 + IIQ~112 + IIP~112 + Qn . Q~ + Pn· P~ ): 
n=l '. 

is a constant independent of rotation R. Therefore minimizing (5.2.8) is equivalent 

to maximizing 

f=R·A, (5.2.10) 
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where the matrix 

N 

A = L lIn; l2n (2QnPJ' + 2Q~P/~ + Qnp/~ + Q~PJ'). 
n=1 

(5.2.11) 

The rotation R that maximizes (5.2.10) can be found using any of the four closed 

form solutions presented in section 3.2. 

5.3 Closed-Form Triangular patch Registration 

In this section, the concept of a triangle patch is introduced. The contents of this 

section can then be treated like that of the previous section. Triangle patches can be 

seen as a generalization of the line segments introduced in the previous section. The 

main results of this section can be further generalized without difficulty to an ordered 

point set of any size. 

Definition 5.3.1. L,et H, P2, P3 E ]R3 be three points. The ordered triple [H, P2, P3]is 

called a triangle patch in ]R3. The set of all triangle patches on ]R3 is denoted by T. 

Definition 5.3.2. Let l' E T be a triangle patch in ]R3. F is a transformation on 

space ]R3. Then this transformation can be extended to apply to a triangle patch by 

means of the definition 

(5.3.1) 

[F PI, F P2, F P3] is called the transformation of triangle patch T. For translation, we 

also write 
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or more conveniently as 

Addition and scaling operations can also be defined on triangle patches as they 

are on line segments. 

patches, and a, b two real numbers. We define 

(5.3.2) 

We now discuss the concept of distance between triangle patches to measure their 

closeness. Let 1\ = [PI, P2, P3], 'Ir2 = [Q1, Q2, Q3] E T be two triangle patches. 

Geometrically, they can be represented as functions 

and 

respectively, where 0 < u, v ::; 1, and u + v < 1. As with line segments, we define 

a prism with height 11!I(u,v) - h(u,v)11 2• The top surface is defined with triangle 

1['1 and bottom is defined with triangle 1['2, and the volume of the prism is used to 

measure the closeness of the two triangles. Given increments du and dv to variable u 

and v, the corresponding increment in the volume of the prism can be approximated 

by 

CII!I(u,v) - h(u,v)1I2dudv, 

where 



and x denotes the vector product of two vectors. Thus the volume is 

fl CII!I(u,v) - h(u,v)1I 2 dudv 

- ~(IIP1 - Ql112 + IIP2 - Q2112 + IIP3 - Q311 2 

+(P1 - Q1) . (P2 - Q2) + (PI - Od . (P3 - 03) 

+(P2 - 02) . (P3 - Q3) ), 

where 1) = {(U, v)IO :5 u + v < 1, 0:5 u, v :5 I}. 
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(5.3.3) 

Definition 5.3.4. Let 'lrl = [PI, P2, P3], 1l"2 = [Q1, Q2, Q3] E T be two triangle 

patches. The distance between the two triangle patches is defined as (5.3.3) and 

is denoted by D ('f 1, 'f 2) 
-. 

It should be noted that the distance between two triangle patches defined above 

depends on the ordering of their vertices. As with Proposition 5.2.1, we have 

Proposition 5.3.1. Let 'lr1 = [PI, P2, P3], 'f2 = [Q1, 02, 03] E T be two triangle 

patches. Then 

D(11'1l 11'2) - ~ { 1101 - 0 211
2 

+ 3
1
6 ( hl~IIVi - V{1I 2 + 121~1I\12 - V~1I2 + 131~1I\-'3 - V;1I 2 

) 

+ 316 ( (II -l~? + (12 _1~)2 + (13 - 1~)2) }, (p.3.4) 

where 0 1 = (H + P2 + P3)/3, O2 = (01 + Q2 + Q3)/3 denote the centres of the two 

triangles, unit vector Vi, \12, \-'3, VI' V2, V; are the corresponding directions of edges, 

and h, 12, hA, l~, l~ are corresponding lengths of the three edges. 

The proof of this proposition is similar to that of Proposition 5.2.1. 
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The first term of equation (5.3.4) measures the difference between the two triangle 

patches in position, the following three terms measure the differences of the two 

triangle patches in orientation, and the last three terms measure the differences in 

size. 

Now, we discuss a technique for triangle patch registration. Let 

be two sets of triangle patches. Suppose that there exist a rotation R and a translation 

T such that 

n=1,2, .. ·,N 

where [en, e~, e~], n = 1,2"" , N, are experimental errors. We estimate Rand T by 

minimizing 

N 

E - L: D(R[Pn, P~, P:J + T, [Qn, Q~, Q~]) 
n=l 

N 

- L ~; (IIQ - RPn - TII2 + IIQ' - RP~ - TJJ2 
n=l 

+IIQ" - RP: - TJJ2 + (Q - RPn - T)· (Q' - RP~ - T) 

+( Q - RPn - T) . (Q" - RP: - T) 

+(Q' - RP~ - T) . (Q" - RP: - T) ), (5.3.5) 

where 

is an invariant under rigid transformation. 



102 

For a minimum value, ~¥ = O. It follows immediately that the optimal translation 

is chosen as 

T=Q-RP, 

where 

N D P' P" P _ "" Tn + n + n 
- L....J Wn 3 ' 

n=l 

N Q Q' Q" 
Q-_"" n+ n+ n 

- L....JWn 3 ' 
n=l 

en 
W n =-· 

W 

Let 

n = 1,2", . ,N. Substituting (5.3.6) into (5.3.5) we have 

N 

E = L ~;(IIQn - RPn l12 + IIQ~ - RP~1I2 + IIQ~ - RP:1I2 
n=l 

+(Qn - RPn)· (Q~ - RP~) + (Qn - RPn)· (Q~ - RP:) 

+(Q~ - RP~) . (Q~ - RP:)). 

This sum can be further written as 

E = Do - R· B, 

where Do is a constant independent of rotation Rand 
N 

B = "" en (2Q-" p"T + 2Q-' p,T + 2Q- pT L....J 12 n n n n n n 
n=l 

+QnP'~ + QnP"~ + Q'nPJ + Q'nP"~ + Q"nPJ + Q"nP'~). 

Therefore minimizing (5.3.8) is equivalent to maximizing 

R·B. 

(5.3.6) 

(5.3.7) 

(5.3.8) 

(5.3.9) 

(5.3.10) 
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The rotation R that maximizes (5.3.10) can be estimated using any of the four 

closed-form solutions presented in section 3.2. 

5.4 The iterative closest line segment and the 

iterative closest triangle patch Registrations 

In this section, the iterative closest line segment registration algorithm(ICL) and the 

iterative closest triangle patch registration algorithm(ICT) are presented. As the ICT 

algorithm is similar to the ICL algorithm in principle, it will just be discussed briefly. 

Let P = {Pn}~=l' Q = {Qm}~=l be two sets of points sampled from the same sur­

gical surface of the patient's bone intraoperatively and preoperatively. It is assumed 

that no point to point correspondence relations are known between the two data sets 

and that M is much larger than N. In this case, the data set Q should be large 

enough to represent the surface of the object realistically, otherwise, the estimated 

rotation and translation might not be what we expect. The ICL algorithm works by 

searching for the closest line segments in Q for each line segments in P. 

In searching for pair of closest line segments, a dynamically weighted distance is 

used to measure the closeness of two line segments. Note that the length of a line . 
segment is left unchanged by rotation and translation. For a given line segment in 

P, its closest line segment in Q should have a similar length. If two line segments 

are significantly different in length, then one cannot be the transformation of the 

other. With this fact in mind, we could modify the distance between line segments 

by increasing the weight on the length difference to filter out the unlikely pairs. 
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Therefore, at the beginning, we can set the weight on the length difference between 

two line segments to be very large such that whether two line segments are close 

mainly depends on whether they have similar lengths. The weight on length difference 

is then gradually minimized according to the matching error in each iteration. 

In order to take advantage of the length of the line segments, the error in matching 

in the kth step of the iteration is used as the weight for the differences in length, i.e., 

in the kth step, the following definition of distance between line segments is used in 

searching for the closest line segments in our ICL algorithm: 

(5.4.1) 

where th~distance D is defined by (5.2.3) and ek-l is the error sum in the (k - l)th 

step, and [1, [2 are the lengths of lLl and 1L2 respectively. Since the lengths of the 

line segments are invariant under rotation and translation, the estimated rotation 

and translation based on distance Dk and distance D are the same. To enhance 

the efficiency of the ICL algorithm, it is proposed to sort the line segments of the 

intra-operative data according to their lengths so that longer line segments are com­

pared first. The reason for doing this is that the orientation of the object is mainly 

determined by these longer edges. 

Let 1L = [P, P'] be a line segment in data set P, and [Q(P), Q(P')] denote its 

closest line segment in data set Q. Once the closest line segments for all eleme~ts in 

P have been found, the line segment registration method given in section 5.2 is used 

on the data sets {[Pi, Pj]li < j; i, j = 1,2,,,, ,N} and ([Q(Pi ), Q(Pj)]li < j; i, j = 

1,2, ... ,N}. The estimated rotation and translation are then applied to P. Then 

the updated P are used as the intra-operative data. This procedure is repeated until 
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the difference between two consecutive error sums is smaller than the given tolerance. 

This procedure is always convergent under appropriate scaling. Let p(k) be the point 

set after updating P k times. For each line segment [Pi(k), p?)] in p(k), the closest 

line segment [Q(P?»), Q(P?»)] E Q is defined as the line segment that satisfies 

Algorithm 5.4.1. 1. Sort the line segments in data set P in such a way that the 

longer line segments are considered first in computing the closest line segments. 

In practice, if the number of points in P is N, we can just use the first N longest 

line segments to establish the registration. Let the first N longest line segments 

in data set p(k) be lL~k), lL~k), ••• , lL~). 

2. Initialize rotation, translation and eo: R=I, T=O; eo should be initialized as 

large as possible; 

3. For each line segments lL~k) E p(k), find a line segment Q(lL~k») in the pre­

operative model such that the distance between line segments lL~k) and Q(lL~k») 

is minimal in the sense of Dk defined in (5.4.1). 

4. For line segments {lL~k)}f:l and line segments {Q(lL~k»)}f:l' compute the ro­

tation matrix R' and the translation T' using the line segment registr·ation 

approach developed in section 5.2. Set R = R'R and T = R'T + T'. 

5. Calculate the error sum: 



106 

If /ek - ek+l/ is less than the given tolerance, stop; otherwise, set 

lI)k+l) = R'L~k) + T', 
t t n = 1,2"" ,N, 

and repeat from step 3. 

Now we show that this algorithm always converges under appropriate scaling. Let 

( 5.4.2) 

and let R(k), T(k) be the estimated rotation and translation from line segments {L~k) H~l 

and line segments {Q(L~k»)}~l' Define 

N 

dk = L Dk (lL~k+1), Q(lL~k»)). (5.4.3) 
i=l 

Let Rot and Tr represent any rotation and any translation respectively. Since the 

rotation and translation estimates based on Dk and D are equal, according to the 

line segment registration algorithm, 

N 

dk = I:Dk (L~k+l), Q(L~k»)) 
i=l 

N - I: Dk ( R(k)L~k) + T(k), Q(L~k»)) 
i=l 

N 

min ~ Dk (RotL~k) + Tr, Q(L~k»)) 
Rot.Tr~ 

i=l 
N 

< I:Dk (L~k), Q(L~k»)) 
i=l 

- ek· 

On the other hand, from the definition of closest line segments, we have 



N 

ek+1 - L Dk+1 (lL~k+1), Q(lL~k+l))) 
i=l 

N 
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< L Dk+1 (lL~k+1), Q(lL~k))), (5.4.4) 
i=l 

since Q(lL~k+l)) is the closest line segments of lL~k+l) in the sense of Dk+1' But 

Dk+1 (lL~k+1), Q(lL~k))) _ D (lL~k+1), Q(lL~k))) +ek(lllL~k+l)II_IIQ(lL~k))11)2 

_ Dk (lL~k+1), Q(lL~k))) 

therefore, 

where 

+(ek - ek_l)(lIlL~k+1)II_IIQ(lL~k))1I)2, 

N 

ek+l < L Dk (lL~k+1), Q(lL~k))) + (ek - ek_t}8k 
i=l 

- dk + (ek - ek-l)8k 

N 

15k _ L(lllL~k+1) II - II Q(lL~k))1J)2 
i=l 
N 

- L(lllLP)II-IIQ(lL~k))1J)2, 
i=l 

since for all k, we have IllL~k) II = IllLP) II. From the relation 

(5.4.5) 

we see that if ek ~ ek-l, then ek+1 ~ ek. Thus, if we could choose eo such that it is 

bigger than el then the non-negative real number sequence {ek} will be non-increasing 

and bounded below, and so it must be convergent. 
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It can be seen directly that a necessary condition that ek+1 ::; ek is Ok ~ 1.0. In 

fact, 
N 

ek+l - L: D (lL~k+1), Q(lL~k+1))) + ekOk+1 
i=l 

> ekOk+1. 

If ek+l ::; ek, then ek 2:: ekb'k+1' Thus Ok+1 ::; 1, since in general ek =f:. O. 

On the other hand, if 01 = 0, el will be independent to eo and eo can always be 

chosen to be larger than el, since in practice, el will always be bounded. \Vhen 01 

has an upper bound 00 less than 1.0, then from the inequality 
N 

el < L: D (lL~1), Q(lLP))) + eooo, 
i=l 

it can be-seen that e1 < eo if eo > ~/(1 - 00), where ~ is an upper bound for all 

possible sums 
N 

L: D (lLP), Q(lLP))) 
i=l 

relating to different initial values for eo. Since Ok is just a sum of differences of 

lengths of corresponding line segments, its upper bound should be very small if all 

line segments in P can be well approximated by corresponding line segments in Q. 

Even when the intra-operative data are not good enough, an upper bound less than 

1.0 can always be set to 01 uniformly by re-scaling the data sets such that 01 is less 

than one. Therefore, under appropriate scaling, the real positive number sequence 
• 

{ek} will always be decreasing and thus convergent. 

The iterative triangle patch algorithm(ICT} proceeds much the same way. The 

ICT algorithm can be obtained by replacing a line segment with a triangle patch 

in the above algorithm. As in the ICL algorithm, the following dynamic weighted 

distance is used in the ICT algorithm instead of (5.3.4). 
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(5.4.6) 

where ek is the error sum in the kth step defined in a similar way as (5.4.2) and 

d1, d2, d3 are differences in lengths of three corresponding edges of the two triangle 

patches. 

For each triangle patch in P, the leT algorithm will search for the closest trian­

gle patches in the pre-operative model data and use the triangle patch registration 

method given in section 5.3 to compute the rotation and translation in each iteration. 

The ICT algorithm works more robustly than the lep and the leL algorithms, but 

it spends more time in computing the closest triangle patches. 

5.5 Comparison of results 

The iterative line segment registration algorithm and triangle patch registration al­

gorithm have been tested and compared with the lep algorithm. Three different 

geometric objects have been considered in our experiments: a set of space line seg­

ments, a space curve and a surface [see Figures 5.1, 5.2, 5.3]. Having sampled the first 

data set (corresponding to pre-operative data), the object is randomly transformed 

by a rotation and a translation and then the second data set (corresponding to intra-. 
operative data) is sampled. The algorithms lep, leL and leT are applied to the two 

data sets to estimate the transformation. 

It is shown that when the second data set (intra-operative data) is just the trans­

formation of a subset of the first data set, the estimated transformation obtained with 

the ICL and the leT algorithm will be exactly the true transformation performed, 
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Figure 5.1: Line segments matching 

and the number of iterations is just two or three in most cases. When the second 

data set is not the transformation of a subset of the first one, it takes more iterations 

to converge and the transformation estimated may not necessarily be very close to 

the true transformation, though it is close in most cases. To test the stabili ty of the 

ICL and the ICT algorithms, data sets of different sizes are sampled for each object, 

with various orientations. The results of the experiment show that both the ICL and 

the leT algorithms are much more stable than the ICP algorithm. 

Obviously, the speed of convergence depends largely on the size and quality of the . 
data used, but it is also affected by the initial value assigned to eo. Too large an eo 

tends to result in a slower convergence, and too small an eo may be more likely to 

result in convergence to the wrong transformation. In our test, the ideal eo is chosen 

between 1010 to 1030
. 
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Figure 5.2: Curve matching 

Much of the experiment has been done to compare the ICL and the ICT algo­

rithms with the ICP algorithm. As we know, the ICP algorithm is very sensitive 

to the initial orientation of the object. Thus it is natural to ask whether the newly 

developed methods are any better. The first way to show such a stability for these 

algorithms is to compute the probability of success for a series of experiments. In the 

experiment, we say that a matching process is successful if both the error between the 

estimated rotation and the true rotation and the error between estimated translation 

and the true translation are less than the given threshold. Tables 5.1 to 5.3 show the 

percentage of successes over 500 runs of these three algorithms with different data 

sets using the lep, the ICL and the ICT algorithms. The figures are obtained by 

setting the threshold to be 0.2 for the line segment object and curve object and 0.4 

for the surface object. The closeness between two rotation matrices is defined as the 

Ftobenius norm of their difference and the closeness of two translations is measured 
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Figure 5.3: Surface matching 

by the norm of the difference between the two vectors which define the translations. 

The number of points in the model data is in the range of 60 to 1000 and the number 

of points in the second data set is just between 4 and 6. 

points in second data 4 5 6 
rcp 37.4 35.1 14.3 
rCL 78.8 91.8 99.6 
rCT 100.0 100.0 100.0 

Table 5.1: Percentage of success for line segments matching 

It can be see from the figures in Table 5.1 to Table 5.3 that the rCL and th~ lCT 

algorithm are muc~ less sensitive to the initial orientations of the object. In all cases, 

the rate of success is more than 70% for line segments and curve with the lCL and 

the ICT algorithms compared with less than 20% percent with the lCP algorithm. 

The figures in these tables also show that with the increase of number of points in the 

second data sets, the lCL and the rCT become more and more robust, while there is 
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points in second data 4 5 6 
ICP 10.6 15.1 16.7 
ICL 74.8 93.8 98.7 
ICT 83.3 95.2 98.2 

Table 5.2: Percentage of success for curve matching 

points in second data 5 7 9 
ICP 3.1 2.1 3.5 
ICL 43.5 64.8 92 
ICT 52.6 75.1 93.6 

Table 5.3: Percentage of success for surface matching 

no such tendency in the ICP algorithm. 

The robustness of the lCL and lCT algorithms can also be shown by computing 

the average errors between true transformation and estimated transformation as well 

as errors in object matching. Tables 5.4 to 5.12 show that the average errors and the 

relevant standard deviations for both lCL and lCT algorithms are much smaller than 

those obtained with the ICP algorithm. 

mean std 
Rotation translation distance Rotation translation distance 

ICP 1.6626 0.8648 1.6755 1.2116 0.7507 1.3280 
reL 0.1253 0.1177 0.2219 0.4234 0.2752 0.2630 
reT 0.1271 0.1411 0.4071 0.0739 0.0536 0.1282 

Table 5.4: Differences in rotation, translation and distance for line segments matching 
with 4 points in the test data set 

The ICL and the leT algorithms are designed for problems where only very few 

points in the intra-operative data set are used, normally between 4 and 10, while 

the points in pre-operative data can be huge so that the object surface can be fully 
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mean dev 
Rotation translation distance Rotation translation distance 

lep 1.6995 0.8022 1.9817 1.2215 0.7215 1.48G6 
leL 0.2091 0.1675 0.3550 0.6382 0.4082 0.6115 
leT 0.1391 0.1497 0.5039 0.0544 0.0563 0.1650 

Table 5.5: Differences in rotation, translation and distance for line segments matching 
with 5 points in the test data set 

mean dev 
Rotation translation distance Rotation translation distance 

lep 2.0121 1.0921 3.0404 1.0776 0.7007 1.1353 
leL 0.1861 0.1484 1.0994 0.6016 0.3727 0.5039 
leT 0.1036 0.1388 1.3265 0.0639 0.0445 0.1370 

Table 5.6: Differences in rotation, translation and distance for line segments matching 
with 6 points in the test data set 

described by the data. Thus it is natural to ask whether the leL and the leT algo­

rithms are feasible for this problem in practice as its computational complexity will be 

O(N M2) in searching for the closest line segments in the leL algorithm and O(N Jt.J3) 

in searching for the closest triangle patches in the leT algorithm. Generally speaking, 

the leL and the leT algorithms should not be directly applied to the data. Some 

preprocessing for pre-operative data is needed. For example, geometric invariants 

under rotation and translation can be considered to remove those unlikely pairs of 

line segments and triangle patches. Before applying the leL algorithm, we could first 

select possible line segments in the pre-operative data by considering whether a line 

segment has a similar length to some line segment in the intra-operative data: Let 

Pi, P2 be two points in the intra-operative data, and let their corresponding position 

in pre-operative space be Qi, Q2. If the maximum distance between the neighboring 

elements in the pre-operative data is 15, then the difference between II P2 - PIli and 
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mean dev 
Rotation translation distance Rotation translation distance 

ICP 2.0372 5.1269 3.3219 1.1156 3.3631 2.0127 
ICL 0.6733 1.6610 1.4082 1.0407 2.4570 1.5658 
ICT 0.3409 0.7728 0.7065 0.8503 1.9574 1.5621 

Table 5.7: Differences in rotation, translation and distance for curve matching with 
4 points in the test data set 

mean dev 
Rotation translation distance Rotation translation distance 

ICP 1.9769 4.9529 5.0027 1.1702 3.3979 3.0511 
ICL 0.4656 1.0212 1.3700 0.9080 2.3405 1.7400 
ICT 0.0816 0.1876 0.7006 0.2118 0.4901 1.0160 

Table 5.8: Differences in rotation, translation and distance for curve matching with 
5 points in the test data set 

IIQ2 - Qil! cannot be larger than 20'. In this way, the number of line segments con­

sidered in the ICL will be greatly reduced. As the triangle patch algorithm provides 

more geometric invariants, more information can be used to select the possible tri­

angle patches used in the leT algorithm. This not only solves the problem of the 

feasibility of using the ICL algorithm and the ICT algorithm, but also increases their 

robustness. 

As far as the computing time is concerned, it depends not only on the size of the 

data sets, but also on their quality. The total computation time consists of the time 

used in selecting the possible geometrical structure and the time used to estimate the 

transformation based on the selected geometrical structure. Increasing the n~mber 

of points in matching data sets will only increase the time used for selecting the 

possible geometrical structure, but not necessarily the iteration times, and thus not 

necessarily the overall computation time. When the number of points in the model 

data set is not too large, the time used mainly depends on the convergence speed. 
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mean dev 
Rotation translation distance Rotation translation distance 

ICP 1.2347 3.7532 4.1150 1.1352 3.4012 2.5323 
ICL 0.1366 0.2655 0.8782 0.3423 0.9151 1.1480 
ICT 0.0751 0.1666 0.8626 0.0814 0.2128 0.9346 

Table 5.9: Differences in rotation, translation and distance for curve matching with 
6 points in the test data set 

mean dev 
Rotation translation distance Rotation translation distance 

ICP 2.1157 2.5736 4.0252 0.8368 1.5330 1.3005 
ICL 0.6150 1.3876 2.9965 0.2207 0.3765 0.6095 
ICT 0.6751 0.9171 0.9749 0.8347 1.3943 0.1733 

Table 5.10: Differences in rotation, translation and distance for surface matching with 
5 points in the test data set 

But for alarge model data set, the computation speed will be determined mainly by 

the time used for selecting possible geometrical structures. As for the ICT algorithm, 

the computation time really depends on the value of the threshold for selecting the 

possible triangle patches. A big threshold may result in thousands of triangle patches 

being selected and it may take hours to finish the matching process. The number of 

triangle patches selected for an appropriate threshold should around 512 times the 

number of triangle patches selected from the second data sets. Figures 5.4 and 5.5 

show the computation times in using the ICL and the ICT algorithms to match two 

data sets from a curve, where N represent the number of points in the second data . 
set. The code is written in C++ and is run under Microsoft vVindows NT with a 

CELERON 400MHz processor. As can be seen from Figure 5.4, the rCL algorithm 

uses less than a minute to match two data sets with the number of points in the 

model data ranging from 100 to 1000. As far as the rCT algorithm is concerned, its 

speed is also not as slow as expected as we can see from Figure 5.5. However, if we 
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mean dev 
Rotation translation distance Rotation translation distance 

ICP 2.2706 2.9904 3.4057 0.8760 1.9573 1.3736 
ICL 0.5996 0.6705 1.7966 0.8221 0.2151 0.6559 
ICT 0.3100 0.5402 0.9695 0.6925 1.1445 0.3149 

Table 5.11: Differences in rotation, translation and distance for surface matching with 
7 points in the test data set 

mean dev 
Rotation translation distance Rotation translation distance 

lCP 2.3007 2.9269 4.5968 1.8298 3.0929 1.5027 
ICL 0.1116 0.1506 2.0263 0.1184 0.0640 0.5962 
lCT 0.2065 0.2761 2.8030 0.1009 0.0822 1.0202 

Table 5.12: Differences in rotation, translation and distance for surface matching with 
9 points in the test data set 

ignore the selecting procedure, it does take a few hours to establish the match when 

the number of points in the model data is larger than 700. Again, it is worth to 

note that the computation time does not necessarily monotonically increa..'3e with the 

increase of the number of point in the model data, though it does in general situation. 

As can be seen from Figure 5.4, when the number of points in the second data set is 

eight, the computation time is much shorter when the number of point in the model 

data is 400. Same phenomenon can be observed from the figure when the number of 

points in the second data set is four, where shorter computation time is used when 

the number of points in the model data is 400, or 700, or 1000. The phenomenon 
• 

can also be observed from Figure 5.5 for the lCT algorithm, where the number of 

points in the second data set is eight and the number of points in the model data set 

is 800. This phenomenon occurs when the second data set happen to be the result 

of a rigid transformation of a subset of the model data set (as we have mentioned 

earlier) or when the second data set can be well approximated by a subset of the 
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Figure 5.4: Computation time vs. the number of points in model data for the ICL 
algorithm 

model data set with respect to a rigid transformation. The good thing about the ICL 

and ICT algorithms is that they can still give good estimates even if the model data 

set is a bit sparse, while the ICP cannot. Therefore, in some cases, we can first use 

the ICL or the ICT algorithm to find a good initial solution (one or two iterations) 

with a subset of model data. This initial solution can then be further tuned by the 

ICP algorithm. However, to fully investigate the performances of the ICL and ICT 

algorithms, more experiments need to be done with noisy data or with data.from 

surfaces of some actual geometric objects sampled with various scanners. This will 

provide a more complete comparison with the ICP algorithm. 
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Figure 5.5: Computation time vs. the number of points in model data for the lCT 
algorithm 



Chapter 6 

Least squares ellipsoid fitting 

6.1 Introduction 

In the pr~vious chapter, we developed the ICL and the leT algorithms for surface data 

matching. They can be applied directly to scattered data sets when the preoperative 

data are fine enough to describe the surface of a human bone very well. However, 

when preoperative data are sparse or too noisy, they have to be fitted with a smooth 

surface in order to blur the gaps between the data points or to filter out some noise 

from the data. Basically, two kinds of shape can be fitted with a set of 3D points, 

either parametrically or implicitly. A parametric surface is a map S from R2 to R3 

and can be expressed as S(u, v) = (x(u, v), y(u, v), z(u, v)). An implicit surface is the 

zero contour of a map f from R3 to R, Le., it can be expressed as f(x, y, z) = O. 

Both types of fitting have their advantages and disadvantages. However, in computer 

graphics, research on data fitting has long been dominated by parametric shapes due 

to their highly desirable properties in drawing, tesselating, subdividing and bounding. 

Recently, fitting data with implicitly represented curves and surfaces has attracted 

increasing attention as implicitly represented shapes have advantages over parametric 

120 
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shapes in several ways. Firstly, they can tell directly whether a point is inside or 

outside the shape. Secondly, the surface normals can be easily computed. Thirdly, 

the most commonly used geometric shapes such as spheres, cylinders, ellipsoids can 

be represented very easily with implicit surfaces. Finally, the value of an implicit 

function at a point can be used to measure the distance from the point to the surface, 

which is the motivation of our work in the next three chapters. 

In our registration problem, the type of surface chosen to fit the data depends 

on what kind of registration technique is adopted. If we use the Iep or the ICL 

algorithm, parametric surfaces are preferred as the computation of closest points 

on the preoperative model surface is easier for parametric surfaces than for implicit 

surfaces. JIowever, when we follow the idea of 'Head and Hat' matching, an implicitly 

represented surface is much preferred as the value of the implicit function at a point 

can be used to approximate the distance from the point to the surface of the function 

represented. As we pointed out in Section 1.2, the conventional 'Head and Hat' 

surface matching algorithm [69] is computationally expensive since the distance from 

a point to the polyhedron surface constructed from the preoperative data is difficult 

to compute. However, when the shape is modeled implicitly, the distance from a point 

to the surface can be simply approximated with either the value of the function or 

the pseudo-Euclidean distance of the implicit surface. Furthermore, the gradient of 

the shape can be easily computed and thus the optimization procedure in searching 

for the rotation and translation can be carried out much more efficiently. In this 

thesis, we will focus on investigating implicit surface fitting as we want to develop 

an algorithm for our region to region matching following the idea of 'Head to Hat' 

matching, where to know approximately the distance from a point to the surface of 
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the preoperative model is more important. 

In this chapter, we will only consider how to fit 3D data with an implicitly repre­

sented ellipsoid. More general implicit surface fitting techniques will be discussed in 

the next chapter. 

6.1.1 Why ellipsoid fitting? 

Fitting an ellipsoid to a set of 3D scattered points occurs in the area of pattern 

recognition, machine vision, 3D graphics and spatial data analysis. Ellipsoids, though 

rather restrictive for representing 3D shapes in general, are the only bounded and 

central quadrics that can provide information on the centre and orientation of an 
._-

object. Ellipsoids have been used as an effective means for shape representation for 

quite some time[8] [70]. In the area of computer graphics visualization, ellipsoids 

can be fitted to a set of 3D points for the purpose of object segmentation [102]. In 

medicine, ellipsoids can be fitted to human organs for data visualization [84] or for 

better appreciation of the clinical outcome after operations [51] [89]. Ellipsoid fitting 

is also required in spatial data analysis such as geoid estimation, and geodetic datum 

acquisition [27]. Ellipsoid fitting can also serve as an initial step for many shape 

representation problems[19] [20] [21]. In the shape matching problem, when domain 

knowledge is available, ellipsoids can be fitted to different regions of interest of an . 
object, so that a good initial matching can be established based on these ellipsoids. 

In all these cases, an ellipsoid is the preferred fit for a given data set. 
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6.1.2 A brief survey of ellipsoid fitting 

The best-ellipsoid fit problem has long been investigated [71], where an ellipsoid with 

minimum volume surrounding the given data set is required. In [45], reconstructing 

an ellipsoid from its orthogonal silhouette projections has been considered. In this 

chapter, we consider how to fit a set of scatter points from the surface of a 3D object 

with an ellipsoid specifically. Fitting an algebraic surface with scatter 3D points 

has been discussed widely and some excellent work has been found in [94] [95] [93] 

[46] [47] [72]. However, most of these fitting techniques are not ellipsoid specific. 

Though the techniques for fitting bounded algebraic surfaces presented in [46] and 

[95] can be used to fit an ellipsoid, the fitting results are unsatisfactory when the 

data are noisy. In theory, the conditions that guarantee that a quadratic surface is 

an ellipsoid have been well investigated and explicitly stated in analytic geometry, 

and can be found in most analytic geometry textbooks. In fact, when its leading 

form is positive definite, the solution of the quadratic equation must be bounded and 

thus represents an ellipsoid [9]. Therefore, fitting an ellipsoid to a given data set 

can be performed directly in several ways. One way is to use multiple constraints to 

constrain the leading form of a fitted quadratic equation to be positive definite, which 

leads to a nonlinear optimization problem with multiple constraints. Another way is 

to parameterize the coefficients of the leading form as suggested in [46] and [95]. In 

this case, to guarantee that the fitted quadratic surface is an ellipsoid, we need only 

ensure that the corresponding coefficient matrix of the leading form of the quadratic 

equation is nonsingular, which turns out to be a nonlinear optimization problem 

with one constraint. As with all nonlinear optimization problems, the optimization 

procedures based on the above two methods often stop at a local minimum and cannot 
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guarantee an optimal solution. Both of these approaches have the drawback that they 

are very sensitive to initial values. In this chapter, we first investigate whether there is 

a simple constraint that can determine whether a general quadratic in three variables 

represents an ellipsoid. As is well known, the discriminant which determines whether 

the 2D quadratic equation 

ax2 + 2bxy + cy2 + 2dx + 2ey + / = 0 

represents an ellipse is ac - b2 > O. However, to the best of our knowledge, no 

similar quadratic form exists for the 3D ellipsoid. In this chapter, we show that the 

discriminant for an ellipsoid is of similar form for a large group of ellipsoids. For the 

sake of c~~ciseness, the three principal axes of an ellipsoid are described here as long, 

median, and short. Generally, a quadric surface is defined as the locus of points such 

that their coordinates satisfy the most general equation of the second degree in three 

variables, namely 

ax2 + by2 + ez2 + 2/yz + 2gxz + 2hxy + 2px + 2qy + 2rz + d = O. (6.1.1) 

Then it is well known that this equation represents either a central quadric or a 

paraboloid, including their degeneracies [90] . Let 

a h g 

!:l. - h b / (6.1.2) 

g / c 

I - a+b+e, (6.1.3) 

and 

J - ab + be + ac - /2 _ g2 _ h 2• (6.1.4) 
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It is known that they are invariant under rotation and translation and that equation 

(6.1.1) represents an ellipsoid if and only if J > 0, and [Do > 0 [38]. 

It is shown further in this chapter that when 

4J - [2> 0, 

equation (6.1.1) must represent an ellipsoid. On the other hand, for an ellipsoid, 

when the length of the short axis is at least half of that of the long axis, then we must 

have 4J - [2 > O. However, 4J - 12 > 0 is only a sufficient condition to guarantee 

that an equation of second degree in three variables represents an ellipsoid, but it is 

not necessary. Therefore the ellipsoids that satisfy the condition 4J - [2 > 0 are just 

a subset ?f the whole ellipsoid family. Generally, for any ellipsoid, there must exist 

a real number a ~ 4 such that aJ - J2 > O. However, when a > 4, the condition 

that aJ - 12 > 0 cannot guarantee that a quadric surface is an ellipsoid. A simple 

search procedure is then suggested for fitting an ellipsoid in general. In most ca.ses, 

the fitting will just be a one step fitting except in some extreme cases, and thus 

it is almost a direct fitting technique. In section 2, we first induce the constraint 

4) - [2 > 0 and discuss some of its properties. Our fitting algorithm is described in 

section 3. In section 4, some experimental results are provided to show the efficiency 

and robustness of the algorithm. 

6.2 The discriminant of the ellipsoid 

Equation (6.1.1) can be rigidly transformed into the standard form 

AX2 +By2 +Cz2 +Px +Qy+ Rz+ D = 0, (6.2.1) 
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where A, B, C are the roots of the characteristic equation 

(6.2.2) 

Lemma 6.2.1. 12 ~ 3J, and 12 = 3J if and only if equation {6.1.1} represents a 

sphere. 

Proof As both [ and J are invariants, we need only consider the inequality for the 

standardized ellipsoid (6.2.1). From Cauchy's inequality, we have 

and thus 

This is equivalent to [2 ~ 3J. Also from Cauchy's inequality, the above inequality 

becomes an equality if and only if A = B = c. o 

To ensure that equation (6.2.1) always represents an ellipsoid, none of the three 

roots of the cubic equation (6.2.2) can be zero and all of them must have the same 

sign. To find the basic form of the discriminant, we first consider a special case when 

the cubic equation (6.2.2) has a double root, that is, the ellipsoid is considered to be 

a revolution of an ellipse. Let Ul, U2 be the roots of equation (6.2.2) with Ul a double 

root. According to Vieta's root theorem for the cubic equation, we have 

It follows that 

(6.2.3) 
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where J = ]2 - 3J > O(see Lemma 6.2.1) 

To ensure that both Ul and U2 are positive, from (6.2.3) we must have either 

4J _]2 > 0 (6.2.4) 

or 

J>O. (6.2.5) 

Thus, when the cubic equation (6.2.2) has two positive roots with one of them being 

a double root, either inequality (6.2.4) or (6.2.5) must be satisfied. Obviously, J > 0 

is implied in 4J _]2 > O. Conversely, if cubic equation (6.2.2) has a double root, all 

its roots must have same signs when 4J - 12 > 0 (or equivalently, III > 2V6), as can 

be seen from (6.2.3). 

In general, we have 

Proposition 6.2.2. For equation (6.1.1), 

1. If {6.2.4} is satisfied, then {6.1.1} must represent an ellipsoid. 

2. If {6.1.1} represents an ellipsoid, then J must be positive. 

Proof. (1) To show the first conclusion, we need only to show that it is correct for the 

standardized quadric surface (6.2.1), as 4J - 12 is a rigid transformation invariant. 

Now we show that the signs of A, B, G in equation (6.2.1) are all the same. Assqming 

that the signs are not the same, without loss of of generality, we take A > 0, B > 0, 

and G = -IGI ~ O. Then I = A+B -IGI, J = AB - AICI- BIGI and 

4J - 12 = -(A - B)2 - C2 - 2AICI - 2BICI ~ o. 

This contradicts 4J - 12 > O. 
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(2) This result is not new, and can be shown in many ways. In fact, when the 

cubic equation (6.2.2) has three positive roots, its derivative 

3u2 
- 21 u + J = 0 

must have two positive roots and this is equivalent to J > O. o 

To sum up, we see that 4J - 12 > 0 is a sufficient condition to ensure that a general 

surface of second order is an ellipsoid but it is not a necessary condition. However, 

J > 0 is a necessary condition but not sufficient. More explicitly, an ellipsoid does 

not necessarily satisfy 4J - 12 > 0 but must satisfy J > O. 

Since for any ellipsoid, the corresponding value of J will always be positive and 

thus there always exists a real number a > 0 such that aJ - 12 > O. However when 

a > 4, a quadric surface that satisfies aJ - ]2 > 0 is not necessarily an ellipsoid. 

Proposition 6.2.3. The maximum value of a > 0 for which a quadric surface can 

be an ellipsoid, when aJ _]2 > 0, is a = 4. 

Proof. To proof this we need only show that for any a > 4, there always exists a 

quadric such that aJ - 12 > 0 but that the quadric is not an ellipsoid. Let a = 4 + €, 

where € > O. Then for any "( > 0, consider the equation: 

(6.2.6) 

For this equation, ] = 2 - "(, J = 1 - 2,,(, and 

It is obvious that € - 2(2 + €)r - "(2 will be positive when "( is sufficiently small. This 

shows that aJ - 12 > 0 cannot ensure that the given equation is an ellipsoid whenever 

a >4. 0 
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At the end of the section, we investigate the geometric meaning of the invariant 

4J - ]2 for an ellipsoid. Define p = {A2!'B2~C2}' where A, B, C > 0 are the roots of 

(6.2.2). Then p is an invariant under rotation and translation. It can be shown that 

Ipi ::; 1, and p = 1 if and only if A = B = C when the equation (6.1.1) defines a 

sphere. Further, It can be observed that p > -1, and when one of the roots tends 

to infinity or when two of the roots tend to zero, the value of p tends to -1. In this 

case the corresponding ellipsoid will be flat shaped. Thus, we can see that the value 

of p can be used to measure the roundness of an ellipsoid. The bigger the value of 

p, the more nearly spherical the quadric. Conversely, the smaller the p is, the flatter 

or the longer and thinner the ellipsoid is. The following proposition states precisely 

when an ellipsoid satisfies 4J - ]2 > O. 

Proposition 6.2.4. For an ellipsoid 

if we assume that A ~ B ~ C > 0, then 

1. ]f B > iA, C > iA, then 4J - ]2 > 0; 

2. ]f B < iA, C < iA, then 4J _]2 ~ 0; 

3. If B ~ i A, C < i A, we can write C = (i - c)A, B = (i + ac)A for some 

positive number 0 < c < i and some number a, 0 ~ a ~ ie' Then 4J _]2 > 0 

if and only if 

2(a - 1) 
f(a) = (a + 1)2 > c 

Proof As the sign of 4J - ]2 will not be changed if we multiply equation (6.2.1) by 

a positive number, for simplicity, we assume without loss of generality that A = 1, 

o < B :::; 1, and 0 < C ::; 1. 
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1. If B > i, C > i, let B = i + b, C = i + e for b, e E (O,~], then 

4J _]2 _ 2(B + C) - (B - C)2 - 1 

- 2(b+e) - (b- e)2 ~ 2(b+e) -Ib- cl > 0, 

as b,e E (0, ~]. 

2. If B < i, C ~ i, it is obvious that 4J - ]2 = 2(B + C) - (B - C)2 - 1 ~ O. 

3. If B > ~,C < ~, Let C = i - e, B = ~ + ae for some c, ~ > e > 0 and some 

a,O < a ~ ie' then 

4J _]2 = 2(B + C) - (B - C)2 - 1 = 2(a - 1)e - (1 + a?c2, 

and 4J _]2 > 0 is thus equivalent to I(a) = ~l:~N > e. Note that the function 

1 has a maximum value of ~ when a = 3. Thus, for any value of e between 0 and 

1/4, there always exists an a such that 1(0:) > e. In fact, let 0:1 = 1-e-y=:rc, 
then 1 < 0:1 < 3 for c E (0, ~), and for any a E (0:1,3], we have 1(0:) > c. 

o 

In the proof of the third conclusion, let B1 = (~ + O:le)A, and let B = (~ + o:c)A 

for 0: E (0:1,3], then C ~ B1 ~ B ~ A. It is direct that 4J > ]2, for any c E (0, i). 
This means that no matter how great the length of the long axis of an ellipsoid is, . 
the corresponding ellipsoid satisfies 4J _]2 > 0 if only the length of the median axis 

is short enough. This, plus the first conclusion of the above property, means that the 

only kinds of ellipsoid that cannot be characterized by 4J - 12 > 0 are those that are 

very slender and very flat. 
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6.3 The ellipsoid fitting method 

As we do not have one simple overall discriminant to determine whether a fitted 

equation is an ellipsoid in general, it is difficult to give a direct fitting as in the 2D 

case. However, when the fitted data are from a fairly spherical ellipsoid, direct fitting 

is possible using the same principle as in the 2D case[33]. "Vhen the data are from 

a very flat or a very slender surface of an object, we can specifically fit an ellipsoid 

with a simple search procedure. In this section, we first discuss the direct fitting for 

data from a fairly spherical surface. Then, we discuss how to fit an ellipsoid to data 

from a general surface. 

6.3.1 -Direct least squares ellipsoid fitting 

In this section, we first discuss how to fit data to a quadratic surface (6.1.1) under 

the constraint kJ > [2, where k is positive. "Vhen k = 4, the fitted shape will be 

an ellipsoid. This fitting strategy is quite similar to the work presented in [33] for 

fitting an ellipse in the 2D case. Let {Pi (Xi, Yi, zi)}f=l be the set of points to which 

an ellipsoid needs to be fitted. For each point Pi(Xi, Yi, Zi), let 

For a given equation (6.1.1), let 

v = (a, b, c, J, g, h,p, q, r, df, 

our least squares fitting problem based on algebraic distance with the constraint 

kJ - [2> 0 
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can be formulated as: 

subject to kJ - [2 = 1, (6.3.1) 

where D is the design matrix of size 10 x n defined as D = (Xl, X2,··· ,Xn ). If Cis 

the 10 x 10 matrix defined below as: 

C= 

-1 Is. -1 1s.-1 
2 2 o 

o 
o 
o 
o 
o 

o 0 000 

-1 Is.-l 
2 o 0 0 0 0 

o 0 000 

o 0 

-1 0 

o -k o 0 0 0 0 

o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 

o O-k o 0 0 0 0 

o 0 0 -k 0 0 0 0 

00000000 

00000000 

00000000 

00000000 

(6.3.2) 

kJ - J2 = 1 can be written as vTCv = 1 and the constraint minimization problem 

(6.3.1) becomes that of solving a set of equations using Lagrange multipliers: 

(6.3.3) 

Note that matrix C has eigenvalues {k - 3, -~, -~, -k, -k, -k, 0, 0, 0, O}. Using the 

same inference as given in [33], we state that equation (6.3.3) has only one solution 

when DDT is positive definite and k > 3, which is the general eigenvector associated 

with the unique positive eigenvalue k - 3 of the general eigenvalue system DDT v = 

)"Cv. 
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Note that Cij = 0 when i > 6 or j > 6 for the elements of matrix C. We write 

v = ( :: ), (6.3.4) 

where matrices 8 11 , 8 12 , 8 22 are of size 6 x 6, 6 x 4, 4 x 4 and vector VI, V2 are of 

size 6 and 4. Let C1 be the top left 6 x 6 matrix of C, then the eigen system (6.3.3) 

becomes 

(811 - ;\C1)Vl + 812V2 - 0 

8~V1 + 822V2 - 0 

(6.3.5) 

(6.3.6) 

When 8 is positive definite, 822 will be nonsingular and from (6.3.6), 

Substituting this equation for V2 in equation (6.3.5), we obtain the general eigen 

system: 

(6.3.7) 

If 811 - 812Sils'[; is positive definite, let Ul be the eigenvector associated with the 

only positive eigenvalue of the general eigen system(6.3.7), and let U2 = -8;.l8~U1' 
then U = (uT, uff will be the eigenvector associated with the only positive eigenvalue 

for the general eigen system (6.3.3). The advantage of this way of computing is that 

the matrices involved in the generalized eigen system (6.3.7) are smaller and thus give 

better accuracy. 

Remark 7. 1. VVhen k > 3, the matrix C1 is nonsingular. Solving the general 

eigen system (6.3.7) becomes solving the following ordinary eigen system 

(6.3.8) 
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2. When DDT is positive definite, it can be shown immediately that Sll-S12S;ls~ 

is also positive definite [2}. If (A, v) is the solution of the general eigen system 

(6.3.7), then vT(Su - S12S;lS~)v > o. Therefore, we must have 

)..VTC1V> o. 

On the other hand, if v satisfies the constraint that VTC1V = 12::0, the eigen­

value). corresponding to the solution must be positive and thus the solution is 

unique. 

3. Direct spherical fitting. From Lemma 6.2.1, a sphere can be characterized by 

3J = 12. When k = 3, C1 will be singular. It can be shown that the reciprocal 

eigen system of (6.3.7) 

(6.3.9) 

will have only one non-negative eigenvalue 0 when S11 - S12S;il S~ is positive 

definite, and the vector VI corresponding to the nontrivial solution for problem 

{6.3.1} will be the eigenvector of eigen system {6.3.9} associated with eigenvaZ,ue 

O. 

4. When S22 is almost singular, S;l can be replaced with its generalized inverse S~2 

and the corresponding solution to V2 for (6.3.6) can be replaced with -S!2S~Vl' 

which has the following properties [62}: 

(a) It is the least squares solution of S22V2 = -S~Vl when there is no solution. 

(b) It is the unique solution when there is but one solution. 

{c} It is the minimum norm solution when there are an infinite number of 

solutions. 
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Figure 6.1: Fitting an ellipsoid with planar points 
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Figure 6.2: Fitting an ellipsoid with points from a hyperboloid of single sheet 

As already pointed out, 41 - [ 2 > 0 is just a sufficient condition to confirm 

that a quadric is an ellipsoid, but it is not a necessary condition. Thus, the above 

ellipsoid fitt ing achieved by setting k = 4 is 'best' just for those ellipsoids that satisfies 

41 - [ 2 > 0, which is only a subset of the whole ellipsoid family. In practice, when 
. 

data are from a roughly spherical ellipsoid, t he algorithm achieves the fit in only one 
" 

step. However , when data cannot be well represented by a nearly spherical surface, 

above one step ellipsoid fitting based on k = 4 is not enough. In the next section, we 

will give a method to cope with the problem using a simple searching procedure to 

find an appropriate value of k. 
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Figme 6.3: Fitting an ellipsoid with points from a hyperboloid of double sheets 
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Figme 6.4: Fitting an ellipsoid with points from a hyperbolic paraboloid 
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Figme 6.5: Fitting an ellipsoid with points from an elliptic cylinder 
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Figure 6.6: Fitting an ellipsoid with points from a parabolic cylinder 
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Figure 6.7: Fitting an ellipsoid with points from a hyperbolic cylinder 
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Figure 6.8: Fitting an ellipsoid with points from a cone 
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Figure 6.9: Fitting an ellipsoid with points from an ellipt ic paraboloid . 
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Figure 6.10: Fitting an ellipsoid with points from the top surface of an actual tibia 
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Figure 6.11: Fitting an ellipsoid with points from the bottom surface of an actual 
tibia 

6.3.2 Iterative ellipsoid fitting 

When data cannot be well described by an ellipsoid with the property 4J - ] 2 > 0, 

a large fitting error may be encountered. In this case we need to enlarge the family 

of ellipsoids by ch~osing a real number k > 4 and use kJ - ] 2 = 1 to constrain the 

fitting. The problem is that the fitted equation under the constraint kJ _ ] 2 > 0 

might not be an ellipsoid when k > 4. Note that when a real number k' > k , a 

quadric satisfying kJ > ] 2 must also satisfy k' J > ] 2. Thus, the fit ting based on 
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Figure 6.12: Fitting an ellipsoid with points from the surface of an actual patella 
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Figure 6.13: Fitting an ellipsoid to different parts of an actual femur 
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the constraint k' J - [2 = 1 will be preferable to the fitting based on kJ - [2 = 1 

if the fitted quadric surface is an ellipsoid, since there are more ellipsoids satisfying 

condition k' J > [2. Though in theory we do not know exactly the location for 

the largest number koC~. 4), such that an ellipsoid is always guaranteed under the 

constraint kJ > ]2 for 4 ~ k < ko, in practice, a simple search procedure can be easily 

devised to trace such a number. This can be done first by finding an appropriate range 

[a, b] for ko, such that ko E [a, b]. Basically, there are two ways to compute it. One 

way is to begin from k = 4 and increase k by a step 8 until we find a number b such 

that the fitting with constraint bJ > ]2 will no longer result in an ellipsoid or b is 

large enough such that almost all ellipsoids satisfy the condition bJ > ]2. The other 

way is to begin with a number b as large as possible and decrease it by a step 8 until 

we get to a number a(2:: 4) such that the corresponding fitting is an ellipsoid. As in 

most cases, the fitting based on constraint kJ > ]2 results in an ellipsoid even when 

k is extremely large, and it is more efficient in general to start the search from a very 

large number. To quickly locate an upper bound for values of k which are plausible, 

we can decrease the number k by re-scaling k with a small number, say, let the new k 

be k/2 or kilO. Once an upper bound b has been found in this way, we could further 

compute the least upper bound by a bisection method as described in the following 

algorithm. 

An ellipsoid can be made to degenerate into other kinds of elliptic quadrics,. such 

as an elliptic paraboloid, when the lengths of one or two of its principal axes tend 

to infinity. Therefore a proper constraint must be added. For example, an ellipsoid 

can be defined as those shapes such that the coefficients A, B, C in its standard form 

given in (6.2.1) are all positive and larger than a preset positive number E. Once such 
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a constraint is given, 4J > ]2 might not guarantee a quadric to be an ellipsoid in the 

sense of our restricted definition of an ellipsoid. But aJ > ]2 for a > 3 will certainly 

suffice. The algorithm is described as follows: 

Algorithm 6.3.1. Iterative ellipsoid specific fitting 

1. Set k to a very large positive number b, say b = 108• 

2. Use direct ellipsoid fitting method stated in section 6.3.1 to find the solution 

for equation: 

subject to 

where vCv = 1 corresponding to kJ _]2 = 1. 

3. If the fitting is an ellipsoid, STOP; else 

(a) While the fitting is not an ellipsoid and k ~ 3, replace k by k/2 and fit 

the data with the constraint kJ - T2 = 1. 

(b) Set a = max(k, 3), b = 2k. 

(c) set k=(a+b)/2 and fit the data with the constraint kJ > ]2. If the fitted 

shape is an ellipsoid set a=k; else set b = k. 

(d) If la - bl is less than a preset tolerance, STOP, otherwise go to 3c. 

The number of iterations depends on the data. When the data can be described 

well by an ellipsoid, it is just a one step fitting. In the worst case for a data set 

containing about 1000 points, it just take less than a second to find the optimal 

solution. For a data set that cannot be properly described by an ellipsoid, we have 

a trade off between approximation accuracy and the size of the fitted ellipsoid. For 
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example, when the data is precisely from an elliptic paraboloid (see Figure 6.9), if we 

want the fitting to be as accurate as possible, the fitted ellipsoid can be very big, which 

may not be what we expect in some cases. To limit the size within an appropriate 

range, we can discard those ellipsoids whose size is larger than given bounds. Figure 

6.9 shows the fitting results for the same data set with different limitations on the 

length of the long axis. The above algorithm has been tested with data from various 

kinds of shape such as the hyperboloid, paraboloid, cone, cylinder, and an actual 

tibia, patella, and femur. The fitted results are quite satisfactory. 

6.4 Experimental results 

In this section we demonstrate the robustness of our fitting method by comparing 

it with other least-squares fitting approaches. For the sake of simplicity, the fitting 
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Figure 6.15: The length error in the long axis vs. noise level 

10 

8 

6 

4 

2 

0 
. ..;" 

0 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ - Ellipsoid Specific 
. . . . Norm1 
- - Taubin 
. _. Bounded Taubin 

0.2 0.4 0.6 0.8 
The noise levels(in standard deviation) 

Figure 6.16: The length error in the median axis vs. noise level 

144 

1 

1 



1°r-------.-------.---~/~.-~~~~====~ 
- Ellipsoid Specific 
"" Norm1 

en 
'~ 8 
1:: 
o 

.L:: en 
15 6 
c o 
~ 
';:: 
co 
> 4 

.L:: c;, 
C 
~ 

,g 2 
t-

o ",, :' -
o 

,,; 

" / 

.' I 

.' / 

.. / 

, , ' / 

.. / 

.' / 

.. / 

.'/ 

,'/ 

,'/ 

/ 

- - Taubin 
, - ' Bounded Taubin 

" / 
, '/ 

0.2 0.4 0.6 0.8 
The noise levels(in standard deviation) 

- Figure 6.17: The length error in the short axis vs. noise level 

1 

145 

algorithm using the constraint that the sum of squares of the estimated coefficients is 

one is referred to as the unit norm method, and the method given in [94] is referred 

to as Taubin's method. The bounded fitting method presented in [95] is referred to 

as the bounded-Taubin method. In figures 6,14 to 6.17, we present the mean error 

of the centre and the mean error of the lengths of long axis, median axis and short 

axis. For each level of deviation, these mean errors are computed as the average 

variation over 500 runs. The data used for obtaining these figures are from ellipsoids 

centered at the origin with random orientations and randomly generated lengths for . 
the three principal ,semi-axis. The sampled data are then corrupted by adding a 

small perturbation from a Gauss distribution with a standard deviation ranging from 

o to 1. These data are then fitted with a quadric surface with four approaches: 

our ellipsoid specific fitting, unit norm fitting, Taubin's fitting and bounded-Taubin 



146 

fitting. Since unit norm fitting and Taubin's fitting are not ellipsoid specific, they will 

not always return an ellipsoid. To compute the average errors for these two methods, 

we have removed those cases where the fitted shape is not an ellipsoid. As is shown in 

these figures, our fitting method is very robust compared with the other three fitting 

techniques. For our new fitting method, the levels of error relating to the levels of 

noise are much smaller, except for the lengths of median axis, where the error from 

Taubin's method is slightly smaller. As can be seen from Figures 6.14 to 6.17, the 

fitting based on the bounded-fitting method is quite unsatisfactory when the error 

level is large. Figures 6.1 to 6.13 show that our fitting method always fits an ellipsoid 

to a set of given data no matter what kind data are used. 

6.5 Summary 

In this chapter, we have developed an algorithm for fitting an ellipsoid. We showed 

that when data are from a surface that is not very slender or very flat, the given 

method is just a one step direct fitting. For data from a general shape, or when the 

data are from a surface that cannot be well described by an ellipsoid, the data can 

be fitted with an ellipsoid by a simple searching procedure starting with a very large 

number k. In most cases, this will also be a one-step fitting except for some extreme 

instances, for example, when the data are precisely from a quadric surface other than 

an ellipsoid. Usually, it takes less that a second to complete the fitting for data 

containing about 1000 points. The experiment presented in section 6.4 demonstrates 

that the method is very robust in the presence of noise. 



Chapter 7 

Constructive Implicit Fitting 

7 .1 Introduction 

In the pr~yious chapter, we investigated how to fit a cloud of points with an ellipsoid. 

However, ellipsoid surfaces are too simple to represent general shapes. In this chapter, 

we will further explore how to fit a cloud of points with a more general implicit shape. 

By far the most common fitting techniques are concerned only with algebraic 

curves and surfaces. These represent a geometric shape by a single algebraic equation, 

because of its simple form and good algebraic properties. The problem is that higher 

degree algebraic curves and surfaces are often unbounded and multiple sheeted, while 

lower degree algebraic curves and surfaces are too simple to represent general shapes. 

In this chapter, we present a constructive method for fitting an implicit function to a 

set of scattered points by using the gate functions, which are smooth functions. from 

lRn to the interval [0,1] which take values close to 1 on some simply connected region 

D c lRn and take value close to 0 outside D. With this fitting technique, the data 

are first partitioned by means of geometric primitives into small data sets such that 

each subset of the data can be well described by a low degree algebraic surface. These 

147 



148 

simple algebraic shapes are first confined locally with gate functions corresponding 

to the geometric primitives which partition the data. They are summed together to 

obtain the overall fitting. More precisely, the general form of this type of implicit 

shapes can be put in the following way: 
n 

Lgi(P)!i(P) = 0, 
i=l 

where each h(P) is a low degree polynomial and gi(P) is the gate function that con­

fines !i(P). Examples are included to demonstrate that the fitting is very satisfactory. 

In most cases, implicit surfaces are used to construct solid geometrical objects. In 

this situation, the only requirement is that the constructed objects should be similar 

to a known object in shape but not necessarily an approximation to the actual surface 

of the given object. Thus the shapes can be created rather arbitrarily. They don't 

have to be exactly the same as the known objects to be simulated. However, in many 

applications a very accurate implicit shape needs to be reconstructed from a cloud 

of points sampled from the surface of a given object. Fitting an implicit surface to 

a set of points proves to be a difficult task. The implicit functions fitted are very 

unpredictable in shape and very uncontrollable in size, even for shapes represented 

by very simple algebraic equations, such as the cubic algebraic surfaces. Secondly, 

it is very likely that the fitted shape might not well represent the actual shape from 

which the data have been sampled. It is not difficult to fit a shape such that every 

data point is very close to it, but some parts of the fitted shape might not be close 

to any data points. In addition, the shape fitted might be much more complex than 

the actual shape that the data represents. The fitted shape might be unbounded and 

multiple sheeted. It may have holes or knots. Savchenko et al. in [82] have given a 

brief survey on the implicit fitting problem and present an approach to interpolate 
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scattered points, a method which is computationally expensive when the number of 

data points is large. Furthermore, this method cannot guarantee that the zeros of a 

computed algebraic difference are all close to the given data set. Some other implicit 

fitting techniques either are mainly concerned with solid reconstruction, without con­

sidering how to represent the shape with an implicit function, or simply use a global 

optimization procedure to obtain a function representation for given data. This func­

tion representation is often far from accurate [58] [64] [66] [98]. Some other good work 

on implicit fitting can be found in [6] [13] [23] [46] [47] [79] [94] [95] [103]. 

One feasible way to overcome the difficulties of implicit fitting is to break the 

given data set into several subsets, such that the data of each subset can be well 

approxim~ted with a simple implicit function. The overall shape can be obtained by 

combining these simple surfaces. The methods for combining a set of implicit shapes 

have often been referred to as shape blending. One way of blending a set of implicit 

shapes has been purely based on set theoretic operations. Generally, this technique 

cannot guarantee the expected smoothness in a composite shape, while its generalized 

smooth blending methods cannot often preserve the local properties of those locally 

fitted shapes very well [25] [34]. In this chapter, we present a constructive method to 

fit implicit curves and surfaces to a set of data points using gate functions. Several 

examples are given to demonstrate the effectiveness of the method. The advantage 

of this kind of fitting method is that any part of the fitted shape will be clqse to 

some points in the data set. In addition, the overall approximation accuracy can be 

attained for the data set if the data partitioning is fine enough. Furthermore, the 

fitted shape can always be bounded by confining the fitted shape with a bounded 

gate. 
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The basic idea of this technique is the use of gate functions. Let D be a region in 

real Euclidean space ]Rn, and let 

{
I PE D 

XD(P) = 0 
Prj.D 

(7.1.1) 

be the characteristic function of region D. Let f (P) be a function defined in ]Rn. 

Then the function XD (P) f (P) has the following property: 

D(P)f(P) = {f(P) P E D 
X 0 Prj.D. 

(7.1.2) 

For each function f(P), once it is multiplied by the function XD(P), the effect of 

function f(P) outside the region D is diminished as the resulting function value will 

be zero, while the value of f(P) inside the region D will not be changed. Thus, if a 

set of points can be well approximated by an implicit function f(P) = 0, then the 

equation 

XD(P)(J(P) + 15) - 15 = 0, 

where 15 > 0, will be exactly the original equation f(P) = 0 itself on region D and 

thus the original shape on region D is kept unchanged. However, the shape outside 

the region D has been removed as on the outside of region D, the value of function 

XD(P)(J(P) + 15) - 15 = -15 < O. 

The problem with function XD(P) is that it is not continuous. The combined 

shape using this kind of function might be fragmented. To overcome the difficulty, . 
smooth gate functions are constructed. As can be seen from the following section, 

'. 

a smooth gate function can be seen as a smooth approximation to the characteristic 

function of a set such as the one given in (7.1.1). 

In this chapter, we first discuss how to construct smooth gate functions in one 

dimension. Then we investigate how to extend them to higher dimensions. This is 
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followed by the applications of gate functions in establishing our constructive explicit 

and implicit curve and surface fitting method. Since the gate functions used in this 

paper are not polynomials, it should be noted that the implicit curves or surfaces 

fitted are no longer algebraic. 

7.2 Gate functions 

In this section, we first introduce the unit step function [106] (also called Heaviside's 

step function) and its smooth approximations. vVe then investigate how to construct 

general smooth gate functions with the smooth unit step functions. 

Gate functions are usually defined on one dimensional real Euclidean space. How­

ever, this concept has been used with broader meanings in the following sections. 

More explicitly, we have following definition: 

Definition 7.2.1. Function 9 : IRn -+ [0,1] is called a gate function on real Euclidean 

space IRn if for each a E [0,1], the a-level set 

90 = {P E IRn 
: g(P) ~ a} 

is a simply connected set in IRn. 

In this section, we mainly discuss how to construct smooth gate functions used in 

our constructive implicit fitting method. 
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7.2.1 The unit step function and its smooth approximations 

A discontinuous step function defined as 

o t < 0 

H(t) = 4 t = 0 

1 t > 0 

(7.2.1) 

is called the unit step function and for any real number a, the step function lI(t - a) 

is called a unit step function at a and is denoted by Ha(t). 

Obviously, H(t) is a gate function. The smooth gate functions that approximate 

a unit step function can be constructed in the same way as constructing what have 

been called "rising cutoff functions" by Wickerhauser in [108]. In wavelet theory, rising 

cutoff functions are used to construct localized trigonometric functions which are then 

combined into a library of orthonormal bases. It is found that this kind of function 

can be extended to higher dimensions to approximate 2D or 3D set characteristic 

functions smoothly. 

In [108], a rising cutoff function has been defined as a complex function r(t) with 

a real argument t that satisfies the conditions that: 

for all t E R, and that 

Ir(t)12 + Ir( _t)12 = 1 

r(t) = {O, ift<-l 
1, if t > 1. 

It can be seen that any function satisfying this condition must be of the form 

r(t) = sinO(t) ei</>(t) , 

(7.2.2) 

(7.2.3) 

(7.2.4) 



where B(t) is a real function satisfying 

B(t) +B(-t) = 7r/2, B ( t) = {~' if t < -1 
2' ift>l, 

and ¢( t) is a real function satisfying 

¢(t) = {2n7r' if t < -1 
2m 7r, if t > 1 . 
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(7.2.5) 

(7.2.6) 

As can be seen from the definition, the rising cutoff function is not necessarily real 

and monotone. Thus, this type of function does not fully fit our purpose since what 

we need are just those functions satisfying definition 7.2.1. In this thesis, we are only 

interested in a special kind of rising cutoff function, called smooth unit step functions, 

which are real and non-decreasing. Therefore, smooth unit step function always take 

the form r(t) = sin(O(t)), where O(t) is non-decrease and satisfies equation (7.2.5). 

Note that for any smooth unit step function r(t), the function defined by O(t) = 

~r2(t) satisfies equation (7.2.5). Therefore, smooth unit step functions can be con­

structed iteratively. To construct the smooth unit step functions, we can first begin 

with a simple function Bo{t) satisfying condition (7.2.5). Then for k = 1,2"", the 

smooth unit step functions rk(t) can be defined iteratively in the following way: 

(7.2.7) 

The interesting feature of the construction procedure is that the smoothness of the 

constructed smooth unit step function will be increased with the increase of the num­

ber of iterations when the initial Oo(t) is continuous everywhere and is differentiable 

except at the points t = 1 and t = -1. 
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Here is an example of a set of smooth unit step functions constructed in this way. 

Example 1. [lOB} One of the simplest continuous O-functions can be given by 

o t <-1 

00 (t) = ~ (1 + t)) -1 < t ~ 1 (7.2.8) 

7r 

"2 t> 1. 

With this initial 0-function, a set of smooth unit step functions can be constructed 

according to (7.2.7). 

0 t <-1 

rl (t) = sin Oo(t) - sin{~(1 + t)) -1 ~ t ~ 1 (7.2.9) 

1 t> 1, 

0 t <-1 

01 (t) = ~rf(t) - i{1 + sin It) -1 ~ t ~ 1 

t> 1 7r 

"2 

= Oo(sin ~t), 

o t <-1 

T2(t) = sinOl(t) - Tl(sinIt) -1 < t ~ 1 

1 t> 1, 

and in general, we have 

o t <-1 . 
(7.2.10) 

1 t > 1. 

Obviously, Tn(t) , (n = 1,2,···) constructed above are all non-decreasing. fur­

thermore, it can be shown that Tn{t) has 2n
-

1 
- 1 vanishing derivatives at t = 1 and 

t = -1 for n = 1,2, .... 
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Definition 7.2.2. Let T(t) be a smooth unit step function, and let a, € be real numbers 

with € > O. The real function Tc~a) is called a smooth unit function at point a with 

rising range [a - €, a + €], and is denoted by Ta,f(t). 

It can be seen that smooth unit functions are always gate functions. 

A special unit step function can be obtained when € tends to 00. Following is a 

example of this kind of function: 
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Bottom right: Too(t) with a = 50. 

'. 

Example 2. 
1 

Too (t) = -.j"i71=+=e=-=;at (7.2.11) 
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As can be seen directly, roo (t) is differentiable at any point and to any order. 

Figure 7.1 shows some typical smooth unit functions. 

7.2.2 Smooth one dimensional gate functions 

As the only simply connected set on the real line JR is an interval, the one dimensional 

gate functions have a very simple form. 

Proposition 7.2.1. For a real function g : JR -+ [0,1], the following conditions are 

equivalent: 

(1) g is a gate function; 

(2) FQr each a E [0,1]' the a-level set go is a convex set; 

(3) For each a E [0,1], the a-level set go is an interval; 

(4) For t l , t2 E JR and any A E [0,1], 

Proof. The equivalence of condition (1), (2), (3) are evident as the interval is the 

only kind of simply connected set and convex set. The sufficiency of condition (4) 

is obvious since if g satisfies (4), go will be convex for any a E [0,1]. Now we show 

the necessity of condition (4). For any tl, t2 E JR, let a = min{g(tt}, g(t2))' Then, 

tl, t2 E go. If 9 is a gate function, then ga will be a simply connected set, thus the 

points between tl and t2 must be in ga' That is, for any A, Atl + (1 - A)t2 E go. In 

other words, g(Atl + (1 - A)t2) ;::: a = min(g(t l ), g(t2))' 0 

Let [a, b] be an interval of the real line R The interval can then be represented 
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as its characteristic function X[a,bj (t), where X[a,bj is defined in such a way that 

( ) {
I, if t E [a, b] 

X[abj t = 
, 0, otherwise. 

With the smooth unit step function, a smooth approximation to X[a,bj(t) can be ob­

tained. Let r(t) be a smooth unit step function at origin, then the interval can be 

approximated by gl(t) = ra,e(t) - rb,e(t) or by g2(t) = r~,e(t) - rl,f(t) if a < band E 

is small enough such that a + E < b - E. As r(t) and r2(t) are non-decreasing, both 

gl(t) and g2(t) are obviously gate functions. Figure 7.2 shows different degrees of 

approximation to the interval [1,4]. 

1 { 

0.5 0.5 

o O~ 

o 5 o 5 

1 

0.5 0.5 

Of.- Of--

o 5 o 5 

. 
Figure 7.2: Smooth gate functions corresponding to interval [1,4] constructed from 
smooth unit step functions with different rising ranges 
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7.2.3 Gate functions in higher dimensions 

The concept of the smooth gate function can be extended to higher dimensions. In 

the one dimensional case, the only geometrical object that can separate a real line 

into two simply connected parts is the point, and the only simply connected set 

is the interval. However, in 2D and 3D or even higher dimensions, it is much more 

complicated. For example, in the 2D case, there will be an infinite number of different 

types of geometric object that can separate a plane into two simply connected areas, 

and there will be a variety of different kinds of simply connected sets. In this section, 

we will discuss how to extend the smooth gate functions in one dimension to 2D 

smooth gate functions. The further extension to 3D or even higher dimensions will 

be similar. 

N ow we investigate how to construct 2D gate functions corresponding to a 2D 

geometric object. Let 0 be a 2D geometric object that separates the 2D plane into 

two parts 0-,0+ and let d(P,O) be the signed distance from point P to 0, Le., 

> 0 when P E 0+, 

d(P,O) = = 0 when P E 0 

< 0 otherwise. 

For any smooth unit step function r(t), a function g(P) can be defined in the following 

way 

g(P) = r2(d(P, 0)). 

If {P E R2 : d(P, 0) > £5} for any £5 E IR is simply connected, then function g(P) will 

be a 2D gate function having the property that the value of the function will be close 

to 1 for P E 0+ and close to 0 for P E 0-. From this fact, various 2D smooth gate 

flIDctions can be constructed corresponding to some simple 2D geometric primitives. 
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We first consider how to construct 2D smooth functions corresponding to straight 

lines. 2D lines can be represented in several ways. In section 4.2, 2D lines have 

been represented by the direction of the line plus a point on the line. However, this 

representation is not the best one for calculating the signed distance from a point to a 

line. Note that in the 2D plane, the direction of a line and its normal are determined 

by each other. Instead of representing a line using its direction, we use the line normal 

to represent its orientation. The advantage of representing a 2D line in this way is 

that the signed distance from a point to the line can be given in extremely simple 

form. 

Let £(Po, n) be a straight line on the 2D plane, where Po represents a point on the 

line, and n the normal of the line, i.e., n is the unit vector perpendicular to the line 

(note that this representation is valid only for 2D lines). Then the signed distance 

from a point P to the line can be represented as 

d(P, £) = (P - Po) . n. (7.2.12) 

With this signed distance, a smooth gate function in 2D generated by the straight 

line can be given in the form: 

(7.2.13) 

where r(t) is a smooth unit step function defined in the previous section. The shape 

of this function is shown in Figure 7.3. 

As with one dimensional gate functions, simple gate functions can be combined 

to generate more complex gate functions. For example, polygonal regions can be 

approximated with smooth functions generated from 2D line gate functions. Figure 
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Figure 7.3: 2D gate function generated by a straight line 
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7.4 shows the shapes of some gates of this kind. The top-left figure corresponds to 

where Po = (0.3,0.3) and el = (1,0), e2 = (0,1). The top-right and bottom left 

figures are plotted for functions 

and 

where £ij(i = 2,3;j = 1,2,3,4) are lines corresponding to the edges of the relevant 

polygons with inward pointing normals. The one at the bottom right is defined by 

h(P) = h(P)(1- il(P)), 

Smooth gate functions in two dimensions can also be generated by 2D curves. 

Generally, let f (P) = 0 be the implicit representation of a curve C such that {P E 

]R2 : f(P) 2: o} is a simply connected set for any real number O. Then for any smooth 
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Figure 7.4: 2D gate functions generated by several straight lines 
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1 

1 

unit step function r(t), the composite function G(P) = r2(J(P)) leads to a curved 

2D gate function , as illustrated in Figure 7.5. 

In the above discussion, if we replace the 2D geometric object with a 3D geometric 

object, 3D smooth gate functions can be generated. Therefore, the generalization 

from 2D smooth gate functions to 3D smooth gate functions is direct, and need not 

be discussed in detail in this thesis. 

In general, for a simply connected region D E ]Rn , if its boundary aD can be 

represented implicitly as f(P) = 0 such that {P E ]Rn : f(P) ~ c5} is a simply 

connected set for any real number c5, then the smooth gate function corresponding 
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Figure 7.5: Gate functions generated by curves 
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to the region can be given as g(P) = r2 (f(P)), where r(t) is a smooth unit step 

function. 

7.3 Generalized piece-wise fitting 

Gate functions can be used to generalize conventional piece-wise spline fitting. For a 

given data set, we could first group the data into several sub-groups, then for each 

subset of data, a simple curve or surface can be fitted. These piece-wise fitted curv s 

or surfaces can then be combined to give an overall fitting for the whole data set. 

Compared with conventional piece-wise spline fitting, the fitted curves and surfaces 

can have a higher order of continuity. In addition, the fitting procedure is more direct . 

Our method for combining two functions is based on the following observations: 

Proposition 7.3.1. Let h (P) and h(P) be two smooth functions in space jRn·. Let 
'. 

9 D (P) be a gate function corresponding to a region D c jRn and let 

F(P) = h(P)gD(P) + h(P)gv(P), 
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where gC( P) = 1 - gv( P) for P E jRn. Then 

min(h, 12) ::; F ::; max(h, 12)· 

Proof. In fact, for any P E jRn, when h(P) = 12(P), we have F(P) = f.t(P) = h(P); 

when f.t (P) i= h(P), without loss of generality, we assume that h(P) > Jl (P). 

Since F(P) = h(P) - (h(P) - h(P))gD(P) and gD(P) E [0,1]' it follows that 

h (P) ::; F(P) ::; 12(P). 0 
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Figure 7.6: Two curves and surfaces are smoothly connected 

Proposition 7.3.2. Suppose f(P) is a real function defined on the space }Rn. Let D 

be a data set sampled from the surface defined by the equation f(P) = 0 with added 

noise. Let X 1,X2 ,'" ,Xn be a partitioning of space JRn, such that on each subset 

Xi plus its neighborhood N(Xi), an equation fi(P) = 0 can be fitted with fitting 
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error at each data point P E (Xi U N(Xi)) n D less than a given number € > 0, 

i.e., Ifi(P)1 < €. Let G}, G2, ••• ,Gn be the gate functions corresponding to subsets 

X 1X 2, ••• ,Xn , such that Gi = 0 outside Xi U N(Xi) and 

Then, the fitting error at each data point for function 

n 

F(P) = E Gi(P)!i(P) 
i=l 

will also be less than €. 

Proof. In fact, for any data point P E D, 

n 

IF(P)I - IE Gi(P)!i(P)1 
i=l 

- E Gi(P)!i(P)1 
PeXiUN(Xi) 

< E Gi(P)lfi(P)1 
peXiUN(Xi) 

< E Gi(P)€ 
PeX,UN(Xi) 

< € 

o 

With property 7.3.1, different shapes can be combined smoothly. Fig 7.6 shows 

that curves and surfaces can be combined smoothly with gate functions. The most 
" 

important part of this combination is that the original shapes are well preserved in 

their combined shape. 

We notice that for any smooth unit step function r(t), the monotonic properties 

of r2(t) and r(t) are similar. Therefore, a smooth gate function can be constructed 
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from either r(t) or r2(t). However, r2(t) has property that r2(t) + r2( -t) = 1, which 

r(t) does not have. If we connect two functions !l and h at a point t = a with r~,f(t) 

and 1 - r~,f(t) = r:a,f( -t) such that 

then f(a) = b(a)~hCa). Thus, this combination is unbiased. However, if we combine 

!l and h with ra,f(t) and 1- ra,f(t), it will be a biased connection as r(O) might not 

be ~ in general. In the following discussion, we always assume that the smooth gate 

functions are constructed from r2. 

7.3.1 Constructive explicit curve fitting 

Suppose that a set of points D = {Pi(Xi, Yi)}i=l is generated from an unknown func­

tion like Y = f(x). vVhen the form of the true function f(x) is linear or quadratic, 

there is no difficulty in finding the optimal estimate for such a function. However, 

when the true function f(x) is very complicated, it is not easy to estimate it directly. 

The solution is piecewise fitting, such as piecewise linear fitting and piecewise cubic 

spline fitting. However, to fit an extremely smooth curve to the given data seems 

difficult, for example fitting data with a curve of Ck-continuity for k ~ 4. In this 

section, we suggest a very flexible piecewise fitting technique using gate functions, 

which can be regarded as the generalization of conventional piecewise spline fitting. 

Using this technique, the given data can be fitted with a curve with any degree of 
'. 

smoothness. Suppose for all {Xi}~l we have a ~ Xi ~ b. Randomly choose a set 

of points a = ao < al'" < an = b from the interval [a, b]. For each sub-interval 

[ai, ai+l] , let 9i(X) be the corresponding gate function, and let Y = fi(X) be the locally 

fitted functions based on data {Pi(Xi, Yi) : Xi E [ai, ai+l]} , called the confined data 
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Figure 7.7: Explicit curve fitting by combining locally fitted curves with on dim n­
sional smooth gate functions 

of D on interval [ai , ai+l], using any conventional fitting technique. Then, the ov raIl 

fitting can be represented by 

n-l 

f(x) = L gi(x)fi(X). (7.3.1) 
i=O 

The degree of smoothness of function f (x) depends on the choice of the gate 

function gi(X) and the degree of smoothness of each locally fitted function. Generally, 

we could use r;,(x) introduced previously, to construct gi(X), which is an infinitely 

differentiable function. In this case the degree of smoothness of the combin d function 

f(x) defined in (7.3.1) depends only on the smoothness for each locally fitted function 
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Figure 7.~: Explicit surface fitting by combining locally fitt d surfa with 2D gat 
functions 

The only problem for this kind fitting is that the combined function defined in 

(7.3.1) may have too many fluctuations when data are too noisy. To avoid such a 

problem, we could slightly expand the data used in each sub-interval by including th 

data in their €-neighbor, i.e., use the data in interval [ai - €, aHl + €] to estimate 

the ith function fi(X). Figure 7.7 shows some fitting results bas d on this trategy 

where each local data set is fitted with a polynomial of degree less than thr . As 

can be seen from the figure, the fitting is quite satisfactory even when the data are 

extremely noisy. The two obvious advantages of this fitting technique are thc:t the 

fitted curve can be,extremely smooth on one hand and the fitting procedure is very 

simple on the other. 
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7.3.2 Constructive explicit surface fitting 

The same procedure can be directly extended to explicit surface fitting. Suppose 

that data D = {Pi(Xi, Yi, zi)}f=I come from a surface defined by an unknown fUIlction 

Z = f(x, y). Let Dxy = {(Xi, Yi) : (Xi, Yi, Zi) ED} be in the bounded area [a, b] x [e, d]. 

Choose a set of points {Ui}~O from interval [a, b], and a set of points {vi }J=o from 

interval [e, d], such that a = Uo < UI ••• < Urn = b, e = Vo < VI'" < Vk = d. For each 

subset of the data D n ([Ui' Ui+l] x [vi' Vj+l] x IR), fit a surface Zij = fij(X, y) locally. 

Then the overall shape for the data can be represented by the sum 

rn-I k-I 

F (x, y) = L L gii (x) lij (x, y) (7.3.2) 
i=O j=O 

where gii(x, y) is the gate function corresponding to rectangle [Ui' Ui+l] x [Vj, Vj+l]' 

Figure 7.8 shows that a cloud of data (containing a great deal of noise) can be well 

approximated by a smooth function which is a combination of 64 quadratic patches. 

As with explicit curve fitting, the degree of smoothness of the surface defined by 

(7.3.2) depends on the smoothness of both fii and gii' vVhen r~ is used to define the 

gate functions gii' the smoothness of F(x, y) will only depend on those !ij(x, y). In 

most cases, a lower degree polynomial will be fitted for each local data set and thus 

the fitted surface (7.3.2) has derivatives of all orders. 

• 

7.4 Piece-wise implicit fitting 

In this section, we will describe how smooth gate functions can be used to establish 

a piece-wise implicit fitting. It has been pointed out that implicit fitting is a very 

difficult problem in that the shape fitted can be either over-fitted or under-fitted. A 
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feasible method is to subdivide the complicated data set into smaller data sets such 

that each subset of the data can be well approximated with a simple implicitly repre-

sented geometric shape like a line, a quadric or a cubic surface. However, geometric 

shapes combined with conventional blending techniques do not usually preserve the 

locally fitted shapes. In addition, the combined shape might not have a high degre of 

smoothness. In this section, we propose a constructive implicit function fitting strat­

egy using gate functions. The combined surface will not only be extremely smooth 

in general but can also be expressed in a neat form. The most important feature of 

the fitting is that the local properties of each locally fitted implicit shape are well 

preserved. 
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Figure 7.9: Implici~ curves and implicit surfaces are smoothly combined using gate 
functions. 

Suppose a data set D = {Pi}~l is a set of points from a surface in space JRn . Let 

A be a bounded area such that DcA c JRn. We propose the following algorithm for 

piece-wise fitting: 
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Algorithm 7.4.1. 

1. Divide the area A into two areas AI, A2 with a geometric primitive, such as a 

line (in 2D) or a plane (in 3D). Let DI = Al n D and D2 = A2 n D. Fitting DI 

and D2 with some simple implicit functions respectively. 

2. Check the accuracy for each fitting. If the fitting in the existing area is ac­

ceptable, stop subdividing the corresponding region and keep the fitted implicit 

function. If the fitting in the existing region is not acceptble, further subdivide 

the region into two subregions. Set the current region to be A and current data 

to be D, and return to step 1. 

3. When no further subdivision is needed, a set of implicit functions fi(P) = 0 and 

a corresponding set of regions described by gate function gi(P) are obtained. 

Then the final implicit function obtained will be: 

where 8> o. 

As implicit curves and surfaces are the contours of higher dimensional functions, 

Proposition 7.3.1 can also be used to interpret the way in which two implicit shapes . 
are combined. Figure 7.9 shows how smoothly two shapes can be combined with gate 

functions. 
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7.4.1 Piece-wise implicit curve fitting 

At the beginning of this section we proposed a general constructive fitting procedure 

by partitioning the data space iteratively. However, the partition can be quite arbi­

trary. In practice, we could chose a specific method of partitioning in a way whi h 

exploits any special features of the data set. 
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Figure 7.10: Implicit curve fitting using gate functions 

Figure 7.10 is obtained by dividing the data area into different fan-shaped areas 

with local approximation accuracy 10-4
• Figure 7.11 compares the fitting results with 
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Figure 7.11: Implicit curve fitting using gate functions with different local approxi­
mation accuracy: 102 for the left-hand graphs; 104 for the right-hand graphs. 

different local fitting accuracy. 

As the proposed fitting is purely a constructive method, it does not rely on any 
. 

optimization procedure, and thus the fitting accuracy can always be guaranteed if 

the partition is fine enough. With this method, very complex shapes can be fitted 

with implicit functions. To avoid multiple sheeted fitting, a single sheeted curve is 

preferable for each subset of the data. For example, we could fit a set of data with 

an implicit function which is obtained by rotating an explicit curve like y - f( x) = 0, 
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which will always result in a single-sheeted curve. 

7.4.2 Piece-wise implicit surface fitting 

A set of 3D surface data can be fitted with implicit functions using the same strat gy 

as 2D implicit fitting presented in the previous section. The basic gate functions used 

in 3D space are those generated from 3D planes. A 3D plane gate function has th 

property that it produces a value of 1 for points on one side of the plane, and 0 for 

points on the other side, except for the points which are close to the plan . 
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Figure 7.12: Example of constructive implicit surface fitting 

As an example, Figure 7.12 shows how separately fitted implicit surfaces are com­

bined to form a smooth surface. In this example, the data given are first grouped into 

two subsets corresponding to the upper and the lower parts of the object separat d 

by a plane r : (P - Po) . n = 0, where Po is a point on the plane and n is the normal 

to the plane. Let the gate functions 91(P) = r2((p - Po) . n)) , 92(P) = 1 - 91(P), 
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where r(t) is a smooth unit step function at the origin. For each subset of th data, 

an implicit surface is fitted . Let h(P) = 0 and h(P) = 0 be the fitted implicit 

surfaces corresponding to the data subset on the positive side and the negative ide 

of the plane respectively. Then the overall implicit fitting for the whole data stan 

be given by 

91(P)(h(P) + 0.5) + 92(P)(h(P) + 0.5) = 0.5. 
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Figure 7.13: Fitting the cylinder part of an actual femur 

Figures 7.13 to 7.16 are fitting results for data from an actual bone surface. The 

femur data have been first partitioned into two parts with a plane , corresponding 

to the top and bottom of the femur. The two subsets of the data are then fitted 

separately with our constructive implicit fitting technique. Figure 7.13 is the fitting 

result for the Femur shaft (the cylinder part of Femur). Figure 7.14 combines the 

fitted surface for the shaft with a second fitting for the femoral condyles. Each 

Local data set is fitted with a low degree implicit polynomial. In total , 80 gates are 
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Figure 7.14: Fitting an actual femur by combining the locally £itt d impli it 
together 
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used. The patella data and tibia data are fitted similarly but with slightly differ nt 

partitioning procedures. 

7.4.3 Summary 

To summarize, in this chapter a new technique for fitting complex shap with impli it 
'. 

functions using gate functions has been developed. Some interesting appli at ions n 

explicit and implicit curve and surface fitting using smooth unit tep fun tion nd 

general gate functions are also investigated. 
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Figure 7.15: Fitting an actual patella 
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-1.5 

In the next chapter, the method presented in this chapter will be us d to r on­

struct implicit surfaces for the data from the surface of an actual bon . Th ti­

mated implicit function will then be used for developing non-landmark r gi tration 

techniques. 
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Figure 7.16: Fitting an actual tibia 



Chapter 8 

Coordinate System Alignment 
Using Region to Region 
Correspondence 

8.1 Introduction 

In this chapter, we investigate how to align two coordinate systems corresponding 

to preoperative data and intraoperative data using region to region correspondence. 

The two data sets are assumed to be from the same object and a region to region 

correspondence between the two data sets is known. However, we do not have precise 

information about point to point correspondences. In this registration procedure, it 

is assumed that several regions of interest are selected from the surface of a bone. 

These regions should be easy to identify by surgeons during surgery. For each of these 

regions, two sets of data points are sampled. One data set serves as the preope;ative 
'. 

model data and the other serves as the intraoperative data. Each model data set is 

assumed to be dense so that the shape of its corresponding region can be precisely 

represented, while the intraoperative data set is assumed to be sparse. 

The region to region matching strategy is basically an optimization procedure 

178 
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where a good initial estimate for the unknown rigid transformation can be obtained 

through the region to region correspondence. In searching for the best rigid transfor­

mation, each model data set is first modelled as an implicit function whkh serves llS 

the distance function from a point to the region. Then the search becomes basically 

a function minimization problem. 

Compared with general non-landmark registration techniques, the region to region 

match method has two obvious advantages. In image guided surgery, the matching 

between the preoperative data and the intraoperative data must be accurate. To avoid 

an optimization procedure stopping at a local minimum, a good initial guess is always 

necessary for any local minimization procedure to guarantee an accurate estimate. In 

addition, the model for each region can be much simpler than the model for the whole 

bone, and thus the search for the best rigid transformation by minimizing a sum of 

squared distance functions will be much quicker. 

Formally, the region to region registration strategy can be stated as follows: 

Let {Ai}~l be n regions from the surface of a bone object. These regions 

should be well separated in order to provide a good initial guess for the 

unknown rigid transformation. Let Cz, Cr be the two coordinate systems in 

which regions {Ai}~l are presented. Suppose the shape of each region Ai 

can be represented as an implicit junction fi(P) = 0 in Cr. Let {Pij }j'!!l 

be a set of points from region Ai(i = 1,2"" ,n) in coordinate system Ci .• 

We wish to estimate the rotation R and translation T that links the two 
-. 

coordinate systems by minimizing the sum 

n mi 

L L fl(R~j + T). (8.1.1) 
i=l j=l 
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In sum (8.1.1), the function value fi(P) can also be replaced with a better ap­

proximation to the distance from a point to the surface as 

The organization of this chapter is as follows. We will first discuss how to compute 

the initial rotation parameters according to different ways of representing a rotation. 

This is followed by a discussion on how to compute the initial rigid transformation 

from the region to region correspondence. This is then followed by a discussion 

on when a rigid transformation can be uniquely determined by the locations and 

orientations of the regions considered. Finally, experimental results nrc given to 

demonstrate the efficiency and the stability of the algorithm. 

8.2 The computation of the rotation parameters 

Once an initial rotation matrix is obtained, the initial rotation parameters can then 

be calculated in one of the following ways depending on how the rotation matrix is 

parameterized. 

8.2.1 Computing the Euler Angles 

As have been seen in section 2.2.1, there are 12 different ways to represent a rotation 

matrix with Euler angles. Here we have chosen the form 
' .. 

R(a, (3, ,) = Rz(f)Rx({3)Rz(a) = 

( 

GIG3 - BIC2S3 S1C3 + G1C2S3 

-C1S3 - B1C2C3 -BI B3 + C1C2G3 
8182 -C182 

(8.2.1) 
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where 

C1 = cos a, C2 = cos/3, C3 = cos" 

81 = sin a, 82 = sin/3, 83 = sin" 

and a" E [0,211-)'/3 E [0,71"]. 

When 

(8.2.2) 

from cos /3 = T33 and /3 E [0,71"], we obtain /3 = arccos(T33)' Note that for /3 E (0,71"), 

sin/3 > 0, from 

sinasin/3 = r31, cos a sin /3 = -T32 

we have 

I 
arccos( -~), 

a-

271" - arccos(-~) 
smf3 ' 

(8.2.3) 

T31 < ° 
similarly, 

I 
arccos(~), 

,= 
271" - arccos( s~~~ ), 

(8.2.4) 

T13 < 0 

If sin /3 = 0, R will have the form: 

sin(a ± ,) 

± cos(a ± ,) 

° 
~ ). 
±1 
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The three Euler angles can be chosen in the following way: 

( arccos(rll), T12 ;::: 0 

a - (8.2.5) 

27r - arccos(Tu), T12 < 0 

{3 - arccos(T33)j 

"Y - O· , 

8.2.2 Computing the rotation axis and the rotation angle 

Assume that the rotation matrix is represented as a vector r = (x, y, z)T. Let n = 

r/lir" = (nx, ny,nz)T, 0 = IIrll, then nand 0 will be the rotation a.. .. ds and the rotation 

angle, an~ rotation matrix R can be represented in the form 

R = cos OJ + (1 - cos O)nnT + sin ON 

where 

(8.2.6) 

Let 

8M = cos OJ + (1 - cos 8)nnT 8K = sinON 

then S M is a symmetric matrix, 8 K is a skew-symmetric matrix and R = S M + S K. 

Therefore, 

R-RT - 2SK 

R+RT - 28M • 

(8.2.7) 

(8.2.8) 



From equation (8.2.7), we have 

· {} (r32 - r23) 
nxsm = 2 

· {} (r13 - r31) 
nysm = 2 

· {} (r21 - r12) 
nzsm = 2 

From the equation (8.2.8) we have Tr(R) = Tr(SM) which implies 

cos{} = Tr(R) - 1 
2 
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(8.2.9) 

(8.2.10) 

From (8.2.10), the rotation angle can always be computed. If I cos {}I #- 1, sin {} =I- 0 

and the rotation axis can be found directly from (8.2.9). If I cos {}I = 1, sin {} = o. The 

rotation axis can not be determined from (8.2.9). In this case, the rotation matrix 

will be either R = I or R = 2nnT - I, where n is the rotation axis, and the rotation 

axis can be found directly from these relations. Note that (8.2.10) leads to two signs 

ofsin{}. When we chose {} E [0,7r], sin{};::: 0, and when we chose {} E [1T,27r), sinO ~ o. 

When they are used, rotation by {} around n and rotation by -{} around -n are 

obtained respectively, they are the same rotation. vVhen {} = 0, n is undetermined, 

which is understandable, as in this case the rotation axis can be arbitrary. 

8.2.3 Computing the unit quaternion 

A given rotation matrix can also be represented by a quaternion, which can be r.epre­

sented as a vector in real four dimensional space with unit length. Let q = (8, I, m, n)T 

be a quaternion. The corresponding rotation matrix is 

( 

s2 + l2 _ m2 - n2 

Q = 2(lm+ 8n) 

2(ln - sm) 

2(lm - 8n) 

82 - l2 + m 2 _ n2 

2(mn + sl) 

2(ln + 8m) 1 
2(mn - sl) 

8
2 

- [2 - m 2 + n2 

(8.2.11) 
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Now we consider how to extract the four components corresponding to the given 

rotation matrix R. First, from Tr(Q) = Tr(R), we have 

482 
- 1 = Tr(R) 

On the other hand, from 

we have 

If 8 =f 0, the other three components can then be obtained in terms of s: 

rl3 - r31 
m= 

48 

(8.2.12) 

(8.2.13) 

(8.2.15) 

. . yTr(R)+1 yTr(R)+l. 
From (8.2.12), s can be obtamed eIther as 2 or as - 2 ' whIchever of 

them is used, the rotation matrix R defined by the quaternion obtained will be same. 

If s = 0, Q = 2nnT -I, where n = (1, m, n)T is a unit vector serving as the rotation 

axis. In this case, 1, m, n can be directly computed from the relation 2nnT - 1= R. 

8.3 Computing the initial rigid transformation from 

the region to region correspondence 

It has been pointed out that to obtain an accurate estimate by a local optimization 
'. 

procedure, a good initial guess is crucial. The region to region correspondence will 

undoubtedly provide very important information about the relevant relations between 

the two coordinate systems corresponding to the preoperative data and the intraop­

erative data. Though a point to point correspondence is not available, the geometric 
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information from each region, like the region centre, can be used to estimate the ini­

tial rigid transformation. As can be seen, smaller regions provide information which 

is more precise. 

In this section, we discuss how to compute the initial rigid transformation from 

the region to region correspondence. 

8.3.1 Using the 'centre' of each region 

To use the information from a region to region correspondence, the data from each 

region needs to be summarized to provide a good initial guess for the estimate of the 

rigid transformation that links the two groups of data sets. Depending on the geomet­

ric features of the surface of the object, the data in each region can be summarized 

in several ways. 

Centre of gravity 

When the size of each region is small and all the regions selected are well-separated, 

the centre of gravity of the data set for each region can be used to approximate the 

overall position of the region, and the initial guess for the rigid transformation for 

the region to region matching problem can be obtained immediately through point 

to point correspondences using the algorithms given in Chapter 3. 

'Curved' data centre 

The centre of gravity describes the centre of the data set well when the data come 

from a linear region like a straight line or a plane. However, it cannot describe well 

the centre position for data from a curved region. For example, when the data come 
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from a sphere, the centre of gravity of the data will never be on the sphere when there 

are more than one point in the data. For data from a curved surface, we propose the 

concept of a 'curved' centre. 

There are two obvious ways to define the concept of a 'curved' centre, with slightly 

different meanings. One is to define the curved centre as the point on the region which 

has minimum sum of squared distances from all other points in the data set. The 

second way is to define the curved centre as the point on the region such that it is 

closest to the centre of gravity of the data. In some cases, the two ways just define 

same point. For example, when the data is from a straight line or a plane. \Vhcn 

surface S is known or can be easily estimated, we can follow the first idea to compute 

the 'curv~d' centre of the data set. But the second idea is much easier to implement 

in practice. Suppose D = {Pi}i=1 is a set of points from a curved region, and its 

centre is P. Then the curved centre can just be given approximately with the point 

P E D that is closest to P. 

Once the curved centre for data set from each region has been computed, the 

initial guess for rigid transformation can be obtained by reference mark registration 

techniques. 

8.3.2 Describing each region as a simple geometric object 

In computing a good initial guess for the unknown rigid transformation from the 

region to region correspondence, the geometry of regions provide more reliable in­

formation than the statistical properties of their corresponding data points. Though 

the centroid and 'curved' centroid can be used to describe the position of each re­

gion approximately when the data points are evenly distributed on the surface of the 
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region, they might provide faulty information when data are not evenly distributed. 

Furthermore, for each region, the intraoperative data might be too sparse to provide 

any meaningful centre for its corresponding region. In all these cases, it would be 

better to model each set of preoperative data with a simple geometric shape like a 

plane or an ellipsoid. When there are enough points in the intraoperative data for 

each region, it can be fitted with a similar shape and the initial guess can be obtained 

by matching these two simple geometric shapes. However, the intraoperative data 

will be very sparse usually. In this case, the initial rigid transformation can be found 

by point to surface matching with a simple optimization procedure. 

Computing the initial rigid transformation by modeling each region as a 

straight line or a plane 

In this subsection, we discuss how to find the initial match when each region can be 

described by a straight line or a plane. We first consider line regions. 

Some bones like tibia and fibula have sharp edges called interosseous margins on 

their surfaces. This anatomic feature can be approximately represented by a straight 

line. A line region is one of the most simple geometric features that can be identified 

on the surface of a bone. Let 

be a set of lines on,the surface of a rigid object O. Let 

n 

U{ Qij : j = 1,2,,,, ,mi}' 
i=l 

be a set of points sampled from the rigidly transformed position of object 0 with 

{Qij }j~l lying on the ith line region. From a practical point of view, when these lines 



188 

can determine the position and orientation of the object, the best match can be found 

from the set of lines and their corresponding data sets. 

Basically, there are two ways to estimate the initial rigid transformation that 

roughly transforms these groups of data sets onto their corresponding lines. The first 

method is to turn the undirected line match into a directed line match. If, for each 

region, there are at least two points in the intraoperative data set, a straight line can 

be fitted. Thus, matching a group of data points to a group of lines becomes matching 

two groups of undirected straight lines. If we fix the directions of lines corresponding 

to the preoperative data, then a rigid transformation can be computed using the 

method developed in section 4.2 for each set of selected line directions corresponding 

to the intraoperative data. The best initial rigid transformation estimated should 

be the one corresponding to the line directions that produce the smallest matching 

errors. 

The second method is to use a minimization procedure. Let Rand T be the 

rotation and translation to be estimated. The distance from RQij+T to line .ci(Pi , Vi) 

can then be represented as 

The rotation and translation can be estimated by minimizing the sum of squares 

n m; 

s2 = L L(RQij + T - ~)T(I - Vi vi) (RQij + T - Pi). (S.3.1) 
i=l j=1 

Setting fJS2 JOT = 0, the optimal solution for T can be found as 

(8.3.2) 



IS!) 

is the centre of the ith group of data. From Appendix C in Chapter 4, A has an 

inverse whenever there exist at least two linearly independent line directions for the 

given lines. 

For rotation matrix R = (rij)3X3, set vector 

and for any vector U = (UI' U2, u3f, set matrix 

. (u, U2 U3 a 0 0 0 0 0 

U = 0 0 0 UI U2 U3 0 0 a ). 
000 0 0 0 Ul U2 U3 

With these notations, the translation T in (S.3.2) can be further written as 

(8.3.3) 

where 
n 

lP = A-I 2: miAi~' 
i=l 

and 
n 

Q* = A- l 2: m i AiQ;. 
i=1 

With (8.3.3), for each Qij, 

For each i and each j, let Pi = l{ -lP, Q';j = Q:j - Q*, then 



190 

n m; 

8 2 
- L L(lJ:jR - A)' AlQ;jR - Pi) 

i=l j=l 

- tma5~AiPi - 2t~Aifq;jR 
i=l i=l j=l 

n m; 

+ H' L L Q*~jAiq;jR (8.3.4) 
i=l j=l 

To estimate the rotation, this sum needs to be further written as a function of 

rotation parameters, and a minimization procedure is then performed to estimate 

them. 

When the region is represented as planes, the estimation procedure is roughly 

the same.-'Vhen there are at least three linearly independent points in the intraop­

erative data for each region, a plane can be fitted and the problem of matching a 

group of data sets to a group of planes becomes the problem of matching two sets 

of undirected planes. If we fix the plane normals for one group of planes, then a 

rigid transformation can be computed using the method developed in section 4.3 for 

any selected normal directions of second group of planes. The best initial estimate 

for the rigid transformation should be the one that produces the smallest matching 

error. Another way to match the group of data sets to a group of planes is to use a 

minimization procedure. In the above minimization procedure for line regions, if we 

replace those matrices Ai with matrices nin;, then we obtain a similar result .• 

Similarly, the initial rigid transformation can also be estimated by modeling the 

regions as a mixture of straight lines and planes. 
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Computing the initial rigid transformation by modeling each region as an 

ellipsoid 

When regions represented by fiat geometric objects cannot provide enough informa­

tion for computing a good initial estimate for the unknown rigid transformation, a 

curved geometric object needs to be used to model the region. vVe choose to usc an 

ellipsoid to represent a curved region because of its simplicity and its good geometric 

properties. \Vhen there are enough points in both the preoperative data and the 

intraoperative data for each region, an ellipsoid can be fitted to both of the two data 

sets. In this case, a rigid transformation can be computed using the centres and the 

orientations of the fitted ellipsoids. When too few intraoperative points are available, 

a minimization procedure is required to compute the initial rigid transformation, as 

in the case of modeling the regions as lines or planes. 

8.4 Uniqueness of data matching 

As can be seen, whether the true rigid transformation information can be retrieved 

depends on whether the data given can provide enough information to determine 

the unknown rigid transformation. When too few regions are selected or when the 

intraoperative data has too few sample points, or when the geometry of regions is 

too simple, it might not be possible to determine uniquely the rigid transforIIlt'1tion 

that links the two groups of data sets. It is easy to show that when only two lines 

are considered, no matter how many points are sampled from the lines and how the 

two lines are positioned and oriented, it is impossible to determine the unknown 

rigid transformation purely from point-region matching, as in this case there are 
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~igure 8.1: Two lines cannot determine the orientation of an object 
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always at least two rotations which rigidly transform the two sets of points onto 

their corresponding lines. Even in the case when more than two lines are used, 

there might be more than one way to match the given sets of points with their 

corresponding regions. In these cases, either the rotation or the translation cannot be 

estimated correctly. In this section, we briefly discuss how regions should be located 

and oriented, so that the rigid transformation can be determined uniquely. 

8.4.1 Uniqueness for flat regions 

We first consider t~e uniqueness for regions all represented as straight lines. 

Proposition 8.4.1. Let R!, TIt R2, T2 be two sets of rigid transformation such that 

they all transform two different points PI, P2 onto the line .c(P, v). Let nand Q be 

the rotation axis and angle of rotation R2RT. Then n = v or n 1. v when Q = 11". 
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Proof. According to the assumption, ~Pl + Ii, ~P2 + Ti E .c(i = 1,2). Thus there 

exist numbers Ai(i = 1, 2), ~(P2 - Pd = AiV(/\ # 0). From these relations, we have 

This implies that R2RT v = ±v, since IIR2RT vII = Ilvil and Al ~ 0, A2 # o. Let 

R = R2RT. If Rv = v, the rotation axis will be v. If Rv = -v, the rotation a.xis 

must be perpendicular to v, and at the same time the rotation angle must be 7r. In 

fact, let the rotation axis and the rotation angle be n and () respectively. Then 

Rv = cos()v + (1- cosB)(n· v)n + sin()n x v = -v. 

Since v, ~and n x v are linearly independent to each other, we must have sinO = 0, 

cosO = -1 and n . v = O. Therefore, n is perpendicular to v and () = IT. 0 

From proposition 8.4.1, we have 

Proposition 8.4.2. Suppose that both rigid transformations R l , Tl and R2 , T2 trans­

form three groups of line points(with at least two points included in each group)onto 

three straight lines £1, £2, £3 respectively. We must have Rl = R2 and Tl = T2 if the 

following three condition hold: 

1. The three straight lines do not have a common perpendicular line that intersects 

all three of the lines; 

2. None of the three lines is the common perpendicular to the other two which also 

intersects the other two; 

3. The three lines are not parallel to each other. 
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Proof. Let the directions of the three lines be V1,V2,V3 respectively. The following 

observation should be noted. If two lines £1 and £2 are not parallel and do not 

intersect, they will have a common perpendicular PtP2, as shown in the figure 8.2. 

Suppose a rigid transformation maps £1 and £2 onto a second pair of lines £~ and 

£2 with a common perpendicular P{ P2· Then the transformation also maps P t to P{ 

and P2 to P2 respectively. To show that the rigid transformation is unique, we need 

only to show that the given lines will have at least 3 common perpendicular points 

under the given conditions. Let R = R2Rf. According to the proposition 8.4.1, 

RVi = ±Vi, i = 1,2,3. (1) We first show that it is impossible for RVi = -Vi to be 

satisfied for one and only one unit vector in {Vt, V2, V3}. Without loss of generality, 

we assum~. that RVI = -VI, RV2 = V2, RV3 = V3· If V2 i= ±V3, then both V2 and V3 

will be the rotation axis of R, and this can only happen when R is the identity matrix 

I. This contradicts RVI = -VI' Therefore, we must have V2 = ±V3' In this case, 

the line £2 will be parallel to line £3' From proposition 8.4.1, VI is perpendicular to 

rotation axis V2 = ±V3. From condition 3, £1 is not parallel to £2 or £3. Let n be the 

plane determined by lines £2, £3. From condition 1, line £1 cannot be perpendicular 

Rigid 
transformation 

II 

Figure 8.2: If a rigid transformation maps two unparallellines £1 and £2 onto a second 
pair of lines £~ and £2' then the transformation also maps the common perpendicular 
points of the first pair of lines onto that of the second pair of lines. 
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to the plane since in this case, the three lines will have a common perpendicular line. 

From condition 2, £1 cannot intersect £2, £3 at the same time. Therefore, there must 

exist at least three non-collinear common perpendicular points for lines £ 1, £2, £3. 

But this implies that R1 = R 2, Tl = T 2· This contradicts RVI = -VI' This shows 

that we cannot have RVi = -Vi for i = 1,2,3. 

(2) We then show that it is impossible for RVi = -Vi to be satisfied for any two 

unit vectors in {VI, V2, V3}. Without loss of generality, we assume that RVI = VI, 

RV2 = -V2, RV3 = -V3. Again, with proposition 8.4.1, VI is perpendicular to both 

V2, V3. From condition 2, £1 cannot intersect both £2 and £3' Suppose that £1 

does not intersect line £2. With condition 1, at least one end point of the common 

perpendic~lar to £1, £3 does not lie on the common perpendicular of £1 and £2. This 

means that Rl = R2, and Tl = T2, which contradicts the assumption that RVI = VI, 

RV2 = -v2, RV3 = -V3· This shows that it is impossible for RVi = -Vi to be 

satisfied for any two unit vectors {Vl, V2, V3}. 

(3) Finally, we show that RVi = -Vi for i = 1,2,3 cannot be true. If we do have 

such a case, then the rotation axis of R must be perpendicular to Vl, V2, V3. This 

implies that VI, V2, V3 are coplanar. From condition 3, we know that at least two lines 

are not parallel to each other. Suppose £1, £2 are not parallel to each other. From 

condition 1, the third line cannot intersect the common perpendicular of £1, £2. It 

can also be shown that in this case the common perpendicular end points of £1 and 

£2, £1 and £3 , £2 .and £3 cannot be collinear. Therefore we must have RI = R2 and 

TI = T 2. This contradicts RVi = -Vi, i = 1,2,3. 

The only possibility now left is that RVi = Vi, i = 1,2,3. Since at least two of 

the vectors VI, V2, V3 are linearly independent, we must have R = I, or equivalently, 
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Figure 8.3: Three or more lines with a common perpendicular line cannot determine 
the orientation of an object 

RI = R2• 

The proof of uniqueness of translation is direct when Rl = R2 = R. From condi­

tion 3, there exist at least two line directions, say VI, V2, that are linearly independent. 

If for points PI, P2, R~ + Tl and RPi + T2 are on line Lj{j = 1,2), we must have 

T2 - TI = AIVI = A2V2. Thus we must have T2 = Tl as VI and V2 are linearly 

independent. o 

The above propositions demonstrate that there is only one possible position in 

space to arrange a given group of data points on their corresponding lines under the 

given conditions. Here we give some examples to show that when these conditions 

are violated, either the rotation or the translation cannot, in general, be uniquely 

determined. vVhen three lines share a common perpendicular, a rotation of 1r about 

the common perpendicular will map the three lines onto themselves. \Vhen one line 
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C intersects and is the common perpendicular to the other two, the rotation about 

the line C by angle 71" will also map the three lines onto themselves. Obviously, when 

the three lines are all parallel to each other, the translation cannot be determined 

uniquely. 

Proof of the uniqueness for a plane match is simpler by comparison. It follows 

directly that two planes cannot determine the position of an object, as the object 

can slide along the intersection line when the planes intersect, and can move between 

the two planes in any direction parallel to the two planes when the two planes are 

parallel. Even in the case of three mutually perpendicular planes, the orientation of 

an object still cannot be determined. Generally, we have the following result: 

Proposition 8.4.3. Let R1, T11 R2, T2 be two sets of rigid transformation such that 

they all transform three linearly independent points Pl, H, P3 onto a plane n. Let V, 

n be the normal of the plane and the axis of rotation R2R[ respectively. Then either 

n = V or n.l v. 

Proof According to the assumption, R1Pj + T1, R2Pj + T2 E n(j = 1,2,3). Then 

[~(P2 - P1)] . v = 0, [~(P3 - Pd] . v = 0, (i = 1,2). 

Set P = (P2 - P1) X (P3 - Pd. Then there exist A1 =1= 0 and A2 =1= 0 such that 

R1P = A1V, R2P = A2V. Hence, 

and this implies that 

R2Riv = ±v, 

since A1 =1= 0, A2 =1= O. Thus, for the rotation axis n of R2Rf, either n = v or n .1 v 

when the rotation angle is 71". o 
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Proposition 8.4.4. Let 0 1, O2, 0 3 be three planes with normals VI, V2, V3 respec­

tively. ffvl, V2, V3 are linearly independent and no plane is perpendicular to the other 

two, then for two sets of rigid transformations R 1, Tl and R2, T2, Rl = R2 and Tl = T2 

when both rigid transformations transform three groups of nonlinear co-planar points 

onto the three planes respectively. 

Proof. Let the rotation axis of rotation R = R2RT be n. With proposition 8.4.3, for 

i = 1,2,3, we have RVi = ±Vi. Firstly, it cannot be true that RVi = -Vi, i = 1,2,3, 

since in this case, n will be perpendicular to all three linearly independent vectors, 

which is impossible. Secondly, since VI, V2, V3 are linearly independent of each other, 

it cannot be true that RVi = Vi for only one plane normal, which will imply that one 

of VI, V2, V3 is perpendicular to the other two, thus contradicting the given condition. 

What remains now is the case that RVi = Vi for at least two vectors in {VI, V2, V3}, 

but this simply implies that R = f. 

It is evident that TI = T2 under the given condition when Rl = R2• o 

When the conditions in proposition 8.4.4 are not satisfied, the rigid transformation 

cannot be determined uniquely. When the three normals are not linearly independent, 

the three planes will not intersect at a point and thus the translation cannot be 

uniquely determined. When one of VI, V2, V3, say Vb is perpendicular to the other 

two, the intersection line of planes O2 and 0 3 will be parallel to VI. From figure 8.4, 

it can be seen that a rotation about the intersection line by an angle 7r maps the three 

planes onto themselves. 
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Figure 8.4:. When one plane is perpendicular to the other two planes, it is impo sibl 
to determine the orientation of an object 

8.4.2 Uniqueness for curved regions 

In the previous subsection, we see that in some cases, the rigid transformation cannot 

be uniquely determined when regions are modeled with fiat geometric objects. We 

have a similar problem with curved regions. For example, when the regions have a 

line of symmetry, a rotation about the axis of symmetry by an angle 7r r suIts th 

same match. 

Generally, when enough intraoperative data points are sampled for each r gion, 

two or three regions that do not have a line or plane of symmetry will be enough to 

determine the rigid'· transformation from geometric intuition. 

The more general discussion of uniqueness for curved regions will be much more 

complicated and is an area for future research. 
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8.4.3 The number of points required for each region 

The number of points sampled for each region also needs to be considered. As can 

be seen, when too few points are sampled from each region for intraoperative data, 

the shape of the region may not be properly represented by the data, and thus the 

rigid transformation might not be uniquely determined through region to region cor­

respondence. It can be seen that when regions are modeled as lines, and only one 

point is sampled from some regions for intraoperative data, even if the lines satisfy 

the conditions given in proposition 8.4.2, the rigid transformation still cannot be de­

termined properly. Generally, two points are required for line regions and three points 

are required for plane regions. For curved regions, more than four points are required, 

depending on the complexity of the shape of each region. 

8.5 Refining the initial rigid transformation by 

fitting each region with a more precise implicit 

shape 

The initial rigid transformation obtained from the above procedures can only guaran­

tee that it is close to the true one, but it is far from accurate in general. This initial 

guess needs to be refined further by a more precise modelling with our constrl.lctive 

fitting techniques for the preoperative data. 

Suppose there are n regions and the preoperative data for the ith region has been 

represented as an implicit function !i(P) = O. The distance from each point P to 

the ith region can be approximated by Ifi(P)1 or by Ifi(P)I/IIV' fi(P)II. The former 
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is usually referred to as algebraic distance and the latter one is usually called the 

approximated Euclidean distance. Geometric distance from a point to an implicitly 

represented surface can also be considered, but it is computationally expensive [93]. 

Considering computational efficiency, we prefer to use algebraic distance or approxi­

mated Euclidean distance. Let {Q ij } ~l' (i = 1, 2, ... , n) be the set of points sampled 

from the ith region of the object under consideration in the operating theatre. Let 

Rand T be the rotation and translation to be estimated. The total sum of squared 

distances can be represented by 

n m, 
S(R, T) = L: L: Il(RQij + T), (8.5.1) 

i=l j=l 

or by 

(8.5.2) 

The initial rotation and translation can then be refined by minimizing the sum of 

squared distances defined by (8.5.1) or by (8.5.2). Since each function fi(P) is of the 

form 
ni 

li(P) = L: 9ij(P)/ij(P), 
j=l 

and those 9ij(P) are just the gate functions, the value of (li;f~f))11)2 can therefore be 

approximated with 

This will greatly reduce the computation time because it is much simpler to compute 

the gradient V lij (P) than the gradient V (9ij (P) lij (P) ). 
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Figure 8.5: The implicit surface reconstructed from CT data of an actual plastic 
femur head 

-200 

-210 -800 

-220 

-230 

-240 

280 290 300 

Figure 8.6: The surface reconstructed from CT data of an actual plastic femur in th 
area of lateral surface near the greater trochanter 
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8.6 Experimental results 

In this section, some experimental results are given to demonstrate the matching 

results with the region to region registration strategy. The object considered in the 

experiment is a plastic femur. For the femur, four regions are considered: the femur 

head, the popliteal surface, the medial condyle and the lateral condyle (see figure 

8.7). These regions are not only anatomically significant but can also be identified 

from computer images (such as CT images) more easily. A dense cloud of points is 

sampled from each region with OPMS. These data sets are then used for implicit 

surface modelling for the chosen region with the technique provided in the previous 

chapter. Having sampled the model data, the femur is placed in different positions 

with different orientations. For each position of the femur, a sparse set of points is 

sampled form each region to serve as the intraoperative data. To verify the registration 

accuracy, five points from the femur are used as reference marks to approximate 

accurately the actual rigid transformation that has been performed. To initialize the 

region to region matching, the curved centre for each region is computed for each set of 

intraoperative data. An initial guess is then obtained by reference marks registration 

using the quaternion algorithm. The estimated rotation is then parameterized with 

Euler angles. These initial rotation parameters plus the initial translation are then 

refined by minimizing the sum of squares errors given in equation (8.5.2) using the 

modified Levenbergue-Marquadt minimization routines [67]. As can be seen ·from 

table 8.1, the regi~tration results are quite satisfactory. The error in rotation is 

measured by the Frobenius norm of the difference matrix between the rotation matrix 

obtained from reference marks registration and the one estimated from the region to 

region matching strategy. The error in translation is measured by the Euclidean 
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Figure 8.7: The relative positions of the four chosen r gions 
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Femur pose Rotation Error (mm) Translation Error(mm) Hms (mm) 
pose 1 0.0042 2.715 0.1950 
pose 2 0.0045 0.4072 0.2000 
pose 3 0.0093 0.1599 0.4230 
pose 4 0.0012 0.1676 0.20·15 
pose 5 0.0009 0.5291 0.0059 
pose 6 0.0066 0.3163 0.4132 
pose 7 0.0183 0.1607 0.6983 
pose 8 0.0039 0.3103 0.3573 
pose 9 0.0023 1.53 0.1682 

Table 8.1: The rotation errors and translation errors between the rigid transforma­
tions estimated by region to region registration algorithm and the rigid transforma­
tions by reference mark registration, and the root mean square errors of corresponding 
reference marks for region to region registration. 

distance between the two translations, in a similar way. The matching accuracy is 

measured-by the root mean square error (RMS) between the five pairs of reference 

marks. The code is written in C and run under Microsoft Window NT4.0 using a PC 

with a Celeron 400mHz processor. The computation in all cases just takes less then 

a second. 

Table 8.1 shows that the matching error is mainly affected by the error in rotation. 

Generally speaking, the registration accuracy of our region to region matching 

strategy is influenced by several factors, for instance, the accuracy of model surface 

built, the size and the complexity of surface region chosen, the number of intraop­

erative data points sampled from each region, and how these sampled points are . 
distributed on each region. In our experiment, to fit the sampled data accurately, 

the data from each area are subdivided into several subsets. The surface of medial 

condyle and the surface of the lateral condyle (Figure 8.8 ) of the femur are a combi­

nation of four quadric surfaces. The popliteal surface, unlike the other three areas, is 

a combination of four cubic surfaces which are the rigid transformation of the implicit 
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Figure 8.8: The OPMS data sets from the medial condyle and lateral condyle of the 
femur are represented with implicit surfaces 
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Figure 8.9: The OPMS data from the popliteal surface of the femur is fitted with an 
implicit surface 
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Figure 8. 10: The OPMS data from the surface of the £ mur h ad is £i tt d with n 
implicit surface 
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Figure 8.11 : The relative positions of the four chosen region 
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surface with form f(x, y) -z = 0 (Figure 8.9). The femur head surface is composed of 

28 quadric surfaces combined with plane gates (Figure 8.10). The number of points 

sampled for intraoperative data depends on the size and the complexity of the region. 

The figures listed in table 8.1 are obtained with the number of points ranging from 

20 to 43 sampled from femur head, 9 to 23 for the popliteal surface, 12 to 29 for 

the medial condyle, and 12 to 30 for the lateral condyle. These points are sampled 

quite evenly, so that the shape information can be captured by the data as much as 

possible. 

In this chapter, we have presented a region to region registration method. This 

strategy first estimates the initial rigid parameters from the region to region cor­

responder:~e, using either the curved data centers or the simple geometric fitting 

techniques. It is followed by a minimization procedure to refine the initial guess. The 

key technique for this matching procedure is the localized implicit fitting technique 

developed in the previous chapter. Experimental results given in this section show 

that our region to region matching strategy is quite satisfactory for both the match­

ing accuracy and the matching speed. In addition, matching uniqueness is discussed 

for simple geometric primitives to emphasize that it might not be possible to align 

two coordinate systems from a region to region correspondence when the regions are 

chosen inappropriately, or when not enough points are sampled. However, much more 

work needs to be done to evaluate the effectiveness of the matching technique .• This 

includes some further theoretical investigation on the matching uniqueness for more 

general geometric shapes and more experiments on different data sets from various 

situations, which will be part of our future work. 



Chapter 9 

Summary 

The main theme investigated in this thesis is how to estimate the unknown rigid 

transformation that links the preoperative data and the intraoperative data in com· 

puter ass~ted surgery. As rotation is the main subject dealt with in the thesis, we 

have discussed systematically how a rotation can be parameterized. Though standard 

results can be found in the literature, we have presented them with our own way of 

inference and our own point of view. For example, in establishing the relationship 

between a quaternion and a rotation, we first discussed how a quaternion is linked 

with a four dimensional rotation. With this knowledge, exploring the link between a 

quaternion and a three dimensional rotation becomes investigating how a four dimen· 

sional rotation is linked with a three dimensional rotation. In this way, the quaternion 

representation of a rotation can be developed quite naturally. 

Some properties of the rotation matrix have also been discussed in a very ge.neral 

way. We showed for example that, in general, the trace of an n dimensional rotation 

matrix cannot be larger than n - 2 + 2c where c is any diagonal element of the 

rotation matrix. With this property, the proof of the modified SVD algorithm can be 

simplified. 
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As a starting point, we first surveyed the techniques for reference mark r('gis­

tration. It is in this thesis that we first mentioned the closed-form solution at the 

earliest given in 1966. Based on this investigation, the SVD algorithm, the quater­

nion algorithm and the polar decomposition algorithm were deduced in a much more 

direct and natural way. In addition, a new reference mark registration technique is 

developed from the idea of an estimate of the rotation axis. 

As a direct generalization, we then developed the registration method when the 

reference objects are more general geometric primitives including points, lines and 

planes with the help of the concept of the center of these geometric objects. In 

addition, an interesting line fitting technique based on the geometric distance is given 

by solvin~.an eigen system. 

As far as non-landmark registration is concerned, two techniques are developed 

following two different ideas: Iterative closest geometric object matching and surface 

matching. With the first idea, iterative closest line segment registration and iterative 

closest triangle patch registration are developed. The proposed iterative procedures 

are always convergent when the data are properly scaled. Compared with the con­

ventional rep algorithm, the ICL and the ICT algorithms are much less sensitive to 

the initial guess. 

The key point in the second idea is the implicit surface fitting. \Ve begin the 

investigation on implicit fitting with ellipsoid fitting. The ellipsoid is the only qu.adric 

surface that is both centric and bounded. General quadric surface fitting techniques 

cannot guarantee to deliver an ellipsoid, while bounded implicit polynomial fitting 

techniques are not accurate enough when a good initial is not available. Our ellipsoid 

fitting technique is almost a closed form solution, in the sense that it is just a one 
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step fitting in most cases. This fitting algorithm is used to find a good initial guess in 

our region to region matching strategy. For more complex shapes, a divide-conqu('r 

fitting procedure is adopted by using gate functions. 'With these functions, different 

implicit functions defined in different regions can be combined into a new implicit 

function with little distortion of the locally fitted functions. 

Based on the constructive implicit surface fitting technique, region to rrgion 

matching is developed. With this registration method, we first identify several regions 

on the surface of a bone object. Each region is then modelled with the preoperative 

data as an implicit function which serves as the distance function from a point to 

the surface. The matching procedure then becomes a search for the rotation and 

translation that minimizes the sum of 'distances' from intraoperative data to their -, 

corresponding regions. As a good initial estimate can be computed from region to 

region correspondences, the minimization procedure can be accomplished by a min­

imization technique. We have chosen the modified Levenberg-Marquardt algorithm 

for our minimization task. Initial experiment results shows that region to region 

matching is quite satisfactory though much more experiments needs to be done to 

show its effectiveness in general situation. 



Chapter 10 

Future work 

Future research will focus mainly on two areas: the practical integration of the work 

described in this thesis into the real computer assisted orthopaedic system currently 

under dev:elopment within the department, and the application of implicit fitting in 

computer vision and computer graphics. 

10.1 The implementation of the developed 

matching method into actual computer-assisted 

surgery systems 

In this thesis, the focus has been on the development of 3D data matching algorithms. 

Most of the work has been devoted to the theoretical aspect, to show the soundness . 
and the robustness of the methods developed. Very little attention is given to the 

applications of the algorithms on particular image modalities like CT, MRI and X­

ray. The immediate objective is to implement the methods developed into an actual 

computer assisted surgery system, and to apply the algorithms to different images 

formats. 
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10.2 More experiments and further investigation 

on matching uniqueness for curved regions 

Though some initial experiments have been carried out on the region to region match­

ing strategy, it is far from enough to show its effectiveness in general, more exper­

iments will be done with both synthetic data and data sampled from actual bone 

surfaces by various scanners. In addition, the matching uniqueness for more general 

geometric shapes will be investigated. The idea of matching uniqueness discussed in 

chapter 8 is mainly for fiat regions. For curved regions, the situation will be much 

more complicated, and we do not have a clear idea on when curved regions can deter­

mine the pOSition and orientation of an object uniquely, for the given intraoperative 

data. Further research will be needed to discover how the given regions should be 

positioned and oriented, and how much intraoperative data is required, and how 

it should be distributed over the regions so that the matching can be determined 

uniquely. 

10.3 Further experiments to compare the ICL and 

ICT algorithms with the ICP algorithm 

The experiments carried out in Chapter 5 to compare the ICL (the ICT) algol'ithm 

with the ICP algorithm were done only for synthetic data. More experiments will be 

done to compare their robustness with noisy data or with data from surfaces of some 

actual geometric objects, which will provide a more complete comparison on their 

performances in different circumstances. 
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10.4 Non-rigid medical data registration 

In this thesis, we have only considered how to align two coordinate systems by using 

data sets from a rigid object. The algorithms developed can only be used in computer 

assisted orthopaedic systems. In computer assisted surgery systems for soft tissue op­

erations, alignment of two coordinate systems based on data sets from soft objects 

needs to be considered. Soft tissue medical data registration is a more challenging 

research area. In addition to rigid transformation, changes in object shape due to 

deformation like shearing and tearing need to be considered in the shape matching 

procedure. We will consider the problem by fitting the preoperative data with an 

implicit surface. The reason for this is that when the surface of the considered object 

is fitted with an implicit function f(P), the signed distance from a point P E IR.3 to 

the object can be approximated by the value of function f at the point P. Therefore, 

the surface of the deformed object can be approximated with a continuous topological 

transformation of the function f(P). We will discuss what effects different deforma­

tion operations will have on an implicitly defined function and investigate the possible 

matching algorithms. 

10.5 The application of implicit fitting to robotic 

boundary detection 

In robotics and automation, we often need to constrain the hand of an robot to move 

within a certain area. In this case, the problem can be solved very easily when the 

boundary of the object is modelled with an implicit function f(P). This is because 

the implicitly fitted function naturally divides space into three parts: the set of points 
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on the boundary and the two sets of points that fall on either side of the boundary, 

corresponding to whether f(P) = 0, f(P) < 0, or f(P) > 0. For each movement, 

the robot need only check the value of the function to ensure that the sign docs not 

change during movement. However, more research and experiments need to be done 

to show the efficiency of the way in controlling the movement of the robot hand. 

10.6 Solid geometric object modeling using gate 

functions 

Constructive Solid Geometry (CSG) is the process of building solid objects from 

other simple geometric primitives like the sphere, the ellipsoid, and the cube. In 

CSG, an object is regarded as a set of points, and the procedure for constructing 

an geometric object is just a series of set-theoretic operations on implicitly defined 

geometric objects. The three eSG operators are Union, Intersection, and Difference. 

Each operator acts upon two objects and produces a single object result. By combin­

ing multiple levels of eSG operators, complex objects can be produced from simple 

primitives. The drawback of this constructive procedure is that the functions con­

structed will be very complicated and not smooth enough. Unlike traditional solid 

geometric construction procedures, an object can be built by combining piecewise im­

plicit functions using gate functions. Current CSG techniques are mainly concerned 

with how to combine two implicitly defined shapes, but little attention is paid to 

how accurately the original shapes are preserved. However, with our implicit surface 

combination technique, simple implicitly defined geometric shapes can be combined 

into very complicated surfaces given that the influence domain of each function is 
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known. This is typically important in reconstructing the shape of an actual geo­

metric shape precisely in computer graphics. The investigation of the application of 

gate functions to constructive solid geometry will be given, and software for building 

geometric graphics from real world data can be exploited. 
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