
THE UNIVERSITY OF HULL

DATA INPUT FOR SCIENTIFIC VISUALIZATION

being a Thesis submitted for the Degree o f

Doctor o f Philosophy

in the University o f Hull

b y

Christian Mathers, BSc (hons)

August 2004

I could not have done this
without my parents support.
Thankyou Mum and Dad.

Abstract

Since the development o f the modular visualization environment, the users o f such gen­

eral software have had to face the problems o f file input Simply p u t the range and

complexity o f different file formats has prevented the developers o f visualization systems

from creating an individual solution for every format. This has left a gap, where users are

left to fend for themselves by either extending the system to their needs, or using a format

capable of being described by one o f the input tools offered by such systems. Neither of

these options is particularly easy, and the use of field dependent terminology can hamper

such efforts.

This thesis proposes a model, architecture and methodology, for importing uncommon

file formats and data into scientific visualization systems by way of interpretation. Using

interpretation we are able to describe many file formats in a general manner, enabling

further development o f simple methods to aid users in solving their data input problems.

The utility o f these concepts is illustrated through the Interactive File Input Toolkit (IFIT),

which allows users to solve their file input problems in a flexible manner. This tool is

illustrated by a range o f examples and test cases, and unlike other solutions it has the

ability to discover as well as describe the content of a file. Finally, this thesis presents

work towards an automatic method for determining a file’s input parameters.

Acknowledgements

I would like to thank my supervisor Dr. Helen Wright for all her help and guidance

throughout my time at the University of Hull. She is a person of endless patience, encour­

agement, humour and wit; qualities which were most certainly needed during the writing

o f this thesis.

This work has been supported by the EPSRC and the Numerical Algorithms Group Ltd

under the CASE Studentship scheme. I would like to thank NAG for my funding and in

particular, drank my industrial supervisor Jeremy Walton for his support, test cases and

useful discussions during this work.

I would like to thank a number of other people who contributed collections of test data to

this project including Dr John Whelan, Paid Chapman, James Ward, Dr Bill Hutchinson,

Tim Dunstan, Jon Thorpe and David Burridge.

I would also like to thank those whom I have had useful discussion with including Prof.

Roger Phillips, Derek Wills and James Ward at the Department o f Computer Science

at the University o f Hull and Joanna Leng and James S. Perrin from the University o f

Manchester.

Many thanks are due to Peter Wilson for helping me to split not my infinitives. Equally

many thanks are due to Helen Bristow for her literaiy help and support.

I would also like to thank Elizabeth for her endless patience, support and kind words of

encouragement during the hying times. Finally, I would like to thank my parents for

■ ■ ■

•'•v-r-;

supporting me through the hard (and mostly lean) times, and encouraging me throughout

my life to expand my knowledge at every possible opportunity.

■ ■ ■ ■■■■ ' :
. ■ ' ' ■■

: ■ ■. ■ . ■■ ,

■ ■ '■ ■■ : -■■ ■■■ ■■:
■■■ ■ ■ . .

■ : ■■■.■■■■ :■ ■■■ ■

. . . ' ■ . ■. ■ 1 ■ ■ , ■ . ■ : .

*‘V> \ ;■:

. ■ ■ '••" ;
. / --i~ . :'■■ ; ' - •. ■ ■■■

!' i‘ ■■ ■ .■■■■•
■ ■ - V V V■ . ■■■.■•■■ ■ • ■■

■ .. ■ • •■ ■' ■. ..- ■■ ■ ■■ ■

■■ v ' " * v ; . ' ^ \ - r ;v - - ' S ;=-j■ v s - ^ V .
^ v: ;=KV V:-; ■ ■/

Publications

C, Mathers, H. Wright and J. Walton. “A Visual Programming Approach to Importing

Data into Modular Visualization Environments", Submitted to IEEE Computer Graphics

and Applications, 2004.

IV

Table of Contents

Table of Contents v

1 Introduction 1

1.1 Visualization , 3

1.2 Historical visualization 5

1.2.1 G r a p h s; 5

1.2.2 Maps 6

1.2.3 3D M o d e ls ... 6

1.3 Modem computing period .. 7

1.4 Data input for scientific visualization 8

1.5 Inputting application data , 9

1.6 Scope and goals for a file input system 10

1.6.1 Research problem. 10

1.6.2 Scope o f research... ... 12

1.7 Thesis structure , 13

2 Visualization models, file formats and input tools 15

2.1 Scientific data storage models ... 16

2.1.1 Lattices .. 16

2.1.2 Fibre bundles ... , 17

2.1.3 Classification o f scientific data with the E notation . . , 18

2.2 Process models for visualization systems , , 20

v

2.2.1 D a ta f lo w .. 20

2.2.2 A model centred app roach .. 22

2.2.3 Osland’s visualization reference m o d e l .. 24

2.2.4 The Visualization Input P ipeline .. 25

2.2.5 Visualization reference m o d e l 27

2.2.6 D iscu ssio n 28

2.3 Scientific file fo rm ats 30

2.3.1 Field-specific file formats .. 31

2.3.2 Language-based file formats . 33

2.3.3 Self describing‘generic’ file formats 35

2.3.4 User-defined and non-standard file formats 36

2.4 Visualization tools 38

2.4.1 AVS 39

2.4.2 IRIS Explorer. 40

2.4.3 IBM Data eXplorer , , 41

2.4.4 A m iraV iz... 42

2.4.5 K h o ro s , 42

2.4.6 PV-WAVE , . . • , 43

2.4.7 MVE file input summary . . 43

2.5 Discussion...................... 47

3 Data input considerations 48

3.1 Understanding file storage 48

3.1.1 Interpretation is everything . 50

3.1.2 Binary interpretations 51

3.1.3 Text interpretations .. 53

3.1.4 Structural interpretations , 56

3.1.5 Semantic interpretations 66

3.2 The role o f user knowledge in data input ... 70

CONTENTS vi

3.3 S u m m ary ... 72

4 A new approach to file input 74

4.1 Approach p rin c ip le 74

4.2 The file input dataflow m odel.. 76

4.3 A software architecture for file input ... 77

4.3.1 The value interpretation s t a g e 77

4.3.2 The structural interpretation stage 79

4.3.3 The semantic interpretation stage 81

4.3.4 File input parameters ... 82

4.4 S u m m ary 82

5 Using the Interactive File Input Toolkit (IFIT) 84

5.1 Forensic file examination 84

5.2 Final requirements for a file input tool .. 86

5.2.1 User requirements 86

5.2.2 Output requirements ... 87

5.2.3 Functional requirements , , . , 88

5.2.4 Implementation requirements ... 89

5.3 An overview of IFIT , . , , . . . , 90

5.3.1 Transformation of user data . 90

5.3.2 Specification modules , , , , , . 91

5.3.3 Visual feedback modules 92

5.4 Using the transformation and specification facilities of IF IT 94

5.5 Using visual feedback 106

5.5.1 TextView .. 106

5.5.2 ImageView ,108

5.5.3 VolumeView ... 119

5.6 Summary . . . , , , . , , . . . , 120

CONTENTS vii

CONTENTS vin

6 Evaluation of IFIT 122

6.1 Test case selection...122

6.2 Test c a s e s 1 2 3

6.2.1 Case 1: Medical imaging d a t a ... 123

6.2.2 Case 2: Elipsometiy d a ta124

6.2.3 Case 3: C T data 125

6.2.4 Case 4: Bathymetry d a t a 127

6.2.5 Case 5: Multivariate data , , 128

6.2.6 Case 6: Scattered data array 129

6.2.7 Case 7: Computational flow dynamics data 129

6.2.8 Case 8: Computational flow dynamics data 130

6.2.9 Case 9: Finite element d a ta ,. 132

6.2.10 Case 10: Gel electrophoresis data 133

6.3 Test case evaluation...................... • 1 3 4

6.3.1 Successful application , , , . • 134

6.3.2 Limitations to application 137

6.3.3 Factors affecting the utility of the visual techniques . . , 139

6.3.4 Factors affecting software performance 141

6.4 Usability evaluation 143

6.5 IFIT compared with existing solutions ..147

6.6 Discussion. ■. • • . • 151

7 Towards autonomous data input 153

7.1 The Fourier transform ..154

7.1.1 Application to data input 156

7.1.2 Limitations to data in p u t , 1 5 8

7.2 S u m m ary 162

8 Conclusions and further work 163

CONTENTS IX

8.1 Summary of achievem ents.. 163

8.2 Further w o r k ... 167

References 172

■ . ■■ •■■■: . . .

.. 1
\ ■■■■ ■■ ■

. ■

.....
■ , ■

Vi-:-;., > A.
■ ■ : . ■■ . ■■ ■■■

' ,

■ . : : . ■ -■.

List of Figures

2.1 Two models that describe the visualization process in terms of dataflow . 21

(a) Upson (1989) Model , 21

(b) The conceptual diagram of visualization stated by Haber e ta l (1990) 21

2.2 Brodlie’s (1993) model centred approach, , , , 23

2.3 Osland’s (1992) visualization reference model 24

2.4 Simplified visualization framework by Gallop (1994) , , . . , 26

2.5 Felger et al. (1992) concepts for different architectures which enable se­
mantic interaction 27

(a) Loose coupled architecture , 27

(b) Independent architecture... 27

(c) Tight coupled architecture................... , 27

(d) Tight coupled - single connection a rch itec tu re 27

2.6 Major components of the visualization reference model proposed by Berg­
eron and Grinstein(1989) 29

3.1 Byte alignment; a) a set of four floating point values, b) the byte values
which make up the floating point values, c) the effect o f incorrectly align­
ing the array by one byte . , « . , 54

3.2 An example o f a structure exhibiting cell variable connectivity 57

3.3 An example of a structure exhibiting cell regular connectivity, in this case
having triangular cells 57

3.4 An example o f a gridded connection structure 59

LIST OF FIGURES xi

3.5 Uniform rectangular positions in two dimensions. The difference between
coordinate values for each dimension is constant...................... ... 60

3.6 Variable rectangular positions in two dimensions. Coordinate values are
shared for all nodes at the same intersection along each ax is...................... 61

3.7 Body fitted positions in two dimensions. Coordinate values are different
in each dimension and for all other coordinates in other dimensions 61

3.8 Array(i, j) stores nodal positions in its columns and individual cells in its
row s... 62

3.9 The 3! possible ways of interpreting the shape of an array containing three
variables over two d im en sio n s 65

3.10 Arrays illustrating the absence (a) and presence (b) of identifier data . . . 70

4.1 The dataflow model for file input 76

4.2 The value stage architecture 78

4.3 The structural stage architecture ... 80

4.4 The semantic stage architecture 81

5.1 A simple IFIT ex am ple , 94

5.2 A module network that can import a file containing an array and two
explicit parameters which define its shape , , , 95

5.3 SelectBytes’ user interface;. , . . , 98

5.4 BytesToValues’ user interface. 99

5.5 TextToValues’ user interface , 99

5.6 A module network that can import a single parameter from a file 100

5.7 A module network that can import three adjacent parameters from a file . 101

5.8 A module network that can import three non-adjacent or differently typed
parameters from a file , . . 101

5.9 A module network that can extract an array o f binary values from a file . 102

5.10 A module network that can extract an array of text values from a file . . . 1 0 2

5.11 A module network that handles an array o f differently typed text values
extracting three for u s a g e , 102

LIST OF FIGURES Xll

5.12 ChangeDimLat’s user interface; the rank of the array is specified with
the ‘Dimensions’ parameter, this enables parameters ‘DimO’ . . . ‘Dim9’
which are otherwise hidden. These parameters are then be used to specify
the shape of the array 103

5.13 Two networks that can input a Windows bitmapped picture (BMP) file.
These solutions illustrate how values can be taken from the file and wired
in as parameters for the file input process. The height and width o f the
image are taken from the 54 byte header and then used with the knowl­
edge that this file has three values (blue green red (BGR)) per node to di­
mension the array. The solutions show the different way in which colour
channels can be swapped from BGR to RGB 105

(a) Slicing the array to swap and then combine the variables 105

(b) Converting the array variable index and swapping the channels by
reverse selection ' 105

(c) An example o f the output these networks produce 105

5.14 TextView in action; two views of the same file using different plain-text
character interpretations, the first illustrating a direct view o f the file’s
content as plain text, the second interpreting using control characters and
white space to separate values onto different lines. . . 107

5.15 The visual effect o f trialling different widths for an array whose actual
width is 640 • , . 109

5.16 Vertically interleaved lines casued by the width being less than the actual
width o f the array. • 110

5.17 Horizontal repeats caused by the trial image width being a multiple of the
correct dimension 110

5.18 DEM data comparison illustrating‘psychedelic’ banding m

(a) Same DEM exhibiting‘psychedelic’ b an d in g I l l

(b) Correctly interpreted DEM , 1 1 1

5.19 Two examples o f artefacts caused by the actual rank of the array exceed­
ing ImageView’s rank 2 output................ , . , , U 2

(a) Regular vertical breaks of continuity 112

(b) Apparent vertical repeats ; ; H 2

5.20 Text values in a file as viewed through ImageView 113

(a) A ‘wood grain* text texture 1 1 3

LIST OF FIGURES

(b) A low contrast text texture .. . 113

5.21 Aspect ratio as an indicator of incorrect input parameters 114

xiii

(a) A correct view of a CT dataset . 114

(b) A similar view of the same dataset, however its aspect ratio distorts
the image which may lead the user to check the parameters they
have used , , 114

5.22 Two different binary interpretations of 32-bit values that result in line
artefacts 115

(a) 8-bit unsigned 115

(b) 16-bit signed .. 115

5.23 Textures illustrating the effect o f multiple variables in an array 115

(a) Binary data with multiple variables 115

(b) Text with fixed width records , , . . . , 115

5.24 Single distinct vertical break o f continuity 116

5.25 Contrast problems found when using ImageView with an automatic range
generation for mapping data values to greyscale values 117

(a) High contrast texture caused by error values , 117

(b) Low contrast caused by an incorrect selection including non-data
values................ 117

5.26 ‘White-noise’ like texture taken from an ImageView of a JPEG image , . 118

5.27 ImageView textures that show different blocks o f data, each block occur-
ing where the texture changes dramatically, , . . , , , .] 18

(a) Different blocks o f text values , . . . , 1 1 8

(b) Different blocks o f binary values . , . . , , , . . 1 1 8

5.28 VolumeViewer displaying an incorrectly dimensioned array, and the same
array when correctly dimensioned 120

6.1 A file containing two X-Ray images held in a single array. 123

6.2 A proprietary chemistry file format containing several variables. 1 2 5

6.3 A DICOM CT dataset containing slices of a pig femur. 126

LIST OF FIGURES xiv

6.4 A file containing bathymetry (sea depth measurements) in the form of a
griddedDEM.127

6.5 A file holding a scattered array of sample points with many variables of
different binery types...128

6.6 A file containing a scattered set of 3D points and one additional vairable . 129

6.7 A volume containing flow and pressure. The metadata is held in an ex­
ternal file (top pipelines). The loading network combines the metadata
providing a reusable file reader for different sized volumes with this num­
ber o f variables 130

6.8 A file containing simulation flow data131

6.9 A 2D finite element CFD dataset comprising quadrilateral cells over a
surface.............................. . . . , . , . . 132

6.10 This data was previewed on printed output. The file format was propri­
etary and from old hardware. This prevented the user from accessing it
for further analysis and visualization purposes. What was found was an
array containing an 40 variables each of a genetics plot , . , 134

(a) Genetics data input map with discovery modules still attached . . . 134

(b) ImageView output of the detected genetics data array . . . , 1 3 4

(c) IRIS Explorer graph with one profile from the data134

7.1 A sine wave represented in both domains155

(a) The time amplitude domain ... * 155

(b) The frequency amplitude domain 155

7.2 The relationship between three different measurements in the time do­
main and the frequency domain . . . , 155

7.3 The pulse trains in power spectra for a rank 2 and rank 3 array 157

(a) x(t) with periodicity d\ in a rank 2 array ..157

(b) 'The power spectrum pulse train P(f) of x(t) with a peak separation
o f i

(c) x(t) with periodicity caused by the dimensions dx and (¡¿ofa rank 3
array 157

(d) The power spectrum pulse train P (/)o fx (i)w 'ith two sets of peaks
with separations corresponding to and 157

LIST OF FIGURES xv

7.4 The pulse trains in the power spectrum of a real world dataset which was
a rank 4 array. The spacings which can be used to acquire dimensions
d i . . . d3 are marked on each view of the spectrum , 159

■ ■ ' ' '

' ■. ■■ . •' ■' . ■■■

■ ' ■■

' . : ■ ■ ■ • ■ ■ ■ ■ ■ ■ ■ ■ . . ■ ■ ■ ■ '' ' ■■■■ .: : ■■ ■ ■ ■ ■■■ :

'

■ ' •
; Y Y Y ;; Y Y . Y Y y : ;-.-Y: ..."■.
. ■ .: ■■ . ■ ■■■..■' Y. : . ". : ■

....' .
n m z

' ■ V". :‘;:V ::
• - •••'’ ; • vv.y V o..Uv';

V-. Y Y.:'.; y- K ':Y.x':..,XyyXX ;yx-:Y;
'• '.."X.' Y 'Y:̂ ̂¿X-X̂Ŷ - — ■ yyyXXy y:,Y'V̂

- YY'yy.Yyy:.: yx^yY-y-Y;:̂
: ’■/: Yy-;Yy'''Y--' :Y ''-^y^Yy .:YYxXyY.YYy.YoYYY. YyyYy;YYyyYy'YYY;;yyYYYy^
;Y.y.yY ;yy;-y.:\;yV:

V "Y ■"■■■■ - Y , X y , - ' : ' , -, ■ v . y y ■'y= X': -■

■

■
.

■ ■ ■ ■ ■ ■ ■
.

List of Tables

2.1 A visualization framework comparison, each author’s framework is illus­
trated. Terms describing processes that provide the same functionality are
horizontally adjacent in the table. The first process is that o f general data
input, w'hich has not been handled by all authors. . ' 30

2.2 Visualization software file input provisions other than programmed exten­
sion, fthe number of modules which are used to produce this input 44

3.1 Fourteen n-node cells which are commonly used for deriving connections
in cell regular and cell variable data . 58

3.2 Illustrating the storage required for coordinate X when using different
rectangular and body fitted grids , . , 62

3.3 Table 3.3(a) A 4 by 4 Array containing variable X which, given any loca­
tion in i is constant for all locations at j . Table 3.3(b) illustrates a compact
representation o f the same data.. 64

(a) Normal representation 64

(b) Compact representation , 64

3.4 User knowledge o f a file input problem "j\

5.1 Transformation modules in IFIT and IRIS Explorer; those marked f are
provided with IRIS Explorer. The table shows the input and output of
each module by its location.................. 91

5.2 Specification modules in IFIT and IRIS Explorer; those marked f are pro­
vided with IRIS Explorer. This table shows which modules are needed to
specify the two types of output data given the set o f available inputs. . . . 92

6.1 Comparison between AVS’s File access objects and IFIT’s input facilities 148

xvi

6.2 The modular network approach in relation to other types of file input ap­
proaches 150

7.1 The expected spacings between peaks in the frequency domain for a rank 3
array

LIST OF TABLES xvii

156

Chapter 1

Introduction

The dramatic fall in the cost o f computer hardware and the development o f software

supporting Visualization in Scientific computing (ViSC) has lead to an increase in the

number o f users who can benefit from visualization software. However, the uptake of

such software is limited by its ability to read different data sources.

Hamming (1962) famously stated, “The purpose o f computing is insight not numbers”,

visualization enables this to be achieved. It concerns the transformation o f the abstract

to the visual, and enables us to use our advanced abilities for processing visual stimuli

to understand information. Visualization in scientific computing (ViSC) is a term first

coined by McCormick et al. (1987) and concerns die improvement o f software and skills

supporting scientific visualization by combining advances in computer hardware with im­

proved methods for data processing and generalized models o f manipulating and storing

data. Developments in ViSC have lead to a range o f powerful commercial software pack­

ages which enable a user to gain insight from their data. The number o f applications

for such systems has grown, encompassing research and development in earth sciences,

medicine and industrial design. A trend in visualization software has been toward ever

more versatile environments that offer support to many application domains.

McCormick et al. (1987) first stated the phrase ‘fire hoses of information’ to convey the

vast amount o f information being produced by many o f the computer-based scientific

1

CHAPTER 1. INTRODUCTION 2

systems o f the day. He also described the steps and resources needed to make sense o f

such data sources. One section of the report describes the problem of “The information-

without-interpretation dilemma”, this notes the diversity and specifies some o f the fire

hoses of information to which he referred earlier in the report. While many advances

have produced a visual interpretation for these types o f data, the problem of information

without interpretation still remains in file access. Visualization packages cannot use data

in any files for which they have no reader, there may be information in the files, however

without a reader there is no interpretation for it, rendering it useless. Modem visualization

systems like modular visualization environments (MVEs) are highly adaptable and cater

for a wide range of data sources. The only major hurdle for many users is inputting their

file format. For users who have software which is capable of producing a standard file

format output, this is usually a simple issue which involves finding the right reader from

a library or simply selecting their file to open it. Tools are provided in most MVEs for

when this is not the case. However, these tools are seldom simple and are ill equipped

for solving problems where users lack knowledge about their format or data. Finally,

users can resort to creating their own extension to the MVE’s capabilities to input their

particular data, this can be both complex and time consuming.

Before specifying the problem that this thesis intends to solve in detail, we shall examine

the rise o f visualization as a tool for science and its transition into a computational science.

After this the area o f visualization and the demands which have produced the myriad of

files that now require an alternative method of input will be discussed.

Visualization is a diverse subject area which spans many fields and disciplines, the next

section will describe some of the main elements o f visualization and briefly chart how it

has risen to a computational field.

CHAPTER 1. INTRODUCTION

1.1 Visualization

There are many definitions for the term ‘visualization’; each provides a clue to the nature

o f the word’s use, ‘visualization’ is defined in the OED (Pearsall 1998a) as a derivative of

‘Visualize’ which is defined as:

“ 1. form a mental image of; imagine: it is not easy to visualize the future”,

3

and

“2. make (something) visible to the eye; DNA was visualized by staining

with ethidium bromide.”,

Webster’s Masters English Dictionary (Webster’s Master English Dictionary 2002) agrees

with the first definition with:

“to form a mental picture of; to make visible to the mind or imagination; to

construct a visual image in the mind”.

There are two themes from these dictionary definitions which are useful when re-applied

to the definitions used by practitioners in the field o f ViSC. First, that visualization in­

volves mental models which are o f a visual nature. Second, that visualization involves the

presentation o f visual imagery to fit what maybe invisible or non-visual phenomena into

a visual mental model.

McCormick et al. (1987) stated in relation to scientific computing that:

“Visualisation is a method of computing. It transforms the symbolic into the
geometric, enabling researchers to observe their simulations and computa­

tions. Visualization offers a method for seeing the unseen”.

CHAPTER 1. INTRODUCTION 4

This takes several notions, that visualization in this field is related to a computational

problem, it is transformational and it is view oriented. Haber and McNabb (1990) take a

similar transformational notion of visualization in relation to scientific computing with’

“A series of transformations that convert raw simulation data into a displayable

image. The goal o f the transformations is to convert the information into a

format amenable to understanding by the human perceptual system”.

‘Visualization’ is a much debated word. All these computational definitions when com­

bined with the dictionaxy definitions give us a picture of what visualization means. Vi­

sualization for a person involves the construction o f a mental model which maps some

phenomenon to visual imagery in the mind. Therefore, much like committing a complex

idea or mathematical problem to paper, externalizing the mental model to some other

medium enables it to be examined without the burden o f internally generating the im­

agery. A person can have a mental model of a city, but the load for utilising this model

for any particular problem can be harder than using a map, which can be thought o f as

an external mental model of the city on paper. This externalization enables the thinker to

gain a new perspective, a clearer focus or an overview which can in turn prove insightful.

Another important aspect of visualization is that this mental model once externalized be­

comes easy to communicate through visual presentation. Again using the map problem,

communicating the location of a place from your own internal mental model is difficult,

but pointing to the location on a map is relatively easy. Verbal communication of such a

visual model can be complicated; language often relates to qualitative as opposed to quan­

titative descriptions o f visual phenomena, whereas visual presentations use die mind’s

powerful visual interpretation abilities to find patterns, trends and interesting features that

can lead to insight.

Taken into the realm o f computation, visualization becomes a way o f processing data into

visual models which can be interacted with. This process, just like mapping data to a

mental model, is a series of transformations from the abstract to the visual. The mapping

of the data to a view can be naturalistic or symbolic, depending upon the dataset and its

attributes.

Describing visualization by example leads us to a list of techniques including: graphs,

charts, maps, scale models, atomic models, architectural models and engineering blueprints,

some of these are described in the following sections.

CHAPTER 1. INTRODUCTION 5

1.2 Historical visualization

From the earliest maps and charts like Minard's map of Napoleons march to Moscow

(which can be found in Tufte (1983a)) through to newer uses o f visual tools like atomic

wire models Kcndrew et al. (1958) used in chemistiy, the use o f wind tunnels with smoke

for understanding a shape's aerodynamic properties and the use o f scale models in ship

stability testing.

Visualization existed for centuries prior to the advent of the computer. It cannot be char-

acterised by any specific algorithm, process, or application. However, it can be typified as

a way of thinking and communicating involving the visual senses. To that end the great

thinkers in history have used visualizations to communicate their ideas to others and to

gain insight into their problems. The following three sections describe some interesting

“real-world” visualizations that have been created.

1.2.1 Graphs

Graphs are some of the earliest forms of visualization, and have been used to show rela­

tionships between n variables where one of the variables is independent, and all the others

vary in relation to the independent one and so are dependent upon it. A reputed 1 Oth-11 th

century graphical representation of the planets’ orbits Tufte (1983b) is one o f the earli­

est known graph visualizations. The graph shows multiple lines, each one representing a

planet's inclination over time, it is the earliest known example of an illnstration attempt­

ing to use visual form to describe natural phenomena and was taken from a section o f text

for monastic schools.

1.2.2 Maps

Maps such as topological maps and terrain contoms, have long been used to show two-

dimensional spatial relationships, often in a geographical context, Charles Joseph Minard

created some elegant maps that illustrated Napoleon's march to Moscow Thfte (1983c).

The map illustrated many factors over the course o f the campaign, including troop num­

bers, environmental factors, and the paths o f the army's advance and subsequent retreat.

It was not the first map ever drawn, but it highlights how complex Information can be
rendered in an elegant manner which makes it more understandable.

1.2.3 3D Models

Constructing a small-scale mock up, or a physical reconstruction, o f a phenomenon is

a form o f visualization. The use of 3D models to gain an understanding o f a ptoblem

is common. The aerospace industry create visualizations for airflow over the surface

o f their aircraft by creating a scale model and placing it in a wind tunnel with jets of

coloured smoke. In a similar vein, the ship building industry also uses scale models to

test the stability of hull designs in huge water tanks. There are many other examples

in science, engineering and mathematics where the problem has been represented by a

physical creation. Two other famous uses of physical model visualizations are, James

Clerk Maxwell's clay surfaces, and Richard's Box. The details o f these visualizations are

outlined below:

James Cletk Maxwell was a renowned scientist of the nineteenth century. Among his

accomplishments were the first 3D visualizations using clay models West (1999); the

inspiration for these came from a mental model described by J. Willard Gibbs. The mental

CHAPTER 1. INTRODUCTION ®

model Gibbs was using would be known as a surface plot in current terminology. Maxwell

saw the value o f these methods for thinking about scientific data from Gibbs paper and

createdaclay sculpture nsingGibbs' data and mental model. Maxwell’s approach allowed

Gibbs' model and mathematical techniques to gain widespread acclaim, and they have

been used for almost a century. The visual aspect of this work has been overlooked until

very recently and has come to the fore with the use of 3D computer graphics. From

Maxwell's models both an understanding of the data and a communication of how Gibbs

was thinking about the data could be gathered; this really shows the value of a good
visualization and how it can allow ideas to be communicated more effectively.

Richard's Box Richards (1968), is a method of visually combining an elect™ model

wifi, electron density contours. It involves the use of thin acetate upon which contours are

drawn. These are mounted on 36" x 36” Perspex sheeting and illuminated. This construe-

don is hung by piano wire next to the molecular model that is made to the same scale and

also illuminated. Finally a half-silvered mirror is used to superimpose the two models,

allowing the user to judge if the map is a good fit to the model. This visualization shows

how visualization techniques can be used to judge accuracy and pick out abnonualities in
the way the data has been interpreted.

1.3 Modern computing period

As computing developed as a tool for science, many programs produced outputs that

could be printed or displayed. Initially software would be specifically coded to produce

an output for a particular platform using vety customised routines which accessed the

graphics hardware directly. Over the years, multiple layers have interceded releasing

software from being tied to a patticular type of graphics hardware, libraries like OpenGL,

for which a good guide can be found by Woo et al. (1997) alongside OKS and DirectX,

have all generalized the problem of producing graphical outputs at a low-level. High-

level libraries like PHIGS and Openlnventor (Open Inventor 1993) have created additional

CHAPTER 1. INTRODUCTION 7

layers which make user interactions and view control easily obtainable for users who

need to program visualizations into their software. These libraries lead to a range o f off

the shelf or turnkey products which each offer a particular field a range o f appropriate

data manipulation and visualization techniques. The next major development was the

Modular Visualization Environment (MVE), apE by Dyer (1990) and AVS by Upson

et al. (1989) were both early examples of such environments. MVEs are toolkits for

building visualization applications. The user can choose from a range of data processing

and visualization techniques and connect them together to create a custom application for

their problem.

1.4 Data input for scientific visualization

McCormick et al. (1987) noted the range and quantitative nauire of scientific data, his

‘firehoses o f information’ quote still describes the data sources for scientific visualization.

Scientific data comes from a diveme mnge of interdisciplbiaty sources. Scientific data

can be described in general terms as being numeric, quantitative and structured. This data

comes from physical measurements or simulated results. Vernalization system developers

are faced with a need to support t e e sources and die myriad o f existing ‘standard’ file

formats which are used by different disciplines.

Commonly-used scientific data formats tend to be widely supported. As a result, these do

net normally pose a problem for the users of scientific systems. However, the proprietary

file formats often found in obscure measuring hardware and file formats produced by

users, or by other software developers can provide a problem for the user. This is because

it is unlikely that the visualization system will be able to directly input data from these

formats.

CHAPTER 1. INTRODUCTION 0

1.5 Inputting application data

Modem scientific data by its nature does not always come from a user-designed item of

equipment or piece o f software, and this trend is increasing as stock items of scientific

hardware, measurement equipment and software become more prolific and ate developed

by external companies. This is moving the user’s role further away from software engi­

neering and towards the scientific aspects of their work. While this can be considered a

more efficient use of their time it can impede their ability to use visualization software

because they are no longer aware o f the technical skills needed to translate their data onto

other systems.

Most programs provide file access as part o f their functionality. The ability to load or

create data for viewing or modification and the ability to save this data is an essential

and often underestimated aspect of most software. Only when users find they cannot

load a particular form of data or save it in a form that can be used elsewhere does this

functionality become questioned. Most software developers offers a range o f options for

loading and saving data. These options usually relate to fonnats which are simple and

therefore more commonly implemented or industrial standards in their particular field.

Many examples can be found of applications from non-scientific fields which have data

input problems caused by a plethora of file formats, these include word processors, raster

graphics packages and desktop publishing packages. All have many different standards

and sources for their application data, and problems can often arise, especially between

different haniware platforms, when a file format is incompatible between packages. The

same can be said for many other types of general purpose application, MVEs w.th their

high adaptability and applicability to many kinds of scientific data are perhaps a worst

case of this phenomenon because thenumber of different fields and applications thatthey

could conceivably support is so great.

Most file access routines open a specific file format. They fail completely if an attempt ;

is made to input a format which has not been defined by the routine, usually opening an

CHAPTER 1. INTRODUCTION 9

ermr message dialogue box to warn the user of t o « o r . If MVEs suere to solely adopt

this route, then every file foimat would need a speeific routine to be developed and as

there are so many fomrats this is an unreasonable notion. Equally, because so many file

formats store such similar data, it would involve a huge replication o f code at the expense

o f the developer. Currently file formats are solved on a ease-by-case basis. Such solutions

can be created by the user adding routines to the system, or by the developer aiding a user

by adding a routine to access the user's data. Finally, if conversion software exists that

supports both the user's file format and an appropriate format used by the MVE, this can

be used to input the user’s data.

The hardware that produces a file can affect Its content rendering it inaccessible using

identical routines on a different hanlware platform. Some formats compensate for this

effect with rigorous standards for intetpreting their content, others do not. These differ­

ences along with different types of data, data storage philosophy, demands and uses of file

formats has lead to a multitude of different data storage formats. These formats impede

the usage o f visualization software due to the difficulties faced by users in accessing their

data.

1.6 Scope and goals for a file input system

The key problems that face file input systems for scientific data will be described in this

section in addition to a specification for both the goals and scope of this research.

1.6.1 Research problem

The aim of this research has been to improve die usability of scientific visualization soft­

ware,-Within this remit, it has Identified a key problem faced by users o f this software,

namely file input: This process describes the entry o f a user's file-stored data into one of

these programs. The difficulty of this task ranges from entering the location of the file, to

CHAPTER 1. INTRODUCTION iyj

a programming project incurring costs in user’s time and the expertise of others.

Currently, there are six techniques that users of scientific visualization software can use

to input their data. These methods are described in chapter 2 under the names of hard­

coded, header files, scripted readers, external tools, modular networks and programmed

extensions. Most MVE packages implement one or more of these techniques to provide

users with access to their data. Each method can be described in terms of the complexity

of its usage and its overall flexibility.

This projects aim is to find a better method of inputting data into ViSC systems. This

project targets non-standard, user-defined and field specific file formats (those usually not
covered by hard-coded solutions). Overall, this research aims to.

• simplify the problem of creating solutions to file input problems for ViSC systems;

• find a solution which can be applied to a broad range of scientific file input prob-

lems; . ■ .

• work towards an automatic solution for file input.

A large part of this problem is tied to a lack of standardised methodology for dealing with

file input and output. The result of this has been an ad-hoc approach to dealing with files

o f different formats. Therefore, non-standard file formats present a wide variety of ways

in which users have stored their data, each different enough to need an individual solution,

and yet each similar enough to make a common description seem plausible. As part of

this research a general methodology for solving these problems should be found; this

will allow the creation of more advanced tools for file input which can offer the needed
flexibility without the complexity that comes with existing approaches.

The final solution should enable a wide range of file formats to be input. This should
include file formats from different fields and different types of datasets.

CHAPTER 1. INTRODUCTION u

CHAPTER I. INTRODUCTION

The project should attempt where plausible to investigate automatic methods for deter­

mining the content o f a file, with a goal o f reducing the need for user interactions in the

file input process.

Given the overall goal of loading non-standard file formats, the requirement for a simpli­

fication over existing approaches and ahigh level of flexibility, the scope of this research

is now described.

1.6.2 Scope of research

There are numerous file formats in circulation, over 100 in the field of Chemistry alone.

In order to find a solution, we need a representative selection of file formats that are not

currently supported by the hard-coded loading systems of the MVE we choose to imple­

ment any system on. Additionally, the range of files we are attempting to find solutions

for would ideally be user-defined, or output to m proprietary software and hardware, and

therefore not commonly available.

The file formats which w ilibe the target area for this research are described in chapter

2 under the sections termed ‘field-specific’ and ‘user-defined and non-standard . They

include scientific file formats that are:

• the output of proprietary application software;

• the output of user developed software that does not use an existing standard;

The scope of this project is to exclude file formats using the following techniques:

• compression;

• encryption;

• sub-byte values.

Compression whilst widely used in medical and satellite imaging data, is less prevalent

in field-specific file formats and user-defined file formats. Most file formats that can

use compression are also likely to have an option for the output of raw data. Finally,

the complexities of implementation and added proprietary rights issues, have led to the

removal of compressed files from the scope of this project.

Encryption is a similar case to compression. It is only usually encountered among the

formats put forward by the providers of copyrighted materials like films, music and elec­
tronic literature and is therefore outside the scope of this research.

Finally, the notion of values being stored in less than one byte has also been dropped from

the scope of this project for reasons of low usage. In the author’s opinion and experience,

they do not represent a wide enough cross-section of the file formats within the other

specifications of this project to require examination at this time.

1.7 Thesis structure

This thesis has the following structure:

Chapter 2 - Visualization models, Sle formats and input tools, provides a background

for this work. Current models for storing and processing scientific data are de­

scribed followed by a review of the current state-of-the-art in data input and file

formats found in the field of scientific visualization

Chapter 3 - Data input considerations, takes an in-depth look at the theory and mechan­

ics o f acquiring data from a file. It describes the different facets of the file input
problem in teims of both the data involved in and how it is represented in file for-

. mats.

Chapter 4 - Anew approach to file input, presents an approach and model for solving

file input problems followed by a supporting architecture for the file input process.

CHAPTER 1. INTRODUCTION 13

Chapter 5 — Using the interactive file input toolkit (IFIT), presents a new approach to

file input. It describes IFIT’s structure and how its different components are used to

solve file input problems

Chapter 6 - Evaluation of IFIT, presents a range of test cases which are used to produce

a qualitative evaluation of IFIT’s abilities. It also evaluates IFIT s usability and

compares IFIT with the different input techniques described in chapter 2.

Chapter 7 - Towards autonomous file input, illustrates how the user in the loop inter­

actions presented in chapter 5 have lead to algorithms which could automate some

aspects of the file input problem ,

Chapter 8 - Conclusions and further work summarises the work covered by this the­

sis before describing the conclusions that have been reached and some avenues of

future research

CHAPTER 1. INTRODUCTION l *

Chapter 2

Visualization models, file formats and
input tools

Software and intellectual developments supporting ViSC have lead to flexible visualiza­

tion software like MVEs. These tools enable the user to construct applications that meet

their visualization requirements through an easy-to-use interface. These highly flexible

environments offer their users many different visualization techniques for their data.

Many MVE users face a challenging problem when loading their data. This stems from

the myriad of different file formats which abound in science and engineering. Their num­

ber prohibits MVE developers from directly supporting eveiy file format, instead targeting

just those which are common. This is a limiting factor for ViSC as it moves into fields

where the user is no longer the architect nor designer of their software and its output.

Overall this chapter will describe a context for file input in scientific visualization, which

will be the basis for comparisons that will be drawn in chapter 6. The leading models

and frameworks for MVE design will be reviewed. In addition, this chapter will describe

some of the more common file formats and standards that are used in scientific circles for

data representation. Finally, different visualization systems will be reviewed in terms of

their input tools and provisions.

15

2.1 Scientific data storage models

The necessity for ViSC systems to have powerful data models has grown up alongside

the development of interdisciplinary visualization packages. Prior to the development of

these systems, ad-hoc visualization routines and application specific visualization systems

were the major source of visual output; such systems would be integrated with the specific

data structures that the application field required. While this was effective for software

supporting a single field or application, an interdisciplinary visualization tool requires an

abstract data model.

Scientific data comes from a myriad of different sources. Gallop suggested in Gallop

(1994) that by taking a step back from the format of data arriving at the system, and

instead looking for shared characteristics in different datasets, an abstract data model

could be produced that would store many types of data. The next three sections outline

three powerful abstract data models that have been used in the design of commercial

visualization software.

2.1.1 Lattices

Bergeron and Grinstein (1989) propose the need for a standard form to store a user’s arbi­

trary database while it passes through the visualization system. This process is likened to

the conversion of coordinates to the Cartesian axial system to enable them to be rendered

in PHIGS. A primitive type termed the lattice was defined as their standard form. Lattices

preserve any ordering present in user’s databases in addition to describing their data’s

dimensionality. The lattice notation L* is used to describe the dimension of the domain

k and the data n. The following are examples o f how different types of data would be

classified using the lattice notation:

• L° Scattered 3D points;

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 16

• L \ line in 3D;

• L \ line in 2D;

• L \ Surface in 3D;

• L \ Scalar volume;

• L \ 3D Vectors in a volume.

While the notion o f the lattice does describe some aspects of a data set, it only classifies

scientific data. Bergeron and Grinstein do not explain what is stored in a lattice structure,

nor do they elaborate on the limitations of the lattice, which can be assumed to include

an inability to describe some types of irregular cell-based data. The lattice model can de­

scribe many types of gridded scientific data and was used in the design of IRIS Explorer’s

primitive data structure.

2.1.2 Fibre bundles

Butler and Pendley (1989) single out fibre bundles as the “natural geometrical objects

for visualization”. A fibre bundle is a structure from differential geometry; it is a space

derived from a pair of arbitrary spaces. A bundle comprises the Cartesian product o f a

base and a fibre space. For example, flow data over an aircraft wing where the base space

is the surface geometry of the wing and the fibre space is a vector space of airflow over

this surface. The fibre bundle structure defines a copy of the vector space for every point

on the wing’s surface.

This abstract model was extended in Haber et al. (1991) to form the field data model,

which is a unified abstract model for scientific data. The field model has been used in

the design of IBM’s Data Explorer. Their paper illustrates a data model for describing

continuum fields, discontinuous geometries and wire line structures. Much like a fibre

bundle, a field is comprised of independent and dependent variables. The independent

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 17

variables in the field model are described by a base space and the dependent variables are

described by a fibre space. Field space is their terminology for a fibre bundle and, as such,

is the Cartesian product of the base space and the dependent variable space.

Their model extends the notion put forward in the earlier paper, it describes how aspects

o f a dataset’s regularity can be used to produce a uniform compact data representation

for both regular and irregular grids. One example of this compact form is to define how

regularly sampled positions in a gridded dataset can be reduced to a few shared parame­

ters. They go on to show how the Cartesian product of their field elements can be used to

produce a compact representation of cells that dramatically reduces the amount of infor­

mation that needs to be stored in order to describe such data.

2,1.3 Classification of scientific data with the E notation

Brodlie et al. (1992a) presents a classification scheme for scientific visualization which

attempts to model the underlying field of the data, Much like Bergeron and Grinstein’s

lattice classification it categorises different types of scientific data by their type and di­

mensionality. Unlike their work it aims to classify the underlying field of the data, not the

data itself. Brodlie’s classification is based upon the notion that there is an entity which is

the desired output to visualize. This entity can be described in terms of a range of values

over a number o f independent variables, expressible in mathematical terms as a function

of many variables.

The notation is based upon an entity 2? and classifies it by the type of function and the

dimension of its domain, This type of function is a superscript which can be classified as

one of the following:

• no function just points to visualize(P);

• a single value or scalar (S) function;

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 18

• an array of values or vector (V) function followed by a subscript defining the num­

ber of components;

• a matrix o f values or tensor (T) function followed by a subscript which defines the

shape of the matrix.

The dimensionality of the entity is defined using a subscript. An entity’s dimensionality

can be over every point in a continuous domain, e.g. E$, or over regions of a continuous

domain, e.g. or finally as an enumerated set, e.g. E{ 1}. Time can add a dimension to

the domain or be classified separately using t in the domain subscript. Finally composite

representations can be represented by combining multiple entities in a nested fashion.

Below are some examples of different visualization classifications using the E notation.

• Bar chart is categorised as E^y

• Line contours are categorised as J5f

• 3D Vectors in a volume are categorised as E$a

• Second order tensor volume is categorised as JE'J3 3

This classification scheme, while effective at grouping techniques, does lead to some

ambiguities in distinguishing between the data and the visualization technique.

The E notation illustrates how many different types of visualization are rooted to the

same underlying field. This abstraction equally applies to the formats used for storing

scientific data. A scientific file format has to represent the underlying field of a particular

dataset. Therefore, a classification scheme of this field provides insights for the storage

o f scientific data.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 19

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 20

2.2 Process models for visualization systems

ViSC attempts to facilitate scientific insight. As a result, several different analytical mod­

els of scientific investigation have been used as a basis for many of the frameworks and

reference models developed for ViSC, These reference models illustrate the processes

needed to turn data into images. They describe the visual nature of most scientific analy­

sis and evaluation. Several important conceptual models for the process of transforming

raw data into visuals and for engaging in scientific problem solving and analysis are pre­

sented in this section.

2.2.1 Dataflow

Upson et al. (1989) described the visualization model of AVS as a breakdown of the

steps involved in the analysis of a numerical simulation. Haber and McNabb (1990) later

described a conceptual model for visualization which similarly saw the visualization as

facilitating the evaluation of simulation results. These two models have been influential

in the design of visualization systems, since the concept of dataflow is both a simple and

a powerful breakdown of the steps involved in turning scientific data into images. Each

model views the visualization process in a subtly different light, although as Wood (1998)

states:

“they are in many ways the same model expressed as either a ‘process driven’

model (Upson et al) or a ‘data driven’ model (Haber and McNabb).”

The main differences between them lie in the descriptions behind their utility. Haber and

McNabb use the notion of the Visualization Idiom as a device for illustrating to users

what has been done to their data and, therefore, explain the meaning o f the output vi­

sualization. They also describe a layered software design and architecture for producing

scientific visualizations, which takes much of the developmental burden from the user and

encapsulates it into high-level reusable modules freeing the user to focus on their science.

Upson et al’s description, however, was used to facilitate a practical implementation of

what is now a commercially successful MVE.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 2 1

(a) Upson (1989) Model
(b) The conceptual diagram o f visual­
ization stated by Haber et al (1990)

Figure 2.1: Two models that describe the visualization process in terms of dataflow

For the purposes of this work, the common terminology of filter, map and render will be

used to describe the three transformations which both these models describe.

Filter is the first stage in figure 2.1(a) and the first transformation in figure 2.1(b). It

serves the purpose of preparing data for transformations later on in the visualization

pipeline by reducing the data into a more relevant and meaningful form. Examples

of filter operations include interpolation, extrapolation, smoothing, selection, sub

sampling and the calculation of gradient and flow lines from a vector field.

Map defines the transformation of the user’s data into what Haber & McNabb termed

the Abstract Visualization Object (AVO). These are geometric objects that can be

rendered. The conversion of filtered data into AVOs involves mapping variables

into attribute fields of graphical objects. An AVO may have one or more attribute

fields including geometry, time, colour and surface texture.

Render encompasses all the operations required to turn the AVO into an image. As a

result it deals with the geometric and viewing transformations of the AVO followed

by operations including illumination, colouring, texturing and hidden surface re­

moval. This stage marks where the process of visualization leads into the graphics

pipeline Foley et al, (1996).

Dataflow has come to define the de-facto standard model for data manipulated in current

MVEs and as such it is an important concept, However, it is interesting to note what

dataflow lacks. Firstly, there is no concept for preventing the user creating visualizations

which are incorrect because they have used an inappropriate numerical operation upon the

data. Secondly, because dataflow in the context of these models takes data directly from

simulations, they do not specify nor recognise the need to exchange data with external

sources and systems.

2.2.2 A model centred approach

Brodlie’s approach described in Brodlie (1993) takes the notion of dataflow and stresses

the additional need to model the user’s data to prevent inappropriate transformations from

being performed upon it. Without this modelling to define the ranges and appropriate

numeric manipulations for a given variable, there is scope for the production of a visu­

alization containing semantic errors. This would either provide a plainly incorrect view

of the user’s data or subtly alter its meaning, and hence, interpretation. This notion of

scientific scrutiny is also raised by Haber and McNabb (1990); the notion of misuse,

however, is not discussed, only the need to offer transparent methods that enable a vi­

sualization’s meaning to be understood. In Brodlie (1993) the need to model the user’s

data is exemplified using a measurement of the percentage of oxygen in a sample during

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 22

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 23

a chemical reaction. If the raw data values are interpolated using a cubic algorithm, the

output can have negative values which are physically impossible and, if visualized, will

result in an incorrect visualization. Essentially, anything users know about the limits and

domain of their data should be used to model an underlying field; this can then be used to

produce an accurate and meaningful visualization. Figure 2.2 illustrates Brodlie’s model

of the visualization process which uses a two stage approach. First, an empirical model is

constructed from the data samples during the modelling stage which recreates the data’s

underlying field. Second, data is extracted from the underlying field in the viewing stage

to produce a meaningful view of the data.

Data View

Modelling V iew in g ^

Underlying Field

Figure 2.2: Brodlie’s (1993) model centred approach

Brodlie also continues the development of the £ notation described on page 18. This

new scheme also regards the underlying field as a function of one or more variables based

on the field model. These functions are classified by their output and input or dependent

and independent variables. The classification notation uses the form of a function F(x),

where F can be ordinal (0) or nominal (N) and represents the dependent variable, and x

represents the independent variable.

Ordinal variables have values that can be put in order, whereas nominal values are like

enumerated types, i.e. with names and values but no inherent order. The type of the

dependent variable, be it a scalar (5), vector (V) or tensor (T), is also classified and can

be aggregated using the *+’ operator. Vector dimensions are denoted using a subscript

value, as are the dimensions and rank of Tensors. The independent variable is classified

using a subscript showing its dimensionality. It can be subject to a range *[...]’ or a

restriction ‘{ .. .} ’ operator.

• N s (O2) Place names on a map

• 0 s (O2) Height over a 2D region

• 0 25+V3 (0 3) Pressure, temperature mid flow m a volume

• O74:4 (O3) A four dimensional second order tensor defined over a volume

2.2.3 Osland’s visualization reference model

The Osland (1992) visualization reference model, illustrated in figure 2.3, breaks up the

visualization process into nine stages. Each stage passes data both up and down the

pipeline, while receiving control parameters from the command interpreter.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 24

Figure 2.3: Osland’s (1992) visualization reference model

The pipeline’s upstream flow (towards the user) converts either internal or external data

into a visual output for the user. Its downstream flow (toward the command sequencer)

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 25

passes user input in the form o f metadata. The Base Graphics System, Visualization

Technique and Data Manipulation modules are all described as transforming the metadata

coming back from the user toward the command interpreter, which implies an inverse

mapping occurring at each o f these stages. An example of this could be the transforma­

tion o f mouse coordinates into screen and then world coordinates, which could then be

transformed into the domain o f the visualization technique and used to access the under­

lying data values at the location of the mouse.

The data import stage is particularly interesting, more for its inclusion and description

than its contribution to scientific visualization or data input. Its inclusion and description

emphasise that visualization systems will primarily deal with external data sources. This

highlights the need for facilitating simple data input in any visualization system, as more

often than not the user will be accessing data created prior to using the visualization

system.

Gallop (1994) proposed a framework for visualization software which takes Osland s vi­

sualization reference model and simplifies it to become a four stage bi-directional pipeline.

While it does show a clear breakdown of visualization from base graphics to user data,

much like the seven layer model. It looses the notion o f data input, instead opting for an

application as the ultimate source of data.

2.2.4 The Visualization Input Pipeline

Felger and Schroder (1992) propose an approach for enabling visualization systems to

provide interaction with the application data which has been changed during the visual­

ization process. This type of control tenned ‘semantic interaction’ allows the user to work

directly with their data values after they have passed through the visualization pipeline and

been turned into an image. Using a conceptual pipeline with processes for the data source,

data preparation, graphical mapping, rendering and display, they propose a ‘visualization

input pipeline’ or VIP to complement the existing visualization pipeline which is te tm ed;

/

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 26

user

Figure 2.4: Simplified visualization framework by Gallop (1994)

the visualization output pipeline (VOP) to avoid confusion. This VIP is the inverse of the

VOP, turning user interactions with the visual output of a visualization system back into

data values and control parameters. In MVEs this translates to a requirement for existing

modules to have corresponding ones which produce an inverse mapping for the image,

AVO and filtered data back into the user’s raw data values.

They present three different techniques for inverting data from the VOP, to account for

functions that have no one-to-one correspondence between their output and input data.

They also present four different architectures for coupling the VIP and VOP within a

visualization system, each of these is illustrated in figure 2.5, The architectures range

from independent to tight coupled single-connection. They differ in the level of shared

resources and communications they use to enable semantic interaction.

The independent architecture requires every VIP and VOP module to have a separate

process, which means that every VIP module requires three connections; these provide

parameters, interaction data and source data from the corresponding module in the VOP.

Conversely, the tightly coupled single-connection architecture has VIP and VOP modules

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 27
sharing a common process, parameters and data in addition to using two-way connections

to send and receive data between processes. The other two architectures lie between these

in terms of connections and shared data. All the architectures attempt to minimize the

change required to enable semantic interaction for any given visualization system.

(a) Loose coupled architecture (b) Independent architecture

(c) Tight coupled architecture (d) Tight coupled - single connection
architecture

Figure 2.5: Felger et al. (1992) concepts for different architectures which enable semantic
interaction

Overall this paper shows how the notion of dataflow can be extended to user interactions

with the visualization output and promotes the merits of enabling users to acquire and

change the actual data values through this form of interaction.

2.2.5 Visualization reference model

Bergeron and Grinstein (1989) proposed a data model, described in 2.1.1, that recogmses

the need to model the user’s data source. The reference model which they describe is for

the visualization of multidimensional data. With respect to user data sources it states that:

“The user has a specific data base which needs interpretation. In principle,

this data base is application dependent and should be absolutely arbitrary.

This is analogous to application-dependent data bases that are the ultimate

source for graphics data in a graphics system. This application data base,

which we call the raw data, must be represented in a standard form in order

to be processed by the visualization system,”

Their reference model is illustrated in figure 2.6, and is noteworthy with respect to this

project for its recognition of raw application data and the general data input problem

facing scientific visualization systems. They prescribe a transformation of the user’s data

into usable data using information stored in a data dictionary, which defines a mapping

between the user’s data and their lattice data structures.

2.2.6 Discussion

Despite the different terminology and subtly different wordings, all the reference models

for processing scientific data refer to the same three processes. These processes, as termed

by each author, are shown in table 2.1. To reflect this project’s interest in data input, the

table also includes any data input processes which have been included in the models.

There are major differences in these models as they address different issues relevant to

scientific visualization. Visualizing simulation data is the primary concern of both Up­

son’s and Haber’s models, whereas Bergeron, Brodlie and Osland’s models address the

need to visualize both simulated and observed data. Finally, both Felger and Osland’s

models have an emphasis is on the user’s interactions with the visualization process both

addressing separate issues.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 28

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 29
Raw Application

Data

Representation

Figure 2.6: Major components of the visualization reference model proposed by Bergeron
and Grinstein (1989)

The data models presented in section 2.1 directly relate to the problem of data input as

they describe both the type of information which is to be transferred and the way it is

generalised in MVE systems. The classification schemes by Bergeron and Grinstein and

Brodlie et al. also describe information in the visualization system, and are relevant as

they enable different types o f visualization to be categorised by the type of underlying

field which it represents. Finally, the process models show current thinking on processing

visualization data. While all these models provide powerful and general breakdowns of

the process of turning data into images, whilst also addressing issues of control, interac­

tion and the need for correct processing for the type of data, it is notable that even models

which show how the data initially arrived in the system do so in only a cursory manner.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 30

Bergeron and
Grinstein

(1989)

Upson
et al.

(1989)

Haber and
McNabb
(1990)

Felger
etal.

(1992)

Osland

(1992)

Brodlie

(1993)
Application

client

Data

source

Data Import

and access

M odeling

transform s

Filter D ata enrichm ent/

enhancem ent

Data

preparation

Data

manipulation

M odelling

View

specification

M ap Visualization

m apping

Graphical

m apping

Visualization

technique

A ssociation R ender Render Rendering

system

Base graphics Viewing

Table 2.1: A visualization framework comparison, each author’s framework is illustrated.
Terms describing processes that provide tire same functionality are horizontally adjacent
in the table. The first process is that of general data input, which has not been handled by
all authors.

2.3 Scientific file formats

ViSC has many sources of data including simulations and analytical results, remote, med­

ical and industrial imaging systems, data loggers and devices for scientific measurement,

and user inputs from digitising devices. The fire hoses of information which McCormick

et al, (1987) described have since become more abundant and more diverse. The needs of

scientific users dictate flexibility and interoperability between these different sources and

the software for processing, analysing and visualizing their output. This has resulted in

countless standard interchange formats with ad-hoc designs that can be specific to every

different scientific discipline.

A file format is a standard for data exchange but the reason behind different file formats

comes from many sources including practical requirements, group interests and the need

to support legacy software. As a result, some standards are less of a useful tool for the

transmission of scientific data and more of a burden.

The next four sections review a small but important range of file formats for scientific data

storage. Field specific, language-based, self-describing and user defined (non-standard)

2.3.1 Field-specific file formats

There is a plethora of file formats which have become the de-facto standards in different

scientific disciplines. Some have been designed to aid the transfer of a particular type of

data, others offer encompassing support for all the different types of data in a particular

field. This section will review several formats representing standards that are in common

usage.

DEM The USGS Geo Survey Digital Elevation Model (DEM) stores terrain elevations

for positions on the ground at regularly spaced intervals. DEMs are organized into

three types of record. The first record contains all the metadata for the DEM, the

second record, which will comprise the majority of the DEM data, contains individ­

ual profiles with header information and the third record contains all the accuracy

information relating to the DEM. The USGS is currently undergoing conversion of

all its DEM information into its new Spatial Data Transfer Standard (SDTS) format

which provides a standard for transferring other GIS data types like vector lines and

raster image data.

GRIB & BUFR The World Meteorological Organization (WMO) has developed two

standard formats Berges (2002) for tire transfer and exchange of meteorological data

between different systems: Gridded Binary (GRIB) and Binary Universal Form or

Representation (BUFR). GRIB stores regular gridded arrays of binary values and

is used for the transmission of observational data such as air pressure and tempera­

ture. BUFR is a flexible format for archiving meteorological data and can be applied

equally well to other scientific data. Another evolving standard, it defines a proto­

col for transmission of quantitative data. BUFR uses a unique Data Description

Language (DDL) which is highly extensible and uses self-descriptive records.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 31

file formats will be reviewed.

mmCIF (Fitzgerald et al. 1993) is an evolution of the Crystallographic Information File

(CIF) (Hall et al. 1991), which is a subset of the STAR (Self-defining Text Archive

and Retrieval) format. CIF can store all forms of text and numeric data and was

developed by a working party on crystallographic information in an effort spon­

sored by both the International Union of Crystallography (IUCr) Commission on

Crystallographic Data and the lUCr Commission on Journals. This produced a data

dictionary for archiving experiments and results, which was adopted by the field.

In 1990 a working group expanded the dictionary to include macromolecular crys­

tallographic data items, resulting in mmCIF.

FITS The Flexible Image Transport System (FITS) (Wells et al. 1981), originally devel­

oped near the end of the 1970s, was designed to enable the exchange of astronom­

ical image data between different hardware platforms and so solve the problems

caused by differences in the way primitive binary values were represented. In ad­

dition to this FITS was able to solve the problem of describing what sort of instru­

ments were used to acquire the data and where they were directed to obtain the data.

FITS has evolved to include other metadata new storage functionality like spanning,

and a range of structure and syntax for defining astronomical information.

DICOM Digital Imaging Communications in Medicine (DICOM) is a format for the

transfer of generalized medical images. Developed by a joint committee of Hie

American College o f Radiology (ACR) and the National Electrical Manufactur­

ers Association (NEMA), it is a multi part standard to facilitate the interchange of

imaging and associated medical information between different computer systems

in a medical environment. It defines how values are encoded, structured and used

alongside a host of different possible data elements which can be stored, their re­

lationships and specifications for different types of medical imaging which can be

described by this format.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 32

These examples illustrate a few of the field-specific file formats which are widely used. As

a result, these specific examples are usually supported by scientific visualization software,

and while important they are not the primary target for this research. However, other less

common field-specific files formats are a target for this research. The type of data such

formats store and the different approaches to storing are illustrated by these examples.

2.3.2 Language-based file formats

The use of a language as a method of data description and storage has been applied in

a range o f file formats. VRML (Virtual Reality Mark-up Language), XML (extensi­

ble Mark-up Language), XDR (eXtemal Data Representation by Sun Microsystems) and

PostScript by Adobe Systems Inc are all notable examples of language-based formats and

are described below.

VRML (Carey et al, 1997) was developed to support the access of interactive 3D vir­

tual worlds and objects over the World Wide Web (WWW). VRML uses plain text

description utilizing tags with a hierarchical scene graph to describe scenes and ob­

jects. It is a common import and export format for many 3D graphics packages

because of its portability and platform independence.

XML (Extensible Markup Language (XML) 1 .0 1998) has been designed to describe data

and is an extensible platform independent mark-up language. XML files are plain

text which when used in combination with either DTD or XML Schema can define

self-describing data structures. XML comprises named elements enclosed in tags.

Elements are placed around text values to give them a meaning and hierarchical

relationship to the elements. There is a parent-child relationship between enclosing

tags and their content, and as this can include other elements this allows hierarchical

structures and many forms of data to be described. XML has two main problems as

a storage medium, these are its verbose nature and openness to bad design practices.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 33

XDR (Network Working Group 1987) is both a standard and API that defines what is

transferred at the ISO presentation layer. It uses implicit typing and value represen­

tations at a binary level. This solves problems caused by different platforms having

different byte ordering and byte alignments. XDR transfers as a language similar

to C or Pascal, however it is a data description language (DDL) not a programming

language. This form of data description is very flexible and enables the unam­

biguous definition of data structures and their content. XDR is supported through

library routines, which encode and decode XDR data streams. The XDR standard

defines portable binary interpretations and a DDL for transmission o f structured

data formats.

PostScript (Adobe Systems Incorporated et al. 1990) from Adobe is another language

based file format. It is known as a ‘page description’ language because of its

common use in specifying printed layout. PostScript files are scripts containing

a sequence o f commands that provide a rich command base in relation to defining

graphical data and page layouts. PostScript is device independent, the language

uses postfix notation and is stack-based. It defines graphical data with the target

applications o f printing and graphical document transfer. A complex language,

PostScript is an industrial standard language that is now mostly run by the printers

and software dealing which them, though human readable, most PostScript files are

machine created from the source’s graphical data.

Language-based file formats use programmatically defined structures to describe their

data. As a result they have the potential to be unambiguous, human readable, self­

describing and extensible although to provide access, software can need quite complex

compilers or interpreters. The relative merits of these languages can be measured in terms

of how well they are supported by their proponents and how easy it is to gain access to

comprehensive library routines. They need to be recognised because many of these types

of file format are field independent and used in a wide range of applications.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 34

The production of a single file format that can be used to exchange any type of scientific

data has been a goal of the simulation community for some time. NASA’s Common Data

Format (CDF) is an example that has been in use since 1985. Self-describing file formats

use abstracted data storage, access and manipulation routines in the form of libraries

that can be linked to several different programming languages and are compiled under

a wide range o f platforms and operating systems. Software programmed with a CDF

reader can then access any file saved in CDF regardless of the file’s subject matter. CDF,

Network Common Data Form (netCDF) and the Hierarchical Data Format (HDF) are

notable examples of these formats and described below.

CDF was developed by NASA to unify the storage and manipulation of scientific data

from a range of different disciplines. It achieves this through describing different

datasets with a data dictionary that is stored alongside the data values. In this way,

each file contains all the necessary semantics to be self-describing. CDF is imple­

mented as an abstract interface with associated libraries; the format of CDF files is

hidden from the programmer, with the interface providing access to all file content

and the libraries carrying out all the file input and output. The CDF data model

supports multidimensional gridded data (described on page 59) and either multi­

variate data on a shared grid or individual valuables each with their own grid. A

comprehensive description of CDF can be found by Goucher and Mathews (1994),

netCDF was originally developed to provide a common platform-independent interface

between Unidata applications and real-time data sources. It employs several power­

ful concepts from CDF, including the abstract interface and library, in conjunction

with ‘XDR-like’ platform-independent binary types. netCDF files store data in self­

describing objects that can be accessed transparently through the library. netCDF

offers a similar abstraction to that offered by graphical libraries. Simply put, it

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 35

2.3.3 Self describing ‘generic’ file formats

defines both datatypes and valid access functions for these types. The underlying

workings of netCDF and the actual storage of netCDF data are hidden from the

user. netCDF also uses a standard file format which is implemented in a similar

manner to XDR, implicitly specifying byte order and how data should be inter­

preted in netCDF files. Information on NetCDF can be found at (Network Common

Data Form 2000).

HDF development was started by the National Center for Supercomputer Applications

(NCSA) in 1988. HDF was to facilitate scientific data management by offering

a standard and extensible method for scientific data transfer which was efficient

whilst also supporting many platforms. HDF is implemented and supported by a

data access library and API as well as a range of software tools. The file format is

tag-based and supports multidimensional gridded data, multivariate datasets, raster

image data, mesh data, spreadsheets, finite element data and sparse matrices. HDF

information can be found at (Hierarchical Data Format 2000).

All these formats are widely used in scientific circles; they are often supported by MVEs

and are not a primary target for this work. They are interesting because they each illustrate

different ways of describing data. They offer a prescriptive solution to file input with their

self-descriptive design, which is lacked by other file formats. Users who own or create

software which outputs data in one of these formats will be able to load it into an MVE

with ease. Any tool for data input will need to describe data using a similar range of

attributes and structure definitions that these formats use to describe their data.

2.3.4 User-defined and non-standard file formats

Given the range of formats we have already seen and the countless others which exist,

it can be seen that there are many good reasons for the use of an existing standard file

format including:

CHAPTER 2, VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 36

• de-facto standards provide an easy route to portability and data exchange

• time and resources are released by not developing an ‘in house’ format

• developmental support, APIs and libraries may be available which reduce the cost

of using a standard

• industrial bodies or field encourages and promotes the use o f a standard.

However, there are also reasons which prevent the use of a standard and instead lead to a

non-standard, native or user-defined file format:

• a standard is not widely enough advertised or adopted to encourage its use

• protection o f commercial interests through the use of a proprietary standard

• the lack of a suitable standard for the user’s data requirements (this is unlikely)

• a suitable standard exists but licensing fees may limit its uptake

• a standards use may be discouraged by an unwieldy API, an overly complex de­

scription or a storage intensive nature

• a lack of access to or control over the source software’s output, or lack of access to

those who could modify it.

As a result, many programs output a native, proprietary or closed format which is unpub­

lished or rarely used. These formats, often designed by programmers, have a tendency to

fall into one of three categories:

Text records are commonly used to store variables for scientific data. They usually com­

prise a plain text file, with a line which describes the variables using names like

‘height’, ‘pressure’ and ‘speed’. This header line is then usually followed by lines

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 37

of values with the corresponding number of variables. While storage-intensive,

this informal storage format is easy to produce, platform independent and relatively

easy to support because it can be analysed so easily. Values in these files are either

separated by spaces or control symbols such as commas. For large datasets, this

format is generally too storage-intensive, nonetheless examples do exist of large

datasets stored using text records.

Row and column files can offer storage for 2D data; a header usually defines how many

rows r and columns c are in the block of data. What follows are r lines o f separated

values with c values per line. A simple but storage-intensive format for data storage.

Many examples of 2D scalar datasets like height fields are stored in this format.

Raw binary files usually store an array as a contiguous block of data, sometimes pre­

ceded by a header. Essentially this format is usually just a copy of an array from

memory, and as such is simple and much less storage-intensive than plain-text (al­

though platform dependent). They can be very difficult to input unless all their

parameters are known, such as the rank and shape of the array, and what sort of

binary values it contains.

Some of these categories are supported by visualization tools which will be described in

the next section. However, the ease with which they are input depends entirely on how

much the user knows about their file and how easy it is to use the visualization system’s

input tool.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 3 8

2.4 Visualization tools

This section will review several current systems supporting ViSC and what they offer

the user in terms o f file input support. The review has been compiled from direct usage

experience where possible, the Advisory Group on Computer Graphics (AGOCG) Review

of visualization systems Brodlieet al. (1995) and Scientific Visualization: Techniques and

Applications Brodlie et al. (1992b) in addition to the reference materials each package

provides.

• AVS Express

• IRIS Explorer 5

• IBM Open Data Explorer OpenDX

• PV-Wave 8

• AMIRA

• VisiQuest (formerly Khoros)

2.4.1 AVS

Advanced Visual Systems (AVS), originally developed by Upson et al. (1989) is an MVE

based on the dataflow model. It uses the unified field data model described in section

2.1.2 and has developed from a dataflow paradigm to an object-oriented model in the

latest edition, AVS Express. AVS is an application builder, it enables the user to create

visualization applications in either a visual workspace by connecting modules or with its

internal V scripting system. AVS supports file input through the following techniques: •

• a range of data import modules for different file formats including AVS’s own range

of native file formats;

• the AVS file input wizard, which detects filename extensions and proposes one of

the above modules for inputting the data. It also enables the user to fill in any

parameters they may need;

• the field file format, this format is implemented as user edited text files. Each file

contains reserved words and parameters recognisable by AVS. These describe a

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 39

referenced file’s content in the terms of the AVS field data structure. If the file

contains data or datatypes which cannot be described by AVS field data structures

then this solution will be ineffective for that particular problem. A more advanced

version of the field file format has been developed by Manchester’s International

AVS Centre (IAC) to handle data which has a cell regular structure;

• ADIA is a tool for making field headers using a GUI from AVS 5, which is not in

AVS Express. It produced field file format headers taking the user through step-by-

step choices to specify their field data;

• file access objects are AVS Express functions which can be combined to create

fields, no GUI, functions with archaic parameters to enter data;

• the file import tool produces an AVS file input solution, given a range of parameters;

• V scripts using file access objects to import data;

• making a new extension to AVS using C++.

2.4.2 IRIS Explorer

IRIS Explorer was originally developed by Silicon Graphics Indigo (SGI) and is currently

owned by the Numerical Algorithms Group (NAG). The present version IRIS Explorer 5

is an MVE based on the dataflow model. It provides the user with the facilities to build

applications and compile them into stand alone data visualizations, as well as offering ef­

fective collaborative visualization through a range of collaborative modules (Wood 1998).

It offers the user several routes (dependent on platform) to input their file data.

• a range of data input modules for different file formats, including several modules

which offer multiple input facilities for images; •

• a parameterised text reader module for simple text file formats;

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 40

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 41

• DataScribe, a UNIX tool, can produce script files that map the users data into IRIS

Explorer’s data structures;

• the IRIS Explorer APIs offer easy access and manipulation of data for programming

extensions to the system;

• QuickLat offers a simpler way o f programming an extension for a reader module,

making the internal data structures of IRIS explorer easier to access when program­

ming using this external tool;

• Module builder also simplifies the process of programmed extension, enabling the

user to build an interface and describe the parameters which are needed by a mod­

ule, then link them with the code the user has written.

2.4.3 IBM Data eXplorer

IBM’s Data eXplorer and the open source version OpenDX use both dataflow and the uni­

fied field data model. OpenDX offers a range of file input tools though its data prompter: •

• the general array header file format. This much like AVS’s field file format enables

the user to describe their data using keywords and values which can specify file

input parameters and metadata.

• Data prompter, a tool for inputting data. It creates a general array header through

step-by-step interactions with the user, offering a simpler way of describing their

file if is in a form describable by the general array header format

• HDF, NetCDF and CDF are all supported through the Data prompter file input tool

• a range of image file formats are also supported through this tool

• spreadsheets are also supported through a parameterised reader tool

• programmed extension is also supported in IBM OpenDX.

2.4.4 AmiraViz

The Department of Scientific Visualization of the Konrad-Zuse-Zentrum fur Information-

stechnik Berlin (ZIB) has provided the newest MVE, Amira Viz, distributed by Template

Graphics Inc (TGS). It is a package which specialises in image and volume datasets, It

has support for non-standard external data using three methods. The first is a header file

for defining stacked slices to form a volume dataset. The slice description file enables the

user to specify each slice of a volume through a different file name, its position coordinate

in the stacked axis and, overall, the pixel aspect ratio of all the images. It has a header file

format called stacked-slices, which describes die files that compose a volume dataset. The

parameters for a volume, including the x and y pixel size of the images and the spacing

for each image is stored in addition to the names and locations of the slice files.

The second method Amira supports, is the input of raw binary data using a parameterized

reader, which enables the file to be loaded by specifying a header size as well as and

the bounding box dimensions and coordinates of up to a 3 dimensional array. Other

parameters include the ‘index order’, which specifies whether the first dimension or the

last dimension is varying fastest, the byte ordering, type of binary primitives in the array

and number of variables.

Finally, it advocates the construction of own export or convert filter to produce Ami-

raMesh or HxSurfaces, which seems to indicate that the user can either modify their own

software to output Amira compatible types or produce an extension to Amira.

2.4.5 Khoros

Khoros, originally developed by the University of New Mexico and now under the name

of VisiQuest and owned by AccuSoft was originally an interactive image display package.

VisiQuest has a range o f reader modules and some parameterised tools for accessing

simple ASCII and binary data files. Finally, data can be input through programming

CHAPTER 2, VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 42

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 43

an extension to VisiQuest.

2.4.6 PV-WAVE

PV-WAVE 8 by Visual Numerics is an array-oriented language for creating applications

for visualization and data analysis. Users of PV-WAVE can enter commands from the key­

board which are immediately executed or write scripts that can be compiled and executed

It supports data input through a range of function calls. For unsupported file formats there

are read and write routines in both binary and plain text. Finally, for particularly complex

file formats there are low-level file access functions.

2.4.7 MVE file input summary

All the visualization systems reviewed in section 2.4 share common techniques for solving

the problem of file input. They can be classified in one of six ways. These are:

• hard-coded readers

• header files

• script readers

• monolithic tools

• modular networks

• programmed extensions.

Each classification can lead to many solutions for file input problems. Hard-coded solu­

tions are currently the most prolific and exist in every program which has to access any

file-based data. The three latter solutions provide compatibility between scientific soft­

ware and existing visualization systems. Table 2.2 highlights what each system supports

in addition to programmed extension which they all support.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 44

Visualization
package

Approx. No.
hard-coded

readers

Header
files

Script
Readers

Monolithic
tools

Modular
networks

VisiQuest
(Khoros)

29 Raw data
tool

PV-WAVE 8 13
AMIRA 41 Slice

description
file

Raw data
tool

IRIS Explorer 5 25(18)f yes DataScribe &
QuickLat

AVS Express 41 Field ,
format
header

yes Import Wizard
& File import

tool

File
access
oj beets

IBM Data
eXplorer

(OpenDx)

12 General
array

header

DataPrompter

Table 2.2: Visualization software file input provisions other than programmed extension,
fthe number of modules which are used to produce this input

Hard-coded readers All visualization software provides functionality which allows users

to input their files. The majority of these provisions can be described as hard-coded;

they are extremely simple to use and work in an efficient yet inflexible manner. Only

the location o f the file is normally needed to input a dataset using a hard-coded so­

lution. This will result in a successful input if the file format matches die format

built into the solution. Any deviation in the file from that format and die solution

will return an error message and fail to load any data.

Each solution is specific to the format chosen, with the result that hard-coded solu­

tions are only provided for file formats that are industrial standards or widely used.

There is little incentive for developers of visualization systems to produce hard­

coded readers for less common file formats. Additionally, different versions of a

file format can make its support an ongoing process, requiring updates to prevent

the system’s specific implementation from becoming incompatible with newer ver­

sions of the format. A cost is incurred for the developer in keeping input modules

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 45

up-to-date.

Most MVEs have hard-coded solutions packaged up into modules which can be

placed into the working environment, thus usually placing the emphasis on the user

to find the correct reader for the correct file format.

Header files enable the user to create a separate description of a file’s content by provid­

ing metadata in a format that the MVE can read. A header file can either ignore,

replace or supplement any metadata held in the file depending on its own structure

and flexibility. In this respect, header description files are similar to DDLs. They

are limited though by their ability to describe another file (or files) in terms of the

MVE’s own internal data structures and, if the file data cannot be described in these

terms, then this type of solution will be inapplicable.

Scripted readers Script files can perform a similar, although more complex, task to a

header file. Just as a header file can describe the file in terms of the application’s

data structure, a scripted reader can convert the data into the application’s data

structures. One example of such a reader can be found in IRIS Explorer running in

Unix: the scripts are generated with an external tool and combine parameters with

a mapping between file content and IRIS Explorer’s data structures.

Monolithic tools These are provided with the MVE and are usually organised into one

or more dialogues, which enable the user to specify a range of input options, pro­

viding the user with choices for the type of grid or connectivity, the variables and

the dimensions of arrays. While they can be simple, this is not always the case.

Additionally, they are inflexible and cannot easily be extended by the user to input

files which are out of the scope of their parameters. Most MVEs have one of these,

be it a simple raw data reader like that found in Amira Viz or a more complex tool

like DataPrompter in IBM DX.

These tools are provided as part of the MVE package. They usually have a simple

step by step interface which allows the user to choose the type of data in the file and

then fill in the parameters the tool needs to produce a solution. The solutions that

these tools produce can range from directly inputting the file to the production o f a

reusable script or header file that enables the chosen file to be input again without

using the tool.

M odular networks A modular solution utilises the MVE’s workspace to build an input

solution by wiring modules together. AVS is the only package to offer this form

of solution and uses a range of different modules called ‘file access objects’ (Core

AVS/Express and the Object Manager 2004) to import data from files. There are

other modules in AVS called ‘mappers’, ‘combiners’ and ‘extractors’ which can

manipulate this data into the AVS field data types. This method is much simpler

than creating a file reader by programming since it only uses the same skills which

are needed to produce a visualization in the environment. However, it is still more

complex than using a hard-coded reader.

Programmed extensions All the MVEs reviewed provide the user with APIs and tools

to extend them. Usually, a programming language like C or FORTRAN is used

to implement new modules in an MVE that can then be connected into module

networks providing user-defined functionality.

Extending a visualization system by programming a new module is the most com­

plex route for users to input their data. To produce a new module successfully the

user needs detailed knowledge about the data and the file format. Moreover, users

need the skills to implement a module in the MVE, including familiarity with the

data structures and APIs and a level of competency with the supported program­

ming language.

Some MVEs simplify this process, providing external tools that encapsulate the

user’s code and provide simple access to the sections o f the MVE data structures

they need to use. One example is IRIS Explorer’s QuickLat tool (IRIS Explorer

User’s Guide (Windows NT/2000) 2000). However, even with such tools, pro-

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 46

2.5 Discussion

This chapter has reviewed the relevant data models, process models, frameworks and

classification systems for ViSC. The problem of data input deals with many data sources,

different examples of file formats from such sources have been described and classified

into four groups, ‘field-specific’, ‘language-based’, ‘self-describing’ and ‘user-defined’.

The different visualization systems and particularly their data input techniques have also

been reviewed. From this review six different techniques for data input have been identi­

fied in the present range of MVEs, these are, ‘hard-coded’, ‘header files’, ‘scripted read­

ers’, ‘monolithic tools’, ‘modular networks’ and ‘programmed extension’.

The user will often have data files of a field-specific or user-defined format. As a result,

they will rarely be able to use a hard-coded technique to input their data, leaving the

latter five MVE supported file input techniques. Each of these needs technical skills and

knowledge to produce a solution. As a result, the task of entering data can be the hardest

problem users face when attempting to visualize their data.

The next chapter will define the problem this research will aim to solve and its scope in

terms of desired outcomes for the ViSC field and software components.

CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 47

grammed extension remains a complex undertaking.

Chapter 3

Data input considerations

The previous chapters have described what is meant by data input in the context of sci­

entific visualization; they have also defined the scope of this research. Now we are going

to look further into the central difficulties of finding out how scientific data is stored and

retrieved from storage.

3.1 Understanding file storage

Our interest with file storage lies not in the physical or low-level mechanisms of how or

where files are stored, nor does our interest lie with how the operating system retrieves,

transfers or acquires the contents of a file when one is opened for reading. The main

interest lies in what is retrieved after these various mechanisms have been applied.

At a high level a file can be described as a block of memory. This block of memory

contains whatever a program places into it, which is defined by the file creation routines

used in the program. These routines are created by programmers and with this notion a file

could conceivably contain anything; however, common sense and the nature of scientific

data have led many programmers to similar solutions when storing different forms of data.

Continuing with the notion of a file as a block of memory, it can be seen that most systems

import data in a two-step sequential process, firstly reading a specified value and then

48

49

placing it into a data structure. The sequential nature of most loading processes comes

about as each value is read; when this happens, the pointer to the file content moves

towards the end of what was read.

An example would be loading five floating-point values. Each value could be read in by

individually incrementing the pointer in the file to the end of each value. Alternatively

they could all be read in at once taking the pointer in the file to the end of all five values.

Other data structures can be read in a similar way, by accessing their fields individually,

or, if the file mirrors the memoiy layout of the data structure, they can be accessed as a

single block o f data.

The process of loading is usually dynamic; in the sense that some values at specific posi­

tions in a file can alter the way the rest of the file is read into a program’s data structure.

The utility of having such control, or descriptive, values can be seen as giving a file or file

format greater flexibility, by parameterising some aspect of the input process.

These descriptive values, termed metadata, can be classified into one of two groups. The

first group concerns content-oriented metadata, which describe the data content of the file.

The second group concerns file-oriented metadata, which describe the file format or or­

ganisation of the file. Differentiation between content-oriented and file-oriented metadata

is important, because the former describes the data within our target program, whereas

the latter could be an important tool in deciphering its format.

Some examples of content-oriented metadata include the dimensions of a data set, such as

the height and width of an image, the number of variables or fields in a record, a bounding

box for the data, the physical measurements for separation between adjacent samples, the

type of brick connectivity for finite element cell data and text headers for fields which

describe their content.

Examples of file-oriented metadata include the positions of various blocks of data relative

to the start of the file, the type of compression used, the version of the file, its creation

CHAPTER 3. DATA INPUT CONSIDERATIONS

CHAPTER 3. DATA INPUT CONSIDERATIONS 50

date, and the delimiters or run-length encoding tags used.

Since metadata is descriptive it is common for programmers to create systems that place

metadata (of both forms) at the start o f the file. The benefits o f this approach when later

reading the file include the ability to allocate memory dynamically for data structures

without having to read the entire file first, and simplicity in the sense that there is only a

single structure that predefines the rest of the file.

Metadata at the start o f the file is referred to as a ‘header’. In some file formats this header

is in an entirely different file, leaving a data-only file to fulfil the majority o f the storage

requirements. The header-only system works for many kinds of data, but often due to

their complexity, or just through different flexibility requirements, some formats place

metadata in between data in the file.

One example o f storing metadata in between blocks of data values could be for an ag­

gregate dataset, where several different sets of data are held in one file, and so require a

description for each individual block.

Metadata can sometimes be stored at the end of a file, in a similar manner to the header by

using a ‘footer’. This also allows a grouping of metadata to be separated out from the core

o f the file. However, unlike a header, a footer is only useful for controlling the loading

process if the whole file is buffered first, although a footer could be a sensible place to

store attribute values and other individual parameters that may affect the interpretation o f

the data.

3.1.1 Interpretation is everything

“Inteipretation, the action o f explaining the meaning o f something” (Pearsall 1998b,

OED) is exactly what data input is all about. All computer programs work through the

use o f interpretations, linking values with meanings; without knowing W'hat numerical

data means, how can it be used correctly?

CHAPTER 3. DATA INPUT CONSIDERATIONS 51

The need for interpretation exists at many levels, from individual bytes to large arrays

of complex records. Files are generic storage, and in loading a file we need the correct

interpretation in order to retrieve the values as they were originally placed in the file.

From our understanding of files so far we can break the problem of interpreting a file into

three sections.

At the lowest level interpretation needs to take place for the bytes read from the file.

This is because a single byte can have several meanings, which include it being part of

a larger value representation, e.g. a 32-bit or 64-bit value, or on its own, being a signed

or unsigned numeric value representation. Without this interpretation we can gather no

values from the file, and hence are unable to read anything of use, Existing ways for

loading data apply an interpretation to bytes by having the byte interpretations built-in to

the software.

At a higher level interpretation is required to show the organisation o f values within the

file. This is in terms o f what the connectivity, domain and range of the data is. This can

be expressed by defining the possible meanings of an arrangement of values within a file.

Finally, at the highest level interpretation conveys the meaning of values, in terms of the

signified such as colour, pressure, distance, time and density. This final interpretation may

be necessary to describe data within the visualization system or specify a variable’s name

or a variable’s type, e.g. that the following variable is a date or time and hence comprises

several values.

3.1.2 Binary interpretations

When a file is read, blocks of bytes are interpreted as various binary values. Interpret­

ing a block of bytes is usually done by copying the specified range of bytes from the file

into a block of memory. This memory has been defined as containing a specific binary

representation and labelled as a variable. In most programming languages there are sev­

CHAPTER 3. DATA INPUT CONSIDERATIONS 52

eral standard types of value representation according to which one or more bytes can be

interpreted.

All the languages examined in the course of this project have stored binary numeric values

in one or more bytes. These include Fortran, Cobol, Pascal, C, C++ and Java. It can be

conceded that there exist value representations of less than one byte, however the great

majority of programs and file formats will deal with values at a byte level. There are

also subtle differences between the programming languages, in terms of the precision

and storage of certain binary types. However, for the purposes of this research they can

be generalised as part o f one problem, and that is the correct identification of the type

representation for a block of bytes. The question we seek to answer is not what are the

choices available for storing a binary value; the answer to this question is both definite

and finite, The question is, rather, which of the choices to use as a representation

Further complications of binary interpretation include the ‘endian’ of the hardware or

software that writes a file. The term ‘endian’ The Jargon Dictionary : Terms : The

M Terms : middle-endian (2003) describes the sequence in which bytes are stored and

interpreted. Big endian is used to describe storage of bytes in a ‘most significant byte

first’ fashion, and little endian is with the least significant byte first. There is also the little

used variant of middle endian, where the significance o f the bytes is not in a linear order

and is neither ascending nor descending. The implication is that if we take a numeric value

from a file stored in an endian different from that o f our current system, the interpretation

o f all the multi-byte numeric values held in the file will be incorrect.

Related to the problems of type and endian interpretation is byte alignment. In interpreting

an array o f bytes into an array of multi-byte values, we need to consider where to start.

In hard-coded loading solutions the start of an array of values is either known because of

other previously encountered data stating where it is sequentially, or is at a point which,

when other data leading up to it are read in, will leave the file open at the position where

the values are stored. For this work there is no such specified start point and so it is

both possible and likely that there will be other file content preceding the block of values

which needs to be interpreted. When this occurs the start point for the values sought will

neither be clear, nor likely to be aligned by chance with the start of the first value. Any

misalignment from the start will either miss values from the desired set, or cause incorrect

interpretations for multi-byte values and all those following, as shown in figure 3.1. In

figure 3.1 the bytes we are trying to interpret are labelled B, the effect of using the correct

start point for the interpretation and hence the correct alignment is labelled A , whilst the

effect o f an incorrect alignment is shown in C. The dark grey byte value is out o f the

range of the dataset, and could be any value that followed the block we want to interpret.

A similar effect occurs when the interpretation begins before the correct start instead of

after it.

Finally values can directly correspond to some form of symbolic system like text charac­

ters. This can indicate a text-based representation of numeric data values or just nominal

data values; this is discussed in the next section.

To summarise, all the data we wish to extract from a file into values will require inter­

pretation. Furthermore for multi-byte values a correct alignment and endian needs to be

specified. Finally, whether the values are text in nature or not needs determining.

3.1.3 Text interpretations

The alternative to storing data in binary form is to convert the values into text and store

them in a text-based file format. The benefits o f storing values as text include removing

problems caused by the type of endian, byte alignment or binaiy primitive type interpre­

tation. Text values can also be interpreted in a manner which is hardware independent.

We still need to know that the file contains text though, and many such files are not

labelled as text, so the first question is: does this file contain text? The answer to this can

be found either by direct examination by the user, i.e. looking at it represented as text,

CHAPTER 3. DATA INPUT CONSIDERATIONS 53

CHAPTER 3. DATA INPUT CONSIDERATIONS 54
A B C

Figure 3.1: Byte alignment; a) a set of four floating point values, b) the byte values which
make up the floating point values, c) the effect of incorrectly aligning the array by one
byte

or by a test to see if the majority of its byte values contain numbers within the range of

characters and symbols used for text storage.

In a text-based file each byte encodes a single character; these can be combined to produce

larger strings of characters which may pertain to the values for which we are looking and

by parsing these strings we can find entire values. If these values are numeric they will

need to be converted into a binary primitive type in order to be used within the target

visualization system.

It is important to note that data encoded as text is far simpler to comprehend because it is

stored in a human-readable form and has, as a result, values clearly separated by spaces,

line returns, or symbols etc. However, ambiguity remains as to the level o f precision

required to represent values or the range of integers.

The process o f identifying and combining characters can take several different routes,

each having a different degree of complexity in terms of implementation. The simplest

form uses delimited or separated values. Delimiting uses a specific character to iden­

tify where one value ends and another starts. Some formats use multiple delimiters to

separate records or rows from columns. Examples of this formatting include comma-

separated value or ‘CSV’ files which are a common form of export format in spreadsheet

and database applications. Another example of this formatting is a row and column out­

put, where columns are delimited by spaces and rows are delimited by new lines. These

specific formats are used by a large number of commercial packages, as well as many

scientific applications, although there are many other formats which, while similarly de­

limited, are not compatible with visualization systems without further description.

The more complex forms of text file format are those which use contextual tags, such as

SGML, HTML, XML, TEX and MSI. The characteristic of these formats is that sequences

o f characters can define reserved words which can alter the meaning of the values held

near or inside pairs of tags. Also in this type of file there are variable assignments, where

a named variable is set equal to a value literally, written out as e.g. “WIDTH=200” or

“DENSITY=0.005e-03”.

Finally, an attempt can be made to extract values from text files without knowing how

they are formatted by using rule-based parsing. Using this technique we can define some

basic rules which can identify primitive numeric and text data types. These rules are then

applied to separate out sequences o f characters into their respective types. These strings

o f characters are then converted into binary data types if they represent numeric data.

Once again, the levels o f complexity and functionality in such systems can vary a great

deal. -

Delimiting and rule-based parsing of text files will form the main thrust of this research.

CHAPTER 3. DATA INPUT CONSIDERATIONS 55

CHAPTER 3. DATA INPUT CONSIDERATIONS 56

3.1.4 Structural interpretations

Structural inteipretation is concerned with how data values are related. All datasets com­

prise one or more nodes which in turn contain one or more variables. Most datasets

have connections between these nodes. The structure of a dataset describes the connec­

tions present between the nodes and so defines their respective neighbours. In describing

structure we need to look at how these connections can be specified and encoded into

sequences of values.

Many solutions to the problem of structural interpretation take into account the notion of

physical positions and, as visualization deals with physical phenomena, this is a reason­

able assumption. However, this section assumes that positions are just another variable of

the dataset, with the emphasis being on how nodes are connected to other nodes.

Connectivity

First datasets will be classified as having four possible types of connectivity: these are

scattered, gridded, cell regular, and cell variable. There are two concepts by which each

o f these classifications is defined, that is the way the connections are defined between

nodes and the way the arrangement of these connections forms cells.

Scattered data has no connections present between nodes in the dataset. Scattered data

nodes have no neighbours. Any techniques for rendering or processing which re­

quire some connectivity information will require it to be generated using a process

such as triangulation.

Cell variable data has no consistent pattern of connections between its nodes, thus re­

quiring explicit definition o f each connection and then how these connections are

built up into cells. The key notion here is that cells may be of different types; this

means that the number of nodes and nodal connections per cell needs to be speci-

CHAPTER 3. DATA INPUT CONSIDERATIONS 57

fied. An example could be a series of polygons, where there is a different number

of sides for each polygon.

O '
\

0 - - - -0
t

I

/ \ ^ / /
/

O - -------- 'O
' ' T \I ' 1 '/ \
' / ;\\ /
O '

£
- - Ó .

■*o

Figure 3.2: An example of a structure exhibiting cell variable connectivity

Cell regular data implies each cells connections. All nodes are connected into lines,

triangles, quadrilaterals, hexahedrons or some other n-node cell. The key notion

compared with cell variable connectivity is that all the cells are of the same type.

O -------Q _ JO
s \ -t / ' /✓ u-

/ \ O X ; - .

J r - A '1 \/
/

« l ^ v '

/ ✓

O "

^ : ✓ I V. v '

o.
' 's O
0--TD

Figure 3.3: An example of a structure exhibiting cell regular connectivity, in this case
having triangular cells

For each group of n nodes there needs to be a definition of the connections which

form the cell. This is usually achieved by stating nodal values in the order which

they need to be placed into each cell. Some examples of commonly used cells are

illustrated in table 3.1.

CHAPTER 3. DATA INPUT CONSIDERATIONS

No. Nodes Example connections

2
O---0

3 A -,

4 cA H A

5

6

7

8
i\ 1
0-^0 .

9 W

27 3
a jiib

0

Table 3.1: Fourteen n-node cells which are commonly used for deriving connections
cell regular and cell variable data

Gridded data implies the connections for each node of the dataset. It is the most com­

pact form for storing connection information. It also has the most stringent require­

ments for regularity in the type of information stored. Linear connections between

nodes are assumed along each of vn linearly independent axes over which the data

is defined. This results in 2m connections per interior node to neighbouring nodes

in each axis.

■ 9— -9-— 9-— 9
i i i ! .
I :) ■, /; '• i V -■■■■

^ — 9
i i i : |
I 1 I 19--—9----9----9
I I 1 1
1 1 , !
1 1 1 X

O ---------o ---------o ---------o

Figure 3.4: An example of a gridded connection structure

Compact array storage

An important consideration when attempting to determine die structure of a dataset is

the use of compact data representations. Many compact representations use array indices

to imply more information about data held within an array. This section will look at

examples of such representations and then illustrate their use in relation to this work.

Arrays hold a number of elements which can be referenced using indices. These indices

can be used to create a compact representation for a dataset. Uniform rectangular grids are

prime cases where arrays are used to provide compact data storage. A uniform rectangular

grid has both gridded connectivity and regularly spaced coordinates for the positions of

each node in the dataset as illustrated in figure 3.5. In a uniform rectangular grid the

connections between the gridded nodes of the dataset can be implied using the indices of

the array. Connections in a uniform rectangular grid are formed between array elements

CHAPTER 3. DATA INPUT CONSIDERATIONS 59

CHAPTER 3. DATA INPUT CONSIDERATIONS 60

with adjacent indices. As well as a compact description of the connections in a uniform

rectangular grid, the positional regularity is used to remove the need to explicitly state

coordinates for every node. Instead, functions are used to generate the coordinates for

each node. An example of such a function is shown in equation 3.1; in this function the

coordinate x is generated using a minimum and maximum value for x which are m inx

and m axx as well as the number of data points along the x axis described by dim x and

the location of the node along the x-axis as defined by its index i in the array. A common

example of data using uniform rectangular grids can be found in digital elevation models,

where an array of height values are stored as a 2D array, with the physical coordinates for

each node produced from a single fixed point and two spacing measurements.

^ -9 -^ -9
; 1 ■■ ■ J ' 1 1

1 1 1 . 1 .
1 t 1 1

9--9'~9~"9
I I I I

. . . ' I -.1 ̂ I : I
I I ' '

. 9--9--9V-9 .
I i l l .

: I.' I ■ 1 1 \ •
I I 1 1

o — o — o o

Figure 3.5: Uniform rectangular positions in two dimensions. The difference between
coordinate values for each dimension is constant

. . .. , . j . rnaxx ~ m inx • ■x = f (m m x,7naxx,t,d im x) = m inx + i ‘ —— -..- -— (3.1)

Uniform rectangular grids are a special case of variable rectangular grids and so are not the

only example o f a gridded data structure which uses a compact form to store coordinates,

A variable rectangular grid has the same gridded structure as a unifonn rectangular grid

but has a variable cell size. The coordinate data held in a variable rectangular grid has

each node at a given position along each axis sharing a common coordinate value as

illustrated in figure 3.6. In a variable rectangular grid each dimension requires a vector of

i i i i
i i i i

CHAPTER 3. DATA INPUT CONSIDERATIONS 61

9 - T - - 9 - 9 9
9 — Ç - - 9 9
i i i t
i i i i
i i i i
i i i i
i i i i

Figure 3.6: Variable rectangular positions in two dimensions. Coordinate values are
shared for all nodes at the same intersection along each axis

explicit coordinate values; these coordinate values are constant over all other dimensions

o f the dataset. The common way to implement this type of scheme is to use the data

array indices to refer to the vectors o f values which store coordinate positions for each

axis. Variable rectangular grids are used in many forms of simulation, including MHD

(magneto-hydrodynamics) and CFD (computational flow dynamics).

O '

&
. 6 -

i i
o - o —
I
I

6
" 'e y

o
\ i : b o \ \ ,

\ \

-or 9
/ /
i i
i /

Figure 3.7: Body fitted positions in two dimensions. Coordinate values are different in
each dimension and for all other coordinates in other dimensions

Finally body fitted grids store gridded data whose coordinates can have a different value

for every node in the grid. An example of such a structure is illustrated in figure 3.7.

Because each node can have different coordinates they require storage per node in the

same manner as dependent variables. These types of grid are often used in the aerospace

62CHAPTER 3. DATA INPUT CONSIDERATIONS

A rra y (i,j ,k) Xuni form rectangular Xyariable rectangular Xbody fitted
5 ,5 ,5 2 5 125

10, 10,10 2 10 1000
20, 20,20 2 20 8000

Table 3.2: Illustrating the storage required for coordinate X when using different rectan­
gular and body fitted grids

industry for work involving aerodynamic surface simulations.

The benefit o f using these different data structures for storing coordinates is outlined in

table 3.2. This table shows the number of values required to hold a single coordinate value

X for each of uniform rectangular, variable rectangular and body fitted grids of different

sizes.

Array row j

Connectivity

Figure 3.8: Array(i, j) stores nodal positions in its columns and individual cells in its
rows.

Further compact representations based on array structure arise with cell regular data. In

these datasets the connections are unlike those in gridded data because the number of

connections per node is variable. However, there is regularity in these structures because

each cell has the same number and configuration of connections which allows the data

array indices to imply connections. If we take a cell definition and number the nodal

positions in the cell from 1 . . . n then in the data array we can use one of the indices to

imply these nodal positions. Individual cells are distinguished by using another index. An

example for hexahedral cells is illustrated in figure 3.8.

The last two structures, cell variable and scattered, do not benefit from compact represen­

tations as gridded and cell regular structures do: cell variable structures have less regular­

ity to use for implying nodal connectivity and scattered data has no structure to encode.

Cell variable data can be described in many ways including the use of cell regular primi­

tives like lines, triangles and quadrilaterals to construct more complex cells like polygons,

prisms and bricks or it can be described by using a dictionary of pre-defined cells which

are then repeatedly referred to. All cell regular data requires additional information to

describe individual cells, and this can be implied or explicit in a dataset.

Each of these compact representations can be achieved for variables and structure which

exhibit certain regularities. From these examples we can determine that structural infor­

mation does not need to be explicitly stated for every connection in the dataset, nodal

connections and the make-up of a cell can be determined when assumptions about how

data is connected are written into the loading system. Equally, variables do not lequire

to be stated for every node in the dataset if they also exhibit regularity which allows for

them to be reduced in a similar manner and then implied for every node in the dataset.

Recognising the existence of these space-saving methods and their use not only in visual­

ization data structures but also in file formats, may allow the development of algorithms

and mechanisms by which they can be handled. So to summarise, an array index can im­

ply a nodal position in an n-node cell or a nodal position in a gridded dataset and it can,

with additional values and interpretation, imply one or more variables that are in some

way dependent on the index value. This is illustrated in table 3.3.

CHAPTER 3. DATA INPUT CONSIDERATIONS 63

CHAPTER 3. DATA INPUT CONSIDERATIONS

k h h Ì3
jo 1.2 2.3 4.6 8.5
j l 1.2 2.3 4.6 8.5

h 1.2 2.3 4.6 8.5
33 1.2 2.3 4.6 8.5

io H ¿2 *3

jn 1.2 2.3 4.6 8.5

(b) Compact representation

(a) Normal representation

Table 3.3: Table 3.3(a) A 4 by 4 Array containing variable X which, given any location
in i is constant for all locations at j . Table 3.3(b) Illustrates a compact representation of
the same data.

A rray metadata

Now that we know how arrays can be used to describe different structures, we move on

to describe the metadata which defines an array. There are two items of metadata which

are required to correctly interpret an array: its rank and shape. The rank is a single value

which corresponds with the number of linearly independent indices over which the data

ranges. The shape o f an army is a list o f n values which specify the maximum value of

each in d e x . A rank nanny has n! in te rp re ta t io n s of the order in which its dimensions are

laid out in the file.

To identify the rank and shape of an array of values we need to know if multiple variables

are stored in a single array. If so. the rank of the overall dataset is incremented by one

to provide a variable index which has an extent corresponding to the number of variables

within the array. Any variable at any point in the dataset should then be accessible by the

use of n + 1 indices.

The different effects o f interpreting the shape o f an array can be seen in figure 3.9; the

rliagran. illustrates one dataset with five variables. Three of the variables are schematically

illustrated in the figures by white, grey and dark grey colouring; these three are dependent

upon the remaining two independent variables, the ‘height’ and ‘width’ dimensions of the

array. Overall, we find a total of three dimensions for the array (the height, width and

CHAPTER 3. DATA INPUT CONSIDERATIONS 65

a) width, height, data

c) width, data, height

e) data, width, height

§

i i ■- :

s
|
V.f'i

I
‘r

H-:7

1
é .

. ■ f ; r

■ j :

d) height data, width

0 data, height, width

Figure 3.9: The 3! possible ways of interpreting the shape of an array containing three
variables over two dimensions

number o f dependent variables), which gives us 3! possibilities for the order in which the

dimensions can be interpreted.

In interpreting structure we have two aims: firstly, to define the metadata for arrays of val­

ues and hence describe the data’s actual storage; secondly, to define the nodal connectivity

involved and thus describe the data’s actual structure.

The results o f such interpretations should be a series of arrays which have scattered, grid-

ded, cell regular or cell variable connectivity. For scattered connectivity nothing more is

required; for gridded connectivity only the array metadata needs to be defined correctly.

Cell regular arrays need to have the type of cell and the index to node relationship defined

before they can be used. This type of structure often refers to nodal variables held in

another array (described in next section). However for structural interpretation we need

to know how to generate the connections required for each cell in the dataset, and hence

only need think about how these connections can be formed at this point. As for cell

variable arrays, there are numerous ways in which their connections can be determined,

This data can have cells formed by references to other arrays containing cell regular data,
references to arrays o f nodes, or dictionary style cell definitions.

3.1.5 Semantic interpretations

At some point the interrelation of data from the file ceases to be a problem for the data

input system, and becomes a problem for the filter stage of the visualization pipeline.

The border for this changeover is blurred, but must be recognised lest we attempt to re­

implement or redesign existing techniques for manipulating data prior to visualization.

Semantic interpretation for data input occurs at this border and describes the processing of

data which has been correctly interpreted from the file. It is required because of two main

problems. First, the structure of the data in the file is unlikely to mirror directly that of

the visualization system. Second, the values in the file may not have a valid interpretation

CHAPTER 3. DATA INPUT CONSIDERATIONS 66

within the visualization system.

Certain locations within a visualization system’s data structures are designed with the

purpose of holding certain types of data, a common example being coordinate data for

nodal positions. Equally some of the processes in visualization systems employ com­

mon interpretations for certain types of data, for example, image data in IRIS Explorer

is recognised as RGB triplets. These standards may differ from those used in the source

program which produced the file and so we find two basic requirements for semantic in­

terpretation, firstly to place variables which have a particular meaning in the correct part

of each data structure, and secondly to offer conversions and transformations which allow

data not directly supported by the visualization system to be used.

The next three subsections will outline examples of semantic interpretations and conver­

sions necessary to enable a visualization system to use a particular kind of data. First is

the compatibility of primitive types, the second is concerning visualization variables and

the third is concerning indirection variables.

Compatibility of primitive types

Previous sections have predominantly dealt with finding and describing the content within

files, With this knowledge we still have a crucial problem; it is not whether we can decode

the file into an equivalent data structure, but whether we can store and use this decoded

data. Interpretations may result in data which, though correctly extracted, cannot be used

directly by the rest of the system; such data will require conversion.

If we cannot support a file’s primitive binary value representation, then a safe conversion

must be provided to force the values into something that the visualization system can use.

For example, if a particular visualization system cannot manipulate 16-bit unsigned inte­

gers then an appropriate conversion, into a type which it can manipulate, will be required.

CHAPTER 3. DATA INPUT CONSIDERATIONS 67

Concerning visualization variables

Not all types of data have a direct visual mapping. Variables without such a mapping

are abstract and can be mapped to any compatible abstract visualization object. However

those variables which do have a visual meaning can require additional interpretation for

their use in a visualization system. Three examples of visualization variables follow which

describe some of the problems which can occur:

Coordinates represent a location in physical space, in one to three dimensions. These

could be in the Cartesian coordinate system or another axial system such as polar,

cylindrical or toroidal. In both IRIS Explorer and IBM Data Explorer there are spe­

cially allocated sections of the data structures that contain coordinate information.

Axial systems that are not supported will require a safe conversion to one that is,
for example, converting polar coordinates to Cartesian coordinates.

Glyphs are used to represent data comprising multiple values per node, which alter some

visual property of a graphical object. One example la two dimensional directional

vector arrows, which use two variables, or one variable consisting of two compo-

nents, to set the direction of the arrows.

An issue arises when using glyphs due to the order in which the variables are in-

terpreted. If the visualization system’s interpretation differs from the storage in the

file then the variables will need to be reordered. Linked with this Issue Is a need

to separate the variables which are to be rendered using glyphs from any others in

the Equally the processes which generate glyphs often require only a sin­

gle array containing the necessary variables. Overall, visualizing data using glyphs

requires the ability to group, separate and reorder variables In airays.

Colour data represents an image or texture using one or more colour channels. Using

colour presents two difficulties. First there are many different colour models, and

hence many different meanings can be assigned to the variables in a colour tuple.

CHAPTER 3. DATA INPUT CONSIDERATIONS 68

Several examples include: greyscale; red, green, blue (RGB), hue, saturation, value

(HSV); cyan, yellow, magenta, black (CYMK); red, green, blue, alpha (RGBA).

If the colour model is not supported by the visualization system, then the colour

values will require conversion. For example, a HSV triplet to an RGB triplet. The

second problem relates to the way that the colour channels are stored in an array. An

example is the triplets o f a Windows bitmap picture (BMP), which uses the RGB

colour model but stores the values in reverse order from blue to red, resulting in a
requirement for visualization software to reorder the values.

Three major requirements can be extracted from this discussion of visualization variables.

These are: the ability to extract, group and reorder the arrangement of variables in an

array; conversions for colour and coordinate data into compatible forms, the ability to

allocate variables to a particular section of the system’s data structures.

■Visualization systems also contain variables which are used to link nodal values in other
arrays together. These‘indirection variables’ are described in the next section,

Concerning indirection variables

Not all that Is extracted fon t a file contains measured values relevant to the data - some

provides a useful way o f compressing or structuring the data. Reference data and iden­

tifier values are two examples. Values in reference data represent nodes whose actual

values are stored in another array or location. This location is indexed by the reference

value and so can be found if the source data is known. Cell variable and cell regular

data structures are often stored using this method, with nodal data held separately from

connection information. Colour table images are another example where reference data is

used to reduce the amount o f storage needed by storing references to colours in an array

which has gridded connectivity.

Identifier data is another example of indirection data. Instead of referring to tuples or

CHAPTER 3. DATA INPUT CONSIDERATIONS 69

CHAPTER 3. DATA INPUT CONSIDERATIONS 70

a) b)

Figure 3.10: Arrays illustrating the absence (a) and presence (b) of identifier data

records by an offset index from the start of the array, an identifier variable can explicitly

state the tuple’s order or give a unique point of reference in an array. Identifier data is

not used for the purposes of compression, and has utility often based upon the notion of

a unique identifier within the source software. This type o f variable is illustrated in table

3.10 where coordinate values x, y and z are listed a) without and b) with identifier data.

A common use of identifier data can be found in file formats storing cell-regular and cell-

variable data. Finite element data is just one example of an application field that uses

identifier data. References to specify individual cells are held in another array or data

structure. These can refer to either an index value in table a) or an identifier in table b).

In a similar manner connectivity data can also contain identifier data. This can allow cells

constructed from nodes to, in turn, be used to construct more complex cell structures. For

example, hexahedral cells can be constructed using six references to quadrilateral cells.

3.2 The role of user knowledge in data input

The most complex and necessary series of interactions which most visualization system

users face is importing their data. There needs to be a way of enabling the user to find a

solution, because no generic, automatic solution exists. Users have an important role to

play in the problem of data input. For current solutions they have to choose the correct

parameters and program the correct function in order to load their data. In the system we

id X y Z

23 *23 V23 223
42 ^42 2/42 242
10 £10 yio 210

idn Xid Vid Zid

X y z

Xq Vo 20
X i y i 2 l
X2 1/2 22

Xn Vn Zfi

71

propose they will not require such detailed knowledge, but any they do have can be of

value and utilised to speed up the process of data input. In order to see the value o f user

knowledge we need to look at what they know, in terms of technical and application-based

experience.

A user’s knowledge can be categorised by looking at how they have worked with the data,

source software and target visualization system. At this high level we cannot directly

describe a user’s technical skills or knowledge but their time working with the data does

give us insight into what sources of information they may possess from their experiences.

CHAPTER 3. DATA INPUT CONSIDERATIONS

Table 3.4: User knowledge of a file input problem

Table 3.4 illustrates the different categories and levels of experience a user can have when

attempting to solve a file input problem. The first category is experience with the visual­

ization system into which they will be importing the file. If they have no experience or are

just a user then they may not be able to customise the system to load their data. The result

is that they will be unable to use the system for their data without help from an expert or

visioneer. At this level we need to provide non-technical tools for the description of data,

as the user may not share terminology commonly used for describing the data they want

to load. Alternatively, expert experience in this area means that the user is capable of

altering the system to meet their own requirements. In this case we should try to simplify

the task of input so that it takes less time and fewer resources.

The second category of user knowledge covers their experience with the source software

that produced the file. With no experience of the software, the user will have no knowl­

edge of the file format used except for clues such as the file extension or what others might

have told them. Users o f the source software may have an idea what sort of data is used

Source software
experience

None
User

Expert

Experience with
data

Viewed
Worked with

Visualization system
experience

None
User

Expert

72

and may also have knowledge about the way in which the data needs to be processed. The

author of the software should be able to specify in detail the data structures used and the

format of the file.

The last category of user knowledge covers their experience with the data itself. This is

the most effective source of knowledge for our input problem as it is not usually specific

to a particular program, and does not require the user to have worked with any particular

software. Thus it is a general source of information and may be more commonly available

than the others so far considered. If the user has ever viewed the data in a numeric form,

they may be able to describe maxima or minima of the dataset, or the number of variables,

and types of values involved (floating point or integer). Moreover if they have ever seen it

visualized they may know its dimensionality or be able to correct its interpretation if this

is in error. If the user has analysed the data they may have knowledge about the number of

variables, what they measure and their structure or type of structure in some field specific

terminology.

If the user has all the details about their data, the file and the target system then the

problem of file input is how to specify these details in a swift and simple maimer. If they

lack knowledge about aspects of their data the file and the system, then for each of these

knowledge deficits they will have to discover the values and interpretations they require.

3.3 Summary

In this chapter we have described in detail the problems faced when we attempt to inter­

pret a file. The data models illustrated in chapter 2 present the structural and semantic

attributes o f scientific datasets. They focus on the data requirements for presenting visual

information and, therefore, the data structures relevant to producing a display. They do

not focus on the low-level representation of these structures or file storage needs. This

chapter has taken such descriptions and illustrated how they relate to file storage; it has

CHAPTER 3. DATA INPUT CONSIDERATIONS

also shown the different interpretations needed to represent values in file storage. From

this we have defined several key notions o f how files are organised:

• A file’s content can only be used after a series of interpretations and transforma­

tions;

• Files contain many values which need to be interpreted. These values can be data

or they can be file- or content-oriented metadata. Data comprises the variables that

need to be stored for a scientific dataset. Content-oriented metadata describes or

controls the description o f the data. File-oriented metadata describes or controls

the description of the file;

• File content can be interpreted at three levels

• The first set o f interpretations describe the binary and plain text interpretations

needed to represent individual values;

• The second set o f interpretations are the structural interpretations. They show how

the different types o f connectivity, defined by the data models from section 2.1, can

be represented using arrays of values;

• The third set o f interpretations bridge the gap between file content and visualiza­

tion data structures. They address the need to place variables, as defined by the

data models in section 2.1, into areas of the MVE data structures that reflect their

meaning.

In addition to these key notions, this chapter has described the importance of user knowl­

edge in the file input process. Section 3.2 outlines the different levels of knowledge that

a user may have about their file input problem and how this affects the complexity of

forming a solution.

CHAPTER 3. DATA INPUT CONSIDERATIONS 73

Chapter 4

A new approach to file input

This chapter will present a new interactive approach for solving file input problems. This

approach will be supported by a model and architecture for file input, which will define

the necessary interpretations required to solve such problems.

4.1 Approach principle

The approach we propose should be as flexible as existing scripting and programming

methods. It should allow inteipretation to be parameterised where required and be simple

and consistent in usage with the rest of the target visualization system. A core part of this

approach will be to unpick the process of importing data into a more detailed model of

how data is retrieved and then stored within visualization systems.

The common requirement among loading systems has been identified in section 3.1.1

as specifying the right interpretation. In the previous chapter, the user’s knowledge was

highlighted as a valuable asset in solving file input problems. The user’s participation will

always be needed as either part of forming a solution or verifying one. By focusing on the

high-level data aspects of a problem, the user’s knowledge may be more easily applied to

checking the interpretation used for a file and specifying its content.

A key problem in the creation o f file input solutions, is that some information about the

74

75

way data is stored may be missing. In these cases, a methodical examination of different

file input parameters is needed. If we use the notion of ‘forensically’ examining of a

file, by taking what is known about its content and then trialling different parameters and

interpretations to gain insight into any missing information, this could lead to a better

specification o f the file’s content.

In such an examination there will need to be tools to discover (or rediscover) these values.

Feedback is an essential part of the way this approach will tackle the problem. The ability

to provide a user with interactive or near interactive visual results from parameter changes

should enable them to trial solutions in a timely manner. Also, in providing the right kind

of feedback we may be able to speed up the process of importing a file and help the user

to find errors in their file input solutions.

Our approach is to abstract away from describing different types of file format, instead

pursuing solutions for different types of data. The aim is to produce a widely applica­

ble solution for file input problems and encompass a wide range of problems. Taking a

data-oriented point o f view, many file formats can be seen as containing the same data

constructs; it is this which will allow the design and creation of a general solution to the

file input problem. The use of appropriate feedback and parameter trialling is another

important part of this new approach. By enabling the user to apply their knowledge to

the problem, and discover missing specifications for their file content, some file input

problems may be greatly simplified.

The next section will describe a dataflow model which provides a high level description

o f the relationship between interpretations in the file input process. Following the model

a software architecture will be described which defines the low level processes by which

the model may be implemented.

CHAPTER 4. A NEW APPROACH TO FILE INPUT

4.2 The file input dataflow model

Current solutions to the problem of data input for scientific visualization have no common

thread, no standard way to break down the problem, and no specific way of importing a

file’s content into the application’s data structures. Because scientific visualization has

never had a specific or well described model for the storage or retrieval o f data, many

ad hoc approaches have been used instead. This in turn has resulted in users having to

program and script their input solutions. Each instance o f a solution is very similar in

functionality to the next, implemented in a similar manner, but with just enough inflexi­

bility to be useless for anything else.

Our contribution to this field is a dataflow model for the file input process that typifies a

systematic decomposition of the problem into three distinct stages that allow us to classify

both the general process for each stage and the data communicated to the next stage. With

this model a more generic approach to solving file input problems can be adopted. The

model is illustrated in figure 4.1, with the value, structural and semantic interpretation

stages each having the type of data they require flowing between them. Value interpre­

tation interprets bytes from the file into usable values. Structural interpretation takes

these values and both describes their connectivity and forms them into arrays. Semantic

interpretation provides support for modifying arrays into meaningful structures and for

converting the values into a form which can be used by the target visualization system.

CHAPTER 4. A N EW APPROACH TO FILE INPUT 16

Figure 4.1: The dataflow model for file input

The first of the three stages, the value interpretation stage, takes raw file content and

converts it into values. It does this by interpreting the data into a machine-usable binary

form, e.g. converting four bytes into a floating point value, or converting the ASCII

CHAPTER 4. A N E W APPROACH TO FILE INPUT 77

sequence‘3402’ into a 16-bit integer binary value.

The next stage provides a structural description for the values passed to it. This structure

is defined in terms of nodal connectivity and the arrangement of values into arrays. Nodal

connectivity is necessary for defining where values lie in the domain of the dataset, and

the definition of arrays determines where values lie within data structures.

Finally the semantic stage allows the grouping, extraction, and referencing of data as

well as conversion of variables to allow them to enter the filter stage of the dataflow

pipeline. An example might be identifying three variables as being components of a three

dimensional vector, or identifying a block of values as depth data instead of height data

for an array of values describing bathymetiy.

4.3 A software architecture for file input

Looking in more detail at how each of these stages breaks down provides a set of inter­

connecting processes which enable the description of different file formats.

4.3.1 The value interpretation stage

As we discussed in section 3.1.1 interpretations are the key to this model, and the value

stage provides the interpretations outlined in section 3.1.2, namely the conversion of raw

file content from bytes into useful binary values.

The input to this stage is a sequence o f bytes of a specified length (the length of the

file), which is essentially a buffer for the complete contents of the file. The stage outputs

values, either as individual values or as sequences of values. These can then either be used

in the visualization software or further interpreted in a subsequent stage. For the most

basic input problems the output from this stage may require no further interpretation. For

example, any data which is a single variable in one dimension could be loaded at this

CHAPTER 4. A NEW APPROACH TO FILE INPUT 78

Bytes

Values

Figure 4.2: The value stage architecture

stage, and if the variable was in a form usable to the visualization system, i.e. did not

require conversion, then no further interpretation is necessary. The interpretation of this

type of data could be visually verified when rendered as a graph or viewed as text.

The first process in this stage is a selection process. Making several selections allows

multiple interpretation pipelines to be made. The utility of such multiple pipelines will

become apparent later.

The question still remains as to which primitive type is held in the selected portion of data;

the next process in figure 4.2 interprets a block of bytes as a specific binary primitive type.

The result o f this process is a sequence of numeric values, including 8-bit values which

are capable of having a text as well as a numeric interpretation. From this process there

are two possibilities for interpreting the resulting values; the first is to continue using them

as binary numeric values, the second is to interpret them as text.

In order to correctly interpret multiple-byte binary primitive types their endian must be

determined. There are two common choices: little- and big-endian and several other

rarely used byte orderings; all could be implemented but the first two are required.

Alternatively, interpreting the bytes as text requires two processes. First the character

values need to be parsed into separate strings and then the next process down converts

these strings into binary numeric value representations.

The output from this stage comprises both individual values and sequences o f values.

These can be used or visualized in a manner which allows the parameter choices for value

interpretations to be verified. This verification can be done either by comparing the data

values produced at the end of the value interpretation stage with known values in the file

or by graphical evaluation using a histogram or graph.

4.3.2 The structural interpretation stage

This stage allows us to re-describe sequences of values as arrays o f values. Moreover,

it enables us to recreate nodal connectivity for the data in these arrays. It enables multi­

variate and multi-dimensional data to be represented within the visualization system by

specifying a description o f its structure. Once again, a selection process can be used to

CHAPTER 4. A NEW APPROACH TO FILE INPUT 79

80CHAPTER 4. A NEW APPROACH TO FILE INPUT

separate contiguous blocks of values for different interpretations.

Values

Arrays

Figure 4.3: The structural stage architecture

After values have been selected by the ‘Select value(s)’ process in figure 4.3 they have two

types of interpretation imposed upon them. The first is applied by the ‘Describe Array’

process which places the values in a rank n array by associating array metadata with

the selected values. Next, the ‘Determine Array Connectivity’ process allows an array

to be described in terms o f scattered, cell variable, cell regular or gridded connectivity.

The output from this process consists o f arrays of values with some form of connectivity

relationship.

4.3.3 The semantic interpretation stage

This stage is an interface between the arrays of values produced by the structural inter­

pretation stage and the data structures of the target visualization system. It deals with

the restructuring and conversion of arrays coming from the previous stage and determines

potential relationships between them. The results of this stage are output as variables that

can be visualized.

CHAPTER 4. A NEW APPROACH TO FILE INPUT 81

Arrays

Figure 4.4: The semantic stage architecture

In this stage multiple arrays o f values can be sliced and stacked in a different order to

produce a form that is useful to the system. These processes are illustrated in figure 4.4.

Reference variables are interpreted here, with variables in one array referring to either

indices or variables in another array. Finally, conversions are applied to variables which

are not directly usable by the target visualization system. Examples include variables

82

identified as requiring normalisation or processing into a different axial system such as

transforming polar coordinates to Cartesian coordinates.

4.3.4 File input parameters

Each stage o f the architecture has processes that transform data and the user’s control

over these processes is dictated by the parameters each one requires to describe their

respective transformations. These file input parameters include metadata and file control

values needed to make the data usable; they can be described as either explicit or implicit.

Explicit file input parameters are found in the file and comprise metadata and control

parameters which have been stored alongside the data to enhance the flexibility of the file

format. They describe aspects of this data which may differ between files of the same

format. Examples of explicit file input parameters often include array dimensions, like

the height and width of an image file, physical bounding boxes and slice separation in CT

datasets.

Implicit file input parameters for the purposes o f this research can be regarded as file

input parameters which cannot be found in the file, instead they are usually codified into

input software. Implicit file input parameters can include the number of colour channels

in an image file format, the binary primitive type used for a variable and the locations of

different data items within a file format.

4.4 Summary

This chapter has described a new approach to producing file input solutions. To support

this approach a model of file input has been put forward that illustrates the interpretations

required to input a file (outlined in chapter 3).

The requirements for producing these interpretations have been described in terms of the

CHAPTER 4. A N EW APPROACH TO FILE INPUT

processes and metadata necessary to parameterise the process of file input. The notion

that metadata can be built into the reader and found in the file or user has been posed,

and the notion that the user can prove an effective source for metadata has been further

explored.

The file input dataflow model has been presented as an effective way of breaking down the

problem along with a flexible software architecture for visually programming file input

solutions. The benefits of such a system include a flexibility which is similar to that of

programmed or scripted solutions, and some of the simplicity and definitive user choices

for interpretation which can be found with monolithic input solutions.

The next chapter describes an implementation of the architecture, named the “Interactive

File Input Toolkit” (IFIT), which allows the solution for many of these file input problems

to be described.

CHAPTER 4. A N EW APPROACH TO FILE INPUT 83

Chapter 5

Using the Interactive File Input Toolkit
(IFIT)

The previous chapter discussed the problems that are involved in describing data and ac­

cessing file-stored data; it also described an interpretation-based model for data input that

described the necessary interpretations to convert file content into useful data structures

within an MVE, The file input architecture following the model describes the processes

that are required to interpret a wide range of file formats using a data-oriented view of file

input. This chapter will first outline a new approach to producing solutions to file input

problems before presenting a software toolkit for solving file input problems named IFIT.

5.1 Forensic file examination

In chapter 3, user knowledge was highlighted as a valuable asset in solving file input

problems. User participation will always be needed as either part of creating a solution

or verifying one. The amount users know about their file formats and data sets affects the

complexity o f creating and verifying a solution. The problem is that some information

about the way their data is stored may be missing; the notion of ‘forensic* examination

attempts to tackle the problem by developing tools that can be used to discover (or redis­

cover) this information. Once captured, the information can then be applied in the creation

84

, V- ■ - 0 :
; V"'a

■ -v : •■■■'

■ 'S'.

4■ ;S; nS V S:; S. S

or validation of a file input solution. Examining a file forensically involves taking what is

known about the file and data it contains and applying it in an investigation where the file

is tested to discover what input parameters are needed and what they are. This is done by

using a combination of traditional file analysis techniques and iteratively trialling param­

eter values using visual tools. This approach for discovering and then extracting stored

data is technically possible with some existing tools and through programmed extension.

However, current solutions can hamper the user, firstly with the time taken to set up each

trial and secondly by their lack of appropriate feedback to analyse the outcome.

Facilitating forensic examination requires that the user is provided, where possible, with

adequate feedback and interactions which will allow the rapid trialling of different input

parameters. Performance improvements in comprehending data and parameter change

by using interactive feedback can be seen in the field of computational steering (Johnson

and Parker 1994). In this field, simulations are bi-directionally linked to a visualization

allowing the user to change parameters by interacting with the visualization. This real­

time feedback allows the user to see the effects o f different parameter changes and test

different ideas much more quickly and intuitively than with a batch mode simulation.

Linking similar visual feedback mechanisms to insightful visualizations o f file data at

different stages in the data input model would facilitate forensic analysis by allowing

users to trial what they know and discover what they lack.

A tool to solve file input problems forensically requires new and informative views of

file storage in addition to those from existing diagnostic and examination tools used by

visualization experts. Binary files currently present the greatest problem, as the standard

means of examining their content involves the user visually inspecting them with either a

text or hexadecimal display tool. While useful to those who know what to expect and are

seeking verification, these views are largely meaningless to most users and offer little in

most cases.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (JFIT) 85

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 86

5.2 Final requirements for a file input tool

The final requirements for a file input tool are described in the three sections below; they

are broken down into requirements for the user, output, functionality and implementation.

5.2.1 User requirements

The first task any MVE user faces before they can visualize their data is to load it. As

a result this aspect o f an MVE’s usability has important ramifications for all users. The

following requirements relate to the needs of MVE file input tool users.

Consistency of interface The GUI and usage of this tool must be consistent Nielsen

(1993) with those found elsewhere in the MVE.

Unambiguous terminology Terminology used in the interface must avoid using words

which are overloaded with many field-specific meanings that could cause problems

for users from a particular field.

Clear feedback and Outputs The effect of parameter choices should be illustrated to the

user by an appropriate feedback mechanism. Feedback should always be available

to the user regardless ofthe stage they are at in the problem solving process. Outputs

should allow validation testing to be performed upon any solution and errors to be

traced to a particular stage of the file input process.

Transparency and accuracy The user must be made aware of any changes that have

been made to the raw data values during the file input process. Equally, operations

which modify data values should do so in a manner which preserves their accuracy.

The importance of providing the user with an accurate picture of what has been done

to their data up to the point of rendering is crucial for retaining scientific accuracy

and integrity in the way any rendered output is interpreted.

87

5.2.2 Output requirements

IRIS Explorer is to be used as the primary MVE platform for demonstrating this file input

tool. Outputs from this tool must use IRIS Explorer’s core data types. They must also be

compatible with IRIS Explorer’s conventions for interpreting different types of data. The

following output requirements mirror the data constraints of IRIS Explorer.

Data structures IRIS Explorer has three core data structures of interest to this work:

lattices, pyramids and parameters. Any tool must output these to be of use in the

environment. Lattices are the main storage medium for data values; they offer the

ability to hold multidimensional, multivariate gridded and scattered data, provided

the variables are all of the same binary primitive type. Storing multiple variables of

different binary primitive types requires multiple lattices to be used. The pyramid

data type (The 2000) uses lattices to store nodal data which is then referred to

by connection data to store cell-regular and cell-variable data. Pyramid cell-based

data only allows index offset references as opposed to identifier reference data for

connections. Finally IRIS Explorer supports generalised parameter values.

Common data interpretations The fixed interpretations which IRIS Explorer expects

for graphical data are in the following forms:

• colour image pixels are described using RGB triplets,

• coordinates are described using the Cartesian axial system with one to three

components in an XYZ ordering,

• vectors can be described using one to three components in a XYZ ordering.

Binary value restrictions IRIS Explorer supports 8, 16 and 32-bit signed binary inte­

ger values in addition to 32 and 64-bit floating point values in both the lattice and

pyramid data types. This means that unsigned binary integer data and other binary

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT)

88

value interpretations will require conversion or casting into an appropriate binary

primitive type.

5.2.3 Functional requirements

The scope of the project described in chapter 1.6 and analysis of existing systems from

chapter 2, along with experience of producing file input software, produces the following

required functionality for an MVE’s file input system.

Broad applicability The software needs to offer a way of producing file input solutions

for a wide range o f MVE users who have non-standard file formats which cannot

be input in a trivial manner by using the existing tools.

Support for generic data operations A dataset may be spread over multiple files; con­

versely, many datasets may be condensed together into a single file. The file input

architecture illustrates all the processes necessary to input file data; any implemen­

tation must offer all the minimum functionality outlined in the architecture.

Extensible The software needs to offer the ability to extend the system to allow mainte­

nance and development. This enables files which present a unique challenge to the

system to be handled using a combination of IFIT and programmed extension.

Reusable The ability to produce solutions that enable tire user to load files of the same

format which have subtly different input parameter values is required. These solu­

tions should automatically take values from the file (if they exist) to set parameters

needed in the input process. A complete solution which can be reused should be

a possible output of the system. Other partial solutions are then possible for prob­

lems that, due to a lack of user knowledge or limitations of the tool, may still prove

useful to the user and perhaps provide a staging point for extension.

Interactive feedback Appropriate visual feedback needs to be generated for the user.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT)

This feedback should be linked to the underlying file input parameters using direct

image manipulation (Chatzinikos and Wright 2003).

5.2.4 Implementation requirements

A key aim of the implementation is to prove the utility of the architecture and dataflow

model for file input. It should also illustrate how effective the forensic approach is to

producing file input solutions and the worth of visual feedback in file input problems.

Several simplifications can be made with respect to implementing a solution based upon

these general aims:

• The tool will only support the binary primitive types that are available in standard C.

These types are fairly comprehensive but it must be acknowledged that others exist,

examples include binary coded decimal numbers and fixed point binary numbers.

For a complete solution, other binary primitive types would need to be identified

and be developed as part o f the toolkit’s interpretations;

• Arrays that contain multiple binary primitive types can use only their first or last

dimension to index the different variables in an array. This is another reasonable

assumption for the majority of input files, and likewise, could be developed further

after this project.

As IRIS Explorer is the test environment for this project, its data types and their inter­

pretations have been identified as a desirable part o f IFIT’s output. Also IRIS Explorer’s

extension mechanisms must be taken into consideration. These include Schema scripting,

a module and data API and the ability to extend the system using FORTRAN, C or C++

programming.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 89

90

5.3 An overview of IFIT

IFIT is a collection of modules that extend the file input facilities of IRIS Explorer. It

is implemented using C and C++ with both OpenGL and the IRIS Explorer data access

API, as an extension to IRIS Explorer’s module library. IFIT allows the construction of

module networks which are capable of interpreting file content into usable data. Unlike

many existing systems IFIT leaves the monolithic and ad-hoc approaches to file input

with a modular design. The inherent flexibility of modular networks and several new

visualizations enable the user to forensically examine files, allowing them to investigate

and verify different interpretation parameters in real-time.

IFIT modules can be placed into one of the three following groups: transformation, spec­

ification and visual interaction. This section will briefly describe each of the groups in

more detail as well as illustrating each module’s usage and location in the file input archi­

tecture.

5.3.1 Transformation of user data

Transformation modules implement the core of the file input architecture, converting file

content to values, arrays and then variables. Table 5.1 shows both IFIT extensions and

existing IRIS Explorer modules which implement the transformation sections of the file

input architecture. Modules are located in the table with respect to their inputs and out­

puts, these correspond to the data transferred between the stages of the dataflow model

for file input.

The location of IRIS Explorer’s modules in this table is a result of its existing data ma­

nipulation functionality which focuses upon arrays and variables. These would be the

normal output from its original file input software and modules. The ability to handle

arrays and variables is needed in the filter stage of the visualization pipeline. At this level

the difference between the variable stage of the file input process and the filter stage of

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT)

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 91

the visualization input pipeline becomes blurred.

IFIT’s transformation modules fill the positions outlined in the dataflow input model for

which IRIS Explorer lacks an implementation. IFIT also provides modules that allow the

parametric description of variables and address the user’s need to produce more complex

structures to describe their data. These modules are described in the next section.

Inputs
Bytes

Outp
Values

uts
Arrays Variables

File location ReadRawBinary

Bytes SelectBytes

SearchSelectBytes

BytesToValues

TextToValues

TextRecordToValues

Values Select Values ChangeDim l-at

SelectValues

Arrays StackDim Lat

SliceDim l-at

C ropL att

DimToVar

C hannelM ergef

Variables C hannelSelectf M ixert

SphereToCartest

M uluChannelSelectf

Table 5.1: Transformation modules in IFIT and IRIS Explorer; those marked f are pro­
vided with IRIS Explorer. The table shows the input and output of each module by its
location.

5.3.2 Specification modules

IFIT has several modules which combine or add information to arrays and hence do

not transform the data but specify additional attributes for its interpretation. Table 5.2

shows specification modules and their main inputs and outputs and linked usage, Com-

posePyr takes an array of connections and an array of nodal data to create cell-regular or

cell-variable structures. IFIT extends this module’s functionality with VarldentifierMap,

which takes both arrays and converts the connection data from name-based to index-based

references. The ComposePyr module can then use these references to define connectivity

92

in conjunction with nodal data. Alternatively IRIS Explorer’s Trangulate2D or Trian­

gulate? D modules can be used with just nodal data to produce a connected cell-regular

structure.

SetUniformCoords and SetCurvCoords both provide the user with a way of specifying

the physical coordinates for a gridded array. SetUniformCoords provides three different

ways o f specifying coordinates for a bounding box: minimum per dimension with either

the maximum, range or sample spacing defining the bounds in each dimension. This

enables the user to use metadata directly for defining the bounds of their data in any of

these three forms. SetCurvCoords enables the user to combine an array of data values and

an array of coordinate values to produce data nodes with individual coordinate values for

body fitted, cell-regular or scattered data.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT)

Inputs Oi
Gridded data

inputs
Cell regular data

Scattered nodes TriangulatcSD f

Triangulate3D t

Gridded array SetUniform Coords

Gridded array and
Coordinate array

SetCurvCoords

Scattered nodes array
and array of index references

C om posePyrf

Scattered nodes array
and array of named references

C om posePyrf

VarM enttfierMap

Table 5.2: Specification modules in IFIT and IRIS Explorer; those marked f are provided
with IRIS Explorer. This table shows which modules are needed to specify the two types
of output data given the set o f available inputs.

5.3.3 Visual feedback modules

IFIT contains three modules which allow the forensic discovery and verification of file

input parameters by using interactive feedback. The first of these modules is called

TextView and provides a window that shows byte values inteipreted as plain text. It has

several options for interpreting standard end-of-line characters and can show the effects

of using different delimiters to separate values in the file. Its main benefit compared with

an external text editor is that, as part of the environment, it can be more closely integrated

with IFIT modules. TextView is a useful tool for dissecting a file format: however, if the

file contains binary data then all it can do is verify that fact because the output will appear

largely meaningless. In this case there would normally be little recourse for a user, unless

they had either produced the software which had output the file or had a detailed descrip­

tion of its content. IFIT solves this problem by providing Image View and VolumeView.

Both are modules that can produce a view of a file’s content regardless of how it is stored,

ImageView generates a greyscale image of the values with which it is provided. The user

interacts with the image using mouse drag actions to change its width; this activity is in

real-time and forces the given values to be interpreted as a new image with the new width.

The visual effect is both simple and powerful allowing ID arrays held in the file to be

located and, for 2D arrays, their dimensions to be found. Moreover, the artefacts which

are generated by incorrect interpretations can be highly effective in identifying which

interpretation parameters are wrong or what else is in the viewed area of the file.

VolumeView extends the functionality of ImageView into 3D, presenting the user with

three views and allowing them to find the shape of a rank 3 array. Each o f VolumeView’s

three views present a slice through the array using a different axis. Three views alone

cannot convey the content of the entire array, so animation has been provided to allow

the user to have a better view animation. The animation pushes each slice through its

respective axis in the array, preventing arrays with large areas containing zero values

from causing the user problems because they have no information and so present no useful

view. The animation also provides additional feedback that can guide the user toward the

correct dimensions of a rank 3 array.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 93

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 94
5.4 Using the transformation and specification facilities

ofIFIT

This section describes how IFIT can be used to solve file input problems. First, IFIT’s

general usage will be discussed, followed by examples of simple module networks for

extracting different types of data from files.

Loading any file using IFIT requires the construction of an appropriate module network;

this involves placing modules into the MVE work area and then setting their parameters

and ‘wiring’ them together. Wiring modules is a simple process of clicking on the output

button of a module and then on the input button of another module to create a pipeline

between those modules which transfers data. An IFIT module network can extract single

values and arrays of values from a file; once the required values and arrays have been

obtained they can be used to describe other aspects of the dataset, combined or visualized.

The resulting topology and choice of modules in any network is dependent upon the

number, structure and content of files that are to be input, in addition to the intended

usage o f the solution. The way in which a network is constructed depends upon how

much of the file’s content the user requires in order to visualize their dataset, and the

user’s knowledge about their data and file storage.

Figure 5.1: A simple 1FIT example

For example, figure 5.1 shows a network of four IFIT modules that input a file containing

a header followed by a single array of binary values. The first module in this network is

ReadRawBinary which accesses the file and produces a cache o f byte values. The next

module linked to ReadRawBinary’s output is a SelectBytes module which selects the data

portion from the file. Following this a BytesToValues module interprets the selection

into a ra n k 1 array of values. The last module, connected to BytesToValues’ output, is

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 95
ChangeDimLat which specifies the rank and shape of the array; it also assigns a bounding

box with the same shape as the array which permits the array to be rendered. The output

from ChangeDimLat can be rendered or manipulated with the many tools at the user’s

disposal in IRIS Explorer.

The network in figure 5.1 can be used to input one array with a maximum dimensionality

o f ra n k 9, which is the limit in the user interface in ChangeDimLat. To describe this

array six parameters are required. These describe the location and content of the array

with an additional two to ten parameters needed to describe the rank and shape of the

array. It illustrates the type of module network needed to input a file containing only

implicit file input parameters (See section 4.3.4 on page 82 for a description of both

implicit and explicit file input parameters). Explicit input parameters can dramatically

affect tiie complexity of solutions made using IFIT, because each one requires a set of

interpretations, which for the majority of cases are not shared with other items of data

held in the file.

SétósSgi** 0 B#>uieV ito i D Clwi-vfclW itauZi t i i
C U Z I C Z ! i i l l i i l

’ P eStKÌa'v’ i«*.:?« Q
i___ CJ l) j [I

£3 (*

Figure 5.2: A module network that can import a file containing an array and two explicit
parameters which define its shape

The module network in figure 5.2 illustrates how explicit parameters can be used to spec­

ify an array using IFIT and how they affect the complexity of a solution. In the example

a binary file stores a ra n k 2 array and two parameters, that describe die array’s dimen­

sions. The solution interprets both the parameter values as dimensions for the array, and

then interprets the array and sets its shape using the two parameters, which are wired into

ChangeDimLat, The first module in this network is ReadRawBinary which accesses the

file and produces a cache o f byte values. The next two modules, linked to ReadRawBi­

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 96

nary’s output, are both SelectBytes modules which select the data portions from the file.

These are followed by two BytesToValues modules which interpret each selection into a

differently typed rank 1 array o f values. At this point the way the values are interpreted

differs; the lower route has two SelectValues modules which take the array o f two header

values and select individual values to become parameters. The upper route connects to a

ChangeDimLat which re-dimensions the array using the two parameters from the lower

route, finally outputting a rank 2 array o f values.

Complete file interpretations may not be necessary for any given problem; a file may con­

tain data and parameters that are not needed by the user. A file may contain information

which, though needed, can be specified by the user instead o f being described in IFIT.

This choice is dependent upon what the user needs from the file in order to visualize their

data, and whether the user intends to make a solution that allows the repeated input of the

file and others o f a similar format Where the need for access is one-time only, it is easier

for the user to identify their data, extract it and then leave die rest o f the file uninterpreted.

This results in a much less complex solution and a reduction in the number o f modules

and input parameters that need to be specified to input explicit parameters stored in the

file.

When a user needs a solution that can input many files of a format which uses several

explicit parameters to store necessary metadata, each explicit parameter will have to be

interpreted and wired into the network, otherwise the user will have to specify each one on

a per-file basis. If the time taken to accommodate a parameter is less than the time taken

to specify it for the range o f files which will be input, then the choice is obvious. The

choice is harder w hen less is known about the file format, as a search through the portions

o f the file w hich have been left uninteipreted will be required to locate and describe any

explicit parameters which have been discovered.

Array parameters can easily be discovered using ImagcViewer and VolumeViewer. How­

ever if die user is attempting to extract values from portions o f the file containing mixed

binary values or other binary structures, they face a much harder problem. The user needs

to know either where and how they are stored in the file or the actual target value that they

are seeking. Without either of these the problem of extracting values from mixed binary

structures in a file becomes intractable.

If the implicit and explicit file input parameters are known they can be manually entered

by the user into the appropriate stage o f a solution. If not, they will then need to be

discovered using IFIT’s visual tools. Once the explicit parameter values which are needed

by the user have been discovered, their location in the file will need to be found and the

values described using IFIT. These parameters can then be wired into the appropriate

module. The effect o f this is to acquire the parameter from each file which conforms to

the user’s IFIT netw'ork description.

Each value or array we intend to acquire from a file requires an interpretation pipeline to

be created. All pipelines flow from at least one ReadRawBinary module, which caches

the whole file content into memory. Each pipeline allows a different interpretation to be

made o f a selection of the file’s content. The next section will discuss how IFIT modules

can be combined to create networks that can input a user’s data.

Simple value interpretation

Extracting cither an array or a single value from a file requires both a location and value

representation to be specified. The location can be specified with one of two modules,

SelectBytes or SearchSeleetBytes. These provide the ability to select portions o f the

file and allow the creation of multiple independent interpretation pipelines for different

sections o f a file. For example, the file header may require five different single-value

interpretations and the data portion o f the file just one, either way a total of six different

interpretations will be needed to get the respective values out and hence six different

selections to interpret.

SelectBytes offers several different parameters, illustrated in figure 5.3, for selecting the

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 97

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IF1T) 98
„ . J i l l i l l

P ¡Start Ftw.il

Start.............

r SndFoltd

f* St«!otite
r Godot«*

Figure 5.3: SelectBytes’ user interface;.

file’s content. The selected area is inclusive of bytes from the ‘selection start’ to the

‘selection end’. Both ends of die selection can be set to ‘fixed’ or left tree to extend to

the size of the file on changes in the module’s input. Finally, there is a parameter which

selects from which end of the file the selection’s start and end are measured.

These parameters have been chosen to give the user the greatest scope for producing a se­

lection which does not require parameters to be taken from the file. They increase the like­

lihood that the user can produce a selection which does not become invalid with different

files of the same format. SearchSelectBytes does a similar job, although it is more flexible

to change in both the size and position of a selection than SelectBytes. This is because it

uses user-defined search strings to determine the location of an item. Thus, an item’s posi­

tion within the file becomes less of an issue, SearchSelectBytes can output a single value

after matching a single tag, which caters for assignment statements e.g. “w id th ~ 108’’

or it can output a series o f values between a pair of tags e.g. “v e c to r s , . . end".

When a portion o f the raw file has been selected, the next step is to choose an appropriate

module for the selection’s value representation and connect it to the selection module’s

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 99
ü e lp

E n d ian

[[K eep E n d ian mm3
t y p e

j U n s ig n ed B yte

Figure 5.4: BytesToValues’ user interface.

output. There are three IFIT modules that convert file content into values: BytesTo-

Values, TextTo Values and TextllecordTo Values. BytesTo Values, illustrated in figure 5.4,

interprets a sequence of bytes as binary values. TextTo Values delimits and then parses

text value representations as does TextRecordTo Values. TextTo Values’ parameters are il­

lustrated in figure 5.5. It can input values separated by delimiting characters and values

which are stored using a fixed number of characters per value.

Type dì values

v a n te s using:

<* Sep‘.uitingchu.jû(eiE
i: C Fixed Iwigth values
Character sep&utihg values

P © i s t e e s o p a w ie i

. : ■ ■ . 1

Figure 5.5: TextToValues’ user interface

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 100
Finally, TextRecordToValues caters for plain text arrays which have different types of

values. Its user interface is not illustrated as it is very similar to TextToValues with three

additional parameters to specify the number of values per record, which value is to be

extracted and whether the record stores values adjacently in the array using the first di­

mension as the variable index or separated using the last dimension of the array. At this

point the dimensions o f the array are not known, as it has not been inteipreted. How­

ever, if the record length is known then these two arrangements o f values can be found

irrespective o f the array's dimensions.

The output from all these modules can be used in IRIS Explorer. Once interpreted, another

selection at the value level is offered by SelectValues, which has a similar interface to

SelectBytes with the addition o f a single value or array output from which to choose.

Figures 5.6 to 5.8 illustrate three simple module networks that extract individual values

from a file for use as parameters. Figures 5.9 to 5.11 illustrate three other similarly simple

module networks that can extract arrays from a file.

Figure 5.6 shows the network needed to extract a single value, held as a binaiy primitive

type, from a file. It uses the SelectValues module, to take a single value from BytesTo-

Values' output and turn it into a parameter. SelectValues makes a selection with either

user entered or wired in start and end parameters. It can output either a single value or a

range o f values, and, like SelectBytes, its selection bounds can be fixed or free to accom­

modate different sized array bounds. Figure 5.7 shows how three adjacent values of the

same binaiy type can be extracted and used as parameters, and finally, figure 5.8 shows

how tliree non-adjacent values or three values with different binary types can be extracted

from a file.

¡NN*h»f<W| - li r- , ...O 0 h" ¡ u - « 1 !

Figure 5.6: A module network that can import a single parameter from a file

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 101

Figure 5.7: A module network that can import three adjacent parameters from a file

Sc-lfectBiiUs P iVaiua* Q if*-** UfUctVJkitV P
t J C L I d l

L
r

SsteetByth Q t— L/Whty P j**** v / ■ 1J •

- ‘ Q f— TDVlfMetK §;> 0 iH* Srl*ntV#iu*!t«3Ì» ■ Q

Figure 5.8: A module network that can import three non-adjacent or differently typed
parameters from a file

Array manipulation and structural interpretation

The architecture for the structural stage defines how values extracted from a file can be

interpreted as arrays that have a defined connectivity. In addition, the semantic stage

architecture defines how these arrays can be combined or sliced into variables, as well as

offering further aids to define their connectivity. This section will highlight modules that

deal with describing and manipulating array structures and producing different types of

connectivity.

Figure 5.9 shows the network needed to extract a single array of binary values from a file.

The output from BytesToValues is wired to ChangeDimLat, which reinterprets the output

from BytesTo Values from a ra n k 1 array to a ra n k n array (where 1 < n < 9) with

user specified parameters. ChangeDimLat uses a static interface with 9 shape parameters

although its algorithm holds for any shape of array.

Figure 5.10 shows the same functionality illustrated in figure 5.9 but for a file which uses

plain text to store numeric values. Finally figure 5.11 shows how TextRecordTo Values is

wired into a module network to extract three variables from an array containing several

CH APTER 5. USING THE IN TE R A C TIV E FILE IN PU T T O O L K IT (IFIT)

different types of numeric value.

102
RtaSR«*BiM;i □ a □ e**boY*tu« Q OtangtDhriLai Cl i

~ 1

Figure 5.9: A module network that can extract an array o f binary values from a file

P | — rtaTaVtfi»* 0 -i. OvwmmDsN,*! □ 1
1-----------J L _ ------ 1 L L - T J L I I Z J ¡ . . . ______ i

Figure 5.10: A module network that can extract an array of text values from a file

nc.rfP.ivit!»««. D j — O
L1. t.

0
■

Figure 5.11: A module network that handles an array of differently typed text values
extracting three for usage

Any sequence o f values extracted from a file using the modules outlined above can be

used as a one dimensional univariate dataset with either gridded or scattered connectivity.

IFIT’s ChangeDimLat module was illustrated in the previous section; it allows the user to

set the rank and shape o f an array as illustrated in figure 5.12. In addition it produces a

coordinate bounding box which allows the array to be visualized as a univariate gridded

dataset. ChangeDimLat prevents impossible settings from being applied to an array, i.e.

those settings which would extend the array’s size beyond the number of values it actually

has. It also warns the user when the settings produce an array that does not include the

complete sequence of input values.

Essentially arrays which are output from ChangeDimLat can be used as gridded multi­

dimensional univariate data. Multivariate data held in a single array can be described

using DimToVar. DimToVar takes a single parameter, this specifies which dimension of

the array which is to be interpreted as a variable index. This changes the meaning of the

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 103

Figure 5.12: ChangeDimLat’s user interface; the rank of the array is specified with the
‘Dimensions’ parameter, this enables parameters 'DimO’ ... ‘Dim9’ which are otherwise
hidden. These parameters are then be used to specify the shape of the array

structure in IRIS Explorer and raises the number of variables in the array from one to

the shape of that dimension, whilst reducing the rank of the array by one. For example

if a ra n k 3 array has the dimensions: 2, 50 and 45, converting the first dimension into

a variable dimension would mean that there would now be two variables, in an array of

rank 2 with dimensions o f 50 and 45. DimToVar’s output can be used as a scattered or

gridded multivariate dataset.

Three other modules provide array manipulations. StackDimLat sequentially combines

arrays of ra n k n with the same shape into a new array of ra n k n + 1. The shape of this new

array is that of the source arrays with the additional dimension describing the total number

o f arrays merged. This is particularly useful for sliced volumes where each 2D cross-

section o f the volume data is held separately. StackDimLat has a clear parameter which

frees the currently accumulated data and an output option which sends an accumulated

dataset every time the module is fired. The final parameter defines which dimension data

is slacked. SliceDimLat has the opposite functionality; for any ra n k n array input it

outputs a ra n k n I array taken as a cross-section through a chosen dimension of the

array. Its parameters select first which dimension the cross-section passes through, and

second, which slice in that dimension to extract. Finally, CropLat allows a portion o f an

CHAPTERS. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFJT) 104

array to be selected by choosing minimum and maximum index ranges.

Variable definition

The semantic stage o f the file input architecture specifies selections and conversions which

alter the meaning of arrays and values within the MVE. IFIT supports this stage with

a range o f modules that enable the user to combine and manipulate data to use IRIS

Explorer’s own conventions for a wide range of different variables.

Any module after the value interpretation stage outputs sequences o f values that can be

used as a variables. Therefore, an output from BytesToValues, TextToValues or Tex-

tRecordToValues can be used as a variable; as can any outputs from modules which

process their data. Multivariate arrays can be described using IFIT with two different

approaches. First, the array’s rank and shape, including the variable index described in

chapter 3,1,4, is defined using ChangeDimLat. DimToVar is then used to specify which

dimension s o f the array’s shape refers to the variables in the array, where 1 < s < rank.

This is usually the first or last dimension of the shape, however, DimToVar can turn any

dimension into the variable index. The output for DimToVar is a rank — 1 data structure

with a number o f variables corresponding to the size of dimension s. Second, multiple

univariate arrays which have the same shape can be merged into a single multivariate ar­

ray using ChannelMerge. Variables can be selected from these multivariate arrays using

the existing ChanndSelect and MultiChannelSelcct modules, which respectively output a

one or subset of the variables in the multivariate array which was input.

Variables can be separated from a multivariate array using IRIS Explorers existing Chan­

nelSelect or MultiChannelSelect modules. To use some types o f variables their order

must be altered, for example BGR colour channels cannot be directly interpreted in IRIS

Explorer, instead they need to be arranged into an RGB order. Changing the order o f

variables can be done in two ways, first if the data has not had its variable index converted

with DimToVar then it can be sliced along the variable index and then ChannelMorgcd,

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (¡FIT) 105

(a) Slicing the array to swap and then combine the variables

(b) Converting the array variable index and swapping the channels by reverse selection

(c) An example of the output
these networks produce

Figure 5,13: Two networks that can input a Windows bitmapped picture (BMP) file, These
solutions illustrate how values can be taken from tire file and wired in as parameters for
the file input process. The height and width of the image are taken from the 54 byte header
and then used with the knowledge that this file has three values (blue green red (BOR))
per node to dimension the array. The solutions show the different way in which colour
channels can be swapped from BOR to RGB

forming a multivariate array as shown in figure 5.13(a). Alternatively, DimToVar can

be used with MuitiChannelSeleet to re-order the variables in the array as shown by the

module network in figure 5.13(b).

Variables like coordinate data can be specified in a number o f different ways. Many grid-

ded datasets have uniform rectangular coordinates; these can be specified within different

106

file formats in several ways, including bounding boxes and sample spacings. SetUniform-

Coords enables the user to set uniform coordinates in one o f three manners, providing a

flexible way in which they can be defined. Body-fitted coordinates can be attached to data

values using SetCurvCoords which takes as inputs a univariate or multivariate array and

combines it with an array of coordinate values to output a body-fitted IRIS Explorer data

structure. Finally for coordinates, the SphereToCartes module fits into the semantic stage

o f the modular approach. It can convert spherical coordinates into Cartesian coordinates,

illustrating how variables with die same type of information can have different semantic

meanings and therefore need to be converted.

Variables like identifier data are format and not data related. Identifier data can be handled

either by ignoring it or, if it shows that the nodes are stored out o f order in an array, it

can be mapped to the nodal dat3 using VarldentifierMap. This module specifies, first,

which variable in the incoming array of data values is the identifier variable and then,

with another input, the connectivity data is mapped to the correct nodes. Such data will

often be cell regular, the mapped connections, (or unmapped of there was no identifier

information) can be composed into a ceil regular data structure using IRIS explorer’s

ComposePyr module.

5.5 Using visual feedback

IFIT’s support o f visual feedback through Text View, ImageView and VolumeView allow

important diagnostic information to be gleaned from a file. This section will detail how

the user can gather and discover different items o f information by using these tools.

5.5.1 TextView

TextView (illustrated in figure 5.14) provides the user with a plain-text presentation o f

their file. This view initially contains text characters mapped to each byte, filling the

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (.¡FIT)

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 107
screen space in rows: it can be altered to make it more readable by interpreting common

control characters or through specifying delimiters and line wrapping options. Finally

selections can be taken with the mouse in a similar manner to existing text editors like

emacs and notepad, by clicking and dragging over the area desired. In TextView this

outputs the start and end of a selection which can be wired into Select Values to acquire a

selection of a file’s content.

= cuotoifUS
U Usati

Ine*». {«/vrMVisrdifttett«teviiwe
»tost«« dW.fr.tei DwwJ 1 • fM*J,Ì
Su »/«£*.« 18.IP,4 «♦.
mi.»¿«4/M.ei » * IM JJ?.m i-t is*.

Figure 5.14: TextVriew in action; two views of the same file using different plain-text
character interpretations, the first illustrating a direct view of the file’s content as plain
text, the second interpreting using control characters and white space to separate values
onto different lines.

The view which TextView presents allows the user to discover if a file contains binary or

plain-text (ASCII) values. In addition, it enables the following information to be gathered

for files containing plain-text:

• the different types (like floating points and integers) of values present;

• header information can define the meaning of other values in the file;

• structural details of the file and a determination of whether it contains a data held

using a DDL or using contiguous arrays of values;

108

• explicit input parameters like the dimensions of the data or the number o f variables

and their bounds;

• delimiters and tags present in the file;

• selection parameters for data desirable to the user.

Text View’s utility over an external text editor is its ability to output parameters directly

into other modules.

5.5.2 Image View

Image View’s visual output and the artefacts which can occur in it allow the user to iden­

tify many forms o f array-based data, including some forms of storage, like run length

encoded data, that IFIT cannot import at present. Image View offers a powerful diagnostic

tool for the purposes o f forensic file analysis. It allows any user who has worked with

or seen the data or the phenomenon it describes to search for its location in the file and

find its dimensions. This ability differentiates this solution from existing input tools and

facilitates forensic examination by providing effective feedback. Even users who have

not seen the dataset but have experience o f identifying artefacts and a little experience

using the feedback can find data they have never actually viewed before. ImageView’s

user interface consists o f an interactive viewing area which supports mouse drag interac­

tions and has a menu to set the zoom factor. The user has control over the interpreted

image’s width, this, with successive interactions with the view, enables the user to ‘tunc’

the image to the shape o f the selected sequence o f values without knowing any parame­

ters a priori. Figure 5.15 illustrates a sequence of different images taken from ImageView

which illustrate how changing the width of the image affects its visual output.

ImageView ’s visual outputs contain certain patterns that are indicative of correct or incor­

rect input parameters. However, there are often several possible causes for each pattern,

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT)

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 109
this leads to an element of ‘visual debugging’ when interacting with the view. These arte­

facts can be used as important guides towards discovering file input parameters. Several

common patterns that have been identified through the course of this work will now be

described in detail:

Figure 5.15: The visual effect of trialling different widths for an array whose actual width
is 640

Skewing and diagonal lines or non vertical bands Skewing and diagonal to near hor­

izontal bands illustrated in figure 5.15 are caused by tire width parameter in Im­

age View not matching the correct value for the array. When adjusting this param­

eter, the changing thickness of these bands indicates if the user’s interactions are

in the appropriate direction. Thickening bands indicate the user is closing upon a

factor or multiple of the correct value.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 110

Figure 5.16: Vertically interleaved lines casued by the width being less than the actual
width of the array.

Vertically interleaved lines are the same effect as the bands caused by tuning the width

parameter. They indicate that the width parameter of the array in ImageView is less

than the actual width and causing a wrapping of what would be a single line in the

image. The resulting effect is that the values which are vertically adjacent are not

vertically continuous as illustrated in figure 5.16.

Figure 5.17: Horizontal repeats caused by the trial image width being a multiple of the
correct dimension

Apparent repeats of data If there appear to be exact horizontal repeats of the data this

can indicate that the trial width is a multiple of the actual width of the dataset. The

solution is to reduce the trial width until no repeats are present in the view. Shown

in figure 5.17.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 111

(a) Same DEM exhibiting (b) Correctly interpreted DEM
‘psychedelic’ banding

Figure 5.18: DEM data comparison illustrating ‘psychedelic’ banding

‘psychedelic’ banding figure 5.18(a) and 5.18(b) show the difference between an Im-

ageVicw of a sequence of values exhibiting this artefact and a correctly interpreted

sequence of values for the same data. The patterns illustrated in figure 5.18(a) are

caused when the binary primitive type has been interpreted with incorrect parame­

ters for its byte order or alignment. The effect is caused by the value range being

misinterpreted due to the either an incorrect byte order caused by the users choice

of endian parameter or the selection start for the bytes which were interpreted into

the sequence of values. Psychedelic banding only occurs in integer values of eight

bits or more. The effect results in the number range of the binary primitive type be­

coming divided up into multiple smaller repeated ranges, in effect creating ‘contour

like’ bands through what is a single continuous value range. This interpretation can

be corrected either by trying different byte alignments or by adjusting the start point

of the selection by l..n - 1 bytes in a positive or negative direction (where n is the

size o f the primitive type).

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (1FIT) 112

(a) Regular vertical breaks of continu- (b) Apparent vertical repeats
ity

Figure 5.19: Two examples of artefacts caused by the actual rank of the array exceeding
ImageView’s ra n k 2 output

Regular vertical breaks of continuity or apparent vertical repeats Both of these arte­

facts occur in the ImageView outputs shown in figure 5.19(a) and 5.19(b). They can

indicate that the dataset has a further dimension which has not been interpreted at

this stage. The correct course o f action would be to try to interpret the sequence

of values using VolumeViewer, described later. The repeat or break effect can be

strong or relatively weak depending upon whether the variable changes subtly or

dramatically between slices in that axis. Data which has a strong continuity or pat­

tern, which makes the ‘top’ edge of a slice different from the ‘bottom’ edge, will

usually have a strong break of continuity effect. Data which is closely sampled or

has similar edges (e.g. blank or noisy) in all slices will tend more to a repeating

effect; data with sparsely sampled slices and similar edges will exhibit an output in

Image View' with a vertical ‘movie reel’ effect. All these effects occur when the user

has discovered one dimension (or a factor or multiple o f it). The effect causing the

breaks o f continuity is caused by adjacent values in the interpreted array not having

adjacency in the rawr data. The repeating or frame effect is caused by the way slices

of volume data are stored adjacently in an array.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 113

(a) A ‘wood grain’ text texture (b) A low contrast text texture

Figure 5.20: Text values in a file as viewed through Image View

Low contrast texture or a ‘wood grain’ texture for 8-bit values These textures, shown

in figure 5.20(a) and figure 5.20(b), are both likely indicators that the array contains

text values. To verify this the user sends the data to TextView; if text numbers are

present they will need to be interpreted using TextToValues or TextRecordToVal­

ues. The low contrast effect is caused because numeric values in a file utilise only

a small subset of the possible range of an 8-bit number. The vertical line texture

is caused because successive lines of numeric values will have numerically similar

digits in similar spacing patterns, although the differences will often cause enough

irregularity to usually prevent complete vertical lines from forming.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (¡FIT) 114

(a) A correct view of a CT dataset (b) A similar view of the same dataset,
however its aspect ratio distorts the
image which may lead the user to
check the parameters they have used

Figure 5.21: Aspect ratio as an indicator of incorrect input parameters

Incorrect aspect ratio Sometimes the data may appear to have dimensions that differ

greatly from observations taken elsewhere. This can indicate an incorrect dimen­

sion which is a factor of the actual dimension has been used in conjunction with a

similar but incorrect binary primitive type. Together these input parameters have

produced a view which looks like the original data, but may have a different range

o f numeric values and dimensions. Both parameters will usually need changing, the

width will be a factor of the data’s actual width. The difference between the correct

primitive type and the current primitive type’s size in bytes will determine the factor

that the incorrect width must be multiplied by to obtain the correct dimension, once

the correct primitive type is chosen.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (1FIT) 115

(a) 8-bit unsigned (b) 16-bit signed

Figure 5.22: Two different binary interpretations o f 32-bit values that result in line arte­
facts

Vertical lines through data Vertical lines can indicate that either an incorrect binary

primitive type has been chosen or that there are multiple variables in this array

stored adjacently in a dimension which has not been taken into account. Figure

5.22 illustrates the effect of choosing an incorrect binary primitive type and figure

5.23 shows the effect of multiple variables.

(a) Binary data with multiple vari- (b) Text with fixed width records
ables

Figure 5.23: Textures illustrating the effect of multiple variables in an array

CHAPTER 5. USING THE INTERACTIVE EILE INPUT TOOLKIT (IFIT) 117

(a) High contrast texture caused by er­
ror values

(b) Low contrast caused by an incor­
rect selection including non-data val­
ues

Figure 5.25: Contrast problems found when using ImageView with an automatic range
generation for mapping data values to greyscale values

A high or low contrast image This texture can be caused by error values and unwanted

values in the data selection. Unusually bright or dark areas in the middle of the tex­

ture can indicate error values have been used in this dataset. Such values usually lie

at the limits of the binary primitive type used for the data set. Their value can make

the use of the data’s minimum and maximum limits ineffective for use in mapping

the data’s values into greyscale pixels for presenting the data with ImageView. An

illustration of this contrast effect is presented in figure 5.25(a) and figure 5.25(b).

Error values can be tested for by manually setting the range for greyscale mapping

in ImaveView. An alternative cause can be found when the start or end of the selec­

tion is incorrect and including values which are not part of the array. The bottom

and top of the view can be used to discover if this has happened. Figure 5.25(b)

illustrates data preceding the array in the file which has been accidentally included

in the data selection. Unwanted data values can be remedied through altering selec­

tion’s start and / or end.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 118

Figure 5.26: ‘White-noise’ like texture taken from an ImageView of a JPEG image

W hite noise texture This effect, illustrated in figure 5.26, can indicate one of three possi­

ble underlying causes. First is that compression or encryption has been used on the

selected values. Second it can indicate the area of the file contains many different bi­

nary primitive types stored in no regular order. Lastly it can, like ‘psychedelic band­

ing’, indicate that the alignment is incorrect for the binary primitive type, which can

be solved in the same manner by adjusting the selection’s start.

(a) Different blocks of text values (b) Difffereni blocks of binary values

Figure 5.27: ImageView textures that show different blocks of data, each block occuring
where the texture changes dramatically.

Irregular horizontal discontinuities This can point to data present in the selection which

is undesired. Changing the selection parameters is the appropriate course of action.

Examples of this can be seen in figure 5.27(a) and figure 5.27(b).

119

5.5.3 VoIumeView

Volume View enables the description of 3D arrays and presents the interface shown in fig­

ure 5.28. The three windows each present to the user a cross-section through a different

axis of the selected data. Each window accepts two-directional mouse drag actions to

change the shape of the dimension in the two axes the view presents. These actions can

be limited to one dimension allowing the user to concentrate on adjusting one dimension

at a time: other parameters include a menu choice which changes the speed at which the

mouse affects the shape. Finally there is control over the zoom factor and an option ani­

mation, which are both accessible from the menu. Zooming offers the same functionality

as presented in ImageView; the animation option pushes the presented slice in each axis

through the array, effectively producing an animation of each axis* content.

VolumeView’s feedback is caused by the same factors as the feedback from ImageView,

except in more dimensions. However, when animated, a directional movement can be

detected for some datasets with incorrect dimensions. Much like a cinema film reel which

is run at an incorrect speed, the frames slide up or down at a speed depending upon how

much the parameters are in error. Interactions in the opposite direction to the movement

can lead the user to the correct parameter.

Neither VoIumeView nor ImageView are designed to cater for non-gridded data. How­

ever, they work well for determining the dimensions o f any array o f data values in a file,

including those which hold multiple variables, and discontinuous data which involves

multiple variables. Although non-gridded data cannot be trialled or verified using any of

IFIT’s current visual tools, it can be passed through the full visualization pipeline. This

is currently the only way in which nodal data which is scattered or cell-regular can be

visually trialled to verify its interpretation.

Some data is stored in a manner which prevents the user from finding the dimensions o f

the array because they cannot find a trial width w here the data values apparently align

CHAPTER 5, USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT)

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 120

Figure 5.28: VolumeViewer displaying an incorrectly dimensioned array, and the same
array when correctly dimensioned

into an interprctable image. This effect can be caused when one or more dimensions of

the array, in effect, has a variable length. This prevents Image Vi ewer from ever produc­

ing array dimensions because there is no regular dimension. Such effects can indicate

text fields or text value representations, variable length binary record data or finally run

length encoding (RLE). If a text interpretation is not the cause then IFIT will be unable to

describe the dataset; variable length records introduce another level o f complexity which

IFIT is currently unable to handle, as does RLE. RLE can be detected with ImageView

because it does not change the meaning of all the values in a dataset, instead it replaces

sequences of repeated values with markers, thus some data is still viewable, although not

accessible.

5.6 Summary

This chapter has described a forensic approach to file input, the requirements for an in­

teractive file input toolkit and a software implementation which supports the forensic

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 121

approach. IFIT implements the processes found in the file input architecture presented in

chapter 3. Its structure and usage has been described from a design level and on an appli­

cation level using a range o f example module networks. This chapter has also described

how the visual feedback modules can be used to discover, debug and verify a file input

solution.

The next chapter will evaluate how IFIT compares with the existing solutions and how

effective it is at acquiring a user’s data and meeting the initial requirements.

Chapter 6

Evaluation of IFIT

The previous chapter described a new forensic methodology and a toolkit (IFIT) support­

ing the solution o f file input problems. This chapter will present a range o f test cases and

then evaluate IFIT over a range of criteria to show its utility with respect to supporting

file input for ViSC.

6.1 Test case selection

All the solutions presented in die following section are o f successful test cases and have

been selected to demonstrate the range o f different data types which can be input using

IFIT. The unsuccessful cases and the limitations they have raised will be discussed in

section 6.3.2; they have not been included in the example test cases because the module

networks that they comprise tend to simply illustrate the use o f the forensic tools up to

the point where it was discovered that the raw values could not be extracted from the file

in a meaningful manner using IFIT.

Each solution was constructed by the audior. The test cases in the next section have been

chosen from a suite o f 34 successful IFIT solutions taken from 43 different file input

problems. These problems were provided by a range o f users and user groups, and all the

test cases are instances o f ‘real world’ data sources. All the solutions w hich are presented

122

CHAPTER 6. EVALUATION OF 1FIT 123
have been solved based on the user’s visualization requirements. This means that not all

the information, particularly metadata, stored in the file was necessarily needed to fulfil

the user’s requirements. However, in each case all the data the user requested was located

and visualized.

The diversity of examples illustrates some of IFIT’s capabilities with data from differ­

ent applications and fields which have a mixture of proprietary, commercial and user­

generated file formats. The majority of the test cases presented contain different forms

o f gridded data. Most of the solutions required one or more input parameters to be dis­

covered using the visual tools. Finally, all the solutions have been validated against data

values, visualizations obtained by loading the same file into the source software, taking a

hardcopy output and discussions with the user. The next section will present the test cases

and discuss them on a per-case basis.

6.2 Test cases

6.2.1 Case 1: M edical imaging data

Figure 6.1: A file containing two X-Ray images held in a single array.

The first case is a medical imaging dataset; figure 6.1 illustrates the solution. The file was

described by the user as containing two X-ray images, one for high energy and one for low.

These were the user’s desired output for this case. After an investigation using TextView

CHAPTERS. EVALUATION OF IFIT 124

the file was found to contain binary values. ImageViewer was then used to locate the two

images and their dimensions. They were found to have the same physical dimensions and

held in a single rank 3 array. The horizontal image dimension was found to vary the

fastest, the vertical image dimension next fastest and the variable dimension slowest. The

header structure was then searched using the values o f these dimensions. SelectBytes and

BytesToValues were used in conjunction with an IRIS Explorer print module to display

the value at a given location in the file. This search located both the horizontal dimension

value and vertical dimension value in the header; the selection was then fixed and the

parameters where inteipreted and wired into ChangeDimLat As a result, assuming the

header of this format has a fixed structure and will not change size or content, other files

in this format with differently sized images can be input.

The medical imager’s output is a proprietary file format and as such it lacks a published

description. The software related to this imaging equipment also lacks any ouqmt that is

compatible with the MVE. The IFIT network successfully met the user’s requirements for

this case in two steps, first by allow ing them to see the data, second by giving them useful

information about how their data was stored.

6.2.2 Case 2: Elipsometry data

The second case is a chemistry dataset; figure 6.2 illustrates the solution and output. The

file W'as described as containing elipsometry data. The user provided an output from the

source program which listed in a table the values which were sought. These were then

found using the IRIS Explorer graphing modules in combination with IFIT. The selections

were determined by locating values w hich were in the table and then searching from the

ends o f the array until values, w hich w ere out o f the range or at the limits o f the numeric

representation, were found. These indicated that the values w ere not part o f the data

but either from another array or o f a different binary primitive type. This provided a

good estimator o f where the different arrays in the file started and ended. The first graph

CHAPTER 6. EVALUATION OF IFIT 125

ReadRiiwBtiurt] Q
CZZI3C±Z3

r

__JG

c z :z j c z ~ j

Ŝ lwttEMifStSs Q

H
h

E b c j ,

BlftMToViiOMKi» □ . . . P I
L'iwk. \

BsiesToVjiwiiSi' 0 -a, t m ail D i
.... J ij

DimioVat K d
....1

Figure 6.2: A proprietary chemistry file format containing several variables.

illustrates the data desired by the user, the second two illustrate further data which was

discovered and, when shown to the user, were identified as related variables which they

did not know were stored in the file. The desired data output had a higher accuracy than

the user expected and more values than the original listing contained, although these were

of no consequence. From this information a file reader was produced which extracted the

required data from this type of file and was successfully applied to the user’s archive of

these files.

6.2.3 Case 3: CT data

Computed Tomography (CT) volume data is often held in individual slice files. The case

shown in figure 6.3 highlights how each slice can be loaded and accumulated into a single

array. Figure 6.3 shows how a volume made up from sliced can be input using Stack-

DirnLat to combine each slice into a ra n k 3 array. D1COM (found in section 2,3.1) is

not directly supported by the version of HUS Explorer used for this project, DICOM files

can be compressed: however the data for this case was in an uncompressed form which

CHAPTER 6. EVALUATION OF IFIT 126

. /" I jjMfr : m f ' J' - y

; fa D «2 aH — s Q | F s U tttw « aP
. l s j z j c . i ■

Figure 6.3: A DICOM CT dataset containing slices o f a pig femur.

allowed the discovery tools to be used. In terms of discovery the headers of DICOM files

are variable in nature. They contain string data and numerous other items of information,

which in this case were o f no interest to the user. As a result, once the slice dimensions

were discovered using Image View', the design of the network ignores the header and has

a one-time specification o f the slice dimensions. The data portion is selected and then all

the slices are loaded in the same way.

Each file contains a rank two array of 16-bit binary values. As all the filenames follow a

set pattern the IRIS Explorer’s NumberedFile module can specify the filename for Read-

RawBinary, the data is then extracted and described in a fixed manner as all the files

are the same size. Finally the data is accumulated and given a set bounding box using

SetUniform Coords,

CHAPTER 6. EVALUATION OF IFIT 127

Figure 6.4: A file containing bathymetry (sea depth measurements) in the form of a grid-
ded DEM.

6.2.4 Case 4: Bathymetry' data

Case four was provided by a user who requested a visualization of their undersea depth

field data (bathymetry). They provided a comprehensive specification of their file format

including its structure, binary content and dimensions. They also noted that there was

a border in the array o f values used for overlapping tiles o f this data. In figure 6.4 the

module network reads a binary' undersea digital elevation model. The file contains a

rank 2 array o f height values and a header containing the shape of the array and physical

bounds o f the grid. Once the array was inteipreted it needed to be cropped, to account for

the border. As many files o f this format exist, repeated usage was desired; as a result the

bounding box and dimensions were located in the header portion o f the file and wired to

CHAPTER 6. EVALUATION OF IFIT 128
the appropriate modules.

6.2.5 Case 5: M ultivatiate data

Figure 6.5: A file holding a scattered array o f sample points with many variables of
different bincry types.

Case five highlights a file containing text records. TextRecordToValues is used to extract

each numeric variable and make it accessible in the MVE work area. The numeric vari­

ables have been individually extracted from the array in the file and then combined into

a single array with ten variables. This allows variables which contain text strings to be

skipped and other variables o f no interest to be excluded. Finally some of the variables

are spherical coordinates; these have been converted to Cartesian coordinates so they can

be rendered by IRIS Explorer.

CHAPTER 6. EVALUATION OF IFIT 129

6.2.6 Case 6: Scattered data array

TMTcVitae« . Q j - a li *■ (SmTotfn □ »- rW .□
Ë .. [___ 'JQT2J ç-3!==ai l it iiil .:::;.! i.

Figure 6.6: A file containing a scattered set of 3D points and one additional vairable

Figure 6.6 shows a module network and visualization of a file which has single multi­

variate array. The four variables are stored using a text value representation. Three of

the variables are coordinate data and have been interpreted as such using the mixer mod­

ule. The nodes in this dataset are scattered, so triangulation has been used to generate the

surface shown in the rendering. The surface has been coloured using the fourth variable.

6.2.7 Case 7: Com putational flow dynam ics data

The CFD case shown in figure 6.7 comprises two files, both containing values stored us­

ing a text representation. One file contains just metadata, the other file contains the actual

data. The first file, interpreted by the top four input pipelines, inputs four parameters that

describe the dimensions of the array held in the data file. The second file is interpreted by

the bottom input pipeline. Tire parameters in the top pipeline are wired into theChangeD-

imLat which describes the rank and shape of the incoming data array. Finally, the data

array is a multivariate array, and the variable index is converted using DimToVar. The

image below the module network shows a rendering of the output.

CHAPTER 6. EVALUATION OF IFIT 130

5«i - D Ì
C lZ - P L____3

O f -
_____ 1

- D fa - i f i g É f f î g »

P" Ìl™ ------ L _—. J i — . . - S J i a s s ' - l l f e s s j i

t™_Jt±Z3 a
iSEOsÀ

• O;® Kj

Figure 6.7: A volume containing flow and pressure. The metadata is held in an external
file (top pipelines). The loading network combines the metadata providing a reusable file
reader for different sized volumes with this number o f variables

6.2.8 Case 8: Com putational flow dynam ics data

The CFD case shown in figure 6.8, is a similar gridded volume to the previous case but,

has a single file with the descriptive parameters as a text header followed by a binary data

array. The metadata include die dimensions of the array and its physical bounds. These

are all input by six input pipelines: the topmost pipeline interprets the binary array, the

next three input the dimensions of the array and the lower two pipelines input the physical

bounds for the array. Again this case illustrates a multivariate array which is handled using

DimToVar: this time the physical bounds for the array are set using SetUniformCoords

and the six parameters taken from the last two input pipelines.

CHAPTER 6. EVALUATION OF 1F1T 131

Figure 6.8: A file containing simulation flow data

CHAPTER 6. EVALUATION OF 1F1T 132
6.2.9 Case 9: Finite elem ent data

Figure 6.9: A 2D finite element CFD dataset comprising quadrilateral cells over a surface.

The case nine illustrates a solution for a computational flow dynamics finite element

dataset illustrated in figure 6.9. The file holds four separate arrays, which are o f inter­

est to the user, and these are marked using keywords in the file. Each o f the four pipelines

in this solution selects a region o f the file using these keywords and converts the values

held in the region from a text representation to binary. The topmost pipeline inputs an

array o f floating point vales for pressure at each node. The next one dow n inputs a 3D

vector variable for each node. The third pipeline down inputs 2D positions for each node,

each wfith an identifying number. The coordinates have their identifier data removed and

go through mixer w hich is used to interpret them as coordinate data. They are combined

with all the other nodal data into a single multivariate nodal array using ChannelMerge.

CHAPTER 6. EVALUATION OF IFIT 133

The pipeline at the bottom of the network inputs an array o f references. The first dimen­

sion of the array is four and specifies quadrilateral cell connectivity. The references relate

to the identifying number o f each node. After this array is input its references are con­

verted to zero index offsets to the array holding the nodal values using VarldentiferMap.

This module takes an array o f identifier references and an array holding variables, one of

which is an identifier variable. It finds the index offset for each identifier and converts the

reference array accordingly. The output from this is then combined with the nodal array

from ChannelMerge using ComposePyr to create a cell-regular output in IRIS Explorer.

The final output is visualized below the map in figure 6.9. This has been the most com­

plex dataset to debug because the visual tools do not aid the user for this type o f data. The

file’s text format simplified matters.

6.2.10 Case 10: Gel electrophoresis data

The final test case involves gel electrophoresis DNA profiles. The file was output from a

proprietary hardware device, and the user had no knowledge of its format A hardcopy

o f a graphical output from the package that was used in conjunction with the device was

provided. This hardcopy illustrated processed tracks o f genetics data and was used as the

target output in a visual search o f the file using Image View. The search found the binary

array o f values illustrated in figure 6.10(b). The array contained 40 variables o f gaieties

data. The solution shown in figure 6.10 still has Text View and ImageView connected into

the input pipeline in order to discover the input parameters and data held in the file The

resulting network is a single solution which will work for this file k it is less likely to work

for other files o f this format and will require one or more input parameters changing and

discovering for other files o f a similar type.

CHAPTER 6. EVAlUATION OFIFIT 134

(a) Gaieties data input map with discovery modules still attached

(b) ImageView output of the (c) IRIS Explorer graph with
detected genetics data array one profile from the data

Figure 6.10: This data was previewed on printed output. The file format was proprietary
and from old hardware. This prevented the user from accessing it for further analysis and
visualization purposes. What was found was an array containing an 40 variables each of
a genetics plot

6.3 Test case evaluation

This section will now describe the scope of IFIT in terms of successful applicability and

limitations to application.

6.3.1 Successful application

IFIT can be successfully applied to files that store the user’s data as contiguous arrays

o f raw values that use the supported binary primitive types or text interpretations. IFlT’s

CHAPTER 6. EVALUATION OF IFIT 135

output, as stated on page 87, in the initial requirements needs to be IRIS Explorer data

structures. IFIT produces IRIS Explorer structures which have the following attributes:

• Numeric values o f two’s complement integers with 8, 16 and 32-bits or IEEE 754

floating point values of 32 and 64-bits.

• Multidimensional arrays up to rank 9.

• Multivariate arrays o f one or more variables.

• Data point connectivity o f either scattered (none), gridded or cell-regular type.

• Coordinates in either body-fitted or uniform rectangular form are supported for

gridded data and nodal coordinates are supported for scattered and cell regular data.

User data which has these attributes can be described using IFIT, however its successful

input will largely depend upon how data is organised and stored within the user’s file.

Files with the following range o f attributes are supported: •

• Multiple files can be described and combined to produce an IRIS Explorer data

structure. This includes slices o f data in files, and separated metadata and raw data

contained in different files.

• Binary value unsigned integers, two’s complement integers and IEEE 754 floating

point values are supported with stated conversions and accuracy reduction.

• Plain text values are supported for both floating point and integer representations.

• Multivariate data is supported either in a single array or merged from several sepa­

rate arrays.

• Multivariate arrays containing different values of more than one type are supported

in text.

CHAPTER 6. EVALUATION OF IFIT 136

• Named references are supported which enable the creation o f cell-regular data from

nodal data with identifiers.

• Spherical coordinates are supported through conversion to Cartesian coordinates

using an existing IRIS Explorer module.

This enables many field-specific and user-defined file formats to be input using IFIT,

including DICOM, DEM and FITS which were described in section 2.3.1. Within the test

suite, IFIT can solve 34 o f the 43 test cases giving a success rate of 79.1%. The majority

o f these cases contain different forms of gridded data which include images and volumes

with multiple variables o f different physical phenomena.

IFIT solutions are produced on a per-file basis, as opposed to the per-format basis of

the hard-coded solutions. Reusable solutions can be constructed for some file formats.

However, this depends on the user’s data input needs and the complexity o f the file format.

The test cases highlight three types o f file input solution, namely complete-use, single-use

and discover-use.

Complete-use solutions have described all the content o f the file and therefore should

be robust enough to handle all files in the same format. This type o f solution can

only usually be produced for simple file formats and has the same functionality as

a hard-coded solution.

Single-use solutions have described enough o f the file to access the data repeatedly for

one specific file. However, the solution has not described all the parameters in the

file and therefore may not work with other files o f the same format.

Discover-use solutions require die user to discover some input parameters every time

they input the file, therefore there is flexibility but also an increase in die amount o f

time and user interactions needed to input the data.

CHAPTER 15. EVALUATION OF 1FIT 137

6.3.2 Limitations to application

IFIT is limited in its application by the following attributes o f datasets and file format,

each o f which individually prohibits the input of a usable dataset. Each attribute is listed

below:

• Binary primitive types o f less than one byte, floating points which do not adhere to

the IEEE 754 standard, fixed point values, binary coded decimal, and values which

do not have a byte order that is little- or big-endian.

• The user’s data is stored parametrically, resulting in no raw data which IFIT can

extract from the file. Additionally, no feedback can be gleaned from these files

because o f the lack o f raw data values and as such they are an intractable problem.

Without extensive user knowledge and a way o f enabling them to perform their

calculations on these parameters they cannot be input. Compression and encryption

are both subsets o f this group.

• Data values which are stored in a file which uses a data description language (DDL)

to assign values to variables.

• The format uses a language to assign values and give meaning to values.

• The file contains arrays that have a variable index which is neither the first nor last

dimension o f their shape, no such arrays have been found in over the course o f the

research they are however plausible,

• Variable length records or any type o f data structures that can have a different num­

ber o f values held at each node or in each record. This includes mixed binary and

text records where the text fields affect each record’s length in a local manner.

• Variable rectangular coordinates for gridded data.

CHAPTER 6. EVALUATION OF IFIT

• Nodal data (e.g. colour table images) where the references are gridded and the data

is a list of numbered values.

• All cell-variable connectivity.

• Cell-centroid or point data is not supported.

• Cell-regular data structures which are not specified using separated nodes and con­

nections.

One or more o f these attributes were present in the nine failed cases from the 43 file

input problems that the test suite was selected from. While this provides a figure of

20.9% representing problems that are intractable using IFIT, it cannot be considered a

representative figure for all file formats. The author suspects that the figure is higher, given

the usage o f file formats containing cell-variable connectivity and the usage o f DDLs in

various scientific fields.

For some types o f file format, particularly self-describing formats like I IDF and XML, the

format does not necessarily prevent IFIT from producing a solution. Instead the way that

data is arranged in these files becomes the limiting factor. Tlie same can be said for file

formats which have optional compression schemas. Although the use of compression wras

excluded in chapter 1.6 from the scope o f the project, its use must be noted. Scientific file

formats, mostly found in the fields o f medical and satellite imaging, use sev eral different

compression schemes. These include run length encoding (RLE), image quantization and

the LZW algorithm. While IFIT cannot currently input data in this form, several file

formats have options for storing data without compression. Therefore, for some cases,

data can be re-saved without compression from the source software or using an external

tool. The result in some cases will be a file o f the same format, albeit much larger, that

will enable the user to access their data w ith IFIT and with their source software. This is

currently the only option for users w ith compressed data.

138

CHAPTER 6. EVALUATION OF IFIT 139

Complex binary structures can prove too hard to describe using IFIT. I f the data is held

using complex binary structures or cannot be visualized without a large number o f values

taken from such structures, it is likely that IFIT will be able to solve that particular file

input problem.

Each limitation can be addressed by future developmental work to make IFIT a more com­

plete solution. The essential problems o f how any data can be accessed and manipulated

have been given proof of concept, as have the utility o f visual tools for file input. Every

process in the file input architecture has one or more modules which show its utility with

respect to file input and inputting a user’s data.

Within the scope described in chapter 1, the following file formats outlined in chapter 2

cannot be described by IFIT without additional programmed extension: mmCIF, GRIB

and BUFR. In the case o f mmCIF, while a field-specific file format, it is also a langage-

based file format. In the cases o f GRIB and BUFR, IFIT’s ability to input data from them

depends upon how they have been configured by the user or die source software.

6.3.3 Factors affecting the utility of the visual techniques

The visual feedback techniques present«! in section 5.5 (page 106) have some limitations

which are inherent with any information system. The amount and type o f ‘information’

present in the dataset can affect the user’s ability to elicit a recognisable view o f data in a

file.

In order for any meaningful parameters to be discovered, visual feedback requires a rela­

tionship to exist between the values w hich are to be examined. This relationship can result

from a single continuous variable, multiple continuous variables or multiple discontinu­

ous variables, For a single continuous variable the relationship between values which

are adjacent in the data, but not adjacent in the user’s interpretation o f the data, causes a

selection o f visual artefacts to be produced which indicate incorrect parameter choices.

CHAPTER 6. EVALUATION OF IFIT 140

The same can be said for multiple continuous variables in addition to the visual artefacts

caused when the variables are adjacent in the first dimension of the array. The artefacts

are produced by the relatively weak relationship between different variables values.

Finally, data sampled at irregular spacings, like scattered or cell data, can still generate

useful visual feedback if there are multiple variables at each node which are stored adja­

cently in the array. The visual effect cause by this will enable the user to perceived the

number o f variables in such cases; other dimensions in the array will not be obvious using

the visual techniques due to the data’s lack o f continuity.

The availability o f values is a prerequisite for using visual feedback; if raw data values

cannot be extracted from a file due to compression, encryption or an unknown binary

primitive type, no meaningful feedback can be generated. The ability to extract single

byte values is always available to the user: however, if the type used by the data cannot

be converted then IFIT has no interpretation which will enable the user to input their data,

and the feedback may only indicate attributes o f the data.

The amount o f ‘information’ present in an array affects the user’s ability to elicit a recog­

nisable view. Arrays devoid o f information or those with a high noise content can prevent

any recognisable feedback from being generated. Repeated patterns in the dataset can

also either prevent or hinder the discovery o f an array’s shape. The user requires a min­

imum recognisable feature to elicit a useful response cycle. This feature is something

they know from an external source which is in the dataset and shows up in the raw values

clearly. From the cases in the last chapter, the bathymetry test case on page 127 has a ship

which shows up clearly and aids the user in finding the correct dimensions. Conversely

an experiment to input an image containing rasterized text took much longer to discover

the dimensions, because the data mislead the user’s perception of how close they were

getting to the correct parameter. Most continuous datasets are easy to discover using the

visual methods, and most o f the artefacts described in section 5.5, if communicated to

the user, enable quick trials and parameter changes to lead to the answer. Overall, the

CHAPTER 6. EVALUATION OF W IT

amount o f data involved improves the feedback effect; very small array dimensions leave

little scope for finding an answer. VolumeViewer’s animation effects are equally limited

in their usefulness by the third dimension of the array: if it is very small then it is unlikely

to produce any guidance other than the image artefacts. VolumeViewer’s fixed frame rate

for animation can also prevent arrays with a small third dimension from producing per­

ceivable animation artefacts. The key factors affecting the utility o f visual feedback are

listed below:

• Data contains continuous domains or multiple variables.

• Dimensions are large enough to enable the user to recognise a pattern.

• The information content is not masked by high levels o f noise.

• There is a minimum of information content, i.e. the data is not constant.

• There are no strongly repeated patterns or totally identical adjacent areas in arrays.

• Values are accessible and in their raw form.

6.3.4 Factors affecting software performance

IFIT’s ability to solve a file input problem can be affected by both the platform on which

IRIS Explorer, and hence IFIT, is executed and the size of the file or dataset which the

user needs to input. The main limitation is IFIT’s ability to produce real-time interactive

feedback.

Creating a file input solution w ith IFIT and a forensic approach requires the whole file

to be loaded in order to generate the appropriate feedback. This can cause problems for

users with large datasets that exceed the hardware resources which arc available, either in

terms of memory requirements, or in terms o f prohibitive execution time for a particular

display algorithm, e.g. marching cubes for isosurfacing.

141

Space complexity The hardware must have enough available memory or virtual memory

resources to store whole files in their entirety. On common desktop systems this can

prove problematic for files with a size o f over 100MB. At a design level, because

many IFIT modules convert data whilst requiring a copy of it to be left for other

possible interpretations, there can be several copies o f a dataset at different stages

in the pipeline. Future developments may be able to simplify this but in the current

version this can lead to a dramatic increase in the amount o f data being handled

by the system. IFIT can be used to solve problems with a high space complexity,

however, the hardware must have enough available resources to allow storage of the

whole dataset.

Time complexity only becomes an issue when using modules in the host MVE which

have a high order o f complexity. The visual output which is produced solely by

IFIT uses minimalistic computation, with most processes having 0 (n) complexity,

so only modules from outside the toolkit like triangulation or isosurfacing can cause

time complexity issues.

The platform which IRIS Explorer runs on does affect the performance of some IFIT

modules. Visual modules in particular do not transfer well to different operating

systems and graphics systems. OpenGL acceleration is an a priori requirement,

however, as this is also a need for die MVE, this does not present a concern. The

features of OpenGL w hich have been performance-enhanced for the graphics card

in use also effect the performance of the visual tools.

Group compilation IRIS Explorer maps can be grouped and compiled into a single

module with only the required parameters visible. This feature allows faster inter­

process communication and a simplified interface to be generated for file formats

for w hich the user has produced a solution or part solution. As a result o f IRIS

Explorer’s ability to provide this functionality, module network solutions will not

necessarily be slower than hard-coded solutions or programmed extension, although

CHAPTER 6. EVALUATION OF IFIT 142

CHAPTER 6. EVALUATION OF IFIT 143

this will largely depend on how optimised they are for their specific file input prob­

lem.

6.4 Usability evaluation

The user requirements outlined in section 5.2.1 and an assessment o f the complexity of

producing IFIT solutions will be used as the core of this usability evaluation. Section

5.2.1 described the following requirements for a file input toolkit:

• Consistency o f interface.

• Unambiguous terminology.

• Clear feedback and outputs.

• Transparency and accuracy.

Two skills are required to input data using IFIT in IRIS Explorer. First, competency in

building module networks within the IRIS Explorer work area, changing module parame­

ters and wiring inputs and outputs. Second, the less quantifiable problem solving abilities

needed to discover any unknown parameters, choose the appropriate modules and wire

them together for a particular file input problem.

The first skill should be known to novice users of IRIS Explorer because it is part of the

system’s general usage. In tins respect IFIT offers no additional difficulty in its usage than

the usage o f the MVE. Moreover it is a consistent w ay o f using the system, rather than

switching to some monolithic tool or wizard. In this way IFIT meets the requirement for

a consistent user interface.

The second skill is less tangible and only aided by the methods associated w'ilh the foren­

sic methodology of file examination and description, and experience or examples. A

selection o f tutorials and worked cases may be one way of instilling this knowledge and

CHAPTER 6. EVALUATION OF IFIT 144

providing the user with a mental model o f how their problem relates to others and thus

how it can be solved.

IFIT attempts to use unambiguous terminology for naming conventions and user parame­

ters as set out in the requirements. It departs from computing terminology like stride and

offset where possible to use more generally understandable terms like selection, start and

end. In defining byte order, the user does not need to know the make of their machine or

what byte order the file uses. If the data does not display correctly, a ‘swap byte’ option

is suggested as a simple way of handling the byte order.

IFIT’s modular structure mirrors the file input architecture and therefore enables data to

be extracted at any point and examined. This examination is facilitated through the visual

feedback modules w hich provide the user with a range o f options for visualizing semi-

interpreted data values. The feedback IFIT offers is effective for diagnosing a range of

different incorrect file input parameters. There is a definite need for guidance to aid the

user in interpreting what they see. Given no aid, some o f the textures w hich are generated

by ImageView and VolumeView are counter-intuitive and will lead the user away from the

correct answer. However, with guidance, in the form o f a selection of explained texture

swatches or a tutorial, many file input parameters can be discovered quickly and easily.

Modular networks provide a type of file input solution w'hich shows the user what has been

performed upon their data at every step since it entered the system, including any conver­

sions and interpretations which have been made. This is important for scientific integrity,

as the user is aware o f the processes which have been performed upon their data prior to

passing into the visualization pipeline. In this respect modular solutions offer more than

the ‘black boxes* which other file input solutions often represent. Equally important is

the ability to validate a solution. With all file input tools, it is entirely possible to produce

an output from a file which looks similar to the original dataset but has radically different

numeric values. For previously unvisualized datasets, it is entirely possible to create a

visual mapping which has a compelling view that is incorrect. In this respect, IFIT is no

CHAPTER 6. EVALUATION OF IFIT 145

different from any other file input solution which has been user generated. Some solutions

warn or terminate if some parameters fail to produce reasonable results, like tags are not

found or dimensions are out o f bounds. IFIT does not, it will always produce an output,

but will warn when errors have occurred about which the user should be informed. Every

module logs events that do not seem to offer useful results and the user is notified of these

events. IFIT modules enable the user to check at any point in the file input pipeline what

the values of the data are and if they match their expectations. Therefore, the requirement

for transparency is met through IFIT’s modular approach.

Overall, the complexity o f any solution made using IFIT is dependent upon the following

five factors;

• The data’s complexity.

• The file’s complexity.

• The data’s visualization requirement

• The user’s knowledge.

• The solution’s intended usage.

One method for measuring the general complexity o f a file input solution is to count the

number of modules which are required to input the user's data. The number o f modules in

each of the successful cases in the test suite was totalled, as were the number o f explicit

file input parameters and arrays needed from each file. On average, three modules are

required for each item that the user needs to input from a file. Using this metric, the total

number of items needed from a file increases the complexity o f creating a solution. As a

result, files containing many variables o f different binary primitive types will need a much

larger number of modules to extract data from, making them, by this metric, the most

complex. I lowever, the data involved can play a much larger role in the complexity o f

making a solution. This is because tire gridded data is best supported by the current range

CHAPTER 6. EVALUATION OF IFIT 146

of visual feedback modules. The construction o f file input solutions for univariate gridded

data is the most simple, followed by multivariate gridded data and then cell regular data

which is the most complex type o f data structure that can be input using IFIT.

The complexity o f the file format also contributes to the complexity o f producing a solu­

tion. Some files contain a lot o f information which describes aspects o f the data which

are not needed by the user, equally some file formats separate or group data in a manner

which makes their extraction for use harder than others which store similar data.

The data’s visualization requirement describes the amount of information the user needs

from the file. If they do not need all the information in a file then this can simplify the con­

struction o f a solution, conversely, if they need all the data then this can add complexity

to the construction of a solution.

Another factor in the complexity of making a solution is how much the user knows about

their problem, in terms of metadata, data and file format. If they lack any information the

problem will require the user to discover the missing information as opposed to just speci­

fying what they know. When a user knows little about their file, the complexity o f making

a solution is mostly determined by the format and data’s complexity. A file input problem

may be therefore be intractable if die user knows little and the file format is complex or

contains data which provides no useful view using ImageView or VolumcView.

Finally if the user needs a specific type of solution from one of the three outlined in sec tion

6.3.1 then that can also add complexity to the creation o f a solution.

Complete-use solutions are the most complicated as they require the user to have firstly

discovered what all the values in the file mean, and how they are described, and

secondly to have been able to use them in constructing a modular network solution.

1 lowever, they are the easiest to use subsequently for loading many files o f the same

format.

Single-use solutions are moderately simple to construct. Once the input parameters are

CHAPTER 6. EVALUATION OF IFIT 147

discovered and set they are then saved with the module network. These solutions

will repeatedly load the file for which they were constructed.

Discover-use solutions are the simplest type of solution to construct, and, once they are

made, can load different files by discovering their parameters with visual feedback.

However, they are the most time consuming solution with which to input files.

For the experienced user o f IFIT, file input problems revolve around information discovery

and identifying the structures in the file that IFIT can input, followed by constructing

an appropriate network. For the novice user, the utility o f IFIT modules needs to be

highlighted by example and by tutoring them in the structure o f an IFIT solution. There is

anecdotal evidence o f novice users who have created a file input solution with a minimal

explanation of IFIT and only an image to guide them in their search for die file’s data.

IFIT most benefits the experienced visualization user, visioneer or visualization expert.

For any o f these users it will enable them to input a wide range o f formats which are

within IFIT’s limits. IFIT minimises the need for the visualization expert to have extensive

and iterative communications with the user, reserving such time-consuming activities to

verifying the output.

6.5 IFIT compared with existing solutions

The AVS file access objects (see 2.4.1) are the only comparable case o f a file input tool

which uses the modular approach. AVS's File Access Objects (FAOs), field mappers,

extractors and combiners provide a range o f modules, functions and AVS objects which,

in theory, offer a similar utility to the transformation and specification range o f modules

present in IFIT. They enable tire user to build AVS fields by extracting data values and

arrays from files and combining them into AVS structures. Table 6.1 compares AVS

FAOs with IFIT in terms of the types o f data and file which they can input and their user

interface.

CHAPTER 6. EVALUATION OF IFIT 148

File input attribute AVS FAO IFIT
Visual feedback via Pipeline Pipeline and

only visual tools
User interface Text type-in Widgets

Supports very large file input y/ X

Solution restart for changes v/ X

Binary primitive types supported 5 U
Supports little- and big-endian X y/

Extensible y/ y/
Scattered data y/ y/

Uniform-rectangular gridded data y/ V
Variable-rectangular gridded data y/ X

Body-fitted gridded data V x/
Cell-regular data y/ V

Cell-variable data V X

Axial Systems supported 3 2

Table 6.1: Comparison between AVS’s File access objects and I FIT’S input facilities

In some respects AVS’s modules cover a much wider range o f problems because they

have implemented functions and data interpretations for many different high-level map­

pings, handling data o f different axial systems and types o f structuring. However, IFIT

has some better low-level functionality for handling values, particularly binary. IFIT’s

ability to convert binaiy primitive types which are not directly supported by the MVEs. . ' . . . -

data structure and handle issues like byte ordering are not supported in AVS’s file access

objects.

The interface and GUI usage o f AVS’s file access objects, functions and modules makes

them difficult to use. The File Access Objects require typed text inputs which can contain

V script as their control parameters. While flexible, this is not a simple user interface.

When viewed in relation to the terminology and description o f some of these parameters,

the usage o f file access objects can leave users opting for the technically harder routes o f

programmed extension and use o f AVS’s own scripting language V.

There are several major differences in the way IFIT and AVS’s FAOs operate and their

CHAPTERS. EVALUATION OF IFIT 149

intended use. FAOs handle the file using a file pointer, and no data is accessed from die

file until the data structure, which has been described with them and the field mappers

and combiners, is accessed. This shows their intended usage as a descriptive tool for

large datasets where inputting the whole dataset may result in system resource problems.

Their technique instead is to construct a solution, fill in the parameters and then load in

the portion of the dataset the user requires. It enables the user to load and process the

dataset in small sections.

By contrast IFIT caches the whole file, and will operate correctly if parameters are left

blank. When parameters are changed, IFIT will be able to alter the interpretation from

that point forward, as opposed to the FAOs which require the whole process to be restarted

(probably to reset the file pointer, although this is an assumption).

Overall, the way in which AVS FAOs operate is less useful for forensic examination

because it hinders the process of trialling input parameters. This is because file access

using them operates in a similar manner to the way traditional programming language

perform file input. Parameters for AVS FAOs need to be filled-in in advance otherwise

W'holly incorrect outputs are produced which have no apparent relation to the raw values

m the file,

AVS lacks any feedback tools for file input As a result any parameter changes need to

be sent through the whole visualization pipeline. Without specific tools for file input,

the interactions with these view's produced by AVS and the actual visualizations AVS

supports will be less useful than the output from IFIT’s visual feedback modules. The

file access objects and other tools present in AVS simply were not designed to discover

information from files, instead providing the user with the ability to describe file content.

IFIT provides a way of discovering information, AVS’s modular approach, without the

ability to effectively offer forensic analysis o f file content, will not be able to solve some

file input problems w here IFIT has been successful.

IFIT, as a modular network solution, cannot be compared directly with other different

CHAPTER 6. EVALUATION OF IF1T 150

Simplicity
of use

Flexibility

Most Hard-Coded Programmed
Monolithic tool Modular

Modular Scripted
Header files Header files

Scripted Monolithic tool
Least Programmed Hard-coded

Table 6.2: The modular network approach in relation to other types o f file input ap­
proaches

forms of file input solution. However, from anecdotal evidence we can form the compar­

ative assessments shown in table 6.2 for both the simplicity o f use and flexibility o f each

particular technique.

The level o f flexibility shown in table 6.2 describes the ability to change a solution once

it has been created. If the user cannot change the implicit file input parameters or the

description o f the file’s content then the solution can be regarded as inflexible. Changes

can be made at compile-time, run-time or real-time. In IFIT, parameters can be changed

in real-time as opposed to hard-coded solutions where, for the vast majority o f these

solutions, implicit parameters can only be changed at compile-time.

Simplicity o f use relates to the level o f autonomy and the simplicity o f the user interface

for solving a file input problem with the given type o f approach. Hard-coded readers are

usually automatic and have the simplest interface, with usually just a file name to enter.

Conversely, programmed solutions require familiarity with many different aspects o f the

system, file and MVE.

The modular approach and therefore IFIT, as shown in table 6.2, can be seen as easier than

using a programmed approach, and marginally simpler than the other scripted and header

approaches. This can be suggested because the other techniques all require additional

knowledge and skills over those needed to use a modular approach which is an extension

o f the general use o f an MVE system. The modular approach can be seen as more flexible

CHAPTER 6. EVALUATION OF IFIT 151

and adaptable than all but the programmed approaches because it is extensible and easily

reconfigurable. However it is less flexible than a programmed approach which provides

the user with the maximum level of control over the input process.

By learning a programming API, a set o f dialogs, or a header description format the

user is engaging in something which is not consistent with the rest o f the MVE’s usage.

IFIT allows the user to apply their knowledge of modular programming which is used

elsewhere in the MVE and instead learn about the applicability o f the IFIT modules to

their particular problem.

6.6 Discussion

This chapter has review ed a selection o f cases where IFIT has been applied successfully.

The lessons from these cases and others have been used in evaluating IFIT. The evaluation

has focused upon the attributes o f both user file formats and user data which enable and

limit successful application. These attributes have been grouped into those which directly

affect the use o f the toolkit, and those which affect software performance and the usage

o f the visual techniques. Finally IFIT has been evaluated for its simplicity o f use and it

has been compared with present forms of file input solutions.

The test suite contained 43 different file formats, of these IFIT was used to solve 34. While

tins results in a success rate o f approximately 79.1% for the test suite, the translation of

this into an overall figure for all file input problems faced by users is unquantifiable. This

is because the test suite is a combination o f problems received by visualization experts and

NAG for IRIS Explorer. The actual number o f users w ho have access to MVE software

but either cannot use it because o f file access problems, or choose to solve their problem

without consulting visualization experts is hard to judge. The quantity o f gridded data

in the test suite w as high compared to the quantity o f nodal and cell-based data. Given

the usage o f nodal and cell-based data in fields like finite element analysis, computer

CHAPTER 6. EVALUATION OF IFIT 152

aided design and geographical information systems, file formats containing such data are

probably more numerous than the number found in the test suite.

Unlike other solutions, which are designed as purely descriptive tools, IFIT enables the

user to experiment freely with the interpretation of their data and visually trial different

file input parameters in real-time. Its visual outputs can offer much more to the user than

just text views of file content or hexadecimal views. If the user lacks knowledge of the

file format or dataset IFIT provides them with facilities to discover the information they

need. It requires no a priori knowledge in order to input the content o f a file. IFIT’s

data-orientation allows a user who knows nothing about the header or structure o f the

data o f their file to extract raw data values, provided the file is within IFIT’s envelope of

description. Given sufficient experience, IFIT can allow a user to input what would be an

intractable problem with other file input solutions.

Like other solutions, IFIT can input a wide range o f files containing scattered, gridded

and cell-regular data in a range o f binary and plain text numeric representations. It can

also produce reusable solutions, which once created, act like hard-coded input solutions.

Chapter 7

Towards autonomous data input

Towards the end of this project, the use of ImageView and VolumeView provided insights

which implied the possibility of an algorithmic method for discovering the shape of an ar­

ray. As most file formats store values as arrays, this functionality would be of tremendous

use. This chapter documents the resulting research into finding an autonomous solution to

this problem and illustrates one clear advance toward an automatic system for data input,

one of the main aims of this research outlined on page 10 in chapter 1.

The interactions required to discover the dimensions of an array using ImageView were

the first inspiration that there could be an automatic method for finding the shape of an

array. Initially, the search looked toward systems that could analyse the output of Im­

ageView and then provide corrective control parameters. Such a system would essentially

perform the same task as the user by iteratively correcting the parameters until the array’s

shape was found. This notion led to existing work in the field of machine vision and

optical character recognition. Algorithms in these fields are able to provide parameters

like the angle of skew for objects in an image and the direction of texture flow. These

parameters in turn could be used in either a formulaic correction to the image or used in

an iterative solver as a comparative measure of correctness.

During this search for a greater level of autonomy, a much simpler examination of ar­

rays from a range of data files was undertaken. This search used slicing and graphing to

153

find simple patterns which could be used to detect the ‘edges’ of an array and, therefore,

determine parameters for its shape. During this work, it was noted that graphing a multi­

dimensional array appeared much like a graph of a periodic phenomena. When flattened

to a sequence of values, arrays exhibited periodicity caused by their different dimensions.

The notion of an array’s dimensions creating wave patterns which could be detected and

applied in an algorithmic solution lead towards the use of the Fourier transform.

7.1 The Fourier transform

The Fourier Transform (FT) equations provide a forward and inverse transformation of

values in the time domain to values the frequency domain. The forward FT decomposes

a waveform into sinusoids of different frequencies which, when summed, will combine

to produce the original waveform. It distinguishes different frequency sinusoids and their

amplitudes. The FT stated in equation 7.1 can take the values of physical process h as a

function o f time t (h(t))> or an amplitude H as a function of a frequency / (11(f)) and

transform them. The FT is widely used (Bracewell 1978), often in the physical sciences.

Figure 7.1 illustrates a sine wave in both the time domain and the frequency domain.

Figure 7.2 shows the relationship between the time amplitude and frequency amplitude

domains.

/ OO
h(t)e2mftdt

-OO

/ OO
H (f) e - M f*4f (7.1)

■OO

The Discrete Fourier Transfonn (DFT) and the time-efficient Fast Fourier Transform

(FFT) both transform from the time amplitude domain to the frequency amplitude do­

main for discretely sampled data. For the purposes of this research, it is more convenient

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 154

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 155

Figure 7,1: A sine wave represented in both domains

Figure 7.2: The relationship between three different measurements in the time domain
and the frequency domain

to work with the real quantity output by the power spectrum density function. Parse-

val’s theorem states that the power of a signal represented by function h(t) is the same

irrespective of which space it is measured in, that is,

/oo roo
\h(t)\2d t= \I I (f) \2df (7.2)

• o o J - 0 0

To find the power in the frequency interval / and f + d f we require P (/) , or the one-sided

156CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT

Shape Peak
frequency
spacing

3 3.3333 x IO"1
128 2.6041 x 10~3

Table 7.1: The expected spacings between peaks in the frequency domain for a rank 3
array

power spectral density function. For the real data of this application this is defined as

P(f) = 2 |/ / (/) |2 0 < / < oo (7.3)

7.1.1 Application to data input

The hypothesis was that an array, when unfolded (or flattened) to ID, will produce a

periodic pattern. This periodic pattern will have frequencies in it which relate to the

wavelengths o f the underlying data, which in turn are directly related to the dimensions

o f the transformed array. A power spectrum will show these frequencies as peaks in

the frequency amplitude domain, enabling peak detection heuristics to evaluate them and

determine the shape of the array.

The periodicity formed by flattening an array from rank n to rank 1 appears in the power

spectrum as n — 1 pulse trains with different spacings. Figure 7.3(b) illustrates the power

spectrum of the rank 2 array displayed in figure 7.3(a), and figure 7.3(d) shows the power

spectrum for a rank 3 array illustrated in 7.3(c). Each pulse train has a separation between

its peaks which is related to the size of the dimension it represents and the position of that

dimension in the shape of the array. The frequency spacing for a given dimension is the

product o f the size of that dimension and all those which vary faster in the array. Table

7.1 illustrates the expected separation between peaks in the two pulse trains when given

the first two dimensions of a rank 3 array.

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 157

(a) x (t) with periodicity d x in a
ran k 2 array

(b) The power spectrum pulse train
P (f) o f x (t) with a peak separation

of3T

X(t) P(D

À A A A À À À À À A A A A A A A A

1/d.
l / d * d 2 ?

(c) x{t) with periodicity caused by the
dimensions di and d<i o f a rank 3 ar­
ray

(d) The power spectrum pulse train
P (f) o f x(t) with two sets o f peaks
with separations corresponding to -fa

J i d ' i
and - -

Figure 7.3: The pulse trains in power spectra for a rank 2 and rank 3 array

Given the shape of the array D the expected spacing s of the nth pulse train in the power

spectrum will be

s(n, D) = ™

i i a
»=1

where

1 < n < r a n k D = [di, . . , , dronfc] (7.4)

158

The rank of an array can be determined the number of distinct pulse trains. Each pulse

train is superimposed in the power spectrum and has very different average amplitude

as illustrated in the example spectrum shown in figure 7.4. All but the last rank of an

array will create periodicity in the array when it is flattened. A power spectrum will

exhibit rank - 1 pulse trains. Figure 7.4 also shows how measuring the spacing between

adjacent peaks in each pulse train can be used to find an average spacing that can be used

to find the arrays dimensions.

7.1.2 Limitations to data input

MatLab was chosen as a testing environment and was used to produce power spectra of

thirteen datasets in the same manner. The tests progressed over four phases.

• The first phase was a feasibility test. It contained correctly interpreted arrays of

values. These were flattened into sequences of values. This test was to discover if

an array’s dimensions would show up as peaks in a power spectrum.

• The second phase was an evolution of the first phase. Its aim was to determine if the

length of the binary primitive type could also be discovered for correctly interpreted

arrays o f values. Again the arrays were flattened into sequences of values, but this

time the individual values were also broken up into their constituent bytes. These

byte values were then tested.

• The third phase took whole files as sequences of byte values, with the intention of

discovering if additional information in the selection would affect the test.

• The fourth and final phase took synthetic arrays and tested for the effect of mirrored

and repeated data.

The analysis of the first phase found that the full rank and shape of an array could be

determined for real world data when the incoming values were correctly interpreted and

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 159

Figure 7.4: The pulse trains in the power spectrum of a real world dataset which was a
rank 4 array. The spacings which can be used to acquire dimensions d \ . , . d-z are marked
on each view of the spectrum

the array was correctly selected. If the array was not correctly selected then only rank - 1

dimensions of the shape could be determined; the last dimension would not be found from

the spectrum because the total number of values input determines the frequency at which

the powers are output. Therefore if the selection was incorrect, the value for the last

dimension, as taken from the smallest spacing in the spectrum, would be invalid.

The analysis of the second phase concluded that the length of the binary primitive type

could be found for univariate arrays, but not for multivariate arrays. Arrays containing

values which have a binary primitive type of more than 8 bits can be considered to have

an additional dimension. For example a rank 3 array of 32-bit values can be considered

to be a rank 4 array of 8-bit values. The size of this additional dimension is the number

of bytes in the binary primitive type. The additional dimension of the binary primitive

type will always precede the existing shape of the array, for example if an array of 32-bit

values had a shape of 22,22, 15 then the same array analysed as byte values would have

a shape of 4 ,22,22,15.

Univariate arrays when flattened to ID and interpreted as bytes produce a power spectrum

which has a peak of significant magnitude at the frequency which corresponds to the

length of the binary primitive type. If the data was originally 8-bit, no such peak will

appear.

Multivariate arrays do not produce a peak corresponding to the length of the binary prim­

itive type. Instead they produce a pulse train for the first two dimensions of the shape

whose spacing fits equation 7.4 for n - 1. The variable index and the length of the binary

primitive type effectively forming one pulse train instead of two. For example a rank 3

array of 32-bit values with a shape of 5 ,22,22 can be considered to have a shape of 4, 5,

22, 22 when interpreted as byte values. When viewed as a power spectrum the first two

dimensions will appear as one which has a size of 20. Byte values will have a strong rela­

tionship with similarly positioned byte values in the same variable. However, when byte

values are compared with either byte values at a different position in the same variable

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 160

or different byte values from different variables there is no relationship. Therefore, when

an array of multi-byte values is inteipreted as just bytes there is no strong relationship

between adjacent byte values in the array. A strong relationship is only found between

bytes whose separation is the product of the number of variables and the length of the

binary primitive type.

The analysis of the third phase concluded that a spectrum of whole files input as byte

values provided similar information as for arrays interpreted as byte values. The main

difference, as found in the first phase, is that without a correct selection of the array only

rank - 1 dimensions can be found reliably. When other arrays are present in a file, peaks

are present for rank - 1 dimensions o f each array, Arrays sharing common dimensions

result in much larger peaks at frequencies corresponding to those dimensions. The effect

caused by two or more arrays with different dimensions is much less distinct than for a

file containing a single array.

The analysis of the fourth phase looked at mirrored data and repeated data. Mirrored data,

where there is complete symmetry through one or more dimensions of the array, did not

affect the spectrum in an adverse way. Repeated date on the other hand, where the content

of the array in a particular dimension is exactly repeated multiple times, causes the peak

spacings for the dimensions containing the repeats to increase by a factor corresponding

to the frequency of the repeat.

While a power spectrum of an array can provide meaningful results for many datasets

there are some limitations. If the all the dimensions o f the date are required the array

must contain continuous information. Discontinuous data lacks the periodicity needed to

generate an output. However, discontinuous multivariate date may still yield one output,

namely the number o f variables. This can be found because there is a strong relationship

between individual values taken from the same variable when compared with the weaker

relationship between values taken from different variables. It must be noted that this

effect depends entirely on a strong relationship between values in a particular variable.

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 161

CHAPTER 7. TOWARDS AUTONOMOUS DATA INPUT 162

Continuous data also has limitations; arrays of constant value have no periodicity and

hence no information about their dimensions can be gathered from their spectra. Equally

the spectrum of very noisy data or random data will hold little value for dimensioning an

array.

For any array with continuous data and sufficient information content rank - 1 dimensions

of the array may be found. If the data is raw file content, i.e. byte values from the file,

then the product of the length of the binary primitive type and the array’s first dimension

comprise the first major frequency.

Some datasets do not yield the correct shape because of artefacts in the data including

dimensional repeats, too much noise or too little information content.

7.2 Summary

Power spectrum analysis offers a new avenue of research into automatic techniques for

determining file input parameters. This work relates directly to the automatic discovery

of the rank and shape of a dataset. Furthermore, it can also be used to detect either the

number of variables in an array or the product of the number of variables and the number

of bytes in the binary primitive type.

This work has illustrated how some areas of IFIT and the file input architecture could

be automated given detailed analysis. Fourier analysis allows a sequence o f values to

be taken from a file and probed for its shape, raising the possibility o f an interaction-free

shape detection algorithm. As arrays are a predominant form of storage for scientific data,

if this is researched to fruition a wide range of file input problems could be simplified.

Chapter 8

Conclusions and further work

8.1 Summary of achievements

This thesis has focused upon the area of data input for visualization in scientific comput­

ing. The problem’s scope was outlined in chapter 1 on page 10. Within this area, many of

the relevant models for data transformation and storage have been reviewed. In addition,

a range of file formats found in scientific computing and the different techniques MVEs

provide to input non-standard file formats have been reviewed.

In chapter 1 the aims and scope of this project were stated. The main aims were to:

• simplify the problem of creating solutions to file input problems for ViSC systems;

• find a solution which can be applied to a broad range of scientific file input prob­

lems;

• work towards an automatic solution for user file input.

The first aim has been met by the forensic approach and the supporting dataflow model

put forward in chapter 4. The forensic approach uses the visual techniques presented in

chapter 5 as an aid to discovering file input parameters and facilitating the application

of a user’s knowledge. The model and accompanying file input architecture illustrates

163

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 164

the interpretations and steps necessary to take raw file content and transform it into the

target application’s data structures. Together they are an alternative to the present ‘ad-

hoc’ approaches. They simplify the process of solving file input problems because they

take the emphasis of constructing a solution away from the format, source application and

discipline, instead focusing upon the data and user knowledge available for each problem.

This theoretical work enabled the creation of IFIT, a software toolkit for creating file

input solutions. IFIT enables the user to input many different scientific datasets from a

wide range of file formats that store data values in one or more arrays of values. IFIT

provides the user with both investigative and descriptive tools for specifying how data is

stored from numerous file formats that use arrays as the predominant means o f storing

data values. This enables many problems which could not be solved due to a lack of user

information to be solved through the discovery process outlined in chapter 5 as well as

those which simply require the specification of input parameters.

Power spectrum analysis of arrays and files has been presented in chapter 7. This work

stemmed from the development o f the visual tools, and provides a theoretical basis for

the production of modules to automatically determine an array’s rank and shape using

power spectra. This novel method of array metadata determination has been tested using

MatLab. The further work section describes how the results from chapter 7 could be

developed into a new module in IFIT.

IFIT provides the user with a distinct form of modular network solution. As a result, it

has the flexibility of programmed solutions combined with the ability to rapidly develop

prototypes afforded by the use o f visual programming. It differs from current approaches

because, not only can it describe a file in a flexible manner, but it can also be used to dis­

cover a file’s content. This ability enables an IFIT user to input a wide range of problems

which using the present range of file input techniques will be much harder or intractable

when information about the file’s content is missing.

IFIT’s novel visual tools TextView, ImageView and VolumeView can all be used to inter-

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 165

actively trial different parameters for interpreting a file’s content. Their use in the forensic

examination of a file’s content can enable the user to discover a wide range of input pa­

rameters that can aid them in visually programming a solution to their problem.

Solving and debugging file input problems using visual programming requires the user

to be presented with a visual form of feedback. However, using the standard filter map

render sequence of an MVE to test input solutions provides several problems for the user.

First, they need to know how to choose the appropriate set of modules to visualize their

data. Second, the interactions they can have with the system are usually external to the

view of the data; they cannot easily steer the appropriate parameters in their solution, Fi­

nally, the performance of using a filter map render sequence can prevent the interactive

trialling of parameters for large datasets. IFIT provides the user with modules which offer

them direct manipulation of file input parameters and visual feedback using simple dis­

play algorithms. This allows them to rapidly trial different interpretations and metadata.

This use of visual feedback provides a method for diagnosing problems in a solution,

whilst also allowing the user to discover unknown metadata values and gain insight into

a file’s content. These visual modules provide similar functionality to the work found in

computational steering, where the user adapts a parameter values and views the results in

real-time. The insights found by these modules can lead to a swifter file input solution by

offering unique views of the data in a timely manner.

The usage and applicability of IFIT has been demonstrated through a range of examples

presented in chapter 5 and test cases which where presented and evaluated in chapter 6.

The test cases illustrate the three different types of solution which can be implemented

in IFIT: ‘discover-use’, ‘single-use’ and ‘complete-use’. Finally, the examples show how

the complexity of the file, the data and the user’s needs within the visualization system

effect the complexity of creating a file input solution,

IFIT is implemented in IRIS Explorer, however, any of the ideas found in IFIT can be

easily implemented in MVEs capable of programmed extension, many of the algorithms

166

would be easily transferred to other MVEs. AVS with its comprehensive range o f field

mappers would the easiest MVE to extended to produce IFIT-like results.

In terms of platform dependence, IFIT’s visual modules are the only modules that would

require major reimplementation for other operating systems as they link directly to win­

dows control and display routines and therefore would require changing. However, their

design and use of OpenGL would minimise this to a rebinding and movement of the call­

ing and initialization functions to the alternate operating systems callbacks, reducing the

difficulty of such a platform conversion. All the other IFIT modules are standard C, or

C++and can be simply recompiled for the other platforms.

To summarise, the ideas offered in this research propose a unified method for dealing with

file input as opposed to present ‘ad-hoc’ and format-oriented approaches which are of a

purely descriptive nature. IFIT and the forensic approach presented in this thesis illus­

trate how file input solutions can be solved by using visual programming and interactive

discovery.

The visual techniques for finding the dimensions o f an array and the Fourier analysis

methods both represent novel contributions to the field of scientific visualization. They

prove the power of both the software architecture and model by illustrating how they have

enabled processes to be solved using a range of different techniques.

File standards have often been suggested as the ultimate remedy to the problems of data

compatibility and file access problems. Formats like CDF and data description languages

like XML have made inroads into this problem. However, there are many reasons why

these powerful methods o f providing data compatibility may not be used. Equally, the

new standards for scientific data like XML can be used just like traditional binary formats;

producing data descriptions which cannot be correctly interpreted by other software. The

notion of tools to interpret and discover file content rather thanjust describe file content is

a powerful notion that can be applied to many fields where multidisciplinary data sources

need to be accessed.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

This work has solved a range of questions related to file input and provided a viable model

for file input. In addition, this work has put forward several proposals for automating

aspects of file input. A fully automatic method to file input may, one day, be achievable.

However, this will require additional research into the other aspects of file input which

have been discovered and classified during the course of this work.

The next section will describe future research and development which expands on some

of the discoveries made during this research.

8.2 Further work

1. The visual feedback modules provide a format independent view of the data and

so provide the user with a powerful method of discovery and error detection. Im­

age View and Volume View both work best with gridded data of low a dimension­

ality. The other three types of structural connectivity (described in chapter 3) and

the other semantic meanings for data that can be found in an array, like vector or

colour data, would be more intuitively supported through visual tools which present

a more appropriate visualization for the type of data involved and can discover the

additional parameters which are relevant to that data.

• Nodal and cell data would benefit the most from new visual feedback modules.

A visualizer that could display both the source nodal data values and positions,

as well as the linkages between nodes and cells would dramatically improve

over ImageView in examining such data. Trialling this type of data would

involve searching for several parameters including the linkages between nodes

and the type of coordinates involved. This could take the form of directly

wiring a template for cell connectivity or just plotting all the nodal points and

then enabling the user to trial the different combinations of connections.

• Flow data is another type of data which would be better supported tlirough a

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 167

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 168

different visualization technique. Vector lines and spot noise (van Wijk 1991)

can both be used to generate views of vector components that provide an ex­

cellent feedback method for the forensic discovery of arrays containing vector

data. Modules similar to ImageView and Volume View could be used to gener­

ate interactive flow field feedback that could enable the user to discover input

parameters in a similar manner to ImageView. This has been trialled using

existing IRIS Explorer modules for spot noise generation. While lacking the

interactive element found in ImageView the visual feedback did provide sim­

ilar artefacts which could be used to determine file input parameters.

• Graphs, tables and other simple graphic feedback tools to illustrate the content

of an array are also useful tools for investigating the content o f a file. Adding

modules which enable the file to be examined using a range o f different inter­

pretations would offer useful functionality for data input,

2. Combining all these interactive tools with a view manager that can present different

sections of the file to the user may provide performance benefits in discovering file

input parameters, especially if it offers comparative views of the same data under

different interpretations.

3. Chapter 7 described the use of power spectrums as a means of finding the dimen­

sions of an array. This offers the possibility of an automatic solution to the problem

of determining the shape of an array. By linking a power spectrum of the data with

a peak detection algorithm to find peak magnitudes and spacings; the resulting in­

formation could be used to find the dimensions o f an array with little or no user

interaction. This could then lead to a module which either replaces ChangeDimLat

or sets its rank and shape parameters.

4. Monolithic input tools while inflexible are simple to use. A ‘novice friendly’ file in­

put tool could be created using IFIT by adding an extra interface layer that enables

users to specify their data in a step-by-step manner and then generate appropriate

169

IFIT networks for their problems. The interface to this tool should aim to describe

as many aspects of the user’s file in a visual manner using icons and as few parame­

ters as possible for any given problem. The module network generated dynamically

or taken from a library o f solutions that can be described by the user’s choices.

Using IFIT as the underlying system for such a tool would enable the range of

solutions to be extended, the resulting networks would be user customisable and

unlike existing tools unknown parameters could be handled through connecting vi­

sual feedback modules into the network at the appropriate places,

5. Language-based file formats and those using a data dictionary, or data description

language (DDL) (as described in chapter 2, present a different methodology for

storing data. While this methodology fits into the dataflow model for file input,

and the file input architecture, IFIT has no modules which can effectively deal with

this form of storage. These files often contain the equivalent of fixed record data,

although the DDLs can describe much more in a flexible manner. There are several

requirements for modules to handle this type o f storage. These include the ability

to identify separate values in the file, group them into variables and convert them

into a usable binary form.

One approach would be to produce ‘file compiler’ using techniques taken from ex­

isting compilers (See Trembley and Sorenson (1985) for a description on the theory

o f compilers). This approach would use regular expressions and production rules to

first discern different types o f numeric value and formatting tag, and then compiled

the discovered data values into a binary form which could then be accessed by IFIT,

Such a tool could include some primitive rules, which define how values like float­

ing point numbers and integers are represented. Other simpler approaches include

producing simple parsers, which when meeting a user-defined tag can perform a

specified operation. One example would be gathering a list o f values that match a

particular tag, c.g. “COORDINATE

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 170

6. Future tools should aim to enhance the forensic approach by providing tools to

search a file to find the location and description o f file input parameters and meta­

data that have been discovered. The resulting set o f matches could allow the user

to then specify how the file is laid out in a reusable manner, overall this would have

the effect o f simplifying the production of reusable module networks.

7. Compression was excluded from the scope o f this project in the early stages due

to both the additional complexity and the generally lower usage o f compression in

the user-defined, field-specific and non-standard file formats found in the scientific

community. Different compression techniques can have very different performance

with different types o f data. Their effect on the information content also differs

with some techniques Tossy’ and others ‘lossless’ in their effect on the data in­

volved. Compression can also radically change the content, structure and meaning

o f a dataset. For example, RLE data still has the same primitive type and values

meanings as the source data. RLE replaces repeated values in the dataset with tags

which define regions o f constant value. Conversely Lempel-Zif (LZW) encoding

radically alters die meaning o f the bytes from their original form and changes the

files values meanings into a selection o f references into a dictionary o f values . The

interpretation pipeline and dataflow model for file input do not explicitly prevent

the interpretation of compressed files. It may be possible to take some commonly

used compression schemas and provide them as modules operating at their relevant

place in the pipeline.

8. The model and architecture as they stand provide a unidirectional pipeline which

flows from a file’s content to the application’s data structures. This could be ex­

tended to produce a bi-directional model, including file output as well as input.

This would use a range o f processes which offer the inverse functionality o f those

found in the file input pipeline. Starting with metadata and data structures from the

application and interpreting them into file content which can then be directly out­

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 171

put. This could potentially solve a range of data exchange problems which occur

between scientific systems.

9. Finally, the techniques applied in the design o f IFIT may be applied in the gathering

o f digital evidence. Future work in this field would involve the development and

feasibility testing o f tools to enable the discovery o f ‘hidden data’ within files on

suspects hard drive. For example, data hidden in media files. Methods o f discovery

found in the dynamic feedback element of IFIT could be developed to enable a user

to search for the structures which would be present in such files that would occur in

addition to their ‘visible’ content.

References

Adobe Systems Incorporated, Taft, E. and Walden, J.: 1990, PostScript language refer­

ence manual, 2nd edn, Addison-Wesley.

Bergeron, R. and Grinstein, G. G.: 1989, A Reference Model for the Visualization of

Multi-dimensional Data, Proceedings o f Eurographics ’89, Elsevier Science Publishers

B. V. (North-Holland), pp. 393-399.

Berges, J. C.: 2002, Support o f WMO binary format (BUFR and GRIB), Internet :

c i t e s e e r . i s t . p s u . e d u / b e r g e s 0 2 s u p p o r t . h t m l ,

Bracewell, R. N.: 1978, The Fourier Transform and Its Applications, electrical and elec­

tronic engineering, Second Edition edn, McGraw-Hill Book Company,

Brodlie, K.: 1993, Animation and Scientific Visualization, Academic Press, chapter 8: A

classification scheme for scientific visualization, pp. 125-140.

Brodlie, K., Carpenter, L„ Eamshaw, R., Gallop, J., Hubbold, R., Mumford, A., Osland,

C. and Quarendon, P.: 1992a, Scientific Visualization; Techniques and Applications,

Springer Verlag, pp. 37-85.

Brodlie, K., Carpenter, L., Eamshaw, R., Gallop, J., Hubbold, R., Mumford, A., Osland,

C. and Quarendon, P.: 1992b, Scientific Visualization: Techniques and Applications,

Springer Verlag.

Brodlie, K., Gallop, J., Grant, A., Hanswell, J., Hewitt, W., Larkin, S., Lilley, C., Morphet,

172'. ;

REFERENCES

H., Townend, A., Wood, J. and Wright, H.: 1995, Review o f Visualization Systems,

number 9 in Technical Report Series, Advisory Group on Computer Graphics.

Butler, D. and Pendley, M.: 1989, A visualization model based on the mathematics of

fibre bundles, Computers in Physics 3(2), 45-51.

Carey, R., Bell, G. and Marrin, C.: 1997, ISO/IEC 14772-1:1997 Virtual Reality Model­

ing Language (VRML97), Technical report, The VRML Consortium Incorporated.

Chatzinikos, F. and Wright, H.: 2003, Enabling Multipurpose Image Interaction in Mod­

ular Visualization Environments, in R. F. Erbacher, P. C. Chen, J. C. Roberts, M. Grlin

and K. Bmer (eds), SPIE: 5009, Visualization and Data Analysis, p. 455 462.

Core AVS/Express and the Object Manager 2004, Internet: h t t p : / / h e l p . a v s .

c o m /E x p r e s s / d o c /h e lp _ 6 3 /b o o k s /d r /d r f o .h tm l# 2 6 3 2 1 .

Dyer, S.: 1990, A Dataflow Toolkit for Visualization, IEEE Computer Graphics and

Applications 10(4), 60-69.

Extensible Markup Language (XML) 1.0: 1998, Technical report, WC3.

Feiger, W. and Schroder, F.: 1992, The Visualization Input Pipeline - Enabling Semantic

Interaction in Scientific Visualization, Eurographics 11(3).

Fitzgerald, P., Berman, H., Bourne, P. and Watenpaugh, K.: 1993, The

Macromolecular CIF Dictionary, Internet: c i t e s e e r . i s t . p s u . e d u /

f i t z g e r a ld 9 3 m a c r o m o le c u la r .h tm l .

Foley, J. D.» van Dam, A., Feiner, S. K. and Hughes, J. F.: 1996, Computer Graphics:

Principles and Practice, The systems programming series, Second edition in C edn,

Addison Wesley, pp. 334-335.

Gallop, J.: 1994, Visualization In Geographical Information Systems, New York: John

Wiley & Sons, Ltd., chapter 6: State of the Art in Visualization Software, pp. 42-48,

173

REFERENCES 174

Goucher, G. and Mathews, J.: 1994, Common Data Format CDF, Internet: h t t p : / /

n s s d c . g s f c . n a s a . g o v / c f d / h t m l / t e c h _ b r i e f . h t m l .

Haber, R. B., B.Lucas and N.ColIins: 1991, A Data Model for Scientific Visualization

with Provisions for Regular and Irregular Grids, Proceedings o f Visualization ’91.

Haber, R. B. and McNabb, D. A.: 1990, Visualization Idioms: A Conceptual Model for

Scientific Visualization Systems, Visualization in Scientific Computing pp. 74-93.

Hall, S. R., Allen, F. H. and Brown, I. D,: 1991, The Crystallographic Information

File (CIF): a New Standard Archive File for Crystallography, Acta Crystallographer

pp. 655—685.

Hamming, R. W.: 1962, Numerical Methods fo r Scientists and Engineers, McGraw-Hill

New york.

Hierarchical Data Format: 2000, Internet : h t t p : / / h d f . n c s a . u i u c . e d u / .

IRIS Explorer User 's Guide (JVindows NTI2000): 2000, Internet; h t t p : / /www. n a g .

c o .u k / v i s u a l / I E / i e c b b / D O C / h t m l / n t - i e 5 - 0 .h t m .

Johnson, C. R. and Parker, S. G.: 1994, A computational steering model for problems in

medicine, In Supercomputing '94, IEEE Press, pp. 540-549.

Kendrew, J. C,, Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. and Phillips, D. C.:

1958, A Three-Dimensional Model o f the Myoglobin Molecule Obtained by X-ray

Analysis, Nature (181), 662-666,

McCormick, B. H., DeFanti, T. A. and Brown, M. D.: 1987, Visualization in Scientific

Computing, Computer Graphics 21(6).

Network Working Group: 1987, XDR: External Data Representation Standard, Technical

Report RFC 1014, Sun Microsystems Incorporated.

http://hdf.ncsa.uiuc.edu/

REFERENCES 175

Netoork Common Data Form: 2000, Internet : h t t p : / / u n i d a t a . u c a r . e d u /

p a c k a g e s / n e t c d f / i n d e x . h tm l.

Nielsen, J.: 1993, Usability Engineering, AP Pro Sessional, chapter Usability Heuristics.

OpenImentor: 1993,Internet: h t t p : / / o s s . s g i . c o m / p r o j e c t s / i n v e n t o r / ,

Osland, C.: 1992, FRAMEWORK, Springer Verlag, chapter 2, pp. 15-35.

Pearsall, J. (ed.): 1998a, Atew Oxford Dictionary o f English, Oxford University Press,

pp. 2066-2067.

Pearsall, J. (ed.): 1998b, New Oxford Dictionary o f English, Oxford University Press,

p.995.

Richards, F. M.: 1968, The matching o f physical models to three-dimensional electron-

density maps: A simple optical device, Journal o f Molecular Biology 37,225-228.

The: 2000, IRIS Explorer Module Writer’s Guide (Windows NT/2000), 5 edn.

The Jargon Dictionary: Terms: The M Terms: middle-endian: 2003, Internet: h t t p :

/ / i n f o . a s t r i a n . n e t / j a r g o n / t e r m s / m / m i d d l e - e n d i a n .h t m l .

Trembley, J.-P. and Sorenson, P. G.: 1985, The Theory and Practice o f Compiler Writing,

Computer Science Series, McGraw-Hill International Editions.

Tufte, E. R.: 1983a, The Visual Display o f Quantitative Information, Graphics Press.

Tufte, E. R,: 1983b, The Visual Display o f Quantitative Information, Graphics Press,

P-28.

Tufte, E. R,: 1983c, The Visual Display o f Quantitative Information, Graphics Press,

pp. 40-41.

http://unidata.ucar.edu/
http://oss.sgi.com/projects/inventor/

REFERENCES 176

Upson, C., Jr., T. E, Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R.

and van Dam, A.: 1989, The Application Visualization System : A Computational

Environment for Scientific Visualization, IEEE Computer Graphics and Applications

9(4), 30-42.

van Wijk, J.: 1991, Spot noise texture synthesis for data visualization, in T. W. Sederberg

(ed.), Proceedings o f Computer Graphics SIGGRAPH 91, Vol. 25, pp. 263-272.

Webster’s Master English Dictionary: 2002, Midpoint Press, p. 454.

Wells, D., Greisen, E. and Harten, R.: 1981, FITS: A Flexible Image Transport System,

Astronomy and Astrophysics Supplement Series 44,367-370.

West, J. J.: 1999, Images and Reversals, Internet: h t tp ; / /w w . s ig g ra p h .o rg /
p u b lic a tio n s /n e w s le tte r //v 3 3 n l/co lu m n s /w es t.h tm l.

Woo, M., Neider, J. and Davis, T.: 1997, OpenGL Programming Guide, Second Edition

edn, Addison-Wesley Developers Press.

Wood, J.: 1998, Collaborative Visualization, PhD thesis, School o f Computer Studies,

University o f Leeds.

CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (¡FIT) 116

Figure 5.24: Single distinct vertical break of continuity

Single distinct vertical break of continuity This artefact, illustrated in figure 5.24 can

occur when the start of the array is incorrectly positioned in the file. The effect

is produced by either unwanted values leading into the array or by missing some

of the array’s data. This in turn alters the interpretation of the values in the array,

moving what would be the wrapped edges of the array’s first dimension to another

location in the first dimension of the interpreted array. This results in the edges

of the original array becoming adjacent values at some mid point in the array, and

because the edges are not continuous, they will form a visible break in continuity.

Correcting this artefact requires the user to alter the start point for the selection until

the discontinuity coincides with one of the edges and all the array data is present.

It is important to note that the size of the array must be checked to prevent loss of

data or the addition of non-data values into the array.

