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Abstract

The healthcare service is under pressure to do more with less, and changing the way

the service is modelled could be the key to saving resources and increasing efficacy.

This change could be possible using patient-centric care models. This model would

include straightforward and easy-to-use telemonitoring devices and a flexible data

management structure. The structure would maintain its state by ingesting many

sources of data, then tracking this data through cleaning and processing into models

and estimates to obtaining values from data which could be used by the patient.

The system can become less disease-focused and more health-focused by being pre-

ventative in nature and allowing patients to be more proactive and involved in their

care by automating the data management. This work presents the development of a

new device and a data management and analysis system to utilise the data from this

device and support data processing along with two examples of its use. These are

signal quality and blood pressure estimation. This system could aid in the creation

of patient-centric telecare systems.
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1 Introduction

1.1 Introduction

The current issues surrounding medical monitoring and data management within

a healthcare setting inspire a need to create a better, generic, data understanding

and management solution. These issues are potentially far reaching, since most

people have an interest in their health, and some may require external healthcare

intervention. This intervention needs to be timely and effective. To do this new

healthcare models will need to be built and proven to work, which can assess the

individual needs of the patient through monitoring, making sure the best data is

available to be used when estimating a person’s state of health and providing these

insights back to the users of the system.

In broad scope, this thesis describes elements of a framework which follows the

data flow of the care system above. There are two parts presented in this thesis:

• Data management and processing, the major component of the thesis, by

designing and implementing the system which supports data analysis through

graph based chains of processing and analysis, following a block chain system

of linking data through modular processes into results and then on to further

processing.

• Data gathering, analysis and processing, by using the framework and elements

above to gather and store data from a device for comparison and analysis. The

data stored was annotated to benchmark and classify the quality of the signals

gathered. The signal quality assessment was used to compare the device and

features used for blood pressure estimation.
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The components of the system and framework described in this thesis could be

used as operational parts or for the design of a patient-centred healthcare system.

Next, the chapter will examine the problems and identify the surrounding issues,

that will set the scope of this work. Then the aims for the research as a whole will be

described, along with their contributions. Lastly, this chapter will detail the overall

organisation of this thesis.

1.2 Problem Identification

The issues briefly described above can be broken down into four main areas. Firstly,

the gathering and recording of medical data from patients. Secondly is the man-

agement and synthesis of this data to gain the most benefit through analytics and

modelling with the integration into a useful care system. Thirdly, the problem of us-

ing the data to model and predict signal quality and vital signs is addressed. Lastly,

the prediction of the system and the risk and benefits that the users or patients face

are then discussed, thus completing the system’s life cycle.

Problem 1

There are a growing number of devices, which are being designed to capture

an increasing amount of information generated by patients or users. This issue is

discussed in more detail in section 6.2. These devices need to not only capture the

right kind of diagnostic information about vital signs but also to do it quickly and

efficiently so that the devices can have a high adoption and compliance rate from

its users. When considering these devices, it is not enough to own a device, but one

has to use it (Greenhalgh et al. , 2013).

Problem 2

The design of the management and data processing framework needs to be ad-

dressed. The primary concerns are that the design should try to solve the general

problems and not let the design be limited to solving empirical problems that could
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arise at the design or implementation stage of the system, being mindful of the

future development of the system. The last issue is, to be able to easily run data

transformations and processing tasks to turn the raw data into useful and informa-

tive results, while maintaining the data integrity (Sittig et al. , 2008; Fox et al. ,

2010).

Problem 3

Mobile medical devices, when used in modern telehealth systems can allow the

patients to potentially generate a large quantity of data. This data influx needs

to be supported by a system that can manage it. The quality of the data these

devices capture can suffer from problems, including movement and environmental

noise artefacts for example. Therefore, finding and maintaining methods of keeping

the data quality high is a growing concern as the potential data input volumes start

to scale up with the increasing number of devices on the market. The cleaned signal

data should be able to be utilised for further analysis and estimation of parameters

used to inform and educate the users of the system about their health and the

recommended options. By solving this issue, it may assist the users to follow a

clear trajectory for the maintenance of their health, long-term outcomes, and goals

(Epstein & Street, 2011; May et al. , 2003; Cusack et al. , 2008).

Problem 4

The last and crucial part of the system is the feedback of the collected and pro-

cessed information back to the users of the system. However, this requires extensive

knowledge of the best way to inform and interact with users. Work has been done

by Boll & Brune (2015) suggesting that people’s needs change depending the on

the age group as they studied people aged 55-75 and 75+. These factors and oth-

ers need to be considered when providing robust and efficient user interfaces. The

author acknowledges this as being important and a large subject in itself and it is

currently outside the scope of the thesis. This thesis is primarily concerned with

providing the tools and frameworks to support such systems, where a well designed

15



user interface could be added. The user interface is more of a psychological and so-

ciological question based on the best design for a system to convey the appropriate

information to the patient in a way that they can readily understand.

1.3 Research Aims

The main research objectives of this thesis are to find potential solutions to the first

three problems stated above. The aims are presented in more detail below. The

fourth problem of creating a useful health related user interface for presenting infor-

mation back to the user is beyond the scope of this thesis and should be addressed

in future work.

Aim 1 - Develop a Data Management and Analysis Framework.

This goal addresses the design and development of a framework to ingest the

data from variable data sources. The system should be designed with change in

mind, and be able to fit the users and the different applications of these systems.

Data from different sources needs to be combined to create new augmented results

in a reliable way. The design of the framework needs to be able to track the history

of the stored elements and their dependencies and to put process management and

the data genealogy at the heart of the system. This will allow a fluid approach to

problem solving while keeping the steps re-traceable. The system also required a

data structure which can store many different types and sizes of information in a

structure which can be interrogated with speed and efficiency. Together this should

create a system which can dynamically and easily adapt to change, while maintaining

data integrity.

Aim 2 - Develop a data capture device and process high quality infor-

mation from data streams.

This aim is to design and develop a portable medical data capture device that

is easy to use, which can be compared to other devices to show that it can indeed
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produce useful signals for further processing. The device also needs to have an

accurate and simple data logging system to allow the data to be sent to the data

management system.

The next task is to process the data from the device to produce high-quality

information. Thus improving the data management and analysis system substan-

tially by locating and promoting only the high-quality data. The data management

solution from the previous aim will be used. This will allow the integrated analysis

of the data collected.

To show an example of further analysis and data chaining the signal quality

measures, will aid an investigation into blood pressure (BP). Blood pressure is the

one vital sign where it usually requires a cuff based measurement which can be

time consuming and uncomfortable to obtain. This could be improved by using an

electrocardiogram (ECG) and photoplethysmography (PPG) signals to estimate it

but this requires the formulation and testing of models for estimation.

1.4 Thesis Contributions

The contributions of this thesis based on the research aims described previously, are

to develop the following:

• A Data Management and Analysis Framework.

The data generated must be managed by a framework that best harnesses

the data provided so that it can be intelligently utilised. The framework

supports a block chain approach to managing data processing and analysis by

creating graph based data flows, created dynamically by the running program

performing the analysis.

• EIMO Vital Sign Capture Device.

The design and development of this device, as shown in chapter 6, highlights

the contribution of recording and reading ECG from a handheld portable de-

vice with second level synchronisation and direct comparison with a four and

six lead ECG. This includes the improved sampling of the PPG with low jitter
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to measure the pulse transit time (PTT) on a beat-by-beat basis thus enabling

the estimation of the BP measurement.

• ECG and PPG Signal Quality Analysis.

The signals captured should be assessed for their quality so that the most effi-

cient use of bandwidth and storage can be made. To this end, an investigation

must be performed as to the best ways to assess the quality of a signal, then

to finally use the annotated signals to find the best models and features to

accurately estimate BP based on device data captured from a study.

• BP Feature Comparison and Estimation.

This illustrates a full pathway from data ingestion through data preparation

and signal quality estimation to features which can be selected based on their

quality to achieve two things. First to compare commonly used features in

the literature to allow the data mining aspect of the system to be utilised and

second, to perform regressive model analysis using the framework to estimate

the BP from the best of those features.
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1.5 Organisation

The thesis has been organised in to four main parts. The first and second parts

present the data management framework, and the application of this framework by

gathering and analysing data from a device which was designed and tested. The

second two parts form the conclusions, references and further information in the

appendices. The four sections will be described below.

Part I describes the data management framework. The background and context

for the framework described in chapter 2. This leads to the main design of the

system describing the three main services and their interaction in chapter 3. Finally,

chapter 4 describes the current state, limitations and suggestions for further work.

More information about the implemented prototype can be found in appendix D.

Part II then takes the framework designed in the previous part and applies

it to a prototype data-flow in a health care context. First some background is

presented in chapter 5 about the main type of health care methodologies and how

information technology can play are large role in patient-centred care. Chapter 6

describes the development and testing of a device able to record the basic vital signs

of users for further study in the next three chapters. Chapter 7 discusses a signal

processing framework to segment and assess the quality using human annotations,

validating the annotations with a placebo controlled trial to establish a signal quality

baseline. The signal processing system is then further developed in chapter 8 to add

objectively defined features. The features and models are then tested in a model

analysis framework. The best signal quality models are then used in chapter 9 to

perform an analysis on the data from the device, to estimate the modelling accuracy

of the patient’s BP, comparing the features commonly used in the literature, and the

performance of the device. Chapter 10 discusses the work done in this part with the

current state, explaining the limitations and where further work could be directed.

Part III concludes the thesis in chapter 11 by bringing the work together and

discusses the final outcomes against the aims above and concludes the thesis. The

bibliography in also provided in this part.
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Part IV provides supplementary information with four appendices. Appendix A

contains the mathematical notations used within the thesis. Appendix B provides

information on the log files and data structures used in the device study. Appendix C

provides information about the two main studies in order to aid the documentation

and replication. Appendix D is a brief description of the prototype implementation

of the framework.
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Part I

The Data Management Framework
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2 Background

2.1 Overview

Data management issues arise from the amount of raw data systems have access to.

This is evidenced by the development of the EIMO device in chapter 6, along with

current developments in the internet of things (IOT) and the advent of industry 4.0.

This has increased the requirements for managing and analysing the data produced

from a more heavily connected world, which can simultaneously generate more data.

This has led to the development of a general data management and analysis

framework, with an architecture that can be used to store, process and link many

types of information. The system has been prototyped and used for the experiments

in this thesis. This chapter explains the background and concepts surrounding the

system design, with the next chapter discussing its design and implementation.

Data storage and management systems have been reviewed to uncover their

strengths and weaknesses, so that they can be addressed in the design stage. The

main themes are discussed in the next sections. Commonly used database applica-

tions are then compared, as understanding these systems would allow the utilisation

of already present storage systems.

2.2 System Architectural Design

The formulation and implementation of practical, robust architectures for the analy-

sis and management of large datasets can be illustrated by work done by: Zualkernan

& Shouman (2008), Al Saiyd et al. (2009), Ong & Khaddaj (2010) and Yang et al.

(2008), where they discuss different aspects of the frameworks. The main points
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are that these frameworks are intended to be distributed systems to promote con-

currency and reliability, while some deal with the ontological aspects of the data

that they store allowing better searches. This shows that there has historically been

interest in developing systems that can combine ontologies with data.

Chen et al. (2016) published a review of frameworks for data storage and pro-

cessing. In this review, they analysed different ways of storing data by describing

tensor networks and graph-based structures in more detail. Deserno et al. (2012)

describes a dynamic design for a data storage and retrieval system prototyped for

medical imaging data, with associated ground truths for that system. The interest-

ing aspects of these, are that the systems deal with the storage of the data to be

used in the machine learning system and that this processing is performed within

the framework.

Taking these ideas further, data agnostic objects and the management of the

process’s results could be added into the scheme. Further to this, the graph-based

data structures are useful for describing data as well as ontologies, and can be

combined with tensor networks as seen in work by Cichocki (2014). Combining

these structures allows a single graph structure to represent data, program and

process relationships. This graph structure of the relationship between the data

and programs represents a data genealogy as it would show the family tree of the

data and its analysis.

The processing and management capabilities could be extended by allowing the

results of a process to be placed in context with the methods used to calculate them

and the input data source. The context surrounding the process and result allows,

for example, an inaccurate program and any nodes influenced by the program to be

removed from the system without the prior knowledge of the characteristics of the

process. Further, if a program is superseded by an improved version, it would be

easy to identify the results that needed to be recalculated.

Some of these principles have been put together as a project undertaken by

the Apache Software Foundation called Spark1; this project normally runs within
1Information on Apache spark can be found at <https://spark.apache.org>. Author: Apache,

Retrieved: 2016/10/24
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distributed cluster systems, like Hadoop and provides functional programming ele-

ments operating on a data element called a resilient distributed dataset (RDD). The

RDDs are created by importing data from a file system into one or more of these

elements and scheduling operations within them. These operations can be cached

by using in-memory buffers or new files that are created to preserve this information

outside of the system’s operation. The movement of files offers many ways to lose or

confuse data sets or results, therefore potentially losing the consistency of the data.

The system allows the operation to be performed as tensors on the data, but it

does not track the run time of the operations and how the data results evolve. This

system can perform interesting processing structures, for example: running map-

reduce functions easily, but the data still has to be managed manually before and

after the analysis. The framework below addresses this by using the flexible storage

in the NodeSR and by using the graph structures for data organisation. This allows

operations to be built out of reusable pieces and allow work-flows to evolve as the

data comes in and new transformations are defined.

This flexibility of storage types requires management; this could be aided by

using the domain-driven design of the application specific interfaces applied in order

to deal with the data within, in the right contextual way (Al Saiyd et al. , 2009).

2.3 Big data Systems

Discussions on storage and data management tend to have a lot in common with

big data systems, where ‘big data’ simply refers to processes dealing with massive

datasets (Hu et al. , 2014; Sagiroglu & Sinanc, 2013). These systems can be described

using three terms: Volume, Variety and Velocity. These terms are a convenient short

hand for describing big data systems (Sagiroglu & Sinanc, 2013; Cichocki, 2014).

Volume refers to the total size of the data being stored and retrieved. Variety refers

to the many different types of data requiring storage along with the task of storing

structured, semi-structured and unstructured datasets. Velocity can be harder to

define since, like its physical counterpart, a high velocity could mean a lot of data

moving slowly, or a little data moving fast. Cichocki (2014) adds a fourth, veracity,
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which refers to the quality of the data. This is a property of the data itself and not

necessarily to big data systems uniquely.

Different systems have been developed in order to address these properties. Most

systems address the volume aspect directly, since having a fast storage system can

allow for the storage of a variety of data with data encapsulations. This indirectly

tends to improve the data velocity limit of the system. The discussions have been

broken up into two sections. The first explores architectures and issues for dis-

tributed systems, the following section looks at communication protocols.

2.3.1 Distributed Architectures

An important aspect to consider for the design of the framework, is where the

computer resources and control will be located. This question prompts a split of

the debate into two broad kinds of architectures: centrally managed or fully dis-

tributed. Wu et al. (2009) uses a modular service-based system, where the data

is gathered and processed through a central service, acting as a manager. However

Lu et al. (2010), Isern et al. (2011) and Duque et al. (2003) have chosen a far

more distributed route with grid-based architectures; this allows for better scaling

and improved robustness. Modular systems can be very flexible and this is what

underlies the power seen in grid-based computing. These systems have to be modu-

lar in order to cross computer resource boundaries. By contrast, centrally managed

systems tend to have bottlenecks and low redundancy which are points of weakness.

These bottlenecks should be kept to a minimum and designed out in the early stages

if at all possible. The main reason to use centrally managed systems seems to be

that they are easier to administrate and keep consistent.

Grid-based systems could have their responsibilities separated into storage and

processing parts, which could be run on separate hardware, making the resultant

system more flexible as it could utilise heterogeneous hardware. Heterogeneous sys-

tems use computers which do not have the same resources or capabilities. There

are two main types of resources: data storage and data processing. The storage

resource can be defined as the available data storage capacity available on a com-
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puter. The compute resource can be defined as the available processing capacity on

a computer. An example of this is that a computer can be designed to be efficient

for both storage and retrieval of data, but poor at high demand algorithms; this

would have a high storage resource capacity. Another computer might have many

high-speed cores and plenty of memory, but very little attached storage; this would

be a computer with a high compute resource capacity.

The graph data representation could be a point of weakness if this system could

not be similarly scaled up for large and distributed data sets. Work done by Spy-

ropoulos et al. (2016) shows a system for the distribution and co-location of graph

data across multiple graph database structures by using query rewriting techniques.

This work shows that distribution and combination graph databases are possible;

even showing performance improvements. This illustrates one case where utilising

this representation should not be a barrier for its central use as the chosen repre-

sentation of the framework below.

2.3.2 Communications

An interesting overview of communication systems and protocols is described by

Varshney (2007) where he points out that the desirable qualities of a wireless network

can be used to implement a pervasive medical system. These systems consist of

many mobile devices, and the benefits of using ad-hoc networks and the use of

more than one type of protocol network keeps the system flexible. The author

refers to the communication systems and how it offers both robustness and provides

low-level context awareness. Other forms of communication, as described by Lu

et al. (2010) demonstrates, as with any communication system, that the design

should be structured as a service based architecture to allow the various devices

and components to self-organise. Service based systems can allow automatic service

discovery, interfacing and automatic fail-over, which can be made transparent to the

user. This can be realised by using pre-existing open communication systems such as

MQTT, ZeroMQ and the representational state transfer (REST) architecture. This

opens up many possible lines of communication between programs and services.
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The REST architecture, first defined by Fielding (2000), has been used by many

companies to drive their API interfaces such as Dropbox2, Neo4j3 and others4. This

architectural design defines a client-server relationship where each action is atomic

and should be completely defined in the request and no state is held in the server.

This allows different servers to handle requests, so that the number of servers can

be scaled up to match the incoming requests through load balancing without having

to transfer the state of a process between request servers.

2.4 Application Specific Storage

There have been a number of different storage solutions developed for distributed

systems (Lu et al. , 2010; Wu et al. , 2009; Ma et al. , 2010; Duque et al. , 2003).

Types of storage systems used in the literature range from the simple system de-

scribed by Wu et al. (2009), where it is explained as an internal database with

component classes written to provide service-wide access and security, to much more

intricate systems. An example of a more intricate system is discussed by El-Sappagh

& El-Masri (2014), with data sharing between the distributed aspects of their sys-

tem using a decision query, which can be sent to other hospitals to recover records

for patients. This makes the knowledge base and the medical records easy to access,

but this system is run between hospitals which requires synchronising techniques

between data centres. Lu et al. (2010) shows a more classical distributed storage

system based on Chord (Stoica et al. , 2001), but is improved by using a two layered

distributed search algorithm to speed up the recovery of files within the system.

The systems with the greatest scope are the fully distributed grid based or Peer-

2-Peer based storage solutions, for example Chord (Stoica et al. , 2001) and bit-

torrent, because they provide necessary redundancy, and can be tailored to have
2The Dropbox REST-API can be seen at <https://www.dropbox.com/developers-

v1/core/docs>. Author: Dropbox, Retrieved: 2016/09/05
3The Neo4j REST-API can be seen at <http://neo4j.com/docs/rest-docs/current/>. Author:

Neo3j, Retrieved: 2016/09/05
4Google Docs REST API <https://developers.google.com/drive/v2/web/about-

sdk>. Author: Google, Retrieved: 2016/09/05 and the MongoDB REST API
<https://docs.mongodb.com/ecosystem/tools/http-interfaces/>. Author: MongoDB, Retrieved:
2016/09/05
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high performance with a small resource footprint per node when scaled to big data

volumes. An example of this is bit-torrent, where each node only sources the file it

currently holds, while the clients only pull in data to build the files required, but

over the whole network, millions of files can be shared together. Other distributed

systems like ‘The Onion Router’ (TOR), while not used for storage, showcases the

robustness and scalability of a distributed system. In this regard, these storage

solutions offer high redundancy but have greater costs associated with their setup

and infrastructure, as more care needs to be taken when creating the architecture.

Other commercial database solutions are described next; these provide profitable

examples of data integrity and distribution as well as being easy to setup and access.

2.5 Database Systems

There are many databases available for data storage. The systems described be-

low are general purpose data storage systems, each having their advantages and

disadvantages which are summarised below.

MySQL

MySQL5 is a functional and well-tested relational database server, based on

tables of data. This makes it fast for queries as they are internally optimised, but

it can be hard to modify the table’s structure quickly and efficiently. The table

structure requires that all records are the same, so this requires that columns be

added or removed for all, when maybe only a small subset of rows in the table require

that particular attribute. MySQL, being a tried and tested server system, supports

concurrency and multiple client connections and is used to provide the storage to

many websites.
5The MySQL specification can be found at

<https://www.mysql.com/products/enterprise/techspec.html>. Author: MySQL, Retrieved:
2016/09/04
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SQLite

SQLite6 offers local flat file data storage without the overhead of a server to

administrate. It does however, suffer from some performance issues, as it is not

normally thread-safe and cannot support multiple clients easily. It also requires

operating system file locking, with the threading support to be required at compile

time. In its favour, it is simple to use and does not require a server to setup; it also

offers reasonable performance on single thread queries, as compared to other flat file

storage systems. Most importantly, SQLite allows for the use of SQL data queries,

familiar to many developers, in a local storage medium.

Neo4j

Neo4j7 is a popular graph database server system. It has its own query language

called Cypher, which makes accessing data within the graph and graph traversal

easy. However, the nodes are optimised for graph traversal and search, but are not

designed for holding great amounts of data within each node. This can lead to the

system struggling with large datasets within each node, as the system assumes that

the number and size of the properties within each node are small. The system also

returns all of the data associated with each node. This is inconvenient because not

all of the data might be required which would lead to inefficiencies, in the overall

storage system.

Titan

Titan8 is a distributed graph database which allows a graph representation to be

stored within different storage back-ends, it seems to only use one of these at any one

time. The framework described below is designed to be able to distribute the data

between many different types of storage, utilising the best depending on the data.
6Information on the limits of SQLite can be found at <https://www.sqlite.org/limits.html>.

Author: SQLite, Retrieved: 2016/09/04
7More information on Neo4J version 3.0 can be found at <https://neo4j.com/blog/neo4j-3-0-

massive-scale-developer-productivity/>. Author: Neo4J, Retrieved: 2016/09/04
8More information on Titan can be found at <http://titan.thinkaurelius.com>. Author: Titan,

Retrieved: 2017/02/19
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The Titan database however, does claim currently a large number of concurrent

users and distributed server performance. The language used is the Gremlin query

language and the database itself also claims good graph traversal properties. The

main drawback compared to others and the framework described below is that it

does not possess data processing or data management qualities other than the basics

afforded by a graph database.

MongoDB

MongoDB9 is a document-orientated storage database server system that uses

a variant of the JSON language called BSON to serialise and store data without a

table structure and record schemas. It also accommodates a very flexible storage

system, but due to the constraints of the BSON documents, there are internal issues

that means a document cannot grow past 16Mb as per its manual. To counter this,

developers use a file system storage for bulk data called GridFS, which has to be

coordinated with the document store by the client manually.

Storj

Storj10 is a distributed peer-2-peer storage system. It is currently only in the beta

testing stage but it allows its users to share storage. The system breaks data up into

shards, encrypts the information within a shard, then distributes the shards across

the network. This keeps the data secure, reminiscent of the data sharing methods of

bit-torrent. This creates the same type of storage system similar to companies like

Amazon S3 and Dropbox, but without having to trust the companies with protecting

the data they hold.
9More information on MongoDB can be found at <https://docs.mongodb.org/manual/core/document/>.

Author: MongoDB, Retrieved: 2016/09/04
10More information on Storj can be found at <https://storj.io/index.html>. Author: Storj,

Retrieved: 2016/10/03
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CouchDB

CouchDB11 is a document store similar to MongoDB. This system created by

the Apache software foundation, is based on JSON documents and handles requests

by using queries to select the documents required and serving the documents found.

The notable point about this system is that queries use view functions in JavaScript

to run map reduce processes of the data within the database.

PostgreSQL

Postgresql12 is a SQL database similar to MySQL. The internal storage system

is more flexible than other SQL databases as it can easily run stored procedures in

other languages. This allows code to be run either when asked or when a trigger

event is seen such as a table update or row deletion. There is no oversight as

to what these procedures do and how they interact and so must be documented

individually. The environment used within the procedure is rather restricted so

mapping and translations could be done easily but there is not much support for

more complicated data processing algorithms, even though, in theory they could be

run.

Summary

There are more data storage systems in existence and in use. For example Redis13

and Blazegraph14 or the big data systems mentioned earlier. Those described above

are just a sample of the different types of storage systems available.

These different databases and data storage systems each have their own feature

sets so the design and data-flow in the framework presented below is designed to

be able to hybridise them. This allows the ability to harness multiple databases
11More information can be found at <http://couchdb.apache.org>. Author: CouchDB, Re-

trieved: 2016/10/03
12More information can be found at <https://www.postgresql.org>. Author: PostgreSQL, Re-

trieved: 2016/10/03
13Is a memory based key-value store, more information can be found at

<http://redis.io/topics/introduction>. Author: Redis, Retrieved: 2016/10/03
14Is a property graph using RDF for the semantic web with commercial licences, more in-

formation can be found at <https://www.blazegraph.com>. Author: Blazegraph, Retrieved:
2017/06/03
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transparently and flexibly, in order to get the best out of them, without having to

lock into any particular database.

2.6 Summary

This chapter has detailed the background surrounding the framework’s design. The

main issues raised here are that there are many different storage techniques, each

with its own advantages and disadvantages, and the overall architecture should put

the data genealogy and integrity first with the storage patterns used. The framework

needs to have an approach that balances the current storage solutions, while gaining

the best out of them, and allowing the use of new storage systems using well defined

interface methodologies. The design and implementation of the data management

and analysis framework is discussed in chapter 3.
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3 Data Management Framework

3.1 Overview

The previous chapter explained the background and concepts surrounding the design

of a general data storage and processing framework. The proposed structure, data

flows and designs are discussed next. The chapter ends with a summary of the

system with the current progress of the prototype system which has been used for

the experiments in this thesis described in appendix D. The components described

have been used to process and estimate the signal quality and blood pressure later

in this thesis, but could equally well be used for managing the processing of images,

text or other signal data. The main contributions are the proposed designs for

services and modules that will enable the combination of data storage, computation

and management, enabling the production of a data genealogy and data-flow graph

within the system.

3.2 Framework Structure

The development of the framework has three main motivations for the design of the

framework system. It:

• Was an immediate way to manage the analysis of the study data from chapter 6

device.

• Removes obstacles when designing systems which require flexibility in the use

and location of storage and computational resources, to take advantage of

available computer resources, new systems and better techniques.
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• Is used to manage the data processing process creating better visibility and

chaining of data through to the results. Programs are run against the data

within the database while managing different lines of enquiry and process

influence.

In summary, the framework is designed to allow flexibility of how and where the

system is distributed across computers and resources, and to embed process manage-

ment strongly into the design. This method extends and combines some of the ideas

about graphs, block chains and tensor systems like Apache Spark mentioned above

increasing the accountability and computational flexibility of the system. This im-

proves the data and process management within the system, creating the history of

the data and results, building a data genealogy within the graph. The data sources

for the framework are purposefully left open as the system should be data agnostic

so that it can work with time-series signal data or text through to images or video.

The system developed below is a prescriptive design framework detailing the roles

and responsibilities for the parts of the ecosystem. This allows implementations to be

developed based on this to suit the technology and purpose. The current prototype

system implementation used to run the exploration and analysis later in this thesis

is described and summarised in appendix D.

3.2.1 System Objectives

There are important objectives to be met by a system to allow it to manage a large

variety and volume of data. The objectives for the system are to be:

1. Internally data agnostic in their management and organisation.

This objective addresses the data variability, since data types for medical sys-

tems can vary so much, from signal data through to images, there should be

a method of encapsulation within the system, so that it can take and store

any data required. This allows a partial relaxation of the data types stored

in the nodes because it can be encapsulated, and the system preserves the
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overall integrity of the data block, no matter what it contains. The encap-

sulation would allow the storage and use of structured, semi-structured and

unstructured data, within the same overall data storage representation.

2. Designed for horizontal scaling.

This objective is for the system to be designed with internal structures and

processes that allow for growth horizontally by adding more nodes rather than

vertical scaling, where each node has to be improved. The design should

also allow the reshaping of the system as requirements change and technology

allows. Big data systems deal with this by allowing multiple computer nodes

to be harnessed together. This could be improved by having system concepts

that are designed from the ground up to be scalable, such as graph based

relationships and node locking for immutability. This also allows for different

data scales to be accommodated and to improve data and code dependencies.

3. Designed with a data processing and analysis ecosystem.

This objective looks directly at the management and use of the data contained

within the system. The first two objectives allow for a great variety and scal-

able volumes to be stored. Data is of limited usefulness if it is difficult to

access, so methods of processing the data internally should be added to the

system so that the data can be left in place and managed throughout the anal-

ysis. However allowing data processing and mutation to happen unguarded

can run into problems without structures in place to manage and monitor this

internal analysis; data integrity can suffer if the processes are not checked and

monitored. The framework should have methods of process management de-

signed in, which can translate the use and processing of the data into trackable

assets of the system itself. Thus allow programs to be monitored while in use.

3.2.2 System Overview

The framework that has been developed is structurally divided into two domains

and three defined types of services based on a micro-service architecture as seen in
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figure 3.2 and figure 3.1. The first domain consists of the NodeSR and ProcessCR

services. These are general infrastructure services for storage and compute resources

respectively. The second domain contains the third service, which is an application

specific front-end service defined here as a template in section 3.5 to support and

encourage new services to be added to extend the system. This domain can have

more than one application specific service or none, if the infrastructure services are

sufficient. This allows for application specific user interfaces and data structures to

be built into system components to improve the interaction speed for clients and

users. The creation of these domains allows for a modular approach with defined

interfaces between the services. The modules can then be more easily documented,

improved and upgraded as required, with well definable responsibilities.

Figure 3.1: Diagram showing the Jelly DL system. Each service exists in an open
structure, all sharing and embedded in the network middleware as represented by
the yellow area. Each service serves as an interface framework to utilise the central
resources appropriately. The rings between the service types show that each service
should be able to pass messages between siblings, enabling the system to intelli-
gently solve storage and processing problems while keeping the structure open and
distributed.

The first service is the base storage system called NodeSR. Its responsibility

is for the storage and retrieval of data and the graph structure it is contained in.

The chosen structure, as discussed earlier in section 2.2, will be a property graph
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Figure 3.2: Diagram showing the network map of the system services. Each service
exists in a open structure, all sharing open REST interfaces over the network. Each
service has its own specialities and management capabilities.

structure because it is the most flexible. The graph data structure facilitates the

storage of the data as well as the process management by building in a tensor

representation into the graph structure. The structure leads to a strong internal

data structure and storage framework which can deal with incoming and outgoing

data as repurposable nodes in the graph, then links them together to capture the

knowledge of the data relationships and the analysis that has been carried out on it.

This satisfies the first objective for dealing with data variety. The second objective

requires it to be designed as a lightweight service for existing scalable databases, so

that many service nodes can work together with other common systems that would

be well suited to balancing requests to the service’s API. A simple example would be

systems like Nginx1. The service abstraction allows internal signalling if required,

between copies of this service. The objects can be then stored and recalled through a

standard API protocol available at each NodeSR service, creating an easily reusable

and flexible system, as described further in section 3.3.

The second service is the compute service called ProcessCR. Its responsibility is
1More information can be found <https://nginx.org/en/>. Author: Nginx, Retrieved

2017/03/05
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for initiating the running and control of the process tasks, as well as for reporting

the status of the resources consumed by those processes, while managing the allo-

cation of resources and environments to new processes. This builds on to the graph

structure of the NodeSR service and the tensor representation to store the knowl-

edge of processes and their results. The design, structure and operational aspects

are explained in section 3.4.

The third and last service is the application specific service interface (ASSI).

These are definable server systems or micro-services that handle the specific requests

for data and user interfaces. In section 3.5 the application interface design ideas are

discussed with examples of the current implementation seen in appendix D, which

was used for the experiments undertaken in this thesis.

3.2.3 Service Communication and API

The interfaces to the services all use the REST pattern over the HTTP protocol. The

REST system, as describe earlier in section 2.3.2, is being used in many applications.

The REST architecture allows all of the services to be easily accessed from many

different types of application. Many programs, programming languages and systems

now have the capability to access web resources.

All service requests use uniform resource identifier (URI) endpoints with struc-

tures and queries designed to be simple to document and consistent across the dif-

ferent services because they are derived from a common template explained below.

The system uses the URI to resolve two issues in web based application program-

ming interfaces or APIs. The first is knowing the version of the interface, so as to

understand the dialect it uses and the requests it is capable of. This is defined in the

URI path using the "<version>" tag, which means the service could run different

versions of the interface API simultaneously. The second is to have an intuitive

organisation of resources that allows the description of the endpoint to be partially

inferred from the terms used in its URI. The main template used for the endpoint

route in this framework is shown and described in template 3.1, where the template
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parts can be replaced by the service or interface required. The "<tokenID>" is a

process management identity which will be explained in section 3.3.2.
URL Template:

/<service_name>/api/<interface>/<version>/<graphdb>/<verb> (cont)
[/<resource>[/<identity>]][.<type>] (cont)

With GET or POST query string parameters as follows:

[?[<attribute_name>=<attribute_value>]*[&limit=<limits>][&token=<tokenID>]

Template 3.1: The URL template for the framework API. Where: "[ ]" and "[ ]*"
are optional parameters of the route, the star means that the option can be repeated
as required; "<text>" are replaceable template tokens; "<service_name>" is the
service name within the system for example for the NodeSR service "node" for the
ProcessCR "process" and for the MedicalDB "medical" can be used; "<interface>"
is the interface type of the service for the NodeSR this could be given as "storage"
or "management"; "<version>" is a path compliant version code e.g. V1_0_1
for version 1.0.1; "<graphdb>" is a unique identifier of the graph database to
query; "<verb>" is the current request operation e.g. GET, DELETE or MERGE;
"<resource>" is dependant on the verb given usually it is the resource requested
e.g. Node, Line or Subgraph or can be the component name; "<identity>" is a
unique identity which is usually the generic universal identity (GUID) of a resource
such as a node or link, or the name if kept as unique, either of which can then act
as a permanent URI for resource; "<type>" is to allow the request to be answered
in different dialects or formats such as JSON, XML, HTML or PY, allowing the
resources to be packaged up to suit the type specified. Other parameters can be
sent as a query string or posted form data. The query string is organised into:
"<attribute_name>,<attribute_value>" which is the name and value of resource
attributes respectively, with value strings treated as regular expressions; "<limits>"
is the definition of the limits on the set of resources to be recovered e.g. "limit=5,20"
or return with 20 resources starting from 5 using the query and finally "<tokenID>"
is the specified token ID passed as a string to use for the request.

The structure of the endpoint template above is used to allow the service to

coexist in the same URL if necessary or allow them to utilise a proxy to redirect

requests to the appropriate service. It is organised as a tree structure as shown in

figure 3.3 so more endpoints could easily be added without disrupting the overall

scheme as the new leaves can be made independent of the rest of the structure if

required.

Query parameters like those above can also be sent encoded as “form” data in

the POST request if the query is large. Table 3.1 shows the kinds of objects the

URI expects. Similar to the query string above, these objects can be sent as some

key-value attributes, like in the above case or as JavaScript object notation JSON or
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Figure 3.3: Diagram showing the route structure as a tree where each level is as-
sembled as parts of a path. This predictable scheme allows for further development
as extra interfaces or verbs can be added while knowing how the others fit together.
The application specific service interface (ASSI) is a place holder for other services.
The MedicalDB can be used as an example.

extensible markup language XML encoded form data. These objects allow queries

to be specified and data to be exchanged.

These endpoints are also defined to run for certain HTTP methods. The common

HTTP methods used for REST include GET, POST, PUT and DELETE. These

method types need to be preserved for their use to maintain compatibility with

other REST services, for example the GET verb uses the GET HTTP method, but

can also use the POST method to allow more complicated queries to be sent to

the endpoint. Similarly for MERGE, both POST and PUT are accepted as valid

methods in keeping with commonly used REST architectures. The URI template

acts as the framework for the services, they then specialise this by adding verbs or

resources to suit the application as is defined in the services below in sections 3.3.2,

3.4.2 and 3.5.2.

The other main communication subsystem is the methodology for component

discovery and registration. Components defined by other services needs to be regis-

tered with the NodeSR service so that the defined components can then be used as

native types. The system for registration will vary dependant on the final implemen-
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Table 3.1: The main structures used to query and store data within the service.

Name Resource Description

Query Objects containing fixed search criteria for a
Graph, Node or Link, setup in a graph structure.

Graph A sparse description of a graph structure e.g.
JSON or XML

Node A sparse description of a node e.g. JSON or XML
Link A sparse description of a link e.g. JSON or XML

Resource Structure Objects containing the data for a Graph, Node,
Link or registered component.

Graph The full or sparse data for a graph e.g. JSON or
XML

Node The full or sparse data for a node e.g. JSON or
XML

Link The full or sparse data for a link e.g. JSON or XML

Limit A limit on the number of resources to return if not
given, an internal default is used. X and Y are
Integers.

’all’ String to allow all the resources found to be
returned.

Y Integer will return Y resources.
X,Y Integers will return Y resources starting at X.

Token GUID An node ID that must be exist within the main
graph requested.

Relationship String An optional text string that allows the type of link
to be set, Default to ’Influence’ when not set.

Component Definition Containing the definition and mapping of a
component to register.

Mapping A set of mappings whose key form the property
names noting how each property should map to a
node resource, along with definitions of defaults
and descriptions for each, given as a JSON object.
The default can be string procedures already
defined in a library, through to a custom program
script, the final complexity of the mapping will
depend on the implementation.
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tation. An example of component use and registration is described in section 3.3,

when discussing the API communications.

Service discovery and management is handled by each service instance maintain-

ing a node presence in the graph through their own components. So on creation

of a service node it creates or updates a component with a unique name and ID.

The resources available to the system can then be queried like any other node in

the system. The meta information that ProcessCR service manages includes the

process components and data relationships. This information is contained within

the links and nodes of the graph and as explained below, these links can be changed,

representing the changing responsibilities and data processing history.

3.3 NodeSR - Storage System

3.3.1 Overview

The NodeSR handles the storage of the data elements of the system and their

arrangement in a connected graph network. This service addresses the problems

of the variety and flexibility of storage, along with the issues and disadvantages of

the data systems as discussed in section 2.5, by making one data ontology flexible

enough to cater for many needs, managed on many different types of back-end

storage. This service is solely responsible for the storage and retrieval of the data

structures given to it. The API and user interfaces are explained in section 3.3.2

and in section 3.3.4 respectively. The service currently implemented is described in

appendix D.1.1.

The modules seen in figure 3.4 show the API front end interface coupled to the

storage manager and the resources. The API receives a query to either find or save

some data to the system. Once the query is decoded and understood, the storage

manager then translates the query into operations that can be carried out on the

connected resources. This will be explained in section 3.3.3.

The modular structure can be scaled, while also allowing room for optimisation

and intelligent handling of the requests. In its simplest form, the query could be
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Figure 3.4: Diagram showing the basic architecture of the NodeSR service. This
shows the common network interface on the left through to the storage resources
on the right. The storage manager in the middle takes requests served by the API
through to the most appropriate resource interface.

directly relayed to the resource with minimum alteration, so the system behaves

as a resource aggregator, allowing the system to grow in internal complexity. The

storage manager discussed below could be made to assess each query and use internal

machine learning capabilities to learn which resources would optimally handle each

type and size of data given to it. The greatest advantage of this is to the user

and developer, as the internal architecture of the system should not impact the end

result. The clients can continue to save and load graph like objects, but the system

can internally be improving and optimising itself.

The storage architecture is logically represented as a linked node graph as seen in

figure 3.5, where graphs and nodes are given their normal representation, the links

are extended by using three-link-parts as described in the figure. The node types

form the basis of the components that are derived and mapped from the base nodes

as defined and used by the other services as described later. Links have an A to B

connection as normal, and the C connection allows for the link to have a dynamic

node attached to it, orthogonal to the normal link path. Parts of the graph can

then serve as ontological markers or modifiers of other graphs while staying within

the same queryable environment. This allows for the modelling of many different

structures and representations, aiding knowledge capture by the storage system. All

of this is continuously searchable without structure boundaries.

The data can then be queried or saved using this structure. This mirrors the

operation of graph databases currently released, such as Neo4j, but unlike Neo4j the
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Figure 3.5: Diagram showing the top level representations. This displays the nodes
in the the database along with the links connecting them; the dashed boxes show
some of the possible sub-graphs, that could be queried. A, B and C are the three
parts of a link, as a link normally goes from Node A to Node B but optionally can
be linked to a third Node C. This allows part C of a Link to act as Link or Node
resource modifiers, dynamic types, or allows responsibility chains. X, Y and Z are
type categories, these can be used to type nodes within the system, aiding querying,
which allows for the definition of both hyper-graphs and hyper-edges. More than one
type can be applied to a node to show its membership to different component types
or type groups. Both node and link types and three-part-links aid in preserving
ontological representations with the system.

resources used are not fixed. Nodes can be expanded upon greatly, with larger bulk

data stored in special bulk storage areas. Unlike Neo4j, there are extra capabilities

using the C connection in the links to store more complex relationships. This sys-

tem has the ability to use different types of storage resources to take advantage of

what the users already have at their disposal, such as: Neo4j, MySQL, MongoDB

CouchDB or Postgresql. This frees developers from being locked into any particu-

lar database system, allowing the translation and migration of information between

connected resources, if the NodeSR implementation and current interface allows it.

The storage manager provides objects level translation for resources and compo-

nents. This can be adjusted or new translations can be added to create flexibility

and decoherence from the internal structure as seen through the API to the backend

storage systems. Since the logical representations can stay consistent, new storage

architectures can be made to improve the performance without breaking compatibil-

ity. All that is required is the building of a new resource interface into the database

or storage medium of choice. The API interface remains the same because it is de-

fined without direct reference to the resources available and is discussed next. This

is followed by a description of the storage manager. The service is then rounded off
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Table 3.2: The main verbs used for request to query and store data within the
service. These refer to resources or components within the service such as Nodes,
Links, Graphs or defined components.

Name Structures Required Description

GET Query, Limit For the recovery of resources matching the
query structure

DELETE Query For the removal of resources matching the
query structure

MERGE Query, Merge Type,
Resource Structure

For the insertion or merging of resources
given by the store structure matching the
query structure

by the description of the service management user interface.

3.3.2 API interfaces

The interface can be split into two areas: the data storage and retrieval API and the

management and informational API. These areas require defining 5 verbs seen in

tables 3.2 and 3.3. The storage, retrieval and management requests once understood

by the API endpoints, are delivered to the storage manager within the service. The

query and store structures are described in table 3.1.

Storage API

The data access interface is derived from the URI template and tree structure

defined in section 3.2.3. Three verbs are required as shown in table 3.2 for the

purpose of storage. The query structure allows resources to be found. This is straight

forward in the GET and DELETE verbs as only a query structure is required.

MERGE uses this to allow the node found to be merged or replaced on the server.

The MERGE verb has provision for an options list in the request. It is a system

to inform the storage manager of how the merge should take place. If the option

is set to “replace” for example the resource structure sent should be used to wholly

rewrite the node found using the query. If set to ‘edit’, the resource structure being

sent as a difference to the graph resource queried.
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To address the process and data management within this system, the service uses

process tokens, which are implemented in the API and storage design. The token

used can be any normal node within the graph network as only an ID is required to

form a link. However for normal use, the type of approved nodes which can be used

as tokens can be restricted.

A client requesting a token sends identifying information, which is saved into the

meta data for the token and the ID of the token created is returned to the client.

When the user queries the service for a set of nodes, the token must be given to the

service. Links are then added between the found nodes and the token using a link

with a “USED” type. This means that the system knows what data that token, and

therefore that process or client has had access to. Similarly when saving data into

the service, the token must be given. The service links all created nodes to the token

with a “PRODUCED” type. This system allows the information about the operation

of a token or client to be monitored without a large overhead or disconnected logs

as the links are built into the main data structure. The ProcessCR service extends

on this principle to allow distributed compute resources as in section 3.4.

Management API

Apart from the verbs used for storage above, the API of the NodeSR also has

three other verbs, as shown in table 3.3 for the purpose of management. INFO and

HELP are used to aid management capabilities so that the service can be managed

through a web interface. REGISTER allows a component definition to be sent and

registered within the service.

The user interface, discussed in section 3.3.4 works by using both the manage-

ment and storage API. The service can be requested to provide information about the

current storage and resource setup, as well as the current status of these resources,

through the INFO verb. The HELP verb allows resource or service information to

be requested in order to document the interfaces dynamically. This allows both

the documentation to be provided to clients when required and further API’s which

can self discover the new endpoints. The documentation could be rendered as an
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Table 3.3: The main verbs used for the management of the service. These can
refer to resource and component objects within the service such as Nodes, Links or
Graphs.

Name Structures Required Description

INFO Query To gain information on the service or
attribute types for the query.

HELP Query
To gain help on the endpoints available
for this resource, acting as part of the
documentation of the service.

REGISTER Component Definition
To gain help on the endpoints available
for this resource, acting as part of the
documentation of the service.

HTML page for display or a structured language such as JSON or XML as objects

to be read and interpreted by another program. The REGISTER verb works by

being given a component definition as described in table 3.1. This definition could

be as simple as a JSON or a python class which can be registered and imported

within the NodeSR service. In the implementation given in appendix D a python

script is submitted to the service. This defines a class with the properties listed and

mappings given. Since it is a full python script, access methods can also be defined,

to allow more intelligent property access through the storage manger, as discussed

below.

3.3.3 Storage Manager

The main module of the service is the storage manager, which takes queries from

the API and translates them into the necessary queries for the underlying resources.

The processing done at this level involves the routing and translation of information

to the resources which are best at storing those types of data. The block diagram of

this process is seen in figure 3.6. The interface that is presented to outside systems is

based around three main objects, which are Graphs, Nodes and Links as explained

above. The purpose of this module is to translate the logical graph representation

into structures that are better able to be stored in or retrieved from the connected

resources.
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Figure 3.6: Diagram showing the architecture of the storage manager. API add
or merge queries are presented to the storage manager, which are translated into
storage representations and dispatched to the resource interfaces. This sequence is
reversible for data searches.

The storage structure of the system is a form of graph, with two major resources

called Nodes and Links with a third internal resource called “Bulk”. These are

also shown in figure 3.6. These model components are, in principle, very simple in

structure. These will need certain known attributes such as a: unique ID; name;

type; object hash and time stamps (creation, modification and access) for each Node

and Link. The object hash allows node merging easily; it can check one attribute

and see if the basic attributes match, such as ID, name and type. Attributes are

managed through Node components defined in the other two services, which can

then be added and removed through the API REGISTER verb as above.

The storage resources that are used are dependent on the underlying resources

made available to the NodeSR system and on internal choices that can be made by

the system. More storage resource managers can be plugged in, as they only need to

understand how to store or retrieve the internal representations of the Node, Link

and Bulk objects. An example of the structure used for the MySQL connection are

detailed in appendix D.1.2 in tables D.1 to D.3 for the internal structure of these

objects because they are used in the NodeSR’s implementation at the end of this

chapter.

The translation from the external to internal representations are done by break-

ing down the object to a set of the lowest common denominators which can be

either found and returned, or merged by using the resource manager that would be

controlling each connected resource. The links can be decoupled from the graph

48



objects and related nodes to make atomic links to storage in tables or left with the

nodes for storage in a graph database. The nodes are pulled together from the graph

or collected from the nodes in the query. These are then processed to make node

sets with all the bulk attributes, separated into implicitly linked bulk objects. The

optimised nodes and links can then be sent to the graph storage resource, similarly

the bulk items are sent to the bulk storage resource. Each of these steps require

decisions based on the best way to optimise the node for speed and where to store

them. The decision logic at this point has access to the multiple levels of represen-

tation, so intelligent decisions can be made as to the classification of bulk objects

and the best resource to use, or even to start up new resources or optimise search

strategies for increased performance.

The details of the search strategies, such as implementing a layered search scheme

similar in approach to the one used for CHORD (Stoica et al. , 2001) or Google’s

big table (Chang et al. , 2008), and to show how they could be used to improve

the performance of the storage system, is a large subject in itself; and is beyond

the scope of the current framework. The framework does however bring together

the storage of data, along with contextual information, which allows for further

improvements to be included within this module.

The translation of the nodes discussed above into components is also handled

here so when a request is made for a specific resource, a query is given along with the

type of resource specified. A query is constructed to make sure that the component

type is among the types that the query is searching for. A diagram explaining

how the component properties map onto the under-lying node properties is given in

figure 3.7. The component definitions are given to the NodeSR service by the other

services. These can then be checked internally for consistency. How this exchange

of component types takes place would be dependant on the specific implementation

of the system. The current implementation is given in appendix D for example,

the MedicalDB and ProcessCR services send the components to the NodeSR using

the REGISTER verb as they load up. The components sent to the NodeSR get

overwritten so always the last submitted component by each service is used when
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Figure 3.7: Diagram showing the component property mapping on to a node resource
in the storage manager. The middle block shows the Node resource properties to
the left and right of this are two example components and how properties from
these map on to the node properties. Component properties are defined mapping
on the node resource through a tree hierarchy, with properties able to map to the
same node attributes. This means that these attributes would be shared between
the component properties, the example being a note attribute as shown, multiple
component types can be active on any particular node based on the type given.

doing the property mappings.

The node types represented within this system allow for component based views

to show context specific information within the node, dependent on the compo-

nent types that the node has been given. The component models then act as the

gatekeepers and maps for the data and keep the internal structure consistent. Dif-

ferent components can then either be made to work together and generate emergent

properties, or keep the function they serve as independent attributes.

These components can be combined to create the different types and views of the

information within the graph that the external systems require. A node could be a

‘Raw:Data:Annotation’ type for example, which would mean that the node would

have raw, unprocessed data and also have annotation information available. The

properties and capabilities of these components are stored within the component

objects, along with the implementation of how to encapsulate and un-encapsulate

the data. When storing these types, the contents can be packed and unpacked to

create the base resource types of nodes and links so that they are saved into the
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NodeSR storage system graph.

3.3.4 User Interface and Management

For easy management of the service, separate management programs lead to re-

strictions for, when and where the system can be monitored. The system design is

intended to use web based management built into the server itself, with APIs and

client side scripts. This can allow for easy management and configuration with a

responsive interface, taking advantage of the latest website scripting developments.

This also aids in operational consistency; if the server is upgraded, all of the man-

agement consoles will be consistent. The web based API interface allows a browser

to be used to control the system and review results. This is a system of dynamic

web pages with built-in JavaScript to allow the interface to restructure itself in the

browser client and provide a native feel.

Within this interface there is provision for a low level storage search and editing

as well as testing facilities to allow for online setup and configuration of the resources

available to the system. This can also serve to present and partially document some

of the management API endpoints to the users and developers. An example of

the user interface is given in appendix D.1.1, where the current implementation is

discussed.

3.4 ProcessCR - Compute System

3.4.1 Overview

The compliment to the storage service described above is the ability to run proce-

dures automatically using the managed data. The service requires the capability

to start and stop processes, along with checking their resource usage. The service’s

job is to run and monitor the programs given to it while providing an interface for

status updates and to allow the system to monitor the jobs in progress. This adds

the ‘compute’ service to the system, allowing the framework to both store and pro-

cess data. The service currently implemented is described in appendix D.1.3. The
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design architecture of the ProcessCR is shown in figure 3.8, this shows the connec-

tions to the network and the internal logic. The process logic and management will

be explained in section 3.4.4.

Figure 3.8: Diagram showing the basic architecture of the ProcessCR service. The
shared network is on the left, with the process workers being managed on the
right. The management and service API allows for interaction with the service.
The NodeAPI shows the interface with the storage system for recovering programs
and processes. The processes spawned have independent connections to the network
and run their own interfaces. The process manager setup is a basic process running
environment and passes the process ID as a token into the worker.

The service requires the special components and attributes of nodes to be defined

and stored in the NodeSR. The structures shown in table 3.4 are defined for the

storage of the information used in this service. Program nodes store the source code

or scripts with the dependencies to allow for a complete program structure to be

built. This defined structure is then used by the process manager which saves its

current state into a process node. This serves two purposes; the first is to allow the

parts of the system to see the current state of a process and the second to act as the

organising principle to better manage the running of the processes, as mentioned

before in section 3.3.2 when discussing the NodeSR tokens.

Results components are a general node to encapsulate the various report mes-

sages, files and process logs produced by a running program. They store a report of

the program’s operation and such files as required to be saved, during the programs

operation. More than one result node can be created by a process along with any

other node types the process needs to create.
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Table 3.4: A list of the components required and defined by the ProcessCR.

Name Description

ProcessCR Denotes the ProcessCR instance node.

Program Denotes a program node to use to store a program source, along with
its trigger and estimated duration.

Process Denotes a process node to use to store information about the internal
processing worker.

Result Denotes a results node to store program result such as files, program
logs or intermediary result digests.

3.4.2 API Interface

The interface is constructed in a similar fashion to the NodeSR service above, again

using the URI templates defined, in section 3.2.3. There are two main areas which

are: the compute and management interfaces.

The first is used to allow other parts of the system to interact with ‘compute’ or

processing tasks. The request could be, for example, to start or stop a process or

to see the status of current or selected processes. The second is the management of

the resources defined by this service. This interface starts with the same verbs and

resource as in the NodeSR, then extends this set to the local components defined

by this service. This service then responds to 8 verbs shown in tables 3.5 and 3.6

and 6 resources which are the Graph, Node and Link from the NodeSR along with

the components defined within this service which are shown in table 3.4. The query

and store structures are described in table 3.1.

The searches and requests for program, process and result components are under-

taken by the NodeSR service, with the results and queries pre and post, processed by

the ProcessCR. Communication and updates from the process managers are routed

through the ProcessCR service that called them, and saved using the NodeSR. The

API areas are both used throughout the web based user interface for the service as

described in section 3.4.5.
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Table 3.5: The main verbs used for request to query and start or stop process within
the service.

Name Structures Required Description

START Query When given the ID of a prepared process node,
it will be started

STOP Query When given the ID of a running process node,
it will be stopped

STATUS Query To find the current running status and
resource usage of the process’s queried

RUN Query

Requires a query of a program node, this will
then build the program environment which can
then be started automatically, or through the
START verb on the returned process ID

Compute API

This part of the API is used for the manipulation of the processes themselves.

The endpoints access the starting, stopping and the process status enquiries through

the verbs START, STOP and STATUS as defined in table 3.5 under the group of

‘compute’. The only requirements for these are the ID of the process token resource

node in question, given in "<ID>". These endpoints return simple JSON, XML or

HTML responses as defined by the "<type>" property in the URI. The responses

can contain pertinent node IDs with the request. This allows other pathways to

be used to gather the information, as these ID’s could be used to query for that

resource. The last endpoint is the RUN verb, which can be sent with a program

node ID so that the process service sets up the task environment and runs the task

concerned, which is explained in the next sections.

Management API

The second part of the API is used for the management of the service. Similar

to the NodeSR, the main endpoint verbs are GET, DELETE and SAVE as these en-

capsulate the functionality of the NodeSR storage API system above in section 3.3.2.

The system should be self documenting and easy to investigate, as each component

can be queried as to the properties and defaults to be expected from the service
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Table 3.6: The main verbs used for request to query and store data within the
service. These can refer to Nodes, Links or Graphs.

Name Structures Required Description

GET Query, Limit For the recovery of resources matching the
query structure

DELETE Query For the removal of resources matching the
query structure

SAVE Query, Store
For the insertion or merging of resources given
by the store structure matching the query
structure

INFO Query To gain information on the service or
attribute types for the query

HELP Query
To gain help on the endpoints available for
this resource, acting as part of the
documentation of the service

itself using the INFO and HELP verbs as in the NodeSR. The same basic interface

is used to keep the overall interface simple and consistent which is described in ta-

ble 3.6. This shows the verbs and their descriptions of the type of information to

be expected.

3.4.3 Programs as Data

Data processing tasks share an underlying structure shown in figure 3.9a which is

also used in tensor networks (Cichocki, 2014); this displays the basic structure of a

functional process, which applies a program to the inputs and then produces a set of

outputs. The process program can be turned into a data input as an abstraction of

this process, shown in figure 3.9b, and stored with the rest of the data. This means

data processing could be automated and the results automatically collected and

correctly associated with the appropriate program source, environment and starting

data. This would also allow the tracking of the process’s activities and the results

produced, which is described in the next section. This abstracted process lends itself

to a linked node graph representation that the NodeSR uses.
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(a) General data processing concept shown as a connected graph structure.

(b) Abstract system framework for data processing, showing how the programs
as well as the data input and outputs can be stored and managed together.

Figure 3.9: Diagrams to show the (a) General and (b) Abstract processing system
framework.

3.4.4 Asynchronous Task System

Programs within the ProcessCR service are treated as node resources and are part of

the whole graph database with the results linked to them as described above. This

makes data processing using this system, self-documenting. Reports can then be

constructed with the result nodes, which are linked with the program and architec-

ture that were used to create them. This documentation also allows the system the

ability to track data through its lifespan within the storage system; audit trails are

then built into the system. The way the graph environment processes are setup and

run, is shown in figure 3.10. While the program is running, the graph representation

is being updated and evolving within the graph storage system.

Since the programs get access to data in their own environment and dependen-

cies, this satisfies the objective to keep the storage system data agnostic. Only the

programs need to know what data they are expecting, and be able to understand it;

the data moving through the system can be multivariate medical signals, event log

data or even images. The results of the processes are then able to be stored back

into the database, whatever type they are, using component types to help with the

storage and is automatically linked to the programs that created it.
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Figure 3.10: Diagram showing the process graph representation. This displays the
nodes and links used in a process graph structure. The programs are connected to
the process by the ProcessCR as the program environment is built. The data nodes
used and result nodes are linked by the NodeSR service as the data is gathered and
processed. This shows the total sphere of influence of a program.

There are two main methods for a task process to be initiated. The first is the

most accessible as it uses the compute API’s RUN verb, given a valid program ID.

The second method is internal; the ProcessCR can be pointed to programs within the

database system and all programs can have trigger and trigger duration attributes.

The return value of these trigger programs determines whether the programs the

trigger belongs to, will be called. The trigger programs have a duration given, so

that the system has an estimate on how long they may take to run. This can be

assessed and inhibited from running if the trigger duration is too high or killed if

found to be over running, so that it may free up resources. The program trigger

could be a system query looking for a certain type or state of a node or nodes or

simply a given date and time as an alarm. The trigger can be left empty so that it

cannot be triggered and must be run manually. This system allows programs and

processes to be created, which can allow for the automatic chaining of functions

and tasks, as the result of the first task could satisfy the query for the trigger of

the next. This allows insulated programs to form complex relationships while still

having their operations managed.

When a program is activated by either method, the task system is initiated and

the program is fetched along with its dependencies which are also stored as program

nodes. Once a program and its dependencies are collected, the process manager

sets up the running environment and a worker process to execute the program code.
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This worker and environment is based on the programs and process information,

given or defined in the request. Each worker gets an environment and resources.

These can include:

• Service API URLs

These are resource locations for the local NodeSR or other services attached

to the system, as allocated by the manager.

• Temporary file storage

This is a temporary directory to act as a scratch pad as the process runs. None

of the information here is preserved after the process finishes.

• Process ID

The ID of the process token created by the manager to represent this worker

is used as an identity when making requests.

The worker process itself could be simple: where a python process dynamically

evaluates the program; or spawns an entire virtual machine, by using either a cloud

service, e.g. Amazon or Azura, or just a local operating system container such as the

one provided by Docker. These containers are lightweight Linux virtual machines

with isolated private environments. The environments can be kept and managed

with the programs and the data that they require. The operation of a process

within this system is open as it could invoke external larger process execution en-

vironments such as Apache Spark. The worker can act as the intermediary and

interface between these systems. If the process running within a worker requires

resources from the system it sends a request to the NodeSR using the NodeSR API,

giving it’s environment process ID token as identification and authorisation, simi-

larly this token system works for storing resources. Each worker is assigned to a

ProcessCR manager, although this can be dependent on the implementation, one

manager could be set to monitor multiple workers if required depending on the level

of monitoring required. The job of the managers is to monitor the workers and to

keep the process nodes associated with each, updated with the current status of
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the worker and process. This gathered information also allows the workers to be

stopped and cleaned up after use.

3.4.5 User Interface and Management

The user interface for this service allows the service’s current status and resources

to be displayed. It is important as it provides feedback for the users of the system

as to its current setup and resources. The user interface also allows the API to be

seen in use. This helps clarify the documentation by providing working and useful

examples of the endpoint used. However, it is important to understand that this

interface is only important to some users, which actively need to manage or interact

with the tasks running. The APIs described above allow for the integration of the

facilities offered into other user interfaces; especially those of the next part of this

system, the application specific service interface (ASSI), which is described next.

3.5 Application Specific Service Interface (ASSI)

3.5.1 Overview

This is a template service design which can be built upon and tailored to suit specific

purposes. This creates the services where the main users interactions with the system

would be located. The system acts as the main hub and micro-service template for

creating application specific UI’s and interface and internal logic, by using the other

two services through their API. This component could be one of many within the

framework, and allows for domain specific knowledge to be used at a system level,

borrowed from the domain-derived design (DDD) system for software architecture.

The architecture is shown and described in figure 3.11. The ASSI connects and

configures the framework allowing specific application logic, such as the data import

and data annotation interfaces to be used and displayed while providing the logic

internally to allow the defined domain components below to be used.
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Figure 3.11: Diagram showing the basic architecture of the application specific
service interface (ASSI) service. The connections are shown from the network to
the service using the service API as well as the other service APIs for the NodeSR
and ProcessCR. These connect the network and the specific application logic. The
component pool can then be registered with the NodeSR through its API.

3.5.2 API Interface

As in the other two services, the API is derived from the templates endpoints in

section 3.2.3. Example domain components defined by this service, are shown below.

These are registered with the NodeSR service and so requests can be passed to that

service either through a proxy in this service or by directing the request to the API’s

for the other services and allowing them to handle the request. The basic verbs of

GET, DELETE and SAVE are used for the access of these resources if required and

INFO and HELP are used to help document features of the service. Other verbs

can be defined to suit the application or replicated from either of the services.

Considerations for the final interface are described in section 3.5.4. The main

design constraint for the service interface and endpoints, are the requirements of

the particular application it is to fulfil. The design of the ASSI services is aimed

to streamline the whole system to create a consistent application specific API and

service interfaces for integration with other server systems or user front-ends to be

built upon. These services act as the main architecture customisation points for its

role. This then can deliver an interface that keeps the intended application simple

and efficient.
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Table 3.7: An example list of the components required and defined by the MedicalDB
- an application specific interface.

Name Description

User Denotes a user node component.
Device Denotes a device node component.

Meta
Denote a meta node component. This holds the circumstantial in-
formation stored as a semi-structured dataset to tie other data nodes
together.

Raw Denote the data stored are raw signals from a device.

Data For storage of data within the node so it should have a type and
data attribute.

Annotation For storage of event annotations coupled to data.

3.5.3 Domain Components

The structure of the data internally follows the basic graph database architecture

and all elements are based of nodes in a property graph. However the nodes can

have multiple type simultaneously, which allows organisational components to stack

on to them as in the ProcessCR, thus creating an easy and well structured archi-

tecture for further development and structured sharing of some of the properties

and components. This allows that each node can be “viewed” as different resource

components, using the component objects defined within the service and registered

with the NodeSR service. The component types defined are for the application that

the ASSI is designed for. The medical implementation discussed in appendix D

can be used as an example of the form that these components can take. The main

components required for this can be seen in table 3.7.

3.5.4 User Interface and Management

The system management interface is constructed as a web based application as in

the previous two services, utilising the APIs described above to drive the controls.

These controls are loosely coupled to interface logic controllers in the website to

keep it simple and flexible. The site can be designed to suit the particular applica-

tion, utilising many different ASSIs if required and the two services detailed above;
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the open nature of the APIs allow many capabilities for making interface solutions

tailored to the specific application required forming a micro-service framework.

3.6 Summary

This chapter has detailed the design of the data management and analysis frame-

work. A prototype has been implemented as briefly described in appendix D to

perform the data management and analysis in the next part of this thesis, along

with other processing tasks and experiments outside of this thesis. Using and com-

paring data from the EIMO device in chapter 6 to then annotate, assess and estimate

the signal quality in chapters 7 and 8 and blood pressure in chapter 9. The current

implementation has three services: the first called NodeSR, which delivers graph

data storage to all who require it. The second, called ProcessCR, provides compute

resources to stored procedures within the system, while managing data access. The

third ASSI called MedicalDB, delivers application-specific functionality and user

interfaces.

These have been built into two main projects called the NodeSR and the Medi-

calDB. These projects can and have been duplicated and distributed across multiple

computers to take best advantage of local resources while using this system. The

system has been used to perform the experiments described in the next part of

this thesis, along with other processing tasks and experiments outside of this thesis.

There are partial visualisations of the data-flow graph showing the data genealogy

produced by the framework at the end of chapters 8 and 9 to show the analysis

framework in action. The implementation described in appendix D has been found

to run well and at an adequate speed, although optimisations are possible and would

be encouraged for future work as is discussed next.
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4 Discussion and Future Work

4.1 Overview

To support the growing wealth of data being captured around us both in the health

care sector and the emerging sectors of Internet of Things (IoT) and industry 4.0.

There is now scope to be able to gather data at volume. This thesis has shown

that progress can be made to design and prototype a data management framework

which allows transparency and reproducibility for the analysis performed on the

data within the system. The current state and developments, limitations of the

current work and ideas for further research for the framework and prototype will be

discussed.

4.2 Discussion

The framework described in chapter 3 has been used to perform and manage all

of the experiments mentioned in this thesis. Further implementation details can

be found in appendix D. By its very nature, it chains the result to the programs

and the data that created them. The data analysis performed was used to show

that the framework as implemented, can be used to run meaningful data analysis

for both classification and regression models, while splitting the stored data across

multiple database systems if required utilising the best from each. It was also

used to combine the results from different experiments within the framework which

can ensure appropriate linking of resources for analysis purposes. The structure

allows the work to be reproduced or investigated many months or years after, with

snapshots of all of the resources either by being version-controlled or immutable, thus
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producing a unique traceability where each piece of information can be tracked back

to its import origin or entry. This has been used throughout to aid the development,

exploration of the processes and system contained within this thesis. The results

can be produced in the form of latex or HTML reports, including tables and graphs

embedded within them. The framework can allow information to be combined with

data in static values with a program script as well as time series data contained

in attached comma separated variable (CSV) files held in the bulk system. This

dynamic use of the data and processes within the system builds an ontological

network, and the programs can query this storehouse of saved metadata opening

up many possibilities for meta-learning in the future. The exact nature of the data

contained within these elements is not fixed, meaning information from images or

videos could be added to the network and brought into these processing networks.

This has not been utilised in the current version but could be included for future

analysis.

4.2.1 Current State

Most of the current projects were discussed in chapter 2. There are other frameworks

which allow the chaining of processes which have had increased interest lately. The

most interesting is Dask which is described by Rocklin (2015). It is a library system

to enable routines and programs to be built up using its graph base descriptions

which Dask can then distribute out to other processes to allow data processing

accelerations (Dask Development Team, 2016). The graph system used is similar to

Tensorflow where functions and methods are chained together to form a dependency

tree, then the graph is interrogated to find ways of distributing the work. The graph

system is similar to what the framework develops over time while data is being

processed.

The main difference is the scale and the scope. Dask can run many processes

but they are short lived as it is built to work with interactive work loads. The

framework is built around long term storage, management and flexibility, where

processes might run from seconds to days and the results are semi-permanent. The
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scope that the Dask and Tensorflow library graphs work at function and operation

level by paralleling array operations. The framework creates a graph for whole

libraries, programs and projects. There is little conflict since the framework was

built to have its process control open ended. One process could load data from the

framework where the system would capture its interactions. The process could run

a Dask task to speed up its performance or run a Tensorflow deep neural network

dependant on its setup and environment. After the task completes, the results are

then moved back into the framework by the process, which the framework captures

and stores for further analysis by other programs. The framework creates graphs

of multiscale data transformations and ontologies built up as independent programs

to process the data. The processes within the ProcessCR can achieve their goals

however the program thinks is best and has the computer resources to run.

KNIME (Berthold et al. , 2007) application shares some apparent similarity

with the current framework. KNIME allows users to build programs out of known

function blocks with some scope to build new blocks to process data. The current

framework differs from this since it is designed to allow the managment of any process

using this system for data storage by building a graph of the data consumed and

produced by that process, along with recording the process’s dependancies, if the

framework runs the program. If the process is run externally, the framework can be

informed and nodes linked by passing a process token. In KNIME a graph of nodes

can be connected by the user to build the program, however in the current framework

the user’s programs build the graph as they are executed. The framework holds this

information to allow later programs to learn and use this ontological knowledge for

their operation or this allows the data to be managed using the process information.

4.2.2 Limitations

The framework is limited in its implementation, as described in appendix D, due

to time constraints and some features not being directly required to complete the

experiments performed. One such feature was the node trigger system. This would

allow a trigger query to be specified. If met, the program would be turned into a
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process and run based on the value of the query. The effects of triggering could

allow for automatic and reactive behaviour in the data analysis. For example, if

a node sees new data without it being connected to a process that is connected

to itself, it could trigger the processing of that data. This, in turn, could trigger

other programs, and a self-organising network of data processing and analysis would

ripple through the graph. However, at any time the old versions of the results would

still be present, and all paths could be re-traced like the data flow graphs at the

end of the previous two chapters either by human or other processes in the system

running as daemons. Lines of inquiry could be made without having to worry about

the documentation as that is being built along with the processing elements. So

different lines of inquiry could be setup and concurrently pursued. Fruitful lines of

inquiry could be expanded, and dead ends could be documented as sign posts to

others exploring the data.

Another limitation was the degree of distribution and scalability of the system.

It has been wholly run on a single laptop but also scaled to use three Linux ma-

chines, running three services, all connected to one MySQL and one Neo4J database

resource for the bulk and graph data sections of the system used to increase the

resource utilisation and distribution. The processes running were able to read, load

and understand the processes being computed on the other computer elements if

required. However, testing and utilisation of the system on an extensive network

has not been tested. This might require a few modifications to the NodeSR service

to remove some of the possible bottlenecks in the writing of graph nodes into the

back-end storage resource.

The final limitation is the capability of the user interface and the security of the

system. The prototype system was implemented emphasising function and to allow

the framework to be used, tested and to produce results. This has left usability

and aesthetics to be slightly less important, due to time constraints. The inter-

face, therefore, could be greatly improved with a redesign which would significantly

improve the user’s ability to leverage the power of the scheme as a whole. The

security of the framework has got some basic level security built in, for example, the
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processes can be run in separated Docker containers thus limiting the damage they

could do. The token system for process tracking can be used as an authentication

key to decide whether a resource can be seen and loaded by a particular token. The

tokens and the ontological network they produce allows the influence of that token

to be known and measured. If in the future a token and process were found to be a

problem, the nodes it touched could be found and corrected. This however can and

should be improved now that the basic system has been developed.

4.3 Further Work

The framework design above has been implemented as is described in appendix D.

This follows the designed interfaces but simplifies the interfaces and the physical

location of the micro-services. This framework is sufficiently fast enough and has

been proven reliable enough to have been used as the main method of processing and

analysis throughout this thesis. However there are many opportunities for optimi-

sations and extensions. It has been designed to welcome changes and optimisations

by having a modular system. New extensions, upgrades to existing modules or plu-

gins can be created as needed to either upgrade module parts within a service or

be added to new services to handle different information and transformations. The

main path for extension of the system would be to create or employ an extendable

query language to allow the more powerful requests to be given to the system. The

current plan is to utilise OpenCypher1 over others such as Gremlin2. OpenCypher

is the open sourced extension to the Cypher language used in Neo4j and allows for

a very fluid definition of the nodes or sub-graph to be searched. Utilising a more

comprehensive query language can simplify the data searches and so can then invite

larger more complicated questions to be asked of the graph based representation. As

the queries become more powerful, optimisation might have to be used to keep the
1More information can be found on the OpenCypher projects website

<http://www.opencypher.org>. Author: OpenCypher, Retrieved: 2017/02/20
2More information can be found on the gremlin website

<http://gremlindocs.spmallette.documentup.com>. Author: Gremlin, Retrieved: 2017/02/20
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speed of data access high. The system has been designed to give good optimisation

points for this extra intelligence to be added.

4.4 Summary

This concludes the discussion of the data management framework. The current state

has been explored, along with its limitations. From these, suggestions have been

made for interesting further work to improve or extend the concepts that have been

explored in this part of the thesis. The next part takes the framework described and

discussed in the last three chapters and shows how a prototype implementation, can

be applied to manage and process data captured from a novel data capture device

for signal quality and blood pressure described next.
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Part II

Application of the Framework
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5 Background and Literature

5.1 Overview

The second part of this thesis applies the framework described in the first part to

manage and process data from a experimental data gathering device, in order to

achieve the second aim from the introduction in chapter 1. This application aims

to support patient centred health care by building a prototype data management

system as described in the next few chapters.

This chapter first looks at the issues facing the healthcare system and the op-

portunities that technology can bring. Then the two main models of healthcare

are described in section 5.3. Finally, an analysis of how these systems support the

healthcare service and models of delivery through information management, analysis

and automation are discussed.

5.2 Health Service Pressures

Healthcare systems are under pressure to do more with less, and so increases in

efficiency and quality are required. Technology can play a large role in these im-

provements by both helping patients and the healthcare service (Stewart et al. ,

2003). This can be accomplished through data gathering and analysis along side

the automation of current medical knowledge. García-Lizana & Sarría-Santamera

(2007) describe a systematic review of the ICT technology used to support chronic

illness management and education. Although the evidence is limited to specific

management aspects, the benefits include: improved clinical outcomes, mortality
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reduction and encouragingly, lower health service utilisation, particularly with car-

diovascular disease. The improvements observed were mostly due to the improved

education and self-management of the condition by the patient.

The changes to the service in both the overall model and how that model is

delivered are more welcome as the pressure increases (Eijk et al. , 2013; García-

Lizana & Sarría-Santamera, 2007). The advent of new technology for monitoring,

such as mobile and wearable devices, as discussed in section 6.2, along with the

current trends in individualised healthcare and treatments, creates hope that the

continued introduction and extension of telecare systems, could have a favourable

impact on the situation.

The considerations of the treatment are becoming increasingly more personalised

for the individual patient. This personalisation requires more time from the doctor

to understand each patient and the issues facing them (May et al. , 2006). To

reduce the time requirements of the clinician, Eijk et al. (2013) proposes a need

for a collaborative healthcare model that encourages the patient not to be a passive

bystander in their own healthcare, but to work with the clinician to resolve the

issues encountered.

5.3 Investigating Models of Healthcare

The models of healthcare delivery in the UK, USA and Canada are changing (NICE,

2012; Morgan & Yoder, 2012; Deshpande et al. , 2008). Modern medicine (from the

last 100 years specifically) operates based on the knowledge that humans and human

biology are very uniform across the species. This is based on scientific observation

and evidence-based reasoning (McWhinney, 2003). This idea has since developed

into the modern clinician-centred view that states that: if people are the same, the

treatment given should treat all with similar symptoms. This assumption can be

detrimental as it underpins a medical system that may omit a patient’s uniqueness

and circumstance and very possibly misdiagnose an individual. Therefore, a move

from treating the species to the individual patient is an important step.
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Figure 5.1: The organisational graph of clinician centre control (left) to patient
centred (right).

Two main models exist with the difference being where the locus of control sits

for the individual. This is shown in figure 5.1. On one hand the locus of control

is placed with the clinician with a fully clinician dependent system. The patient

would have no choice other than to do what the health-professional says. A more

practical system is the traditional clinician-centred model, sometimes called disease

centred (Morgan & Yoder, 2012). The decisions are made by a clinician about how

to treat a particular disease resulting in a conversation with the patient to find out

what a patient wants so that can be taken into account in the patient’s treatment

where possible. On the other hand, the locus of control would be with the patient.

This is the patient-centred model, where the information is relayed to the patient

along with a framework for understanding the decisions to be made. This would be

a totally independent system where the individual’s healthcare would be controlled

by the patient. The patient would be able to request medical assistance from the

service. These options illustrate the extremes of the hypothetical healthcare systems

and neither would be realised completely in any practical system. The first would

not be very ethical as it would not have informed patient consent. The second would

not have enough resources for every patient to demand immediate personal attention

for any minor ailment.

A practical more patient-centred model could be manifested by a self-managed

system for example, where the clinicians and professionals can be on hand to help

with requests or changes in health status where issues can be dealt with pro-actively,

72



led by the patient and supported by an appropriate telecare system as mediator.

This would give the patient more of an opportunity to participate in their healthcare,

and help to remove some of the bottlenecks that monopolise the clinicians valuable

time. These opportunities just mentioned are made possible by the use of telecare

and telemonitoring systems, which allows the care to be shifted from a disease focus

to a preventative focus (Morgan & Yoder, 2012).

These models will be discussed in more detail in the next two sections. Both of

these models benefit from telecare systems which are described further in section 5.4.

5.3.1 Clinician-centred

Clinician-centred or evidence-based medical models have been the gold standard of

the medical profession. It is viewed scientifically as the ideal model because it is

based solely on empirically observed and generalisable information. This traditional

healthcare approach allows clinicians to lead a patient’s healthcare. The clinician has

the training, knowledge, experience and access to a patient’s medical records. Their

task is one of translating this information for the patient, to make it understandable

for the lay person, and finding out what would help the patients under their care.

Most clinical systems are based on this traditional model. So much so that

health systems are not usually referred to by the term “clinician-centred” when

being described. The work described by Bhaskaran et al. (2012) and Prasad et al.

(2013) are very much clinician-centred systems but neither makes any mention of

this fact. These systems and other examples of clinician-centred systems will be

discussed next.

Bhaskaran et al. (2012), describes first that the doctor-patient relationship has

a large impact on the quality of the care that the patient perceives. Here the paper

looks at facilitating a counselling session by using a visualisation method for the

doctor to help communicate the risk the patient is under from the current condition

they are in. They then process the data to classify the information the doctor has

to visualise. The details of the visualisation ideas and the system, along with a

fictional scenarios were then investigated. The doctor has to make the grouping of
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parameters and also show the diagnosis by setting up an ideal case and take the

patient on the journey of their health.

The other case study by Prasad et al. (2013), describes a clinician-centred service

that connects doctors to patients in real-time for mobile doctor’s appointments.

This system was built to allow a mobile doctor to care for patients in a hospital.

They were provided access to the patient’s medical data and current status along

with a video feed on their mobile device. This further removes the doctors from

the patient and if anything, makes the doctor-patient relationship and management

more difficult. This brings attention to the work done by Smith & Vela (2001);

highlighting that memory and working knowledge varies with the context that the

subjects find themselves in. If the doctor is mobile their context and environment

will change, there is the possibility that in the event of an emergency, the patient

information displayed remotely does not give the doctor the same visual cues or

context as if the doctor was in the same environment as the patient. However, this

remote management of patients could allow one doctor to handle more patients as

there is less travel time and the patients are accessible to them where-ever they are.

These systems have the benefit of allowing more patients access to the judgement

of a doctor but could potentially lead to dangerous errors of that judgement if

overloaded.

A further case study was conducted by Gambling & Long (2006) where the

medical professionals delivered medical advice and carried out regular appointments

over the telephone with patients that were diagnosed with type 2 diabetes. The study

concluded that the use of the telehealth system was effective, but that the overall

impact of the telecare sessions could have been much more effective if the caregivers

had first worked out with the patient more specific goals and motivations before

undertaking the trial. They discovered that there needed to be a more collaborative

or even a patient-centred approach to fully maximise the benefit of a telehealth

delivery system.

Although most of the world’s current medical systems rely almost entirely on

the clinician-centred model of healthcare delivery, there are shortcomings which
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must be discussed. Firstly, the system was designed to be robust and practical

(i.e. regimented, short, routine visits) and easy to administer to the masses because

it relied on the health professional staying in one place, with access to medical

equipment and knowledge needed to diagnose and triage patients. As time has

progressed, it has become apparent that the continuous strain and ever increasing

demand on the health professional’s time and energy further taxes their resources,

which could be more efficiently used. The clinician managed system can also lead to a

single point of failure. The patients who do not have the knowledge or the experience

to make educated decisions based on their current health, have to seek medical

advice before even looking to manage their own health. Some of these issues could

be addressed by incorporating some of the best aspects of patient-centred healthcare

delivery into a distributed collaborative paradigm that would satisfy more fully the

patient and the medical delivery system alike. Using both machine learning and

experts would allow for a better managed triage and management system. These

revelations lead to the discussion of patient-centred healthcare systems in the next

section.

5.3.2 Patient-centred

In a patient-centred healthcare system, the patient is responsible and can take an

active role in the state of their health and health-related goals. This is in direct con-

trast to the clinician-centred approach and finds some friction in the medical world

for a few reasons as briefly discussed by May et al. (2006); Eijk et al. (2013). Both

cite that the patient-centred approach is beneficial because of the involvement of

the individual, but with some short-comings, similar to the clinician-centred model.

These short-comings are listed by Eijk et al. (2013) in particular and are fairly

extensive, although they are still advocating for the use of a collaborative, patient-

centred approach. Some of the concerns that the author lists are: a lack of interest

in the subject by the patient, the fuzzy definition of “patient-centered” therapy, the

decrease in clinician commission for delivering specific treatments, and age and cog-

nitive ability become complicated issues when dealing with specific diseases, children
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or the infirm. Lastly, some situations may need some interpretation on the part of

the physician to determine an appropriate level of involvement, which could lead to

misinterpretation.

Epstein & Street (2011) noted that there is also a need for appropriate measures

of success to properly evaluate the effectiveness of the patient centred model, and

also more specifically, telehealth system effectiveness. They state that by having a

more effective evaluation method, it could increase the rate of adoption on a larger

scale. This has also been noted by May et al. (2003), as well as by Epstein & Street

(2011) that the need for more well-defined measures of assessment to increase the

rate of adoption would be welcomed by the medical community. This success could

be measured in the number of telehealth appointments which would mean that the

patient did not need a face-to-face contact session with a doctor and so better utilise

the resources from both the medical and patient’s perspectives (Cusack et al. , 2008).

Epstein & Street (2011) do propose a solution to at least one of the concerns voiced

by the papers above, where there is considerable concern about the slow adoption

rate of this revolutionary form of the model due to lack of specific definitions that

are often associated with patient-centred healthcare.

Another important issue is how the service model is perceived by the patients.

Morgan & Yoder (2012) have produced a concept analysis of patient-centred medical

care that unearths the positive aspects that patients feel when they are engaged in

their own care. They conclude that patients feel empowered, enthusiastic and have

increased compliance with medical treatments that are agreed to collaboratively.

The patient’s overall satisfaction is increased and even the efficacy of the treatment is

enhanced by participating in patient-centred medical treatments. These are some of

the immediate benefits that can be gained from patient-centred models of healthcare

delivery.

An example of a patient-centred system in use is discussed by Gambling & Long

(2010). This paper describes the exploration of a patient-centred study in a tele-

care behavioural change intervention. This highlighted the need for patient-centred

systems to be flexible and to keep in consistent contact with the staff providing
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the telephone support, as the study showed through their contact over the three

year period. It has to be realised that patients have differing levels of background

knowledge; following this, the help needs to be tailored to the patient separately. It

is encouraging that they advocate increasing the active role patients take in their

health.

Patient-centred methods of medical care delivery are increasingly becoming the

preferred healthcare model of service delivery. It could be perceived that the patient-

centred model of healthcare delivery operates in a way that is in contrast and con-

tention with the traditional model of healthcare delivery; but this is inaccurate

according to Stewart et al. (2003). An ideal medical model for the delivery of

healthcare is a combination of the two approaches that combine the strengths of

both to create a collaborative approach that addresses some of the shortcomings

of both of these systems. However, such schemes require the support of a strong

telehealth system, to aid by automating and maximising the utility of the resources

within the system1. The system allows greater flexibility and the ability to have

medical understanding on hand in more flexible ways. Evidence may be built up

and used over many months, with initial diagnosis by a patient, which can be auto-

matically verified by a machine learning system. Only when confirmed as suspected,

is it then forwarded straight to a specialist clinician for that condition.

5.4 Telehealth Support Systems

A telehealth support system will be defined here by the descriptions used by Adeo-

gun et al. (2011) and NHS (2014), which, in summary states that: a healthcare

system using ICT technology as the mediator between patients and the clinicians to

support the provision of healthcare and education at a distance is useful. Examples

of telehealth systems include home medical monitoring devices, using Skype or tele-

phone interviews to discuss a patient’s general or specific health problems, or using
1Independent NHS report "Making IT work: harnessing the power of health infor-

mation technology to improve care in England", published online on 2016/09/07 at
<https://www.gov.uk/government/publications/using-information-technology-to-improve-the-
nhs/making-it-work-harnessing-the-power-of-health-information-technology-to-improve-care-in-
england>. Retrieved: 2017/06/05

77



clinical decision support systems to help make a more well informed or accurate

diagnosis of an issue, while being supported by a clinician. Cusack et al. (2008)

discussed three models of telehealth that could be delivered as examples. They

then look at the cost effectiveness of each model. The three models that they pro-

pose for comparison of cost are: “store-and-forward”, “real-time video”, and “hybrid

systems”.

As discussed in section 5.3, telehealth has been theorised to be a cost effective

method for delivery of patient-centred healthcare, but it is slow to be adopted be-

cause of the relatively young nature and the vastly theoretically based estimations as

postulated by Eijk et al. (2013). Cusack et al. (2008) have carried out theoretical

model cost estimations, and although it is theoretical, and does not carry as much

weight to the general public as an empirical study, the idea could potentially save the

American healthcare system $3.4 billion dollars per year, if only they would adopt

a more significant telehealth approach to delivering medical services to the public.

This is one of the many reasons that the telehealth system is quickly becoming the

sought after model of healthcare delivery.

To deliver useful telehealth systems, it is pertinent when designing the overall

system, to consider some of the most desirable features from the literature, that

define both effective and relevant telehealth systems and clinical decision support

systems (CDSS). These systems, working together can bring all the threads of infor-

mation together and present this to an end user such as a GP, patient or specialist;

this could also be all three, in a form that the user finds informative and helpful when

monitoring or even diagnosing illness. These system features and design principles

have been discussed first by Sittig et al. (2008), stating that the technology has been

slow to be adopted by medical professionals and institutions. They also postulated

that to improve this situation, empirical designs would, in their opinion, be essential

in creating increasingly useful and more popular systems. This was later responded

to by Fox et al. (2010) who has argued that the technology has been adopted in

the past, but systems should concentrate more on theory led developments to begin

the design of a framework. Given these seemingly contradictory points of view, it
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seems clear that although both agree that the systems are critically important, both

design strategies have flaws. However, it seems that the difference resides in the

scope of its use in the short and long term. Empirically driven systems can have

many benefits as they were designed to solve empirical issues in the short term.

However, in the long term, a well designed system can be more easily modified and

adjusted to accommodate change.

When looking into how these systems are used in the current age of mobile

technology, it seems natural to combine their methodologies and features to give

context to which the aim of this research is directed. A system should have a strong

theory led design. However, that design should be used to allow the system to be

flexible and adapt to meet the empirical problems that are encountered throughout

its lifetime. The essential characteristics for the design and implementation of an

effective telecare delivery system are described by Sittig et al. (2008), Fox et al.

(2010) and Kawamoto et al. (2005). These will be summarised below:

• Visualisation and summary of the information, presented effectively for pa-

tients and clinicians.

This can include the evidence or the sources used for the decisions. Also

keeping track of the information presented and the decisions taken by the

users so that the system can learn from its users.

• Dissemination of best practices in design, development, and implementation.

This should include having transparency in the system architecture when re-

quired so that decisions can be seen and traced, by using ontologies and formal

representations for the systems internal processes.

• Prioritisation, filtering and combining recommendations for patients.

To take into account all of the conditions exhibited by a patient then make

the recommendation, not just assessments of the state of health of a patient.

Also, to promote the possible actions that could be taken.

• Using big data analytics and mining to increase the internal knowledge within

the system.

79



Use natural language processing and free text to augment the internal infor-

mation to drive clinical decision support and its knowledge base.

These points are the main desirable features and principles that should be used

to develop an effective telehealth system based on the research observed presently.

Overall, the features found in this list should also include an appreciation that the

system should have methodologies for self-assessment of its current performance so

that the system can evolve and adapt to the changing environment.

As stated previously, there is a real need for assessment that is meaningful and

universal - which demonstrates the true value of not only patient-centred healthcare

models but also for the delivery and monitoring of telehealth. A paper by May

et al. (2003), describes an evaluation of the assessment techniques, using telehealth

as an illustrative case study. They stress the need to normalise the evaluation of

the different telecare systems, to allow the different systems to be compared in the

NHS, which relies, for policy decisions, on empirical evidence based studies. The

normalised evaluation proposed could then be used to compare systems and also to

allow the structure of the system to be improved to maximise the measures used.

The paper was only looking at interviews and qualitative outcomes in isolation from

a discussion but provides an interesting template to take these ideas and merge them

with the quantitative result of a system to find a workable, normalised measure by

which systems could be evaluated for effectiveness.

A systematic review by Ward et al. (2015) was conducted on 38 studies which

have been evaluated. They took an in-depth look at the use of telehealth applica-

tions in the Emergency Room for specialist access to information, for minor injury

and illness evaluation and for diffuse patient populations that do not have access

to in-depth emergency care. Their main conclusions were that although the studies

they found were limited in what they reported in detail, the evaluation did point to

telemedicine being helpful and making an improvement in care. This means evalua-

tions of these systems can be carried out but that the reporting is not standardised,

so as mentioned before, normalisation of the evaluation is still necessary.
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As articulated by Farberow et al. (2008), they discuss the regulations and criteria

that could be used for certification of its reliability and performance. The five criteria

that they discuss are:

• Effectiveness of patient management

• Evidence-based outcomes

• Regulation

• Cost, including cost effectiveness and reimbursement

• Certification to ensure reliability

As these systems are used more, they have the potential for costly mistakes in

diagnosis, care or treatment plans to escalate, and could lead to malpractice lawsuits

and similar. The criteria mentioned above from the paper by Farberow et al. (2008)

could be used to mitigate some of these issues.

Surveys by Koch (2006) and DelliFraine & Dansky (2008), provides good overviews

of different telehealth systems drawn from 578 and 29 published articles respectively,

where the trends and the technologies used to provide telehealth services, including

the internet, video monitors, data monitors and telephones were described.

In the review by Koch (2006), they showed that there are trends in the systems

found and they were built to be used by both patients and clinicians. This indicates

that the collaborative point of view between patients and clinicians, as discussed

before in section 5.3.2 is useful and presents evidence that these types of systems

are being trialled and found to be working. They did report however that there

was a lack of studies for special groups such as the elderly or disabled, and that

the studies show problems with standards of reporting, evaluation and regulation,

which is further evidence for the issues discussed above.

DelliFraine & Dansky (2008) showed that the telehealth systems showed the

most benefits regarding effect size when being used to care for cardiovascular or

psychiatric conditions, but conditions like diabetes showed a low effect size; they

concluded no relationship. Again they mention a lack of report information from

81



the studies as problems leading to the removal of 12 articles from their original

pool of articles, which showed positive findings. This could be improved by having

standards of evaluation of these types of systems as discussed previously above.

5.5 Summary

The main outcomes of this chapter can be summarised by stating that the health

service is under pressure to change. This change is directed towards looking at the

modification of the basic structure of the health service. The traditional clinician-

centred care system could be improved by allowing and encouraging patients to take

a more active role and even being the leader of their own healthcare. This changing

role has to be facilitated by telecare and telemonitoring systems to better take

advantage of contemporary medical knowledge and make the best use of the current

resources, through easy and consistent monitoring and useful data management and

analysis. Systems have been examined above, by looking at the desirable features of

such systems for delivering healthcare services remotely in a telecare environment

to patients by clinicians. An important point is that for systems to be successful,

they have to be designed to incorporate and welcome change. The evaluation and

regulation of these systems have also been discussed, as well as examining surveys

of these systems throughout the chapter. This sets the context for the problems as

presented in chapter 1. The next chapter focuses on the data gathering aspects of

the data flow framework being developed, which will address the problems in data

gathering and management in a telecare context.
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6 EIMO Data Gathering System

6.1 Overview

For telehealth systems to function, they require their users to have their health and

vital statistics recorded on a large scale and over the long term. There have been

monitors produced as described in section 6.2 that are able to record and track

their users. These devices have limitations in the type of information that they can

record or are otherwise restricted in their use. Device applications normally require

specialised equipment and consumables like electrocardiogram (ECG) pads or blood

pressure cuffs, thus making their users wear them all the time or they need to be

reapplied regularly. This renders them inconvenient and restrictive for the periodic

monitoring required for a long-term telehealth system. The purpose of this chapter

is to show the current state of development and testing of a new medical device

called EIMO, which is self-contained and easy-to-use. The important points of the

device for signal recording and capture are described in section 6.3. In order to

compare the data recorded, the EIMO device and two other medical data recording

devices were used in a study described in section 6.4, discussed at the end of this

chapter. The aim of the study was to compare the data recorded by the devices

and to gather further information for the estimation of blood pressure which is

described in chapter 9. This data was also used for the signal quality assessment in

chapters 7 and 8. In order to run the study, data management and analysis became

an important issue. Ideas for data management were explored in the unification and

analysis software made for the study that is discussed at the end of this chapter and

is expanded upon in chapter 3.
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6.2 Review of Personal Medical Devices

There is increased interest by the public in personal and wearable devices that

measure, track and assess health-related information. (Pantelopoulos & Bourbakis,

2010; May et al. , 2005; Neuman et al. , 2012; Etemadi et al. , 2016; Ghamari et al.

, 2016). The functionality of these devices can be arranged into two basic layers.

The first layer are the basic health trackers made for the retail market such as

the Fitbit® series - a personal accelerometer and activity tracker, and a range of

other devices from Samsung, Sony, LG, Motorola, Microsoft and Apple. These take

the form of wrist-mounted devices, which can track the user’s activity level, heart

rate and position. Some take the next step and add a band around the chest such as

the Polar Tracker for a more accurate measurement of heart rate when exercising.

In the new watches, heart rate and location tracking using sensors built into the

devices, along with a more convenient interface and questions for the user, can also

be recorded. These devices, while interesting and easy to use, are limited to the vital

sign signals that they can record, and so limit their use as complete telemonitors for

managing and caring for patients (Munnoch & Jiang, 2015).

The second layer consists of more involved devices; these have more readings

available, but they require to either be worn all of the time or use sticky pads to

maintain contact with the skin. These include devices devised by Etemadi et al.

(2016) and Jakoby et al. (2010). These are placed on the user’s chest. They

combine many cardiovascular measurements into one device. However, the fact that

it is attached to the centre of the user’s chest by self-adhesive pads or a belt could be

very inconvenient for long-term use by non-critically ill patients as a more general

health monitor. Two other example devices will be described. The first called

AMON, developed by Anliker et al. (2004), measures electrocardiogram (ECG),

photoplethysmography (PPG) and blood pressure with a cuff. The authors mention

that they have a reduced ECG signal quality and saturation of peripheral oxygen

(SpO2) accuracy. The second designed by Al-Ali et al. (2003), measures cuff-based

blood pressure and temperature, collects the information and transmits it to a server
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system through the global system for mobile communications (GSM) network. These

devices show that multi-parameter measurements using a single device have been

developed, but lack a single demonstrable solution that can collate multiple signals

into a reliable and easy-to-use system, convenient for users. Therefore, a device that

could be applied as needed, without any consumables, would be highly beneficial

(Munnoch & Jiang, 2015).

Further devices have been developed utilising various wireless technologies as

discussed by Ghamari et al. (2016) and Pantelopoulos & Bourbakis (2010), where

they discuss many techniques for transmitting data for a body area network as well

as surveying other telehealth systems. They mention Bluetooth® and Bluetooth®

low energy (BLE) to establish easy and ubiquitous interfaces from recording devices

through to mobile phones or computers. One example device that has been devel-

oped by Tahat et al. (2011) is a Bluetooth® connected blood pressure cuff that

monitors patients. A second device uses a wrist-mounted sensor system that was

designed by Winkley et al. (2012); this uses BLE communication to connect the

wrist-mounted device to a mobile phone. The wrist-mounted sensor that is described

is limited by the signals it can pick up; currently, it captures acceleration, PPG and

temperature. This work is interesting as it shows a device designed to aid users by

using these signals to monitor and inform a telemonitoring system (Jiang et al. ,

2016). The device is engaging for users by having an intelligent monitoring program

built into a smartphone. The wearable nature of this device, improves the accessi-

bility for the users. This device however, lacks the multiple vital sign measurements

to assess the health of the user in a telemonitoring environment (Munnoch & Jiang,

2015).

Greenhalgh et al. (2013) have investigated the perceptions of the users, and

what aspects matter to the elderly when using telehealth monitoring equipment.

The problems highlighted include reduced compliance in taking measurements and

that the devices were seen as being intimidating to use, and it being viewed as one

step closer to being in hospital. Some cases required the device or system to be set

up by a carer or family member, then require users to forward the collected data
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into a healthcare setting. It can be concluded that a device will be more successful

with the elderly and the general population if it can be more accessible, less invasive,

smaller and less onerous in recording the person’s vital statistics so that they can

take part in and increase ownership of their own health monitoring. A device could

accomplish this by collecting data without accessories or residue, then distributing

this gathered data to the appropriate carer or system with minimal intervention by

the user. In this way the users are helped by allowing themselves to both learn about

their health and send the data to systems which could provide valuable insights into

the current and future health of the user or users of the system (Munnoch & Jiang,

2015).

The data collected by these devices requires management and storage. The

devices discussed above have their methodologies that dictate how and where their

data gets stored and treated. An example of these systems with a specific handling

routine can be seen in the work by Anliker et al. (2004) and the embedded system

by Al-Ali et al. (2003), where they connected their devices to an external data

storage centre. This data is analysed by human operators in the control centre.

While this is a very accurate way of analysing data, it is highly labour intensive

and costly in both time and money, more so when the system is scaled to deal with

large data sets from many such monitors. Manually monitoring the signals is not

an efficient way of dealing with this sort of high volume of data. Although both are

simple to implement, there is also a low chance of losing critical data as all data is

captured and stored but this wastes storage capacity. Automated monitoring and

filtering of data could allow for time and cost savings for large systems.

This interconnection and further automated processing would allow alerts to be

generated and forwarded to the right parties. Clinicians can then have a better

picture of the day-to-day historical readings for a patient by being able to focus

on the time around the alerts and are able to spend more time on the data that

matters.
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6.3 Device Development

6.3.1 Device Overview

A prototype device developed by the author has been progressed further by taking

into account the issues found during the prototyping process. This translated to

recommendations on the power supply, processing power and sensor placement and

advice given by the author to the parties developing the CE marked device, called

EIMO (Munnoch & Jiang, 2015). The device description below is an overview

and the important details about the device that affect the context of the device

and signals directly are discussed. Subsequently, the data collected in the study

following, is used in the later chapters of this thesis. The complete system overview

is shown in figure 6.1 which illustrates the data flow through the system. The device

is pictured in figure 6.2 which shows the device being held while recording.

Figure 6.1: System overview and data flow throughout the EIMO device. The data
flow runs from the sensors through to the interface application on either an iPad or
PC (Munnoch & Jiang, 2015).

6.3.2 Processing and Communications

The device makes use of the BLE protocol within a CC2540 microprocessor as in

the prototype, with the signal processing being done in a MSP430 microprocessor.

The ECG and PPG signals are sampled at 1KHz for the front end software filters,

however, these signals are then decimated to 100Hz and turned into 20-byte packets

for the BLE communications. The decimation is required due to the processing
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Figure 6.2: The EIMO device being held in use. The left hand thumb presses against
the outside ECG pad. The right hand first and second fingers touch the inside ECG
pad and the two PPG sensors in the insert (Munnoch & Jiang, 2015). This normally
takes place when the device is in a relaxed position for the user.

and bandwidth of the BLE data transport. The remainder of the calculated mea-

surements are combined into a single broadcast packet as shown in table 6.1 and

transmitted once per second. The raw signals are grouped into channel pairs. This

gives rise to data packets shown in table 6.2 which are used for two pairs of signals;

the first pair was the PPG and ECG signals for timing comparison and analysis.

The second pair was the red and infrared PPG signal from the AFE4490 chip used

for oxygen saturation monitoring as shown in figure 6.4.

Table 6.1: Feature data packet, issued once every second from the device used in
the study. H,M and L denote the High, Medium and Low bytes respectively.

Name Type Byte Range Description

SPO2 %O2
H 0 0-100%

The SPO2 measurement is sent as a
whole number and must be divided by
100 to acquire the true value.L 1

Pulse transit
time (PTT)

H 2 0-100% The PTT measurement sent as multiple
of 16uS.L 3

Heart rate H 4 0.00 - The heart rate as a whole number must
be divided by 100 to acquire the true
value.350.00%L 5

Infrared
Temperature

H 6
17 bits The raw bits from the infrared detector

temperature probe object.M 7
L 8

Case
Temperature

H 9 14 bits The raw bits from the infrared detector
temperature probe case.L 10

11 to 19 Not Used
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Table 6.2: Signal data packets from the device, are issued 10 times a second to
maintain the 100Hz sampling rate. This combines two signal channels into one 20
byte BLE packet, with the first 10 bytes used for the first signal and the last 10
bytes used for the second signal. This packet structure is used for the the ECG and
PPG for timing and for the red and infrared for the raw SPO2 signal.

Name Byte Range Description

Channel 1 0 to 9 0-127 Samples are ordered from oldest to newest. Bits
7-1 of each byte are used for the signal
amplitude. Bit 0 is used to signal that a peak
has been detected.

Channel 2 10 to 19 0-127

The recorded data from the device and the application are combined and saved.

This consists of basic vital sign information, both recorded and calculated, along

with user questions. The logging system and format is described in section 6.3.4.

6.3.3 Signal Processing

The system diagram in figure 6.3 illustrates the signal path of each measurement and

the signal data fusion links, starting with the temperature, PPG and ECG signals

through to the results of the signal data and event markers such as peaks, signal

timing and heights. The temperature is transported from the infrared detector IC

through the micro controller and into the broadcast packet in table 6.1. No post

processing is done on these values, as this is then done and calibrated within the

connected application. The PPG and ECG signal are processed internally and are

explained in more detail below.

Figure 6.3: Signal system overview showing the data flow and top level processing
elements within the device from Munnoch & Jiang (2015).
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6.3.3.1 PPG signal

Figure 6.4 shows in more detail the processing steps that the PPG signal has within

the device. There are two PPG sensors arranged in the finger insert, which when

looking into the insert, Sensor A is on the left and Sensor B is on the right. There

are two sensors as these serve different purposes and leave an option for redun-

dancy in signal capture. Sensor A is connected directly to an AFE4490 application

specific integrated circuit (ASIC). This was to allow the simultaneous recording of

a calibrated and filtered PPG signal, with both red and infrared components for

the measurement of SPO2. Sensor B only uses infrared light and records a PPG

signal directly using the onboard analogue to digital converter (ADC) allowing the

micro-controller to control the sampling of the PPG along with the ECG for the

measurement of the pulse transit time (PPT). These signals run through hardware

filters then software filters within the MSP430, an internal peak detection algorithm,

is run on the signals to find the signal peaks and valleys for the Sensor B signal and

the red and infrared signals from Sensor A. The signals are then decimated and

placed into the packets as mentioned above. The peaks and valleys are used for the

internal measure of PTT from Sensor B and the R value for oxygen concentration

from Sensor A with help from the AFE4490 chip.

Figure 6.4: Photoplethysamography (PPG) Signal processing block diagram and
data flow from Munnoch & Jiang (2015).

6.3.3.2 ECG Signal

The ECG signal system of the device is shown in figure 6.5. The final ECG signal is

the electronic difference between two ECG sensor pads, which are electric potential
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integrated circuits (EPIC) sensors (PS25201) from Plessey Semiconductors. The

noise received by these sensors has been reduced by the inclusion of a 50Hz notch

filter and then bandpass filter before the ADC of the MSP430 and internal software

filters are applied at 1KHz. The filtered signal is then processed internally for peak

information, before being decimated and put into packets as mentioned earlier.

Figure 6.5: Electrocardiograph (ECG) Signal processing block diagram and data
flow through device from Munnoch & Jiang (2015).

6.3.4 Device Interface and Logging Software

The software for EIMO has two main interface types. The first is the C# application

which was made for debugging and logging for long term and formal data gathering.

A screenshot of the device interface is shown in figure 6.6, where the ECG and

PPG waveforms are displayed, along with the temperature and the SPO2 reading.

The layout of the interface is close to that of ICU patient monitors, with the ECG

trace on top, then the PPG below. Along the bottom, the calculated measurements

are listed next to icons allowing the user to more easily grasp the meaning of each

measurement.

The second is an iPad application for general use. The iPad application was

modified to produce a program for the EIMO testing study as it was the most easy

to use interface for the assistant taking the measurements. The iPad application

and C# interface above, were designed to share the same interface design aesthetics.

The study that follows this section required a simplified version of the iPad

application. The application produced the raw signal data from the EIMO device

along with a timestamp. This was then controlled using two enlarged buttons.

While the study was progressing, an assistant could easily tap the “Start record”
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Figure 6.6: Screenshot of the platform application showing measured live vital sign
signal data.

button to begin and again to end a recording session, which put the data straight

into a dropbox shared folder. The “Sync” button added a known PPG sequence

(two ramps from 0 to 10 counts are recorded in the signal), this could then be

used to mark known positions in the recording so the data would have independent

synchronisation marks if required. A screenshot can be seen in figure 6.7.

The log file produced is summarised in log file listing 6.1 with the full version

in appendix B.1.1.1 in log file listing B.1. It presents the JavaScript object nota-

tion (JSON) header for the file parameters, averages, and questions along with the

comma separated variable (CSV) data set under it for the sampled signals that were

recorded. Tables B.1 and B.2 explains the field names, the type expected, the range

or value set options, along with a description of the recorded field.
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Figure 6.7: Screenshot from the iPad App for the modified testing user interface
showing the real time data and the calculated measurements. This includes the
enlarged ’Start record" and "Sync" buttons for starting and stopping the recording
and adding a synchronisation mark respectively.

93



{
"Program" : "iPad",
"Version" : "1.0.7",
"DeviceAddress" : "A370B607-A0DE-6C26-B1E8-B9FC35CF877A",
"Logstarttime" : "2015-05-01-09-36-28",
"Name" : "YIF008_S1_2",
"Heartrate" : "70",
...
"Notes" : "screen froze battery slipped"

}
Timestamp,ECG,PPG,SPO2,PTT,HR
2015-05-01-09-36-28.251,120,182,91,367,70
2015-05-01-09-36-28.261,126,182,91,367,70
2015-05-01-09-36-28.271,124,180,91,367,70
...

Log File 6.1: Summarised log for the raw EIMO logging file. The upper part repre-
sents the key-value questions and summaries in JavaScript object notation (JSON)
format. The JSON section provides the summary and context of the file with the
device that recorded it as "iPad" and the identity of the device, along side the version
on the software and user name and dates. The lower part holds the data recorded
as timestamped samples with each signal given a column in the comma separated
variable (CSV) format to keep the data density high. The timestamp is given first as
a UTC formatted date string. The electrocardiograph (ECG), photoplethysamogra-
phy (PPG), saturation of peripheral oxygen (SPO2), pulse transit time (PTT) and
finally heart rate (HR).
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6.4 Device Testing Study

A study was conducted by the Sport, Health and Exercise Science Group (SHES,

University of Hull) with help from the author to compare the data gathered by the

EIMO device with two other medical data capture devices. The study’s primary

focus was to build up a dataset from 3 different devices and be able to synchronise

these devices for further data mining analysis and comparison. The secondary focus

was on the accuracy of the blood pressure estimate that the EIMO device produces.

The next three sections discuss the study protocol, the nature of the comparison

devices and the required management and logging programs created. Lastly in this

chapter a device comparison is presented using the data gained from the study.

6.4.1 Study Protocol

The experimental setup for the study was conceived by the SHES research assis-

tant and the author. More information on the parameters for this study are in

appendix C.1. There was:

• One file per machine.

• Three recorded sections per session.

• Three total sessions separated by 24 hours.

• 27 files per participant.

• One additional measurement file containing other information about the par-

ticipants.

The raw data set was 19 GB when complete for 18 participants with a minimum

of 487 files generated 588 were reported as some of the sessions end up being broken

into multiple files due to computer errors, also two of the starting participants

did not finish. The management tools and analysis of this data are discussed in

sections 6.4.3 and 6.4.4.
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6.4.2 Comparison Devices

The devices to be compared were the EIMO device discussed above, along with the

CM400 and Case-GE exercise monitor discussed below. These devices were chosen

to be able to collect the same type of signals as the EIMO device. Both could record

ECG with the Case-GE being the device used within the department, but only the

CM400 could record the PPG signal.

6.4.2.1 CM400 Patient Monitor System

The CM400 patient monitor from Contec Medical Systems CO. Ltd, is a PC based

medical monitor which, instead of being self-contained with a display, has a USB

connection and a PC program supplied to show the signal data captured on a con-

sumer computer. The software supplied with the device only exhibits limited data

logging capabilities, which extends to the periodic recording of the heart rate and

oxygen saturation (SPO2) with measurements from the blood pressure cuff, in inter-

vals ranging from a few seconds to a minute. This is the case for all medical monitors

that have been investigated by the author up to the present. For the purposes of

the current study, where the morphology and timing analysis of the real-time signals

were required, an application was created which has the capacity, using the proto-

col supplied by the company, to record the raw signals of ECG and PPG to allow

further in-depth study and analysis.

Signals and Data Recording Program

The software built was constructed in C# using the company’s propriety DLL

program library for communication to the CM400 patient monitor, with a C++ to

C# wrapper around the API to leverage the same basic construction and robust

logging as the EIMO debug interface used in development. This software was made

to stream and buffer the signals with primary focus on the recording of the data

and not on the display of the data. This trade-off had to be made to make sure

the software would be as stable as possible on the laptop used for the study. The
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Figure 6.8: Picture of the CM400 connected to a laptop ready for use.

architecture of this software is shown in figure 6.9. The considerations that were

taken into account when designing the modifications include:

• Resource consumption - The target computer was not a high performance

machine thus the final performance required efficient tailoring to maintain the

data rates and the signal order in the log file.

• Ease of use - The assistant recording the data needed to be able to interact

with the patient and not have to interact significantly with the software apart

from telling it when to start, stop and the name of the file.

The software had to successfully record the raw data from the eight signals that

are currently required for recording by the device; these being the ECG signals and

the PPG raw and processed signals. The ECG signals include I, II, III, aVR, aVL,

aVF and V, which are the basic signals from the five lead ECG and represents the

electrical activity of the heart as seen through 60-degree cross sections. The PPG

signal is the raw signal from the finger sensor, along with the calculated measure-

ments of the SPO2 and heart rate generated by the device while measuring the
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SPO2. These are streamed at two different frequencies. The ECG signals consist of

12-bit values internally scaled and sampled at 500Hz across the seven signal streams.

The PPG signal consists of a bundle of data sent at 60Hz, comprising the raw PPG

signal at 7 bit resolution along with SPO2 and heart rate.

Figure 6.9: Diagram showing the control process and the data buffers between them
for the CM400 patient monitor. Each dotted lined shows a package with a controlling
thread so each part could run at its own pace while maintaining the consistency of
the buffers at each of the data rates used by the CM400.

The log files produced share common patterns with the EIMO log files; it presents

the JSON header with the comma separated varible (CSV) data set under it for the

sampled signals that were recorded. A summarised sample is shown in log file

listing 6.2, with the full file for reference shown in log file listing B.2, where the data

fields are listed in tables B.3 and B.4 with more information on this to be found in

appendix B.1.2.

{
"DeviceAddress":"CM400",
"Version":"1.0.3",
"Program":"CM400_Interface",
"Name": "YIF008_S1_2",
"Sex": "M",
...
"Height": "180.6",
...
"Notes": "second rest phase"

}
Timestamp,I,II,III,aVR,aVL,aVF,V,PPG,SPO2,PTT,HR,seq
2015-05-01-09-36-24.610,0.096,0.176,0.079,-0.136,0.009,0.129,0.248,18.000,99.0,0.486,64.0,42880
2015-05-01-09-36-24.612,0.104,0.186,0.081,-0.144,0.012,0.134,0.265,17.000,99.0,0.486,64.0,42881
2015-05-01-09-36-24.614,0.106,0.201,0.094,-0.153,0.007,0.148,0.437,17.000,99.0,0.486,64.0,42882
...

Log File 6.2: A Summarised log extract for the raw CM400
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6.4.2.2 Case-GE ECG Machine

The Case-GE exercise monitor allowed the measurement of an independently verified

ECG signal from a known clinical class device. The ECG signals recorded were the

same as for the CM400 discussed previously. The device also ran the automated

blood pressure cuff monitor (SunTech Tango automated monitor). This information

was recorded into an XML file for export by the machine.

The file contains the blood pressure readings from the cuff, for each stage in the

study protocol. The six channel ECG recordings are only added to the file when

the full disclosure option is selected at the time of data export. As this machine

is a standalone Embedded XP machine, the time synchronisation is problematic as

the manufacturer does not recommend keeping the machine attached to the net-

work while monitoring a user. As a result, the time could only be occasionally

synchronised. Final synchronisation was achieved by running a correlation between

the CM400 ECG signals and the Case-GE ECG signal. Since these signals con-

tain high-frequency impulses around the QRS complexes, good localisation could be

achieved.

6.4.3 Processing and Synchronisation

As part of the data analysis of this study and for the data and model analysis

performed later in this thesis in chapters 7 to 9, the log files created need to be

unified and synchronised. To this end, two tasks were undertaken. The first being

the unification of the data logs to build one style of data log from the three devices.

This is described in the next section. The second issue to address is to correct

the synchronisation of the signal to allow direct comparison, the method used and

results are discussed in section 6.4.3.2.

6.4.3.1 Data Log Processing and Unification

There are three slightly different forms of data log file generated by the devices, so

there are many different types of raw log files saved during the study. In order to

create an effective analysis pipeline, domain knowledge of the devices should stop
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Figure 6.10: Diagram showing the data flow of the log file into the unified log file.

at the data import, and a data standard should be imposed. A device independent

log file can then be generated with fields normalised if possible, or signal ranges set

pragmatically into the file. This removes any inconsistencies and errors at a low

level.

Figure 6.10 shows the architecture of producing the unified files. Each raw

log file gets read and domain specific knowledge can then be used to normalise

and unify the data in the log file. Correct signal names, ranges and other device

version quirks can be identified. The format of the resultant log file is similar to

the original files described above, with a JSON object above a CSV sample table.

The unification happens by specifying in the JSON object the signal ranges and

ontologies for the signals in the log. The CSV sample set column names are then

corrected to a standard set that fits with the signal ontology. The translations can

be easily scripted, and new translations can be built on top of old ones. Any JSON

attributes that can be answered from the sample set are calculated and updated.

Once this is all complete, the file is written back to disk with a corrected file name

based on its location and contents.

A summarised, unified log file is in log file listing 6.3, where the signal information

additions are shown for the EIMO device. Samples of the full, unified log files for

each device are shown in appendix B.1.3, and shown in log file listings B.3 to B.5.

These listings include the signal ranges and normalised values. The records per

participant can be more easily managed by packing the correct information and

domain knowledge into each of the files.

The main benefits of the normalisation is that all data can be kept and archived

in a single style, which now includes the signal limits, and signal name ontologies.
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{
"Program": "iPad",
"Version": "1.0.7",
"DeviceAddress": "A370B607-A0DE-6C26-B1E8-B9FC35CF877A",
"Logstarttime": "2015-05-01-09-36-28.000000",
"Name": "YIF008_S1_2",

...
"Signal_Limits": {"ECG": [ 0, 1 ], "HR": [ 0, 300 ], "PPG": [ 0, 1 ], "SPO2": [ 0, 100 ]},
"Signal_Ontology": {"ECG": [ "ECG" ], "PPG": [ "PPG" ]},

...
"Notes": "screen froze battery slipped"

}
Timestamp,ECG,PPG,SPO2,PTT,HR,seq
2015-05-01-09-36-28.251000,0.471,0.714,91.0,0.367,70.0,55060
2015-05-01-09-36-28.261000,0.494,0.714,91.0,0.367,70.0,55061
2015-05-01-09-36-28.271000,0.486,0.706,91.0,0.367,70.0,55062
...

Log File 6.3: A example log extract for the unified EIMO device. This shows the
signal correction and ranges, along with the signal ontologies added to the file by
the unification system.

The signal synchronisation and comparison analysis discussed next, only had to deal

with one standardised file log, which lets the comparison program and following

programs be simpler and more consistent when using this unified data.

6.4.3.2 Data Stream Timing Synchronisation

The solution for the synchronisation of the three devices for signal morphology

comparison was to use the correlation and pattern matching between the signals.

The process started by interpolating the signals from the Case-GE, CM400 and

EIMO to the sample rates of the highest device; in this case, the CM400, which

runs at 500Hz, then a cross-correlation between the signals is performed. The system

clocks of the devices recording the signals could be synced to within 2 or 3 seconds.

Advancing the Case-GE and EIMO signal using a sample offset from -2000 samples

behind the CM400 to +2000 samples ahead over a clean piece of the signal gives a

correlation graph. This sample range was chosen since at 500Hz, this corresponds to

a maximum of 4 seconds of timing drift. This is illustrated in figure 6.11. Figure 6.12

shows a block diagram of the synchronisation method with the processing steps

involved.

Figure 6.13 displays a sample of the signals received by the devices and the

synchronisation possible using the unification program described above. One can
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Figure 6.11: Showing the correlation function between the sampled signals, the time
displayed is the synchronisation time offset. The mark also contains the correlation
of the corrected signal and the reference. This synchronisation was taken over a 90
second window from 30-120 seconds in the underlying signals for subject YIF008.

see that when comparing the top to the bottom graph, the timing has been improved.

The morphological features, such as the peaks and valleys are now coinciding over

the period of the sample. The amplitude on this graph has not been manipulated

since only synchronisation was the priority. The alignment of the signals is used in

the device comparison analysis in the next section.
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Figure 6.12: Synchronisation diagram illustrating the methods used for the devices.
The diagrams show the data flow and processes to create a synchronised data set
and log files for analysis. The process uses the CM400 as the main references signal
since it has the highest resolution. The frequency marked as XXHz is the stand in
for the EIMO device at 100Hz and the Case-GE at 250Hz.
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Figure 6.13: Signal traces to show the ECG channel II and PPG trace from CM400,
Case-GE and EIMO (a) before and (b) after Synchronisation. Only the signal timing
was modified; the amplitude and shape of the signals was left untouched.

6.4.4 Comparison Analysis

6.4.4.1 Methodology

The plan to compare the signals generated from the three devices discussed above is

described here. First the recorded data is synchronised and aligned using the system

mentioned above for timing and normalised for amplitude. The signals can then be

compared to find an objective measurement of the similarity between the signals.

To do this, 50 one-minute samples for comparison were chosen from 5 participants

(users 5, 6, 7, 8 and 14), using the first session. 10 samples were randomly chosen

from each. Participants 5, 6, 7 and 8 were chosen as they were recorded in the

middle of the study, representing a steady state of data collection with all of the

sessions completed. Participant 14 was added to this set as a representation of data
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recorded towards the end of the study. The Pearson correlation coefficient was used

as the main metric for comparing the morphology of the signals. The metric was

run over each one-minute sample. The test is such that the higher the correlation

recorded, the more alike the signals are. The best and average correlation samples

have been included for each signal. These will show how well the signals match in

the best and average case, these figures are discussed below, along with the findings.

6.4.4.2 Results

The correlations between EIMO and the other two devices are statistically sum-

marised below. Table 6.3 shows the main statistics of the signal comparison over

50 one-minute samples. First, the ECG was compared to the Case-GE then the

CM400. Second for the PPG, when the EIMO device is compared to the CM400.

Table 6.3: The summary of the correlation measurements between the EIMO de-
vice and the two other devices, for the ECG and PPG signals, over 50 one-minute
samples.

Case-GE CM400
ECG ECG PPG

Maximum 0.464 0.488 0.920
Minimum -0.005 0.012 -0.019
Mean 0.210 0.228 0.378
STD 0.137 0.144 0.274

The table shows that the best correlation match is 0.49 with an average of 0.23

for the ECG. Samples of these are shown in figures 6.14 and 6.15. The first shows

the best correlated sample segment in the 50 samples used. The second shows the

closest match for a sample that scored the average. Inset graphs on both show

that there can be great variation within these samples, with the best and worst 5

second sections marked. The lower ECG correlation most probably stems from the

difference in the morphology and base line drift when compared to the CM400 and

Case-GE. These differences could be due to the filters used to limit the noise in the

signal. A hardware and software bandpass filter on the EIMO device removes most

of the low frequencies responsible for this drift. The drift itself is due to other muscle

contractions such as breathing and posture. The visual loss of the ECG signal for
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the Case-GE on the first graph was caused by the pads detaching as the participant

adjusted posture.

Figure 6.14: ECG signal comparison between the EIMO, CM400 and Case-GE
devices with the best correlation for the whole sample between the three devices.
Inset plots showing the best correlated 5 second section and the worse 5 second
sections show that within the sample, shorter sections can report much higher and
lower correlations.

The best correlation observed in the table was 0.92 with an average of 0.37 for

PPG. Samples are shown in figures 6.16 and 6.17 where similarly to ECG, the first

graph is for the best sample and the second is for the closest match to the average,

where it is noticeable that the signal was lost part way through the sample and

is reflected in the inset graphs. The inset graphs also mark the best and worst

correlations found in each 5 second segment in the sample. The difference between

the best and worst shows a large variation in the second case, when the signal was

lost. The lost signal was most probably caused by the participant adjusting his or

her fingers in the device.

The PPG can achieve a high correlation by having a smoother morphology with

the lower frequencies allowing a large margin for alignment. However, for the ECG

the briefness of the QRS complex shows, a small misalignment can drop the correla-

105



Figure 6.15: ECG signal comparison between the EIMO, CM400 and Case-GE
devices with the closest to average correlation for the whole sample between the
three devices. Inset plots showing the best correlated 5 second section and the
worse 5 second sections, show that within the sample, shorter sections can report
much higher and lower correlations.

tion metric drastically. The shape of the correlation curves are shown in figure 6.18

and this illustrates the sharpness of the ECG alignment as compared to the PPG.

The graphs also show that the timing of the ECG and PPG peaks and valleys

are consistent with the other devices. This allows for the accurate measurement

of the heart rate and the pulse transit time (PTT) between them. The heart rate

and PTT are used in the blood pressure estimation in chapter 9. The signal timing

appears consistent, but the morphology of the ECG signal shows visual differences.

This is due to the more aggressive internal filtering to reduce the noise. The PPG

signal does have a very similar morphology across the CM400 and the EIMO devices.

However, there is more noise evident on the EIMO signal. The timing consistency

and the similar morphologies allow the device to act as it was intended to; allowing

a quick check of the user’s rate and rhythm using the ECG and PPG as often as

they like.

The other feature of interest in the comparison graphs is that the correlation

metric does not always give a faithful representation of the device’s compared per-
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Figure 6.16: PPG signal comparison between the EIMO and CM400 devices with the
best correlations for the whole sample between the two devices. Inset plots showing
the best correlated 5 second section and the worse 5 second sections, show that
within the sample, shorter sections can report much higher and lower correlations.

formance. This seems to be because the signals vary a lot in basic shape and quality

throughout the samples. If a signal is lost or misaligned due to noise or signal loss

in the ECG or PPG signal, the resultant signal morphology correlation is directly

impacted.
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Figure 6.17: PPG signal comparison between the EIMO and CM400 devices with
the closest to average correlations for the whole sample between the two devices.
Inset plots showing the best correlated 5 second section and the worse 5 second
sections, show that within the sample, shorter sections can report much higher and
lower correlations.

Figure 6.18: Signal correlation between EIMO, CM400 and Case-GE, showing the
correlation function between the sampled signals, the time displayed is the synchro-
nisation time offset. The mark also contains the best correlation between the signal
and the reference. This alignment graph was taken for the best ECG sample for
participant 6.
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6.5 Summary

The two contributions in this chapter are first, the design of the EIMO device, which

allows the simple gathering of vital sign information normally only available to much

more invasive monitors requiring consumable ECG pads to be applied. This device

has been used for data recording in a trial in order to ascertain its accuracy when

compared to two other monitors. This has gathered a new dataset of vital sign data

from the participants in the study to investigate the signal quality assessment in

chapters 7 and 8, and model the blood pressure estimation in chapter 9. The sec-

ondary contribution of this section is the development of the log management tools

and synchronisation methods. It is useful not only for the processing and testing

of the EIMO device, but also has wider applications where the domain knowledge

and a more in-depth ontology can be applied and the result scaled out for both

unification and synchronisation of the other device data. The unified data log can

then be stored in the data management framework as described in chapter 3 and

appendix D.
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7 Signal Quality Assessment

7.1 Overview

It would be beneficial to have a reliable and stable method for ascertaining the

quality of the signals produced by the devices discussed in chapter 6. Having a

reliable method would lower the storage and device load resources and increase the

efficiency of data capture. The analysis system needs to classify data by using

features, derived from the signal alone to be most effective, then it can be combined

as required with other signals and is not dependent on them. Most data needs to be

filtered before analysis. The incomplete and inaccurate data is removed or corrected

either manually, or by using statistical measures. After these steps are taken, the

dataset is ready for analysis. A robust but simple classification algorithm would be

useful because the decision of ‘Good’ or ‘Bad’ classes of data would be best made

at the point of collection in lower powered devices, saving time, storage space and

ultimately, money.

The determination of signal quality to aid in process efficiency is similar to the

work done by Orphanidou et al. (2015). The determination of signal quality can

allow for more efficient data gathering methods where sensors, rather than being

turned on for a length of time, could be activated selectively to gather a certain

quantity of high-quality signals for a task. The same quality metrics could also be

used to clean up data already recorded, readying it for further processing.

The first problem encountered when finding the quality of a signal is to determine

how to classify a signal’s quality by human assessors. This will be the subject of

the study at the end of this chapter. The second problem centres around being

able to automate an accurate signal quality classification. This begins by extracting
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features from the signal, then selecting the right features and model to allow the

accurate classification of the signal quality using the assessment performed here as

the benchmark, which will be presented in chapter 8. The discussion presented

below aims to address the first problem in three steps.

The first step is to look at the literature concerning the quality assessment of the

two vital sign signals in question, which are the photoplethysmogram (PPG) and the

electrocardiogram (ECG); this is described in section 7.2. The second step, based

on this information, was to outline a plan in section 7.3 for the segmentation of the

signal, extracting features and adding annotations to the signal. The third step uses

this system in section 7.4 to both add quality annotations to the signals and create

a placebo set of annotations for a double-blind assessment of those qualities.

Together, the events, description and the peer-reviewed quality assessments can

then be used in the further automation and estimation of signal quality by utilising

machine learning algorithms, which will be discussed further in the next chapter.

7.2 Background

The assessment of signal quality first requires an appreciation of what is ‘Good’ and

‘Bad’ signal quality. This must be derived from an understanding of the signals in

question through a search of the previous literature. The results of this are shown in

section 7.2.1, which shows two main outcomes. The first explores where the signal

data has been sourced from, as discussed in section 7.2.1.1. The second focuses on

how signal data sources have been annotated in the literature; this is discussed in

section 7.2.1.2.

The next part of the background presented in section 7.2.2 is a review of the

issues and strategy for the framework described below. This is then used to classify

the signals for the placebo control in study 1 as described in section 7.4. The

system is then extended in chapter 8, which explores the best way to model and

select features for accurate signal quality classification.
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7.2.1 Signal Analysis and Quality Assessment Survey

A survey was done by Nizami et al. (2013) which shows that there is much disagree-

ment and variability among the researchers working on this problem when finding

signal quality indicators and classifying what seems to be ‘Good’ signal quality. The

fact that there are many possible indicators that can be used to mark quality, shows

that there is a certain ambiguity between which indicators are best to use. This

resource lists many other works, as well as the systems they used; this style has

been used for summarising the work done within this field, which follows below.

To classify the signals captured by devices such as EIMO, a conclusion needs to

be drawn from the previous work, in order to setup an assessed database of ‘Good’

and ‘Bad’ classified signal data which can be used for training the models. The

major points to note across the previous works were, the origin of the data used,

and how they defined or found their signal quality baseline on this data in order to

create a useful dataset for supervised machine learning.

Each of the points above have had their sources summarised in the following

sections. The sources are grouped and then discussed with reference to the papers of

note, starting with the source of the data used in their analysis in section 7.2.1.1. The

annotation methods used and the various ways of gathering the quality standards

for these signals are described in section 7.2.1.2.

7.2.1.1 Data Sources For Analysis

Two main sources of data have been identified for research comparison:

• Signal databases.

• Studies conducted by the individual authors.

The first source of signal data came from databases; most commonly the Phy-

sionet databases (Goldberger et al. , 2000). They include the MIMIC (Moody &

Mark, 1996) and MIMIC II (Saeed et al. , 2011) databases and the Cardiology

Challenges, notably 2011 and 2015. They have been used by many authors for de-

termining signal quality (Li & Clifford, 2012; Behar et al. , 2013; Silva et al. , 2012;
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Behar et al. , 2013; Orphanidou et al. , 2015; Martinez-Tabares et al. , 2012; Behar

et al. , 2013). Less well known is the Capnobase Database (Karlen et al. , 2013),

which contains respiratory rate information derived from the PPG data. This has

been used by Karlen et al. (2012) to examine the signal quality of the PPG signal,

and to assess a peak detection algorithm for determining a stable heart rate reading.

The data contained in these databases varies from multi-parameter (ECG, PPG,

Arterial blood pressure, Respiration, etc. . . ) in the MIMIC and MIMIC II databases,

through to specifically focused datasets; the use of ECG in the MIT-BIH and the

Cardiology Challenge, for example. The latter produced a yearly dataset to tackle

certain problem areas. The 2011 Challenge (Silva et al. , 2011) was designed to

improve the determination of signal quality in ECG signals in 10 second segments,

from intensive care unit monitors. The 2015 Challenge was aimed at reducing false

arrhythmia alarms, based on a segment of multi-parameter data around the alarm.

The benchmark for these databases have the added advantage that other re-

searchers can use the same data for comparison. The disadvantages are that the

databases contain very few annotations on the data which they are providing, so it

is difficult to determine under what circumstances the data was collected. This can

make assessing solutions problematic because it can be hard to tell what artefacts

are due to the person or the circumstances, be it motion, electrical interference or

mechanical failure. Also the signals they provide are not an exact match for the

signals received by the EIMO device.

The second source of data in the work by Orphanidou et al. (2015), Sun et al.

(2012), Aboy et al. (2005) and Sukor et al. (2011) is from the studies that the

researchers did themselves, either using their own devices or externally manufactured

and purchased devices. The advantages of this are that the circumstances in which

the data recording takes place can be more specifically controlled. Specific protocols

for exercise can be set up so that the results could be relatively easy to reproduce

if the study was rerun, and as the protocol was developed for the question that

the researchers had in mind, they had the ability to scrutinise directly the issues

that their papers addressed. The main disadvantage of these data sources is that
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the data from these studies are unique and so no comparison benchmarks can be

employed to address and test the same issues by subsequent research. The data

recorded from the EIMO device falls under this category, with no other benchmarks

currently published on this new captured data. The signal comparison in section 6.4,

shows that the signals captured are highly correlated to the other sources, but they

are not an exact match. This will need to be taken into account, as this data from

the study is the best test of the signal quality assessment on the actual data from

the device.

The data sources discussed above need to be annotated for the quality of the

signal. Some databases already have some form of annotation, but the independently

recorded study data has no signal quality annotations. The data sources require

sufficient signal quality annotations to be useful in training models. The issues

around the quality annotation of these signals is discussed in the next section.

7.2.1.2 Annotations and Benchmarking for Quality

To build a classification and benchmarking system, a method for comparison must

be established with a set of ground-truth annotations for the data that can be used

as a standard for training and testing. These annotations must be added to the

signal recording by having the signal assessed either by a human or a machine. The

literature has been examined to find methods of creating the ground-truth baseline

for the signal. There are three main methods of doing this classification.

The first, and it would seem the most useful, is to use annotations and cues from

an already existing database to build and assess signal quality models. The main

databases used in the literature are the MIT-BIH Arrhythmia Database (Moody

& Mark, 2001), this carries beat annotations and alarm classification of the ECG

signals only, also they keep signal quality annotations as timed marks in the signal.

The MIMIC II database has ‘True’ and ‘False’ alarm data listed but no information

on the signal quality itself. The 2011 Cardiology Challenge reviewed by Silva et al.

(2011) has 10 second ECG signal segments marked as acceptable or unacceptable.

The data from these databases have been reused in past signal quality studies.
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The signal quality annotations given in these databases have not been adopted

and many papers have reported to have re-labelled the data in their studies. For

example: in work by Behar et al. (2012), they state that they do use the ECG

feature annotations from the database, but manually re-classify the quality, and

Li et al. (2014) mention that they have re-annotated the quality for the purposes

of that paper, most probably because of the lack of detail. Experience with the

MIT-BIH dataset shows that there are few signal quality marks, although the exact

reason the data was re-annotated is not reported. However, it is probable that

they re-annotated the dataset to create more detailed training and test-sets for

machine learning. Orphanidou et al. (2015) shows that they did indeed use the

data from a few data sources and they manually relabelled the segments to give

a better resolution to their dataset. There seems to be other databases when one

explores the Physionet search system, few of which have meaningful signal quality

marks attached or are as well used and known as the MIT-BIT or the Cardiology

Challenge 2011 databases.

The second method and evidently most popular, is to take signal data from either

published databases like Physionet or from a device that has either been built for

the task or purchased, then manually annotate sections of this data as above. Some

of the previous work does not give details on how this was done, and what methods

they used for classification, like (Behar et al. , 2013; Sun et al. , 2012; Behar et al. ,

2012; Li et al. , 2014). Others state that two assessors were nominated to annotate

the signal segments with a third to decide on the discrepancies between the first two

and give the final verdict (Li & Clifford, 2012; Orphanidou et al. , 2015; Silva et al.

, 2012; Sukor et al. , 2011). Karlen et al. (2012) mention that a research assistant

annotated the quality of the signals used.

The most notable reference for annotation information is the work done by Clif-

ford et al. (2011). The authors took the base ‘True’ or ‘False’ annotations from

the Cardiology Challenge but added more detailed signal quality data to this. They

defined an eight step scale with a continuous value (from +1 to -1), and a letter

(from A to F) to label the classifications. They dealt with the quality by having a
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statement and description about what should be visible. Most of the descriptions

hinge on whether it was thought that the signal could give accurate results or be

‘reasonable’. It is notable that they miss out the zero area and label each side at

+ or - 0.25, as the 0 quality signal could be difficult to define. For example if +1

was a ‘Good’ signal and -1 was a ‘Bad’ signal, it could suggest that 0 would be no

signal but a bad signal might also be considered to not have a signal either. This

might be a reason why they miss the 0 definition. To avoid this ambiguity, the

definitions can be simplified to a two-class discontinuity for marking signal quality,

which is ‘Good’ or ‘Bad’ or alternatively ‘Useable’ or ‘Unusable’. The terms ‘Good’

or ‘Bad’ will be used to describe these classes, and a definition of the heuristic fea-

tures used for ‘Good’ and ‘Bad’ signal quality are described later in the chapter (see

section 7.3.2.2).

The third method is not as widely used, but very interesting because this method

looks for standards in features and signals and holds them as a template for clas-

sification (Aboy et al. , 2005; Mahri et al. , 2012). This could be in the form of a

template signal that is kept and subsequent new signals are then compared to the

initial template signal. Only signals which correlate closely are considered ‘good

quality’ (Fu et al. , 2010). The primary question arising from this scenario is ‘how

does one find the perfect signal to compare or the most descriptive feature statis-

tics?’ This issue should be kept in mind for the remainder of the chapter and is

discussed directly in chapter 8.

Since the direct purpose is to assess the signal data from capture devices like the

EIMO device, the data captured from the study in section 6.4 should be annotated

to make a viable training dataset as in the work discussed above. Since there can

be ambiguity in what constitutes a ‘Good’ and ‘Bad’ signal segment, the assessment

will be divided between two layers. The first layer of assessment will be done where

one human annotator adds annotations to the data for ‘Good’ and ‘Bad’ using the

scheme above. Then in the study detailed in section 7.4, these annotations are

compared by other assessors as the second layer of assessment.

A signal data repository with both data signals and with annotations would
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be the preferable solution, since it would allow simple benchmarking for quality

algorithms, with the ability to find a standard for categorisation of signal quality.

The main reason this may not have been addressed previously seems to be that

there is great difficulty with permission to open and publish all of the data from

a study while maintaining data protection for the participants. There needs to

be a way for people to annotate data easily and preserve all the different types of

annotations. As the quality given might be disputed between different researchers,

each of their annotations should be preserved so comparisons can be drawn. These

issues, although understandable, leave an opening for a system which can address

these issues and keep the results of signals and annotations clean and presentable.

Further discussion on this topic can be found in section 7.3.2.2 and ultimately this

question has led to the work described in chapter 8 which looks at methods to

assess and automate the signal quality assessment. The primary system developed

for doing this is the framework discussed in chapter 3, which has been utilised for

the signal analysis explained in section 7.3.

7.2.2 Classification Strategy

In order to produce a classified set of signal quality annotations for recorded signals,

a system of classification needs to be described. A review was carried out to find

strategies and issues that will need to be addressed. Formulation of the ‘Good’ and

‘Bad’ signal quality system should incorporate the important aspects of novelty or

anomaly detection.

Work has been done to review the field of novelty detection by Pimentel et al.

(2014). They present a comprehensive review of the state-of-the-art methods for

novelty detection, highlighting the wide variety of methods and evaluations used,

as there is no ‘best case’ or ‘optimal’ system for all data sets. Therefore, the type

and distribution of the data needs to be considered when choosing a methodology.

Further surveys by Chandola et al. (2007, 2009), describe techniques for anomaly or

outlier detection. The authors expand on the details along with describing possible

applications that the methods could be used for. The applications that they discuss
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are: detecting network intrusion, fraud, image processing and novel topics in text

mining.

Novelty detection is a process designed to find uncharacteristic patterns when

there is not enough data to assemble a reasonable training set (Pimentel et al. ,

2014). Anomaly or outlier detection however, is the process of finding the patterns

that are outside of normal behaviour (Chandola et al. , 2009). They do share a lot

in common in terms of classification and data flow, except that novelty detection is

more common when the construction of an outlier training class is difficult. In both

cases, anomaly and novelty detection are forms of classification problems (Pimentel

et al. , 2014; Ding et al. , 2014; Chandola et al. , 2007). This classification is normally

determined by the features derived from the data at particular event boundaries.

There are three issues raised above, these are:

• Determining effective learning models to use.

• Methods for the segmentation of the data.

• Determining the features to describe the segments.

These issues are expanded upon in the next sections.

7.2.2.1 Simple Learning Models

The classification system used requires a model which is reliable to train. To be

reliable, a model should have a cost function that can be optimised without hitting

local optimums. Support vector machines (SVM) (Kononenko & Kukar, 2007) are

perfect for this task since they have the advantage of a convex error surface which

makes training them straight forward. Further to this, they can use kernel functions

to vary the metric of the boundary space. This allows SVMs to emulate many

different forms of model boundary by careful selection of the kernel function. With

these advantages, SVMs can be used to provide an easy model for classification,

which will give the best classification boundary for any given set of data. More

on machine learning methods will be discussed in chapter 8, when examining other
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methods to explore the classification strategies. Here, the model generalisation and

classification accuracy will be of utmost importance.

7.2.2.2 Segmentation

Useful segments are defined as decision boundaries at points through-out the signal,

where there is enough information to make descriptive features. The meaning of

the events or marks themselves is not the important part of their determination

however. The segment boundaries should be an easily definable part of the signal

and robust to signal changes and occur reasonably frequently for the problem at

hand. A number of these segmentation events have been used in previous work by

Orphanidou et al. (2015) and Behar et al. (2013). For example, they use a fixed

segment length of 10 seconds, as was used in the Cardiology Challenge 2011 (Silva

et al. , 2011), which was their source of signal data. Others include Silva et al.

(2012) which trained on and assessed a 10 minute epoch before an alarm. This

created a continuous simulation of the signal for quality assessment but only one

sample was used over the 10 minute epoch. The most promising efforts were made

by Li & Clifford (2012) and Sukor et al. (2011), where they used the cycle valleys

of the waveform to classify the signal as ‘Good’ or ‘Bad’. This created a variable

length segment. The cycle periods are the most important part of the ECG and PPG

signals as they occur approximately every second or so. This leads to reasonable

granularity in the signal events. This will be explored further in section 7.3.2.1.

7.2.2.3 Features and Descriptions

The process starts by finding a set of characteristics that best describes the seg-

ment in the feature space defined, which enables the correct outcome prediction.

Features can be found using multiple sources, and can include statistical measures

(for example mean, standard deviation or skew), morphological measures (such as

correlation, peak-to-valley amplitude distance, cycle time or amplitude), along with

signal mapping algorithms (including curve mapping methods (Kumar et al. , 2012),

as well as time warping methods (Li & Clifford, 2012)). These measures can also be
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classed as context insensitive measures, as they are evaluated for the signal or event

by mapping algorithms.

The final choice of the features will be explained further when describing the

classification system below in section 7.3.3.1. These features will be expanded in

the next chapter.

7.2.2.4 Performance Metrics

There are many different metrics, which could be used to assess the accuracy of a

model. They are split into two main types. The first is to assess the performance

on continuous outcomes, such as a correlation coefficient between the estimated and

the actual outcomes, or the L1/L2 norm error between the estimate and the actual

outcomes. The second are metrics used to assess discreet outcomes, where there

are a finite number of classes that the result could be chosen from. The two that

can be focused on here are the strategies used for classification; primarily using the

confusion matrix and the receiver operator characteristic (ROC) graphs, discussed

below.

Confusion matrix

The confusion matrix is an excellent way of comparing the results from classifi-

cation models by displaying four groups called: True Positives (TP), True Negative

(TN), False Positive (FP) and False Negative (FN). These are laid out as shown in

table 7.1 (Witten et al. , 2011).

Table 7.1: The model confusion matrix.

Estimated
True False

Actual True TP FN
False FP TN

These groups can be used to estimate three main metrics, these metrics are

defined as:
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Accuracy = (TP + TN)
(TP + TN + FP + FN)

(7.1)

Sensitivity = TP

(TP + FN)
(7.2)

Specificity = TN

(TN + FP )
(7.3)

Accuracy defined by equation (7.1) shows how well an estimator estimated the

actual classes, for both ‘True’ and ‘False’ classes. However this can be skewed if

the number of the classes are imbalanced. The two other metrics are less subject

to imbalances. They are the sensitivity (defined in equation (7.2)) and specificity

(defined in equation (7.3)). These metrics look at the accuracy of the ‘True’ or

‘False’ class respectively, thus showing the true accuracy of each, given any number

of ‘True’ or ‘False’ classes.

Receiver Operating Characteristics (ROC)

A good introduction for Receiver Operating Characteristics (ROC) analysis was

given by Fawcett (2006), where they explained the best approach to using the ROC

charts to assess model performance. Here they describe the algorithm for calculating

and plotting the graph, including other parameters discussed further in the next

chapter. They also show that many operating points can be plotted on a single

ROC graph as seen in figure 8.1, allowing easy comparison between them. This

compound graph, or ROC field, can be used to display and compare the results of

many models together as it is used to display the results of the studies conducted in

section 7.4. Each point on the graph can show the operating point of a model. The

vertical axis of the field shows the specificity which, as shown above, indicates how

accurate the model is at correctly estimating the ‘True’ instances. The horizontal

axis shows the sensitivity as defined above and is the estimation accuracy of the

model for ‘False’ instances. This is usually reversed by either subtracting it from

one or reversing the axis, to bring the highly sensitive models towards the left edge.

Therefore, a point in the top left of the field would be the optimum, showing that

the model has a high accuracy with both ‘True’ and ‘False’ classes.
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7.2.3 Summary

The survey mentioned above (Nizami et al. , 2013) demonstrates that there appears

to be much disagreement between the researchers working on the problem of finding

reliable signal quality indicators. There seems to be certain databases used in other

works, most notably the Physionet MIMIC II, MIT-BIH and Cardiology Challenge

2011 databases and other signal repositories, but limited ground-truth information

is associated for signal quality, and when there is, it is not generally used in the

literature. Signal quality assessment seems to be mediated by two human assessors

looking at segmented signals, with a third to pick out the discrepancies between the

first two. It has been noticed that the third assessor might have more experience

with classifying signals since the opinion of the third assessor is the one held to be

the final truth. There are two main ways to gain useful signal quality classifications.

The first is to use a peer review standard, and so even if the annotations are not

perfect, all of the algorithms can, at least, be compared. This standard is the subject

of the rest of this chapter. The data from the EIMO device recorded in section 6.4

can then be used, with annotations produced for it. These can then be assessed by

other human annotators as is discussed in section 7.4.

Looking into the issue of benchmarking, there is an opening to create a database

and analysis system for medical signals. Starting with this data and defining the

ground truth based on the same database scheme as used for the Physionet, allowing

annotations to be added to the data and then these can be compared. For more

detail on the framework that the system is built on, see chapter 3. A proposed

analysis and annotation system has been developed to facilitate the work done here

and is explained in section 7.3. The annotations and annotating interface used in

the system are described in section 7.3.2.2.

7.3 Classification System

The system proposed here is used to aid in the classification of time-based signals,

which can be broken down into four parts; these are detailed in the primary system
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structure below in section 7.3.1.

The structure of the classification and learning analyser is the main consider-

ation for this architecture to aid in the discovery and testing of classification and

regression knowledge models, for the real-time analysis of time-based signals. The

main purpose in describing the framework for the system is that, with a system

in place for the processing of time based signals, the analysis can start out more

simply. New learning methods, segmentation and features could be easily added to

the system by replacing and extending the modules defined below and is described

in chapter 8.

The ECG and PPG signals, as recorded by EIMO and the CM400, which are

described in section 6.4.2, shall be used as a case study for testing and illustration of

the design where appropriate. Other signals, however, could be used for segmenta-

tion, feature extraction and quality assignment modules, with the modules upgraded

as required to keep them accurate.

7.3.1 Main Structure

The main principle driving the quality analysis of the data is that the data might

not all be of sufficient quality, and the contribution of the data could be regulated

based on the quality of the data seen. The system has been designed to emphasise

that the primary processing elements for feature extraction, outcome assignment

and the classification or regression of the estimated outcomes have been designed

using a modular architecture with interchangeable blocks.

The structure being developed to classify the stream of events, as briefly de-

scribed above, has been designed to classify and remove events in a hierarchical

fashion. Figure 7.1 shows this modular structure and operation of the signal analy-

sis system. The four main modules shown are as follows:

1. Input - The inputs to the system in the form of a set of signal annotations for

quality and the signal events which segregate the signals into decision bound-

aries, either found automatically or manually, are described in section 7.3.2.
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Figure 7.1: System overview and data flow throughout the system showing the
four main module types. These can be further broken down into the different sub-
modules. The arrows denote the interactions between these elements, the data flows
from left to right. Each module can be defined and is replaceable.

2. Processing Elements - The modular processing elements of the system where

the event and annotations are processed to describe the event features and

assign them an outcome. The process is described in section 7.3.3.

3. Classification Architecture and Training - The main replaceable module of the

system, this contains, trains and runs the model processing architecture, such

as ANNs or SVMs, using the instance event data as described in section 7.3.4.

4. Testing and Result Analysis - Within this module are the elements that assess

the prediction accuracy of the classifier module, where the outcomes of the

learning module can be analysed and measures of accuracy generated. This is

discussed in section 7.3.5.

The full signal quality analysis architecture is described logically below. This

builds onto the analysis framework as laid out in section 3.4, where the low level im-

plementation of the processing elements is described in section 7.3.3. The following

modules and processes described below are run within that framework and so take

advantage of the process management and data flow system described there.

7.3.2 Data Inputs

There are two main inputs to the system. The first input is a series of events defining

decision boundaries on the time-based signals. The acquisition of these events will
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be discussed in section 7.3.2.1. The second is a series of annotations provided for

the signal, which will be described in more detail in section 7.3.2.2.

7.3.2.1 Signal Event Segmentation

The signal events are points in the signal marked by a reliable feature point. The

markers, therefore, allow for a system where classification is performed in real time

and assessments happen without unreasonable delay. The time-based makers can

be used as a decision boundary. This allows the framework to know when sufficient

conditions, necessary for analysis and classification, have been reached. As found

above, they can either be defined over a fixed time irrespective of the signal or based

on a defined point in the signal. They are manifested in general as events, or notable

local key points. The marker’s exact nature would depend on the signal in question,

so an example would serve to illustrate the segmentation of the signal into events,

then to assess the stability of these events.

Event Marker Stability

The events in continuous cyclic signals such as the PPG or ECG can either

be the peaks or valleys of the signal, as both would be repeating points in the

signal cycles. The peak of the QRS complex would be a natural place for the event

point to be assigned to the ECG signal since this is the most notable feature. By

contrast, the event placement is not as clear cut in the PPG signal. There are peaks

(maximum pulse pressure), and valleys (minimum pulse pressure), both of which

are interesting features of the cycle. The valley is a more interesting feature since

this point of minimum pressure is the point at which the heartbeat pressure wave

arrives at the area of measurement. Therefore, the most consistent feature between

the two should be selected, to keep the descriptions as consistent as possible. In the

previous studies described above in section 7.2.2.2, the valley was chosen as it is the

start of the pressure wave, but for the quality and classification of the signal, the

most stable point of the wave should be used as the boundary.
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A thought experiment and hypothesis can be deduced at this point: it would

stipulate that the peak would be the most consistent feature since the energy of the

system changes under different pressure characteristics. When the peak is found, the

vessel is under high pressure. This will mean that a signal will require more energy

to distort the volume within the vessel under measurement. Conversely, when the

vessel is under low pressure, and therefore low energy in the valley of the signal, the

same level of noise energy can have a bigger impact, thus distorting the signal more

significantly, and distorting the feature’s position due to the noise.

Given this is an issue about stability, what is required is the point at which the

highest signal-to-noise ratio (SNR) is seen in the system. To calculate the potential

signal to noise in the system, one can start by examining the energy of the vessel

when at the highest and lowest pressure. It can be shown that deriving from Hook’s

law and constant K and the ‘work done’ equations that the energy of an elastic

deformation is given by equation (7.4) and for a closed walled elastic tube is then

given by equation (7.7) (Landau et al. , 1986). This defines that the energy U is

proportional to the change in radius dy squared.

U = 1
2

Kdr2 (7.4)

K = EA

C
(7.5)

C = 2πr (7.6)

U = EAdr2

4πr
(7.7)

Where, dr is the change in radius r of the artery. Subject to an Youngs modulus

E for lateral expansion of the vessel and A is the cross-sectional area of the vessel’s

wall and finally C is the circumference of the vessel or the length of the spring and

the vessel is of a unit length L.

Relating this potential energy to the pressure using the vessel distension formula

as seen in equation (7.8) from work presented by Bramwell & Hill (1922) and Roy-

lance (2001) on the pulse wave velocity in humans. This equation indicates that for

a given pressure rise Pp, the radius increases, which in turn increases the volume

capacity of the vessel. This cyclic shape shows in the PPG signal as the pulsatile
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part of the signal, familiar on blood oxygen monitors.

dr = r2Pp

EA
(7.8)

Substituting 7.8 into 7.7 and simplifying gives:

U(Pp
2) = r3

4πEA
Pp

2 (7.9)

If c = r3

4πEA
, substituting it in to equation (7.9) gives equation (7.10). This shows

simply that the potential energy of the elastic vessel is proportional to the square

of the pressure difference.

U(Pp) = cPp
2 (7.10)

U(Pp) ∝ Pp
2 (7.11)

Setting Pp to the peak pressure difference dP̂ and valley pressure difference dP̌

gives:

U(dP̂ ) ∝ dP̂
2

(7.12)

U(dP̌ ) ∝ dP̌
2

(7.13)

and since the pressure at the peak is greater than in the valley, dP̂ > dP̌ .

Finding the signal to noise power ratio SNR at the peak pressure SNRP and

at the valley SNRV .

SNRP = log
(

U(dP̂ )
n

)
(7.14)

SNRV = log
(

U(dP̌ )
n

)
(7.15)

where n is the noise energy in the vessel area.

∴ SNRP > SNRV (7.16)

Given equations (7.14) and (7.15), the SNR is proportional to the pressure.

If taken at the peak, the energy of the system will be larger than at the valley.

Therefore the SNR will be bigger than if taken at the valley, under a given amount

of noise power as given in equation (7.16). This suggests that the peak event at

higher energy should be more stable, and more consistent for triggering an event.
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An experiment was done to show the framing of the PPG and ECG signals for

morphology analysis. Using the first 2 recording periods of data from Users 5 and 6

in the study described in section 6.4 was used to illustrate the differences in signal

segmentation using peaks and valleys. Figures 7.2c and 7.2d shows the overlapped

signal frames for the PPG signal, figures 7.2a and 7.2b shows the overlapped signal

for the ECG. The first is overlapped using peaks as the points of reference. The

second shows the same data, but using valleys as a point of reference. The graphs

illustrate that using the peak for signal framing, yields the most consistent signal

frames. When using the valleys, the noise allows the position of these to drift, thus

distorting the signal morphology.

Given a PPG signal waveform, such as one recorded from the EIMO device, the

signal events, as discussed above, are to be the detected peaks of the PPG waveform.

The primary considerations for their definition are that they are in a stable position

within the signal and that they are generated with sufficient frequency to serve as a

point of classification. The choice of using the peaks of the PPG or QRS in the ECG

waveform, satisfy the points mentioned above since the peaks occur at least once

a cycle and when classified correctly, form a classification frame for the incoming

data.
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(a) Segment peak verses Valley comparision
for ECG using peaks as the event bound-
aries.

(b) Segment peak verses Valley comparision
for ECG using valleys as the event bound-
aries.

(c) Segment peak verses Valley comparision
for PPG using peaks as the event bound-
aries.

(d) Segment peak verses Valley comparision
for PPG using valleys as the event bound-
aries.

Figure 7.2: Statistical display of the data logged for each segment with peak-to-
peak or valley-to-valley boundaries for both electrocardiogram (ECG) (a) and (b)
and photoplethysmogram (PPG) (c) and (d) respectively. The same signal data
was used in both cases. The scales shown are both normalised for amplitude and
for the cycle time to allow the morphology to be shown more clearly. The signal
segments are taken from Users 5, 6, 7, 8 and 14 using segments found from the
first two periods from the first session using 24 minutes of a signal per user. The
black lines shows the mean segment levels. The yellow area shows the inter-quartile
range and the green shows the first standard deviation from the mean. Lastly the
red area shows the minimum and maximum of the signal segments reached. (a) and
(c) show the most pronounce average signal which were when the boundaries were
from peak-to-peak. In (b) the QRS peak has been averaged away and in (d) the
defined PPG segment as also been averaged away suggesting that the signals are
less consistent in the valley-to-valley arrangement.
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Signal Segmentation

Shin et al. (2009) describes the PPG waveform signal I(in) where in is the

sample index as ‘very dynamic’ due to the breathing rhythm, motion artefacts and

of course, local BP changes, which causes significant variations in the transmitted

light intensity between cycles. They suggested a method of peak detection that uses

an adaptive threshold technique. They proposed a threshold which decays from the

previous peak with time; so in effect, the detector becomes more sensitive the older

the original peak is.

Dis = Dis−1+ τ
Î(is − 1) + stdP P G

Fs

(7.17)

Where, is is the current peak index, is−1 is the last peak index, Dis is the current

decay constant, Dis−1 is the previous decay constant, τ is the slope changing rate

fixed at +/- 0.6 heuristically in their paper, Î(is − 1) is the last peak, stdP P G is the

standard deviation of the PPG signal and Fs is the nominal sample rate of the signal.

The signal adaptation in their method, which is shown in equation (7.17), was

to allow the decay constant Dis to vary with the amplitude of the previous peak

Ipk(is−1) from cycle to cycle. The sampling frequency Fs and the standard deviation

of the signal stdP P G are practically constant for any given sampled signal. No

adaptation for the cycle timing of the signal was used.

The adaptive decay constant was extended to improve the performance of the

algorithm by allowing the decay constant to vary with the previous peak height,

cycle period and the estimate of the noise floor of the signal. This was to enable the

previous cycle characteristics to predict a peak height and the threshold at the next

peak arrival time. This sets the decay constant Dis accordingly and adaptively at

every cycle. The new definitions are:

Tc(is − 1, is − 2) = T (PG(is − 1), PG(is − 2)) (7.18)

Imin(is − 1) = 1
l

l∑
i=1

(PB(is − (l + i))) (7.19)

Dis = (PG(is − 1) − Imin(is − 1))
(TIHB(is − 1, is − 2))

H (7.20)
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Where, T (A, B) is the time difference between peak A and peak B, PG(·) is the

set of the ‘Good’ detected peaks above the threshold. Imin(is −1, is) is the estimated

noise floor from peak. (is − 1) to is, Tc(is − 1, is − 2) is the period of the previous

heartbeat. PB(is) is the set of ‘Bad’ peaks, which are peaks that did not make the

threshold previously, H is the coefficient to determine the decay rate and L is the

number of ‘Bad’ peaks to look back over.

There are only two parameters to choose with this model. H is chosen to be the

desired estimate of the next peak at the time that the previous cycle period is over.

Setting H = 1 would make the threshold drop to the noise floor and a setting of 0.5

would make the threshold drop by half of the peak to noise floor distance by the

estimated end of the period. The choice of l and thus the noise floor is based on the

desired performance as the more bad peaks that are averaged over, the better the

estimate. The threshold Th(n) is therefore decayed with time Tpk(is −1, n) as is the

period from the last good peak (is − 1) until the current sample n and defined as in

equation (7.21).

Th(n) = PG(is − 1) − Dis−1Tpk(is − 1, n) (7.21)

Any detected peaks lower than Th(n) are classified as ‘Bad’ peaks and are used to

estimate the noise floor in equation (7.19). The first peak greater than the threshold

Th(n) and over the minimum peak duration, 0.3s ≤ t ≤ 2.0s is classified as a ‘Good’

peak. These would translate into a possible heart rates of 30bpm for 2 s and 200

bpm for 0.3 s. To recalculate the decay constant Dk, equations (7.19) and (7.20)

are used; the period between the current and last ‘Good’ peak TIHB. This can then

be used as an estimate of the period of the next cycle, therefore it can also be used

as an estimation of the instantaneous heart rate.

The adaptive threshold is robust to noise because it reduces the decay rate if the

estimated noise floor Imin is high, which means a peak has to overcome the higher

threshold to be considered as a valid peak. It is also robust to false peaks because

it adjusts the sensitivities of the peak detector threshold by modelling the dynamics

of the signal regarding peak level, noise floor and cycle period.

There is a simple signal quality measure within the peak detection algorithm.
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Figure 7.3: The action of the adjustable threshold in the peak detection algorithm
is shown in red on an example PPG signal (green), showing the adaptive threshold
from Munnoch & Jiang (2015). The ’Good’ PG and ’Bad’ peaks are marked with
green and red markers respectively. The ’Good’ valleys are marked in yellow. The
is is the index of the current last peak seen.

This uses the number of consecutive ‘Good’ peaks within 10% of the last period to

maintain the quality. On the first ‘Bad’ peak, the signal quality is reduced to 0.

This measure effectively looks for consistantly timed periods within the signal.

7.3.2.2 Signal Annotations

To allow the training of supervised learning architectures, the baseline quality of the

signal is required to form a standard for the signals in question. In the currently im-

plemented system, this can be deduced from the annotations given about the signal,

with events found from the segmentation, dynamically allocating a quality result

class, by interpreting the signal quality transitions. First the types of annotations

used within the framework are discussed. Next, the interface for adding annotations

and markers to the signals is described. Once the interface is presented, the defini-

tion of what is meant by the ‘Good’ and ‘Bad’ classifications can be made. Lastly

the process is described that interprets the annotations.
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Annotation Types

The annotation style used for this research is derived from the Physionet database

and the past work, discussed above as a starting point; see table D.6a in the ap-

pendix D.2.1. They use annotations to add metadata to their recorded signals as

others have done before them. The annotations used were a mark showing the

assigned quality of a section of the database’s ECG signal. Their annotation cat-

egories will be used as a staging point, with extra types added by the author to

extend the types of annotations possible. Other annotation categories were added

to gain the ability to gather better resolution and categorisation, which can be seen

in table D.6b. These new annotation types allow for more expressive marking within

sections by either a general mark, or a named signal. The name is stored with the

annotation, and details of the storage and interface can be found in section 7.3.2.2.

The annotation scheme implemented, collects and stores this list of annotations for

the signal as a real floating point score. This was derived from the classification

table in the work done by Clifford et al. (2011). This means that, without modifi-

cation, the signal quality can be given at any point in a continuous set if required.

The quality is currently assigned as discrete -1 or ‘Bad Quality’ and +1 or ‘Good

Quality’ creating a two class binary problem as mentioned above. By holding the

quality at the two limits the user annotating the signal cannot impose a perceived

or emotional weighting to parts of the signal. The annotations are defined during

a transition in quality, marking them as either 1 or -1, marking all of the signal’s

events by using inferences from the annotation transitions, or marks. Internally,

it must be recognised that every signal quality annotator who assesses the signal

must have their own thresholds of what is ‘Good’ and what is ‘Bad’, by restricting

the quality to the two extremes, a simple decision can be made by the Assessors.

The variation in this decision for each person is explored in the study described in

section 7.4.

The annotation types added come in two main types: general and named forms,

as can be seen in figure 7.4. The first group contains the quality marks for both

named and general signals. These are used to assign the signal by default to a
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Figure 7.4: Annotation type hierarchy for signal quality marks and transitions. The
quality annotations come in two groups: first, a quality mark to fix a quality for the
signal section with or without a timestamp; and second, a quality transitions which
shows that at the timestamp, the signal quality transitioned between the prior and
post quality values. Both of these annotations come as general and named. General
annotations apply to all the signals, and named ones are specific for only the named
signal. This forms a hierarchy from the most general, a general signal quality mark
(GM), with no specific time or signal through to the most specific, a named quality
transition (NT).

quality score; no time is given for these, as it is used as a default for generating

the signal. A good example of their use is to set default quality for a segment of

the signal. The whole set can be allocated this quality as the general form, or each

signal can be given its own corresponding mark.

The second group contains signal quality transitions. These transitions are more

descriptive, as there is a general and named form. These data points have to have

a time associated with them, as they mark a position along the signal. The quality

can then transition between two continuous levels for all or some of the signals,

depending on whether the transition was a general or named signal respectively.

Table 7.2 and figure 7.5 shows an example annotation set and the quality trace

it creates, illustrating the quality changing at each of the annotations events.
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Table 7.2: Example annotation table.This consists of a made up set of signal quality
annotations, showing a General Mark (GM), Named Mark (NM), Named Transition
(NT) and General Transition (GT) in use and the other information that they require
(N/A)s are parameters which are not required for that annotation).

figure 7.5.
Time Type Quality

Before
Quality
After

Signal
Name

N/A GM N/A 1.0 N/A
N/A NM N/A -1.0 Signal 1
T1 NT -1.0 1.0 Signal 1
T2 NT 1.0 -1.0 Signal 1
T2 NT 1.0 -1.0 Signal 3
T3 NT 1.0 -1.0 Signal 2
T4 GT -1.0 1.0 N/A

Figure 7.5: An example of how the annotations from table 7.2 are interpreted into a
signal quality trace. The dotted lines are the time stamped annotations. The traces
for the three signals are the signal quality traces made by these annotations.

Signal Quality Class Characteristics

The signal quality of the waveforms and the annotations were recorded to give

signal events with a ‘Good’ objective signal morphology. The main characteristics

used to determine ‘Good’ morphology are shown in figures 7.6a and 7.6b, where

they show diagrams of the PPG and ECG signals respectively and illustrate the

main features of the signal. These figures are used below for visual reference when

describing the characteristics of ‘Good’ PPG and ECG signals

The ideal PPG waveform, as shown in figure 7.6a can be best described by the

following characteristics:
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(a) An idealised ’Good’ quality PPG sig-
nal. Region A is where the vessel volume
raises. Point B is the Maximum vessel
volume. Region C is where the vessel
volume recovers. Point D is the dicrotic
notch as a secondary peak, common but
not always visible in the signal.

(b) An idealised ’Good’ quality ECG sig-
nal. Point A is commonly called the P
wave. Point B is in the middle of a space
called the QRS complex which is from
the negative deflection through the peak
to the second negative deflection. Point
C is commonly called the T wave.

Figure 7.6: Idealised signal morphology annotations for both PPG (left) and ECG
(right). Explained above are marked points and regions denoting the interesting
features and morphology of the signals.

• A fast rise time in region A lasting approximately 1/3 of the period, with a

slow recovery in region C lasting for 2/3 approximately of the period.

• A smooth trace with an identifiable peak point B with low to no signal clipping.

• An extra peak in position D can be expected but not required as this is caused

by the reflection of the pulse on the capillary beds and varies from person to

person, commonly it is found a quarter to halfway through region C.

• The peak of the next wave needs to be consistent to give a good estimate for

calculated parameters such as heart rate.

The ideal ECG waveform as shown in figure 7.6b can be best described by the

following characteristics:

• Points A and C are not always noticeable or are hidden by muscle noise.

• Points A and C should always be lower than the main QRS point B.

• The waveform should be smooth other than the points marked.

• The peak of the next wave needs to be consistent to give a good heart rate

estimate.
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If any of the above points are not met, the wave might not give an accurate

result and, therefore, should be marked as a ‘Bad’ quality signal, otherwise if the

points are met the signal segment is labelled as ‘Good’ quality. These are assigned

numerical values of -1 and +1 respectively for the two classes.

Annotating Data Interface

The interface for adding this information is a purpose built web system, as shown

in figure 7.7 and explained in the caption. This illustrates the current interface. The

style is a combination of annotation systems from the work done by Sukor et al.

(2011) and the LabelMe system1 for the ImageNet database. The web based system

allows remote data annotation and review.

1Label Me Image annotation system can be found at <http://labelme.csail.mit.edu>. Author:
MIT, Retrieved 2016/12/01
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Figure 7.7: The web-based signal annotation user interface system demonstrating
the main sections for selecting a user, device and the current data segment with the
annotation types colour-coded below. The computer determined signal quality is
shown with the same time base as the displayed signal. The drop-down boxes allow
the user to select a current user and device to review. A 1 minute data segment can
be selected from the next drop-down box from the selected user. Once selected, the
main area displays the signal data for the selected user and this can be zoomed and
panned using the controls below the signal graph. Below this, the smaller graph
shows the currently computed signal quality graph using the annotations. All of the
annotations can be marked straight onto the signal by clicking on the appropriate
point, then a choice of the annotation types can be made and the point or mark
is assigned. All of the other annotation types can be added in this way; so that
the peaks of the signals, or diagnostic information, can be added or modified. The
interface automatically updates and shows the current state of the signal quality to
give feedback to the annotator.
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Processing the Annotations

When a segment of data requires processing, the signal and annotation data

are loaded, then the quality annotations are assessed. The most general marks are

used first, and then more specific marks and transitions are used to build the quality

trace, following the annotation hierarchy described above. These are strung together

in time order to create a time-series of quality over the same time span as the data

signal annotated. This can be seen in figure 7.8, where the circular mark indicates

the annotation points, and the line spanning them indicates how the quality signals

are calculated between them. Quality marks are used as the signal default, with

quality transitions used to modify the signal at known points. An example of this

can be found earlier in table 7.2 and figure 7.5 where the diagram shows the result

of the table of annotations.

Figure 7.8: Graph showing a sample of signal data with the coloured circles marking
where there are quality annotations and the lines indicate the calculated quality
signal using these points as data for interpolation. The ECG and PPG signal data
is shown on the top axis, then the bottom two graphs take the annotations for this
segment, which can effect each signal, and calculate the quality seen at that point.
T:NT is referring to a quality named transition (NT) which means this was a quality
transition for a particular signal. The T is a short code to differentiate transitions
(T) from marks (M).

139



7.3.3 Processing Elements

The other processing blocks which are seen in the figure described in figure 7.1 show

that the events and annotations are used to extract desired descriptive features and

how those features are then given a quality mark using the annotations. The desired

classification architecture can then be applied to learning and be assessed on subsets

of the quality assigned events provided by the framework. The full description of

this can be found in section 7.3.4.

7.3.3.1 Contextual Feature Extraction from Events

This processing element augments a set of signal events E(is), which have been in-

dexed in time, with the feature descriptions based on the contextual data surround-

ing the event and the segment of data between events. As referred to previously,

the simple statistical measures are easily calculated from the data between event

E(is) and the previous event E(is − 1), which bound the signal data segment S(is)

at segment index is. Features that are of marked note are:

• Fheight(is) - The segment is height from peak to valley between the current

E(is) and last E(is − 1) events.

• FTp(is) - The time difference or length of segment is between the current E(is)

and the last E(is − 1) events.

• FS̄(is) - Mean of the signal segment is.

• FσS
(is) - The standard deviation of the signal segment is.

The second group of features used are more sensitive to the morphology of the

signals. These are derived from the signal data within the current-to-previous event

time frame. However, using these signal features raises problems due to time and

amplitude variance across samples. Since the peak height and cycle height can be

better captured elsewhere, the data for morphology can be then normalised, to lay

between -1 and 1, to allow the routine to be amplitude invariant. The time variance

between segments is a slightly harder proposition, but can be treated similarly to the
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(a) An example PPG signal with the event
features marked.

(b) An example ECG signal with the event
feature marked.

Figure 7.9: These show example PPG and ECG signals annotated with the signal
features. These are used to describe the signal events and are marked to aid an
explanation of their meaning on the signal. The FTp(is) is the calculated period
between the peak PG(is) and PG(is − 1) of the signal. Fheight(is) is the calculated
signal height between the maximum and minimum seen in segment is. FS̄(is) is the
mean of the signal data S(is) within segment is. Finally FσS

(is) is the standard
deviation σ over the signal data S(is) in segment is.

amplitude. The cycle timing can be captured by a single feature, as above, and then

the morphology can be normalised in time. In this case, the signal is re-sampled

to give N evenly spaced samples or signal taps, which should represent one cycle

starting from the top of a peak, spanning to the next peak and the values calculated

are then set as features able to be used in the learning methods. This method can

then be augmented dependent on what features are required, to provide the first

and second differential of the sampled values, with the boundaries wrapped around.

Morphological features include:

• Flast(is) - Correlation coefficient from current event, using the N tapped signal

segment S(is) to previous event signal segment S(is − 1).

• VN - N Tapped normalised signal values for segment S(is).

• dVN - N First consecutive sample difference as a toroidal array for segment

S(is).

• ddVN - N Second consecutive sample difference as a toroidal array for segment

S(is).
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These features, calculated for the events, can then be added to the event times to

create a descriptive event in the signal time. This contains the descriptive features,

and will allow a routine to classify on the routines as a set of event descriptions.

This set of events can be defined for the features above by:

E(k) = {Fheight, Fperiod, FD̄, FσD
, Flast} ∪ VN ∪ dVN ∪ ddVN (7.22)

Where, E(is) is the event description of the isth segment, each of the features are

evaluated for this segment using the past signal data before the current boundary.

7.3.3.2 Assignment of Annotated Quality to the Event Descriptions

To utilise the human annotated signals, the signal quality calculated from the an-

notation needs to be interpolated to calculate the quality outcomes and the timing

of each event. This calculation is done in continuous time, to keep the timing of the

detected events relative to the signal time. The process is shown in figure 7.10; this

figure shows the segmentation and events from the signal on the top graph, and how

those events are allocated. The assigned quality for the detected events is shown on

the lower two graphs for the ECG and PPG respectively. The assignments are given

to the signal quality transition closest in time to the event using the following:

dt(is, e) = T (E(is)) − T (Q(e)) (7.23)

A(is) = min
l

dt(is, e) (7.24)

subject to dt(is, l) <= 0, is ∈ |E|, e ∈ |Q|

Where, T (·) is an operator to recover the timestamp of the event (·), E(is) is the

event at time is, Q(e) is the quality at time e, dt is the difference in time between

the event E(is) and the quality point Q(e). This finds the closest quality transition

Q(e) at time e from the past transitions and assigned it to the actual event set A(is)

at time is.

The dynamic approach used to assign the actual quality can allow the prediction

horizon to be varied to suit the problem at hand. The following two sections describe

how the event description and actual values could be remapped to give descriptive

or predictive assignments, with arbitrary offsets.
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Figure 7.10: Graphs showing an example selection of signal data and its quality
value assignments. The data is segmented in the top graph into a set of events for
ECG and PPG, then the bottom two graphs take each signal and assign the quality
seen at that point. T:NT is referring to a quality named transition (NT) which
means that this was a quality transition for a particular signal. The T is a short
code to differentiate transitions (T) from marks (M).

Descriptive Assignments

The actual quality or base standard assignments are given to the current events.

The actual value to be determined is mapped to the same or past events given by:

D(is) = {E(is − hd), A(is)} (7.25)

where, D(is) is the isth full description with actual quality assigned, E(is) is the

isth event with a description, A(is) is the isth actual quality assignment, with hd

being the descriptive horizon offset. Varying hd allows the classification to be moved

from the current event into the past if required.

Predictive Assignments

The assignments are given to the current event, based on the prediction horizon

hp, the actual value to be determined is reassigned along h places. This, in essence,
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moves the actual value to be determined into the future of the events series. Actual

outputs are matched to the feature events of older samples for it to predict, given

by

D(is) = {E(is), A(is − hp)} (7.26)

where hp is the prediction horizon offset.

The final event descriptions now have an interpolated quality value assigned to

them. Therefore, this mapped set of events with outcomes are suitable for either

supervised or unsupervised learning as required. This allows the list of events to be

then sent to classification modules that can test the calculated set of features on the

descriptions in the learning architectures available.

7.3.4 Classification and Learning Architectures

The main modules for classification and learning in the system are not directly

specified; only the interfaces are specified because the modular nature consumes

the finished descriptive event lists and other settings for the internal structures.

The final selection for this structure can be chosen when an experiment is run. The

implementation of the underlying processes and structures is described in section 3.4.

The nature of the model and performance analysis can be selected dependant on

the analysis being performed. This will be described in the next section. The archi-

tectures that have been used and documented are detailed in section 7.3.4.1. These

run within the analysis framework as discussed in chapter 3. The modular system

described here allows different models and processing structures to be created and

used within the framework. These can be easily reused or upgraded as requirements

and resources change.

7.3.4.1 Implemented Models and Algorithms

There are many learning architectures that can be used within the framework dis-

cussed here. Only a few of the architectures will be introduced here, since only a

simple model is required for the study below. In the next chapter, machine learning
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models will be explained and compared in more depth as the modelling and analysis

is the main focus of chapter 8.

There are several classes of models and algorithms that have been implemented

and could be used within the framework. These include:

• Two-class, Regressive SVM.

• Single and multi layer perceptron SLP / MLP.

• Dimensional embedding (e.g. T-SNE, Principle component analysis (PCA),

Independant component analysis (ICA) ).

• Clustering (e.g. DBSCAN (Duan et al. , 2006), k-means) (Jain, 2010).

• Autoencoders.

These routines and more are available by utilising libraries like Theano, pyBrain

and scikit-learn, with others available in Python like Tensorflow2 and Caffe3. More

routines can be created and added to the above list using Python or other languages.

An excellent resource of machine learning methods and algorithms, which include

some of those mentioned above, are presented by Kononenko & Kukar (2007). Other

schemes mentioned in this book or elsewhere, could be implemented within this

scheme since this system and the ProcessSR framework it is built on, could imple-

ment or call through to any other algorithm or system, including parts of itself, to

aid in the data processing.

The architecture, as discussed so far, describes a system where any set of defin-

able events in time on a signal, can be mapped with any signal annotation output

class. This currently works well for the signal quality classes, but equally would

work for other features of signals that need to be measured.

These lists of features can then be used for feature learning and classifier training.

To allow for flexibility in the type of architecture used and to ensure, as far as
2A parallel processing framework useful for deep learning network. More information can be

found at <https://www.tensorflow.org>. Retrieved 2016/12/01
3A deep learning neural network framework, with the ability to speed up deep convolutional

neural networks. More information can be found at <http://caffe.berkeleyvision.org>. Retrieved
2016/12/01
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possible, an unbiased test will be the result. The system is set up so that the

models, segmentation or feature descriptions can be replaced in a modular fashion.

Further details on the framework that this system runs in can be found in section 3.4.

7.3.5 Testing and Results Strategy

The model accuracy can be measured using two methods as described in section 7.2.2.4.

The first, a correlation coefficient, is set up between the actual assigned quality and

the estimated quality. The result of the models, therefore, can vary continuously

between -1 and 1. A correlation coefficient is used because it is a way of bench-

marking the accuracy that the estimated learning model can replicate; it can do

this without clear classification categories or with a continuous output score. The

second method is to turn the continuous output into a two class discrete system by

using equation (7.27) setting a threshold ϵc at 0 and anything above is set to 1 and

anything below is set to -1. Then usual classification metrics can be used on Ce.

These can include ROC fields, accuracy, sensitivity and specificity.

Ce =


Oe ≥ ϵc 1

Oe < ϵc −1

 (7.27)

Where, Ce is the final classed output set, Oe is the continuous estimated quality

set, ϵc is the threshold at which to differentiate.

The analysis system has an internal results and documentation system which, as

the program is run, the output can be generated and logged. It includes dumps of the

dataset, graphs and written text as well as explanations. Once the chosen program is

finished, the results report is processed and an HTML file is created to act as a report

of the process. This allows a brief digest of all the output produced and added to

an automatically created file folder system. The result report generates a web-based

page which can be loaded remotely to view the output and documentation produced.

This system allows the extension of the documentation throughout the processing of

the data. Intermediary results can be captured as they are being processed and the

decision as to what to save can be made while the program is in the current section.

For example if a result is higher than expected, a program log or current data source
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could be saved for that specific event. The saved intermediary and final results can

be placed into new nodes and linked to others using data ontologies for that process.

This in-built management system allows the analysis system as a whole to be able

to run, test and assess machine learning and meta-machine learning activities.

7.4 Case Study - Human Annotations

7.4.1 Overview

The aim of this study was to look into the process and consistency of manually an-

notating the signals, along with assessing the cost and benefits of those annotations.

The determination of signal quality would be most useful, in order to reduce the

effects of noise and motion artefacts for the device described in the previous chap-

ter. The plan for achieving this can be found in section 7.4.2, with further details

in appendix C.2. The results of the study are explained in section 7.4.3.

7.4.2 Methodology

The datasets used here, were from the study described in section 6.4 and ap-

pendix C.1. For the purposes of this study, only the PPG and ECG signal data

from the EIMO device will be used.

The study relies on five main phases which are further explained in appendix C.2.

The phases can be summarised as follows:

1. To select five users from the data set and then annotate the first session of

signal data (approximately 74 minutes) to create a pool of annotated ECG and

PPG signals in terms of ‘Good’ and ‘Bad’ signal quality. These are based on

the definitions in section 7.3.2.2, this is described further in appendix C.2.0.1.

2. To use these annotations to train a two-class SVM using the features as detailed

in section 7.3.3.1 to produce annotations to act as a control group for the study

as described in appendix C.2.0.2.
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3. To take these annotations and create 50 randomly chosen samples consisting

of 25 samples each of human and machine annotations.

4. Pass the samples to volunteer assessors. This allows the Assessors to add their

own assessment of the quality as ‘Good’ and ‘Bad’ segments of the signals as

described further in appendix C.2.0.3.

5. Collect and measure the Assessors responses, to create agreement scores for

each assessor for the given annotations from the human annotator and machine

control. The sections are marked as either being:

• GG - True Positive (presented annotation was ‘Good’ assessor marked it

as ‘Good’ - agreement)

• GB - False Negative (presented annotation was ‘Good’ assessor marked

it as ‘Bad’ - disagreement)

• BG - False Positive (presented annotation was ‘Bad’ assessor marked it

as ‘Good’ - disagreement)

• BB - True Negative (presented annotation was ‘Bad’ assessor marked it

as ‘Bad’ - agreement)

The preparation of the results are explained further in appendix C.2.0.4. Fig-

ure 7.11 shows an a marked up and measured example of the annotations.

7.4.3 Results

The results are presented as follows. Table 7.3 shows the recording duration, followed

by the time it took for the signal to be annotated. The time that was taken for the

human annotator to manually classify the signals in the set was approximately the

same or longer than the sample originally took to record the signal data. This was

estimated by recording the time that the first sample was started and recording the

time when the last sample in that section was complete.

The annotated samples from each assessor were returned and measured. There

were 50 sample pages to review with 20 seconds of signals on each page so the assessor
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Figure 7.11: This shows an example annotation assessment sample as it was scanned
in after being assessed. This is the grayscale version of the graph with the light
grey for the ’Good’ signal and the darker grey the ’Bad’ signal quality. The blue
highlighter line follows the signal quality as the opinion of the assessor. A line at the
top denoted ’Good’ quality areas and a line along the bottom denotes ’Bad’ areas.
The green pen shows the measurement in millimetres and section classifications as
GG, GB, BG, BB as the first letter denotes the presented quality, the second letter
the assessed quality.

looked through approximately 17 minutes of printed signal, randomly selected from

50 minutes of annotated signal trace. Upon the return of the samples, each assessor

was asked how long it had taken to complete the sample pages. Their answers varied

between 40 to 60 minutes. The best and worst case scenarios for the annotation times

were:

• Best case - 2.35 minutes per minute of signal seen (40 minutes / 17 minutes

of signal seen or 48 seconds per sample page)

• Worst case - 3.52 minutes per minute of signal seen (60 minutes / 17 minutes

of signal seen or 72 seconds per sample page)

The assessment time is approximately double the time it took to annotate the

original signals, as seen in table 7.3. As the signal quality got more ambiguous,
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the length of time taken to accurately assess the signal quality could significantly

increase for the human that is annotating or assessing the signals. The assessment

was done by considering a printed paper signal trace, then drawing two lines on a

piece of paper. The Assessors did not always use the agreement scale or initial them,

so it is doubtful that the annotations could be done much quicker.

The basic agreement of the full set of 200 samples is presented in table 7.4. These

groups have been expanded in table 7.5, which breaks the agreement down into each

of the Assessors. On average it can be seen how often the annotations matched. The

sensitivity and specificity measures are used to examine the mix of ‘Good’ and ‘Bad’

classifications, which is discussed next.

Table 7.4 also shows the classification scores, which were given by the Asses-

sors collectively for the human and machine annotated signals. These tables have

grouped the performance over all of the assessor’s samples for both ECG and PPG

signals, to show the differences between the human and machine annotations more

clearly. It should be evident that there is a marked difference between the human

and machine assessed signal quality with the human assessed annotations getting

15% higher accuracy. The results get more interesting when the sensitivity and

specificity are taken into account. The specificity was higher than the sensitivity for

both human and machine annotations suggesting that the assessors were happier to

agree with ‘Bad’ than ‘Good’ signal segments, with the machine annotations having

a greater margin, showing the assessors were being conservative when classifying.

However it should be noted that both the sensitivity (+19%) and specificity (+7%)

are higher with human over machine classified annotations, suggesting there was

Table 7.3: The length of the recording sample set as compared to the time to
annotate them for each user.

User Name User 005 User 006 User 007 User 008 User 014

Section
Lengths
(mins)

12/12/50 11/11/49 12/12/50 12/12/50 12/12/48

Recording
length (mins)

(74) (71) (74) (74) (72)

Annotation
length (mins)

75 77 92 87 90
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Table 7.4: The human verses machine annotator origin, averaged across the Asses-
sors and signals selected.

Agreement Sensitivity Specificity
Annotation Origin

Human 87% 84% 90%
Machine 72% 65% 83%

more agreement with the ‘Good’ and ‘Bad’ quality segments when a human anno-

tated the signal showing that the human annotations were preferred, as expected.

The machine annotations did lead the assessors slightly, with an overall 72% agree-

ment, however the assessors defaulted to ‘Bad’ signal quality as shown by the higher

specificity.

This also follows in practice, so that to gain a high quality signal set, an algorithm

should also be conservative, and since there can be many segments to chose from,

those which are only marginal should be classed as ‘Bad’ and should be avoided.

The false positive segments would pollute the ‘Good’ dataset with more marginal

‘Bad’ signal segments.

This is visually shown in figure 7.12 as the metrics used allow the assessor agree-

ment to be plotted as part of a ROC graph. In the graph it is shown that there

are two clusters with the human annotated samples markedly above the machine

annotated as was predicted in the hypothesis. Interestingly, the human annotated

cluster is tighter than the machine annotated cluster, suggesting that the limits were

being reached as there are only a few ways to get it right, which might show better

consistency between the samples. The larger machine cluster shows that this is more

variable and if performed again, those points may move considerably whereas the

human annotated cluster might not.

If the categories are expanded to show the agreement by assessor and annotation

origin as seen in table 7.5, there is an apparent difference in agreement between the

Assessors. It is useful to note the experience of the Assessors to find common groups.

Assessor 1 was a cardiology consultant, Assessors 2, 3 and 4 were computer scientists

with experience in recognising the ECG and PPG signals.

Assessor 1 depicted on the table was the clinician with all three performance
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Figure 7.12: This shows a sensitivity and specificity performance receiver operat-
ing characteristic (ROC) graph, displaying the performance of the Assessors when
the annotations were obtained from a human or machine source. This shows the
agreement on the human annotation origin was higher and more consistent with the
points being close to each other, than for the machine annotation origin as those
points are more spread out and close to the random line.

metrics at or above 90% on the human annotations. Assessor 4 followed closely

with all of the metrics over 89%. This suggests that Assessor 1, Assessor 4 and

the human annotator must share the same ideas of what ‘Good’ and ‘Bad’ signals

should look like over 89% of the time. Assessor 1 also had the greatest separation

between the machine and human annotations suggesting they were led less by the

machine which would make sense based on their experience. Assessors 2 and 3

dropped to 71% but rose up to 96% when looking at the agreement of the ‘Bad’

sections as noted by the specificity, reflecting that they defaulted to ‘Bad’ when

unsure. Both assessors showed a reluctance to classify the signal as ‘Good’, with
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Table 7.5: The agreement scores grouped separately for each of the Assessors and
annotation origins.

Agreement Sensitivity Specificity
Assessor Annotation Origin

1 Human 92% 95% 90%
Machine 70% 67% 77%

2 Human 87% 76% 96%
Machine 69% 58% 87%

3 Human 77% 71% 83%
Machine 68% 56% 87%

4 Human 93% 97% 89%
Machine 81% 81% 80%

Assessor 4 departing from this, showing less separation between the human and

machine produced annotations and a less conservative approach.

The annotations on the sample can be compared segment by segment between

the Assessors. Figure 7.13 shows two diagrams which are examples that show in-

teresting patterns in annotating behaviour, both from a human annotated sample

in figure 7.13a, and a machine annotated sample in figure 7.13b. The first shows a

sample where the ECG has been annotated as being ‘Good’ apart from two ‘Bad’

segments, most of the Assessors agree, but there is some variation over the exact

start and end of the ‘Bad’ segments. The PPG is interesting as almost every one has

labelled it ‘Good’ apart from one assessor, who has labelled the start of that seg-

ment ‘Bad’. This example shows that there is variation between people evaluating

the same patch of data. The second shows a sample where the machine classified the

signal as mostly ‘Good’ with 7 ‘Bad’ segments. Assessors 1 and 4 both classed it as

mainly ‘Good’ with no bad segments in the middle. However, Assessors 2 classed the

whole sample as ‘Bad’ showing a conservative approach and Assessor 3 followed the

classification of the machine, showing a tendency to follow the annotations given.
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(a) Example of great variation between the Assessors on human annotated
sample 16. The figure shows consistency but there is some disagreement be-
tween the position of the transitions on the ECG signal. One assessor on the
PPG is being more conservative than the others, showing the choice of assessor
could make a difference to results.

(b) Example of the Assessors being influence by the annotations on machine
annotated sample 40. Some Assessors followed the given annotations with
some going to each extreme of mostly ’Good’ or mostly ’Bad’. This shows that
Assessors can have radical disagreement in annotations for the ECG, but total
agreement for the PPG signal.

Figure 7.13: These show the annotation given by the four Assessors and the original
annotator, colour coded for the ’Good’ class in green and the ’Bad’ class in red. The
outlines in black denote the changes of classification of the segment e.g. from TP to
FP. The FP and FN are marked to show segment disagreements.
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7.4.4 Discussion

It can be seen above that when looking at signal annotations, it takes just as long

to annotate the signal manually as it does to capture the signal in the first place.

This length of time increases as the signal gets noisier and harder to discern. This

is a reflection based on the number of samples and transitions between acceptable

and unacceptable signal quality. The time span stated is only an estimate of the

annotation time taken for both the original human annotator and the Assessors.

However the time could rise practically because the annotator was very familiar

with the annotation system and the Assessors were presented with a simplified

printed segment, and required to draw two lines on the printed graph. It would

be very prohibitive for clinicians to spend that amount of time to annotate and

interpret the signals recorded from the patients if they were not already defined as

‘Good’ and ‘Bad’. The results of the assessed samples suggest that the Assessors do

not always agree with the same signal quality outcome, marking parts of the same

signal differently. The other outcome is that the Assessors as a whole agreed with

87% of the samples produced by the human annotator, and if the clinical assessor

was taken alone, the agreement would be 92%. This indicates that the standard

of annotation, although not perfect, could be sufficient for further modelling and

quality assessment. The next chapter considers how the signal classification could

be accurately modelled.

7.5 Summary

This chapter has described the primary issues and opportunities for signal quality

assessment for medical devices. It has then gone on to examine the literature to

gain a better context and background on the subject. The proposed signal analysis

system was defined, along with the current testing strategy for the study. The

results have been presented and discussed on the final agreement of the Assessors

and the signal quality annotations, and the time it takes to manually annotate

signals. The results seem to suggest that the annotations given for the data, show
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good agreement with all of the Assessors and especially with the clinician alone of

87% to 92% respectively. The time it takes to annotate and assess these signals is

very prohibitive, which increases when the decisions are harder to make, when the

Assessors seem to get more conservative, defaulting to ‘Bad’ signal quality. The

classification scheme described above will be expanded upon in chapter 8, using

the human annotated signals assessed here to find automated ways to accurately

determine the signal quality quickly and efficiently.
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8 Automating Signal Quality Analysis

8.1 Overview

The last chapter defined a classification framework and investigated human anno-

tated signal quality. It was found that not only do the human annotations take

a lot of time, but there is variation in the resultant signal quality markings given

from the assessors. The purpose of this chapter is to investigate accurate ways of

automatically classifying the quality of the signal, through exploring and comparing

the different features derived from those used in the literature for signal quality es-

timation. The system for the determination of modelling tests consisting of feature

processing and selection along with model definitions, are explained in section 8.3.

The features are expanded using the methodology discussed in section 8.4 to create

more independent and objective features. These features are then tested and evalu-

ated in the case study presented in section 8.5 using the test procedures presented

in section 7.3.1.

8.2 Background

The structure of machine learning was described in the previous chapter. However,

the details on modelling algorithms, performance metrics and features were only

briefly discussed. The algorithms and metrics are expanded upon and evaluated

since in this chapter, the accuracy and performance of the automated classification

is paramount. First, the topic of machine learning is expanded upon in section 8.2.1

by discussing and comparing the different models. Then the different performance

metrics, introduced in the last chapter, are extended in section 8.2.1.2. A review of
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the different features which have been used and discovered in the literature so far

for identifying the quality of these signals is presented in section 8.2.2. Finally, a

discussion of the difference between subjective and objective features is discussed to

lay the foundations for the case study described in section 8.2.3.

8.2.1 Further Machine Learning

The last chapter introduced the basic strategy used to classify the signals for qual-

ity. Although the system is capable of much more, only a simple classifier was used

to gain the control group for the assessment placebo. The decision for the style of

learning algorithm and the types of features used will make much more of a differ-

ence now that accuracy and robustness feature prominently. The various learning

methods will be compared using their formulation in the literature. Useful models,

features and performance metrics are then examined and used to find and select the

features that define the models that allow for the best classification accuracy.

8.2.1.1 Machine Learning Methods

There are many different machine learning algorithms currently in existence. The

formulation of most involve setting up a decision boundary. The description of the

instance can be given and a classification is able to be drawn from this. The basic

version of this is the linear discrimination function and is given by:

y = Wẋ + c (8.1)

where y is the result, x is the features for the current example, W is the direction

of the decision boundary or regression line, and c is the offset threshold.

Equation (8.1) is a simple learning function and can be solved or trained ana-

lytically by using a training set for y and x. Since this is a linear relationship, this

defines a straight hyperplane. Other models, discussed below, improve on this by

allowing the decision surface to curve and deform around more complex topological

landscapes and by using a non-linear function to map the values.

These functions form the basic principle of many learning functions such as arti-

ficial neural networks (ANN), both single and multi-layer perceptions (SLP, MLP)
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or support vector machines (SVM). The features are combined with a vector to de-

fine a function line and given an offset. The function separates the features into the

positive and negative sets.

The main difference in systems, e.g. the ANN and SVM algorithms, is the way

that they are trained. ANNs use a stochastic gradient descent method by back prop-

agating the error through the network. The gradient descent searches to minimise

the weighting parameters between mapping functions in the junctions. However,

some SVMs use the Lagrangian method to create a single differentiable error sur-

face. Quadratic programming (QP) can then be used for their optimisation and so

can be solved more analytically.

Support Vector Machine (SVM) Variations

Support vector machines (SVM), are invaluable for novelty or outlier detection

due to their capability for calculating decision boundaries using flexible kernel func-

tions which transform the surface into a high dimensional linear surface. Boser et al.

(1992) extends on their previous work by formulating an SVM with a soft margin,

allowing a ‘Best Guess’ boundary to be determined when the classes might not be

separable. The derivation presented provides a domain based cost function that

is very similar in structure to a radial basis function classifier, or a partial neural

network. However, due to the kernel function and formulation, it produces a global

convex cost function and optimisation employing sequential minimal optimisation in

order to find the parameters. There are many constructions of SVMs to complement

different data sets and situations. Some structures are examined in the following

examples; these can be theoretical or real-life datasets and produce useful outcomes

on most occasions so that they improve event detection rates and outlier detection

rates as discussed by Gómez-Verdejo et al. (2011), and Shahid et al. (2012).

There are different formulations of the SVM algorithm which can be used de-

pending on what the final outcome is required to be. The formulations and examples

of their use are presented below.

• Class based (SVMc).
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The basic formulation is the ‘class-based’ support vector machine (SVMc)

which uses the basic discriminatory function to find the separation between

classes. This formulation has been described by Huang et al. (2011).

• Regressive (SVMr).

Regression support vector machine (SVMr) algorithms formulate the SVM

margin as a tube through the instance data points which is well explained

by Smola & Schölkopf (2004). A probabilistic formulation of the SVM was

produced by Gao et al. (2002).

• One-Class (SVMoc).

One-Class support vector machines (SVMoc) are a different formulation which

can be trained using only one class of instances by contrast with the other two

methods mentioned above. A hypersphere is arranged over the training in-

stances’s centre of mass. The goal of the algorithm is to select the radius of

the sphere so that all of the instances given can be found within the hyper-

sphere. This can also be used with a soft margin so that a proportion can be

left outside. This can be very useful for novelty detection as only the normal

class is needed. This has been described by Gómez-Verdejo et al. (2011) who

also allows the system to be adaptive, based on the new data coming in.

8.2.1.2 Performance Metrics

The metrics described in section 7.2.2.4 can be used to assess the performance of

the models; however, in order to rate the models accurately, both sensitivity and

specificity measures are required. Assessing models in this two-dimensional field

can be difficult, therefore to gain a better model ranking, a measure using a signal

dimension would be useful. Ordinarily this could be the accuracy of the model, but

this does not take into account class imbalances. There are two other metrics which

indirectly depend on the sensitivity and the specificity which are insensitive to class

imbalances. These are shown graphically in figure 8.1 and are described next.
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Figure 8.1: Shows the representation of the receiver operating characteristic (ROC)
field. The graph shows the performance of the models and estimators with various
operating points. The vertical axis shows increasing sensitivity which is the accuracy
of the model at correctly classifying ’Good’ instances. The horizontal axis in contrast
shows the accuracy at correctly classifying ’Bad’ instances. The dashed line running
corner to corner denotes the performance of a random estimator. The point marked
shows the best operating point of a model with the perpendicular distance from the
random line (DFR) marked. The line through this point shows the performance at
other operating points with the sum of the area under the curve (AUC) being used
as another metric, as it shows how well the models can be separated by the classifier.

The first is the area under the curve (AUC), which is the total area swept out

by the ROC graph; a greater area indicates a greater separation of the classes in

the model. This metric looks at the class separability and not the best performing

operating point (Bradley, 1997).

The second metric used is the signed distance from the random line (DFR), which

is defined as the perpendicular euclidean distance between the optimum operating

point for a model and the ROC random estimation line. The location and usefulness

of the ROC operating points are discussed by Fawcett (2006). Here they mention

that, the further to the top left an operating point is, the greater its performance

is on both ‘Good’ and ‘Bad’ classes. This means that if the distance between the

operating point and the random line was measured, it would reach a maximum

when the point was in the top left, zero when the point falls on the random line and

negative when under the random line. This metric looks for the best performance
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at the operating point, but relaxes the class separability constraint, which the AUC

keeps by measuring the whole curve.

8.2.2 Feature Descriptions

The features found and used in the literature are summarised in table 8.1. The

features can be split up into a taxonomy of four feature areas. Each should address

a different characteristics about the signal, which can then be used to define groups

of features to analytically explore the feature description space.

• Signal.

Dimensions of any apparent, useful signal. The signal statistics are used, along

with the amplitude, which are used in work by Aboy et al. (2005), Sun et al.

(2012) and Elgendi (2016). This is used only to estimate the amount of signal

present, not to examine the shape of the segments.

• Noise.

Estimates the level of noise in the signal. The statistics and measures applied

to the noise or non-useful signal look at the variation between amplitudes and

time that the signal crosses the zero axis as used by Sukor et al. (2011) and

Elgendi (2016) respectively.

• Morphology.

Estimates the shape and character of the signal as used by Li & Clifford (2012),

Orphanidou et al. (2015) and Karlen et al. (2012).

• Entropy.

Estimates based on the differences between the probability distributions of the

signal segments, as used by Elgendi (2016).

These feature types are explored further in section 8.4. A consistent set of

features are defined and compared with the signal’s quality.
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Table 8.1: A summary of the features found in the literature showing the charac-
teristic groups for the features and the sources that have used them.

Feature
Class

Feature References

Signal Peak height Aboy et al. (2005), Sun et al.
(2012)

Cycle height Mahri et al. (2012), Sukor
et al. (2011)

Cycle Period Mahri et al. (2012), Aboy
et al. (2005), Orphanidou
et al. (2015), Sukor et al.

(2011)

Noise Difference in valley bottoms Sukor et al. (2011)
Zero Crossing Count Silva et al. (2012)

Morphology Auto correlation Fu et al. (2010)
Template correlation Li & Clifford (2012),

Orphanidou et al. (2015),
Karlen et al. (2012)

Dicrotic notch Sun et al. (2012)
Fast Fourier Transform (FFT) Karlen et al. (2012)
Wavelet Transform/Filtering Silva et al. (2012)

Entropy Multiscale Entropy Zhang et al. (2015), Elgendi
(2016)

8.2.3 Subjective and Objective Signal Analysis

In order to understand how to improve the assessed signal quality, it is helpful to

define what subjective and objective analysis of information is, and the differences

between them, through their presentation in the literature.

Verburgt (2015), describes the history of objective and subjective probability

throughout the mid 19th century and also included the modern understanding of

the terms. They describe ‘subjective’ as ‘an epistemic state of knowledge’ and

‘objective’ as ‘an ontological state of the world’. Two main points can be taken from

this. The first is a definition of ‘subjective’, because it is in the knowledge of people

and given by people’s opinion. By contrast, their definition of ‘objective’ is described

by knowledge of elements or characteristics of the world. These can be understood to

be descriptions that objective measures are the study of characteristics that do not
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vary based on knowledge and opinion. The second is that in mathematics, the more

objective and quantifiable something is, the more useful and consistent it becomes

because it can be relied on and reasoned over.

Thung & Raveendran (2009) describes a collection of various measurements of

image quality with a section on subjective and then on objective features. The

subjective section describes these measures to be opinion based and found through

opinion ratings. However, the other description, addressing objective signal quality,

is much more clear in terms of defining the measure using text and mathematical

equations to precisely define the metrics.

Subjective Analysis

For the purpose of this work subjective analysis can be defined as the features

or elements that rely on the knowledge and experience of people and is gathered

through interviews or questionnaires (Verburgt, 2015; Chow et al. , 2016; Merat

et al. , 2011).

‘Subjective assessment is the ratings given by human subjects based on

their judgment. . . ’ (Chow et al. , 2016).

They consist mostly of:

• Qualifications.

Qualifying an item based on others such as: ‘Item 1 must be good because it

looks like Item 2’.

• Opinion.

A statement based on a person’s experience or feelings such as: ‘A belief that

Item 1 is a good one’.

• Ratings.

A statement built on a ranking system of options. One can rank a signal based

on opinion such as: ‘Item 1 rated a 4 out of 10.’

164



Objective Analysis

For the purpose of this work objective analysis can be defined as those features

that can be observed independently and measured as inherent characteristics (Ver-

burgt, 2015; Chow et al. , 2016; Merat et al. , 2011).

‘Objective assessment is an alternative method defined mathematically’

(Chow et al. , 2016).

They are usually given as:

• Derived formulae.

Derivation of the definition by using other defined principles such as: ‘Deriving

a noise measure of the signal using the principle of entropy as the basis of the

definition’.

• Functional definitions.

A definition like a derived formulae, which is based on a functional relationship

such as: ‘Using the difference between the maximum and minimum to define

the size of a signal’.

• Heuristic formulae.

A person’s opinion and experience defined in a formal notation of algorithm

such as: ‘Item 1 is useful when the signal is 2 standard deviations above the

mean’.

To define objective characteristics of a time based signal, one needs to look for

objective characteristics, then look for possible definitions that could be used as

working definitions of that characteristic. For time based signals, some characteris-

tics could include:

• Noise Level.

The AC or DC component of a signal trace are not associated with a known

signal pattern.
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• Signal Level.

The pulsatile and potentially constant components that represents a possible

signal pattern for the signal in question.

• Signal Morphology.

The average shape of the signal and how it changes as the signal is gathered.

There are two points to note from the above; the first is that subjective mea-

sures tend to have more qualifiable features. The more objective a feature is, the

more quantifiable it becomes. However the trend extends further than just assigning

numbers to qualities and enumerating or defining a number scale. It is done by creat-

ing definitions and quantifiable relationships. Creating objectively defined features

then allows one to reason over them, continuously ordering them and automatically

mapping traits to values. Therefore the best objective features should be based

on quantifiable features with continuous mapping. The objective features will be

developed below as the signals are examined for these characteristics in section 8.4.

8.3 Feature Extraction and Modelling Systems

The methodology to be used for building accurate classifiers can be broken down

into three smaller goals: feature extraction, test planning and modelling assessment.

The system for doing this was designed to be as generalisable as possible to allow

for further modification within the management framework. Each system will be

discussed next.

8.3.1 Extracting Signal Features

The first task is to take raw data and find useful features that can best describe

the patterns and trends in the data. The system for doing this is expanded upon

in the feature extraction system from section 7.3.3.1. This is extended to allow

mapping functions to be applied to the raw data in a segment, taking into account

the data’s context. The aim is to create a system that can apply feature mapping
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routines automatically to the raw data and assess the features produced to see which

would be best to consider further. The data mining system for doing this requires a

data content definition. The feature sequences created requires a naming scheme to

keep the features deterministically named. The scheme used for the feature mapping

process is shown in section 8.2.2. The naming scheme is based on keeping the feature

sharing qualities together with an index for uniquely identifying them in the form:

fifc,ifi
:= {S(is), S(is − 1), E(is − 1)} 7→ Fifc,ifi

(is) (8.2)

E(is) = {Fifc,ifi
(is)| for ifc ∈ Fclass , ifi ∈ Fclass(ifc)} (8.3)

Where fifc,ifi
is defined as a mapping function to translate the signal for the

current segment S(is), previous segment S(is −1) and previous event feature E(is −

1). Fifc,ifi
(is) is the feature measurement for a particular feature class ifc and index

ifi, E(is) is the set of all mapped features grouped together for the event. Fclass(ifc)

is the features in class type ifc

This feature set holds all of the features available, to be used for signal mapping.

The features are subject to selection, as not all of the features that can be generated

can be reasonably tested. The feature selection ϕifs
(is) can be defined as

ϕifs
(is) = {x | x ∈ E(is) ∧ P (∗x)} (8.4)

where ϕifs
(is) is the feature set indexed for ifs ∈ Z which can be unique for all of

the event indexes is, P (∗x) is a selection function for a particular feature. This can

be probabilistic or deterministic. This creates combination sets of features which

can be use for definition of the tests when combined with the learners. The selection

function P (∗x) can also be selected based on previous feature performance to set up

genetic algorithms.

8.3.2 Modelling Test Determination

The second task is to form a strategy to build and test machine learning models. A

formal approach for defining the test and models can then be used to automate the

testing and analysis process, allowing for a thorough investigation of the features

and models currently under test. Importantly for the definitions, these can be used

167



for the automatic generation and analysis of new models and features for this and

other outcomes as the framework is expanded.

A test consists of two main parts of a feature set ϕifs
(is) from the previous

section and a model definition Mimc,imi
to test it on, where imc is the index for the

class of the model SVM or ANN for example and imi is an integer index to allow

the model to have a unique name for further reference. The model class is chosen

and parameters are selected for it. Example parameters useful for an SVM model

are shown below to illustrate the point:

• Kernel type :- {‘Radial basis function (RBF)’, ‘linear’}.

• Gamma := { 0.5, 0.2, 0.1, 0.01}.

• Cost function weighting :- {0.5, 1.0}.

• Soft margin weighting :- {0.1, 0.2}.

If these parameters were used as a grid function, they could define 20 models

imi ∈ (1, 20) of each class imc ∈ a, b, c, ... where these parameters are applicable.

Ψiti
= Mimc,imi

(ϕifs
(is)) (8.5)

To understand the performance across a range of learning machines, each test

Ψiti
can be computed and plotted on a unified field to allow comparison between

the classification models. Thus we are able to see the shape of the solution space

using the tests as landmarks.

8.4 Exploring Signal Features

8.4.1 Overview

The purpose of this study is to use the feature extraction system above to build up

a set of features which could be used for the assessment of the signal quality of the

ECG and PPG signals. The features defined and assessed here will then be used to

create and assess models in the next study.
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8.4.2 Defining Classes of Features

The objective is to create a mapping function to find the main characteristics of a

raw signal starting with metrics already in the literature. Four main feature classes

will be considered, including: signal, noise, morphology, and entropy as discussed

in section 8.2.2. The next section will take each of these components, describe

them in more detail and construct possible definitions for them. In order to be the

most useful, each component should concentrate on just one measure. Keeping the

measures separate allows them to be orthogonally mixed up in a given raw signal

and to define a feature landscape for exploration in the next study.

8.4.2.1 Signal strength

To find a useful measure for signal strength, consideration needs to be given as to

whether there is a useful signal present, but not necessarily that the signal possesses

the correct shape or morphology. The first task in signal estimation is to try to

separate the signal from the noise. If the noise is modelled by sample outliers,

a median filter can be used. This type of filter is very robust to outliers in a

signal and can be performed with a small window w to leave the gross segment

morphology, estimating the shape of the underlying signal with all of the noise and

outliers removed. This is applied to the signal segment wrapping toroidally at the

boundaries as seen in equation (8.6).

S̃(is, in, w) = Median(S(is, in), w) (8.6)

Where S(is, in) is the signal segment, S̃(is, in, w) is the median filtered signal

segment with a window of w, and in ∈ 1..|S(is)| is the sample index in segment is.

If the median signal given above is assumed as an approximation to the signal,

then one can find the noise level in the next section, by examining the characteristics

of the residual R(is, i) defined for the segment is, which is found by

R(is, in) = S(is, in) − S̃(is, in, w) (8.7)
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where, R(is, in) is the residual signal, S(is, in) is the signal segment, S̃(is, in, w)

is the median filtered signal segment with a window of w as defined above. is is the

segment index, and in is the sample index from the segment.

Examples of the median filter signals S̃(is, in) and the residual signal R(i) are

shown in figures 8.2a and 8.2b. These show the PPG and ECG signals respectively,

along with the signal segment for two points. These graphs show how the median

filter performs, splitting the segment into the signal and the residue as defined above.

This acts as a simple low pass filter preserving the gross features of the signal. This

seems effective as both the ECG and PPG signals have low-period, strong features.

The PPG is a low frequency asymmetric oscillation with a prominent fast rise period

and the ECG has a strong periodic QRS complex. The median filter’s window can

be set to preserve the main morphological features for the PPG and ECG segments.

The segment normalisation re-samples the signal into 100 evenly space samples over

the segments length normalising the time as in the previous chapter, A window of 12

samples was used for the PPG signal. The ECG signal used a window of 5 samples

within the 100 sample segment.

Given the median signal as described above, features can now be defined to

transform the signal strength into a value. The features FS1 to FS4 are then nor-

malised to the maximum of the full unfiltered signal S(is, i) so that they represent a

scale from 0-1. Feature FS5 is not normalised as this then measures the overall size

of the signal, allowing the other features to decouple the relative proportion of the

signal from the absolute size of the signal. FTp time span of the segment, to catch

a-typically short or long segment signals.

Signal characteristic measures:

• FS1 := Difference of the maximum to minimum amplitude of the signal (see

equation (8.8)).

• FS2 := The signal peak normalised standard deviation of the signals amplitude

(see equation (8.9)).

• FS3 := The signal peak normalised skew of the signals amplitude (see equa-

tion (8.10)).
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(a) Graph showing example with main median and residual for the PPG signal.

(b) Graph showing example signal with main median and residual for the ECG signal.

Figure 8.2: Graphs showing an example signal with main median and residual for
ECG and PPG sample segments. The top axis shows a 60s signal trace, the black
vertical lines shows the locations along the trace of the lower two axes. The middle
axis is the segment at the first line position (1), in a section of high apparent signal.
The bottom axis, is the segment from the second black line position (2) on the right.
This shows a segment in an area of low apparent signal. FS1 is the signal amplitude
feature for the segment shown, which has been marked on each of the traces.
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• FS4 := The signal peak normalised kurtosis for the signal (see equation (8.11)).

• FS5 := The maximum amplitude for the signal (see equation (8.12)).

• FTp := The time difference between the start and end of the segment (see

equation (8.13)).

FS1(is) = (max(S̃(is, in)) − min(S̃(is, in)))
max(S(is, in))

(8.8)

FS2(is) = std(S̃(is, in))
max(S(is, in))

(8.9)

FS3(is) = skew(S̃(is, in))
max(S(is, in))

(8.10)

FS4(is) = kurtosis(S̃(is, in))
max(S(is, in))

(8.11)

FS5(is) = max(S(is, in)) (8.12)

FTp(is) = T (S(is), is)) − T (S(is), is − 1) (8.13)

Where in the above equations, min(∗X) and max(∗X) are the minimum and max-

imum operation respectively, std(∗X) is the standard deviation of the set ∗X and

skew skew(∗X) and kurtosis kurtosis(∗X) are the 3rd and 4th order moment of the

set ∗X and T (∗X , ∗y) is an operator to find the event time of the event set ∗X at

segment ∗y.

8.4.2.2 Noise Level

To explore possible objective measures of the noise in these signals, a number of

characteristics can be taken into account. There are two main sources of noise in

PPG and ECG signals, these are:

• Pathway noise - the noise associated with the source and the signal path. This

can be further broken down into:

– Source noise - originates from muscle tone in the vessels, and involuntary

movement artefacts from the person.

– Electrical noise which is electrical interference that has artefacts within

the electronic signal path.
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• Motion noise - the noise associated with movement sustained by differential

velocity between the device and the user through deliberate movement.

In order to discover which measures to use to define these sources of noise, first

the scope of what can be ascertained at the processing step needs to be examined.

When looking at the data from just one signal, like the ECG for example, the signal

noise has been mixed together through the signal input path. The motion artefacts

have also been mixed into the resultant signal. The first task is to estimate the

signal within a segment, then an estimate can be made about the noise level.

The residual R(is, in) as discussed in section 8.4.2.1 could therefore contain the

main outliers of the recorded signal and so can be taken for an estimate of the

noise of the signal segment. Statistics can be used to map the residual signal into

estimation of the noise components, describing this segment. The noise features FN1

to FN4 are normalised statistical measures that show relative noise within the overall

signal similar to the signal features above apart from using the residual signal. FN5

to FN7 are simple measure of the mobility of the signal and are normalised to the

number of samples within the segment. FN5 and FN6 look at the number of zero

crossings the median and the residual signals have with respect to their mean. This

give an simple approximation of the high frequency noise in the signals. FN7 counts

the number of small samples jumps as they can be characteristic of a stuck signal,

thus capturing low frequency situations. FN8 records the maximum residual signal

to allow the relative noise values to be decoupled from the absolute measurement.

Noise characteristic measures:

• FN1 := The sum of the residual (see equation (8.14)).

• FN2 := The standard deviation of the residual (see equation (8.15)).

• FN3 := The peak normalised skew of the residual (see equation (8.16)).

• FN4 := The peak normalised difference between the maximum and minimum

of the residual (see equation (8.17)).

• FN5 := The peak normalised mean crossings of the median signal (see equa-

tion (8.18)).
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• FN6 := The peak normalised mean crossings of the residual signal (see equa-

tion (8.19)).

• FN7 := The number of small sample differences of the raw signal (see equa-

tion (8.20)).

• FN8 := The maximum amplitude for the residual (see equation (8.21)).

FN1(is) = E[R(is, in)]
max(S(is, in))

(8.14)

FN2(is) = std(R(is, in))
max(S(is, in))

(8.15)

FN3(is) = skew(R(is, in))
max(S(is, in))

(8.16)

FN4(is) = (max(R(is, in)) − min(R(is, in)))
max(S(is, in))

(8.17)

FN5(is) = (zero_crossing(S̃(is, in)))
|S̃(is, in)|

(8.18)

FN6(is) = zero_crossing(R(is, in))
|R(is, in)|

(8.19)

FN7(is) = |{x : x ∈ S ′(is, in), x < η}|
|S(is, in)|

(8.20)

FN8(is) = max(R(is, i)) (8.21)

Where E[∗X ] is the expected value operator, in most of these cases, the arithmetic

mean is used. | ∗X | is the count or cardinality of the set ∗X ., S ′(is, in) is the first

sample differential of the signal. η is a small threshold, was set η = E[S ′(is, in)] −

std(S ′(is, in)). Finally zero_crossing(∗X) is an operator to count the number of time

the set ∗X crosses its own mean.

8.4.2.3 Morphology

The two features described above are estimates of the two main components of any

waveform without reference to the shape or the look of that signal. Morphology de-

fines dimensions to categorise the shape of this signal. The feature definition should

be a continuous, monotonically increasing function. Ideally the function should be

bounded, by being normalised against the signal segment, because the signal seg-

ment size is described by the signal component above, allowing the morphology

measurements to be directly compared.
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The following features form some sort of comparison to other segments. The first

set look to the history, the second and third set compare with a ‘Good’ and ‘Bad’

Segment templates. These were computed from the signal dataset using the first

session from each user 5, 6, 7, 8 and 14. This create a dataset of over 345 minutes

of signal and the following number of segments:

• 20553 ‘Good’ ECG segments.

• 8901 ‘Bad’ ECG segments.

• 9725 ‘Good’ PPG segments.

• 17018 ‘Bad’ PPG segments.

These segment signal were statistically averaged to find the average segment

signal for each of the above cases. These were then used for the templates in the

equations below.

Morphology characteristic measures are comprised of:

• A comparison to the previous segment.

Comparing the current signal segment to the previous signal segment is − il

where il is the look back segment index (il = 1 is the previous segment). This

forms a measure and definition of the consistency of the signal. The further

back the segment is compared, the deeper the consistency check.

FM1(is) = correlation(S(is, in), S(is − n, in)) (8.22)

FM2(is) = E[S(is, in) − S(is − n, in)]
max(S(is, in))

(8.23)

FM3(is) = std(S(is, il) − S(is − il, in))
max(S(is, in))

(8.24)

• A comparison with known ‘Good’ morphology.

Comparing an extracted segment that has been picked a-priori to be one of

‘Good’ morphology, this then forms a dimension with respect to a known signal

with the correct shape.
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FM4(is) = correlation(S(is, in), Sg(0)) (8.25)

FM5(is) = E[S(is, in) − Sg(0)]
max(S(is, in))

(8.26)

FM6(is) = std(S(is, in) − Sg(0))
max(S(is, in))

(8.27)

• A comparison with known ‘Bad’ morphology.

Comparing an extracted segment that has been picked a-priori as one of ‘Bad’

morphology, this then forms a dimension of similarity with respect to a known

signal without the correct shape.

FM7(is) = correlation(S(is, in), Sb(0)) (8.28)

FM8(is) = E[S(is, in) − Sb(0)]
max(S(is, in))

(8.29)

FM9(is) = std(S(is, in) − Sb(0))
max(S(is, in))

(8.30)

Where in all the above equations E[∗X ] is the expected value operator, in this case,

the arithmetic mean is used, correlation(∗X , ∗Y ) is the Pearson correlation coefficient

between the sets ∗X , ∗Y . S(is, in) is the signal segment from above, n is the sample

index, is is the current segment index and is −1 is the previous segment index, Sg(0)

and Sb(0) is the first stored template of the ‘Good’ and ‘Bad’ signal respectively.

8.4.2.4 Entropy

To allow the probability distribution of the segment signal values to be represented

and compared, the disorder of the signal was used by measuring the entropy of the

signal. The hypothesis postulates that the more disordered the signal, the higher the

entropy of the signal should be. Mutual information between the current segment

was measured to gain a measure of the shared information between this and either

the previous segment, or the ‘Good’ and ‘Bad’ segment templates as an additional

measure to compare the probability density functions (PDFs) of received signal

values.

Entropy characteristic measures are:

• FE1 := Current signal segment entropy (see equation (8.31)).
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• FE2 := Difference in entropy between the current and previous segment (see

equation (8.32)).

• FE3 := Mutual information between the current and previous segment (see

equation (8.33)).

• FE4 := Conditional entropy between the current and previous segment (see

equation (8.34)).

• FE5 := Correlation between the current and previous signal value PDFs (see

equation (8.35)).

• FE6 := The L2 distance between the current and previous signal value PDFs

(see equation (8.36)).

FE1(is) = H(S(is)) (8.31)

FE2(is) = H(S(is)) − H(S(is − 1)) (8.32)

FE3(is) = H(S(is)) + H(S(is − 1) − H(S(is), S(is − 1)) (8.33)

FE4(is) = H(S(is)|S(is − 1)) − H(S(is − 1)) (8.34)

FE5(is) = correlation(pdf(S(is − 1)), pdf(S(is − 1))) (8.35)

FE6(is) =

√√√√√
∑

i,j

[pdf(S(is), i) − pdf(S(is − 1), j)]

 (8.36)

Where H(∗X) is the entropy of the signal set ∗X and pdf(∗X , ∗y) is the bin

histogram containing the PDF of the signal set ∗X at bin ∗y.

The next 8 measures are tailored to the signal type as measures FE7 to FE10

compare the signal against the ‘Good’ measures and FE11 to FE14 compare the signal

to the ‘Bad’ signal templates from above. For both templates, they are defined as:

• The mutual information between the current and previous segment.

Using equation (8.33) for the definition. FE7(is), for the ‘Good’ template and

F11(is) for the ‘Bad’ template.

• The conditional entropy between the current segment is and template segment.
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Using equation (8.34) for the definition. FE8(is), for the ‘Good’ template and

F12(is) for the ‘Bad’ template.

• The correlation between the current segment is and template signal value PDFs

Using equation (8.35) for the definition. FE9(is), for the ‘Good’ template and

F13(is) for the ‘Bad’ template.

• The L2 distance between the current segment is and template signal value

PDFs.

Using equation (8.36) for the definition. FE10(is), for the ‘Good’ template and

F14(is) for the ‘Bad’ template.

The entropy features presented a problem when tested, since they rely on the

PDFs from the two segments. When these can only take a known number of values

the PDFs are simply calculated and the result of the PDF comparisons can be made

on the same PDF basis. However, the signals segments being examined here, are

real valued continuous signal samples. If the unique set of values are compared it is

unlikely that two signals of this sort would have exactly the same values. Thus the

numerical joint entropy would be low or even zero. Thus to rectify this, the segments

were discretised using histograms. Experimentally using 10 bins calculated from the

minimum to the maximum for the signals in question, worked the best for estimating

signal quality. This ensures that there are always 10 possible values which span the

best range of the segments being compared. For the joint PDFs the minimum

and maximum over both segments was used. If more than 10 bins were used the

entropy rose but it got more noisy, conversely if less bins were used the response

was smoothed out but not very informative.

8.4.3 Discussion

The features presented above have been derived from those found in the literature,

then expanded upon to create symmetries, in order to have a consistent set of

features to explore and model the signal quality within the next study. The 37

features examined above do show reactions to the different sections of the signal

178



trace and form a 37 dimension description of each signal segment. These are difficult

features to assess, like noise and entropy, because they are measuring the internal

mathematical features of the signal. It is hard to subjectively gauge the amount of

noise or entropy in a signal segment. However they do have subjective variations, so

the best gauge is to allow the features to be objectively judged by allowing models

to fit the features set to the actual signal quality and observe their performance

at estimating the quality in practise. The single features have been assessed and

described in section 8.5.3.3 along with the feature groups and overall modelling

performance in the study described in the next section.

8.5 Case Study - Subjective Signal Quality With

Objective Features

8.5.1 Overview

The previous case study in section 7.4, looks at the accuracy and consistency of

annotations comparing human annotators and assessors with machines as a control.

The current annotations are accepted as a standard for the signal quality given

that the overall agreement of the assessors ranged from 87%, up to 92% for the

clinical assessor. The manual annotations of the signal were shown to be very time

consuming and open to interpretation as there are differences between assessors.

An improvement could be to systematically discover features and models that could

automate the annotations on a per-segment basis. The two main parts are: (1)

to determine the best combinations of the features discussed above to use in the

models and (2) to determine the type of model structure to gain accurate signal

quality assessments. The framework for defining tests as described in section 8.3,

will be used to explore the feature space.
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8.5.2 Methodology

The annotated data to be used was the same random, 50, one-minute segments used

to form the dataset in the previous study described in section 7.4, with the human

given annotations assessed in the previous study. They were used as the quality

standard for the test set. The training set was taken as the first period of the first

session held for each person. The training and testing sets were then concatenated

together to form the group training and testing set, for all of the users in the samples.

This was used to train and test the models below. This gives the final number of

classes for the training and test sets as:

• 64.5% (1278) ‘Good’ Training segments.

• 35.5% (2323) ‘Bad’ Training segments.

• 63.0% (1468) ‘Good’ Testing segments.

• 37.0% (2500) ‘Bad’ Testing segments.

These are not directly balanced classes as expected, and so the specificity and

sensitivity will be taken into account in the analysis.

The system of signal segmentation and quality assignment described previously

in section 7.3 was used to process the signal data from the study into a series of event

segments with the predicted outcomes assigned. These events were then described

by calculating those features above, including the context around each event. The

resultant set of descriptions were then made available to have features selected and

the models trained and assessed.

When choosing the learning model type to use to assess the features and to get

the current model’s performance, SVM based models were used, utilising the:

• SVM Classifier (SVMc).

• Regressive SVM (SVMr).

• One-Class SVM (SVMoc).
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This family of learning models was used since, as was mentioned above, SVMs

use kernel methods to change the distance metric in the feature space. This can

allow a flexible decision surface, that can be solved analytically, thus removing the

dependence on the assessment of the models trained. The reason that there are three

is that the SVMc allows the basic classification, SVMr allows for further exploration

of the high dimensional kernel mapping and the SVMoc gives an indication whether

training can be done with only one class of segment, known as an example of outlier

detection. Each model was given 1,000,000 iterations to reach a model convergence.

The models were named as per the test framework as Mimc,imi
, where imc ∈ a, b, c

is the index for the class of the model (a is the SVMc, b is the SVMr and c is the

SVMoc) and imi is the model index for the class imc. The parameters chosen for the

grid were based on the parameters for the models:

• Kernel type := {‘Radial basis function (RBF)’,‘polynomial’}.

• Degree in the case of the polynomial kernels d := 2, 3.

• Gamma γ := 0.5, 0.2, 0.1.

• Cost function weighting C := 0.5, 1.0.

• Soft margin ν := 0.1, 0.2.

These parameters were combined so that no models were duplicated and no pa-

rameters were added to a model which did not support them. The implementation

for these models are based on those from the Scikit Learn Python library1. This

produced a population of 54 models because the degree is only used on the polyno-

mial kernel, and gamma is used on both the RBF and linear kernels. 20 of these

models were randomly selected, to allow a more manageable number of model sets

to run the feature sets chosen below.

The feature space used consists of:

• 5 Signal measures FS, plus 1 segment period FTp .
1Version 0.18.1, used for analysis. For more information on the models and their implementa-

tion, please see <http://scikit-learn.org/stable/modules/svm.html>. Retrieved 2017/04/21
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• 8 Noise measures FN .

• 9 Morphology measures FM .

• 14 Entropy measures FE.

These were defined in section 8.4, and form a feature description set of 37 features

to choose from. The possible feature space that this would supply would be 237

combinations. To cut this down, a simple grid search strategy will be used.

The feature sets were selected using random combinations of the 37 features

above to create groups of features, to create a fair selection of the feature combi-

nations from such a large feature space. The selection was based on a system of

statistical subset selections and combination. Each class of features provides com-

binations of anywhere from 0 (no feature of that class) to 5 features of that class

to be combined with the other classes with 40 from each combination selected. The

sets created were then randomly sampled and combined with a basic feature set

consisting of the single features and the full features list to make a total list of fea-

ture combination sets. This system allows an even spread of feature combinations,

taken from each subgroup of feature combination with the ability to include manual

additions. As a part of this set, each single feature will be selected and tested on its

own. Any other combination of features are then randomly chosen to make 15,000

feature sets named as ϕifs
, ifs ∈ (1, 15000) in total.

The tests were then created from the 20 models combined with the 15,000 feature

sets to create 300,000 tests Ψiti
∈ (1, 300000) as defined in section 8.3.

The 300,000 models now defined, were run using the analysis framework to load

and manage the processes as described in section 3.4. The model and feature perfor-

mances were evaluated by utilising the DFR, which in turn depends on the specificity

and sensitivity. This was introduced in section 8.2.1.2.

8.5.3 Results

The next sections investigate the performance of the models run in terms of DFR for

the assessment of signal quality on unseen test data for the ECG and PPG signals.
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These have been investigated in the sections below to better illustrate the insights

that can be found in the test performance population. First the relationship between

the distance metric, DFR and the AUC will be investigated. Next the performance

of the different feature classes and individual features will be examined to find the

best feature class and best feature set. Lastly the overall performance of the models

will be considered for the signals and the models, in order to find the best model

and feature set to estimate signal quality.

8.5.3.1 DFR and AUC Relationship

For the analysis of the models within this chapter, the DFR was introduced. It

would be useful to compare this metric against the more usual AUC.

Figure 8.3 illustrates this relationship between the distance metric as defined

above and the more traditional AUC metric. Both show a positive correlation for

the binary classifiers (SMVc and SMVoc). This was expected since, if using AUC on

a binary class, only three points are defining the curve with the operating point as the

defining point and the other two being the extremes of bias (all ‘Good’ or all ‘Bad’).

The regression classifier shows a more variable relationship because the regression

output was converted into a binary classifier by equation (7.27) and setting the

threshold ϵc to 0. The graph follows a positive correlation with the distance metric,

which interestingly, gets stronger as the performance rises. The AUC is higher for

the regression models since they have a more complicated polygon to assess for the

area rather than the two limits and the operating point. The AUC is higher overall

as the maximum of the AUC metric is one, where the maximum for the DFR is
1√
2 ≈ 0.707.

The distance metric can, therefore, be used just as well as the AUC for binary

classifiers and could be a good approximation if only an operating point or the final

classified instance totals are available for the regression models.

8.5.3.2 Interactions and Performance of the Feature Class Groups

The relative performance of the feature classes used on the SVMc model type is

illustrated in figures 8.4a to 8.4d, separated by the number of grouped classes. Each
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Figure 8.3: The relationship is shown between the area under the curve (AUC) and
the perpendicular distance metric from the receiver operating characteristic (ROC)
random line for the 300,000 tests. Three models are grouped together by the plotted
colours to better show their relationships. Inset, A zoomed portion to better show
the relationship at high performance.

group has one or more features of the feature classes shown on the Y axis categories.

The graphs show the median of model populations, given the various feature group

configurations.

When using a single feature class as shown in figure 8.4a, the ‘morphological’

class of features creates the best models for both signals. The signals then diverge,

with the ECG signal finding ‘signal’ features helpful and ‘entropy’ features being

the least helpful. The PPG signal, however, found ‘noise’ features more useful and

‘signal’ features the least useful. This trend is followed when two feature classes

are used as shown by figure 8.4b. The ‘morphological’ feature class can bolster any

other feature class with the ‘entropy’ feature slipping into the background as both

‘signal’ and ‘noise’ features perform better for the ECG signal than in the single

feature group case. The PPG signal follows the same trend as in the single feature
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(a) Performance of tests using 1 class. (b) Performance of tests using 2 classes.

(c) Performance of tests using 3 classes. (d) Performance of tests using 4 classes.

Figure 8.4: The test performance using 1-3 feature classes has been summarised to
the median point of the model group. They have been broken down by signal name
to show the different model performance. N gives the population of models used for
each feature type category, marking the median position. Tests that use all 4 feature
classes in the bottom right shows the kernel density function of the distribution of
the tests broken down by signal name. Performance improves to the right, increasing
the distance from the random line (DFR). The median and inter-quartile range are
shown by the dashed lines on the distribution.
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class case with ‘morphology’ and ‘noise’ making the strongest sets. However,‘noise’

and ‘entropy’ classes do surprisingly well for the PPG signal, suggesting that ‘noise’

features can help significantly. The picture changes when features from three classes

are used as shown in figure 8.4c. This shows that the best models for the PPG

signal are usually based on the ‘morphological’ features, but ‘noise’ features are

a better companion than ‘entropy’. The ECG signal has the strongest tests using

‘morphological’ features, almost regardless of the other feature combinations chosen.

Figure 8.4d shows the estimated kernel density of the model’s performance when

using all four feature classes. It is expected that these model’s performances would

be the best on average since they can draw on combinations of all 37 features. The

double peak is an interesting finding for the PPG tests as there could be a set of

features which when removed could allow stronger features to be used as there is a

population of feature tests which can not produce high performances.

Overall ‘morphological’ features are beneficial in the determination of signal qual-

ity, but the signals do favour different subclasses. The ECG signal does not seem to

need many more features other than morphology suggesting that the other features

share some overlap. However, the PPG signal finds ‘noise’ and partially ‘entropy’

to be good companion feature classes.

8.5.3.3 Single Feature Performance

Some conclusions can be drawn from the feature groups at this point: ‘morphologi-

cal’ features, in general, form a strong SVM classifier. The ‘entropy’ feature generally

can be seen to be weak when classifying the quality of a signal. The features tested

in the model analysis allow the breakdown of the performance into individual fea-

tures, to allow the comparison of the features within the class to identify particular

winners.

This is shown in figures 8.5a to 8.5d, where each feature type has been broken

down. The main feature type to be examined is the morphological feature class, as

it has shown to be a strong candidate for future investigations. This is shown in

figure 8.5b, out of these FM1 and FM4 were the strongest features for both signals,
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(a) Tests using single features representing
’entropy’, are split by single features.

(b) Tests using single features representing
’morphology’, are split by single features.

(c) Tests using single features representing
’noise’, are split by single features.

(d) Tests using single features representing
’signal’, are split by single features.

Figure 8.5: The kernel density function of the models using features representing
each feature class, each graph shows a single feature group. The centre of each
distribution shows a box plot with the thin line marking the extents, the thicker
line marking the inter-quartile range and a white mark for the median. N gives the
number of models used for each distribution category. Performance improves to the
right, increasing the distance from the random line (DFR).

187



showing that correlation to the previous segment and the ‘Good’ template were

important for both signal types. FM6 was strong individually for the ECG signal,

which translates to the standard deviation of the error between the current and

‘Good’ segment. FM4 defined above, was the correlation of the segment with the

‘Good’ template of the signal. As one might expect, the comparison to a ‘Good’

segment of the signal is important to both signal types. The signal consistency was

also useful as shown by FM1, where it is compared to the previous segment because if

the correlation between segments is high, it suggests that there is consistency in the

signal. The entropy feature has many strong measures for its class, but since they get

combined with other features, they become less important as they may overlap with

the other features. The correlation between the morphology was also significant, in

the ‘entropy’ features since FE1 and FE3 along with FE7 and FE11 produce tests with

high performances. These are the mutual information measures between the current

signal and the previous signal in the first case, and the ‘Good’ and ‘Bad’ templates

in the latter cases. FE8 and FE12 also do well since they measure the conditional

entropy between the current and the ‘Good’ and ‘Bad’ templates respectively. These

comparisons seem to be able to define the quality of the signals, which is partially

unsurprising since these templates act like trained RBF kernel functions, with the

templates defining the basis locations.

Overall features focused on the consistency of the segment with its immediate

predecessor seem to be the best features in general. This can lead to two further

directions to investigate. The first is to add to the features by comparing even older

segments to look for improvement. Second is to investigate new models such as

recurrent networks which would allow the system to train these parameters.

Next, the overall performance is considered to find the best models to estimate

the signal quality for the two signals. This is a new dataset and there is currently no

direct comparison, so the model performance surface allows for a visual representa-

tion of the data and facilitates estimation of where the models could be developed

for further investigations in the future.
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(a) Showing the kernel density for the ECG.
This shows that the majority of tests are in
the upper left corner with a slight bias to
the left edge.

(b) Showing the kernel density for the PPG.
This shows that the tests are highly localised
with a small spread down the left hand side,
with very few along the top edge.

Figure 8.6: The kernel density function of the 300,000 test over a ROC field. The
top models of each type determined by distance from the random (DFR) line are
marked along with the learning and feature sets used.

8.5.3.4 Test Performance Using ROC Field Contours

Due to the 300,000 models and features combinations tested, the ROC graphs have

been simplified by using kernel density contour plots to show the overall result

visualisations.

Figures 8.6a and 8.6b show the ROC field graph and density contours with the

top models for each type of model marked on the field. Figure 8.6a shows the

performance surface for the ECG tests and the figure 8.6b shows the performance

surface for the PPG tests. These contours are used to summarise the model tests

performed and to give the best models, a context as to how well they perform based

on the normalised densities of the other tests.

These graphs show that most models have a good operating point in the top left.

However, there are differences between the signal types. The PPG signal shows a

high concentration of tests near the best models marked. Some are shown down the

left side of the field. The effect is more pronounced in the ECG signal where they

are more spread out down the left side than along the top. The PPG tests seemly

have trouble achieving a high sensitivity suggesting that they are having trouble

with the ‘Good’ segments, as when it gets high the specificity drops low with the
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Table 8.2: The top model performance for ECG based on the maximum distance
from the random line (DFR).

DFR Sensitivity Specificity Learner Feature Set
Test

Ψ199265 0.566 85.0% 95.0% Ma1 Φ9964
Ψ209910 0.566 86.0% 94.0% Mb0 Φ10496
Ψ46739 0.519 84.3% 89.0% Mc0 Φ2337

Table 8.3: The top model performance for PPG based on the maximum distance
from the random line (DFR).

DFR Sensitivity Specificity Learner Feature Set
Test

Ψ176170 0.468 85.1% 81.1% Mb0 Φ8809
Ψ252123 0.467 85.6% 80.4% Ma0 Φ12607
Ψ152759 0.416 77.1% 81.7% Mc0 Φ7638

high concentration in the top right corner. The problem with the ‘Good’ segments,

then invites more work to be done to differentiate the ‘Good’ PPG signal segment.

This is less marked in the ECG, as the tests down the left side show that ‘Bad’

classes can be found accurately for both signals.

8.5.3.5 Optimum Tests for the Signals

The top tests of each model type are grouped by the signal type. These are the

best selected tests for each model type, as measured by the greatest DFR. The

ECG models are shown in table 8.2 and the PPG models are shown in table 8.3.

The tests are shown with the feature and learner settings in table 8.4 and table 8.5

respectively.

Tables 8.2 and 8.3 shows the best overall model’s performance on test data in

terms of the DFR for the ECG and PPG signals. The best model overall is the SVMc

with the SVMr slightly outperforming it for the PPG signal. The performance of

these models are above 80.4% and 77.1% for specificity and sensitivity respectively

based on the SVMoc. This is approximately 3-5% lower than for the other classifiers

tested. A conservative estimate of the performance across the signal types is greater

than 84% classification accuracy for the quality annotation of those signals.
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Table 8.4: The top model performance based on the maximum distance from the
random line (DFR).

Signal Name Set Count Features
Feature Set

Φ2337 ECG 3 FN3, FN6, FM4
Φ7638 PPG 11 FS4, FTp , FS2, FS5, FS3, FN5, FN4, FN1,

FM6, FM2, FM4
Φ8809 PPG 15 FS5, FTp , FS3, FN4, FN7, FN5, FM7,

FM1, FM6, FM2, FE11, FE8, FE7, FE10,
FE13

Φ9964 ECG 10 FN6, FN4, FM6, FM7, FM4, FM8, FM1,
FE4, FE6, FE2

Φ10496 ECG 8 FN6, FN4, FM6, FM7, FM4, FM8, FM1,
FE4

Φ12607 PPG 9 FS4, FTp , FN5, FN4, FM6, FM2, FM4,
FM1, FM5

Table 8.5: The top model performance based on the maximum distance from the
random line (DFR).

Signal Name Model Type Model Parameters
Learner

Ma0 PPG SVMc kernel=rbf, C=1.0, gamma=0.5
Ma1 ECG SVMc kernel=rbf, C=1.0, gamma=0.2
Mb0 ECG SVMr kernel=rbf, C=1.0, gamma=0.5
Mc0 ECG SVMoc kernel=rbf, nu=0.1, gamma=0.5
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The one class models (SVMoc) which were tested do not have the highest perfor-

mance, but they only require instances of the ‘Good’ segments. This allows them,

for a performance loss of up to 7% for sensitivity and 5% for specificity and could

allow easier training on the collection devices themselves, where a doctor could pick

‘Good’ segments they want from the first recording of a user and train the model

on those.

8.5.4 Discussion

It has been shown with these experiments that the signal quality is something that

can be predicted from the features and the signal morphology. The overall perfor-

mance, for the set of models tested, was for ECG 86.0% and 95.0% for sensitivity

and specificity respectively and similarly for PPG, the result was 85.6% and 81.7%.

The sensitivity performance on average between ECG and PPG signals over

the models has a range of 2.50%. Within the signal, this drops to approximately

1.70% and 8.52%. This suggests that the model’s accuracy of detecting a ‘Good’

signal segment has reached a limit, as the varying features do not make a signifi-

cant difference. The specificity, varies between signals over 11.6%. This suggests

that the accuracy of the ‘Bad’ signal segments classification is lagging behind the

classification accuracy for the ‘Good’ segments in the PPG signal. The PPG might

have more trouble with the ‘Bad’ segments as the evidence above shows because

there is a greater range of morphologies and failure types for the PPG than for the

ECG. These being motion and the blood perfusion of the tissues in question and

signal saturation. The ECG however, is mediated by an electrical potential and so

is less affected by the movement. Finding better ways of categorising the ‘Bad’ PPG

segments would be a good next step to improve the classification accuracy of the

PPG signal. The ECG requires more work to improve its sensitivity and so work on

categorising the ‘Good’ segment would be needed.

The features the final models always used were ‘morphological’ features with

‘noise’ and ‘signal’ features also included in the sets. ‘entropy’ features seem to do

well on their own but struggle when grouped with others. Interestingly none of the
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models use all of the features available, and they have settled on 8 to 15 features

with the SVMoc for ECG, only using 3. FM4 has appeared in all the top 3 models,

which shows that a comparison to the ‘Good’ segment template was always useful.

FTp is used for all of the PPG signal models suggesting that the period of the signal

is more helpful for the PPG signal than for the ECG signal.

Comparing this to the agreement scores from the case study where on average,

for both signals, assessors scored 84% and 90% in section 7.4 for sensitivity and

specificity respectively. Results in the SVM models here had a better agreement to

the quality standard than some of the assessors when looking at the ECG signal.

However, the PPG is lagging behind with specificity, suggesting that better features

are needed to characterise the ‘Bad’ signal quality. Further work to improve this is

addressed further in chapter 10.

8.6 Framework Data Flow Example

This analysis has been performed within the framework as designed in chapter 3.

The framework runs the analysis programs and modules defined above. The pro-

cesses ask for data and load modules during their program and the framework cap-

tures this as metadata and creates a data and program dependency graph of whole

data process. The data flow can then be traced from the raw data through to the

final presented results and report which makes up this chapter. Part of this meta-

graph which the framework has created for this experiment can be seen in figure 8.7.

This shows the data nodes in red clustering around the data preparation process

node shown in green at the top. The processed result data is stored in the yellow

nodes in the middle. These have further connections as they have been used for

the current model analysis setup node in green called ‘Analysis Setup’. This builds

the feature and learner sets and combines them into tests which are shown as the

three yellow result nodes in the middle of the figure. The four green process nodes

named ‘Analysis Workers’ are the workers which actually ran the models in parallel

processes on the ProcessSR. The results are then pulled from these worker nodes

in to the bottom process called ‘Concatenate Worker Results’. The final results are
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processed by the ‘Present Signal Quality Node’ which produces a report including

tables and graphs and are then presented here in the chapter. The frameworks al-

lows any part of the system to be interrogated and reviewed. Improvements can be

made and the framework now knows the influence of the programs and subsequently

the utilisation of the result produced. Program components are shared between the

processes so there should always be one implementation of any function or system.
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Figure 8.7: A partial signal quality framework dependency graph. The green nodes
are the process components, yellow nodes mark result components, blue shows pro-
gram components and red are the raw data nodes from the study. The lines show
the linking between the node in the analysis structure. Due to the sheer number of
nodes, only the process nodes are named.
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8.7 Summary

This chapter has presented a system for determining and extracting potential fea-

tures that could identify ‘Good’ signal streams and feature strategies. It also creates

a description to assess signal quality automatically. The features extracted have been

used in combination with models to explore the feature space to find the model and

feature set which can bring the highest performance and accuracy when compared to

human assessors. The performance given can be seen that the models performance

was converging in the context of the other possible models shown for the current

features. The next chapter now looks at using these models and the framework de-

veloped in the previous three chapters to investigate the modelling and estimation

of blood pressure. This is a critical vital sign and provides an example of the further

development possible within the framework as well as the usefulness of the signal

quality assessment.
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9 Blood Pressure Model Analysis

9.1 Overview

The previous work on determining the quality of bio-signals, can be used to better

assess the measured variables offered by the signal data.

The estimation of blood pressure (BP) is a calculation which, in past work, relies

on accurate measurements of the heart rate (HR) and pulse transit time (PTT) in

order to estimate the users BP without the use of an inflation cuff. First a review of

the literature on the past work on BP measurement and estimation will be presented.

Following that, a study is presented using the signal quality models from the previous

chapter to allow the quality of the measurements to be taken into account. This will

then allow for the assessment of the known BP estimation models and features from

the literature. Using the study data introduced and used in the previous chapters.

9.2 Review of Blood Pressure

BP measurements are used to determine the systolic and diastolic pressure of the

blood. This can be measured at many points around the body, but the common

point of recording is at the arteries close to the heart. The left arm is commonly used

in practice as it is the closest to the aorta. The systolic pressure is the maximum

pressure seen in the vessel when the heart is in contraction. The diastolic pressure

is the minimum pressure seen in the vessel as the heart relaxes and the pressure is

dissipated through the bodies arteries and capillary beds.

First, some background will be presented to illustrate the current state of BP

measurement. Secondly, a discussion on the current methods of BP measurement
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will be presented. Thirdly, the various methods of non-invasive BP measurement

and modelling will be investigated.

9.2.1 Blood Pressure Measurement

BP has been used for many years to ascertain the activity level of the cardiovascular

system in humans. The original method of measurement involved mechanically

coupling an artery through a catheter to a column of moving liquid, then measuring

the deflection that the pressure of the blood had to lift the liquid. Many liquids

have been used, but mercury was found to be the best since it is the highest density

liquid at room temperature and the deflection is smaller and more manageable for

smaller devices. The measurement unit is mmHg which is the number of millimetres

of deflection in a mercury column (Hg is the chemical symbol for mercury) and

demonstrates the reflection of this history. The catheterised measurement is the

gold standard and is still used in practise, using electronic pressure meters when

people are under-going operations or diagnostic procedures, where real-time, and

accurate measurements of their cardiovascular dynamics are important.

When a routine snapshot of the BP is sufficient, such as at a doctors examination,

other methods of measurement are then employed. The main method used is the

pressure cuff and stethoscope to measure the pressures at a point where the blood

can be restricted in the vessels, usually at the elbow of the left arm in adults or the

leg in paediatric care.

This has been automated by the use of the oscillometric method that uses a pump

and valve to control the pressure applied to an arm or leg. The valve releases the

pressure slowly while monitoring the change in pressure in the cuff. These methods

examine this change, controlling the cuff pressure to find the maximum change in

pulse pressure, seen in the pulsatile component of the cuff’s bladder pressure. Once

noted, the bladder has matched the mean arterial pressure (MAP) of the vessel and

the minimum and maximum of the pulsatile signal can be used as an estimate of

the systolic and diastolic pressures (Babbs, 2012).
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9.2.2 Blood Pressure Estimation and Modelling

Work has been done to look for non-invasive methods of estimating BP without

the use of a cuff. The estimation is made by using models of the cardiovascular

system, commonly using the pulse transit time (PTT) defined as TPTT and the

instantaneous heart rate (HR) THR. Some mechanical properties of the vessel are

also used as key parameters of the current models (Shriram et al. , 2010; Heard

et al. , 2000; Cattivelli & Garudadri, 2009; McCombie et al. , 2006; Jadooei et al. ,

2013; Shaltis et al. , 2006; Asif-Ul-Hoque et al. , 2011). The equation that is used

as the common starting point, from the work that Isebree Moens (1878) carried

out in their paper “Die Pulse Curve” with similar and independent work by D.J

Korteweg, who derived the jointly named Moens-Korteweg’s equation, is described

by Tijsseling & Anderson (2012). This established the basic wave speed formulae

given in (9.1 Jadooei et al. (2013)).

VPWV = PWV = L

TP T T

=

√√√√(Eh

ρd

)
(9.1)

Where, Vp = pulse wave velocity (PWV), L = length of the vessel, TP T T = pulse

transit time (PTT), ρ = Blood Density and d = inner radius of the vessel, h is the

vessel wall thickness, E is the Youngs modulus of the vessel wall.

This has been used lately by the following groups Shriram et al. (2010); Heard

et al. (2000); Cattivelli & Garudadri (2009); McCombie et al. (2006) and Jadooei

et al. (2013). The models of estimation using PWV and the HR THR can be

simplified into linear relationships to aid analysis, which are discussed in more detail

below.

Another relationship between the BP and the PTT is given using the relationship

by Jadooei et al. (2013) in dogs, where they found an exponential relationship

between the Youngs modulus E at rest and the one observed when a given pressure

was measured across the vessel’s wall. This is given by:

E = E0e
αP (9.2)

where, E is the Youngs modulus observed, E0 is the Youngs Modulus at rest and

the P is the pressure measured across the vessel wall and α is the exponential factor
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between starting E0 to E .

This can be introduced into equation (9.1) to give

P = − 2
α

ln(PTT ) + 1
α

ln(L2ρd

gE0h
) (9.3)

where g is the section length of the vessel. This was derived and used in work

by Jadooei et al. (2013) and Wang et al. (2014).

These features and BP measurements are both linear relationships. The main

model forms are listed below.

The relationship between the measured pressures for both the PWV VPWV as

shown in equation (9.1) or the PTT ln(TPTT) based on equation (9.3) and the HR

THR as a linear sum, has been used for the estimation of both systolic Ps and diastolic

Pd BP (Heard et al. , 2000; Jadooei et al. , 2013; Cattivelli & Garudadri, 2009). As

there are two time measures, there are two formulations for the relationships give

by

Ps(is) = AVPWV + BTHR + C (9.4)

Pd(is) = AVPWV + BTHR + C (9.5)

or

Ps(is) = A ln(TPTT) + BTHR + C (9.6)

Pd(is) = A ln(TPTT) + BTHR + C (9.7)

where, A,B and C are parameters to fit the models. Wang et al. (2014) have

developed this further and suggested the inclusion of the previous BP measurement

and free parameter D to give

Ps(is) = AVPWV + BTHR + CPs(is − 1) + D (9.8)

Pd(is) = AVPWV + BTHR + CPs(is − 1) + D (9.9)

or

Ps(is) = A ln(TPTT) + BTHR + CPs(is − 1) + D (9.10)

Pd(is) = A ln(TPTT) + BTHR + CPs(is − 1) + D (9.11)

Since there are two formulations of the relationship, both will be tested in the

study to understand which feature VPWV or ln(TPTT) can perform better. White
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et al. (1993) and Takahashi et al. (2015) note that the error rate for a BP mea-

surement as per the ISO81060-2:2009 standard should have a mean error of 5 mmHg

and a standard deviation of less than 8 mmHg to be used as an accurate measure-

ment device for personal use, and so this is the target that is ideally required in the

following analysis.

9.3 Blood Pressure Estimation Structure

The BP and signal data from devices can be used to create a set of descriptions

sufficient to train and test BP estimation models. The system utilises the signal

quality assessment system as discussed in sections 7.3 and 8.3 to run BP estimation

and modelling using the cleaned data. The principles from this are briefly extended

below to handle the BP estimation.

Figure 9.1: Diagram showing the basic architecture of the BP analysis framework.

9.3.1 Prepare and clean the data

The data to be used for the BP analysis needs to be gathered and checked to make

sure all necessary parts of the data are found and matched up. Once the data

is retrieved, contiguous sections are taken and processed using the signal quality

framework to determine the signal quality features. Then using a pre-trained model

from the previous chapter, estimates of the quality of each signal segment can be

marked for feature extraction.
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9.3.2 Extract the good features

Mapping the features from the fusion of the signals in the data set allows for bad

data segments to be ignored. The signal events need to be processed to find the

mapped signal features for BP which can be found from contiguous ‘Good’ quality

signal segments, found in both the electrocardiogram (ECG) and photoplethysmo-

gram (PPG) signals. Figure 9.2 shows diagrammatically the common features to be

extracted, which include the:

• TP T T := Pulse transit time (PTT) between the ECG and PPG signal

• THR := Instantaneous heart rate

These need to be extracted from the signal when a good section of signal data

is found.

Figure 9.2: The pulse transit time (PTT) TPTT and the instantaneous heart rate
THR feature extraction diagram. The TPTT is the time measured from the peak of
the QRS on the ECG to the peak of the PPG signal. The THR is the time period
measured from the previous peak to the current peak of the ECG signal because of
the QRS it can have better temporal resolution.

When a data section is examined for features, the quality of the signal will be

assessed. This can be recorded as the number of supporting events called the event

support Nsupport. This is the number of ‘Good’ segments for the signals in question,

which can be identified as ‘Good’ using the signal quality estimates above. This

lends a meta-feature to the feature set to show the reliability of the other features

extracted.
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9.3.3 Model analysis

Once the features have been extracted from the ‘Good’ data, the dataset is then

ready for model training and analysis as discussed in the previous chapters. Regres-

sion models are used in this case, such as the SVMr as used in the previous chapter

or a linear or polynomial model can be substituted. The performance metrics are

used here to assess two continuous values for agreement. Metrics will be used to

describe both the performance of the models and also the final performance of the

estimation expectation error. The R2 metric will be used to describe the model and

features, since it is bounded and does not rely on the units of the estimate. To

assess the final model performance, two other metrics will be used: the mean, ē and

the standard deviation, σe of the error e. These are standard metrics used for the

assessment of regression models and estimates.

9.4 Case Study BP Feature Estimation Using Raw

and Cleansed Data

9.4.1 Overview

The objective of this study is to utilise the signal quality assessment system as

discussed in sections 7.3 and 8.3 to run BP feature comparisons and modelling

using the raw and cleaned data from the quality assessment system with two aims.

The first is to assess the signal quality system in practice. The second is to use

the quality assessment to examine the features and their relationships to produce

an improved BP estimate. The BP and signal data gathered in section 6.4 will be

utilised for the experiments with the signal quality assessment structure described in

sections 7.3 and 8.3. This will create a feature description for each BP measurement

with the addition of the signal quality metric, which can then be used to investigate

the feature relationships. The primary hypothesis is that the relationships can be

made more prominent as the quality of the signals rises, by removing the weak

measurements which are subject to noise. The measurement of the signal quality
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will also help with the overall modelling errors by allowing minimums to be placed

on the quality of data used for estimation and learning in the future.

9.4.2 Methodology

A process loads the data for the EIMO device and the Case-GE BP monitor from

the framework. The BP measurements are spaced every 3 minutes, throughout

the recorded data, and PTT and HR measurements need to be extracted from the

data recorded from the EIMO device. Approximately 40 seconds before the BP

measurement point, there is no signal. This gap in the signal is due to the user

releasing their hold on the EIMO device to straighten out their arm so that the BP

cuff could inflate and measure the user’s BP. The lack of signal requires compensation

by moving the feature measurement section further away from the BP measurement.

However, the further away it gets from the BP measurement, the more feasible it is

that the BP might have changed, potentially reducing the relationship.

Figure 9.3: The graph shows the data section associated before the BP point marked
in blue at 2015-04-24 09:13:26. The relationship between the BP measurement
(marked in blue), and the data sections used to extract predictive features are shown.
The ECG and PPG signals are drawn in green and red respectively.
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Figure 9.4: The graph shows the data section associated after the BP point marked in
blue at 2015-04-24 09:13:26. The relationship between the BP measurement (marked
in blue), and the data sections used to extract predictive features are shown. The
ECG and PPG signals are drawn in green and red respectively.

Features have to be gathered to estimate the BP measurement. Each segment

is measured independently between ECG and PPG cycles to gain the PTT and

HR features as above. Windows are used to gather a group of signal segments to

measure and average the result. The length and placement of the window sections

were chosen to reflect a reasonable EIMO recording time of 90 seconds and will allow

enough time to get a sufficient quantity of quality segments. The first measurement

window was placed, ending at -40 seconds before the BP measurement to allow the

window to be outside of the 40-second cuff measurement as mentioned above. A

second feature measurement window was placed at the same time delay after the BP

measurement for symmetry. The final section is brought forward, closer to the BP

measurement. These window sections are used to allow for the loss of signal because

of the cuff measurement. The sections oversample the BP measurement to make the

most of a difficult measurement. Each window could be a legitimate section of the

signals to capture. The three sections are summarised below. The times given for
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Figure 9.5: The graph shows the data section associated early after the BP point
marked in blue at 2015-04-24 09:13:26. The relationship between the BP measure-
ment (marked in blue), and the data sections used to extract predictive features are
shown. The ECG and PPG signals are drawn in green and red respectively.

each section are relative to the BP measurement, with the negative values denoting

a timestamp before the measurement and positive values after the measurement:

• Window one before the BP measurement defined as ‘Before’.

Starting at -130 seconds ending -40 seconds, shown as a sample figure 9.3.

• Window two after the BP measurement defined as ‘After’.

Starting at 40 seconds ending 130 seconds, shown as a sample figure 9.4.

• Window three just after the BP measurement defined as ‘Early’.

Starting at 10 seconds ending 100 seconds, shown as a sample figure 9.5.

The features measured from each window as defined above are to be considered.

The two features extracted are:

• The pulse transit time (PTT) TPTT.
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• The heart rate (HR) THR.

Due to the past research shown in section 9.2.2, the BP can be modelled with

linear relationships to the PTT feature in section 9.2.2 to give the full features set

to measure as:

• The heart rate (HR) THR.

• The pulse wave velocity (PWV) VPWV = 1
TPTT

.

• Logarithmic PTT ln(TPTT).

These features will be used for the assessment below. These are then compared

to the BP measurements, which are the:

• Systolic BP Ps.

• Diastolic BP Pd.

• Pulse pressure or the difference between them Pp = Ps − Pd.

The features and measurements discussed above will be extracted from the pre-

viously identified sections and the number of supporting events will be recorded for

each data section. The supporting events Nsupport for a section are defined here as

the number of ‘Good’ quality event pairs of ECG and PPG segments, that were

found after the signal quality assessment.

9.4.3 Results

After the data is assessed and classified, three feature measurements from the signal

for each BP reading are recorded. These are then used to examine the relationship

between the BP measurements (systolic Ps, diastolic Pd and the pulse pressure Pp)

and the features discussed above.

First, the measurements extracted need to be cleaned of instances which have

had no data or poor features as they are unusable or ill-defined. Table 9.1 shows a

summary and description of the points gathered with the invalid sections removed.
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Table 9.1: Summary of the data sections recorded and measured, showing how many
sections were valid with enough data to extract the features and how many were
invalid where they did not have enough data or held poor features, such as null
values or heart rates below 20 bpm.

Valid Segments Invalid Segments Total Segments
Data Section

After 768 16 784
Before 783 1 784
Early 776 8 784

Table 9.2: Statistical description of the measurement instances of the data section
windows extracted. This shows the statistics of the event support Nsupport the main
feature mappings, along with the blood pressure (BP) measurements recorded for
the study. THR is measured in beats per minute (bpm), Ps, Pd and Pp are measured
in mmHg.

Nsupport ln(TPTT) VPWV THR Ps Pd Pp

count 2327.000 2327.000 2327.000 2327.000 2327.000 2327.000 2327.000
mean 22.436 -1.098 3.065 79.190 128.548 67.225 61.323
std 28.867 0.199 0.881 15.157 16.605 10.538 16.801
min 0.000 -2.996 1.136 32.327 89.000 37.000 16.000
25% 0.000 -1.204 2.703 67.232 116.000 60.000 49.000
50% 7.000 -1.109 3.030 79.198 128.000 66.000 60.000
75% 39.000 -0.994 3.333 89.221 139.000 73.000 71.000
max 128.000 -0.128 20.000 134.831 190.000 104.000 119.000

This was performed to level the field before the signal quality was taken into account.

These basic limits could be performed as the first step on any system. Table 9.2

shows a statistical summary of the valid feature measurements extracted. These ta-

bles show that most of the sections did have enough data to have features extracted.

The average event support N̄support was 22.4 from the table. However, the event

support per-measurement value varies between the users, which will be examined in

more detail below.

The signal quality assessments allow for the ability to rank the measurements

by the number of supporting segments Nsupport found for each section. The event

support Nsupport can be used for the investigation of the BP estimation and mod-

elling. Data can be selected based on the proportion of measurements with the

highest number of supporting events Nsupport for example; one can select 75% of the

top measurements. This kind of selection allows the most reliable data can illus-
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trate groups and structured relationships with more clarity by removing the outliers,

which also helps with the final accuracy of models using the cleaner data.

9.4.3.1 Distribution of Event Support Between Users

The event support metric provides a useful measure of the overall quality of the BP

measurements recorded. This can be used to assess the dataset and the device to

find out the average yield of quality data from the device. First, this requires an

estimate of the average expected number of events that could occur within a section,

which is the average number of beats. The average measured heart rate of 79.2 bpm

over the 90 seconds section would give the average number of events to be 119 for a

section.

Figure 9.6: The distributions shown represent the densities of BP measurements
with the given event support. The inter-quartile range is marked with the dashed
lines to show the centres of mass and the spread of the measurements.

The quality of the signals recorded can be assessed across the users, as can be

seen in figure 9.6. The graph shows the variation between the quality that the
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users were able to record on the EIMO device, with User 5 exceeding the maximum

value as their heart rate was higher than average and they have well-supported data

sections as the distribution shows. Based on the expected average, approximately

19% of the 90-second window, or around 17 seconds on average was ‘Good’ helpful

data. Some users were not able to record as much supported data as can be seen

in the high densities between 0 and 20 supporting events (0 ≤ Nsupport ≤ 20) for

users 11, 17, 18 and 20. Out of the BP measures that were taken 29% of the

dataset lacked any ‘Good’ segments as estimated by the signal quality models from

chapter 8. This allows a quantifiable assessment of the usability of this device in this

context to gather data for estimating BP, where out of the 14 users assessed, the

average support overall was 22 events, with a yield of 71% of the BP measurements

were quality supported (Nsupport > 0).

9.4.3.2 Extracted Features and BP Measurement Relationships

The first comparison is used to examine the features and measurements looking for

overall relationships from the whole dataset, because if accurate, a single model for

all of the users would have the most predictive power. The BP measurements for

the users have varying support based on the signal quality for each data section

analysed. The features extracted need to be compared with the BP, while raising

the amount of segment support for each of the measurements, to look for the trends

as the data is cleaned.

Figure 9.7, figure 9.8 and figure 9.9, show where the measurements have been

ranked and plotted against each of the features with varying support. The graphs

on the left show 100% of all of the measurements taken from all three data sections.

Each column raises the support bar, so only 50% and 25% of the most supported

or strongest features are shown. The points are also sized and coloured using the

normalised support for the group that they belong to, demonstrating that the larger

and darker the marker is, the more support the feature has. Second-order polyno-

mials have been fitted, in the best 50% and 25% supported graphs, to a randomly

partitioned 50% of the data displayed. The model performance, as tested on the
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Figure 9.7: The axis columns show the effect of increasing the signal quality tolerance
for the blood pressure (BP) measurements Ps, Pd, Pp versus pulse wave velocity
VPWV. The columns show 100%, 50% and 25% of the BP measurements with the
column on the left, showing all of them and the column on the right showing 25%
of them. The columns on the right show lines of best fit as calculated on 50% of the
visible data, then these models are tested on the other 50% of the data. The marker
size denotes the normalised number of supporting events for that measurement. N
above the axis shows how many measurements are displayed on the axis. The size
and opacity of the points are functions of the event support. The highly supported
points are smaller and darker, showing there can be more certainty in the points
position.

other 50% of the data displayed, is listed above the axis given as the R2 score.

These graphs show that structures can be seen clearer within the dataset as

the less supported measurements are removed. However, interestingly, the main

relationships seen between the feature and measurements are not very strong with

R2 scores of a maximum of 0.09. There are structures within the clusters with darker

linear paths through the cluster. Overall, this suggests that the modelling might be

more effective on a per-user basis as well as on the whole dataset as discussed next.
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Figure 9.8: The axis columns show the effect of increasing the signal quality tolerance
for the blood pressure (BP) measurements Ps, Pd, Pp versus logarithmic pulse transit
time ln(TPTT). The columns show 100%, 50% and 25% of the BP measurements with
the column on the left, showing all of them and the column on the right showing 25%
of them. The columns on the right show lines of best fit as calculated on 50% of the
visible data, then these models are tested on the other 50% of the data. The marker
size denotes the normalised number of supporting events for that measurement. N
above the axis shows how many measurements are displayed on the axis. The size
and opacity of the points are functions of the event support. The highly supported
points are smaller and darker, showing there can be more certainty in the points
position.

9.4.3.3 Estimating The Blood Pressure

From the previous work above, it can be seen that we can select the features based

on the relationships that are observable in the whole user dataset. There is very

little difference between the two PTT-based features of ln(TPTT) and VPWV, which

have been derived and used in the literature separately as discussed in section 9.2.2.

These features also need to be combined together as the models discussed above

used a combination HR and the PTT features to estimate systolic and diastolic BP.
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Figure 9.9: The axis columns show the effect of increasing the signal quality tolerance
for the blood pressure (BP) measurements Ps, Pd, Pp versus heart rate THR. The
columns show 100%, 50% and 25% of the BP measurements with the column on the
left, showing all of them and the column on the right showing 25% of them. The
columns on the right show lines of best fit as calculated on 50% of the visible data,
then these models are tested on the other 50% of the data. The marker size denotes
the normalised number of supporting events for that measurement. N above the
axis shows how many measurements are displayed on the axis. The size and opacity
of the points are functions of the event support. The highly supported points are
smaller and darker, showing there can be more certainty in the points position.

Modelling analysis was performed in the testing framework described in sec-

tions 7.3 and 8.3 extending the system and analysis to regression models. The set of

possible model relationships are listed below, using the test definitions from chap-

ter 8 and equation (8.5). Defining the feature set is straight forward since there are

only three features normally used in the literature. The tests Ψiti
listed below in

equations (9.12) to (9.15) are the common formulation of the features from the liter-

ature combined with simple second order linear regression to fit the data and allow

for the curvature seen in the analysis above. This will be performed for the dataset

as a whole to investigate a universal model and its performance and limitations.
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Table 9.3: This table shows the model performance for example blood pressure (BP)
estimate models, based on measurements with an event support Nsupport ≥ 0 events.
Number of measurements above threshold and used for analysis N = 2327.

Features Measures R2 Score Mean Std
Name

Ψa1 VPWV, THR Ps -1.303 -0.929 21.418
Ψa2 ln(TPTT), THR Ps -0.085 0.037 15.504
Ψb1 VPWV, THR Pd -0.866 0.641 13.561
Ψb2 ln(TPTT), THR Pd 0.028 0.078 10.260

Table 9.4: This table shows the model performance for example blood pressure
(BP) estimate models, based on measurements with an event support Nsupport ≥ 22
events. Number of measurements above threshold and used for analysis are N =
803.

Features Measures R2 Score Mean Std
Name

Ψa1 VPWV, THR Ps 0.024 -0.088 13.204
Ψa2 ln(TPTT), THR Ps 0.015 -0.090 13.282
Ψb1 VPWV, THR Pd 0.218 0.006 7.793
Ψb2 ln(TPTT), THR Pd 0.225 -0.012 7.763

Ps = Ψa1(VPWV, THR) (9.12)

Ps = Ψa2(ln(TPTT), THR) (9.13)

Pd = Ψb1(VPWV, THR) (9.14)

Pp = Ψb2(ln(TPTT, THR)) (9.15)

The model results shown in table 9.3 and table 9.4 display the mean and standard

deviation of the error in the signal for the example models above. The models have

been trained and tested on a four-way, K-fold cross-validation analysis using all of

the raw measurement data for the first table and with a threshold of Nsupport > 22

events for the second. These tables show the performance of the cross-validated

models. For the current dataset, it can be seen that as the event support rises, the

standard deviation of the error σe measurement drops across all of the models. Also

that Ψa2 and Ψb2 outperforms Ψa1 and Ψb1 for both systolic Ps and diastolic Pd BP

respectively. This difference decreases for the models listed in table 9.4. To explore

the relationship between the standard deviation of the error σe as the measurement

event support increases. σe will be chosen to illustrate the difference for each model
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Figure 9.10: Modelling error verses support threshold for all users studied. The
models were run on a K-fold validation while the event support threshold increases.

at each level of supporting events as the mean error ē is close to zero for all the

models due to the optimisation algorithm. Figure 9.10 shows how the modelling

error changes as the threshold increases. This illustrates that the error does indeed

drop as the supporting events rise, but levels off (up to 85 events) where there are

too few instances left to test the models, and performance of the cross-validation

becomes erratic. A local optimum can be reached by removing noise (up to 20-30

events) but not going above 85 events so that the structure of the data is not lost.

This shows that when using one model the best standard deviation error one can

gain with an average support level of 22 events is 13.204 mmHg and 7.76 mmHg

for systolic and diastolic BP respectively. However, the error rates are very high.

As discussed earlier the desired error rate to achieve are a mean of 5 mmHg and

standard deviation of less than 8 mmHg, to reduce this error attention will now turn

to the individual users.

Each users measure was taken and the same modelling structure was applied.

Some users show an improved BP modelling result below the target threshold dis-

cussed above. The users with error rates under the target are shown in tables 9.5
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Table 9.5: Model result performed on a 4 K-fold cross-validation scheme for User 6,
on the full dataset and for a Nsupport of 22 which is the average for the dataset as a
whole. N denotes the number of measure used for the modelling.

Support Nsupport ≥ 0 N=161 Nsupport ≥ 22 N=90
Features Measures Mean Std Mean Std

Name

Ψa1 VPWV, THR Ps -1.532 9.415 -0.563 7.031
Ψa2 ln(TPTT), THR Ps -2.097 11.357 -0.540 7.000
Ψb1 VPWV, THR Pd -1.591 8.470 0.451 5.086
Ψb2 ln(TPTT), THR Pd -2.412 11.406 0.446 5.079

Table 9.6: Model result performed on a 4 K-fold cross-validation scheme for User 8,
on the full dataset and for a Nsupport of 22 which is the average for the dataset as a
whole. N denotes the number of measure used for the modelling.

Support Nsupport ≥ 0 N=168 Nsupport ≥ 22 N=114
Features Measures Mean Std Mean Std

Name

Ψa1 VPWV, THR Ps 18.871 73.589 -1.049 7.742
Ψa2 ln(TPTT), THR Ps 7.936 32.627 -1.113 7.829
Ψb1 VPWV, THR Pd -100.838 367.874 -0.684 4.950
Ψb2 ln(TPTT), THR Pd -7.749 28.696 -0.712 4.967

to 9.8. These seem to favour a mean close to zero (maximum of 1.1 mmHg) and a

standard deviation of 6.6-7.7 mmHg for systolic and 4.6-6.9 mmHg for diastolic BP.

This puts the user’s measurements under the target threshold set above, that could

make EIMO an accurate personal BP measurement device based on these user’s

datasets.

Table 9.7: Model result performed on a 4 K-fold cross-validation scheme for User
10, on the full dataset and for a Nsupport of 22 which is the average for the dataset
as a whole. N denotes the number of measure used for the modelling.

Support Nsupport ≥ 0 N=170 Nsupport ≥ 22 N=83
Features Measures Mean Std Mean Std

Name

Ψa1 VPWV, THR Ps 1.860 7.831 0.057 6.596
Ψa2 ln(TPTT), THR Ps 1.744 7.677 0.113 6.545
Ψb1 VPWV, THR Pd -3.397 11.926 0.074 6.944
Ψb2 ln(TPTT), THR Pd -2.989 11.772 0.089 6.944
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Table 9.8: Model result performed on a 4 K-fold cross-validation scheme for User
16, on the full dataset and for a Nsupport of 22 which is the average for the dataset
as a whole.

Support Nsupport ≥ 0 N=167 Nsupport ≥ 22 N=57
Features Measures Mean Std Mean Std

Name

Ψa1 VPWV, THR Ps 0.516 10.858 -0.873 7.754
Ψa2 ln(TPTT), THR Ps 0.638 10.819 -0.828 7.770
Ψb1 VPWV, THR Pd -0.428 7.381 -0.245 4.638
Ψb2 ln(TPTT), THR Pd -0.482 7.473 -0.243 4.641

9.4.4 Discussion

Determining the signal quality can play a valuable role in cleaning up the incoming

data from the EIMO device. Allowing an informed reduction in spurious measure-

ments has two effects. The first examines a need to investigate the underlying

relationships between features and measurements more closely, while this allows the

tools to do it. Secondly, once those measurements are established, they can be used

as a benchmark for the future recordings of data to continuously reduce the ‘Bad’

features which can lead to ‘Bad’ estimation results. The nature of the optimal level

in event clean-up illustrated above could be very useful for further investigations.

Within most of the relationship graphs, there exists internal linear filaments and

other structures. This leads on to the modelling of the BP estimation per user,

discussed next.

Using simple models and structures, the error has been reduced from 15.5 mmHg

to 13.1 mmHg for systolic BP and from 10.3 to 7.8 mmHg for diastolic by raising

the event support to the average support for the dataset. By raising the threshold

further, the error can be reduced further as per the graph above, where at the

threshold of 82 events, the error drops to approximately 10 mmHg for systolic and

6 mmHg for diastolic BP. The two main models involving the logarithmic PTT

mapping ln(TPTT) or the PWV VPWV are seemingly very close to each other at high

support levels, but the ln(TPTT) appears to be more stable when working with the

full dataset as seen in table 9.3. The further analysis on the individual user models

and the error estimation seen in tables 9.5 to 9.8 leads strongly to the conclusion
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that users seem to have much clearer individual models with error rates within the

targets set by White et al. (1993) and Takahashi et al. (2015) for personal devices.

It would suggest that more work needs to be done to try to understand and predict

the models a user might have, as this would improve the BP estimation while making

it more convenient for the user.

9.5 Framework Data Flow Example

Like in the last chapter, this analysis was run within the data management frame-

work. The graph created while the data was processed for the experiments here is

illustrated in figure 9.11. This image shows a partial dependency graph that the

framework builds as the blood pressure analysis was created and run. The green

data preparation process components on the left start the data flow from the red raw

signal, similarly for the signal quality analysis. The ‘Concatenate Worker Results’

that is seen in the signal quality data flow graph, seen in figure 8.7. This pulls the

best models, identified from the signal quality analysis, so they can be reused and

trained for the BP quality assessment and combined with the prepared data stored

in the yellow nodes, seen in the centre cluster of the graph.

218



Figure 9.11: A partial blood pressure estimation framework dependency graph. The
green nodes are the process components, yellow nodes mark result components, the
blue shows program components and the red are the raw data nodes from the study.
The lines show the linking between the nodes in the analysis structure. Due to the
sheer number of nodes, only the process nodes are named.

219



9.6 Summary

The analysis above has shown that the the signal quality assessment can not only

help to reduced the storage and computational load in a device by screening out the

poor measurements but can also serve to clarify possible relationships. In the next

chapter the overall results, limitations and suggestions for further work, from this

and the previous chapters will be discussed.
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10 Discussion and Future Work

10.1 Overview

The healthcare systems around us are under extreme pressure. New care models are

being sought to find more efficient ways to better help more people. Patient-centric

healthcare is now a possibility through the advances in electronics and mobile devices

and artificial intelligence. There is now scope to be able to gather data conveniently

and at volume. This data can be processed and used to train new, intelligent,

machine-learning models that both use the data produced by the devices to learn,

and use this information to produce estimates and recommendations for the specific

user, taking their information and current conditions into consideration.

This thesis has shown that progress can be made on these aspects of patient-

centric healthcare systems to contribute to making this form of care a reality. This

has been addressed in two parts. (1) To develop a useful and straightforward data

gathering device. (2) The data analysis using the data gathered had three tasks in

mind:

• The first was to find ways to annotating the quality of the data recorded along

with assessing those annotations seen in chapter 7.

• Second, to then be able to use the data management framework described

in chapter 3 to leverage the annotations and analysis structure described in

chapter 7 for the signal quality modelling as in chapter 8. These models are

then used to further investigate blood pressure estimation, and to show that

the signal quality can be used to improve the estimates and make the data

and conclusions more accurate as seen in chapter 9.
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• Lastly, both of the investigations not only serve as machine learning activities

but also to illustrate the framework’s operation in building up a picture of

the data flow and keeping track of all the information and its connections as

evidenced by section 8.6 and section 9.5.

These parts will be discussed next along with the current developments seen in

each field, including limitations of the current work and ideas for further research.

10.2 Data Gathering

10.2.1 Discussion

EIMO has been developed to gather and record user data without the use of consum-

ables and to make it straightforward to capture a snapshot of the users bio-signals

for electrocardiograph (ECG) and photoplethysmography (PPG) as described in

chapter 6. This device has since been CE mark approved and is being planned to

be trialled in nursing homes and other care settings to investigate its impact and to

gather information to further improve the device and its operation. For example,

a measure of the user’s respiration is being added to the system to facilitate the

automation of the NEWS1 monitoring system in hospitals. The current device has

been compared to other monitoring systems in section 6.4.4. This has shown that

the signal data recorded by the EIMO device is comparable, achieving correlations

for ECG and PPG at over 0.43 and 0.93 respectively. The ECG recording is only

a three lead recording device and is meant as a guide for the rate and rhythm of

the heart. It can be seen that this device follows other devices closely in the types

of measurements taken and yet is much easier and quicker to use and carry than

others mentioned.
1More information on the "National Early Warning Score" can be found at

<https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news>. This
is a system for the monitoring of patients that identify at-risk individuals for acute illness.
Retrieved on: 2017/06/05
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10.2.2 Current State

Other devices have been developed and released since EIMO was developed and

tested, as interest has been growing in the realm of wearables. A recent paper by

King et al. (2017) describe a wide range of devices that can be worn and used,

to measure a range of information from vital sign monitors like EIMO through to

sports and gait trackers. Challenges noted by the authors like data fusion and signal

quality seem to be just as important today as they were when EIMO was started.

The framework developed in this thesis, aims to make trialling new data fusion and

processing techniques easy to try and benchmark by tracking improvements and

differences between datasets and methods.

A Horizon 2020 funded project called Bitalino2 are developing and selling sensor

board platforms which can be rewired and redeveloped for wearable and custom

sensing applications. Further platforms are offered for developers by a sister com-

pany called BioSignalsPlux3; both companies use the same underlying system but

these are offered as a sensor package for researchers who want a finished platform.

There are more sensors offered with the professional system with the addition of a

PPG or blood volume pulse (BVP) sensor and a blood oxygen saturation (SPO2)

sensor, which has recently been released. These platforms can log the sensor data

off-line and also work with software they have developed called OpenSignals to run

real-time and off-line visualisation and recording which run on the computer and

mobile. These platforms all use standard sensing systems, with gel filled pads for

the ECG and a full wrap around finger sensors for the PPG measurement. Neither

of which are as convenient as the EIMO device as the ECG gel pads need to be

replaced with every use, and wires get tangled. However the application software

and sensors that they offer could be very useful for long term multi parameter mon-

itoring as the device would have to stay attached to the user. EIMO was built to

fill a separate niche where occasional monitoring is required as there are no pads or

consumables, for an easy snapshot of a user with no fuss.
2More information can be seen at <http://bitalino.com/en/>. Retrieved on: 2017/06/06.
3More information on BioSignalsPlux can be found at <http://biosignalsplux.com/en/>. Re-

trieved on: 2017/06/06
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10.2.3 Limitations and Future Work

The current device has the limitation, as mentioned earlier, that the final ECG

morphology of recorded data is not that of a standard, wired, ECG monitor because

the filters within the hardware and software remove more of the low frequency

components in order to reduce the noise in the signal, than in other ECG monitors

thus distorting the signal’s shape. To correct this, a new analogue ECG front-end

would need to be designed which was electrically shielded and has either a lower cut-

off frequency for the signal filters or splits the low and high frequency components

recording them separately, to then recombine the signal internally to rebuild the

complete signal. The other limitation is the device’s sensitivity to motion. This

can be significant and impacts the quality of data recorded. The addition of an

accelerometer would allow for motion compensation of those artefacts at the data

source, therefore improving the recorded signal quality in adverse conditions.

10.3 Data Analysis

10.3.1 Discussion

Two forms of data analysis have been performed. The first was signal quality clas-

sification as described in chapters 7 and 8 and the second was blood pressure (BP)

regression modelling, described in chapter 9. Both of these used the data gathering

system and improved the quality and use-ability of this data.

The signal quality models were employed to remove the less reliable measure-

ments from the BP modelling. This started by assessing the signal quality on indi-

vidual sections of signal, then getting these assessments checked by clinicians and

domain experts in order to peer-review the assessment. The data was then used

to train machine learning models with various feature combinations to estimate the

quality of the signal segments. The system for segmenting, describing and prepar-

ing the signal data was also defined, which was used for both the signal quality and

BP because the system solved the general problems of parsing real-time signals into
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event instances available for classification or regression machine-learning. While

performing these assessments, interesting results have come to light for the stability

of the PPG waveforms where the peak point of the signal can be both shown and

verified to be more stable, in noisy PPG recordings.

The method of segmenting the signal and the limitation used for the features

means that only four segments are required for analysis. These are the current and

previous segments along with the examples of a ‘Good’ and ‘Bad’ signal segments.

The features used allow the determination to be performed straight after the peak of

the PPG signal has been received. This provides a low latency quality determination,

which could be used to the count the good signal segments received while recording

the data on the device. This could then allow the system to spend a maximum

of 90 seconds to gather a minimum of 20 good segments. This can provide more

confidence in the final result of any estimates made, allowing the recording to stop

early once 20 ‘Good’ segments have been acquired. Finally it could be used to

identify people who are having trouble using the device by looking at the average

quality of their recording as they are produced.

10.3.2 Limitations and Future Work

The different classification systems have different limitations which will be discussed

separately.

10.3.2.1 Signal Quality Classification

The quality of the data was limited for the current model. The signal quality

estimation could allow an estimate of the data to be computed. However, this could

be employed at the device level to ensure higher quality data is recorded in the first

place. This would lead to the stipulation of a minimum level of event support that

an estimate would require before computing an estimated value.

The features used to provide the estimate were manually defined. To explore the

extent to which the signal quality can be estimated, a deep-learning convolutional

model might gain higher accuracies since they can find local and global features.
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Other promising models are recurrent models, since the signal quality can be depen-

dant on the segment sequence. The history, leading up to the loss of signal, could

then be used to better classify the signal.

These classification scores have been achieved using only the raw signal data

with no information from the fusion of the two signals. This was set up to allow

the greatest applicability for the classification models presented. However, great

improvement could be achieved for further work by looking at features arising from

both of the signals that could be used to estimate the quality, missing portions or

even regenerating the lost signals. This extension work would reduce the applicabil-

ity as all the signals would need to be present for a particular scheme. However, it

could greatly increase the accuracy of the estimates and possibilities for the future.

10.3.2.2 Blood Pressure Estimation

The BP measurement data gathered through the study certainly showed an embed-

ded relationship between the features and the measurement, but there are internal

structures visible in the graphs. The number of data points for each person are

limited and they do not individually cover the whole relationship on their own, so

a new study would be beneficial to take many measurements over a long period of

time to gain measurements over the whole range of BP’s in different circumstances.

This could further reveal a deeper relationship and possibly enable better long-term

modelling of a users cardiovascular system. Measuring other factors that influence

their cardiovascular system, including their hydration, weight, fitness, stress levels

etc, could also reveal other connections. The data from this study would mean that

a more considered analysis could be undertaken using the same methodologies devel-

oped here but could find the full character of the relationship between the features

and the BP measurements. Individual participants could also reveal some inter-

esting results when compared side-by-side as per-user modelling improved the BP

estimation in chapter 9 where it was suggested that determination of a relationship

between these user models could make BP estimation easier and far more accurate,

as there could be a way to estimate the model using the users characteristics such
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as age, gender or weight.

10.3.2.3 Machine learning Schemes

The thesis has explored many schemes of machine learning. A current limitation is

that the tests are manually prepared using the schemes in chapter 7, chapter 8 and

chapter 9. The framework built has the scope to run many and varied processes and

has been built with a view to run agent based or genetic evolutionary schemes for

learners and features, where test sets could be built and analysed as a population

of agents. This population could then be analysed for classification accuracy using

some of the techniques used in the case study in chapter 8. If the analysis used

regression performance, the techniques in chapter 9 could be reused. These libraries

could be imported, or an analysis program could be triggered, using the process

triggering mechanism. It is with this view that this architecture can allow self-

organisation of machine learning schemes to achieve a deep learning type analysis

using many other schemes other than pure neural networks only. Agent-led processes

are envisioned for improvements to the framework itself. Model features, programs

or other data processing agents could be evolved, within the framework designed.

10.4 Summary

The discussion of the two main elements in the second part of thesis have been

explored, along with their limitations. From these, suggestions have been made for

interesting further work to improve or extend the concepts that have been explored

in this thesis. The next chapter concludes the thesis by comparing the discussions

and the work with the aims of this thesis.
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Part III

Conclusion and References
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11 Conclusions

11.1 Overview

To review, the main issues addressed in this thesis discuss a need for better-integrated

data gathering and management to support the tele-healthcare process. To deliver

a patient-centred healthcare system successfully, there needs to be continuous im-

provement in data gathering devices, data management frameworks and in the track-

ing and management of the information through processing and analysis to inform

this improvement. The main thesis contributions are explained in section 11.2. The

thesis then finishes with the closing statement in section 11.3.

11.2 Thesis Contributions

The main contributions of this thesis are derived from the research aims as presented

in chapter 1. The contributions towards each of the research aims will be presented

next.

11.2.1 Aim 1 - Develop a Data Management and Analysis

Framework.

This is developed in chapter 3 and is used for the experiments in the rest of the

thesis. The main contributions made to this are outlined below.

1. A data management framework has been design and developed that can accept

and process data from many different sources.
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2. This framework can control and manage processes utilising them as data el-

ements. The system automatically creates dependency and data flow graphs

from running processes as they access data and programs within the graph

database. The metadata from the process’s data flow can be captured and

interrogated by other processes in the architecture. This has been tested on

the signal quality and blood pressure analyses as examples. This has greatly

improved the scope for more complicated modelling architectures since all

steps can be processed modularly and built upon accordingly, with full trace-

ability of the data through to the results produced with a view to achieve

self-organisation. Figure 8.7 shows the partial data flow of the signal quality

analysis and figure 9.11 shows the blood pressure analysis data flow. These

graphs show the generated data flows and overall ontologies of the data, pro-

gram, process and result relationships, to illustrate the framework’s operation.

11.2.2 Aim 2 - Application of the Framework for Data Cap-

ture and Analysis

This aim, using the framework developed in chapter 3 has captured the data recorded

by a new portable device that measures medical vital signs described in chapter 6

and performed the analysis done in chapters 7 to 9. The contributions to this aim

are below.

1. A simple vital sign capture device, by just holding the device with both hands,

real time vital sign signals can be recorded similar to an ICU patient monitor.

This requires no consumables such as ECG pads, wires or accessories. The

device is flexibly powered and can be wirelessly connected to a tablet or phone

to display the recordings directly to the user with low latency.

2. Architectures have been developed for the classification of signal quality from

the independent signals themselves. An understanding of the stability of the

signal cycles for the best placement of boundary events as described in sec-

tions 7.3 and 8.3.
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3. Signal data has been annotated and checked to investigate how people assess

the quality of signals and to establish a base line for signal quality as described

in section 7.4.1. The average agreement was 84% and 90% on average for all

of the assessors.

4. Four classes of object features totalling 37 features have been defined. These

were used to examine the best feature groups and single features for categoris-

ing the signal quality of the ECG and PPG signals as described in section 8.4

with the analysis in section 8.5. The top models have a minimum perfor-

mance of 85% and 81% sensitivity and specificity respectively for ECG and

PPG. This is close to the same agreement that all of the assessors had with

the original quality annotations for ‘Good’ segments and a little behind on

‘Bad’ segments for the PPG signal, so the signal quality models are compara-

ble with the assessors, but require improvements for the performance on the

PPG signal.

5. By using the cleaned signal data, blood pressure measurement models have

been run with the accuracy being improved when utilising the signal quality

system, as the event support metric as shown in section 9.4.3. The signal

quality assessment can also be used to maintain a high level of quality data

going into a model or by extension, allowing the collection of a requested

amount of ‘Good’ quality data. For example, to improve data collection by

collecting 20 ‘Good’ signal segments taking as long as required to achieve

this, rather than a fixed 90 second recording, which may or may not have

any usable data. Then basing the accuracy of the models around this level of

‘Good’ supporting events can have improved overall results.
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11.3 Closing Statement

In concluding this thesis, it has been shown that the medical field is under pressure

but there are options regarding optimal models for providing quality healthcare.

The device presented here allows people to monitor their health in a proactive way

by keeping records and making difficult recordings easier to achieve.

Automated data management can provide an enormous boost to streamline and

standardise procedures, along with growing the capability for learning and imple-

mentation of new procedures and alleviating the pressures on the system. Data

gathering and analysis has no panacea or cure all. However, the goal of this work

is to highlight that change around and within a system should be embraced. The

framework presented can aid change by allowing data flows and processing systems

to be organised and new systems to interact and be used to automate new method-

ologies, systems or devices. This can help to improve and reduce the pressure on

the health care system.
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A Mathematical Notation

The tables A.1 to A.3 list useful mathematical notation from each chapter in the

thesis, with descriptions for each term.

Table A.1: Useful mathematical notation used in Chapter 5.

Name Description

TP True Positives.

TN True Negatives.

FP False Positives.

FN False Negatives.

U Potential Energy.

K Elastic Constant (Hooks Constant).

E Youngs Modulus.

∆ Difference.

dr Difference in the radius of the vessel.

r Radius of the vessel.

A Cross-sectional area of the vessel wall.

C Circumference of the vessel (Length of the Spring).

dP Difference in pressure.

P̂ Peak pressure in the vessel.

P̌ Lowest pressure in the vessel.

SNR Signal to noise ratio.

SNRp Peak signal to noise ratio.

Continued on next page
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Table A.1 – continued from previous page

Name Description

SNRv Valley signal to noise ratio.

Un Potential energy of the noise.

in Current sample index.

is Current segment index.

Dis−i Decay constant at segment is, delayed by i segments.

τ Slope rate.

Î(is − 1) Peak amplitude at previous segment is − 1.

Fs Sampling frequency.

stdppg The average standard deviation of the PPG signal.

Tc(A, B) The instantaneous cycle time between segments A and B.

T (E(a), E(b)) The time between events at segment indexes a and b.

Imin(is − 1) The estimated minimum amplitude for the previous event seg-

ment.

PG(is − 1) Amplitude on peak is from the good peak set.

PB(is − 1) Amplitude on peak is from the bad peak set.

H Normalised decay height, the amount to drop by the next

cycle time.

l Look-back period. The number of index events to evaluate

over.

Th(n) Activation threshold at sample n, which a peak has to pass

to become a good peak.

E(is) Set of event segments.

S(is) Set of raw signal data segments.

Q(e) Set of actual quality outcomes for the data segments.

e Time to look for an quality assignment.

Continued on next page
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Table A.1 – continued from previous page

Name Description

hd The descriptive horizon offset moving assigned events into the

past.

hp The predictive horizon offset moving assigned events into the

future.

D(is) Set of data descriptions for the segments.

A(is) Set of actual truths values for the segments.

Ce The final classed output set.

Oe The continuous estimated output set.

ϵc The threshold at which partition the continuous output of an

estimate into two classes.

Table A.2: Useful mathematical notation used in Chapter 6.

Name Description

∗x, ∗x Local variable to illustrate operators and functions.

∗X , ∗Y Local set to illustrate operators and functions.

W Weight Vector for a linear decision function.

ifc Index for the feature classes.

ifi Integer index for the features with a class.

imc Index for the model classes.

imi Integer index for the models with a class.

iti Integer index for the tests.

Fclass(ifc) The set of features in class type ifc.

fifc,ifi
Function mapping the signal S(is) into features ifi belonging

to the feature class ifc.

Continued on next page
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Table A.2 – continued from previous page

Name Description

Fifc,ifi
Feature set containing ifi belonging to the feature class ifc.

ϕifs
(is) Is a feature set selection for feature set ifs for the segment is.

Mimc,imi
A learner consisting of a modelling function of class imc in-

dexed at imi including setup parameters.

Ψiti
Is a test combination of a feature set ϕifs

(is) and a model

Mimc,imi
at index iti.

is Current event segment index.

il Segment look back index.

E(is) Set of event segment descriptions indexed at segment is.

S(is, in) Set of raw signal data segments for segment is at sample in.

S̃(is, in) Set of medical signal data segments for segment isat sample

in.

R(is, in) Set of residual signal data segments for segment is at sample

in.

S ′(is, in) First sample differential of the signal S(is)at sample in.

Sg(0) First ’Good’ template stored.

Sb(0) First ’Bad’ template stored.

P (∗x) A function for selecting features from the feature description

E(is) given a features ∗x.

w An integer for the window of the median function.

Median(∗X , w) An operator to find the median of set ∗X .

max(∗X) An operator to find the maximum of a set ∗X .

min(∗X) An operator to find the minimum of a set ∗X .

std(∗X) An operator to find the standard deviation or 2nd order mo-

ment of the set ∗X .

Continued on next page
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Table A.2 – continued from previous page

Name Description

skew(∗X) An operator to find the skew or 3rd order moment of the set

∗X .

kurtosis(∗X) An operator to find the skew or 4th order moment of the set

∗X .

T (∗X , ∗y) An operator to find the event time of the event set ∗X at

segment ∗y.

E[∗X ] The expected value operator (normally the arithmetic mean)

of the event set ∗X .

correlation(∗X , ∗Y ) Pearson correlation coefficient between the sets ∗X , ∗Y .

zero_crossing(∗X) An operator to count the number of times the set ∗X crosses

its own mean.

| ∗X | The count or cardinality of the set ∗X .

pdf(∗X , ∗y) The bin histogram containing the probability density function

(PDF) of the signal set ∗X at bin ∗y.

H(∗X) Is the entropy of the signal set ∗X ,

Table A.3: Useful mathematical notation used in Chapter 7.

Name Description

E Youngs Modulus.

E0 Baseline Youngs Modulus in the vessel.

α Exponential factor between starting E0 to E

ρ Blood density

L Length of the vessel.

d Diameter of the vessel.

Continued on next page

254



Table A.3 – continued from previous page

Name Description

is The integer index of the segment events.

TPTT Pulse transit time between the peak of the ECG and the peak

of the PPG.

VPWV Pulse wave velocity the inverse of the TP T T .

ln(TPWV) Pulse wave velocity the inverse of the TP T T .

Nsupport Number of ’Good’ supporting events pairs of an ECG segment

followed by PPG segment recorded for that measurement.

P Pressure within the vessel.

Ps Systolic pressure (maximum) within the vessel.

Pd Diastolic pressure (minimum) within the vessel.

Pp Pulse pressure (Pulse Pressure Height) from systolic to dias-

tolic within the vessel.
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B Device Logs

B.1 Data Logs for devices

The devices described are built to record and log data to the raw log files, which

can be seen below along with the field information for these logs. The first is the

EIMO device in appendix B.1.1, then the CM400 device in appendix B.1.2. The

third device is the Case-GE which exports its own log file in XML format. The

ECG signal information can be found in that file by using the XML labels in the

file. The file is not included here as it is very large to include verbatim and the data

is held in a compacted binary form. Following this in appendix B.1.3 are samples

of the unified log files produced when the devices were processed by the unification

software described in section 6.4.3.1.

The log files are organised into two parts, which can be seen in log file listings B.1

and B.2 and in the unified logs shown in log file listings B.3 to B.5. The top part of

the file is a JSON formatted object containing the summaries of the data recorded

and answers to any question asked by the application. The JSON format was chosen

to allow easy reading and flexible data storage in this area as the notation allows

for many kinds of field types and values. The bottom part is a CSV started with

the column names. They can be split programatically by searching for the line with

“Timestamp” which should always be the first column. The CSV format creates

a human readable data log without using any more characters than necessary to

separate the values. As data comes in, this can be simply appended to keep the

processing overhead low.
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B.1.1 EIMO Mobile Monitor

The EIMO device creates a log file shown in appendix B.1.1.1 which is internally

split into two parts. The field ranges are given in appendix B.1.1.2.

B.1.1.1 Raw Log File Listing

The log file produced by the EIMO device is shown in log file listing B.1. Only the

top of the file is included as the CSV part can run on for many samples.

{
"Program" : "iPad",
"Version" : "1.0.7",
"DeviceAddress" : "A370B607-A0DE-6C26-B1E8-B9FC35CF877A",
"Logstarttime" : "2015-05-01-09-36-28",
"Name" : "YIF008_S1_2",
"Sex" : "",
"Age" : "",
"SPO2" : "91%",
"Diastolic BP" : "40",
"PTT" : "367",
"Weight" : "",
"Height" : "",
"Activity" : "",
"Systolic BP" : "96",
"Hypertension" : "",
"Heartrate" : "70",
"Smoking" : "",
"Notes" : "screen froze battery slipped"

}
Timestamp,ECG,PPG,SPO2,PTT,HR,seq
2015-05-01-09-36-28.251,120,182,91,367,70,55060
2015-05-01-09-36-28.261,126,182,91,367,70,55061
2015-05-01-09-36-28.271,124,180,91,367,70,55062
...

Log File B.1: Log for the raw EIMO file
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B.1.1.2 Field Descriptions

The log file above has a flexible JSON object for storing data and a more compact

CSV area. The fields in these areas are explained in detail below. First the JSON

object fields are defined in table B.1. Second, the CSV columns are defined in

table B.2.
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Table B.1: Field description for the log file and data produced by the EIMO device
as event data and summaries.

Field Type Range Notes
Program string {’ipad’,’pc’} Value set by the software

logging the data.
Version string ’MM,mm,PP’ MM - Major revision, mm -

Minor revision, PP - patch
number respectively.

DeviceAddress string MAC or GUID Unique address for the
EIMO device to track the
device that captured the

recorded data.
Logstarttime string ’YYYY-MM-DD-

HH-mm-ss’
Full timestamp when the
log button was pressed.

Name string {’Joe Blogs’ or
’Blogs, Joe’ or

’User001’}

Username or real name.

Sex string {’m’,’f’} Male/Female selection.
Age string (0,120) User entered age.

SPO2 string {’0%’,’100%’} Average blood oxygen
saturation measurement
over all recorded data in

log (Percent).
Systolic BP string (0,250) Average systolic blood

pressure over all recorded
data in log (mmHg).

Diastolic BP string (0,250) Average diastolic blood
pressure over all recorded

data in log (mmHg).
PPT string (0,800) Average pulse transmit

time over all recorded data
in log (Milliseconds).

Heartrate string (0,250) Average heart hate over all
recorded data in log (bpm).

Height string (0,300) Recorded height (cm).
Weight string (0,300) Recorded weight (Kg).
Activity string {’High’,’Med’,’Low’} User entered apparent level

of activity.
Hypertension string {’y’,’n’} User entered answer,

whether they have
hypertension.

Smoking string {’y’,’n’} User entered answer,
whether they smoke.
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Table B.2: Field description for the log file and data produced by the EIMO device
as a time series of logged samples.

Field Type Range Notes
Timestamp DateTime YYYY-MM-DD-HH-

mm-ss.sssssss
Sample timestamp

incrementing in 10mS as
the frequency is 100Hz.

ECG Integer (0,255) Sample ECG readings
averaging 128 from the

EPICs at 100Hz.
PPG Integer (0,255) Sample PPG readings

averaging 128 from the
right hand PPG sensor at

100Hz.
SPO2 Integer (0,100) Current blood oxygen in

percent concentration
readings at 1Hz.

PTT Integer (0,1000) Current pulse transmit
time readings at 1Hz in

milliseconds (mS).
HR Integer (0,220) Current heart rate readings

at 1Hz in beats-per-minute
(bpm).

seq Integer (n) Sequential sample counter.
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B.1.2 CM400 Patient Monitor

The CM400 device creates a log file shown in appendix B.1.2.1 which is internally

split into two parts. The field ranges are given in appendix B.1.2.2.

B.1.2.1 Raw Log File Listing

The log file produced by the CM400 interface device is shown in log file listing B.1.

Only the top of the file is included as the CSV part can run on for many samples.

{
"DeviceAddress":"CM400",
"Version":"1.0.3",
"Program":"CM400_Interface",
"Name": "YIF008_S1_2",
"Sex": "M",
"Age": "",
"HeartRate": "",
"SP02": "",
"PTT": "",
"Systolic BP": "",
"Diastolic BP": "",
"Smoking": "",
"Hypertension": "",
"Weight": "81.7",
"Height": "180.6",
"Activity": "",
"Notes": "second rest phase"

}
Timestamp,I,II,III,aVR,aVL,aVF,V,PPG,SPO2,PTT,HR,seq
2015-05-01-09-36-24.610,0.096,0.176,0.079,-0.136,0.009,0.129,0.248,18.000,99.0,0.486,64.0,42880
2015-05-01-09-36-24.612,0.104,0.186,0.081,-0.144,0.012,0.134,0.265,17.000,99.0,0.486,64.0,42881
2015-05-01-09-36-24.614,0.106,0.201,0.094,-0.153,0.007,0.148,0.437,17.000,99.0,0.486,64.0,42882
...

Log File B.2: Log for the raw CM400 file
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B.1.2.2 Field Descriptions

The log file above has a flexible JSON object for storing data and a more compact

CSV area. The fields in these areas are explained in detail below. First the JSON

object fields are defined in table B.3. Second, the CSV columns are defined in

table B.4.
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Table B.3: Field description for the log file and data produced by the CM400 patient
monitor as event data and summaries.

Field Type Range Notes
Program string {’pc’} Value set by the software

logging the data.
Version string ’MM,mm,PP’ MM - Major revision, mm -

Minor revision, PP - patch
number respectively.

DeviceAddress string MAC or GUID Unique address for the
EIMO device to track the
device that captured the

recorded data.
Logstarttime string ’YYYY-MM-DD-

HH-mm-ss’
Full timestamp when the
log button was pressed.

Name string {’Joe Blogs’ or
’Blogs, Joe’ or

’User001’}

Username or real name.

Sex string {’m’,’f’} Male/Female selection.
Age string (0,120) User entered age.

SPO2 string {’0%’,’100%’} Average blood oxygen
saturation measurement
over all recorded data in

log (Percent).
Systolic BP string (0,250) Average systolic blood

pressure over all recorded
data in log (mmHg).

Diastolic BP string (0,250) Average diastolic blood
pressure over all recorded

data in log (mmHg).
PPT string (0,800) Average pulse transmit

time over all recorded data
in log (Milliseconds).

Heartrate string (0,250) Average heart rate over all
recorded data in log (bpm).

Height string (0,300) Recorded height (cm).
Weight string (0,300) Recorded weight (Kg).
Activity string {’High’,’Med’,’Low’} User entered apparent level

of activity.
Hypertension string {’y’,’n’} User entered answer,

whether they have
hypertension.

Smoking string {’y’,’n’} User entered answer,
whether they smoke.
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Table B.4: Field description for the log file and data produced by the CM400 patient
monitor as a time series of logged samples.

Field Type Range Notes
Timestamp DateTime YYYY-MM-DD-HH-

mm-ss.sssssss
Sample timestamp

incrementing in 2mS as the
frequency is 500Hz.

I, II, III,
aVR, aVL,

aVF, V

Integer (-32.767, 32.768) Sample ECG readings
averaging 0 from the

EPICs at 500Hz.
PPG Integer (0,255) Sample PPG readings

averaging 128 from the
right hand PPG sensor at

60Hz up sampled and
synced with the ECG

sample rate.
SPO2 Integer (0,100) Current blood oxygen in

percent concentration
readings at 1Hz.

PTT Integer (0,1000) Current pulse transmit
time readings at 1Hz in

milliseconds (mS).
HR Integer (0,220) Current heart rate readings

at 1Hz in beats-per-minute
(bpm).

seq Integer (n) Sequential sample counter.
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B.1.3 Unified Log File Listing

The unification files have the signal range and ontological signal information included

in the JSON object. This allows programs reading this file better knowledge of the

possible ranges of the signals included. Also, the signal summaries in the JSON

object are calculated and filled in if not already given. This allows the unified log

to be used by using the JSON summaries.

B.1.3.1 Unified Log File For The EIMO Mobile Monitor.

A sample unified log file for the EIMO device is shown in log file listing B.3. It

shows the JSON object and CSV samples set. This layout is the full version of the

same log file shown in log file listing B.1.
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{
"Activity": "",
"Age": "",
"DeviceAddress": "A370B607-A0DE-6C26-B1E8-B9FC35CF877A",
"Diastolic BP": "40",
"Heartrate": "70",
"Height": "",
"Hypertension": "",
"Logstarttime": "2015-05-01-09-36-28.000000",
"Name": "YIF008_S1_2",
"Notes": "screen froze battery slipped",
"PTT": "367",
"Program": "iPad",
"SPO2": "91%",
"Sex": "",
"Signal_Limits": {

"ECG": [ 0, 1 ],
"HR": [ 0, 300 ],
"PPG": [ 0, 1 ],
"SPO2": [ 0, 100 ]

},
"Signal_Ontology": {

"ECG": [ "ECG" ],
"PPG": [ "PPG" ]

},
"Smoking": "",
"Systolic BP": "96",
"Version": "1.0.7",
"Weight": ""

}
Timestamp,ECG,PPG,SPO2,PTT,HR,seq
2015-05-01-09-36-28.251000,0.471,0.714,91.0,0.367,70.0,55060
2015-05-01-09-36-28.261000,0.494,0.714,91.0,0.367,70.0,55061
2015-05-01-09-36-28.271000,0.486,0.706,91.0,0.367,70.0,55062
...

Log File B.3: Log for the unified EIMO mobile monitor file.
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B.1.3.2 Unified Log File For The CM400 Patient Monitor.

A sample unified log file for the CM400 device is shown in log file listing B.4. It

shows the JSON object and CSV samples set. This is the full version of the same

log file shown in log file listing B.2.

{
"Activity": "",
"Age": "",
"DeviceAddress": "CM400",
"Diastolic BP": "",
"HeartRate": "",
"Height": "180.6",
"Hypertension": "",
"Logstarttime": "2015-05-01-09-36-24.610000",
"Name": "YIF008_S1_2",
"Notes": "second rest phase",
"PTT": "",
"Program": "CM400_Interface",
"SP02": "",
"Sex": "M",
"Signal_Limits": {

"ECG": [ -32.767, 32.768 ],
"HR": [ 0, 300 ],
"PPG": [ 0, 1 ],
"SPO2": [ 0, 100 ]

},
"Signal_Ontology": {

"ECG": [ "I", "II", "III", "aVR", "aVL", "aVF", "V" ],
"PPG": [ "PPG" ]

},
"Smoking": "",
"Systolic BP": "",
"Version": "1.0.3",
"Weight": "81.7"

}
Timestamp,I,II,III,aVR,aVL,aVF,V,PPG,SPO2,PTT,HR,seq
2015-05-01-09-36-24.610000,0.096,0.176,0.079,-0.136,0.009,0.129,0.248,0.142,99.0,0.486,64.0,42880
2015-05-01-09-36-24.612000,0.104,0.186,0.081,-0.144,0.012,0.134,0.265,0.134,99.0,0.486,64.0,42881
2015-05-01-09-36-24.614000,0.106,0.201,0.094,-0.153,0.007,0.148,0.437,0.134,99.0,0.486,64.0,42882
...

Log File B.4: Log for the unified CM400 patient monitor file.
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B.1.3.3 Unified Log File For The Case GE Exercise Monitor.

A sample unified log file for the Case-GE exercise monitor is shown in log file list-

ing B.5. It shows the JSON object and CSV samples set. The XML raw file has been

processed by the unification software and converted into the same hybrid log file as

above. The data is now in the CSV timeseries portion, just the top is sufficient to

show the style of the log file produced. The signal ranges for the Case-GE device

are included. The sample times have been calculated from the XML file structure

as this information isn’t directly available from the raw XML files.

{
"Activity": "",
"Age": "",
"DeviceAddress": "CASE_GE",
"Diastolic BP": "",
"HeartRate": "",
"Height": "",
"Hypertension": "",
"Logstarttime": "2015-05-01-09-36-13.000000",
"Name": "",
"Notes": "",
"PTT": "",
"Program": "CASE_GE",
"SP02": "",
"Sex": "F",
"Signal_Limits": {

"ECG": [ -255, 255 ]
},
"Signal_Ontology": {

"ECG": [ "I", "II", "III", "aVR", "aVL", "aVF" ]
},
"Smoking": "No",
"Systolic BP": "",
"Version": "1.0.0",
"Weight": ""

}
Timestamp,I,II,III,aVR,aVL,aVF
2015-05-01-09-36-13.000000,-39.000,-120.000,-81.000,80.000,21.000,-100.000
2015-05-01-09-36-13.005000,-36.000,-118.000,-80.000,77.000,23.000,-99.000
2015-05-01-09-36-13.010000,-36.000,-117.000,-82.000,77.000,23.000,-100.000
...

Log File B.5: Log for the unified Case-GE exercise monitor file.
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C Study Protocol Information

C.1 Device Study

The study was originally funded by the Yorkshire Innovation Forward (YIF) pro-

gram, which was completed in 2015. The study was designed and carried out by

the Sport, Health and Exercise Science Group (SHES, University of Hull) with help

from the author. The purpose was to compare and validate the data gathered by the

EIMO device with two other medical data capture devices (Case-GE and CM400),

more information can be found in the report produced by Abt et al. (2015). Depart-

ment of Sport, Health and Exercise Science Ethics Committee (Application number:

1415218) approved the protocol and all experimental procedures conformed to the

Declaration of Helsinki, as was originally described in the report for the YIF program

(Abt et al. , 2015). Briefly the study protocol and information included:

• Volunteer participants that were required to be apparently healthy, non-smokers,

aged between 18-50 years old.

• 20 participants (13 males and 7 females) started the study.

• 18 participants (12 males and 6 females) went on to complete the study.

• Each participant attended four sessions each separated by 24 hours.

– Before each session, they were asked:

∗ To refrain from caffeine and alcohol consumption for 24 hours prior

to testing.

∗ To refrain from un-habituated exercise for 24 hours prior to testing.

∗ To maintain normal hydration by drinking to thirst.
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∗ To consume a light carbohydrate meal no less than 2 hours prior to

testing

• The first session was for device familiarisation.

• The next three session consisted of:

– 10 minute setup

– two 12 minute recordings while resting,

– one 45 minute recording while exercising on a recumbent bike at 25, 50,

and 75 W effort levels with a 20W cool down power for 3 minutes.

• Three devices were used (EIMO, Case-GE, CM400).

• Blood pressure was taken via cuff on the right arm using a SunTech Tango

automated monitor every 2 minutes through each recording session.

A summary of the participant measured characteristics are given in table C.1.

Table C.1: Statistical characteristics of the participants completing the study ex-
tracted from original report by Abt et al. (2015).

Characteristics All Mean (SD) Male Mean (SD) Female Mean
(SD)

n = 18 n = 12 n= 6

Age (years) 29 (9) 30 (9) 28 (10)
Body mass (kg) 76.9 (9.0) 85.0 (13.8) 60.7 (5.5)

Height (cm) 174.0 (9.0) 178.0 (5.7) 165.9 (9.4)
BMI (kg/m2) 25.3 (4.5) 26.9 (4.7) 22.1 (1.7)
Body fat (%) 18.7 (5.2) 18.2 (5.5) 19.5 (5.9)
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C.2 Quality Assessment Study

This study was a continuation of the previous one, with ethical approval given as

an extension of the the original ethical approval (Application number: 1415218).

First, human assessed annotations were added, using the above scheme, to pre-

viously captured data. Then samples of these annotations were produced, so human

assessors could independently verify and comment on them. Annotated samples

were produced by the machine learning system described above further described

in appendix C.2.0.2 using the given annotations by the human annotator for the

first session of User 5. They will be used for training the classifier. These two

sample sets will then be sent to 4 assessors who volunteered to assess the samples,

in a double-blind trial of the human assessed signal annotations. The first was a

cardiologist and the three others were computer scientists with previous experience

of the ECG and PPG signals and knowledge of signal processing. The control set

of samples allows a base line comparison to be measured, to mitigate against un-

conscious bias, such as an assessor being led by the classifications already labelled

on the sample or the types of signals that the assessor believes should be labelled

‘Good’ and ‘Bad’. Due to this reason, the placebo sample annotations should not

be perfectly accurate. This was performed to examine the basic hypothesis that the

assessor should agree more with the human annotated sample than with the placebo

control set, as mistakes made by the control might be copied by the assessor into

their appraisal. These placebo samples will be randomly chosen from the sample

set and presented using the same graph layout so only when complete and under

analysis, will the true origin of the sample annotations be known. The annotations

given by the human annotator, and the opinions of the Assessors commenting on

them will be compared.

The samples were the same as were used for the comparison in section 6.4.4,

with 10 samples chosen from each of 5 users, to give 50 samples to assess. This

was chosen to keep the assessment manageable by the volunteer assessors. Out of

the 50 samples to be reviewed, a randomly chosen 25 of them were re-annotated
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by a machine learning algorithm as explained in appendix C.2.0.2. The other half

retained the annotations given by a human annotator who has had some experience

of processing and classifying these signals.

C.2.0.1 Data Annotation

The first phase concentrated on gathering the annotations on the signals as a whole.

The ECG and PPG signals were examined and the annotations recorded using the

medicalDB annotation interface described in section 7.3.2.2. They were annotated,

to classify the signal in terms of ‘Good’ and ‘Bad’ quality signals from the description

and annotation discussions above in section 7.3.2.2. The session had three sections

including, two 12 minute sections recording the user at rest and one 45 minute

section recording the users during an exercise activity, which is explained in more

detail in section 6.4.4. This data totalled 74 minutes of recorded data per person

with five users annotated, mirroring the comparison in the previous chapter. All

of the signal data from the first session was annotated before the samples were

randomly selected. 20 second samples were drawn from this pool of annotated data,

along with the 10 minutes from the first section to be used as training data for the

model.

C.2.0.2 Production of the Control Annotation

The second phase is to produce machine learnt signals. The purpose of this is to

provide a useful analogue to a signal placebo, as randomly setting the quality of

the signal would be too easy to spot. A more informed method is to use a machine

learning algorithm trained on the labelled annotations, but the final decision is

made by classification of the features derived from the signal. For this purpose,

any machine algorithm described above would be sufficient, given that the accuracy

of this algorithm is not really under test. The machine led annotations allow the

differences between assessors to be tested, similar to a placebo-controlled trial.

The choice of algorithm draws from the information and discussion in sections 7.2.2.1

and 7.3.4.1, where the decision of which algorithm to use in the framework above

depended on the task at hand. For this problem, the task was to try and find the
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best classification using a descriptive model. A two-class SVM model was chosen;

this algorithm can be trained quickly due to its convex error surface and analytical

optimisation. This model can then reliably to produce the optimal solution for the

training data given to it. The annotated signal data was coupled with the recorded

signal data for the session. This machine learning algorithm was able to use the

first section’s features for training and then was run on the features description seg-

mented from the samples. This was completed for each user independently. The

trained SVM model was then used to compute the control annotations for the 25

samples.

The features that can be used to describe the signal can be sourced from the

work described above. However, the desired result of the model is not directly

the accuracy of the classification, but that it follows the signal characteristics and

looks in most instances, plausibly like, a set of annotations classified by a fairly well

trained human. The number of features to be used are to be kept high so that the

model with a soft margin may miss classify instances on the boundary, producing

subtle differences in the final classification. The final features used are shown below:

• Fheight(is) - The segment is height from peak to valley between the current

E(is) and last E(is − 1) events.

• Fperiod(is) - The time difference or length of segment is between the current

E(is) and the last E(is − 1) events.

• FS̄(is) - Mean of the signal segment is.

• FσS
(is) - The standard deviation of the signal segment is.

Followed by amplitude normalised samples from the signal segments divided up

with N = 50 equally spaced signal taps to normalise the timing and number of

sample in a segment:

• Flast - Correlation coefficient from current event using a 50 position tapped

signal segment $S({i_s}) to previous event signal segment S(is − 1).

• V50 - 50 Tapped normalised signal values for segment S(is).
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• dV50 - First consecutive sample difference of V50 as a toroidal array for segment

S(is).

• ddV50 - Second consecutive sample difference of V50 as a toroidal array for

segment S(is).

Where S(is) is the signal data for a segment bonded by event E(is) and E(is −1),

and is is the event index.

In total this creates a classification model with 155 feature parameters. This

was trained on the first 10 minutes of the user’s signal then tested on the samples

randomly selected from that user. The training was repeated for each of the 5 users

creating 5 models. These were then used to re-annotate placebo samples for that

user with 25 computed in total.

C.2.0.3 Production of the Annotations Samples

The third phase of the study was to produce the samples. The system devised

for this was to give each of the individual assessors printed documents with 20

seconds of the signal displayed, including the encoded quality annotations marked

with coloured areas. The colours were chosen so that the annotations could be

differentiated when printed in colour or grey-scale. The 20 second signal period was

chosen to allow the morphology of the sample to be seen, while keeping a reasonable

length visible on the sample. The assessors can then compare the signal against the

given annotation and what they believe to be a ‘Good’ signal and ‘Bad’ signal and

mark the preferred annotation transitions onto the sample should they not agree

with the presented ‘Good’ and ‘Bad’ boundaries. Provision was made so that the

assessor can optionally draw two symbols: an ‘X’ and an ‘O’, on a scale from 1-10

as to the agreement of the assessor to the given signal quality.

The sample annotations from the Assessors can be seen in figure C.1 and is

explained in the caption. Where there are discrepancies, further clarification was

obtained from the assessor. At the side of the agreement bar is space for them

to add their initials and date. This is to give an indication of where and when

the sample was assessed. Brief instructions are included on the sheet with more
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complete instructions given in an e-mail or at a meeting with the assessor. The

assessors were not told that a machine learning algorithm had annotated half of the

samples and all of the samples, no matter what origin, are identical. All assessors

and the person in the meeting were blind to the annotations origin while they were

handed over and assessed. A scanned example of the presented data layout was

given to the Assessors before the experiment to familiarise the Assessors visually

and directions on how to fill them in is shown in figure C.2.

When the assessor was marking a ‘Good’ section of signal, they placed a hori-

zontal line across the top of the printed signal. This horizontal line indicated the

length of signal that the assessors felt was usable for clinical evaluation. When they

deemed the signal to have been lost, or of poor quality, a vertical line was drawn to

indicate the transition from ‘Good’ to ‘Bad’ or vice-versa. Another horizontal line

would then be drawn from the vertical line forward, along the bottom of the signal

trace to indicate the length of the ‘Bad’ quality signal, until the assessor was happy

that a ‘Good’ signal was again observable. The vertical line would then be drawn

at the transition point, back to the top of the trace and the process would repeat

until they had categorised the whole portion (20 seconds) of signal.

C.2.0.4 Results Preparation

The final task was to collate the samples from the Assessors to examine the agree-

ment for the various annotation origins. These results will be presented below, along

with the machine learning performance and the annotation table. Comparisons were

then made between the assessor of the human annotated signals and machine anno-

tated samples using the agreement metric.

To calculate the metrics of agreement, the portions of the signals that were

marked in grayscale were measured along with the assessors marks. The section

boundaries were the original annotation boundaries in light and dark gray and the

blue lines added by the assessors that were hand drawn and so not always vertical.

To remove ambiguity, the point where the blue line crossed the signal line was

used as the transition point denoted by a green vertical line. The lengths were
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Figure C.1: An annotation assessment sample. The main area shows the ECG and
PPG signals top and bottom respectively. Below these graphs is the agreement bar
ranging from 1-10. This is used for both signals with an X for the ECG and an O
for the PPG. To the right of this is space for the Assessors initials and date. Brief
instructions are given on the sample to aid in keeping them easy to fill in. The
graph is shown in colour with green for the ’Good’ quality and red denoting the
’Bad’ quality signal areas. This was annotated by the assessor using a highlighter.
Using a line at the top of the graph for good quality, and a line which shows bad
quality drawn at the bottom. These lines are connected using vertical lines forming
a high-low trace. The vertical lines allow an estimation of the transition points in
the signals and were matched where the highlighter crossed the signal.

then measured with vernier callipers, accurate to 10th of a millimetre from the

vertical lines in green that marked the transitions between qualities to the grayscale

boundaries that were either human or machine annotated. Also the overall section

was measured so that the difference between print-outs could be normalised. These

sections were then labelled with:

• GG - True Positive (presented annotation was ‘Good’ assessor marked it as

‘Good’ - agreement)

• GB - False Negative (presented annotation was ‘Good’ assessor marked it as

‘Bad’ - disagreement)
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Figure C.2: This shows an example annotation assessment sample as it was scanned
in after being assessed. This is the grayscale version of the graph with the light
grey for the ’Good’ signal and the darker grey the ’Bad’ signal quality. The blue
highlighter line follows the signal quality as the opinion of the assessor. A line at the
top denoted ’Good’ quality areas and a line along the bottom denotes ’Bad’ cycles
areas.

• BG - False Positive (presented annotation was ‘Bad’ assessor marked it as

‘Good’ - disagreement)

• BB - True Negative (presented annotation was ‘Bad’ assessor marked it as

‘Bad’ - agreement)

The metrics were measured directly from the annotated samples as seen in sec-

tion 7.4.2 figure 7.11.

These lengths are then collected and analysed to produce three main measure-

ments as described in section 7.2.2.4. The accuracy of the agreement defined in

equation (7.1), or how much of the printed signal was annotated the same way.

The agreement on ‘Good’ signals was measured by the sensitivity defined in equa-

tion (7.2), and the specificity of the agreement defined in equation (7.3) allows the
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measurement of ‘Bad’ signal quality. This allows the agreements of the annota-

tions to be compared on a receiver operating characteristic (ROC) graph as if the

Assessors were behaving as signal quality predictors.
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D Framework Implementation

D.1 Overview

The current system has implemented the responsibilities of the services defined in

the framework described in section 3.2 so that it can be used to complete the data

exploration and experiments described in this thesis. The system has been imple-

mented in two main parts; the NodeSR storage system and a combined ProcessCR

and an application specific service interface front-end called the MedicalDB since

this implementation is to be applied to the medical study data discussed in the main

body of the thesis. The ProcessCR service has been implemented together with the

MedicalDB application specific front-end as they can then share web servers and

API logic as this simplify the build. The services upon start up take all the compo-

nents known by them and send them, using the REGISTER verb, to the NodeSR

server they have been configured to use. The components defined by each search

are described below. The NodeSR can save them locally and import them into its

storage interface for native use. This allows the storage to be provided by one server

and the processing, data investigation and annotations to be completed on separate

machines, while allowing the monitoring of the process and data analysis to be car-

ried out within the system. The implementation considerations of two services are

described next starting with the NodeSR.

D.1.1 NodeSR

The implemented storage system has been designed to follow the prescription in sec-

tion 3.2. The API endpoints are based on functionality as prescribed above for the

graph representation. Although the modules within the system have not been fully
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optimised, it is sufficiently fast enough that it has not been a problem. The graph

search system is simple for the locality around a node and its immediate connections;

it is sufficient for traversing the database for all of the experiments and data annota-

tions that have been undertaken in this thesis. The process control system has been

implemented and assembles process data flow graphs. A sample graph rendering

from the database for a process node is shown in figure D.2. Other extracted graphs

can be seen in Figure 8.7, which shows the partial data flow of the signal quality

analysis progam and figure 9.11, shows the blood pressure analysis program struc-

ture. Connections can be made through the storage system to MySQL and Neo4j

resources and these can be used in almost any combination. MySQL includes the

graph and bulk storage connections implemented with the object structure shown

in tables D.1 to D.3. While Neo4j could be employed for both types, it is setup to

only allow graph storage, because using Neo4j for bulk storage would not be useful

as the large nodes would slow it down as stated in section 2.5. The management

interface for the server has ‘search’ and ‘test’ facilities that allow the raw browsing

and editing of nodes. The interface also has the facility to display the local graph for

each node. The main web page interface shown in figure D.1 can allow users to see

the current configuration and statistics of the databases connected. In the centre,

the local graph is displayed for a node. This interaction allows nodes to be queried

and more nodes to be added for visual examination of the graph in the system.

The framework keeps the data in a graph network. However the storage manager

translates this into the raw internal structures used when saving the element of the

graph. Appendix D.1.2 shows the structure of the node, bulk and link objects, which

are used in the MySQL database backend.

D.1.2 NodeSR Internal Representational Structures

Tables D.1 to D.3 show an example of the internal structure of the basic resource

objects as implemented for the MySQL resource connector.
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Figure D.1: Screenshot of the main management page for the NodeSR service.
At the top is automatically gathered information about the service including what
resources are configured and tabbed statistics. Below the server status is the ’search’
and ’test’ controls.
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Figure D.2: A rendered capture from the website of a process node as it is represented
within the real implementation. The yellow nodes are the result components, the
left side nodes are the ones currently used as the data for the process. The right
ones are the results from this process. The blue nodes are program components,
which are run in the processSR and interfced through by the dark pink process
components nodes. The connections are automatically created as the process was
built then run.
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Table D.1: Example field description for the node model within the NodeSR system
when saving to MySQL.

Field Type Range Notes
ID string (32) Randomly generated and

unique UUID.
name string (0,255) Assigned name for the

node.
type string (0,255) Assigned ":" separated

string types for the node.
attributes BLOB up to 4GB The other attributes for

this resource encoded as a
JSON object. This can
contain implicit links to

bulk items.
nodehash string 32 The node hash for all

variables of this node not
including the ID and the

times.
created DateTime ISO 8601 Date

and Time
The date the node was

created.
modified DateTime ISO 8601 Date

and Time
The date the node was

modified.
accessed DateTime ISO 8601 Date

and Time
The date the node was last

accessed.

Table D.2: Example field description for the bulk model which is derived from the
node model within the NodeSR system when saving to MySQL.

Field Type Range Notes
ID string (32) Randomly generated and

unique UUID.
name string (0,255) Assigned name for the

node.
type string (0,255) Assigned ":" separated

string types for the node.
attributes BLOB up to 4GB The other attributes for

this resource encoded as a
JSON object.

nodehash string 32 The node hash for all
variables of this node not
including the ID and the

times.
created DateTime ISO 8601 Date

and Time
The date the bulk node

was created.
modified DateTime ISO 8601 Date

and Time
The date the bulk node

was modified.
accessed DateTime ISO 8601 Date

and Time
The date the bulk node

was last accessed.
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Table D.3: Example field description for the link model within the NodeSR system
when saving to MySQL.

Field Type Range Notes

ID string (32) Randomly generated and
unique UUID.

name string (0,255) Assigned name for the link.
type string (0,255) Assigned ":" separated

string types for the link.
ida string (32) Linked node ID.
idb string (32) Linked node ID.
idc string (32) Linked node ID.

attributes BLOB up to 4GB The other attributes for
this resource encoded as a

JSON object.
linkhash string 32 The link hash for all

variable of this node not
including the ID and the

times.
created DateTime ISO 8601 Date

and Time
The date the link was

created.
modified DateTime ISO 8601 Date

and Time
The date the link was

modified.
accessed DateTime ISO 8601 Date

and Time
The date the link was last

accessed.
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D.1.3 MedicalDB

The ProcessCR service and the application specific service interface (ASSI) compo-

nents can share a number of resources. To keep the project implementation simple,

the services defined above have been combined into one project called the Medi-

calDB, where they can share the web server configuration and be easier to maintain.

This reduces the replicated, shared components and operations that would only re-

quire unnecessary communications, between the two systems for this application.

This has allowed the system to be built, tested and be used to run all of the tasks

this thesis has required. The internal architecture of the two services have been

implemented as described in section 3.2, sharing common utilities. The merging of

these services make sense since the computational load of the MedicalDB is minimal

and so it can share a host with the ProcessCR services, as they can be separated in

operation by their interfaces. How and where their logic is implemented is unimpor-

tant to the goals of this framework. Figure D.3 shows an abstract graph database

and typed nodes, and how the linking structure connects the typed nodes within

the storage system.

The attributes of the components used in the ProcessCR and in the MedicalDB

service can be seen in tables D.4 and D.5 respectively. The data types information

is stored as multipurpose internet mail extensions commonly called the MIME type

information1.

The style of these pages has been second to the functionality, but the layout

and style is flexible. The look of the website is illustrated in figure D.4. The

most important part of this system is the functionality and the ability to run the

experiments which follow other exploratory tests used in the other chapter of this

thesis. The styling of the page could be improved and is a distinct point of extension.

The advantages of this system are that it is designed to allow these changes by

separating the storage and compute logic away from the front-end ASSI interface.

If other interfaces are required, different ASSI interfaces could be created with each
1The MIME types used are listed in the specification at

<http://www.iana.org/assignments/media-types/media-types.xhtml> retrieved: 2016/09/05
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Figure D.3: Diagram showing the internal graph database representation of the
medical database system. The data and groups of data are separated into data
nodes with the user device and session meta information along with the ontology
linked as part of the same structure.
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Table D.4: A list of the components and attributes required by the ProcessCR ser-
vice, with descriptions of what the component does and the properties it possesses.

Name Attributes Description

Program Denotes a program node to use to store a program
source.

source_type The program source MIME type e.g. for python:
"text/x-python".

source The source code for the program to run.
trigger The source code for the trigger to run.
trigger_type The tigger source MIME type for the trigger pro-

gram source e.g. for python: "text/x-python".
trigger_duration The time in seconds the trigger has to find a result.

Process Denotes a process node to use to store information
about the internal processing worker.

PID Worker UNIX process ID or equivalent
status The status of the process e.g. ’preparing’, ’ready’,

’running’ etc.
source_dict A dictionary of the sources used in the program.
memory The memory load.
memory_max The maximum memory load observed.
memory_avg The average memory load observed.
CPU The CPU load.
CPU_avg The Average CPU load.

Result Denotes a results node to store result files.
report_elements A list of objects consisting of a timestamp, and for-

mat type and text for reporting.
file_list A list of files saved within this results group.
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Table D.5: A list of the components and attributes required by the MedicalDB ap-
plication specific service interface (ASSI), with descriptions of what the component
does and the properties it possesses.

Name Attributes Description

User Denotes a user node component.
first_name First name of the user.
last_name Last name of the user.
birthdate The birthdate of the user.
type The type of user being a [User, Annotator, Assessor,

Clinician].
Device Denotes a device node component.

signals The signal types recorded by this device e.g.
I,II,III,PPG etc.

limits The signal limits for the device to match with signal
names above.

Meta This holds the circumstantial information stored as
a semi-structured dataset to tie other data nodes to-
gether.

Raw Denote the data stored are raw signals from a device.

Data For storage of data within the node so it should have
a type and data attribute.

data_type the MIME data type for this node.
data The data for this node.
start_time The start of the recording.
end_time The end of the recording.

Annotation For storage of event annotations coupled to data.
annotation The annotation stored in this node.
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attached to the same NodeSR and ComputeCR service system.
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Figure D.4: A screenshot of the functional data controls for the MedicalDB service
arranged on a web page for display. The user selection controls are located at the
top, and the raw signal data is display below them, with the annotation control at
the bottom, and the annotations displayed both on the data and in a table format.
The flexible controls allow the design to be altered to best fit a particular application.
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D.2 Medical Database Structures

This sections show the names definitions of the medical database as used for signal

annotations and processing.

D.2.1 Annotation types

The annotations used in the database were drawn from the physionet system as

shown in table D.6a, with some extra types added to aid with the more detailed

study of signal quality as shown in table D.6.
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Table D.6: A listing of the annotation types used in the MedicalDB.

(a) A listing of the annotation types used in the annotation system as taken from the the
Physionet website (www.physionet.org) (Goldberger et al. , 2000).

Code Description Code Description
" Comment annotation ( Waveform onset
* Systole @ Link to external data
A Atrial premature beat E Ventricular escape beat
Q Unclassifiable beat S Supraventricular premature or

ectopic beat (atrial or nodal)
a Aberrated atrial premature

beat
e Atrial escape beat

s ST segment change u Peak of U-wave
B Bundle branch block beat

(unspecified)
D Diastole

F Fusion of ventricular and
normal beat

J Nodal (junctional) premature
beat

L Left bundle branch block beat N Normal beat (displayed as "ů"
by the PhysioBank ATM,
LightWAVE, pschart, and

psfd)
R Right bundle branch block

beat
T T-wave change

V Premature ventricular
contraction

f Fusion of paced and normal
beat

j Nodal (junctional) escape
beat

n Supraventricular escape beat
(atrial or nodal)

p Peak of P-wave r R-on-T premature ventricular
contraction

t Peak of T-wave x Non-conducted P-wave
(blocked APC)

[ Start of ventricular
flutter/fibrillation

] End of ventricular
flutter/fibrillation

) Waveform end + Rhythm change
/ Paced beat = Measurement annotation
? Beat not classified during

learning
| Isolated QRS-like artifact

` PQ junction ~ Change in signal quality
! Ventricular flutter wave ’ J-point

(b) A listing of the extra annotation types used to extend the signal quality descriptions.

Code Description
NT Named Signal Quality Transition
NM Named Signal Quality Mark
G General Quality Transition
M General Quality Mark
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