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Contents

List of Tables vii

List of Figures ix

Abstract xii

Declaration xiv

Acknowledgements xv

Acronyms xvi

1 Introduction 1

1.1 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8

2.1 Algal Blooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

iii



2.1.2 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Effect of Climate Change on Algal Blooms . . . . . . . . . 16

2.1.4 Detection Methods . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Data Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . 27

2.4.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Convolutional Neural Networks . . . . . . . . . . . . . . . 35

2.5.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . 36

2.5.4 Attention Models . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.5 Transformer Networks . . . . . . . . . . . . . . . . . . . . 44

2.5.6 Variational Auto-encoder . . . . . . . . . . . . . . . . . . . 46

2.5.7 Generative Adversarial Network . . . . . . . . . . . . . . . 47

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Imputation for Water Quality Data 50

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Missingness Analysis . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . 64

iv



3.2.5 Additional Experiments . . . . . . . . . . . . . . . . . . . 67

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Algal Bloom Prediction with Time Series 78

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.2 Model Explainability . . . . . . . . . . . . . . . . . . . . . 85

4.1.3 Local Interpretable Model-Agnostic Explanations . . . . . 86

4.1.4 SHapley Additive exPlanations . . . . . . . . . . . . . . . 87

4.1.5 DeepLIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 90

4.2.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Additional Experiments . . . . . . . . . . . . . . . . . . . 96

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Multimodal Algal Bloom Prediction 108

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Multimodal Learning . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

v



5.2.4 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5 Co-learning . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.3 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.4 CNN Models . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.5 Additional Experiments . . . . . . . . . . . . . . . . . . . 125

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Conclusion 139

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143

vi



List of Tables

2.1 Toxicity of different compounds to mice Zingone and Enevoldsen

(2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Summary of the dataset variables . . . . . . . . . . . . . . . . . . 56

3.2 RMSE of prediction for all datasets . . . . . . . . . . . . . . . . . 72

4.1 Coefficients for Equation 4.8 . . . . . . . . . . . . . . . . . . . . . 93

4.2 Hyperparameters used for each model where the value of day is i

days into the future. . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 AUC ROC for 1-7 days . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Results for TF-Conv without and with multiple convolutions . . . 102

4.5 Pretraining results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Sample multimodal settings adapted from Guo et al. (2019) . . . 114

5.2 MAE results for each day with the best performing model . . . . 129

5.3 Hyperparameters for fusion models . . . . . . . . . . . . . . . . . 131

5.4 Hyperparameters for the XGBoost model for the late fusion approach132

5.5 Hyperparameters for the XGBoost model for the middle fusion

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6 Hyperparameters for coordinated representation models . . . . . . 133

vii



5.7 Hyperparameters for the XGBoost model for the coordinated rep-

resentation approach using sensory data . . . . . . . . . . . . . . 133

5.8 Hyperparameters for the XGBoost model for the coordinated rep-

resentation approach using satellite data . . . . . . . . . . . . . . 134

5.9 Hyperparameters for the fusion model that uses False Color data

as input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Hyperparameters for the fusion model that uses NDWI data as input137

viii



List of Figures

2.1 Green and red algal blooms . . . . . . . . . . . . . . . . . . . . . 10

2.2 Regions where HABs were studied . . . . . . . . . . . . . . . . . . 11

2.3 Flowchart of Eutrophication Process . . . . . . . . . . . . . . . . 12

2.4 Effect of climate change on algal blooms . . . . . . . . . . . . . . 18

2.5 Visualisation of SVM . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Visualisation of RF . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 MLP with two hidden layers . . . . . . . . . . . . . . . . . . . . . 35

2.8 Sample convolution operation . . . . . . . . . . . . . . . . . . . . 36

2.9 Backpropagation through time in RNN . . . . . . . . . . . . . . . 37

2.10 Structure of an LSTM cell . . . . . . . . . . . . . . . . . . . . . . 38

2.11 Bidirectional LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.12 Luong vs. Bahdanau Attention . . . . . . . . . . . . . . . . . . . 43

2.13 Self-attention and multi-head self-attention . . . . . . . . . . . . . 44

2.14 Illustration of the transformer architecture (Vaswani et al., 2017) 45

2.15 Architecture of VAE (Kingma and Welling, 2013) . . . . . . . . . 48

2.16 A sample GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Locations of moorings . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Heatmap of missingness of four locations . . . . . . . . . . . . . . 58

ix



3.3 Bar plot of number of rows regarding the count of observed in-

stances in four locations . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Dendrogram of missing features in four locations . . . . . . . . . . 60

3.5 Architecture of GAIN (Yoon et al., 2018) . . . . . . . . . . . . . . 63

3.6 Proposed architecture for imputation . . . . . . . . . . . . . . . . 66

3.7 Proposed architecture for prediction . . . . . . . . . . . . . . . . . 68

3.8 Comparison of algorithms for four datasets at different missing

percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Effect of different activation functions for the linear layer on model

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.10 Effect of different initial imputation values on model performance 70

3.11 Sample heatmap for self-attention . . . . . . . . . . . . . . . . . . 73

4.1 Sample SHAP values (Lundberg and Lee, 2017) . . . . . . . . . . 89

4.2 Pearson coefficient values . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Proposed model for predicting oxygen thresholds . . . . . . . . . . 96

4.4 Second proposed model for predicting oxygen thresholds . . . . . 97

4.5 F1 scores for abnormality prediction for all 4 buoys . . . . . . . . 100

4.6 Mean F1 scores for abnormality prediction for testing buoys: West-

Gab, LivBay and Dowsing. . . . . . . . . . . . . . . . . . . . . . . 100

4.7 SHAP importances for algal bloom detection . . . . . . . . . . . . 101

4.8 LIME importances for algal bloom detection . . . . . . . . . . . . 103

4.9 DeepLift importances for algal bloom detection . . . . . . . . . . 104

4.10 DeepLift SHAP importances for algal bloom detection . . . . . . 105

4.11 Confusion matrices for all sites . . . . . . . . . . . . . . . . . . . . 106

5.1 RGB & false colour image of an algal bloom . . . . . . . . . . . . 121

5.2 The proposed multimodal fusion approach . . . . . . . . . . . . . 123

x



5.3 ResNet Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Inception modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Proposed Multimodal Joint Representation . . . . . . . . . . . . . 127

5.6 Mean MSE for test locations . . . . . . . . . . . . . . . . . . . . . 129

5.7 Mean MSE for each monitoring location . . . . . . . . . . . . . . 130

5.8 Mean MSE for test locations for coordinated representations ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.9 Mean MSE for each monitoring location using coordinated repre-

sentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.10 Mean MSE for test locations using different bands . . . . . . . . . 135

5.11 Mean MSE for each monitoring location using RGB, False Color

and NDWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xi



Abstract

Climate change will affect how water sources are managed and monitored. The

frequency of algal blooms will increase with climate change as it presents favourable

conditions for the reproduction of phytoplankton. During monitoring, possible

sensory failures in monitoring systems result in partially filled data which may

affect critical systems. Therefore, imputation becomes necessary to decrease er-

ror and increase data quality. This work investigates two issues in water quality

data analysis: improving data quality and anomaly detection. It consists of three

main topics: data imputation, early algal bloom detection using in-situ data and

early algal bloom detection using multiple modalities.

The data imputation problem is addressed by experimenting with various

methods with a water quality dataset that includes four locations around the

North Sea and the Irish Sea with different characteristics and high miss rates,

testing model generalisability. A novel neural network architecture with self-

attention is proposed in which imputation is done in a single pass, reducing

execution time. The self-attention components increase the interpretability of

the imputation process at each stage of the network, providing knowledge to

domain experts.

After data curation, algal activity is predicted using transformer networks,

between 1 to 7 days ahead, and the importance of the input with regard to the

output of the prediction model is explained using SHAP, aiming to explain model

xii



behaviour to domain experts which is overlooked in previous approaches. The

prediction model improves bloom detection performance by 5% on average and

the explanation summarizes the complex structure of the model to input-output

relationships.

Performance improvements on the initial unimodal bloom detection model

are made by incorporating multiple modalities into the detection process which

were only used for validation purposes previously. The problem of missing data

is also tackled by using coordinated representations, replacing low quality in-situ

data with satellite data and vice versa, instead of imputation which may result

in biased results.
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Chapter 1

Introduction

Water is vital in every aspect of life, from the ocean’s depths to our bodies. It

is heavily used in agriculture, electricity generation and other industrial applica-

tions (Pereira, 2017; Fthenakis and Kim, 2010; Flörke et al., 2013). Therefore,

continuous monitoring of water quality is crucial to detect pollution, ensure that

various natural cycles are not disrupted by anthropogenic activities and assess

the effectiveness of beneficial management measures taken under defined protocols

such as the EU Water Framework Directive (WFD) (Directive, 2000) and Marine

Strategy Framework Directive (MSFD) (Directive, 2008). With increasing capa-

bility and low cost of sensors, constant monitoring has become widespread within

research programmes providing high quality and in situ data. With the improv-

ing remote sensing technology, satellites such as Moderate Resolution Imaging

Spectroradiometer (MODIS) (Justice et al., 1998) and Sea-viewing Wide Field-

of-view Sensor (SeaWiFS) (McClain et al., 2004) and Sentinel provide detailed

spatial and temporal data for water quality monitoring.

Harmful Algal Blooms (HABs) are outlier phenomena when algae multiply

rapidly due to several factors, such as available light and nutrient flow Shumway

et al. (2018). Algal blooms either naturally occur and pass away or begin due to

1
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extreme nutrient flow, i.e. eutrophication, and exacerbate. The extreme nutrient

flow is caused by fertilisers or sewage from industrial zones or sewage pipes from

residential areas, and it can affect freshwater sources Shumway et al. (2018).

Algae are key autotroph species which form the base of food webs in marine

ecosystems through photosynthesis. With the increasing temperatures due to

climate change, the frequency of algal blooms is expected to increase and will be

seen in new regions (Wells et al., 2015). In addition to the ecological impacts, the

occurrence of algal blooms has negative economic impacts. These include drinking

water treatment costs, as these blooms produce deadly toxins and increase the

cost of preserving biodiversity due to the disruption of the food chain (Dodds

et al., 2009). Regions where these blooms are frequent see lower sales in sectors

related to tourism, such that the by-product of HABs cause foul smells and

irritation in the eyes and lower income from fisheries as the fish population is

affected by the produced toxins (Bechard, 2020; Karlson et al., 2021).

Eventually, the scarcity of water will increase due to the effects of global

warming. By 2050, it is expected that 3.1 billion people will experience water

scarcity with additional economic and agricultural effects (Nations, 2021). To

create a more sustained Earth, the United Nations defined seventeen goals, two

directly related to water quality; Clean Water and Sanitation and Life Below

Water, Goals 6 and 14, respectively (Assembly, 2015). This project closely relates

to the goal of Life Below Water and could be extended to the goal of Clean Water

for inland bodies of water.

Most of the study areas for this phenomenon are in East Asia (Lake Taihu,

The South China Sea, The East China Sea and The Yellow Sea), The United

States (The Great Lakes and The Gulf of Florida), The Baltic Sea and The

Mediterranean Sea (Sebastiá-Frasquet et al., 2020). The majority of the study

periods are also short, typically less than a year (Sebastiá-Frasquet et al., 2020).
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The detection ranges are either short or have long intervals between detection

periods. In this thesis, the aim is to predict HABs in the North and Irish Sea

over a 10-year period, aiming to predict blooms 1 to 7 days before they occur

using various modalities of data.

1.1 Explainability

Deep learning models consist of a large number of parameters which are not

comprehensible. Therefore, models need to be summarised in an understandable

format. In the context of HAB detection, the models must be suitable for domain

experts to understand and utilise. Therefore, explainability models are required

to move from a black-box approach. A section of this project addresses this issue

by explaining the relationship between the model’s input and output, contributing

to the notion of explainability in the context of water quality and observing

how model inputs affect the model output. As algal blooms cause public health

issues, the general public should be able to obtain information about the future

status of areas of interest. Although the monitoring sites covered by this project

are not in proximity to populated areas, it can serve as a starting point for

explainability in the water quality domain as the majority of the works regarding

the detection of algal blooms and AI neglect the issue of explainability and focus

on the performance of the model.

1.2 Research Questions

Deep learning and machine learning methods have previously been utilized for

water quality data imputation and HAB detection (Sebastiá-Frasquet et al., 2020;

Aissia et al., 2017). Although the performances of the models are satisfactory
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two key properties are often overlooked: generalisability and explainability of the

models. The proposed solutions are often tested only on a single type of water

body which limits usability as different bodies of water differ in susceptibility

to change (Yang et al., 2020; Li et al., 2014; Lin et al., 2018; Song et al., 2015).

Therefore, testing model performance on bodies of water with different properties

is essential. Explainability is minimally explored in the domain of water quality

data imputation and HAB detection which is essential for models to deployed to

the field and be understandable by domain experts (Park et al., 2022). Different

modalities such as satellite and in-situ could be used to detect HABs Current

approaches use different modalities for validation purposes (Cannizzaro et al.,

2009; Vannah and Chang, 2013). Each modality exposes different properties

in the data to predict blooms. In-situ data tracks nutrients and phytoplankton

activity and satellite data tracks nutrients and colour changes in the water. When

analysed simultaneously, detection performance could be improved. Based on the

identified problems, this thesis aims to answer the following questions:

1. What are the models for filling missing data that can be used to improve the

quality of a water quality dataset and in what ways could the complexity

of the process be visualised for interpretability?

2. What are the models that can aid the early detection of HABs, and how

could the predictions of these models be interpreted?

3. In what ways data from multiple sources could be fused to improve the

detection of HABs?

1.3 Objectives

The general objectives of this project are:
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1. Exploration and comparison of data imputation for time series data: Com-

monly used methods for imputation in general (Section 2.2) and imputation

for water quality data (Section 3.1)

2. Survey and evaluation of algal bloom detection methods and models: Vari-

ables used in detection (Section 2.1.4), algal bloom detection using in-situ

data (Section 4.1) and satellite data (Section 5.1)

3. Investigation and assessment of model explainability for deep learning mod-

els (Section 4.1.2)

4. Analysis and review of multimodal learning in the context of algal bloom

detection (Section 5.2 and Section 5.1)

1.4 Hypotheses

The following hypotheses are constructed in the scope of this thesis:

1. It is hypothesised that missingness of water quality data is missing at ran-

dom; therefore, observed variables could be used to recover missing ones.

This is realised by creating a novel deep learning model for imputation in

partially observed water quality data.

2. It is hypothesised that using a context-based approach for labelling algal

blooms would result in more generalised models applicable for different lo-

cations.

This is implemented using a logarithmic polynomial function to label the

data and train a novel detection model to test its generalisability among

different locations.
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3. It is hypothesised that various modes of data could be used simultaneously

for detecting algal blooms and would result in better models compared to

unimodal detection models.

This is explored by gathering different modes of data such as satellite and

in-situ data, training a fusion model and comparing unimodal baselines with

the results.

1.5 Contributions

The contributions of this project include:

1. An imputation model for the four moorings of the Centre for Environment,

Fisheries and Aquaculture Science (CEFAS) with a self-attention compo-

nent.

2. A prediction model that consists of a transformer network and convolutional

components to predict the anomalous behaviour of phytoplankton from the

imputed data. This part of the work includes a flexible labelling method

for creating classes from the daily mean of observed dissolved oxygen data.

3. An explanation model for the importances of input features with relation

to the output variable for the previously created prediction model.

4. An additional prediction model that builds onto the second contribution

that uses satellite imagery data and convolutional architectures that aim to

improve prediction performance.

Each chapter of this thesis was partially published as a conference article:

• Chapter 3: Dagtekin, Onatkut, and Dethlefs, Nina. Imputation of Par-

tially Observed Water Quality Data Using Self-Attention LSTM. The 2022
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International Joint Conference on Neural Networks.

• Chapter 4: Dagtekin, Onatkut, and Dethlefs, Nina. Modelling Phyto-

plankton Behaviour in the North and Irish Sea with Transformer Networks.

Proceedings of the Northern Lights Deep Learning Workshop. 2022.

• Chapter 5: Dagtekin, Onatkut, and Dethlefs, Nina. Multimodal Ap-

proach to Early Detection of Harmful Algal Blooms. Workshop on Machine

Learning for Earth Observation: European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in Databases. 2022.

1.6 Outline

This thesis consists of four chapters. Chapter 2 includes related work for the

machine learning and deep learning models used for the task of data imputation

and outlier detection in environmental science. Chapter 3 includes information

about recent approaches to data imputation using machine learning and deep

learning and introduces a novel architecture that lowers the imputation error for

the used dataset. Chapter 4 includes information about the recent approaches

to algal bloom detection that use different modes of data and introduces a novel

model for detecting anomalous behaviour of phytoplankton 1 to 7 days before it

occurs. This chapter also includes explanation models for the prediction model

to observe how input variables affect the output of the model. Chapter 5 includes

information and experiments about introducing multimodality to the problem of

algal bloom detection using various types of satellite data. This chapter also

introduces the use of coordinated representations to replace data modalities for

the problem of HAB detection.



Chapter 2

Literature Review

Algal blooms have been historically documented for centuries, with the phe-

nomenon receiving attention in the 1970s with the first conference on the topic

(Anderson et al., 2002; Smith and Daniels, 2018; Shumway et al., 2018). Algal

blooms can be naturally occurring and keep natural cycles in balance. The issue

arises when certain algal species that produce toxins increase their population

in a habitat resulting in the water body becoming inhabitable. These are called

HABs.

This chapter includes essential information about how the phenomena of algal

blooms occur, their effects and changes in how and where they may happen.

The next part includes information about monitoring this event, starting from

issues about monitoring and the nature of the problem in terms of observed data.

Information on how to use machine learning and deep learning is also provided,

such as the models that could be used for detecting algal blooms.

8



2.1. ALGAL BLOOMS 9

2.1 Algal Blooms

Algae are key species consisting of photosynthetic eukaryotes in a marine ecosys-

tem for which they serve as the base of the food chain. They are the primary

producers of oxygen in the world and provide aquatic environments sustenance

through photosynthesis using their chloroplast, which also gives them their colour.

The colour of the algae depends on the level they thrive in the water body such

that algae that live on the surface are green coloured as they can easily access

light, whereas the red coloured ones are deeper in the water body as less sunlight

reaches the deeper parts and red coloured pigments aid them to capture more

sunlight. They are useful for degrading plastic, thus reducing pollution (Chia

et al., 2020).

HABs occur when the population of phytoplankton increases rapidly due to

nutrient overload, causing environmental changes such as sunlight blocking and

oxygen depletion (Kahru and Mitchell, 2008). These changes affect the ecosystem

and public health since the consumption of aquatic life affected by these blooms

poses a health risk (Falconer et al., 1994). HABs may occur due to eutrophication

which is the increase of nutrients such as phosphorus and nitrogen in the water

(Harper, 1992). The sources for these chemicals are pollutants such as cleaning

products and fertilisers from agricultural activities. The colour of the bloom

depends on the species in the water body; the reddish blooms occur in the ocean

caused by dinoflagellates, and the green ones are caused by cyanobacteria. Figure

2.1 visualises the different types of algal blooms. Figure 2.3 visualises the process

of algal blooms and eutrophication. Blooms are initialised by the entry of an

extreme amount of nutrients into a water body, which facilitates algae growth,

covering the surface. This blocks sunlight from reaching lower layers disrupting

the photosynthetic activities of plants in those layers. This disruption results
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Figure 2.1: Left: An occurrence of a green coloured algal bloom (Zachary, 2017)
Right: An occurrence of a red coloured algal bloom (Chau, 2022)

in a lowered concentration of oxygen which causes the death of heterotrophic

species and an increase in the decomposer population. The increasing decomposer

population further reduces the dissolved oxygen concentration, disrupting the

habitat. The effects are propagated to the upper layers when the nutrient flow

stops, and the algae start to die off and are decomposed.

This phenomenon can be frequently observed and has been studied in pop-

ulated and highly industrialised areas of the world, as seen in Figure 2.2. The

studies focus on Asia and the U.S., with the Mediterranean and the Baltic Sea

being the second most studied. The North Sea and the Southern Hemisphere

(with the exception of certain regions around Antarctica) are less studied. The

latter could be explained by the economic status of countries and the availability

to make complementary solutions to satellite imagery available.

2.1.1 Impact

Ecological Impact The increasing population of algae covering the water sur-

face has an impact on the aquatic life in the lower layers. With no sunlight to

perform photosynthesis, the food cycle gets disrupted, resulting in the deaths of
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Figure 2.2: Regions where HABs were studied using satellite imagery Sebastiá-
Frasquet et al. (2020). The focus is on The Great Lakes, Gulf of Florida in North
America, The Mediterranean and The Baltic Sea in Europe, The Arabian Sea,
The Bay of Bengal, The South China Sea, The East China Sea and Lake Taihu
in Asia. The studies focus on mostly the northern hemisphere.
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Figure 2.3: Flowchart of Eutrophication Process

species and disruption of the food web (Shumway et al., 2018). Severe effects of

HABs include the creation of hypoxic zones that cannot support life. HABs cause

various problems in aquatic life, such as reduced embryo development, damage

to organs such as the liver and kidneys and inhibited growth (Shumway et al.,

2018).

Normally, the transfer of toxins was through species of molluscs (oysters and

clams); however, the dynamics have altered to include species in the food chain

(Shumway et al., 2018). Seabirds consume the affected organisms, which may

make them susceptible to environmental conditions and/or changes in their habi-

tats and might cause problems during migrations Shumway et al. (2018).

Economic Impact These include drinking water treatment costs and an in-

crease in the cost of preservation of biodiversity (Dodds et al., 2009). Regions

where these blooms are frequent see lower sales in sectors related to tourism and

lower income from fisheries (Bechard, 2020; Karlson et al., 2021). A recent bloom

in 2019 in Norway, Tromsø and Nordland cost >100 million $ in damages to fish-

eries (Karlson et al., 2021). In 2009, a reduction in touristic and recreational
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activities was observed in Mocrocks Beach and Long Beach in Washington, US,

due to algal blooms, which resulted in an estimated loss of 10.6 million $ (Dyson

and Huppert, 2010). Occurrences of blooms can lead to the extension of mon-

itoring programmes to include other species such as squids, octopus and fish,

increasing the cost (Shumway et al., 2018).

Public Health Impact The toxicity depends on the species of algae present,

some species are noted in Table 2.1. The toxins released by some species are

many times more potent than cyanide and cobra toxin, showing the harm algal

blooms are capable of. The bioaccumulation of these toxins causes an increase in

concentration and causes harm to livestock, pets or the general population. The

accumulated toxins cause various types of shellfish poisoning and sometimes lead

to fatalities (Zingone and Enevoldsen, 2000).

The occurrence of the event also draws public attention in some cases, result-

ing in changes in public opinion. The warning given in north-west Ohio about

the tap water being hazardous after an algal bloom affected the tap water us-

age in the general population up to a year (Ames et al., 2019). Annually 60.000

cases are reported due to phycotoxin-induced intoxications (Gerssen et al., 2010).

Although the percentage of toxic species is very low, benthic species can act as

vectors for toxins (Shumway et al., 2018).

2.1.2 Factors

The mechanisms of algal blooms are inherently complex. Shumway et al. (2018)

categorise these factors into two:

1. Rate of changes in the introduction of species to new areas: Natural means;

river currents or ship transportation activities; ballast water
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Toxin Source Toxicity(fold)
Cyanide 1
Muscarin Amanita muscaria, fungus 9
Okadaic acid Algae, dinoflagellates (e.g. Dinophysis spp.) 50
Domoic acid Algae, diatoms (Pseudo-nitzschia spp.) 80
Prymnesine Algae, haptophytes (e.g. Prymnesium parvum) 350
Cobra toxin Cobra snake 500

Saxitoxin Algae, dinoflagellates (e.g. Alexandrium spp.,
Pyrodinium bahamense) 1 100

Ciguatoxin Algae, dinoflagellates (Gambierdiscus toxicus) 22 000
Tetanus toxin Bacterium (Clostridium tetanii) 1 000 000

Table 2.1: Toxicity of different compounds to mice Zingone and Enevoldsen (2000)

2. Rate of changes in current conditions to a more suitable one that aids

the reproduction of species: Nutrient flow from external sources such as;

industrial activities or storms

An algal bloom occurs when a species and nutrients “get there”, “are there”, and

“stay there” (Shumway et al., 2018). Both of these factors must be sustained

and satisfied to an extent for a bloom to occur. Human activities aid in the

occurrence of the phenomenon by supporting (2), but it may not be the sole

cause for these blooms to occur (Smayda, 2002). Non-anthropogenic examples of

(2) include species interactions, nutrient flow in the ecosystem, and temperature

changes (Sunda et al., 2006; Wells et al., 2015).

Getting There The main cause of the introduction of species to new areas

is through the ballast water of ships (Hallegraeff, 2010). Harmful algae have

been previously detected on ballast water discharge locations (Hallegraeff, 1998).

Due to these discharges, previously rare algal species can reproduce and cause

blooms (Rigby and Hallegraeff, 1996). The global transport patterns also show

the spread of species, some of which are toxic, through different marine habitats

by identifying the chemical and physical conditions and the algae and bacteria
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populations of ballast tanks from various ships (Burkholder et al., 2007b).

The increasing pollution is another factor for algal blooms. With the increas-

ing population, new solutions were needed for agricultural practices, which came

with more efficient fertilisers that contain nitrogen and phosphorus (Smil, 2004).

This also brought increasing run-off of these elements to water bodies affecting

the increased frequency of HABs. Animal husbandry is another cause of these

blooms, as the waste produced by this process is high in nitrogen and phosphorus

(Burkholder et al., 2007a; Mallin et al., 2015).

Being There The amount of nitrogen and/or phosphorus can cause an in-

creasing number of blooms, with discharge increasing with population density

(Shumway et al., 2018). Regions like the Baltic Sea are seeing more frequent

blooms due to discharge from anthropogenic activities (Olenina et al., 2010).

This is also observed in Sebastiá-Frasquet et al. (2020), with the Baltic Sea being

studied frequently. The area covered by these blooms is also increasing due to

this discharge from the increased use of fertilisers. In China, fertiliser use has

increased by three times in the last 30 years, resulting in an increased frequency

of algal blooms on the region’s coasts (Ti and Yan, 2013).

In an undisrupted water body, algal succession occurs in a cycle as conditions

change, with one species of algae dominating in each phase (Kelly and Linda,

1996). The increasing amount of nutrients will disrupt this cycle and cause algal

blooms.

The existence of nutrient overload is not sufficient for algal blooms. The

nutrient ratio of nitrogen:phosphorus is also a limiting factor (Shumway et al.,

2018). Different algal species may be limited by different elements. Silicate is an

important element for blooming as beneficial phytoplankton use it in their cell

walls, but others do not (Shumway et al., 2018). Unlike nitrogen and phosphorus,
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silicate is not present in sewage; therefore, ratios of nitrogen and phosphorus with

silicate have increased due to the increase in anthropogenic activities (Shumway

et al., 2018).

Staying There A species holding ground in a habitat depends on physical

factors. These factors affect both the population growth and nutrient density.

Events such as upwellings where cold water at the bottom of a water body rises

to the top, combined with nutrient overload may increase the occurrence of algal

blooms (Shumway et al., 2018).

In off-shore environments, small-scale turbulence and stratification facilitate

the development of these blooms (Shumway et al., 2018). Stratification causes

cells to populate a certain layer in the water body, receiving light from above and

nutrients from below.

Anthropogenic activities affect the conditions when and where these blooms

occur. Dam constructions affect river flow and discharge and prevent the move-

ment of organisms (Vörösmarty et al., 2010; Shumway et al., 2018). Construction

of these dams affects regions such that the species are replaced by different ones

due to water flow/salinity. One such case is the replacement of large diatoms

with flagellates and cyanobacteria in the San Francisco Bay Delta over a span of

10 years (Lehman et al., 2005; Glibert and Burkholder, 2011).

2.1.3 Effect of Climate Change on Algal Blooms

Climate change will alter many environmental conditions, such as temperature,

nutrients and light. This affects the species and/or nutrients to “be there” or “get

there” (Shumway et al., 2018).With the increasing temperatures due to climate

change, the frequency of algal blooms is expected to increase and be seen in new

regions (Wells et al., 2015). Figure 2.4 visualises the main factors. It is speculated
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that an increase in sea surface temperature will trigger more blooms in the future

(Sarkar, 2018).

The ice melt caused by climate change will affect stratification, nutrients,

available light and grazing, affecting the occurrence of algal blooms (Boyd and

Doney, 2003). The increasing temperature affects natural cycles and cell capabil-

ity depending on species’ optima (Shumway et al., 2018). The warming increases

the toxicity of harmful algal species combined with the dissolved carbon dioxide

in the water (Shumway et al., 2018; Davis et al., 2009; Fu et al., 2012).

Global warming will also affect the carbon cycle resulting in a pH increase

in the oceans. Cyanobacteria thrive in acidic environments, which may increase

blooms related to these species and dominate interspecies competition (O’Neil

et al., 2012). Sensitive aquatic life might be endangered by the pH fluctuations

during algal blooms (Kelly and Linda, 1996).

The rainfall patterns may alter due to climate change resulting in droughts

or increasing extreme events such as storms and altering the water properties

such as flow and nutrients (Shumway et al., 2018). This may result in a differing

frequency of algal blooms.

2.1.4 Detection Methods

Two different approaches have been applied for HAB detection: using satellite

data, analysed in Section 5.1, or in-situ data, analysed in Section 4.1. HAB

detection using artificial intelligence can be done by predicting:

• chlorophyll-a (chl-a)

• dissolved oxygen

• toxins

• cell density
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Figure 2.4: Climate change impact on algal blooms (Lin, 2017). Adapted from
(Paerl and Huisman, 2008)

All of these variables initially increase with higher photosynthetic activity and/or

cell reproduction. The chl-a concentration increases during an algal bloom due

to increased photosynthetic activity. In contrast, the oxygen concentration in-

creases initially with high photosynthetic activity and drops afterwards due to

the increasing decomposer population as the algae start to die off. Bacteria use

the dissolved oxygen in the water to decompose dead organisms, creating CO2 in

the process (Shukla et al., 2008). The chl-a concentration changes from species
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to species and during the day (Kelly and Linda, 1996). Similarly, oxygen concen-

tration increases during the day but decreases at night as photosynthetic activity

halts as no sunlight is received. The algae concentration may also differ through

a water body, affecting the quality of in-situ chl-a and cell density measurements

(Kelly and Linda, 1996). This can be addressed by frequent sampling and/or

sampling various locations in a water body if possible. It should be noted that

the behaviour of inland waters and seawater differ as seawater bodies can act like

large reservoirs, so they are less susceptible to change. The majority of the works

that use remote sensing data use chl-a as the target variable (Khan et al., 2021).

Algal blooms can be detected in various ways. Statistical methods could be

used for detection. Shutler et al. (2012) use the approach of McKenna et al.

(2000) with SeaWiFS and MODIS for the north-west European shelf near Shet-

land Isles, Scotland, comparing the results with in-situ data. A similar approach

is used in Shutler et al. (2010) to detect blooms in the north-east Atlantic with

SeaWiFS. Shukla et al. (2008) apply non-linear models to detect algal blooms

by predicting the density of the algal population. Binding et al. (2018) use re-

gression models and a rule-based approach to analyse past algal blooms in Lake

Winnipeg, Canada. Autoregressive models such as Autoregressive Integrated

Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Aver-

age (SARIMA) were widely used for algal bloom detection (Chen et al., 2015b;

Qin et al., 2017; Al Shehhi and Kaya, 2021; Kim, 2016). These models have

decreasing applicability as they cannot model non-linearities (Cruz et al., 2021).

Machine learning and deep learning methods could be used for detection as

well. Common methods used include Recurrent Neural Network (RNN), Artificial

Neural Network (ANN) and other classic machine learning methods like clustering

and Support Vector Machine (SVM) or a combination of these methods (Huang

et al., 2015; Kang et al., 2010).
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2.2 Data Imputation

With the increasing availability of data collection, data ubiquity is observed in

many domains. This deluge can cause a decreasing data quality with missing

entries which must be filled before further analysis. The process of filling up

missing data is defined as imputation. The first efforts of imputation were made

by Allan and Wishart (1930) and Yates (1933), with the process formally defined

by Dempster et al. (1977) (Van Buuren, 2018). Addressing the problem of missing

data was revived by Rubin (1978) with multiple imputation, which still serves as

a baseline today (Van Buuren, 2018).

There are different types of missing data; Missing Completely at Random

(MCAR), Missing at Random (MAR) and Missing Not at Random (MNAR).

MCAR occurs when missingness does not depend on any variables, such as when

the data collection process is handled improperly, leading to low data quality.

MAR occurs when missingness depends on the observed variables, such as sensors

on a measuring device might shut down at certain times during the day when

measurements are known to be certain values to conserve energy. MNAR occurs

when missingness depends on both observed and unobserved variables such that

sensors might not measure if a concentration of a compound is too high or too

low. Formally, the missing data types can be defined as Van Buuren (2018):

MCAR : Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|ψ)

MAR : Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|Yobs, ψ)

MNAR : Pr(R = 0|Yobs, Ymis, ψ)

(2.1)

where R is the missing data matrix, ψ is the parameters of the imputation model,

and Y is the data matrix.

The occurrence of MAR indicates that the missing variables in a dataset can
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be derived from known ones by modelling the relationship between the missing

and present variables. The only definite way of deciding on the type of missing-

ness is to obtain the missing data, which is impossible (Little and Rubin, 2019).

Due to the mechanism, it is impossible to directly test for MAR, but Little’s

Test for MCAR shows partial insight into the type of missingness of the data

(Van Buuren, 2018). The test compares the mean vector and covariance matrix

of cases of complete data and cases with missing data to test their identicality

(Little, 1988). However, such tests are not widely used and are not practical as

some part of the data might be missing systematically (Van Buuren, 2018; Jaeger,

2006; Enders, 2010). There is no such test for the distinction between MAR and

MNAR (Van Buuren, 2018). In the context of water quality, the statistical meth-

ods show that the conditions of MAR are satisfied such that the potassium (K)

could be imputed using the sodium (Na) values due to correlation (Güler et al.,

2002).

The model parameters for imputation can be learned by randomly omitting

parts of complete samples and modelling the relationship between missing and

known variables per sample. After the imputation process, predictions about

variables can be made. Tasks include outlier detection in cycles and early warning

systems.

According to Rubin (1978), there are two challenges in data imputation:

• Imputing a value will never be absolutely correct. If it were, then that value

would not have been missing.

• To reasonably impute a value, you need to create a model that maps missing

data to observed data.

Therefore, a model needs to be generalisable to overcome these challenges. In

addition to generalisability, the models need to be explainable to convey the
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meaning of the data to other researchers (Rubin, 1978).

Deep learning and machine learning methods have been used extensively for

imputation. Zhang et al. (2019a) use k-Nearest Neighbours (k-NN) and linear

regression for imputation. Choudhury and Kosorok (2020) apply a modified k-NN

that uses mutual information to the missing data problem while taking the labels

of the samples into account. Yilmaz and Aydin (2019) use k-NN imputation for

simulated data. Santos et al. (2020) use k-NN with a modified distance metric

for heterogeneous data. The main disadvantage of k-NN is the computation time

and memory requirement for larger datasets, the issue of incorrect predictions

for imbalanced data and the difficulty of hyperparameter choices. The intuitive

approach and non-parametric approach make it suitable for small datasets. Linear

regression is not suitable in cases where data has many outliers and is non-linear.

Variations of Singular Value Decomposition have been used for imputation

(Troyanskaya et al., 2001; Mazumder et al., 2010; Cai et al., 2010). Shu et al.

(2014) and Papadimitriou et al. (2013) apply Principal Component Analysis based

approaches for data imputation. Principal Component Analysis is compatible

with linear data and when the covariance of the dataset is important. Caillault

et al. (2020) implement Dynamic Time Warping (DTW) to impute missing data

in various datasets. DTW is computationally intensive for long sequences. Spatio-

temporal approaches have been adopted for imputation, where data is collected

for tasks such as traffic tracking and video surveillance. Yi et al. (2016) enable

multi-view learning in the temporal and spatial domain in global and local views

for data imputation enabling the model to use various information to impute

the data. Liu et al. (2019b) impute data using a non-autoregressive approach

with a divide and conquer approach, imputing data based on past values and the

predicted future values, which removes the compounding error of autoregressive

models.
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Folguera et al. (2015) use Self-Organising Maps (SOMs) for imputing missing

variables. SOMs enable to visualise clusters in the data, increasing interpretabil-

ity. Mulia et al. (2015) implement an ANN with a Genetic algorithm for imputa-

tion, enabling the learning of non-linearities in the data. Auto-encoders have been

extensively applied for the task of data imputation in several domains (Boquet

et al., 2019; Beaulieu-Jones et al., 2017; Tran et al., 2017). Auto-encoders can re-

duce dimensionality non-linearly with higher generalisation, unlike methods such

as Principal Component Analysis. Bansal et al. (2021) apply kernel regression,

convolutions, and multi-head attention for data imputation. Generative Adver-

sarial Network (GAN) architectures have been adopted for data imputation (Yoon

et al., 2018; Lee et al., 2019; Luo et al., 2018). However, GANs have problems

such as; non-convergence where parameters oscillate and mode collapse where

the generator overfits to a subset of the data. Cao et al. (2018) use recurrent

components for imputation and assume the missing values belong to the RNN

graph. Using RNN enables the modelling of temporal properties. The trans-

former architecture introduced by Vaswani et al. (2017) has also been utilised

for imputation (Sucholutsky et al., 2019). The main advantage of transformers

over RNN models is that during the training phase, the transformer does not

need to unfold the whole sequence and process it while reducing training time.

All methods mentioned in this part are deep learning methods which come with

the disadvantage that they require large amounts of training data and GPUs to

train rapidly and efficiently. The majority of deep learning models contain a high

number of parameters, making them unexplainable. Attention models (Section

2.5.4) and explainability models (Section 4.1.2) attempt to summarise models in

various ways to alleviate this issue.
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2.3 Anomaly Detection

Anomaly detection is defined as the identification of uncommon events that devi-

ate from the dataset’s normal behaviour. An example is credit card fraud, where

a stolen credit card can be blocked by identifying anomalous transactions that

deviate from the distribution. Other tasks include intrusion detection, air quality

etc. (Buczak and Guven, 2015; Chen et al., 2017). Commonly used methods for

anomaly detection include GAN, Variational Autoencoder (VAE), distance-based

models, and clustering-based models (Chalapathy and Chawla, 2019).

There are three different types of anomalies Mehrotra et al. (2017):

• Point anomaly: This anomaly is caused by deviation from previously known

data points, as in the example of credit card fraud

• Contextual anomaly: Data points can be considered anomalous given the

context. Power consumption in residential areas might be lower at night

and higher after work hours. Given the context of time, it might be deemed

anomalous when power consumption spikes in the middle of the night.

• Discords or collective anomalies: This type of anomaly occurs when a re-

gion of a time series is entirely different from the rest, and the irregularity is

encountered multiple times over observations. This is encountered in medi-

cal data where irregularities during monitoring might indicate an illness or

disease.

Point anomalies can occur in any dataset as they are independent, collective

anomalies require relationships between data points such as time series, and con-

textual anomalies depend on the contextual information in the data (Chandola

et al., 2009).
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Missing data can be considered a contextual anomaly as the observations

might depend on unseen conditions during data collection. Photosynthetically

Active Radiation (PAR) depends on sunlight hours such that after no light is

received, the observations might include missing data for the PAR variable.

Algal blooms rarely occur, making them anomalies. Due to the nature of

the event, they can be both contextual anomalies depending on the monitored

variables or collective anomalies, as during the incident, spikes can be observed

for certain variables, which are outlined in Section 2.1.4.

Anomaly Detection in Environmental Science

Many domains use deep learning to detect anomalies ranging from cybersecurity

to medicine (Chalapathy and Chawla, 2019). Environmental science utilises many

methods for anomaly detection.

Toxic metals like mercury, arsenic and lead might be present in water. These

pollutants must be tracked to ensure public health and safety. ANNs have been

used to predict toxic metals in rivers (Singha et al., 2020).

Agricultural activities must be monitored closely to ensure that the finest

products are obtained with the best practices, and any disruptions must be de-

tected. Examples include the detection of plant diseases and fruit grading using

Convolutional Neural Networks (CNNs) (Sladojevic et al., 2016; Ismail and Ma-

lik, 2021).

Air quality monitoring and detection of abnormalities are crucial for public

health and transportation. Tong et al. (2019) use bidirectional Long-Short Term

Memory (LSTM) networks to track 2.5 particulate matter. Effects of climate

change can also be observed by detecting anomalous zones in the ozone (Harrou

et al., 2018).
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2.4 Machine Learning

Machine learning is the process of developing software that can identify patterns

in data using heuristics and apply the learned patterns to future data to make

predictions without the use of explicit programming (Alpaydin, 2020). The learn-

ing process can be divided into two: training (learning) and testing (inference).

During the training phase, the model minimises error according to an objective

function under a number of constraints. During the testing phase, the model is

given previously unseen data, and its generalisability is tested. Depending on the

task, different learning paradigms are applied.

Supervised Learning In this scenario, the labels for the samples are known,

and the model creates connections between the data X and the labels Y un-

der certain assumptions (Alpaydin, 2020). The tasks can be divided into two

categories: regression and classification (Alpaydin, 2020). Classification is the la-

belling of samples into different pre-determined categories, and regression is the

prediction of continuous variables (Goodfellow et al., 2016). The types of classi-

fication include multiclass classification, where the possible number of classes is

n > 2 and multilabel classification, where a sample can be assigned n > 1 labels.

Unsupervised Learning In this scenario, the labels for the samples are not

known, and the model generates labels from the data under certain assumptions.

The most common approach for unsupervised learning is clustering, where a

model classifies samples by identifying common features (Russell and Norvig,

2002).

Semi-supervised Learning This type of learning is between supervised and

unsupervised learning, as the learning is done with partially labelled data. The
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Figure 2.5: Visualisation of SVM. The support vectors are illustrated with dashed
lines and the relating sample with double circles.

unlabelled data is tagged using a learning model, and further training is done

with a complete dataset. With the deluge of unstructured data for real-world

tasks, this type of learning is becoming more common (Goodfellow et al., 2016).

Reinforcement Learning In this scenario, the learning is done using an agent

and its interactions with a dynamic environment. During an interaction, the

agent receives a reward or punishment, moving closer to a state where it learns

to perform the specific task (Russell and Norvig, 2002).

2.4.1 Support Vector Machine

SVM, developed by Vapnik (1963), is a linear method that aims to minimise

the objective function in Equation 2.2 using a number of support vectors on

supporting hyperplanes which maximises the margin between classes where the

optimal margin is the inverse of the weight vector w.

E =
N∑

i=1
max(0, 1− yif(xi)− ei) + 1

2

d∑
j=1

w2
j + C

N∑
i=1

ei (2.2)

Alternatively, the objective function can also be defined in Dual Lagrangian form
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as in Equation 2.3.

L =
∑

i

αi −
1
2

∑
i,j

αiαjyiyjxixj (2.3)

The first term in the equation is the hinge loss. The second term of the equation

is the margin between the decision boundary and the support vectors. The last

term, ei, is the slack variable which gives the model the ability to make slight

misclassifications enabling a “soft” margin SVM. The coefficient C is the regular-

isation parameter for the softness of the margins. Hinge loss is undifferentiable

at point x = 1; as a result, methods like stochastic gradient descent become

unusable. Therefore, this optimisation problem can be solved by quadratic pro-

gramming. SVMs can be trained with small amounts of data and will always

reach a global optimal given that the dataset is linearly separable. An SVM is

visualised in Figure 2.5.

Kernel Trick

The vanilla SVM is only able to classify linearly separable data as the mapping of

classes is; wTx−c. An extension of SVM can separate non-linearly separable data

using the kernel trick developed by (Boser et al., 1992). The kernel trick implicitly

transforms the space data into a new space in which it is linearly separable.

The weights in SVM take the form of wjxj, which makes the classification

function equal to f(x′) = (∑N
j=1 αjwjxj)Tx′. In the new space ω, the exact

transformations do not need to be calculated for each point, as only ω(xi)Tω(x′)

is needed, i.e., the dot products of these two points in the transformed space,

which is supplied by the kernel that satisfies Mercer’s Theorem. Commonly used

kernels are polynomial, (1 + xT
i x

′)d, and Gaussian, e−γ(xi−x′)2 .
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SVMs have been used for several tasks like facial expression classification, text

classification and sound classification (Dino and Abdulrazzaq, 2019; Colas and

Brazdil, 2006; Uzkent et al., 2012). SVMs are frequently used in algal bloom

detection (Li et al., 2014; Vilas et al., 2014; Yang et al., 2020).

2.4.2 Random Forest

Random Forest (RF) is an ensemble of decision trees that perform their task

via voting, with each tree in this model being slightly different from another

(Breiman, 2001). In classification, the voting process is done by mode, whereas

in regression, it is done by mean voting. RFs create different decision trees by

bagging the data, i.e. creating small subsets of the data with or without repeating

the previous data points and using this subset to train a tree (Breiman, 1996).

While creating the splits for the trees, the algorithm can also take a subset of

features into account, further diversifying the trees in the ensemble (Ho, 1998).

This process is done numerous times, creating n trees. The main aim is to combat

overfitting caused by a single decision tree. The tree nodes are split based on Gini

impurity (Equation 2.4) or information gain (Equation 2.5).

IG = 1−
C∑

i=1
(p2

i ) (2.4)

IE =
C∑

i=1
(−pi ∗ log2)(pi)

IG = IE − IE|X

(2.5)

RF is less prone to overfitting, given the diversity of the individual decision

trees. These models are interpretable in terms of input-output importances. It

is able to show which feature is the most important one for making predictions.

The inference procedure of an RF is visualised in Figure 2.6.
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Figure 2.6: Visualisation of RF

RFs have been used for various tasks, such as land cover classification and traf-

fic accident detection (Rodriguez-Galiano et al., 2012; Dogru and Subasi, 2018).

It has also been used for algal bloom detection (Yang et al., 2020; Derot et al.,

2020; Yajima and Derot, 2018).

2.4.3 Isolation Forest

A well-known method of detecting outliers is the Isolation Forest (IF) method

(Liu et al., 2008). The model works based on two properties:

• the anomaly is the minority class

• the anomalies have different attributes than normal instances

The notion of isolation comes from the idea that in a tree, anomalies usually

create shorter path lengths as they are different from the majority of the data.

Using many trees results in different trees targeting different anomalies (Liu et al.,

2008). It should be noted that IF is an unsupervised model.
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In cases where anomalies are close to normal instances, normal trees create

long path lengths concealing the anomaly, which also leads to incorrect classifi-

cation of the normal data points. With the use of subsampling, the probability

of concealment is reduced as the tree only uses a fraction of the data, therefore

creating a shorter path length for the anomaly.

This method has been used for network anomaly detection, credit card fraud

and fault detection on electricity generators (Tao et al., 2018; John and Naaz,

2019; Hara et al., 2020). IFs have been used for algal bloom detection (Mehrabian

and Pahlevan, 2019; Almuhtaram et al., 2021).

2.4.4 XGBoost

Developed by Chen and Guestrin (2016), eXtreme Gradient Boosting (XGBoost)

is a highly scalable tree boosting model using an ensemble of trees. The model

builds its work upon gradient tree boosting, unlike ensemble models such as RF.

Ensemble trees can be defined as (Chen and Guestrin, 2016):

yi =
K∑

k=1
fk(xi), fk ∈ F (2.6)

where F = f(x) = wq(x)(q : Rm → T,w ∈ RT ) is the possible space of regression

trees. q is the structure of each tree and produces an output from the inputs. T

is the number of leaves in the tree. fk is a function of the tree structure q and

leaf weights w. Each tree is trained such that tree t is built greedily on the errors

of the previous trees. Unlike decision trees, the leaves do not contain the class

label from that tree but continuous values (Chen and Guestrin, 2016). To obtain

a final prediction, the values in the leaves are summed. The regularised objective
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function for XGBoost is as follows (Chen and Guestrin, 2016):

L =
∑

i

l(ŷi, yi) +
∑

i

Ω(fk)

Ω(fk) = αT + 1
2λ||w||

2
(2.7)

where l(ŷi, yi) is the loss function for the prediction and target value, Ω(fk) is the

regularisation component to avoid overfitting, and T is the number of leaves in

each tree.

The tree models are trained in an additive manner using gradient tree boost-

ing. For each tree prediction, yt
i , the following objective is minimised:

Lt =
∑

i

l(ŷt−1, yi + ft(xi)) +
∑

i

Ω(ft) (2.8)

where l(ŷi
t−1, yi) is the loss function for the prediction and target value for tree

t. The optimisation is done with second-order approximation, resulting in the

following equations for optimum weight per leaf, wj, and minimum loss per tree,

Lt(q):

wj = −
∑

i∈Ij
gi∑

i∈Ij
+λ

Lt(q) = −1
2

T∑
j=1

(∑
i∈Ij

gi)2∑
i∈Ij

hi + λ
+ αT

(2.9)

where Ij is the instance set of leaf j. Unlike decision trees, the splits are not

based on Gini impurity or information gain but a different equation:

Lsplit = 1
2[ (∑

i∈IL
gi)2∑

i∈IL
hi + λ

+
∑

i∈IR
gi)2∑

i∈IR
hi + λ

− (∑
i∈I gi)2∑

i∈I hi + λ
]− α (2.10)

where IL and IR are the instance set of left and right split, respectively, and

I = IL ∪ IR. Two additional regularisation methods are used during training;

shrinkage and column subsampling. Shrinkage scales newly added weights by a
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constant factor to facilitate learning by reducing the importance of each existing

tree and the future trees to improve the performance (Chen and Guestrin, 2016).

Column subsampling selects a subsample of features, same as in RFs, reducing

the training duration.

With its parallelisability and fast optimisation, XGBoost is being used in var-

ious tasks, such as; intrusion detection, accident detection and leakage detection

in water networks (Jiang et al., 2020; Parsa et al., 2020; Wu et al., 2022). XG-

Boost was utilised for algal bloom detection, both stand-alone and in conjunction

with other models (Shan et al., 2022; Ghatkar et al., 2019; Izadi et al., 2021).

2.5 Deep Learning

Deep learning is a sub-area of machine learning where stacked neurons that can

have different characteristics are interlinked to solve complex problems. The in-

spiration comes from the human nervous system, where neurons in a network

“fire” when sensible input is received. At each step along the way, the received

input becomes more and more abstract, opening up the possibility to learn repre-

sentations and extract features at different depths, removing the need for a feature

extraction step in a workflow (Najafabadi et al., 2015). The model’s parameters

are adjusted using optimisation methods such as stochastic gradient descent and

backpropagation, where the weights and biases of the model are updated starting

from the final layer to the initial layer (Bottou, 2010).

A neural network may contain a large number of parameters. Therefore, using

slower components like CPUs might not be feasible. The introduction of GPUs to

training neural networks by Steinkraus et al. (2005) and Chellapilla et al. (2006)

created new possibilities for the rapid development of neural networks, resulting

in increased popularity with general process GPUs being used for training neural
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networks. Since then, deep learning has been used for various tasks in domains

such as Natural Language Processing (NLP), computer vision, environmental

science and finance (Mayr et al., 2016; Heaton et al., 2017; Pham et al., 2018;

Jabreel and Moreno, 2019).

In contrast to machine learning, deep learning models require huge samples of

data to make sense of it, as the models have a large number of parameters. With

the increasing capabilities of sensor technology, an increase in the use of deep

learning can be observed in environmental science with deep learning methods

gaining traction in the agricultural and water quality domain (Kamilaris and

Prenafeta-Boldú, 2018; Chen et al., 2020).

2.5.1 Multilayer Perceptron

Multilayer Perceptron (MLP)s, synonymously called ANNs or deep feed-forward

networks, consist of at least three layers of nodes; an input layer, hidden layer

and output layer, each consisting of neurons and feed data from one layer to

the next. Each neuron multiplies the input received from the previous layer by

weights and adds them together with a bias term. The resulting value is passed

to an activation function, resulting in a non-linear output, and fed as input to the

next layer. Common activation functions include ReLU (Nair and Hinton, 2010),

Softmax (Bridle, 1989), Tanh and Sigmoid (Han and Moraga, 1995). Additions

for regularisations can also be made with components such as batch normalisation

and dropout layers. The structure of an MLP is visualised in Figure 2.7.

MLPs have been utilised for many tasks such as stock market prediction,

weather forecasting and water quality prediction (Narvekar and Fargose, 2015;

Billah et al., 2016; Sarkar and Pandey, 2015). MLPs have been used for algal

bloom detection in various regions (Luo et al., 2017; Shamshirband et al., 2019;
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Muttil and Chau, 2006).

x1

x2

x3

x4

y1

y2

Figure 2.7: MLP with two hidden layers

2.5.2 Convolutional Neural Networks

MLPs are suitable for data where each datapoint is independent. Data formats

such as images are not suitable to model with MLPs, as images contain spatial

information. CNNs solve this issue by including the information from the vicinity

of the datapoint in the modelling procedure using 2D kernels. The components

of CNNs usually include a number of convolutional layers of different sizes, ac-

tivation functions and pooling to overcome the issue of overfitting and supply

translation invariance. Common architectures of CNNs include VGG, U-net and

Res-Net. Many of these architectures also make use of transpose convolution

layers, upsampling layers and skip connections.

The convolutional operation for images takes place on a 2D plane. 1D con-

volutions can also be used for data like time series. The only difference is that

the filter dimensionality is reduced. Figure 2.8 visualises the operation that takes

place in 2D convolution.
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CNNs are used in many tasks where image data is involved, such as object

detection, segmentation and tracking (Ren et al., 2015; Milletari et al., 2016; Son

et al., 2017). CNNs have been utilised for HAB detection, where satellite imagery

is used as the data source (Hill et al., 2020; Cao et al., 2022; Park et al., 2019;

Pyo et al., 2020).
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Figure 2.8: Sample convolution operation

2.5.3 Recurrent Neural Networks

ANNs cannot handle the modelling of data with temporal properties, as it as-

sumes prior outputs do not affect the current output. RNNs were introduced

to tackle this problem (Rumelhart et al., 1985). The backpropagation of RNNs

differ from ANNs such that each time step in the input is included sequentially

from end to start during weight updates, visualised in Figure 2.9 (Werbos, 1990).

This enables the model to remember past information, but it may cause issues

such as vanishing and exploding gradients that affect the model’s ability to learn

and generalise (Pascanu et al., 2013; Bengio et al., 1994).

To tackle the issues about the gradient, variations of RNNs were proposed;

LSTM (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU)

(Chung et al., 2014). Additions were made to the architectures with attention
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Figure 2.9: Backpropagation through time in RNN

components that focus on necessary parts of the input (Bahdanau et al., 2014;

Luong et al., 2015). The concept of gradient clipping was also introduced to

tackle this problem (Mikolov et al., 2012).

Unlike ANNs, RNNs can also be used for a variety of problems with various

mappings; one-to-one, one-to-many, many-to-one and many-to-many. One-to-one

relationships are where the sample is a single input and output, such as image

classification (Liu et al., 2017). ANNs are only able to model one-to-one relation-

ships. One-to-many tasks are where the sample is a single input, but the output

is a sequence. Tasks include image captioning and pose estimation (Lee et al.,

2018; Li and Chen, 2018). Many-to-one relationships where the input is made

up of multiple elements such as time series and the output is a single variable.

Examples include classifying a sequence from n different classes, such as tweet

classification or predicting a continuous value, such as stock value prediction (AL-

Rashdi and O’Keefe, 2019; Liu et al., 2018). In many-to-many relationships, both

the input and the output include varying number of elements. Machine transla-

tion is an example of a many-to-many relationship (Huang et al., 2018).
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Long Short Term Memory

Developed by Hochreiter and Schmidhuber (1997), LSTM addresses the problem

of extreme changes in the weights of cells in traditional recurrent neural networks.

The cell’s outputs and gate mechanisms enable it to model the recent context

rather than the last input only, which increases its predictive power. LSTMs

have been used for tasks such as flood prediction and stock prediction (Chen

et al., 2015a; Le et al., 2019). The structure of an LSTM cell is depicted in

Figure 2.10.

σ σ Tanh σ

× +

× ×
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c(t−1)
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c(t)
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Figure 2.10: Structure of an LSTM cell
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The outputs of the cell are as follows Hochreiter and Schmidhuber (1997):

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wiixt + bii +Whiht−1 + bhi)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2.11)

where ht is the hidden state, ct is the cell state at time t, and xt is the input

at time t. ht−1 is the hidden state at t − 1. it, ft, gt, ot are input, forget, cell,

and output gates. σ is the sigmoid function, and ⊙ is the element-wise product.

These gates control the flow of information through the cell, removing old or

incorporating new information. Miscellaneous additions were also made, such as

adding peephole connections where input, forget, and output gates are allowed

to incorporate information from the cell state (Gers et al., 2002).

The bidirectional LSTM is an advancement of the LSTM that captures infor-

mation both from the past and the future with a backward and a forward pass,

using a separate state for each, incorporating knowledge from both directions for

prediction (Schuster and Paliwal, 1997). The structure of a bidirectional LSTM

is visualised in Figure 2.11. The operations in bidirectional LSTMs are as follows:

ht
f = f(wf

h1xt + wf
h2 ∗ h

f
t−1 + bf

h)

ht
b = f(wb

h1xt + wb
h2 ∗ h

b
t+1 + bb

h)
(2.12)

The resulting values ht
f and ht

b at each time step are concatenated and forwarded

to other layers for prediction.
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Figure 2.11: Bidirectional LSTM

LSTMs have been used for tasks such as text classification and sentiment

analysis (Xu et al., 2017, 2019). They have been used for HAB detection (Cho

et al., 2018; Shin et al., 2020).

2.5.4 Attention Models

Attention-based learning aids a model in shifting its focus on a number of in-

puts while evaluating the current one. Attention components are frequently used

in encoder-decoder architectures, such as in (Sutskever et al., 2014). The use

of an encoder-decoder architecture pertains that the data dimensionality will be

reduced, and only relevant information will be used during the training and pre-

diction stages. Attention is divided into various types, such as local and global

attention (Luong et al., 2015), self-attention or intra-attention (Vaswani et al.,

2017). Global and local attention is used to explain the behaviour of a neural

network with respect to the relationship between input and output, whereas self-

attention is used to explain relationships between input elements.

Bahdanau Attention

This model adds the use of context vectors to the encoder-decoder architecture.

The ith element of the context vector focuses on the words surrounding the ith
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input. The conditional probability of the outputs can be denoted as follows

(Bahdanau et al., 2014):

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci) (2.13)

where si is the hidden state at time i, ci is the context vector. The context vectors

are dependent on a sequence of annotations (h1, ..., hTx) which contains informa-

tion about the dependencies between the inputs (Bahdanau et al., 2014). The

context vector is a weighted sum of the elements of these annotations (Bahdanau

et al., 2014). The weight is calculated by:

αij = exp(eij)∑Tx
k=1 exp(eik)

(2.14)

where eij is an alignment model, which shows how input i and output j are

related based on the output of the hidden state si−1 and the annotation hj. The

alignment model is learned similar to a feed-forward network (Bahdanau et al.,

2014). The connections between these variables result in generating the next step

of the decoder and, ultimately, the output of the next decoder state (Bahdanau

et al., 2014). The encoder uses a bidirectional RNN architecture to focus on the

future inputs and the past inputs by concatenating the forward and the backward

encoder hidden states (Bahdanau et al., 2014).

Luong Attention

This type of attention by Luong et al. (2015) introduces global and local attention

and different types of functions for the alignment model. There are three types
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of functions for the global attention:

score(ht, h̄s) =



hT
t h̄s dot

hT
t Wah̄s general

vT
a tanh(Wa[ht; h̄s]) concat

(2.15)

The variable-length alignment vector can be calculated as Luong et al. (2015):

at(s) = align(ht, h̄s) = exp(score(ht, h̄s))∑
s′ exp(score(ht, h̄s′))

(2.16)

The encoder for this model uses the hidden states at the top of the LSTM layer

instead of concatenating backward and forward layers like Bahdanau et al. (2014).

This model also avoids the recurrence applied by Bahdanau et al. (2014) and uses

more diverse functions.

The local attention mechanism focuses on a smaller subset than global atten-

tion to diminish the effects of distance. The process is as follows (Luong et al.,

2015):

• Generate aligned position pt for time t.

• Derive context vector ct by applying weighted average on the set of source

hidden states with a window size of D, i.e., [pt−D, pt +D], which is chosen

empirically.

• Create a local alignment vector at with a fixed size of 2D + 1.

Depending on the type of alignment (monotonic or predictive), different alignment

vectors are created. The mentioned attention types are visualised in Figure 2.12.
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Figure 2.12: Luong vs. Bahdanau Attention. The difference between two atten-
tion models is how the output of the decoder network is calculated.

Self-Attention

Attention mechanisms in deep learning aid the interpretability of the model by

showing how much focus is given to a certain input and output (Bahdanau et al.,

2014; Luong et al., 2015). Self-attention is another method of calculating atten-

tion where focus is given only to the input (Vaswani et al., 2017). The attention

is calculated by using three vectors: query (Q), key (K) and value (V) which are

randomised initially. The equation is as follows:

Attention(Q,K, V ) = softmax(QK
T

√
dk

) ∗ V (2.17)

The output of the component is a matrix of scores with the shape Nxm, where N

is the number of samples and m is the number of features dk is a hyperparameter.

The component is visualised in Figure 2.13.

A more general case of self-attention is the multi-headed self-attention, where

a different number of scaled dot-product attention components are executed

in parallel and concatenated afterwards. The application of multi-headed self-

attention enables the mechanism to attend to different representation subspaces
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Figure 2.13: Self-attention and multi-head self-attention

simultaneously (Vaswani et al., 2017). Multi-head attention is calculated by

Equation 2.18.

MultiHead(Q,K, V ) = Concat(head1, ..., headn)WO

where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

(2.18)

2.5.5 Transformer Networks

Developed by Vaswani et al. (2017), the transformer network models sequences

using dense layers and self-attention. The architecture uses an encoder-decoder

approach like the previous methods, where the input is passed through multiple

encoders, and the last encoder’s output is given as input to all the decoders

(Vaswani et al., 2017). The self-attention component removes the requirement

of the unfolding of sequences during training, accelerating the process. However,

during the testing phase, predictions are made at each timestep, similar to RNNs.

The architecture of the transformer is visualised in Figure 2.14.
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The encoder part of the model includes the multi-head self-attention layer,

a neural network, skip connections and add & normalisation layers (Vaswani

et al., 2017). The decoder contains a masked multi-head self-attention layer, a

multi-head attention layer where the output of the encoder is received and a linear

layer. Addition & normalisation layers and skip connections are included between

components. The multi-head attention component receives the query vector from

the previous layer and the last encoder’s output. The first decoder receives input

from the embedded output variable(s) and the last encoder’s output.

Initially, the transformer architecture was used for NLP tasks; with increasing

popularity, it has been used for tasks such as finance, computer vision and data

imputation (Dosovitskiy et al., 2020; Liu et al., 2019a; De Waele et al., 2022).

Variations include architectures such as BERT, where only the transformer en-

coder is used and GPT, where only the transformer decoder is used (Devlin et al.,

2018; Radford et al., 2018).

Input
Embedding

Output
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Attention

Add & Norm
Multi-Head
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Add & Norm
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Multi-Head
Attention

Add & Norm
Feed

Forward

Add & Norm
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N×

N×

Positional
Encoding

Positional
Encoding

Figure 2.14: Illustration of the transformer architecture (Vaswani et al., 2017)
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2.5.6 Variational Auto-encoder

The primary use of an auto-encoder is to reduce the dimensionality of the inputs

to capture the essential details of the data. The main drawback of the vanilla

auto-encoder is its inability to generalise distributions, thus, it cannot generate

new data points accurately. To overcome this problem, VAEs have been proposed

(Kingma and Welling, 2013). VAEs address this problem by learning the distri-

bution of the data in lower dimensions instead of the representation. By doing

so, the model captures the essential properties of the data.

As observed in Equation 2.19, the posterior distribution pθ(Z|X) is intractable

due to the integral on the right-hand side. However, an approximation of the

posterior distribution, qϕ(Z|X), can be made using neural networks, which is the

encoder part of the network. The likelihood pθ(X|Z) can be estimated and is

learned during training which is the decoder part of the network. The aim of

the network is to satisfy the equation qϕ(Z|X) ≈ pθ(X|Z). The VAE makes use

of the reparametrisation trick to skip using resources over complex integrals by

sampling from a normal distribution of N (0, 1) and scaling it by the standard

deviation of the distribution and adding the mean (Kingma and Welling, 2013).

pθ(Z|X) =
∫ pθ(X|Z)p(Z)

p(X) dZ (2.19)

The objective function of the auto-encoder is as follows (Kingma and Welling,

2013):

ln pθ(X) = ELBO +KL(qϕ(Z|X)||pθ(Z|X)) (2.20)

KL(Q||P ) =
∫
Rd
p(x)p(x)

q(x) dx (2.21)

where KL(qϕ(Z|X)||pθ(Z|X)) is the KL divergence between the encoder and the

decoder and Evidence Lower Bound (ELBO) is the evidence lower bound, which
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solves the issue of intractability by transforming the inference problem to an

optimisation one, defined in Equation 2.23. KL divergence measures the distance

between two distributions given by Equation 2.21. KL divergence is non-negative

therefore resulting in:

ln pθ(X) ≥ ELBO (2.22)

The optimal parameters of the network should aim to maximise ELBO defined

by Equation 2.23, where the first term is the reconstruction loss in log-likelihood

and the second term is the KL divergence between the encoder network and the

prior distribution p(Z) that forces regularisation.

ELBO = Eqϕ(Z|X)[ln pθ(Z|X)]−KL[qϕ(Z|X)||p(Z)] (2.23)

VAEs have been used for tasks such as text classification and text generation

(Xu et al., 2017; Semeniuta et al., 2017). VAEs have been used for imputation

purposes in the context of traffic and milling circuit data (Boquet et al., 2019;

McCoy et al., 2018). Variations of VAEs include denoising VAE and stacked

VAE (Vincent et al., 2010, 2008). VAE can be used for imputing MCAR data

(Gondara and Wang, 2018).

2.5.7 Generative Adversarial Network

GAN is a type of generative neural network that consists of two components,

a generator and a discriminator (Goodfellow et al., 2014). A generator takes

in random noise and creates a data sample, and the discriminator takes the

generated data as an input and outputs a fake or real label. The discriminator

is trained with both real data and data from the generator. The generator is

trained with the feedback received from the discriminator. These two components
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Figure 2.15: Architecture of VAE (Kingma and Welling, 2013). The input is
encoded to a lower dimension normal distribution. The decoding process uses
the sampled vector from the encoded distribution and creates the reconstruction
of the original input.

compete with each other, aiming to reach Nash equilibrium which can be observed

with the objective in Equation 2.24 (Goodfellow et al., 2014). The learning that

takes place is a supervised one, separate from other generative approaches. GAN

is visualised in Figure 2.16.

min
G

(max
D

E(G,D))

E(G,D) = 1
2Ex∼pt [1−D(x)] + 1

2Ez∼pz [1−D(G(z))]
(2.24)

where E(G,D) is the function to be minimised according to the function D and

maximised according to the function G. D(G(z)) is the function applied by the

discriminator to the output of the generator where a point z is sampled from a

distribution of pz which is usually random noise, and D(x) is equal to the output

of the discriminator of an input x sampled from a distribution of pt.

GANs have mostly been used for generating images (Zhu et al., 2017; Abdal

et al., 2019). The main aim of a GAN is to model the latent space of the data

to create new samples. Due to this behaviour, GANs can be used for imputing
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data (Yoon et al., 2018).

z xfake

G(z)
generator

pθ(z)

xreal

x real or
fake?

D(x)
discriminator

Figure 2.16: A sample GAN. The generator receives random noise as input and
generates new data points. The discriminator receives either real data or fake
data created by the generator and labels the sample as fake or real.

2.6 Summary

This chapter introduced the background about algal blooms, how they occur, their

impacts and factors that lead to their occurrences, and what might the future

trends be due to the changes in the climate. Due to the nature of the problem,

constant monitoring is necessary to detect these anomalies. During monitoring,

certain issues may occur that lead to corrupted data. In the following section

(Section 2.2), the solution to this problem, data imputation, is discussed. When

a complete dataset is obtained with imputation, algal blooms can be predicted in

regions using machine learning and/or deep learning. This section (Section 2.5)

included common methods that were used for this task.



Chapter 3

Imputation for Water Quality

Data

Partial or incomplete data may be returned from in situ monitoring networks due

to external factors such as biofouling, electrical/mechanical failures or refinement

of data due to quality assurance procedures, leading to misconstrued statistical

analysis of the gathered data.

There are different approaches for addressing the problem of missing data

imputation. The simplest solution would be to remove the rows of missing data.

However, such a solution might affect the quality of the remaining data depending

on the miss percentage and the temporal properties of variables. There are simple

methods such as mean/median imputation or constant/zero imputation and mul-

tivariate solutions such as Multiple Imputation by Chained Equations (MICE)

and regression (Ratolojanahary et al., 2019; Khalifeloo et al., 2015). With the in-

creasing popularity and availability of deep learning and machine learning models,

models such as random forests and neural networks are also used for imputation

(Stekhoven, 2015; Kim et al., 2017).

This chapter compares various deep learning and machine learning models

50
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used for data imputation and proposes a novel architecture that uses a self-

attention component in combination with LSTMs to improve the effectiveness

and interpretability of data imputation in the context of water quality. The

proposed model is compared to different imputation methods; mean imputation,

MICE with Bayesian ridge regressor (Rodŕıguez et al., 2021) and k-NN (Jadhav

et al., 2019), GAN (Yoon et al., 2018), VAE (Boquet et al., 2019), RNN (Zhang

et al., 2019b). These models were chosen as each makes different assumptions

about the data. VAE and Bayesian Ridge assume that the data is normally

distributed and model the data with Bayesian probability. GANs aim to learn

the latent distribution of data using Nash Equilibrium. k-NN uses distance as a

similarity metric for imputation. Recurrent models, the Luong attention model

and our approach expose the temporal properties of the data. The proposed

model outperforms the baselines in three of the four sites.

Neural network models are black-box processes by default where no informa-

tion is given about the prediction process due to the sheer number of calculations.

This results in the reduction of interpretability of the process. The model is also

tested on three other locations with different properties, outlined in Section 3.2.2,

to test the generalisability of the model. The model proposed in this chapter per-

forms imputation with a single pass imputing multiple variables.

The self-attention component proposed in this chapter gives insight into how

samples interact with each other at different stages of the network, increasing

interpretability, as opposed to other neural network models and guides the model

to increase its performance. The model performs imputation with multiple num-

bers of missing variables as opposed to single variable imputation done by other

recurrent neural networks. The models were tested with varying missing rates

starting from 5% to 95%.

Section 3.2 outlines the details of the models compared in this chapter and



3.1. RELATED WORK 52

introduces the novel architecture. Section 3.3 includes the experimental setting

and its results. Section 3.4 compares the proposed model and the previous meth-

ods based on results. Section 3.5 provides an overall view of the development

process and future research directions.

3.1 Related Work

Imputation of missing data for the domain of water quality has been done in

several approaches. Zhang et al. (2019b) use an encoder-decoder LSTM model

with attention and sliding window approach for imputation. Zhang and Thor-

burn (2021) modify the previous model by altering the context vector to include

separate weights before and after missing parts of data. The use of sliding win-

dows in both works enables the model to focus on certain parts of the input.

The imputation performed by these works imputes completely unobserved dat-

apoints rather than partially observed ones resulting in limited usability. Kim

et al. (2015) compare ANN, SOM and a Soil and Water Assessment Tool with

data from Taehwa River, South Korea. This study is limited to a single river

with low and high water flow and is not tested for open water bodies. This study

also shows that simulation tools could be used for imputation under low water

flow conditions. Rodŕıguez et al. (2021) compare inverse distance weighting, RF

regressor, Ridge regression, Bayesian Ridge (BR) regression, AdaBoost, Huber

regressor, Support Vector Regressor (SVR) and k-NN regressor for data imputa-

tion for Santa Lućıa Chico River, Uruguay, with missingness between 50% and

70%. Tabari and Hosseinzadeh Talaee (2015) compare SOM and Radial Basis

Function (RBF) networks in the context of water quality data imputation. The

study area of this work is limited to a single basin which reduces the generalis-

ability of the approaches. The use of non-linear models improves the imputation
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process as the data can be exploited further. RF and SVD have been applied

to the imputation of water quality data for missing rates of 10%, 20%, 30% and

70% (Kim et al., 2019b). SVD being a linear model, results in lower performance

as water quality data can be non-linear (Yang and Moyer, 2020). Ratolojana-

hary et al. (2019) compare RFs, Boosted Regression Trees, k-NN and SVR using

water quality data from Oursbelille, France, with an 82% miss rate. Nieh et al.

(2014) compare mean, median and multiple imputation in the context of mi-

crobial water quality data with 45% and 53% miss rates. Osman et al. (2018)

compare Gaussian Process Regression, Principal Component Analysis, Decision

Trees, ANN, Multiple Imputation and EM models. Shu et al. (2021) implement

a GRU autoencoder to impute river water quality data. Mulia et al. (2015) use

SOM with wavelet decomposition to impute water temperature data in Johor

Strait, Malaysia. Chivers et al. (2020) use k-NN, RF, SVM and ANN to impute

and classify rainfall data in 37 stations around the UK between 0.01% and 50%

miss rates. The advantages and disadvantages of the used approaches can be

found in Section 2.4.2 (RF), Section 2.4.1 (SVM), Section 2.5.1 (ANN), and Sec-

tion 2.5.3 (LSTM).

The majority of the mentioned methods for water quality data imputation

focus on improving the performance of the model for a single water body. The

proposed model achieves better performance at different monitoring locations

with different properties. The attention component also provides information

between the input elements of the model from start to finish providing a different

explanation than most approaches. The testing of the model is done with eleven

different values within the range of [5%, 95%] miss rates. In previous work, the

majority of the models are tested within the range of [10%, 70%] miss rates or

discrete values such as 20%, 50%, 70% miss rates. Our experimentation setting

reflects the real-world phenomenon where datasets might have high miss rates
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and data become unusable.

3.2 Methodology

3.2.1 Problem Definition

Consider a time series consisting of n observations with k features denoted by

Equation 3.1 where mn is the missing data, xn is the observation and \ is the

operation of separating the missing data from the observed data.

MT = {x1\m1, x2\m2, ..., xn\mn} (3.1)

The objective is to recover the missing data as accurately as possible with the

knowledge of the observed while keeping the observed data unchanged as much

as possible. The function applied by the model, f(x), should return the imputed

and the reconstructed values for all data points in the time series. The proposed

model consists of various deep learning components to find a suitable function for

f(x) using training and validation datasets and a test set for model comparison.

3.2.2 The Data

Several datasets were considered for experimentation for this work which are:

1. CEFAS (UK) Dataset: Dataset for tracking phytoplankton activity in the

North and Irish Sea

• Frequency: 20-30 minutes at four locations

• Date Range: 2002-2019 (Depending on location)
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2. Environmental Agency (UK) Dataset: Dataset for tracking nutrients in

U.K. inland waters (∼100 nutrient categories)

• Frequency: Sporadic

• Date Range: 2002-2019 (Depending on location)

3. National Centers for Coastal Ocean Science (US): Dataset for tracking phy-

toplankton species and nutrients around the U.S East Coast

• Frequency: Sporadic

• Date Range: 2001-2017

4. Finnish Phytoplankton Database: Dataset for tracking phytoplankton species

in and around Finland

• Frequency: At least once a year

• Date Range: 2000-2019

. The CEFAS dataset was chosen due to its high data quality and high sampling

frequency.

The data was collected by ESM2 and ESMx data loggers at four different

moorings depicted in Figure 3.1. The data was collected as a part of the National

Marine Monitoring Programme (NMMP) to monitor eutrophication regarding

the Convention for the Protection of the Marine Environment of the North-East

Atlantic (OSPAR) and MSFD assessments. These programmes aim to protect

marine life around Europe against issues such as overfishing, excessive amount of

nutrients and plastic pollution (Leonardo et al., 2011). The whole dataset was

partitioned into four fractions based on location. Each of the datasets is expected

to have different characteristics due to their locations, such that the Liverpool
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mean std min max description Unit
fluors 1.16 1.77 0.01 42.32 Chlorophyll Fluorescence arb. unit

ftu 8.52 11.54 0.01 221.22 Turbidity Formazin Turbidity Unit (FTU)
o2conc 9.19 1.00 5.40 16.04 Dissolved Oxygen mg/l

sal 33.92 1.13 25.76 35.45 Salinity PSS78 (Practical Salinity Scale)
temp 11.56 4.33 1.74 21.33 Temperature ◦C

depth 0 225.70 384.91 0.00 2566.80 PAR at 0 meter µE/m2s
depth 1 69.15 171.46 0.00 1622.70 PAR at 1 meter µE/m2s
depth 2 44.47 116.16 0.00 1617.50 PAR at 2 meters µE/m2s

Table 3.1: Summary of the dataset variables

buoy is near a maritime route, WestGab is near wind farms, TH1 is near the

mouth/delta of Thames, and Dowsing is in the open sea.

Models may be able to expose these spatial differences among the buoys and

the temporal properties. The periodicity and the relationship between the vari-

ables were analysed by Blauw et al. (2018), Blauw et al. (2012) and Heffernan

et al. (2010) with varying date ranges and locations by performing wavelet anal-

ysis. The periodicities of variables depend on the season and range between 6

hours to 24 hours.

Figure 3.1: Locations of moorings. Each mooring is expected to have different
properties based on their location such that the Liverpool buoy is near a maritime
route, WestGab is near wind farms, TH1 is near the mouth/delta of The Thames
and Dowsing is in the open sea.

Table 3.1 contains a summary of the whole dataset. Chlorophyll fluorescence
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is caused by algal activity through photosynthesis. Turbidity is the cleanliness of

the water. Dissolved oxygen increases with photosynthetic activity and is used

for respiration and decomposers. Salinity measures the concentration of salt in

water. PAR is the light received by algae that can be used for photosynthetic

activity. The data were collected at 30-minute intervals at each station between

the dates 01/01/2009 and 04/08/2019. Before normalisation, PAR columns of the

data were imputed with zero imputation with regard to the sunset and sunrise

time according to the observation date. The operations result in a 54.05% miss

rate for TH1, a 65.99% miss rate for LIVBAY, a 56.39% miss rate for DOWSING,

and a 56.59% miss rate for WESTGAB. Miss percentages reported relates to rows

with at least one value missing.

3.2.3 Missingness Analysis

The figures in this section were obtained using the missingno library (Bilogur,

2018). Figure 3.3 shows the number of observed instances per feature showing

which feature has the most effect on missingness in a particular dataset. Judging

by the counts only, there is no clear pattern of missingness that can be deducted

as the value counts and ratios differ for each location.

Figure 3.2 shows the correlation between variables regarding missingness. The

values range between 1 and -1, 1 being equal to both variables appearing together,

-1 being equal to only one of the two variables appearing and values close to 0

indicates no correlation with respect to missingness. It should be noted that

variables with no missing entries do not appear in the figure. The notable values

in the heatmaps are the values of (depth 1, depth 2) which could be forced by

PAR treatment to the dataset and the (salinity, o2conc) relationship, which could

be due to a single device taking both measurements. The rest of the correlations
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Figure 3.2: Heatmap of missingness of four locations. The values range between 1
and -1, 1 being equal to both variables appearing together, -1 being equal to only
one of the two variables appearing and values close to 0 indicates no correlation
with respect to missingness.

differ and depend on the mooring location.

Figure 3.4 uses a hierarchical clustering algorithm based on nullity correla-

tion, aiming to minimise distance (Bilogur, 2018). It should be noted that the

dendrogram closely correlates with the heatmap as tuples close to 1 or -1, i.e.

tuples with no missing variables or missing both variables, have less distance be-

tween their clusters. The distance values get smaller as the pattern in missingness

becomes more explicit.

The model selection for data imputation was done by omitting values from the

complete samples and imputing these omitted samples using the trained methods.
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Figure 3.3: Bar plot of number of rows regarding the count of observed instances
in four locations
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Figure 3.4: Dendrogram of missing features in four locations. The distances
are calculated using nullity correlation where closely connected features can be
clustered at short distances and appear together, be missing together or one
variable might always be present while the other is missing.
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The error was calculated using Root Mean Square Error (RMSE). The same error

type was used for the prediction stage.

Multiple Imputation using Chained Equations

The weight optimisation task can be applied to data imputation in the form of

multiple imputation. This type of imputation starts with an initial value for

imputing variables and is trained to converge towards the ground truth using

certain heuristics. MICE is a statistical data imputation method that consists of

six steps (Azur et al., 2011). These steps are as follows:

1. The data is initially imputed via a simple imputation of choice, such as

mean or median imputation as placeholders.

2. The placeholder variables for one feature are set to missing.

3. A regression of choice is done on the missing variable from Step 2.

4. The values from the regression take the place of the missing variable.

5. Steps 2-4 are repeated for other variables that have missing observations.

6. Steps 2-5 are repeated for the whole dataset a number of times or until the

change reaches below a threshold value.

Several heuristics can be used to select the variable in Step 2, such as starting

from the most missing or least missing. MICE assumes the data is MAR (Azur

et al., 2011).

Two different regressors for MICE were used in this chapter: k-NN and BR

regressor. k-NN calculates the mean of the nearest k neighbours with a distance

metric for each feature and assigns it as the new value. BR regressor assumes
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Equation 3.2, where α is a random variable estimated from the data. Output y

is assumed to be normally distributed around Xw (Neal, 2012).

p(y|X,w, α) = N (y|Xw,α) (3.2)

The BR regressor calculates the weight matrix, w, according to Equation 3.3. The

parameters λ and α are estimated using log marginal likelihood (Neal, 2012).

p(w|λ) = N (w|0, λ−1Ip) (3.3)

Generative Adversarial Imputation Network

The components of a Generative Adversarial Imputation Network (GAIN) work

in the following way: the generator imputes missing data and passes the output to

the discriminator, then the discriminator tries to distinguish between the imputed

data and the observed data per variable, comparing the output to the mask

matrix of the ground truth (Yoon et al., 2018). The hint matrix, H, depends

on a mask matrix that is fed into the discriminator to ensure that the generated

samples belong to the observed distribution of the data (Yoon et al., 2018). The

mask matrix is defined as M = (M1, ...,Md) taking values in {0, 1}d. Due to

the existence of the hint matrix, the function D becomes D : X × H → [0, 1]d,

where the i-th element of D(x, h) corresponds to the probability that the i-th

component of x was observed on the condition that X = x and H = h. The

architecture of GAIN is illustrated in Figure 3.5.
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Missing Data
Matrix

Random
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Generator Imputed
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Figure 3.5: Architecture of GAIN (Yoon et al., 2018). The red arrows indicate
back propagation. The missing data is given into the generator together with the
masks and random noise. The imputed data out of the generator is given to the
discriminator which outputs the missingness per variable using an additional hint
matrix that contains partial information about the true masks. The generator is
trained on both Mean Square Error (MSE) of imputation and reconstruction and
the cross-entropy loss of the masks and discriminator output. The discriminator
is trained on cross-entropy loss of masks only.

The following equation defines the output behaviour of the generator (Yoon

et al., 2018):
X̄ = G(X,M, (1−M)⊙ Z)

X̂ = M ⊙ X̄ + (1−M)⊙ X̄
(3.4)

where Z is random noise, M is the mask matrix, X is the data with missing

values, X̄ is the imputed data for each variable in X, X̂ is the imputed matrix

and ⊙ is element-wise multiplication. Similar to GAN, GAIN’s objective function

is as follows (Yoon et al., 2018):

min
G

(max
D

E(G,D))

E(G,D) = EX̂,M,H [MT log M̂ + (1−M)T log(1− M̂)]
(3.5)
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where M̂ is the output of the discriminator, and D(X̂,H) and X̂ are defined

in Equation 3.4. The main drawback of this method is that it does not take

temporal properties of the data into account. The data is assumed to be MCAR

for this model (Yoon et al., 2018).

3.2.4 Proposed Models

Imputation Model

The proposed model, named Self-Attention Imputer (SAI), in Figure 3.6, uses

the attention model introduced by Vaswani et al. (2017) with the addition of

LSTMs for temporal analysis and a linear layer at the end since a regression task

is executed. Similar to Cao et al. (2018), a backward pass through the data is

done, but this is executed at the same pass using only the input batch. Instead of

using a single self-attention component for a biLSTM layer exposing the periodical

information known previously, using separate self-attention components enables

the model to give different weights in backward and forward directions. The

self-attention component increases the interpretability of the neural network by

assigning weights between samples given as input. Moreover, this entails that the

relationship between samples might not be linear depending on the missingness

of the variables. The model was based on the evidence that water quality data

had MAR properties and the statistical analysis of periodicity, which justifies

the use of LSTMs for this task (Güler et al., 2002; Blauw et al., 2018, 2012;

Heffernan et al., 2010). The pseudocode for the imputation is given in Algorithm

1. The models were tested with varying missing rates ranging from 5% to 95%.

Compared baselines with their parameters (Earlystopping with a patience of 20

epochs with 10−5 tolerance was used during training for deep learning models):

• mean imputation
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• MICE with kNN - k=25

• MICE with Bayesian Ridge regressor - # of iterations = 100, tolerance =

10−5

• VAE - batch size = 32, Adam used as the optimiser with learning rate

= 10−4, two linear layers with ReLU activation for encoder and decoder.

Hidden size of four for µ and σ.

• GAIN - batch size = 32, Adam used as the optimiser, discriminator learning

rate = 10−4, generator learning rate = 10−5, discriminator trained every 5

epochs, discriminator with three linear layers, two with ReLU activations

and one with sigmoid, generator with three linear layers, all with ReLU

activation.

• GAIN-LSTM - same hyperparameters as GAIN except for the discriminator

with an LSTM and a linear layer with sigmoid activation, generator with

four LSTMs and a linear layer with ReLU activation.

• Luong attention model - batch size = 32, Adam used as the optimiser with

learning rate = 10−4, encoder hidden size = 16, # of encoder/decoder layers

= 1, attention type used = general

Regression Model

The prediction model consists of a 1-D convolution layer, a bidirectional LSTM

layer and a linear layer similar to Jin et al. (2020), as depicted in Figure 3.7.

The data was imputed using the self-attention imputer trained with 60% of miss-

ing data from WestGab buoy. The WestGab data was chosen due to the high

percentage of non-imputed dissolved oxygen variable. The kernel used for the
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Figure 3.6: Proposed architecture for imputation. The input passed through
masked multi-head attention layers in forward and backward directions resulting
in different attention weights for each biLSTM layer direction. The resulting
tensors of biLSTM layer are concatenated and fed into a multi-head self-attention
and a linear layer respectively. The output is the imputed vector.
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Algorithm 1 Imputer training training (single batch)
Ensure: Xmissing = tensor of(time step, batch size, 8)
Ensure: Xmasks = tensor of(time step, batch size, 8)
Xreverse ← Xmissing.f lip()
Xmissing ← attention(Xmissing, Xmasks)
Xreverse ← attention reverse(Xreverse, Xmasks)
Xmissing ← lstm forward(Xmissing)
Xreverse ← lstm reverse(Xreverse)
Xconcat ← concat(Xmissing, Xreverse)
Xconcat ← attention lstm(Xconcat, Xmasks)
Xconcat ← activation(linear(Xconcat))
loss← mse(Xreal, Xconcat)
loss.backward()

convolution layer is 2x2 with a stride of 1. By predicting the dissolved oxygen,

anomalies in the phytoplankton behaviour can be detected. The predicted value

is normalised dissolved oxygen value.

3.2.5 Additional Experiments

Two additional experiments were run to observe if the design choices that were

made previously were harming the imputer performance. The first one is observ-

ing if the rationale behind choosing the softplus function was correct, and the

other is to observe how using different initial imputation values affect the perfor-

mance of the model.

Effect of Activation Function

Various functions are applied to the model at this stage. The setting of the model

was identical to the initial experimentation, with only the activation function

changing. The used activation functions are: ReLU, GeLU, Leaky ReLU and

Softplus. The same data for initial experiments were used for training and testing.

The results of the experimentation can be seen in Figure 3.9.
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Figure 3.7: Proposed architecture for prediction. The input is passed through
a 1-D Convolutional layer, a bi-LSTM layer and a linear layer. The output is a
single float variable.

Effect of Initial Imputation Value

Various initial imputation values are applied to the data at this stage. The

setting of the model was identical to the initial experimentation, with only the

initial imputation value changing. The values used for initial imputation were:

-1, -10, -100, 10, 100, and 1. The same data for initial experiments were used for

training and testing. The results of the experimentation can be seen in Figure

3.10.

3.3 Results

The complete datapoints were randomly set to missing according to a certain per-

centage by masking. The data was normalised using min-max normalisation using

all the available locations. All the models were trained with 70% of the WestGab



3.3. RESULTS 69

10 1

100

TH1

10 1

100

DOWSING

20 40 60 80

100

LIVBAY

20 40 60 80

10 1

100

WESTGAB

Miss Rate(%)

RM
SE

Mean
kNN
BR
VAE
GAIN
GAIN-LSTM
Luong
SAI

Figure 3.8: Comparison of algorithms for four datasets at different missing per-
centages

data to observe the imputation performance of the model across datasets with

different time ranges and spatial properties while using information only from a

single dataset. MSE was used as the loss function where applicable. For predic-

tion, WestGab was chosen due to the low percentage of missingness for the target

variable. This means the model would be able to learn the true distribution of

the target variable instead of the imputations. Adam optimiser was used for all

deep learning models (Kingma and Ba, 2014).

z′ = z −min(x)
max(x)−min(x) (3.6)

Min-max normalisation is defined by Equation 3.6, where z′ is the value after

normalisation, z is the original data point, min(x) and max(x) is the minimum

and maximum values of each feature column, forcing the data to be defined in

[0, 1]. The missing values were initially imputed with -1 as a placeholder. Using
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Figure 3.9: Effect of different activation functions for the linear layer on model
performance

2 × 10 1

3 × 10 1

TH1

10 1

DOWSING

20 40 60 80

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

LIVBAY

20 40 60 80

10 1

WESTGAB

Miss Rate(%)

RM
SE

-1
-10
-100
10
100
1

Figure 3.10: Effect of different initial imputation values on model performance
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this type of normalisation enables models to use the softplus activation function at

the end of linear layers, denoted by Equation 3.7, where beta is a hyperparameter.

Use of a ReLU was avoided due “dying” since f(x) = 0, x < 0.

Softplus(x) = 1
β
∗ log(1 + exp(β ∗ x)) (3.7)

The models’ results were compared using RMSE denoted by Equation 3.8, where

y′
i is the value predicted value by the model and y2

i is the ground truth. All neural

network models were trained with an early stopping criteria of patience 20 and

a delta of 10−5. If early stopping was not applied after 300 epochs, training was

terminated. The models take each observation as a timestep with a batch size of

32 and 8 features.

RMSE =
√√√√ n∑

i=1

(y′
i − yi)2

n
(3.8)

The GAIN model was tested in two different settings, one with linear layers

and another with LSTM layers which included a linear layer at the end, named

GAIN and GAIN-LSTM, respectively. A VAE was trained with imputation and

reconstruction error without using a missingness matrix simultaneously, contrary

to (McCoy et al., 2018; Jun et al., 2019). It should be noted that the neural

network models do reconstruction and imputation, whereas MICE and mean only

perform imputation. Data with MAR properties assumes that the missing values

can be imputed with the observed variables, so the reconstruction loss of the

overall network has to be taken into account for deep learning models, whereas

for MICE and mean imputation no such assumption is necessary since they do

not modify observed variables.

Figure 3.8 visualises experimentation results where the proposed model out-

performs the other models after 40% of missing data in at least two of the datasets.
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Table 3.2 refers to the prediction task of dissolved oxygen in four datasets after

the missing data was imputed. The reconstructed values by the self-attention im-

puter were replaced with original values before training for the prediction task.

Error(RMSE)
TH1 DOWSING LIVBAY WESTGAB

Conv-LSTM 0.0840 0.0806 0.1289 0.0740

Table 3.2: RMSE of prediction for all datasets

3.4 Discussion

The GAIN algorithm is used for imputing MCAR data (Yoon et al., 2018). RMSE

of MCAR and GAIN-LSTM show that water quality data is not MCAR due to the

model’s performance on the supplied locations. Exposing the temporal properties

of the data by using GANs under the assumption of the MCAR mechanism does

not aid the imputation performance except WestGab and Dowsing. The data

was assumed to be MAR, as seen from the other models, given more evidence of

the data, i.e. lower miss rates, RMSE always decreases. The poor performance

of the GAIN imputer at low rates of missing values shows that the model is not

fit for reconstruction purposes. The possible reasons behind the GAIN model’s

behaviour might be non-convergence, mode collapse or diminishing gradient of the

generator. The differences between the models come from the limits to understand

the data with the lowest amount of evidence. At lower miss rates, the models

apart from VAE and GAIN perform better since non-imputed data is abundant,

and the model is able to model the missingness.

Different Bayesian approaches were applied with VAE and BR. Both models

map the distributions of data to a Gaussian distribution; however, VAE maps

it to a lower distribution by encoding to a lower dimension, sampling from this
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distribution and decoding to the original distribution. For this task, VAE maps

the data distribution together with the missingness, whereas BR assumes that the

data and its parameters are normally distributed in its original space and does no

reconstruction. It should be noted that the VAE model shows signs of underfitting

as the training is terminated after 19 epochs for all rates of missingness and did

not improve under early stopping limits. Therefore, VAE was not considered a

suitable model for imputation as it is clear that it does not learn from the data.

SAI focuses on the important sections of the input instead of modelling the latent

distribution of the samples as a whole; therefore, it is less prone to underfitting

and does not encode the data to latent dimensions.

The scope of the dataset for experimentation has high percentages (>50%)

of missing data in all of the datasets, even after data treatment. The proposed

model is aimed to focus on a higher percentage of missing data. Previous work

(Blauw et al., 2018, 2012) has shown that there are semi-daily and daily cycles;

in spite of skips in the training data, the proposed model, SAI, is able to impute

the data effectively regardless of miss rates in the majority of the locations.

Using a different attention mechanism benefits the performance of the model.

Luong attention focuses on the relationship between input and output, whereas

the proposed model uses a mechanism of Vaswani et al. (2017) which shifts the

focus solely to the input of the component. Figure 3.11 visualises the attention

mechanism used before the two LSTMs. The multi-head attention component

uses ReLU as an activation function, resulting in weights with ≥ 0 where no

attention is paid to components with 0 weights. This also shows that the bidirec-

tionality of the model helps it focus on different aspects of the data in different

directions and forces the focus on key components of the data. The attention

mechanism used by Luong focuses on all of the encoder hidden states and the

current decoder hidden state. The self-attention component focuses only on the
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input, whereas Luong attention focuses on the relationship between the input

and the output. Application of different neural network architectures results in

different RMSE values such that Luong’s RMSE has less deviation depending on

the dataset.

The k-NN model shows that the data points show similar properties at low

missing percentages, as seen from Figure 3.8, since the model uses nearest neigh-

bours where feature X is not missing. As the ratio of complete datapoints are

decreasing, the performance drops drastically to 0.12-0.16 between 70-95% miss

rates for WestGab and to 0.52-0.61 for LivBay between the same miss rates for

the k-NN model. The high missing % of the problem makes the k-NN model

unsuitable for this task compared to SAI. For lower missing percentages (<%40),

the neural network models have to shift the focus to reconstruction rather than

imputation; still, the model is able to do both tasks in the majority of the cases

presented. Since MICE and mean models do not need to do reconstruction, as

information is removed from the data, RMSE increases.

The overall performance of SAI gives insight into the missingness properties

of these locations. The missingness mechanism of Dowsing and WestGab are

similar as the RMSE values of SAI, k-NN, and BR show the same pattern. The

missingness pattern of LivBay differs from the other three sites since each tested

model had higher RMSE rates for that specific location.

The prediction model was trained and tested on both imputed and non-

imputed data. From the results in Figure 3.2, it can be deduced that the impu-

tation model is able to generalise the different distributions to an extent, as the

highest RMSE was attained by LivBay data with an RMSE of 0.1289. It shows

that the locations have different distributions relating to the dissolved oxygen

concentration.

The test for different activation functions shows that there is no best option
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for the activation function for all cases. For the 50% miss rate, using Softplus

might be feasible as the error observed is lower for all datasets. For lower miss

rates, alternative functions such as ReLu might be feasible.

Neural networks learn best with smaller values. From Figure 3.10, it can

be deduced that using a small out of sample value is beneficial to the learning

process of the model in the majority of the cases. LivBay is the outlier dataset

in all experiments, which entails a difference in distribution for data in that

location.

3.5 Conclusion

This chapter compared various machine learning and deep learning methods for

the task of data imputation in the context of water quality data. Introducing a

different architecture and attention mechanism improves imputation performance

where data is missing above 50%. The attention mechanism increases the inter-

pretability of the model at different stages, aiding data understanding.

The additional experiments investigated the choices of certain hyperparame-

ters during training: the activation function at the final layer of the network and

the initial imputation value. It was found that using -1 as the initial imputation

value yielded the best results as the data was normalized in a [0, 1] range, and

the provided value was out of distribution. The lower and closer values to 0 aided

the network in learning more efficiently. The role of the final activation function

was also investigated. It was found that the optimal function depends on the site

and the miss rate.

Future research directions include usage of different loss functions to reduce

the effect of reconstruction loss on the model and broader experimentation on

well-known datasets to test the generalisability of the architecture. Ensembles of



3.5. CONCLUSION 77

neural network architectures could be applied together to minimize the effect of

reconstruction loss. Transfer learning techniques could be applied to improve the

prediction of dissolved oxygen and the imputation. The generative approaches,

particularly the GAIN model, could be explored further to observe if the be-

haviours of the models are due to the missingness properties or hyperparameter

choices.

The data used in this chapter was obtained through in situ measurements

which are highly frequent. Other forms of data, such as ship-based data, obtain

measurements less frequently. The proposed model could be tested on such data

in the future.



Chapter 4

Algal Bloom Prediction with

Time Series

HABs occur when the population of phytoplankton increases rapidly, causing

environmental changes such as sunlight blocking and oxygen depletion (Kahru

and Mitchell, 2008). These changes affect the ecosystem and public health since

the consumption of aquatic life affected by these blooms poses a health risk

(Falconer et al., 1994). In some cases, HABs occur due to eutrophication caused

by nutrient overload. The occurrence of eutrophication involves the creation of

oxygen deprived zones due to the extreme number of deceased plants and animals,

resulting in dead zones with no ability to support life and requiring external action

to restore the habitat (Chislock et al., 2013).

With the increasing temperatures due to climate change, it is expected that

the frequency of algal blooms is expected to increase and will be seen in new

regions (Wells et al., 2015). In addition to the ecological impacts, the occurrence

of algal blooms has negative economic impacts. These include cost increases

in drinking water treatment and the preservation of biodiversity (Dodds et al.,

2009). Regions where these blooms are frequent see lower sales in sectors related

78
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to tourism and lower income from fisheries (Bechard, 2020; Karlson et al., 2021).

To prevent this phenomenon from occurring, preventive measures could be

taken, which include early detection models that benefit from in-situ data and

harness the power of machine learning.

In this chapter, a new model is proposed that improves the detection of out-

lier activities in certain locations of the North Sea and the Irish Sea using in-situ

data and a flexible labelling method with varying ranges of detection and a longer

range of time which was not taken into account in the majority of the approaches,

with transformer networks and convolution operations. Our approach generates

a possible sequence at day x+ i, i ranging from 1 to 7, using observations at day

x with a representation learning approach and filtering the necessary parts of the

generated sequence to predict a label. In addition, the reasoning behind the pre-

dictions is explained using Shapley Additive Explanations (SHAP) to aid experts

in understanding the effects of observations. The scope of this chapter aims to

detect the beginning of these blooms due to the mechanics of the phenomenon.

It has been observed that using a representation learning approach results in a

better model, performing 5% better on average than the baselines.

Section 4.2 outlines the details of the models compared in this chapter and

introduces the novel architecture for outlying behaviour detection and the ex-

planation model for observing the effect of the input on the output. Section 4.3

includes the experimental setting and its results. Section 4.4 compares the pro-

posed model and the baselines.
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4.1 Related Work

The majority of approaches apply thresholding to categorise labels and forecast

future behaviour or apply regression to the problem of HAB detection using dis-

solved oxygen or chl-a as the target variable, both of which increase with higher

photosynthetic activity from algae, as chlorophyll-a is used to capture sunlight

and carry out photosynthesis to produce oxygen and glucose. The chl-a concen-

tration increases during an algal bloom due to increased photosynthetic activity,

whereas the oxygen concentration increases initially with high photosynthetic

activity and drops afterwards due to the increasing decomposer population. It

should be noted that the behaviour of inland waters and sea water differ as sea

water bodies can act like large reservoirs, so they are less susceptible to change.

The most common approaches lean towards using RFs, SVMs and ANNs to

predict algal blooms, which are explained in Section 2.4.2, Section 2.4.1 and Sec-

tion 2.5.1. A small number of models make use of XGBoost, which is explained

in Section 2.4.4. Park et al. (2015) use ANNs and SVMs to predict chl-a concen-

tration in Juam and Yeongsan Reservoir, South Korea, 7 days ahead. Derot et al.

(2020) use RF and k-NN over a 34-year long time series to predict four different

types of cyanobacteria and their densities in Lake Geneva, Switzerland. Park

et al. (2021) apply SVMs and ANNs to detect blooms in Changnyung-Haman

Reservoir, South Korea. Yajima and Derot (2018) use RF to predict the chl-a

concentration in Urayama Reservoir and Lake Shinji, Japan. Yang et al. (2020)

use sensory data to predict HABs using AdaBoost with SVM and RF in Yuyuan-

tan Lake, China. Chen et al. (2015b) use an ARIMA model to predict the chl-a

concentration in Lake Taihu and Meiliang Bay, China, comparing it with a mul-

tivariate linear regression model. Jiang et al. (2016) use a Continuous Hidden

Markov Model with adaptive exponential weighting and Principal Component
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Analysis to predict the toxins produced by the algae during blooms. Hidden

Markov Models use high amounts of memory and compute time during optimi-

sation, making them unsuitable as the model becomes larger. Hidden Markov

Models assume that the state at time t is dependent only on the state at t − 1,

which may not be the case for several problems. RNNs can model a state at time t

using information from all previous states. Principal Component Analysis is only

able to model linear relationships, making it unsuitable for certain scenarios, as

it uses the covariance matrix to generate components. Li et al. (2014) compare

ANNs, regression networks and SVMs in the context of predicting chl-a values

7 or 14 days ahead for Tolo Harbour, Hong Kong. Shin et al. (2020) compare

SVRs, RFs, XGBoost and LSTMs to predict the chl-a concentrations in Nakdong

River, South Korea. This work shows that in short-term predictions, ensemble

models such as XGBoost perform better than other deep learning and machine

learning models. Lui et al. (2007) use autoregressive models to predict chl-a in

a 2-hour and daily period in Crooked Island, Hong Kong. This type of model is

easy to implement but only limited to polynomial relationships. Cannizzaro et al.

(2009) use ship-based data along the shore of West Florida with supplementary

satellite data to aid interpretation, using thresholding to classify blooming. The

data is collected between 2000-2006 with 13 different cruises, each lasting between

2-5 days. Mellios et al. (2020) use ML methods such as RFs, k-NNs, and SVMs

and correlation coefficients to predict HABs in the lakes in North Europe. The

thresholding method used in this work is based on cyanobacterial biomass and

categorised into three. Ye et al. (2014) apply hybrid evolutionary algorithms to

detect blooms in real-time in Xiangxi Bay Reservoir, China, to predict blooms 1-7

days ahead. The main drawback of evolutionary algorithms is that the generated

solution may not be optimal and is heavily restricted to the search space, limiting

the usability of the model. Park et al. (2022) use XGBoost to predict HABs in
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Geum River, South Korea. In this work, SHAP is also used for filtering features

and creating a better model.

Cho et al. (2014) use ANNs combined with correlation and feature selection

to predict the dissolved oxygen value in Lake Juam, South Korea. Muttil and

Chau (2006) use ANNs and Genetic Programming to detect HABs in Tolo Har-

bor, Hong Kong, predicting chl-a concentration. Guo et al. (2020) predict sea

surface temperature and salinity to detect outlier events in Tolo Harbor, Hong

Kong, using ANNs. Yim et al. (2020) use auto-encoders to detect the chl-a levels

and the cyanobacteria cell counts using hyperspectral data in Baekje Reservoir,

South Korea. Xiao et al. (2017) combine wavelet analysis with neural networks

to predict the cyanobacteria density 1-day ahead in Silang Reservoir, China and

Lake Winnebago, USA. Using wavelet analysis aids the model in exploiting the

temporal properties of the data, aiding performance. Guallar et al. (2016) pre-

dict populations of two bloom-forming microalgae using ANNs with a long-term

time series (1990-2015) in Alfacs Bay, Spain. Qin et al. (2017) combine ARIMA

and Deep Belief Networks to predict red tide biomass in Zhousan and Wenzhou

Coastal Area, China. Shamshirband et al. (2019) predict the chl-a value 1 to 3

days ahead, using a combination of an ensemble of ANN with Discrete Wavelet

Transform. Using Discrete Wavelet Transform enables analysis of temporal prop-

erties of the data. Yi et al. (2018) use Extreme Learning Machines to predict chl-a

values 7 days ahead along several weirs on the Nakdong River, South Korea. Ex-

treme Learning Machines were developed as an alternative to backpropagation

as the latter requires high amounts of compute time. However, with the develop-

ments in and use of GPUs in training deep learning models, Extreme Learning

Machines have become outdated. Zhang et al. (2016) use stacked Restricted

Boltzmann Machines at the East China Sea coast to predict algal cell density.
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These models are not favoured due to the computational complexity during train-

ing. Wang et al. (2020) utilise recursive Deep Boltzmann Machines (DBMs) using

algal density as the target variable. Huynh et al. (2022) use self-attention and

GANs to predict algal blooms in Karlsruhe, Germany. Information about GANs

can be found in Section 2.5.7.

Various types of recurrent neural networks have been used for algal bloom

detection. For details about the models, see Sections 2.5.3. Lee and Lee (2018)

use LSTMs for predicting chl-a values in four rivers of South Korea. Cho and

Park (2019) predict the chl-a concentration using Merged LSTMs in Geum River,

South Korea. Shan et al. (2022) implement an XGBoost-LSTM approach to

detect algal blooms using in-situ data in Three Gorges Reservoir, China. They

use the XGBoost model as a feature selector for the LSTM. The feature selection

is also tested with SVMs and ANNs. Yu et al. (2020) predict chl-a concentration

in Dianchi Lake, China using Wavelet Analysis and LSTM. Wang and Xu (2020)

use temporal attention combined with LSTM to predict the chl-a value at most

12 hours ahead in Fujian, China. Cho et al. (2018) use sensory data to predict

the chl-a in certain locations in South Korea with LSTMs. They aimed to predict

the chl-a concentration a day ahead and 4 days ahead using this approach. Chen

et al. (2021) utilise CNNs with attention to detect HABs in Jiulong River, China.

Shin et al. (2019) use LSTMs to detect HABs in South Korean Peninsula using

the data between 1998 and 2018. Zheng et al. (2021) implement an LSTM-based

approach to detect HABs along the BeiYun River, China. Kim et al. (2022) apply

attention with two different levels: time and feature level, in combination with

LSTMs to detect HABs in Nakdong River, South Korea.

The locations studied in this chapter differ from the majority since most of

the focus is divided between Southeast Asia and the United States, whereas our

study area is the North and Irish Sea (Sebastiá-Frasquet et al., 2020; Wang et al.,
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2022). The increased frequency of blooms results in more focus on these areas (Gu

et al., 2021; Anderson et al., 2021). Most of the approaches use models like SVMs,

RFs or use LSTMs to analyse the long/short term temporal patterns in the data.

The approaches that classify the blooms use static values or expert knowledge

to classify the responses, as in the cases of Mellios et al. (2020) and Yang et al.

(2020). Our approach takes the context of the measurements into account as

factors such as temperature affect cellular activity and oxygen solubility in water

(Lepock, 2005). The detection time spans of the current approaches are usually

short, ranging from 12 hours to 4 days. The proposed model predicts anomalous

activity in monitored locations ranging from 1 day ahead to 7 days ahead, using

only data from a single day, with a flexible labelling approach. Explanation

models provide insight into how the input influences the model’s output.

4.1.1 Challenges

Modelling algal blooms has several challenges. Algal blooms are extreme events;

therefore, positive labelled samples are extremely low (3-5%) in the dataset, which

needs to be addressed during training with methods such as SMOTE or label

weighting and model evaluation with a weighted F1 score. Deep learning models

require vast amounts of data for training which is solved with continuous and

frequent monitoring. Algal blooms are inherently complex as the underlying

mechanism is influenced by many factors such as nutrient intake of nitrates and

phosphates through industrial pollutants or fertilisers, the water temperature and

available light.
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4.1.2 Model Explainability

Deep learning models are complex structures with parameters ranging from thou-

sands to billions. A user cannot comprehend the decision-making structure of a

neural network; therefore, the interpretability of a model is essential to under-

stand how a model works. Interpretability in a machine learning context can

be defined as the extraction of relevant information about a model’s prediction

mechanism that can be understood by end users. Interpretability is essential to

eliminate bias, debug, and provide trustworthiness and information to the end

user. Explainability can be model-specific or model-agnostic. Model-specific ap-

proaches are naturally interpretable such as linear regression, logistic regression

and decision trees (Adadi and Berrada, 2018). Model agnostic explainability can

be divided into two categories; local model agnostic and global model agnostic

(Molnar, 2020). Model agnostic explanation separates the explanation from the

prediction model. Examples include Partial Dependency Plots (Friedman, 2001)

and Accumulated Local Effects (Apley and Zhu, 2020) for global model agnostic

methods and Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro

et al., 2016) and SHAP (Lundberg and Lee, 2017) for local model agnostic meth-

ods. Therefore, this type of model is usable for any type of learning model and

makes the comparison of explanations across different learning approaches easier

(Molnar, 2020). The levels of explanation can also differ, such as input-output,

layer and neuron explanation.

Example-Based Explainers Example-based methods provide explanations

by selecting specific instances in a dataset to explain model behaviour (Mol-

nar, 2020). In contrast to model agnostic methods, example-based explainers do

not explain summaries of features (Molnar, 2020). These methods work well for

images as the data given as input needs to be represented in an understandable
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way, such as images or text (Molnar, 2020). Examples of such methods include

Counterfactual Explanations and Adversarial Examples (Molnar, 2020). Coun-

terfactual explanations work by creating hypothetical conditions that are not

observed to explain events such that the effect of the change of feature values is

observed on the label. Used domains include loan models where small changes

can affect the model’s outcome. Adversarial examples use perturbations such as

noise to deceive the model into observing changes in the output. This type of

explanation model is used in image classifiers where the distance between the

original and perturbed sample is kept to a minimum to observe class boundaries

(Molnar, 2020).

4.1.3 Local Interpretable Model-Agnostic Explanations

The problem of interpreting the outputs of a model is a challenge in the field

of deep learning. Interpretation enables the users to understand the internal

mechanism of the model by removing the “black box” properties of the models. A

method for explaining deep learning classifier model behaviour is LIME (Ribeiro

et al., 2016). This type of interpretation is model agnostic, so it can be applied

to any model and the explanations are done locally by observing the changes on

features relative to the output from the model. The explanation is done by the

objective function below (Ribeiro et al., 2016):

ε(x) = argmin
g∈G

L(f, g, πx) + ω(g) (4.1)

where ε(x) is the explanation of the model, f is the explained model, g is the

explanation model, πx is used to define the locality of the sample, ω(g) is the

measure of complexity of g and G is all the possible interpretation models. This

process aims to find the optimal explanation model that maximises the local
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behaviour while keeping the complexity of the model as simple as possible. The

disadvantage of LIME is that only linear models are used to explain behaviour,

and the explanations are only done locally, which may be different from the global

structure of the data. The results of the explanation are sample-based such that

the influence of each feature is shown on the decision of the label for the specific

sample.

LIME has been used for tasks such as detection of antisocial behaviour from

tweets, predictive maintenance and natural disaster response (Zinovyeva et al.,

2020; Usuga-Cadavid et al., 2021; Gao and Wang, 2022). However, no work about

algal bloom explainability using LIME has been done.

4.1.4 SHapley Additive exPlanations

Another method for explaining deep learning classifier model behaviour is SHAP.

It is a method that uses game theory and locality for the interpretability of deep

learning models (Lundberg and Lee, 2017). The model removes a specific feature

f from the input, sampling it from a baseline provided by the user. The model

compares the difference between outputs in two cases, calculating the impact of

feature f on the output. There can be various choices for the baselines, such as

the mean value of the feature, zero, or it can be sampled from the training data.

This can be formally defined as:

ϕi =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i})− fS(xS)] (4.2)

where S is a subset of features, F is all features, fS∪{i} is a model trained with

feature i, fS(xS) is the model trained without feature i. The results of SHAP

show how the ranges of different features impact the model result.
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Intrinsic dependencies might exist in the data. KernelSHAP has been devel-

oped to explain models that have dependent features as input (Lundberg and Lee,

2017). Due to the properties of the function, there is only a single solution to

it, which can be approximated. The explanation is done disregarding the feature

value. In return, this results in simplified inputs being used in the model such

that hx(x′) = x, where x′ is the simplified input hx is the per sample simplifi-

cation function. The following properties should hold for the values (Aas et al.,

2019):

1. Local Accuracy: The explanation model should return the value of f(x)

when the original input x is given as input into the model.

f(x) = g(x′) = ϕ0 +
M∑

i=1
ϕix

′

i (4.3)

2. Missingness: Missing features in the original data should not have an impact

x
′

i = 0⇒ ϕi = 0 (4.4)

3. Consistency: If feature i contributes more to the output of f ′ instead of f ,

the explanation model should have a higher coefficient for ϕi(f ′, x)

f ′
x(z′)− f ′

x(z′\i) ≥ fx(z′)− fx(z′\i) (4.5)

Since the explanation model selects a subset of features and the model might not

be able to deal with missing features, two assumptions are made on the data:
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linearity and independence; both simplify the computation of expected values.

f(hx(z′)) ≈ EzS̄
[f(z)] feature independence

≈ f([zs, E[zS̄]]]) linearity

Figure 4.1: Sample SHAP values (Lundberg and Lee, 2017)

Figure 4.1 depicts how the addition of each feature changes the expected value

of the model. The model starts with none of the features known and adds new

features at each stage. The linearity and independence assumption makes the

order of addition of features inconsequential. All possible orderings of ϕi are

averaged while calculating the SHAP value.

SHAP has been used for various tasks such as text classification, ophthalmic

conditions, and heavy metal detection in sewer water (Souza et al., 2021; Singh

et al., 2021; Jiang et al., 2022). SHAP has been used to explain HABs in Geum

River, South Korea (Park et al., 2022).

Gradient SHAP

This method alters the original SHAP by adding Gaussian noise to each input

sample n times, selecting a random point between the baseline and the noisy

input, and then computing the gradient of the outputs with respect to the ran-

domly selected noisy points (Kokhlikyan et al., 2020). This method assumes the

features of the model are independent, and the explanation model is linear be-

tween the inputs and the given baselines.
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4.1.5 DeepLIFT

Developed by Shrikumar et al. (2017), DeepLIFT explains a model’s behaviour

by mapping its output to its input via backpropagation. The explanations are

done by comparing the differences between baselines for the non-linear activations

to find the neurons that deviate from the output (Kokhlikyan et al., 2020). The

comparison is made by the concept of multipliers:

m∆x∆t = C∆x∆t

∆x (4.6)

where ∆x is the distance from the baseline, ∆t is the distance from the expected

output of neuron t, and m∆x∆t is the contribution of the neuron. The chain

rule is applied and backpropagated through the network. The process done by

DeepLIFT approximates Shapley values (Shrikumar et al., 2017).

DeepLIFT has been utilised for tasks such as question answering, traffic mod-

elling and kidney cancer detection but not for early HAB detection (Arkhangel-

skaia and Dutta, 2019; Nascita et al., 2021; Zhou and Wei, 2022).

Works where explainability is used in the workflow for HAB detection are few.

Hong et al. (2021) use Grad-CAM to explain model behaviour using the gradients

in the final convolutional layer to create localisation maps for images.

4.2 Methodology

4.2.1 Problem Definition

Given the data for day i, the problem of algal bloom prediction could be modelled

as:

fn(Si) = yi+n (4.7)
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where Si is the in-situ data and f is the model itself. yi+n is a binary label for

the dissolved oxygen threshold for n days ahead of observation day i.

4.2.2 The Data

The model in Figure 3.6, which consists of self-attention, LSTM and linear com-

ponents, was used to fill in the missing values. The data used for this chapter

is the same as the one in Section 3.2, the column that is used for labelling is

o2conc. The following formula is used to calculate the maximum amount of

dissolved oxygen concentration in the water given the temperature and salinity

Garcia and Gordon (1992):

InC∗
O = A0 + A1T+A2T

2 + A3T
2 + A3T

3 + A4T
4 + A5T

5+

S(B0 +B1T +B2T
2 +B3T

3) + C0S
2

(4.8)

where A0, ..., A5, B0, ..., B3 and C are coefficients of the equation given in Table

4.1, S is the salinity, and T is In[(298.15 − TO)(273.15 + TO)−1], where TO is

the observed temperature value at time t. Algal bloom starts with the increased

algal activity in a body of water which results in increased dissolved oxygen;

therefore, thresholding was used, comparing the current dissolved oxygen to the

maximum percentage of dissolved oxygen the water can hold at time t. If the

percentage is 5% above the maximum threshold, the label is 1, else 0. The

labelling process is done per day based on mean dissolved oxygen. The positive

label percentages for each location are as follows: 1.44% for TH1, 3.89% for

Dowsing, 3.98% for WestGab and 11.44% for LivBay. The relationship between

temperature and salinity with dissolved oxygen is further proven by the Pearson

correlation matrix in Figure 4.2. The baseline models for this chapter were

chosen as the SVM and RF, as they were the most popular machine learning
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Figure 4.2: Pearson coefficient values
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Coefficient Value
A0 2.00907
A1 3.22014
A2 4.05010
A3 4.944457
A4 −2.56847 ∗ 10−1

A5 3.887674
B0 −6.24523 ∗ 10−3

B1 −7.37614 ∗ 10−3

B2 −1.03410 ∗ 10−2

B3 −8.17083 ∗ 10−3

C −4.88682 ∗ 10−7

Table 4.1: Coefficients for Equation 4.8

models for this task, as outlined in Section 4.1. An IF model is included to observe

if the abnormalities could be identified in an unsupervised fashion by identifying

the differences between normal occurrences and abnormalities. A convolutional

VAE is also included to see if relevant information could be extracted from a

latent space regarding these abnormalities with varying filter sizes. A Luong

attention model is also included to observe if any improvements could be made

over LSTM models.

Time2vec

As in NLP tasks, embeddings can be used for time series data. In this case,

Time2Vec is used (Kazemi et al., 2019). The embedding can be divided into two:

time domain and frequency domain. The time domain is indicated by a single

linear component, and the frequency domain is indicated by the periodic function

F , such as sin or cos with k − 1 components.

t2v(xi) =


wT

i x+mi, if i = 0

F (wT
i x+mi), if 1 ≤ i ≤ k

(4.9)
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Time2vec is similar to the positional encoding of Vaswani et al. (2017). Unlike

positional encoding, time2vec performs embedding in continuous time, so it is

able to capture the periodicity of inputs.

4.2.3 Proposed Model

The proposed model, Transformer-Convolution (TF-Conv), consists of four com-

ponents: a time embedding component (Time2Vec), a transformer, a convolu-

tional layer and a linear layer with softmax (Vaswani et al., 2017; Kazemi et al.,

2019). The embedding layer maps the input to two domains: time and frequency.

The transformer is used to generate the sequence for i day(s) ahead, which ranges

between 1-7. Separate embedding components are used for input and target se-

quences as they differ in their number of features. The input is the measurements

of day x, and the target is the measurements of day x+ i, where i is the number

of days into the future ranging between 1 and 7. The input data is used to gener-

ate the target observations using the transformer network. The target variable is

used during training to compute the loss between the generated sequence and the

ground truth. Masking is used at the decoding stage of the transformer. During

training, teacher forcing is used for the transformer. The ground truth is given

as the target value during decoding. During testing, the previous output of the

transformer is used as the target tensor, and initially, a tensor of zeros of shape

(1, batch size, num features) is given as the target. The convolutional layer is

used for feature selection. The generated sequence does not include the dissolved

oxygen so as not to overfit the convolution part of the model to only the dissolved

oxygen. The generated sequence is taken through a 1-D convolution layer to serve

as a feature selector. Lastly, the filtered observation is passed through a linear

layer to classify the sequence. The labels were inversely weighted during training
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due to label imbalance in the dataset. The final output of the network is a bi-

nary variable which denotes whether or not the daily average dissolved oxygen is

above the threshold or not. Figure 4.3 illustrates the proposed architecture. The

training and testing procedures are provided in pseudocode format in Algorithm

2 and Algorithm 3.

Algorithm 2 TF-Conv training (single batch)
Ensure: Xsrc = tensor of(seq len, batch size, num features)
Ensure: Xtgt = tensor of(seq len, batch size, num features− 1)
Xsrc ← time2vec(Xsrc)
Xtgt ← time2vec(Xtgt)
Xsrc ← tf encode(Xsrc)
Xsrc ← tf decode(Xsrc, Xtgt,masks)
Xsrc ← avg pool(GeLU(conv1d(Xsrc)))
Xsrc ← softmax(linear(Xsrc))

Algorithm 3 TF-Conv testing (single batch)
Ensure: Xsrc = tensor of(seq len, batch size, num features)
Ensure: Xtgt = tensor of zeros(1, batch size, num features− 1)
Xsrc, Xtgt ← time2vec(Xsrc), time2vec(Xtgt)
Xsrc ← tf encode(Xsrc)
outputs = [ ]
while cur seq ̸= seq len do

output← tf decode(Xsrc[cur seq], Xtgt,masks)
Xtgt ← output
outputs.append(output)

end while
outputs← avg pool(GeLU(conv 1d(outputs)))
outputs← softmax(linear(outputs))

GradientShap1 was used as the explanation model. A tensor of zeroes is used

as the baseline for the explanation model. The output of the explanation model

is per sample and per time-step. To give an overall view, the explanations are

aggregated per day, and an average is calculated per feature. The hyperparame-

ters for this model are:
1https://captum.ai/api/gradient shap.html
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Time2Vec
Input

Target
Transformer 1-D Conv Linear Output

Figure 4.3: Proposed model for predicting oxygen thresholds. The input consists
of all of the observed variables at day x, whereas the target consists of all variables
except dissolved oxygen at day x + i. The transformer generates the target
sequence for day x + i except the dissolved oxygen. The output is a binary
variable denoting if the average dissolved oxygen at day x + i is below or above
a threshold.

• Baseline: tensor of zeros

• Number of samples: 100

In Chapter 2, it is mentioned that most of the study sites relate to Far East

Asia in China or Hong Kong, Lake Erie or the Coast of Florida in the U.S or

the Red Sea. Our study location is unique in this sense. Most of the approaches

mostly use models like SVM or RF, or using LSTMs to analyse the long/short

term temporal patterns in the data. Our approach comes up with a possible

sequence for n days after observation using a sequence-to-sequence approach and

filtering the necessary parts of the generated sequence to predict the correct label.

4.2.4 Additional Experiments

Effect of Transformer Pre-training

An additional experiment is conducted to observe the effect of transformer pre-

training on prediction performance. The experiment is conducted for each day

using the same hyperparameters obtained in the original experiments.
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Figure 4.4: Second proposed model for predicting oxygen thresholds. The convo-
lutional layer is modified to have several convolutions with different sizes.

Effect of Multiple Convolutions on Model Performance

Another experiment was set to observe if obtaining information from various sized

filters would benefit the prediction performance, similar to the inception model

He et al. (2016). Three filters were used with sizes 2x2, 3x3, and 4x4, as seen

in Figure 4.4. The generated sequence was forwarded through each filter, with

the results concatenated and fed into the linear layer. Grid search was used for

hyperparameter optimisation using the same set in the initial experimentation.

Differences Between Explanation Models

Different explanation models make different assumptions about model behaviour.

By comparing different approaches, an explainability model’s usability in various

settings can be tested. In addition to SHAP, four additional explainers are used:

LIME, kernel SHAP, DeepLift and DeepLift Shap. The hyperparameters for the

models are:

• LIME:

– Similarity function: Euclidean distance
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– Surrogate model: Ridge regression

– Baseline: tensor of zeroes

– Number of samples: 100

• DeepLIFT:

– Baseline: tensor of zeroes

• DeepLIFT SHAP:

– Baseline: tensor of zeroes

4.3 Results

The predictions are done i days into the future given the observation at day x. i

ranges between 1 to 7. 70% of data of TH1 buoy was used for training, 30% for

validation. This location was chosen due to nutrient flow from the River Thames.

By modelling different nutrient concentrations, a more generalised model can be

created. A single location was used for training to test the generalisability of

the model and to assess the model performance with data gathered from various

locations with different properties. The other three sites are used for testing.

The F1 scores of each day for each site are presented in Figure 4.5. The

proposed model is able to generalise between locations with different properties.

Other approaches such as RF need to be trained per location and per day to be

usable. The mean F1 scores for all test locations are illustrated in Figure 4.6.

With unseen data, the proposed approach outperforms all of the baselines. The

F1 score was used as the performance metric due to the issue of label imbalance in

the datasets. The weights of recall and precision were equal for the F1 score. An

Adam optimiser was used for this task with 200 epochs and earlystopping with
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Day Batch Size # of Encoder/Decoder Layers # of Attention Heads Transformer Network Dimensions Learning Rate Dropout Rate
1 16 2 2 32 0.001196 0.212
2 64 3 5 256 0.000606 0.512
3 6 1 2 32 0.002497 0.102
4 6 1 2 128 0.003346 0.136
5 4 3 2 128 0.003670 0.217
6 6 2 1 128 0.003635 0.115
7 6 2 1 32 0.003635 0.115

Table 4.2: Hyperparameters used for each model where the value of day is i days
into the future.

a patience of 15 epochs Kingma and Ba (2014). The embedding size of time2vec

was set to 10, and the convolution window size was set to 2 for all experiments.

The rest of the hyperparameters are given in Table 4.2 based on the prediction

day. The hyperparameter optimisation was done using grid search.

The results of the first additional experiment, which is the observation of pre-

training on overall model performance, can be seen in Table 4.5. The pre-training

was performed while hyperparameters were kept constant. Although the repre-

sentation learning is improved through division of tasks, the overall performance

is reduced. The results of the second additional experiment, which is the use of

multiple convolutions, can be seen in Table 4.4. The use of multiple convolutions

results in an intermediate state which captures information at different scales,

resulting in a better performing model in the majority of the cases. The outputs

of additional explainers are illustrated in Figures 4.7, 4.8, 4.9, and 4.10. Each ex-

planation model makes different assumptions while generating the explanations,

leading to different results.

4.4 Discussion

In terms of mean F-score, the proposed model TF-Conv is the most suitable model

for the majority of the cases. The RF classifier had problems such as overfitting

as it performs nearly perfectly in the training site, TH1, whereas it performs
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Figure 4.7: Left: Feature importances of SHAP for predictions 1-day ahead.
Right: Feature importances of SHAP for predictions 7-days ahead.

WestGab TH1 LivBay Dowsing

1 0.679 0.720 0.815 0.621
2 0.656 0.589 0.670 0.596
3 0.617 0.657 0.710 0.603
4 0.620 0.684 0.674 0.621
5 0.665 0.676 0.666 0.567
6 0.647 0.696 0.558 0.583
7 0.596 0.719 0.604 0.534

Table 4.3: AUC ROC for 1-7 days

poorly in other locations. The SVM classifier suffers from the same phenomenon

for the Dowsing buoy. To obtain satisfactory results for the RF classifier, it

could be trained on all four locations, which might cause memory issues and

maintenance costs. IF assumes that the outliers in the data can be predicted due

to their different properties and low occurrence rates. The results show that the

increased activities in all sites were not outliers due to their properties, and the

assumptions made by the IF do not hold.

The decreasing performance of the attention model between day 1 and day
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Day Single-Conv Multi-Conv Difference(%)

1 0.468 0.445 -4.92
2 0.348 0.406 16.66
3 0.342 0.360 5.26
4 0.319 0.330 3.44
5 0.322 0.315 -2.18
6 0.242 0.280 15.70
7 0.208 0.245 17.78

Table 4.4: Results for TF-Conv without and with multiple convolutions

Day Classic Pre-trained

1 0.468 0
2 0.348 0.113
3 0.342 0
4 0.319 0.014
5 0.322 0
6 0.242 0.11
7 0.208 0

Table 4.5: Results for TF-Conv without and with pretraining of the transformer

6 indicates that Luong attention is not suitable for predicting the near future

blooms, but it may be suitable for prediction for days further into the future.

The inputs for the deep learning models are aggregated based on observation

day, whereas the machine learning models use averages of features based on ob-

servation day due to the model’s limitation of not being able to model tensors

with more than two dimensions. The use of aggregation aids the deep learning

models’ generalisability since these models are exposed to raw data rather than

a summarized version. Even with a summarized version of the data, the RF clas-

sifier performs better in a singular site comparison, but the trade-off is made in

generalisability.

The explanation model used was GradientShap, which works by adding ran-

dom noise to data samples that were sampled between the baseline and the input
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Figure 4.8: Left: Feature importances of LIME for predictions 1-day ahead.
Right: Feature importances of LIME for predictions 7-days ahead.

and computing the gradients. The explanations differ from site to site, as seen in

Figure 4.7. It also shows that the order and the magnitude of the importances

change from day to day. The model used assumes feature independence, and the

explanation model is linear. The explanation models show that each site has its

own properties, and the site with the most positive labels (LivBay) and the best

performance out of all sites has o2conc as the most important feature, which indi-

cates that tracking the o2conc in the water might be useful where abnormalities

frequently occur while using the TF-Conv model. The explanations also give in-

sight into how input features differ from one another depending on the prediction

day, empirically showing the requirement of training a model for each prediction

day.

The use of multiple convolutions aids the model in filtering the sequence with

different window sizes, resulting in varying information being passed to the next

stage of the network. Using multiple convolutions aids the model in the majority

of the cases, which can be observed in Table 4.4. Further hyperparameter tuning
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Figure 4.9: Left: Feature importances of DeepLift for predictions 1-day ahead.
Right: Feature importances of DeepLift for predictions 7-days ahead.

could be done to increase model performance if seen as necessary.

To observe the effect of pre-training, every specification of the training was

kept the same except the training process itself. Table 4.5 indicates that pre-

training impacts the model negatively. Hyperparameter tuning may yield differ-

ent results, which can be done for future work.

Different explanation models make different assumptions. All of the models

that were chosen are local model agnostic. SHAP views the explainability of

the model from a game theoretical approach. LIME uses explainable surrogate

models such as linear regression. DeepLIFT explains model behaviour through

backpropagation and activation function behaviour. DeepLIFT SHAP approxi-

mates SHAP values using DeepLIFT. As the constraints change, the values for

each feature change, which can be observed in Figures 4.8, 4.9, 4.10, and 4.7. The

approximations done by DeepLIFT SHAP may not be similar to SHAP values

due to hyperparameter choices. For predicting a day ahead, all models detect

that salinity is the most important feature that affects the model’s output for
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Figure 4.10: Left: Feature importances of DeepLift SHAP for predictions 1-day
ahead. Right: Feature importances of DeepLift SHAP for predictions 7-days
ahead.

WestGab data, and salinity or turbidity is either the most or the second most im-

portant feature for the Dowsing buoy. A similar pattern is observed for predicting

seven days ahead for sites WestGab, TH1 and LivBay. DeepLift and DeepLift

SHAP tend to focus on negative features, as seen from the plots, which might

not reflect the detection capabilities of the models.

The Area Under the Receiver Operating Characteristic Curve (AUC ROC)

scores for the TF-Conv model, as observed in Table 4.3, and the confusion ma-

trices, Figure 4.11, allow us to investigate the performance of the model further.

The model is better than random guessing for this task as the AUC ROC score

is > 0.5; however, the increase and decrease in scores are not as expected. The

scores do not decrease as the predictions move further into the future; rather,

they change randomly. This may mean the model is unstable. The confusion

matrix reveals that the model misses most cases in the WestGab and Dowsing

site, having high FN and FP rates. This entails that predicting HABs using

classification for these four sites may not be suitable. An alternative approach is
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Figure 4.11: Confusion matrices for all sites for predicting a day ahead

explored in Chapter 5, applying regression with a multimodal learning approach.

4.5 Conclusion

In this chapter, a novel model is proposed for detecting algal blooms by predict-

ing dissolved oxygen concentration 1 to 7 days ahead using time embeddings, a

transformer network and a convolutional layer. The proposed model increases

the prediction performance by 5% in terms of F-score on average, ranging from 1

to 7 days ahead of occurrence. The importance of each feature is provided with

SHAP values per day, increasing the interpretability of the model. It has been

observed that the most important feature changes based on the monitoring site
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and prediction day. Analysing the results obtained from AUC ROC, it is no-

ticed that the models perform better than random guessing as the score is always

higher than 0.5. On the other hand, the sample of confusion matrices shows that

the model is not able to capture the majority of the HAB incidences, strongly

suggesting that classification might not be the optimal solution for detection.

Three additional experiments are done to observe various training and eval-

uation settings. It has been observed that pre-training the transformer is not

efficient in obtaining better results and using multiple convolutions to filter a se-

quence benefits the performance of the model in the majority of the cases. It has

been noticed that using different explanation models results in different outcomes

depending on a model’s assumptions and might not reflect the properties of the

monitoring site.

Data with different frequencies, such as ship-based data or data with different

modalities could be used to improve the detection process. This work could be

extended to closed bodies of water. The current results indicate that models could

be tested for different day ranges than they were trained on to test the model’s

generalisability. The stability of the model could be checked by predicting bloom

events further than seven days. The performance of the model could be assessed

by training it per location. Generalisability among different locations was not

included in the scope of this chapter, and transfer learning methods could be

used in the future to test the efficiency of this architecture.



Chapter 5

Multimodal Learning Approach

to Algal Bloom Prediction

In the event of HABs, colour changes occur in water. The blooms may cause

health hazards to humans and livestock through the ingestion of such water

sources (Falconer, 1999). To ensure public health and safety, these blooms must

be detected and controlled before the condition exacerbates.

Different forms of data could be used for detection. In-situ data such as buoys

or water samples analysed in labs, satellite data such as MODIS for detecting

colour or nutrient changes from various bands or text from social media such

as Twitter when the monitored sites are close to populated areas could be used

for detection purposes. To improve the detection process, the information from

different data modalities could be analysed simultaneously.

As seen in Chapter 4, HAB detection can be done via in-situ sensors. This

chapter focuses on detecting HABs in another data format, satellite imagery, in

combination with in-situ data. Satellite imagery has been used for tasks such as

land cover classification and disaster mitigation (Rakhlin et al., 2018; Fayne et al.,

108
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2017). Deep learning can be used to analyse these images in cases such as popula-

tion estimation and volcano deformation (Robinson et al., 2017; Anantrasirichai

et al., 2019). Images of water bodies obtained via satellite can also be analysed

using deep learning. Using various deep learning layers, detection of algal blooms

could be done by segmentation and convolutional neural network elements. Us-

ing the images of the same location through time, another type of early warning

system could be developed or a system that predicts the next stages of the bloom.

Using multiple modalities reduces dependencies on using a single mode of data

as alternate modalities could be used as replacements in situations where data

collection issues arise such as cloud cover for satellite data and biofouling for in-

situ data.

There are several previous works that have focused on the prediction of HABs

from satellite images. Methods include HABNet, which uses a mix of CNN, LSTM

and machine learning components focusing on the Arabian Gulf and the Gulf

of Mexico, linear neural networks focusing on West Florida, CNN architectures

focusing on lakes in China and neural and fuzzy neural networks focusing on

Cefni Reservoir of Anglesey, the U.K. (Hill et al., 2020; El-Habashi et al., 2016;

Pu et al., 2019; Silva and Panella, 2018). Most of the focus falls on East Asia,

the U.S and the Baltic Sea (Sebastiá-Frasquet et al., 2020).

5.1 Related Work

The current approaches use each data type separately. Shehhi and Kaya (2020)

use MODIS data to predict chl-a, sea surface temperature and fluorescence line

height with SARIMA, regression and ANN. Hill et al. (2020) classify HAB events

using twelve different MODIS channels with CNN, LSTM and ML methods. Hu

et al. (2005) use MODIS data to detect and trace red tides in Florida Bay and
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use in-situ data to compare the predicted chl-a values from the MODIS data.

Vannah and Chang (2013) combine Medium Resolution Imaging Spectrometer

(MERIS), MODIS and in-situ data before training a genetic programming model

to measure phycocyanin. Cao et al. (2020) use XGBoost to predict chl-a levels

in several lakes in China and use in-situ data for validation.

Satellite data could be used to detect HABs using infrared, near-infrared and

blue to green ratio based approaches (Binding et al., 2013; Clark et al., 2017). El-

Habashi et al. (2016) analyse MODIS and Visible Infrared Imaging Radiometer

Suite (VIIRS) satellite data with ANNs to predict the chl-a concentration. Hill

et al. (2020) use a mix of CNN, LSTM and ML methods to detect HABs using

a number of modalities of satellite data in West Florida. The approach used for

this model consists of splitting all of the data in a given date window of bloom

occurrence with varying days into the future. Lin et al. (2018) use Landsat data

to predict the chl-a concentration in Lake Erie, the USA, using multiple linear

regression, non-linear general additive models and boosted regression trees. Hu

et al. (2020) use NOMAD 2.0 and SeaBASS satellite data in combination with

SVRs to predict the chl-a concentration. This approach aimed to create a more

generalised model by testing the SVR model with SeaWiFS data which is sam-

pled globally. Kim et al. (2019a) utilise the U-Net architecture around the Korean

Peninsula to detect red tides between 2011 and 2018. Tian and Huang (2019) pre-

dict HABs up to 5 days using satellite data. ANNs were used in this work, with

the chl-a data classified into four levels. Gokul et al. (2019) use MODIS-Aqua

data with a second-order derivative approach to detect and monitor HABs in the

Red Sea. Mehrabian and Pahlevan (2019) use IF to predict algal blooms using

Landsat-8 and Sentinel-2 images. However, they use 12 different IF, one for each

month leading to unnecessary complexity. Pahlevan et al. (2020) use Mixture
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Density Networks with satellite data to predict chl-a concentrations in various lo-

cations. Gokaraju et al. (2011) use kernel SVMs and Kernel Principal Component

Analysis to detect algal blooms in the Gulf of Mexico with MODIS and SeaWiFS

data. Ananias and Negri (2021) use SVM to analyse algal blooms in Lake Erie,

U.S and Lake Taihu, China, with satellite data. Izadi et al. (2021) forecast algal

blooms in a 5-9 day range using satellite in the Gulf of Florida with SVM, RF and

XGBoost. Song et al. (2015) use MODIS and MERIS to detect algal blooms using

thresholding and use in-situ data for validation in Monterey Bay, U.S. Ghatkar

et al. (2019) use XGBoost to detect algal blooms in the Arabian Sea and the Bay

of Bengal. Yussof et al. (2021) use LSTMs and CNNs in conjunction with level

3 MODIS AQUA data to predict chl-a in Sabah, Indonesia. The advantages and

drawbacks of the models used can be found in Section 2.5.1 (ANN), Section 2.5.2

(CNN), Section 2.5.3 (LSTM), Section 2.4.4(XGBoost), Section 2.4.2 (RF) and

Section 2.4.1 (SVR).

The in-situ approaches were studied in Section 4.1 of this thesis.

It can be noticed that for this task, either satellite data or sensory data is used

for analysis but not both. In some cases where satellite data is used, in-situ data

is used for verification purposes. Using only satellite data reduces the temporal

prediction capabilities of models as the data is infrequent. Using only in-situ

data reduces the spatial extendibility of the predictions as the observations are

location specific. The span of data used for early HAB detection is usually shorter

than a year, reducing the generalisability of the model (Sebastiá-Frasquet et al.,

2020). The use of multiple modalities reduces the effect of problems that occur

during data collection such as biofouling of in-situ sensors or clouds covering the

observation area as by learning multiple modalities at the same time enables the

model to substitute one modality for the other one when needed.
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In this chapter, various multimodal approaches are proposed that use in-

situ and satellite data simultaneously, exposing both the temporal and spatial

information for the observation sites. Detecting only a single variable, such as chl-

a or dissolved oxygen, has no applicability for the end-user, and other contextual

information is needed. The proposed multimodal fusion model predicts additional

variables, temperature and salinity, which affect the maximum amount of oxygen

the water can contain, as stated in Equation 4.8. Using the predicted variables,

the oxygen saturation at time t is calculated, providing more information to the

end-users. Additional contributions are made for the problem of missing data

through coordinated representation learning by creating a single representation

space for both satellite and in-situ data during learning and using only a single

modality during prediction.

5.1.1 Challenges

Temporal Frequency Difference The temporal frequency of the in-situ data

differs from satellite data as in-situ data is collected multiple times per day,

whereas there is only a single corrected image per day for each location for satellite

data. The API used for collecting MODIS data selects the best observation per

day from a 16-day period on several criteria, such as cloud coverage and view

angles.

Spatial Resolution Difference The in-situ data collects information close to

the buoy, whereas the satellite data used covers a 6x6 km area, upsampled to

256x256 pixels, which can provide information about the area surrounding the

monitoring site. The upsampling is done due to the model input specifications of

CNNs.
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Generalisability Different algal species are found in different locations. Each

species produces toxins with various levels of toxicity. Due to this variation,

it becomes harder to pinpoint which blooms are harmful or not. The exact

species can be determined by lab-tested samples, which require transportation

and time. Therefore, nearly all of the studies focus on a single water body. To

make the model more general, it becomes essential to train it with data from

various locations. A non-general model cannot be used for different locations due

to the water bodies and algal species’ properties. With sufficient data, utilising

the properties of various locations results in a generalised model.

5.2 Multimodal Learning

Multimodal learning is defined as using different data sources as input to train

a model, such as using video and audio for text transcription. It consists of

five approaches: representation, translation, alignment, fusion and co-learning

(Baltrušaitis et al., 2018). A sample of multimodal learning settings is given in

Table 5.1 for in-situ and satellite data.

5.2.1 Representation

A multimodal representation of data is achieved by using information from mul-

tiple entities. There are two main ways of representing multimodal data: joint

and coordinated representation (Baltrušaitis et al., 2018).

Joint Representations This type of representation is used in tasks where

all modes of data are present in both training and testing and it is stated as

Baltrušaitis et al. (2018):

xm = f(x1, x2, ...xn) (5.1)
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Feature Learning Supervised Training Testing
Classic Deep

Learning
In-situ In-situ In-situ

Satellite Imagery Satellite Imagery Satellite Imagery

Multimodal Fusion In-situ +
Satellite Imagery

In-situ +
Satellite Imagery

In-situ +
Satellite Imagery

Cross Modality
Learning

In-situ +
Satellite Imagery In-situ In-situ

In-situ +
Satellite Imagery Satellite Imagery Satellite Imagery

Shared Representation
Learning

In-situ +
Satellite Imagery In-situ Satellite Imagery

In-situ +
Satellite Imagery Satellite Imagery In-situ

Table 5.1: Sample multimodal settings adapted from Guo et al. (2019)

Typically used models include CNN and RNN. Using deep learning models results

in an intersection between multimodal representation learning and multimodal

fusion as a fusion strategy is required at one stage to concatenate the information

from different modalities (Baltrušaitis et al., 2018).

Coordinated Representations In coordinated representations, different modal-

ities are learned separately but with additional constraints. Examples of this ap-

proach include DeVise embedding (Frome et al., 2013), deep cross-modal hashing

(Jiang and Li, 2017), and kernel canonical correlation analysis (Lai and Fyfe,

2000).

In the context of HAB detection, multiple modalities such as in-situ and

satellite data could be fused with a joint representation approach or used in place

of one another using a coordinated representation approach.
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5.2.2 Translation

Multimodal approaches include translating from one modality into another, such

as audio signals to text or text to images. Translation is done via two approaches:

example-based or generative approaches.

Example-Based Translation Example-based translation is divided into two

categories:

• Retrieval-based translation: This translation is done by finding the closest

sample to the input in unimodal or semantic space. This approach has been

used for speech synthesis (Bregler et al., 1997) and text-to-speech systems

(Hunt and Black, 1996).

• Combination-based translation: This translation approach builds upon retrieval-

based translation and combines samples to return more meaningful trans-

lations. Some examples are image description generation with Linear Pro-

gramming and hand-crafted rules (Kuznetsova et al., 2012) and CNNs (Le-

bret et al., 2015).

Generative Translation This approach performs multiple translations given

the source modality. It is divided into three categories:

• Grammar-based translation: This approach depends on a pre-defined gram-

mar for generating another modality. It is used in creating video descrip-

tions (Barbu et al., 2012) and image descriptions (Yao et al., 2010).

• Encoder-decoder translation: This approach is achieved via neural networks

for tasks such as machine translation (Kalchbrenner and Blunsom, 2013),

image generation (Mansimov et al., 2015) and speech generation (Owens

et al., 2016).
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• Continuous generation translation: This approach is used for sequence gen-

eration, where an output is given for each time step. Taylor et al. (2012) use

Hidden Markov Models for visual speech generation, and Deena and Galata

(2009) use Gaussian Process for audio-based visual speech synthesis.

Translation approaches cannot be used for HAB detection as the task is either

a classification or a regression one. An alternate task in this domain could be the

translation of in-situ data to create aerial imagery around the observation site to

populate artificial datasets and vice versa.

5.2.3 Alignment

Alignment is defined as finding commonalities between different modalities. It is

applied with two approaches:

Explicit Alignment In this approach, alignment is done using sub-components

in different modalities using a distance metric. It is done in both an unsupervised

and a supervised manner. Noulas et al. (2011) use Bayesian Networks to align

speakers to videos. Yu and Ballard (2004) use generative graphical models to align

objects in images with audio input. Supervised approaches include deep learning

models like CNN for measuring similarities between image and text (Mao et al.,

2016) and LSTM for finding similarities between images and their descriptions

(Hu et al., 2016).

Implicit Alignment This approach is used as an intermediate for another task.

Two methods are used for this approach: graphical models and neural networks.

Graphical models have been used for language translation (Vogel et al., 1996).

Attention models have been used for image captioning (Xu et al., 2015).
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Alignment could be used utilised by using a common representation for mul-

tiple modalities. During training, the distance among different modalities could

be minimised based on the observation day, enabling the model to expose com-

monalities and use modalities in place of one other.

5.2.4 Fusion

The definition of multimodal fusion is to combine different modalities to predict

a single outcome; a class or a numerical value. There are two approaches for

fusion:

• Model-agnostic fusion: This approach works by fusing data at different

stages: early, mid (hybrid) or late fusion. Early fusion is done by fusing the

input data before feeding it into the model. It aims to exploit low-level fea-

tures of data. Late fusion is done after each modality is processed and fused

without further steps and predictions are done through averaging (Shutova

et al., 2016) or voting mechanisms (Morvant et al., 2014). Middle fusion

is done after each modality is processed, and the intermediate structure is

fused for further analysis. It has been used for tasks such as multimodal

speaker identification (Wu et al., 2006).

• Model-based fusion: This approach has three variations: Multiple kernel

learning, graphical models and neural networks. Multiple kernel learning

is an extension of the kernel SVM that has been used for tasks such as

multimodal sentiment analysis (Poria et al., 2015) and multimodal affect

recognition (Jaques et al., 2015). Graphical models used include Hidden

Markov Model (Gurban et al., 2008) and Conditional Random Fields (CRF)

(Fidler et al., 2013). In neural networks, RNN has been used extensively,

ranging from question answering (Gao et al., 2015) to video description
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generation (Jin and Liang, 2016).

Both model-based and model-agnostic fusion could be utilised for HAB detection

with multiple modalities such as lab analysed samples, in-situ data and aerial

imagery.

5.2.5 Co-learning

Co-learning is defined as aiding a resource-poor modality with a resource-rich

one. The resource-rich data is used in training but not in testing. Co-learning can

be divided into three approaches: parallel, non-parallel and hybrid (Baltrušaitis

et al., 2018).

• Parallel Co-learning: In this approach, both modalities share instances such

as images and their descriptions. Co-training is done using several weak

classifiers that are trained on each modality to label unlabelled data. Co-

training has been used for audio-visual speech recognition (Christoudias

et al., 2006). Transfer learning is another strategy for parallel co-learning

with models such as multimodal autoencoders (Ngiam et al., 2011) and

multimodal DBMs (Srivastava et al., 2012).

• Non-parallel Co-learning: Non-parallel data share categories or concepts

but not samples. Strategies used include transfer learning and zero-shot

learning. Transfer learning enables the transfer of information of different

modalities (Baltrušaitis et al., 2018). Zero-shot learning is training a model

in such a way that it is able to detect classes it has not seen in the training

data. Popular application areas include object classification. In multimodal

learning, zero-shot learning is achieved by acquiring information from one

modality that is not present in another.
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• Hybrid Co-learning: In this approach, two non-parallel modalities share a

modality. Examples such as multilingual image captioning, where the image

is the shared modality belong to this category.

Transfer learning approaches could be used to utilise non-parallel co-learning for

the task of HAB detection. Images and in-situ data where incidents of HAB are

observed could be used in conjunction with parallel co-learning approaches.

In the context of HAB detection, different modalities are used for exposing

different kinds of information regarding incidents. With satellite imagery, colour

changes could be observed using various bands, and with in-situ data, nutrient

monitoring could be applied pre-emptively to detect incidents. Different modali-

ties could be combined to improve detection models by fusing/replacing different

kinds of information.

5.3 Methodology

5.3.1 Problem Definition

Given the data for day i, the problem of algal bloom prediction could be modelled

as:

f(Si,Mi, Ci) = (y1
i+n, y

2
i+n, y

3
i+n) (5.2)

where Si is the in-situ data, Mi is the MODIS data, Ci is the nutrient/algal data

gathered from various satellites, and f is the model itself. (y1
i+n, y

2
i+n, y

3
i+n) is the

generated values for dissolved oxygen, salinity and temperature for n days ahead

of observation day i.
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5.3.2 The Data

In addition to the data from the previous chapter, two new data sources are

used; one from MODIS observations and another from Copernicus Marine Ser-

vice (CMS). chl-a’s absorption peaks are between 450 nm and 650 nm, whereas

phycocyanin, a toxin released by algae, peaks around 615 nm, overlapping with

chl-a (Simis et al., 2012). Therefore, the data gathered by satellite could be used

for detecting algal blooms.

MODIS data used in this project is collected from Sentinel Hub 1. MODIS

Satellite gathers data from 36 different bands with varying resolutions (250 m

for bands 1-2, 500 meters for bands 3-7 and 1 km for bands 8-36). Algal blooms

can be detected using True Colour Bands (RGB) 1, 4 and 3. Additional bands

such as False Colour Bands 2, 1 and 4 and Normalized Difference Water Index

(NDWI) Bands (B4 − B2)/(B4 + B2). The differences in data are depicted in

Figure 5.1. The data is collected with a resolution of 500m 6x6 km around each

monitoring site, upsampled to 256x256 using bicubic interpolation. Each pixel

contains the best information from a 16-day period depending on a number of

factors such as observation coverage, cloud coverage, view angles etc. The data

covered by MODIS ranges from the 24th of February 2000 to December 2019.

CMS data used is titled OCEANCOLOUR ATL CHL L4 REP OBSER

VATIONS 009 098 2. The data is gathered by several satellites, SeaWiFS, MODIS,

MERIS, VIIRS etc. The data is collected as daily-mean with a resolution of 1

km. A region of 6x6 km is gathered around each monitoring site, upsampled

to 256x256 with bicubic interpolation. The data gathered is Level 4 data which

went through the process of interpolation. Each pixel contains the daily mean

value for chl-a. The data covered by CMS ranges from the 4th of September 1997
1https://www.sentinel-hub.com/
2now renamed OCEANCOLOUR ATL BGC L4 MY 009 118
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Figure 5.1: Left: RGB image of a bloom in the North Sea on June 2015 Right:
False Colour image of a bloom in the North Sea on June 2015

to December 2019.

5.3.3 Proposed Models

A multimodal fusion approach with joint representation is proposed for the task

of early algal bloom detection. The proposed model is outlined in Figure 5.2. The

used CNN architectures are outlined in Section 5.3.4. The hyperparameters for

the transformer component are transferred from Chapter 4 to reduce the search

space. The model’s outputs are three values; temperature, salinity and oxygen.

After concatenating the outputs of hidden layers, a linear layer or an XGBoost is

used to predict the aforementioned three values. Using these three predicted val-

ues and Equation 4.8, the continuous variables are transformed into percentage

values and compared with the ground truth using Mean Absolute Error (MAE).

The pseudocode is presented in Algorithm 4 and Algorithm 5. Before the per-

centage calculation, the multimodal results are compared to unimodal approaches

using RMSE: SVM, k-NN, MLP and Luong attention LSTM.
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A number of hyperparameters were chosen for XGBoost tuning. These are:

eta, max depth, min child weight, subsample, colsample bytree, n rounds, tar-

get var. eta is the learning rate, max depth is the maximum depth each tree can

have, min child weight is the minimum number of instances for each node in the

tree, subsample is the ratio of the training samples used for that tree, colsam-

ple bytree is the ratio of feature columns selected for each tree, n rounds is the

maximum number trees the model can have.

An approach similar to Chen et al. (2018) is followed for training the XG-

Boost model. The individual components of modalities are trained using a linear

layer after the concatenation. The linear layer is removed, and the concatenated

individual outputs are given as input to the XGBoost for training, transferring

the learned individual representations.

The thresholding process differs from the one in Chapter 4. In Chapter 4,

thresholding was done by applying Equation 4.8 to each data point in the time

series, the percentage was calculated per data point, and the label was given based

on the average percentage per day. In this chapter, the average daily temperature,

salinity and dissolved oxygen values per day are given as input to Equation 4.8

and a percentage is calculated.

5.3.4 CNN Models

Various CNN architectures were used for experimentation. The models were

chosen based on variety and different structures.

ResNet Developed by He et al. (2016), this architecture mimics the structure

of pyramidal cells, which includes skip connections between convolutional com-

ponents. Two versions of ResNet were used for experimentation: ResNet18 &
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Figure 5.2: The proposed multimodal fusion approach. The model
takes in three different tensors as input; two satellite data modal-
ities with (batch size, num channels = 3, 256, 256) for MODIS and
(batch size, num channels = 2, 256, 256) for CMS and one for in-situ data
(seq len = 75, batch size, num feautres = 8)

ResNet152. The differences between these models come from the number of lay-

ers included in these models, 18 and 152, respectively. The ResNet152 model also

uses bottleneck blocks, whereas the ResNet18 uses basic blocks, both depicted in

Figure 5.3.

MobileNet This CNN was designed for mobile vision applications (Howard

et al., 2017). For experimentation, MobileNetv2 is used, which uses inverted

residual blocks with a linear bottleneck (Sandler et al., 2018).

AlexNet Developed by Krizhevsky et al. (2012), AlexNet introduced non-linear

activation functions and overlapped pooling. The implementation of multi-GPU

training was introduced in this work as well.
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Algorithm 4 Multimodal approach training (single batch)
Ensure: Xsrc = tensor of(seq len, batch size, num features)
Ensure: Xtgt = tensor of(seq len, batch size, num features− 1)
Ensure: Xmodis = tensor of(batch size, in channels = 3, height = 256, width =

256)
Ensure: Xcms = tensor of(batch size, in channels = 3, height = 256, width =

256)
Xsrc ← time2vec(Xsrc)
Xtgt ← time2vec(Xtgt)
Xsrc ← transformer encode(Xsrc)
Xsrc ← transformer decode(Xsrc, Xtgt,masks)
Xsrc ← avg pool(GeLU(conv 1d(Xsrc)))
Xmodis ← modis cnn(Xmodis)
Xcms ← cms cnn(Xcms)
X = torch.concat(Xsrc, Xmodis, Xcms)
if linear then

Y ← softmax(linear(X))
else

for ninoutput variables do
Yn ← XGBoostn(X)

end for
end if

VGG Two versions of VGG were used for experimentation: VGG19 & VGG19

with batch norm (Simonyan and Zisserman, 2014). The architecture follows a

standard CNN consisting of convolutional layers followed by hidden and fully

connected layers.

GoogleNet GoogleNet architecture uses Inception modules that use multiple

convolution sizes such as 1x1, 3x3 and 5x5 (Szegedy et al., 2015). The inception

model is illustrated in Figure 5.4.
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Algorithm 5 Multimodal approach testing (single batch))
Ensure: Xsrc = tensor of(seq len, batch size, num features)
Ensure: Xtgt = tensor of(1, batch size, num features− 1)
Ensure: Xmodis = tensor of(batch size, in channels = 3, height = 256, width =

256)
Ensure: Xcms = tensor of(batch size, in channels = 2, height = 256, width =

256)
Xsrc, Xtgt ← time2vec(Xsrc), time2vec(Xtgt)
Xsrc ← tf encode(Xsrc)
outputs = [ ]
while cur seq ̸= seq len do

output← tf decode(Xsrc[cur seq], Xtgt,masks)
Xtgt ← output
outputs.append(output)

end while
Xmodis ← modis cnn(Xmodis)
Xcms ← cms cnn(Xcms)
X = torch.concat(outputs,Xmodis, Xcms)
outputs← avg pool(GeLU(conv 1d(outputs)))
outputs← softmax(linear(outputs))

5.3.5 Additional Experiments

Coordinated Representation Approach for Detection

A second model is proposed for algal bloom detection with multimodal data that

uses a coordinated representations approach with CMS data. The architecture is

visualised in Figure 5.5. Using this model enables a user to detect algal blooms

with an alternate data modality. Cases where in-situ data is corrupted and low in

number enable the user to analyse satellite data for the detection and vice versa.

The pseudocode is given in Algorithm 6.

Using Different MODIS Sensors for Detection

As mentioned previously in Section 5.3.2, satellites gather data using many sen-

sors. Non-RGB related data could be used for further analysis. This experiment
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Figure 5.3: Left: ResNet Basic Block Right:ResNet Bottleneck Block (He et al.,
2016). After each convolutional block ReLU is used as the activation function.

Figure 5.4: Left: Inception Basic Block Right:Inception Dimensionality Reduc-
tion Block (He et al., 2016)

compares RGB, False Color and NDWI for the task of early algal bloom detec-

tion.

5.4 Results

The predictions are made one to seven days into the future, given the observations

on day x. 70% of data of TH1 buoy was used for training, 30% for validation.

This location was chosen due to nutrient flow as it is located near the delta of

the River Thames. The reason behind the location choice is to create a more
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Algorithm 6 Representation training (single batch)
Ensure: Xsensor = tensor of (75, batch size, 8)
Ensure: Xsatellite = tensor of (batch size, 256, 256, 2)
Xsensor ← linear(Xsensor.f latten())
Xsatellite ← conv model(Xsatellite)
Xsatellite ← linear(Xsatellite)
loss← euc dist(Xsensor, Xsatellite)
loss.backward()

In-situ
Satellite Image

Multimodal
Representation

Distance
Metric

In-situ
OR

Satellite
Image

Multimodal
Representation Classifier Prediction

Figure 5.5: Proposed Multimodal Joint Representation

generalized model using the nutrient flows. A single location is used to observe

if the model would be able to perform satisfactorily for locations with different

properties, therefore testing the generalisability of the model. The other three

sites are used for testing.

Figure 5.6 illustrates the MSE values for each model based on the number of

days into the future. For all models, a hyperparameter search was done based

on the prediction day. For the SVR model, a model was created for each pre-

dicted variable. For deep learning models, an Adam optimizer was used for this

task with 200 epochs and earlystopping with a patience of 15 epochs (Kingma

and Ba, 2014). The TF-Conv model in Chapter 4 is used for the in-situ data.

The CNN models tested for MODIS and CMS data are: ResNet18, ResNet152,

MobileNet v2, VGG19, VGG19 bn, and AlexNet. Two comparisons are made,

one with MSE for the three predicted variables and one with MAE to compare

oxygen saturation percentages. The hyperparameters for the CNN models for the
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fusion approaches are given in Table 5.3. The results show that a single CNN

architecture is not suitable for each prediction day. The hyperparameters for the

XGBoost models for the fusion approaches are shown in Table 5.5 and Table 5.4.

The same deduction about CNN hyperparameters could be made for the param-

eters of the XGBoost models.

The results of the first additional experiment, the coordinated representation

approach, are presented in Figure 5.8 and Figure 5.9. The hyperparameters for

the coordinated representations approach are given in Table 5.6. As the in-situ

data is used as the ground truth for the representation that model learns the

in-situ representation better than satellite data. In certain locations such as

Dowsing, the replacement of data could be done and would result in a better

performance than in-situ or multimodal approaches. The hyperparameters for

the XGBoost model for each data modality are given in Table 5.7 and Table 5.8.

The results of the second additional experiment, using different MODIS sen-

sors for detection, are visualised in Figure 5.10 and Figure 5.11. These figures

show that in majority of the cases using RGB data is more suitable to detect

HABs in these locations. The hyperparameters for the False Color and NDWI

are shown in Table 5.9 and Table 5.10. The shift from the original hyperparam-

eters are clear such that models like alexnet and resnet18 perform better than

vgg19 in a number of cases, leading to an implication that the NDWI and False

Color data contain different information than RGB data.

5.5 Discussion

Using only satellite data for tracking blooms results in differences in terms of

explained variance based on year (Brivio et al., 2001). Therefore, using only a

single modality might affect our prediction capability. From Figure 3.8, it can



5.5. DISCUSSION 129

Day Model Type MAE
1 Luong 5.182
2 KNR 7.954
3 KNR 7.952
4 XGB-Late 8.41
5 Fusion-Late 7.855
6 XGB-Late 8.300
7 XGB-Late 8.115

Table 5.2: MAE results for each day with the best performing model
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Figure 5.6: Mean MSE for test locations

be deduced that the Luong attention model is suitable for predicting the next

day and k-NN is suitable for predicting two and three days ahead, using only

in-situ observations. For the rest of the days, the most suitable model is one

of the multimodal approaches proposed, either using the late fusion approach or

transferring the learned representations from the late fusion approach and using

XGBoost as the final classifier. Table 5.2 indicates an error rate between 7.855-

8.3% for multimodal approaches for prediction days 4-7, which is on par with

unimodal approaches for days 2 & 3. Using a feature representation approach
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Figure 5.7: Mean MSE for each monitoring location

combined with XGBoost benefits the predictions.

Transferring learned parameters from different fusion approaches results in

XGBoost models with slightly different hyperparameters. The XGBoost param-

eters in Tables 5.5 and 5.4 show that the learning rate hyperparameter eta is

constant for the o2conc variable in the majority of the experiments and the

generated trees are not as deep as other variables. The majority of the other

hyperparameters are mostly constant in mid fusion. Hyperparameters such as

min child weight and subsample vary depending on prediction day for both late

and mid fusion XGBoost.

The proposed coordinated representation approach enables the use of multiple

modalities. This approach can be used when the data quality of one modality

is low. As the in-situ data is used as the ground truth, it was expected that

the lowest error would be obtained from it, which can be observed in Figure 5.8.

However, the in-situ model can be replaced by other approaches depending on

the prediction day and the location, as illustrated in Figure 5.9. In the majority

of the cases, VGG-19 with batch norm is the best performing CNN, which shows

that batch norm enables the model to increase its generalisation capabilities. For
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Day batch size modis model copernicus model fusion type lr

1 16 mobilenet v2 mobilenet v2 mid 0.000238
16 vgg19 vgg19 late 0.000343

2 32 vgg19 vgg19 bn mid 0.003272
32 resnet18 alexnet late 0.004592

3 32 vgg19 mobilenet v2 mid 0.000251
16 resnet152 vgg19 late 0.000191

4 32 resnet18 alexnet mid 0.001584
16 resnet152 mobilenet v2 late 0.0016

5 16 alexnet vgg19 mid 0.002756
32 vgg19 bn mobilenet v2 late 0.000138

6 32 alexnet vgg19 mid 0.002278
32 vgg19 vgg19 late 0.000932

7 32 vgg19 vgg19 mid 0.003165
32 vgg19 vgg19 late 0.001475

Table 5.3: Hyperparameters for fusion models

in-situ data, the learning rate, eta, is small in the majority of the cases with a

varying number of epochs. The rest of the parameters vary, resulting in different

models for each prediction day. For satellite data, the generated trees are not

deep and stay constant with varying eta values.

HABs can be detected using different data bands. On average, using RGB

bands results in the best performance, followed by NDWI as indicated in Figure

5.10. This experiment entails that different modalities could be used for detection

purposes. The results show that one modality is not best in all cases; therefore,

various other options must be explored. Illustrated in Figure 5.11, WestGab’s

performance indicates that all three data band sets could be used for different

days depending on the detection day. Using NDWI for detection at two and

three days ahead at the Dowsing site shows comparable results to RGB and False

Colour. The CNN types change depending on the type of data used and detection

day.
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Day fusion type eta max depth min child weight subsample colsample bytree n rounds target var

1 late
1 3 5 1 0.7 500 o2conc

0.01 3 0 0.5 0.5 500 sal
0.01 10 0 0.5 0.5 1000 temp

2 late
1 5 3 1 0.5 500 o2conc
1 3 3 1 0.7 500 sal

0.1 10 0 1 0.5 500 temp

3 late
1 3 0 1 0.7 500 o2conc

0.1 3 0 0.5 0.5 500 sal
0.01 10 0 0.5 0.5 1000 temp

4 late
1 3 0 1 0.5 500 o2conc

0.01 3 5 1 0.7 500 sal
0.01 10 0 0.5 0.7 1000 temp

5 late
1 3 0 0.5 0.5 500 o2conc

0.1 5 0 1 0.5 500 sal
0.01 10 3 1 0.5 1000 temp

6 late
1 3 0 0.5 0.5 500 o2conc

0.1 3 5 0.5 0.7 500 sal
0.01 10 0 1 0.5 1000 temp

7 late
1 3 0 0.5 0.5 500 o2conc

0.1 3 3 1 0.5 500 sal
0.01 10 0 1 0.5 1000 temp

Table 5.4: Hyperparameters for the XGBoost model for the late fusion approach

Day fusion type eta max depth min child weight subsample colsample bytree n rounds target var

1 mid
1 3 0 1 0.7 500 o2conc

0.01 3 0 0.5 0.7 500 sal
0.01 10 0 1 0.5 500 temp

2 mid
0.1 3 0 0.5 0.7 1000 o2conc
0.01 3 3 1 0.5 500 sal
0.01 10 3 1 0.5 1000 temp

3 mid
0.1 3 5 0.5 0.7 500 o2conc
0.01 3 0 0.5 0.7 500 sal
0.01 10 0 1 0.5 1000 temp

4 mid
1 3 0 0.5 0.5 500 o2conc

0.1 3 5 0.5 0.7 500 sal
0.01 10 0 1 0.5 500 temp

5 mid
1 3 0 0.5 0.5 500 o2conc

0.01 3 3 0.5 0.5 500 sal
0.01 10 0 0.5 0.7 500 temp

6 mid
1 3 0 0.5 0.5 500 o2conc

0.1 3 3 0.5 0.5 500 sal
0.01 10 0 0.5 0.5 1000 temp

7 mid
1 3 5 0.5 0.7 500 o2conc

0.1 3 3 1 0.5 500 sal
0.01 10 3 1 0.5 1000 temp

Table 5.5: Hyperparameters for the XGBoost model for the middle fusion ap-
proach
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Day batch size cnn model dims lr

1 16 vgg19 bn 100 0.003509
2 16 resnet152 100 0.004236
3 16 vgg19 bn 100 0.003509
4 16 vgg19 bn 100 0.003509
5 16 vgg19 bn 100 0.003509
6 16 vgg19 bn 100 0.003509
7 32 vgg19 100 0.003507

Table 5.6: Hyperparameters for coordinated representation models

Day data type eta max depth min child weight subsample colsample bytree n rounds target var

1 sensor
0.01 3 3 0.5 0.7 10000 o2conc
0.01 10 5 0.5 0.7 500 sal
0.01 5 3 1 0.5 10000 temp

2 sensor
0.01 5 5 0.5 0.5 1000 o2conc
0.1 3 5 1 0.7 500 sal
0.01 10 5 1 0.5 500 temp

3 sensor
0.01 3 5 1 0.5 10000 o2conc
0.01 3 5 1 0.7 500 sal
0.01 10 5 1 0.5 10000 temp

4 sensor
1 3 0 0.5 0.5 500 o2conc

0.01 5 5 0.5 0.5 500 sal
0.01 10 5 1 0.5 10000 temp

5 sensor
1 3 0 0.5 0.5 500 o2conc

0.01 3 3 0.5 0.5 500 sal
0.01 10 5 1 0.5 10000 temp

6 sensor
1 3 0 0.5 0.5 500 o2conc

0.01 3 5 0.5 0.7 500 sal
0.01 10 3 1 0.5 1000 temp

7 sensor
1 3 0 0.5 0.5 500 o2conc

0.01 3 5 0.5 0.5 500 sal
0.01 10 3 0.5 0.7 10000 temp

Table 5.7: Hyperparameters for the XGBoost model for the coordinated repre-
sentation approach using sensory data
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Day data type eta max depth min child weight subsample colsample bytree n rounds target var

1 satellite
0.01 3 0 0.5 0.5 500 o2conc
0.1 3 0 1 0.5 500 sal
1 3 0 0.5 0.5 10000 temp

2 satellite
1 3 0 1 0.5 500 o2conc

0.01 3 0 0.5 0.5 500 sal
1 3 0 1 0.7 500 temp

3 satellite
1 3 0 1 0.5 500 o2conc

0.1 3 0 1 0.5 500 sal
1 3 3 0.5 0.5 10000 temp

4 satellite
1 3 0 1 0.5 500 o2conc

0.1 3 0 1 0.5 500 sal
1 3 0 0.5 0.5 10000 temp

5 satellite
1 3 0 0.5 0.5 500 o2conc

0.1 3 0 1 0.7 500 sal
1 3 3 0.5 0.5 500 temp

6 satellite
1 3 0 0.5 0.7 1000 o2conc

0.01 3 3 0.5 0.5 500 sal
1 3 3 0.5 0.5 1000 temp

7 satellite
1 3 0 0.5 0.5 500 o2conc

0.1 3 0 1 0.5 500 sal
1 3 0 0.5 0.5 1000 temp

Table 5.8: Hyperparameters for the XGBoost model for the coordinated repre-
sentation approach using satellite data
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Figure 5.8: Mean MSE for test locations for coordinated representations approach
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Day batch size modis model fusion type lr

1 32 vgg19 vgg19 mid 0.001185
32 resnet152 alexnet late 0.000158

2 32 vgg19 bn vgg19 mid 0.003227
16 vgg19 bn mobilenet v2 late 0.000212

3 16 resnet18 vgg19 bn mid 0.003336
16 resnet18 vgg19 late 0.001844

4 16 vgg19 bn alexnet mid 0.003438
32 resnet152 vgg19 late 0.000974

5 32 alexnet vgg19 bn mid 0.003319
16 alexnet alexnet late 0.00159

6 16 vgg19 bn vgg19 mid 0.000894
16 mobilenet v2 alexnet late 0.002594

7 32 alexnet vgg19 bn mid 0.002932
32 resnet18 alexnet late 0.004592

Table 5.9: Hyperparameters for the fusion model that uses False Color data as
input
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Day batch size modis model fusion type lr

1 16 resnet18 alexnet mid 0.00024
32 vgg19 vgg19 late 0.000932

2 16 resnet18 alexnet mid 0.001026
16 alexnet vgg19 late 0.003549

3 32 resnet18 alexnet mid 0.001584
16 mobilenet v2 mobilenet v2 late 0.000191

4 32 mobilenet v2 vgg19 mid 0.001835
32 resnet152 mobilenet v2 late 0.000774

5 32 vgg19 alexnet mid 0.002691
16 vgg19 bn mobilenet v2 late 0.000212

6 32 alexnet vgg19 bn mid 0.003295
32 mobilenet v2 vgg19 bn late 0.00185

7 16 vgg19 vgg19 bn mid 0.002434
32 mobilenet v2 vgg19 bn late 0.002416

Table 5.10: Hyperparameters for the fusion model that uses NDWI data as input



5.6. CONCLUSION 138

5.6 Conclusion

In this chapter, an additional approach regarding the detection of HABs is pro-

posed. This approach uses the TF-Conv approach from Chapter 4 and uses two

additional modalities gathered from satellite data. The main approach uses each

modality separately in the initial step, fuses the intermediate states and calcu-

lates an output using three different approaches. These different approaches use a

linear layer, an XGBoost regressor, or a weighted mean to calculate these values.

The aim is to use each modality to extract essential information to make a more

reliable model.

Two additional experiments were done; (i) testing the effect of different data

types on model performance and (ii) replacing modalities using a coordinated

approach in cases where data quality might be insufficient for predictions. It

was observed that different data types perform well for different prediction days

and observation sites. Using alternate modalities benefits predictions, it can be

deduced that in-situ and satellite can be swapped depending on the day range

and location. Other than prediction, model explainability and interpretability for

multimodal approaches could be explored in the future.



Chapter 6

Conclusion

This chapter summarises the research undertaken for this project, outlines the

limitations and work that can be undertaken for further research.

6.1 Summary

It was stated in Hypothesis 1 that the missingness of water quality data was

MAR, and observed variables could be used to improve data quality via impu-

tation. In Chapter 3, imputation for partially observed water quality data was

discussed, using baselines that make different assumptions about the data distri-

bution, aiming to answer Research Question 1. A novel approach to data impu-

tation is introduced using self-attention and LSTMs to overcome the shortcoming

of explainability in this process. An increase in performance was observed and

each timestep’s importance was was derived using the self-attention component.

The use of self-attention aids in satisfying MAR properties as only the input is

considered when attention weights are calculated.

In Hypothesis 2, it was stated that improving the labelling procedure using

a contextual approach would benefit the model performance. In Chapter 4, it

139



6.2. LIMITATIONS 140

was discussed that the current approaches to algal bloom lack in areas such as

generalisability for different locations, explainability and labelling of data, aiming

to answer Research Question 2. A new solution for the labelling problem was

proposed by including the contexts of observations. The generalisability issue was

tackled using a representation learning approach to generate data and filter the

generated data and test the trained model on locations with different properties.

SHAP is used to tackle the explainability issue and aid domain experts using such

models.

In Hypothesis 3, it was stated that various data modalities could be used

simultaneously, leading to better performance. In Chapter 5, the possibility of

using multiple modalities for HAB detection is discussed, aiming to answer Re-

search Question 3. The current methods only utilise unimodal approaches and

introduce multimodality to validate the model. An approach that simultaneously

utilises multiple modalities for analysis using in-situ and satellite data is intro-

duced. Further approaches are experimented with using coordinated approaches,

aiming to replace the low quality data modality with a better one. The applica-

bility of multimodal analysis is further explored by training models using various

bands of satellite data.

6.2 Limitations

The Nature of Missingness As stated by Rubin (1978), it is impossible to

obtain an exact value for a datum. If it were so, then the value would not be

missing. If the nature of the missingness pattern were known, the imputed value

would have no error, and the datum would not be missing. Therefore, the nature

of the problem forces the user to make assumptions about the data to minimise

the error in the imputation process.
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Use of Proxy Variables The approach used for this work used dissolved oxy-

gen as the target variable, which is not only created by phytoplankton but other

organisms that contain chlorophyll in their cells. The same condition applies to

the use of the chl-a variable. The sure way of determining harmful algal blooms is

through measuring toxins in the water body or analysing algae species in samples

in a lab which was collected from the water body. In the latter solution, the data

gathered is not as frequent as in-situ monitoring and takes time; therefore, it may

not be applicable for detection in short time windows.

Monitoring Locations The monitoring locations used for this thesis are not

near populated areas; therefore, only in-situ or satellite observations could be

used for this task. Water bodies closer to populated areas create opportunities

for analysis, as new types of data sources, such as tweets, blogs and close-up

images of bloom incidents can be gathered.

Generalisability of Models Due to ranging the variety of sensors at in-situ

sites, it is a challenge to model the different behaviour observed at monitoring

sites. The challenge is also apparent in models that use satellite data, as different

works use data gathered by different sensors.

6.3 Future Work

Analysis of Collected Water Samples In-situ data can be further supported

by analysing water samples gathered from monitoring locations. This analysis can

give insight into the species found at the monitoring site at the collection date.

The disadvantage of this type of analysis is that the frequency is low, and it

creates the issue of fusing of time series datasets with different frequencies.
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Social Media Data Twitter data could be incorporated into the model de-

pending on the geolocation of the tweet and the possible study area. Tweets

with image attachments which contain certain keywords could be included in a

future iteration of the proposed model to improve its performance. However,

social media data is limited to the HAB event happening at the time of posting.

Therefore social media data cannot be used for early detection but for mitigation

of a current event.

Citizen Science Programs Citizen programs are beneficial for monitoring wa-

ter bodies around certain locations and gathering information related to blooms,

harmful or not. By obtaining data from citizen science programs, more precise

observations could be made, and models could be improved. This data source

could be used in conjunction with social media data for populated areas.

Ship Traffic Data The LivBay site used for this thesis is near active ship

routes, which may start/end their voyage at this destination. It is known that

ballast water carried by ships can induce algal blooms if the newly introduced

species can survive in this environment. Therefore it might be useful to include

ship traffic data for similar locations that see heavy ship traffic.
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