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Abstract

Since the development of the modular visualization environment, the users of such geh-
eral software have had to face the problems of file input. Sunply put, the range and
complex1ty of different file formats has prevented the deveIOpers of visualization systems

from creating an individual solution for every format. This has left a gap, where users are |
left to fend for themselves by either extending the systom to their needs, or using a format

capable of bcxng described by one of the input tools oﬂLred by such systems Nexther of

these options is parhcularly easy, and the use of field dependent termmology can hamper | o

such efforts.

This thesxs proposes a model, archxtecture and mcthodology, for importing uncommon"

file formats and data into scwnuﬁc v1suahzatlon systems by way of 1nterpretat10n. Usmg ‘

mterpretatxon we are able to describe many file formats in a gencral manner, cnabhng s

further development of sxmple methods to aid users in solving their data mput problems .

‘The utility of these concepts is illustrated through the Interactive Fxle Input Toolkit (IFIT) s

which allows users to ‘solve their file input problems in a flexible manner, Thzs tool is -

 illustrated by a range of examples and tost cases, and unhke other solunons 1t has the ‘

ability to discover as well as describe the content of a file. Fmally, this thesis presems e

wozk towards an automatxc method for dotermmmg a file’s mput paxamcters
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Chapter 1

Introduction

The dramatic fall in the cost of cornputer hardware and the deVelopnlent of software

supporting Visualization in Scientific computing (ViSC) has lead to an increase in tvhe‘

number of users who can benefit from visualization software, However, the uptake of "

such software is limited by its ability to read different data sources.

Hamming (1962) famously stated, “The purpose of computing is insight not numbers”,

visualization enables this to be achieved. It concerns the transfonnaﬁon of the abstract” |

to the visual, and enables us to use our advanced abllmes for processmg vxsual stnnull o

to understand information. Vnsualxzatlon in scientific computxng (VISC) is a tenn ﬁrst' -

coined by McCormick etal. (1987) and concerns thei xmprovernent of software and sktlls o

suppomng scnenttﬁc visualization by comblnmg advances in computer hardware thh im-

proved methods for data pmcessmg and generahzed models of mampulatmg and stormg E i

data. Developments in ViSC have lead to a range of pow erful commerctal software pack- |

ages which enable a user to gain m51ght from their data "The number of appltcatxons e o

for such systems has grown, encompassmg research and development in earth scxenccs

: medlcme and industrial des:gn “A trend in vxsuallzanon software has been toward ever' s

" more versanle environments that offer support to many apphcanon domams

N McConmck et al (1987) first statcd the phrase ‘ﬁre hoscs of mfonnauon to convey the b |

~-vast amount of mfonnanon being produced by many of the computer~based scxentxﬁc - l,i _‘

.t
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systems of the day. He also described the steps and resources needed to make sense of
such data sources. One section of the report describes the problem of “The information-
without-interpretation dilemma”, this notes the diversity and specifies some of the fire
hoses of information to which he referred earlier in the report. While many advances |
have produced a visual interpretation for these types of data, the problem of information
without interpretation still remains in file access. Visualization packages cannot use data
in any files for which tlxey have no reader, there may be information in the files, hbwever
without a reader there is no interpretation for it, rendering it useless. Modern visualization
systems like modular visualization environments (MVEs) are highly adaptable and cater
for a wide range of data sources. The only major hurdle for many users is inputting their
file format, For users who have software which is capable of producing a standard ﬁle
format output, this is usually a simple issue which involves ﬁndmg the mght reader from
a library or snmply selecting their file to open it. Tools are prov1ded in most MVEs for
when this is not the case. However, these tools are seldom snnple and are 111 equxpped o
for solving problems where users lack knowledge about their format or data Fmally,’ L
users can resort to creating their own extension to the MVE’s capabxhtles to mput theu' : »

pamcular data, this can be both complex and time consummg

Before specxfymg the problem that thxs the51s mtends to solve m detaxl we shall examme

the rise of vxsuahzatxon as a tool for science and its transmon mto a computatxonal scxence

After this the area of visualization and the demands whxeh have produced the mynad of . . |

 files that now require an altematxve method ofi mput w:ll be dmcussed

Visualization is a dxverse subject area \xlnch spans many ﬁelds and dlscxplmes, the next | ‘ " f j

section will describe some of the main elements of vxsuallzatxon and bneﬂy chart how it

hasrisento a computatzonal ﬁeld
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1.1 Visualization

There are many definitions for the term ‘visualization’; each provides a clue to the nature

of the word’s use, ‘visualization’ is deﬁned in the OED (Pearsall 1998a) as a denvatlve of

“Visualize’ which is defined as:

“1. form a mental image of; imagine: it is not easy to visualize the future”,

and

“2. make (something) visible to the eye; DNA was visualized by staining

- with ethidium bromide.”,

Webster’s Masters Enghsh Dictionary (Websfer sMaster Englzsh chttonary 2002) a grees '

with the first definition w1th

“to form a mental pxcture of to make wsxble to the mmd or unagmatxon to

construct a vxsual image in the mind’

There are two themes from these dictionary dcﬁnitioi;s Whiéh are useful when re-applied

to the definitions used by practitioners in'the field of ViSC First, that visualizatidﬁ ine ’

‘ volves mental modcls which are of a visual nature. Second, that visualization mvolves the 5 oty

* presentation of visual imagery to fit what maybe 1nv1s1ble or non- vnsual phenomena mto |

a visual mental modcl

MéCofmi_ckét al. (1987) stated in relation to scientific computing that:

“Visualisation is a method of computing. It transforms the symbolic into the
geomctm, enabhng researchers to observe their sm)uhnons and computa.

. tions. Visualization offurs a method for seemg the unsecn
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This takes several notions, that visualization in this field is related to a computational
problem, it is transformational and it is view on’entedf Haber and McNabb (1990) take a

similar transformational notion of visualization in relation to scientific computing with:

“A series of transformations that convert raw simulation data into a displayable ’
image. The goal of the transformations is to convert the information into a

format amenable to understanding by the human perceptual system”,

‘Visualization’ is a much debated word. All these computational definitions when com-
bined with the dictionary definitions give us a picture of what visualization means Vi-
sualization for a person involves the constructxon of a mental model Wthh maps some
phenomenon to visual imagery in the mind. Therefore much like commxttmg a complex o
idea or mathematical problem to paper, extemahzmg the mental model to some other -
medium enables it to be examined without the burden of mtemally generatmg the un-‘
agery. A person can have a mental model of & city, but the load for utlhsmg thxs model | -
for any parncular problem can be harder than using a map, which can be thought of as
~an extcmal mental model of the city on paper. This extemalxzatxon enables the thmker to ‘

- gainanew perspecnve a clearer focus oran ovcrv1ew wlueh can in tum prove 1ns1ghtﬁxl s

Another important aspect of visualization is that this mental model once extemahzed be- '
comes easy to commumcate through visual presentatxon Agaxn usmg the map problem o |
commumcatmg the location of place from your own internal mental model is dlfﬁcult,

but pointing to the location on a map is relatwely easy. Verbal communication of such a

visual model can be complicated; language often relates to qualitative as opposed toquan-

titative descnpnons of wsual phenomena whereas Vlsual presentatxons use the mmd § ,

powerful visual mterpretatmn ablllthS to ﬁnd pattems trends andi mterestmg feamres that

can lead to insight.

Taken into the realm of computanon, vxsuahzatxon beeomes a way of processmg data mto Ci

visual modela wluch can be mteracted wuh, ThlS process ~mst lxkc mappmg data to a'»_:}lk.i
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mental model, is a series of transformations from the abstract to the visual. The mapping

of the data to a view can be naturalistic or symbolic, depending upon the dataset and its
attributes. ' ' '

Describing visualization by example leads us to a list of techniques including: graphs
charts, maps, scale models, atomic models, architectural models and engineering bluepnnts,

some of these are described in the following sections.

1.2 Historical visualization

From the earliest maps and charts like Mmard s map of Napoleous march to Moscow
(which can be found in Tufte (1983a)) through to newer uses of vxsual tools like atomic |

wire models Kendrew et al. (1958) used in chemlstry, the use of wind tunnels with smoke

for understanding a shape s aerodynamxc propertles and the use of scale models in Shlp S

stablhty testxng

Vlsuahzatlon existed for centuries pnor to the advent of the computer It cannot be char. ;
acterised by any specific algonthm process, or applxcatlon However it canbe typtﬁed as
a way of thmktng and commumcatmg mvolvmg the v1sua1 senscs To that end the great ;
thlnkers in history have used vxsuahzanons to commumcate thelr 1deas to others and to

gain insight into their problems The followmg three sectlons descnbe some mterestmg o

“real world” v1suahzatxons that have been crcated

71.2.1' Grnphs

Graphs are some of the earliest foxms of v1suahzatlon and have been used to show rela- ‘

tionships between n variables where one of the variables is mdependent and all the others : ':': =
vary in relatton to the independent one and 50 are dependent upon it. A reputed 10th-11th i
century graphical representation of the planets’ orbits Tufte (1983b) is one of theearli-

est known graph visualizations. The graph shows multiple lines, each one representinga .~ s
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planet’s inclination over time, it is the earliest known example of an illustration attempt-

ing to use visual form to describe natural phenomena and was taken from a section of text -

for monastic schools,

1.2.2 Maps

Maps such as topologlcal maps and terrain contours, have long been used to show two-
dlmensronal spatial relatlonshrps, often ina geographlcal context Charles Joseph Mtnard
. created some elegant maps that illustrated Napoleon s march to Moscow Tufte ( 1983¢).
The map illustrated many factors over the course of the campalgn mcludmg troop num-

bers, environmental factors, and the paths of the army s advance and subsequent retreat |

It was not the first map ever drawn but it hlghhghts how complex mfonnatlon can be e

rendered inan elegant manner Wthh makes it more understandable

123 3D Models

Constructmg a small-scale mock up, ora physwal reconstrucnon, Of a phenomenon is

a form of vrsuahzatmn The use of 3D models to gain an understandrng of a problem |

is common "The aerospace industry create v1suahzatrons for airflow over the surface SEAY

of their aircraft by creatmg a scale model and placmg it in a wind tunnel with Jets of e

coloured smoke. Ina sumlar vein, the ship bulldmg mdustry also uses scale models to § e

test the stabxhty of hull desrgns in large water tanks. There are many other examples . S

_in science, engineering and mathematrcs where the problem has been represented bya. . S

physical creation. Two othcr famous uses of physrcal model vxsuahzauons are, James :

* Clerk Maxwell s clay surfaces, and chhard’s Box The detalls of these VISuahzatlons are L

outhned below

‘ ‘7 James Clerk Maxwell was a renowned scnermst of the nmeteenth century Among hxs s
accomphshments were the first 3D v1suahzat10ns usmg clay models West (1999) ﬂm »
_1nSp1ratlon for these came from a xnental model descnbed by J. Wlllard Glbbs The mental TR TR
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model Gibbs was using would be known as a surface plot in current terminology. Maxwell
saw the value of these methods for thinking about scientific data froni Gibbs paper and
created a clay sculpture using Gibbs’ data and mental model. Maxwen s approach allowed
Gibbs' model and mathematical techniques to gain widespread acclaim, and they have
been used for almost a century. Th‘e visual aspect of this work has been overlooked unti‘l ;
very recently and has come to the fore with the use of 3D computer graphics. - From
Maxwell’s models both an understanding of the data and a communication of how Gibbs -
was thinking about the data could be gathered this really shows the value of a good ,

wsuahzatxon and how 1t can allow ideas to be commumcated more effectlvely

Richard’s Box Richards (1968), is a mcthod of visually combmmg an electron model
with electron densny contours. It involves the use of thin acetate upon which contours are

vdrawn These are mounted on 36" x 36” Perspex sheetmg and 1llummated Thxs construc. i

tion is hung by piano w1re next to the molecular mode] that is made to the same scale and o

also illuminated. Finally a half—sﬂvered mirror is used to supenmpose the two mOdels, :

allowmg the user to judge if the map isa good fit to the model This v1suahzatlon shows

how visualization techmques can be used to judge accuracy and pxck out abnormahtles m

the way the data has been mterpreted
1.3 Modern computing period

As oomputing de'veloped as é tool for'sciencé‘kmanykprog"rams prbducod oUiplits .thati |

could be printed or displayed. Initially software would be specifically coded to produce o

~ an output for a particular platform using very customxsed routmes wluch accessed the - s

graphics hardware dnrectly Over the years muluple layers have mterceded releasmg

software from bemg tied to a pamcular type of graph;cs hardware hbranes hke OPCnGL ek | ki

- for which a good gmde can be found by Woo et al, (1997) alongmde GKS and Dll‘ectX 5

have all generalized the problem of producmg graphlcal outputs at a low~level ngh‘y' S

level beranes like PHIGS and OpcnInventor (Open Im»entor 1 993) have created addmonal : ” L
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layers which make user interactions and view control easily obtamable for users who
need to program visualizations into their software. These libraries lead to a range of off

the shelf or turnkey products which each offer a particular field a range of appropriate ,
data manipulati
Modular Visualization Environment (MVE) apE by Dyer (1990) and AVS by Upson
et al. (1989) were both early examples of such environments. MVESs are toolkits for
building visualization applications. ‘The user can choose from a range of data processing

and visualization techniques and connect them together to create a custom apphcauon for

their problem.
1.4 Data input for scientific visualization’ |

McCormick et al. (1987) noted the range and quantltatlve nature of scientific data, his -
‘firehoses of information’ quote still describes the data sources for scxentlﬁc visualization,
SClCntlﬁC data comes from a dxverse range of mterdlscxplmary sources Smetmﬁc data

canbe descrlbed in general terms as being numeno, quantxtatwe and smxctured This data -

~ comes from physical measurements or simulated results. szuahzatxon system deveIOpers

on and visualization techniques. The next major development was the .

are faced with a need to support these sources and the mynad of exxstmg stdndard’ ﬁle : A

formats which are used by different dlsmphnes

Commonly-used sclentxﬁc data formats tend to be w1de1y supported Asa result these do

. not normally posea probl
. file formats often fo
. users, or by other software developers can prowde apr oblem for the user. Thxs is because
it is unlik

formats,

em for the users of smenuﬁc systems However, the Pmpl‘letary Rl

und in obscure measuring hardware and ﬁle formats produced by ; :

ely that the wsuahzanon system wﬂl be able to du'ectly mput data from these
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1.5 Inputting application data

Modern scientific data by its nature does not always come from auser-designed item of
equipment or piece of software, and this trend is ‘inereasing as stock items of scientific
hardware, measurement equipment and software become more prolific and are developed
by external companies. This is moving the user’s role further aWay from software engi-’
neering and towards the scientific aspects of tlleir work, While this can be censidered a
more efficient use of their time it can impede their ability to use visualization software :

because they are no longer aware of the technlcal skllls needed to translate thelr data onto

other systems.

Most programs provide file access as part of their functionality. The ability to load or
create data for viewing or modification and the ablhty to save this data 1s an essenual o
and often underestimated aspect of most software. Only when users find they cannot

load a pamcular form of data or save it in a form that can be used elsewhere does this

functlonahty become questioned. Most software developers offers a range of optlons for

‘loadmg and saving data. These options usually relate to formats whlch are sxmple and '

therefore more commonly xmplemented or industrial standards in their parncular ﬁeld "

Many examples can be found of applxcations from non—smentxﬁc fields whlch have data o

input problems caused by a plethora of file formats, these mclude word processors, raster

graphics packages and desktop pubhshmg packages All have many dtﬂ’erent standards

and sources for their apphcanon data, and problems can often arise, especially between :

different hardware platforms, when a file format i is 1ncompat1ble between packages The o ;

same can be saxd for many other types of general purpose apphcatxon, MVEs Wlth thetr LR

high adaptabxhty and apphcabxhty to many kinds of smennﬁc data are perhaps aworst

case of this phenomenon because the number of dxfferent ﬁelds and appheanons that they,-‘ ; R

~ could concelvably suppozt Is so great

Most ﬁle access routmes open a specxﬁc ﬁle fonnat T hey faxl completely 1f an attempt e

,1s made to lnput a fonnat wh1ch has not been deﬁned by the routme usually openmg an T
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error message dialogue box to warn the user of the error. If MVEs were to solely adopt
this route, then every file format would need a specrﬁc routine to be developed and as
there are so many formats this is an unreasonable notion. Equally, because so many file
formats store such similar data, it would involve a huge replication of code at the expense
of the developer. Currently file formats are solved ona case-by—case basis. Such solutions
can be created by the user adding routines to the system, or by the developer aiding a user
by adding a routine to access the user’s data, Finally, if conversron software exists that -
supports both the user’s file format and an appropnate format used by the MVE this can |

be used to mput the user’s data.

The hardware that produces a ﬁle can aﬁ'ect its content rendermg it 1naccess1ble using
identical routines on a different hardware platform Some formats compensate for this
effect with rigorous standards for mterprctmg their content, others do not These dxffer.. _
ences along with dxfferent types of data, data storage plnlosophy, demands and uses of file - -

' formats has lead to a multitude of dlfferent data storage formats Tbese formats nnpede "

the usage of visualization software due to the drfﬁcultles faced by users in accessmg then' VV L .

data.

1 6 Scope and goals for a ﬁle mput system

' The key problems that face file input systems for sc1ent1ﬁc data will be descnbed in thrs {F

section in addition to a specrﬁcatlon for both the goals and scope of thrs research

1.6.1 : Research ‘probvlemv .

" The aim of this research has been to unprove the uSability of SCientiﬁc visualization softi B S

. ware, Within tbrs rermt it has 1dentxﬁed a key problem faced by users of this software, o

, namely ﬁle mput Tlus process descrrbes the entry Of a user s ﬁle-stored data i mto one of S

: hese programs. The drﬂiculty of this task ranges from entermg the location of the ﬁlc, to . .
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a programming project incurring costs in user’s time and the éxpenise of others, -

Currently, there are six techniques that users of scientific visualization software can use
to input their data. These methods are described in chapter 2 under the names of hard-

coded, header files, scripted readers, extefnal tools, modular networks and programmed |
extensions. Most MVE packages implement one or more of these techmques to provide

users with access to their data, Each method can be descnbed in terms of the complexity

of its usage and its overall flexibility.

This prolects aim is to find a better method of inputting data into VxSC systems This

project targets non-standard, user—deﬁned and ﬁeld specific file formats (those usually not f

covered by hard-coded solutions). Overall this research aims to:
o simplify the problom of creating solutions to file input probloms for,ViSC systemsf; g

e find a solution which can be applied to a broad range of sciontiﬁo ﬁrle}inpu’t prob- o

~ lems; | 4 o

s work towards an automatic solution for file input.

A large part of this problem is tled toa lack of standardlsed methodology for dealmg wuh -
file input and output. The result of this has been an ad-hoc approach to dealing wuh ﬁles o

of different formats, Therefore, non-standard file formats present a w1de vanety of ways. L

in whxch users have stored their data, each dlﬁ”erent enough to need an 1nd1v1dual solutmn, - .

and yet each sumlar enough to make a common descrlpuon seem plausxble As part of -

this research a general methodology for solvmg thesc problems should be found thls :

~ will allow the creation of more advanced tools for ﬁle mput which can offer the necded -

; ﬁemblhty w1thout the complexuy that comos w1th exlstmg approaches

The final solution should enable a wxde rangc of file formats to be mput Thls should o .

include file formats from different fields and dlﬁ'erent types of datasets
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The project should attempt where plausible to mvestxgate automanc methods for deter-
mining the content of a file, with a goal of reducing the need for user interactions in the

file input process.

Given the overall goal of loading non-standard ﬁle formats, the requrrement for a simpli- )

fication over existing approaches and a high level of ﬁex1b1hty, the scope of this research

is now described.
1.6.2 Scope of research

There are numerous file formats in circulation, over 100 in the field of Chemistry alone. ¥

In order to find a solution, we need a representative selection of file formats that are not

~ currently supported by the hard-coded loading systems of the MVE we _9h06se to imple-

ment any system on. Additionally, the range of files we are‘attempting to ﬁnd solutions

for would ideally be user-defined, or output from propnctary software and hardware, and - ’, i

' therefore not commonly available.

The ﬁle formats whlch wrll be the target area for this research are descnbcd in Chdptcr ot

2 under the sections termed ‘ﬁeld-spec1ﬁc and user-deﬁned and non-standard’ Theyf

include scientific file formats that are;

o the output of prOpnetary apphcatron software

. the output of user developed software that does not use an exrstmg standard
 The scope of this project is to exclude file formats osing the following techniques: S '
e compress‘ion;_":" O
. encryptlon;

) sub—byte,volues; -
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Compression whilst widely used irr medical and satellite imaging data, is less prevalent

in field-specific file formats and user-defined file formats. Most ﬁle formats that can
use compression are also likely to have an option for the output of raw data. Finally,
the complexities of implementation and added proprietary rights #SSlleS, have led to the

removal of compressed files from the scope of this project.

Encryption is a similar case to contpression. It is only usually encountered among the
formats put forward by the providers of copyrighted materials like films, music and elec-

tronic literature and is therefore outsrde the scope of thrs research

Finally, the notion of values being stored in less than one byte has also been dropped from :
the scope of this project for reasons of low usage In the author’s oplmon and expcrlence,

they do not represent a wide enough cross—sectlon of the file formats W1thm the other

specrﬁcatlons of this prOJect to require exammatlon at this nme

1.7 Thesis structure

_This thesis has the following structureﬁ

Chapter 2 - Visualization models, file formats ‘and mput tools provides a backgrotmd‘ AR et

for this work Current ‘models for storlng and processing screntxﬁc data are de-

scribed followed by a review of the current statc-of—tho-art in data mput and ﬁle |

fonnats found in the field of screntrﬁc vxsuahzatron

Chapter 3 Data mput consrderatlons takes an m—depth look at the theory and mechan- .

ics of acquiring data from a file. It describes the different facets of the file i lnput e

~ problem in terms of both the data mvolvod in and how it s rcpresentod in ﬁle for- S

mats.

Chapter 4 ~ A new approach to file input, presents an aPPF oach and model for solvmg v

file mput problems followed by a supportmg archltecture for the ﬁle mput prooess : A ¢
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Chapter 5 — Using the interactive file input toolkit (IFIT), presents a new approach to

file input. It describes IFIT’s structure and how its different components are used to

solve file input problems

Chapter 6 — Evaluation of IFIT, presents a range of test cases which are used to produce

a quahtatwe evaluation of IFIT’s abilities. It also evaluates IFIT’s usab;hty and

compares IFIT with the different input techniques described in chapter 2,

Chapter 7- Towards autonomous file input, illustrates how the user in the loop inter-
- actions presented in chapter 5 have lead to algonthms whlch could automate some :

aspects of the file input problem

Chapter 8 — Conclusions and further work summarises the work covered by this the-

sis before describing the conclusions that have been reached and some avenues of = o

future research




Chapter 2

Visualization models, ﬁle formats and
1nput tools

Software and mtellectual devclopments supportlng VlSC have lead to ﬂex1ble v1suahza— S

tion soﬁware like MVEs. These tools enable the user to construct apphcatmns that meet - .

" their visualization requirements through an easy-to—use mterface ~These highly ﬁexxble' SRR

envxronments offer thelr users many dxfferent v1suahzatlon techmques for theu' data

Many MVE users face a chanengmg problem when loadmg their data Thls stems ﬁom R |
the myrlad of different file formats which abound in science and engmeenng Thelr mm- ;
ber prohibits MVE developers from dlrectly suppomng every ﬁle format, mstead targetlng S

just those whlch are common This is a lumtmg factor for ViSC as it moves into fields i

where the user isno longer the archxtect nor deSIgncr of thetr software and its output

Overall this chapter wﬂl descnbe a context for ﬁle lnput in smentxﬁc v1suahzatxon, whlch .'_- o

will be the basis for compansons that will be drawn m chapter 6. The 1eadmg models

and frameworks for MVE design will be rewewed In addmon, this chapter will descnbe T

-some of the more common file formats and standards that are used in scnentxﬁc mrcles for G T

data representauon Fmally, dxfferent vxsualxzatlon systems wxll be rev1ewed in terms of ‘ RO f

- their mput tools and provxslons
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2.1 Scientific data storage models

The necessity for ViSC systems to have powerful data models has grown up alongside
the development of interdisciplinary visualization packages. Prior to thedevelopment of
these systems, ad—hoc visualization routines and application specific visualization systems
were the maj or source of visual output; such systems would be integrated with the speeiﬁc
data structures that the application field required. While this was effective for software
supporting a single field or application, an interdisciplinary visualization tool reqaires an

abstract data model.

Sc1ent1ﬁc data comes from a mynad of dlfferent sources. Gallop suggested in Gallop
(1994) that by taking a step back from the format of data amvmg at the system and
instead lookmg for shared charactenstlcs in dlfferent datasets, an ‘abstract data model

could be produced that would store many types of data. The next three sectxons outlmef

three powerful abstract data models that have been used in the desxgn of cornmerclal

: vxsuallzatlon software

2.1.1 Lattices

Bergeron and Grinstein (1 989) propose the need for a standard form to store a user’ s arbl- !

trary database wlnle 1t passes through the vxsuahzatton system Thts process is hkened to

the conversmn of eoordmates to the Cartes1an axxal system to enable them to be rendered RS

inP HIGS A primitive type termed the lattice was deﬁned as thctr standard form. Lattlcesj' S

preserve any orderlng present in user’s databases in addition to descrtbmg theu' data s

dimensionality. The lattice notation L¥ is  used to descnbe the dimension of the domam' o

| k and the data n “The followmg are examples of how dltferent types of data would be' g -

classified usmg the lattice notation:

"~ e LY Scattered 3D points; -
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e L} linein 3D; ‘
o L} line in 2D;
o L2 Surface in 3D;
e L3 Scalar volume;
) L§ 3D Vectors in a volume.
While the notion of the lattice does describe some aspects of ta data set, it cn]y ctsssiﬁes

scientific data. Bergeron and Grinstein do not explam what is stored in a lattice structure, -

nor do they elaborate on the hmrtatlons of the lattice, Wthh can be assumed to mclude _

an inability to describe some types of irregular cell-based data The lattice model can de- L

scribe many types of gnddcd scientific data and was used in the de51gn of IRIS Explorer s

pnmmve data structure.

212 Fibre bundles S

- Butler and Pendley ( 1989) smgle out ﬁbre bundles as the “natural geometncal objects

for visualization”, A fibre bundle isa structure from dxfferentlal geometry, 1t 1s a Space : e

derived from a palr of arbitrary spaces. A bundle comprises the Cartesian product ofa

base and a fibre space For example, flow data over an alrcraft wing where the base space REEe

is the surface geometry of the wmg and the fibre space is a vector space of alrﬁow over T

" this surface The fibre bundle structure deﬁnes a copy of the vector space fcr every pomt )

on the wmg 's surface

- This abstract model was extended in Haber et al (1991) to form the ﬁeld data model g

which is a unified abstract model for scientific data. The field model has been used m‘i e

 the design of IBM’s Data Explorer Therr paper illustrates a data model for descrlblng: S

contmuum ﬁelds dxscontmuous geometnes and wire line structures Much like a ﬁbre,‘_ o 0

bundle a ﬁeld is compnsed of mdependent and dependcnt Vanables The mdepcndent_t . o i
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variables in the ﬁeld model are described by a base space and the dependent variables are
described by a fibre space. Field space is their terminology for a fibre bundle and, as such,

is the Cartesian product of the base space and the dependent variable space.

Their model extends the notion put forward in the earlier paper, it deseribes hdw aspects |
of a dataset’s regularity can be used to produce a uniform compact data representation -
for both regular and irregular grids. One example of this compact form is to define how
regularly sampled positions in a gridded dataset can be reduced to a few shared parame- “
ters. They go on to show how the Cartesian product of their field elements can be used to
produce a compact representation of cells that glraihatically reduces the amount ef infqt- o

mation that needs to be stored in order to describe such data..
2.1.3 Classification of scientiﬁc'data with the E n‘otatien": .

Brodlie et al. (1992a) presents a classification scheme for scientific visualization which

attempts to model the underlying field of the data, Much like Bergeron and Gnnstem s

lattice classification it categorises different types of scxentxﬁc data by theu' type and dl- | .
mensionality. Unhke their work it aims to classify the underlymg field Of the data, not the .

data itself, Brodhe s classxﬁcatxon is based upon the notion that there is an entxty Wthh is T

the desired output to v1sua11ze ThlS entity can be descnbed in tcrms ofa range of values L "

~ over a number of 1ndependent vartables express.1ble in mathematxcal terms asa functlon l

-~ of many varxables

The notatlon is based upon an entlty E and class:ﬁes it by the type of ﬁmctxon and the e

dlmenswn of i its domam This type of functxon isa superscrlpt whlch can be classxﬁed as o

one of the followmg

~ & no function just points to visualize(P) ;' |

~ e asingle value or scalar (S) function;
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e an array of values or vector (V) function followed by a subscript defining the num-

ber of components;

ea matrix of values or tensor (T) function followed bya subscﬁpt which deﬁnes the ,

shape of the matrix.

The dimensionality of the entity is defined using a subscript. An entity"s diniehsionality :
can be over every pomt In a continuous domam, e.g. Ej3, or over reglons ofa contmuous
domam e.g. Epg, or ﬁnally as an enumerated set, €.g. Eqy. Time can add a dxmensmn to
the domam or be classified separately using ¢ in the domam subscnpt Flnally composxte B
representations can be represented by combining multiple entities in a nested fashlon.

Below are some examples of different visualization classifications using the £ notation.
e Bar chart is categorised as E;
e Line contours are categorised as Ej
B “ .‘ R 2 B . .. v
e 3D Vectors in a volume are categorised as E3*
e Second order tensor volume is categorised as EPs

This class1ﬁcatlon scheme while effectlve at groupmg techmques, does lead to some

ambxgultxes in dxstmguxshmg between the data and the v1suahzatlon techmque

The E notatxon illustrates how many dlfferent types of wsuahzatlon are rooted to the Faa

same underlymg field. This abstraction equally apphes to the formats used for stormg ,v e

scientific data. A scientific ﬁle fonnat has to represent the underlymg ﬁeld of a pamcular e

‘ dataset Therefore a class1ﬁcanon scheme of thlS ﬁeld provndes m51ghts for the storage : g

of scxentxﬁc data
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2.2 Process models for v1suallzat10n systems

ViSC attempts to facilitate scientific insight. As a result, several different analytical mod-
els of scientiﬁc investigation have been used as a basis for many of the frameworks and
- reference models developed for ViSC, These reference models illusu'ate the processes |
needed to turn data into images. They describe the visual nature of most scientific analy-
sis and evaluation. Several important conceptual models for the process of transformmg
raw data into visuals and for engaging in scientific problem solvmg and analysm are pre-

sented in this section.

2.2.1 Dataﬂow

Upson et al, (1989) described the visualization model of AVS as a breakdown of the}
- steps mvolved in the analyms ofa numencal s1mulanon Haber and McNabb (I 990) later
descnbed a conceptual model for visualization Wthh smularly saw the v1sua117atxon as

facilitating the evaluation of simulation results These two models have been mﬂucnt1al

_ in the design of visualization systems, smce the concept of dataflow is both a s1mple and )

a powerful breakdown of the steps mvolved in turning scientific data 1nto nnages Each’

model views the v1suahzat10n process ina subtly dlfferent hght although as Wood ( 1998) S

 states:

“they are in many ways the same model expressed as elther a process dmven

" model (Upson etal) ora ‘data dnven model (Habcr and McNabb) " . | B

The main differences betw een them lie in the descrlptlons behmd thelr utlhty Hdber and t o

McNabb use the notion of the Vlsuahzatxon Idiom as a devxce for 1llustratmg to usersf'f‘ L

 what has been done to their data and, therefore, explain the meamng of the output vi=:. o

sualization. They also descnbe a layered software demgn and ar chxtecture for producmg:i i

' scxentxﬁc v1suahzatxons whxch takes much of the dcvelopmental burden from thc uscr and e
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encapsulates it into high-level reusable modules freeing the user to focus on their science.
Upson et al’s description, however, was used to facilitate a practical implementation of

what is now a commercially successful MVE.

" Data v [ Simulationdata |
. Data gnrichmeﬁp 7 v
| Filter [
- { Derived data
: l Map J . : 5 Viauali;atior} mapping:'
Abstract visualization
| Render | object
' RenaJering
Y : . .
Image . ‘ .
i Displayable image ~ |~
play

(2) Upson (1989) Model T BRI o
S (b) The conceptual diagram of visual-

jzation stated by Haber et al (1990) -
Figure 2.1: Two models that describe the visualization probess in terms of,dataﬂow}’ o

For the purposes of Fthis work, the common terminology of filter, map and‘r'en'dei_' willfbe o

used to describe the three transformations which both these models d‘escfibe.'_ o

Filter is the first stage in figure 2.1(a) dnd the first transformdtion in ﬁgure 2.1(b). It EER
~ serves the purpose of preparmg data for transformaﬂons later on in the v1sualxzatzon 3 _ e

pxpelme by reducmg the data into a more relevant and meanmgful form Examplcs : |

of filter operations include mtcrpolanon extrapolation, smoothmg, selecmon, sub' L

- samplmg and the calculatlon of gradlent and flow hnes from a vector ﬁeld

Map defines the transfonnanon of the user ] data mto what IIaber & McNabb termcd by

the Abstract Vlsuahzatlon Object (AVO) These are geometnc objects that can be'i.; PR

| rendered The conversion of ﬁltcred data into AVOs mvolves mapplng varlables S
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into attribute fields of graphical objects. An AVO may have one or more attribute

fields including geometry, time, colour and surface texture.

Render encompasses all the operatnons requlred to turn the AVO 1nto an image. As a
result it deals with the geometmc and vxewmg transfoxmatlons of the AVO followed :
by operatlons 1nclud1ng illumination, colouring, texturing and hldden surface re-

moval. This stage marks where the process of visnalization leads into the graphlcs

pipeline Foley et al. (1996).

Dataflow has come to define the de-facto standard model for data manipulated in current

MVE:s and as such it is an unportant concept However 1t is mterestlng to note what

dataflow lacks. Firstly, there is no concept for preventmg the user creatxng v1sualxzatxons -

which are incorrect because they have used an mappropnate numerical operatlon upon the‘ g

data. Secondly, because dataflow in the context of these models takes data dxrectly from - B

Slmulatxons they do not - specify nor recognise the need to exchange data with external = -

sources and systems.

Z.Z.i A model centred npproach‘

* Brodlie’s approach descnbed in Brodhe (1993) takes the notion of dataﬂow and stresses f '

the additional need to model the user’s data o prevent mappropnate transformatlons from e o
“being performed upon it. Without tlus modelling to define the ran;,es and appropmate s B

numenc mampulatlons for a gtven vanable, there is scope for the productlon of avisu-

allzatxon containing semantic errors This would etther provxde a plamly incorrect v1ew o

of the user’s data or subtly alter its meaning, and hence, interpretation. Tlns notionof

“scientific scrutmy is also raised by Haber and McNabb (1990) the notion of mnsuse,f'fjf, e

however, is not discussed, only the need to offer t:ransparent methods that enable a v1- L e

sualtzanon s meaning to be understood. In Bl‘Odlle (1993) the need to model the user s ki 3

- data is exemplified usmg a measurement of the percentage of oxygen in a sample dumng = i
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a chemical reaction. If the raw data values are interpolated using a cubic algorithm, the
output can have negative values which are plrysically impossible and, if visualized, will
result in an incorrect visualization. Essentially, anything users know about the limits and
domain of their data should be used to model an underlying field; this can then be used to
produce an accurate and meaningful visualization. Figure 2.2 illustrates Brodlie’s model
of the visualization process which uses a two stage approach First, an empmcal model is
constructed from the data samples during the modellmg stage which recreates the data’s
underlying field. Second, data is extracted from the underlyrng field in the viewing stage

to produce a meaningful view of the data.

Data O [View
Modell@ik, o ' F, =/Viewz’ng
| Underlymg Field |

Flgure 2. 2 Brodhe s (1993) model centred approach

Brodlie also continues the development of the E notatlon descrlbed on page 18 ThlS o

new scheme also regards the underlying field as a function of one or more variables bascd o

on the field model. These functions are clasmﬁed by therr output and mput or dependent' e o

and independent variables. The classification notation uses the form of a function F(z),
where F can be ordinal (O) or nominal (N) and represents the dependent varrable, _and z

represents the independent variable.

Ordinal varlables have values that can be put in order whereas nommal values are hke S

enumerated types i.e. with names and values but no 1nherent order “The type of the i B

depcndent varrable beita scalar (S) vector (V) or tensor (T) is alqo classxﬁed and can 2

be aggregated usmg the -+ operator Vector drmensxons are denoted usmg a subsc:mpt e D

value, as are the drrnensrons and rank of Tensors The mdependent vanable is clasmﬁed Y i ;’:

using & subscript showing its dlmensronalxty It can be sub_]ect to a range [ J ora

: ﬁrestnctlon {...}" operator. .
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e N5(0,) Place names on a map |
e 05(0,) Height over a 2D region
o O¥tV3((;) Pressure, tomperamre and flow in a volume

o OT44(0;) A four dimensional second order tensor defined over a volume

2.2.3 Osland’s visualization reference modél |

The Osland (1992) visualization reference model,'illustrAated inkﬁ‘gure 2.3, breaks up the "

visualization process into nine stages. Each stage passes data both up and down the =

pipeline, while receiving control parameters from thevcommand interpreter.

I
> CoxmundiSequcnce
Command - ‘
Interproter

’ 7 Baemal -
Data Inport  jet— Dats

Dats Access - * 1——-»' Storsble T

v 1

g » " Dats Matjipulation

v t

Visualiation Technique
* Base Graphiics System
H

v }

© Userlnterface -
v }

> Uger

lQ“igure 2.'3:'os1ahd’s(1992) visualizaytion’rerforohoe mdde'lf L

The pxpelme s upstream ﬂow (towards the user) converts clther mternal or extemal data |

into a vxsual output for the user. Its downstrearn ﬂow (toward the command sequencer) : i
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passes user input in the form of metadata. The Base Graphics System, Visualization
Technique and Data Manipulation modules are all described as transforming the metadata

coming back from the user toward the command interpreter, which implies an inverse

‘mapping occurring at each of these stages. An example of this could be the transfonna- 7

tion of mouse coordmates mto screen and then world coordmates Wthh could then be
transformed into the domain of the vxsuahzatlon techmque and used to access the under-

lying data values at the location of the mouse.

The data ;mport stage is pamcularly mterequng, more for its mcluswn and descrlptlon‘

than its contrxbunon to scientific vxsuahzatlon or data mput Its mclusmn and descnptxon

emphas1se that visualization systems will pnmanly deal with extemal data sources Thls :

, hlghhghts the necd for facxhtatmg snnplc data input m any v:suahzatlon sy stem as more,

often than not the user wﬂl be accessmg data created pnor to usmg zhe v1suahzatxon o ]‘_ :

system |

Gallop (1 994) proposed a framework for vxsuahzatmn software wh:ch takes Osland s Vl—v’ s o

sualization ref erence model and sunphﬁes it to become a four stage bl-direcuonal p1pelme TR

While it does show a clear breakdown of vxsuahzatlon from base graphxcs to user data,

much like the seven layer model It looses the notlon of data 1nput mstead optmg for an S

‘ apphcatxon as 1hc ultxmate source of data , : : L 2

| ; '2 2. 4 The szuahzatien Input Pxpelme

Felger and Schroder (1999_) pmpose an approach far enablmg vxsuahzanon systems to .
' provide mteractmn thh the apphcatxon data whlch has been changed durmg 1he v1sua]~”};’_,

jzation pmcess Th1s typg nfcomml termed ‘semantxc mteracnon allows the user to work o

directly with thexr data values after they have passed through the v1suahzaucn Plpehne and b

B been tumed mto an xmage Usmg a catmcf?pfw11 plpehne Wﬁh proceeees for the data SOW‘CG; X

data preparatmn, gmphlcal mappmg, rendermg and dxsplay, they PI“OPOS" a V‘S“ahlatmn; .
Vmput pxpehne or VIP 10 complement the exxstmg vzwalwatmn pzpelme whxch 13 termed '
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[ — application
Ibmumminx : Datatobe l
10 application visualized
L data manipulation
‘ T Data to be 1
. : visualized
[ vxsuahzanon technique B
IGmphical E Graphlcal 1
input
| . base graphics system J
Ii‘:m L Plcumel 1

user
Figure 2.4: Simpliﬁed vlsualiiation framework by Gallop (1994) .

~the vrsuahzatxon output plpehne (VOP) fo avoxd confusron Thxs VIP is the inverse of the -
VOP, turnmg user mteracuons wrth the vxsual output of a vrsuahzatlon system back mto

data values and control parameters In MVEs this translates toa requlrement for ex1st1ng

“modules to have correspondmg ones which produce an mverst? mapping for the nnage, B

AVO and ﬁltered data back 1nto the user's raw data values t

7 They present three different techmques for mvertmg data from the VOP to account for |

fUIlCtIOIlS that have no one-to-one conespondence between theu' cutput and lnput data o S

They also present four dlﬁ‘erent architectures for couplmg thc VIP and VOP within a L _‘

-visualization system, each of these i is 1llustrated tn figure 2 5. The archltectures range o

from independent to tight coupled smgle—connectlon They dxffer in the level of shared( i B

resources and communications they use to enable semantic mteractxon

g The mdependent archxtecture requrres every VIP and VOP module to have a separate-ff‘f

. process, which means that every VIP module requlres three connectlons, these provldc | 4 .

_ parameters, mteractxon data and source data from the correspondmg module in the VOP i

Conversely, the ughtly coupled smgle—connectron architecture has VIP and VOP modul es ‘}‘ .
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sharing a common process, parameters and data in addition to using two-way connections
to send and receive data between processes. The other two architectures lie between these
in terms of connections and shared data. All the architectures attempt to minimize the

change required to enable semantic interaction for any given visualization system.

(a) Loose coupled architecture (b) Independent architecture

(c) Tight coupled architecture (d) Tight coupled - single connection
architecture

Figure 2.5: Felger et al. (1992) concepts for different architectures which enable semantic
interaction

Overall this paper shows how the notion of dataflow can be extended to user interactions
with the visualization output and promotes the merits of enabling users to acquire and

change the actual data values through this form of interaction.

2.2.5 Visualization reference model
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Bergeron and Grinstein (1 989) proposed a data model, described in 2.1.1, that recognises
the need to model the user’s data source. The reference model which they describe is for

the visualization of multidimensional data. With respect to user data sources it states that:

“The user has a specific data base which needs interpretation. In principle,
this data base is application ‘dependent and should be absolutely arbitrary. :
This is analogous to application-dependent data bases that"are the ultimate
source for graphics data in a graphics system. This appli_cation data base, -
which we call the raw data, must be represented in a standard form in order '

to be processed by the visualization systexil,”

Their reference model is illustrated in figure 2.6, and is noteworthy wrth respect to this

_ project for its recognition of raw apphcatron data and the general data mput problem' “

facing scientific visualization systems. They prescrrbe a transformation of the user’s data

into usable data using information stored in a data drcuonary, Wthh deﬁnes a mappmg

 between the user’s data and thelr lathce data structures
2.2.6 Discussion o

Desprte the d1ﬁ°erent tennmology and subtly dxﬁ'erent wordmgs all the reference models

for processmg sc1ent1ﬁc data refer to the same three processes These processes as termed o i

by each author are shown in table 2.1. To reflect this prOJect s mterest m data mput the e

table also mcludes any data input processes which have been mcluded in the models

- There are major drfferences in these models as they address dxfferent issues relevant to

.. scientific visualization. Vrsuahzmg sxmulatlon data is the primary concern of both Up-’ e vt

son s and Haber s models, whereas Bergeron, Brodhe and Osland s models address the Sy

 need to visualize both simulated and observed data. Fmally, both Felger and Osland‘ ._”"f S

models have an emphasrs ison the user s interactions with the vxsuahzatlon process both o

addressmg separate 1ssues
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Raw Application
Data

Representation

Figure 2.6: Major components of the visualization reference model proposed by Bergeron
and Grinstein (1989)

The data models presented in section 2.1 directly relate to the problem of data input as
they describe both the type of information which is to be transferred and the way it is
generalised in MVE systems. The classification schemes by Bergeron and Grinstein and
Brodlie et al. also describe information in the visualization system, and are relevant as
they enable different types of visualization to be categorised by the type of underlying
field which it represents. Finally, the process models show current thinking on processing
visualization data. While all these models provide powerful and general breakdowns of
the process of turning data into images, whilst also addressing issues of control, interac-
tion and the need for correct processing for the type of data, it is notable that even models

which show how the data initially arrived in the system do so in only a cursory manner.
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Bergeron and | Upson | Haberand | Felger | Osland | Brodlie
Grinstein etal. | McNabb et al.
(1989) (1989) (1990) (1992) | (1992) | (1993)
Application Data Data Import
client source and access
Modeling Filter Data enrichment/ Data Data Modelling
transforms enhancement | preparation | wmanipulation
View Map Visualization Graphical | Visualization
specification . * ' mapping mapping tcchniquc
~ Association Render Render Rendering | Base graphics | - Viewing
system ‘

Table 2.1; A visualization framework comparison, each author’s framework is illustrated.

Terms describing processes that provide the same functionality are horizontally adjacent - - .

in the table. The first process is that of general data input, Wthh has not been handled by
all authors '

2.3 Screntlﬁc file formats

ViSC has many sources of data including simulations and analytical results, remote, med-

ical and industrial i 1mag1ng systems, data loggers and devrces for smentlﬁc measurement, - -

and user inputs from digitising devices. The ﬁre hoses of mfonnatxon Wthh McCormlck N

etal. (1987) descnbed have since become more abundant and more dxversc The needs of - :

scientific users dictate ﬂex1b1hty and mteroperablhty between these different sources and

 the software for processmg, analysing and visualizing their output. This has reaulted in- ",

countless standard interchange formats with ad-hoc designs that can be Specxﬁc to every“

~ different scientific drscrplme

A file format isa standard for data exchange but the reason behmd ddTerent ﬁle formats . ; f o

comes from many sources mcludrng practxcal requxrements group mterests and the need :

to suppoxt lcgacy software Asa result some standards are less of a useful tool for thc’ i e

transmlssron of scxentrﬁc data and more of a burdcn o

The next four sections review a small but nnportant range of ﬁle formats for sc;entrﬁc data - G

storage, Field specific, language-based, self-describing and user defined (non—standard)‘ e




- CHAPTER 2. VISUALIZATION MODELS, FILE FORMATS AND INPUT TOOLS 31

- file formats will be reviewed.
2.3.1 = Field-specific file formats

T here is a plethora cf ﬁleformat’s which have become the de—facto‘standards indifferent : ’
scientific disciplines. ’Some‘ have beendesigned to aid the transfer ofa parﬁcular type of
data, others offer encompassrng support for all the drﬁ'erent types of data ina pamcular

- field, ThlS sectlon will rev1ew several fonnats representlng standards that are in common ’, :

~ usage.

DEM The USGS Geo Survey Digital Elevatron Model (DEM) stores terram elevatlons : e
; for posmons on the ground at regular ly spaced 1ntervals DEMS are orga.nrzed mto "
- three types of record. The first record contams all the metadata for the DEM the s S
- second record, which will compnse the majority of the DEM data, contams lndwxd-‘ et
 ual profiles wrth header 1nformanon and the thlrd record contarns all the accuracy : :
vmformatron relatmg to thc DEM. The USGS is currently undergomg conversmn of o
all its DEM information mto its new Spatlal Data Transfer Stand'trd (SDTS) format :f .
which provrdes a standard for transfemng other GIS data types lrke vector hnes and e

,rasterrmage data e f S

GRIB & BUFR The World Meteorologlcal Organxzatlon (WMO) has developed two' | | |
o standard formats Berges (2002) for the transfer and exchange of meteorologrcal data | : o

| : between drfferent systems erdded Bmary (GRIB) and Bmary Umversal Form orx.‘i 1“ : 2

| , _*Representatmn (BUFR) GRJB stores regular gnddedarrays of bmary values and l f[_ :
s used for the transmission of observatronal data such as air pressure and tempera o

- fure. BUFR isa ﬂexrble format for archlvrng meteorologrcal data and can be apphed S

“equally well to other scientific data Another evolvmg standard it deﬁnes a proto et

i col for transmrssron of quantxtatlve data.’ BUFR uses a umque Data Descnptron‘

Language (DDL) whlch is hrghly extensrble and uses self-descrxptwc records
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mmCIF (Fitzgereld et al. 1993) is an evolution of the Crystallographie Informatiorr File
(CIF) (Hall et al. 1991), which is a subset of the STAR (Self-defining Text Archive
~and Retrieval) format. CIF can store‘ all forms of text and niimeric data and was ’
developed by a working party on crystallographrc mfonnatton m an effort spon‘
~ sored by both the International Union of Crystallography (IUCr) Commlssron on
Crystallographic Data and the [UCr Comnussron on Journals ThlS produced adata
: dzctlonary for archiving expenments and results, which was adopted by the field, S
In 1990 a working group expanded the drctxonary to mclude macromolecular crys- :

o tallographrc data items, resultmg in mmCIF

FITS The Flexible Image Transport System (FITS) (Wells et al 1981), orlgmally devel— e |
' oped near the end of the 1970s, was demgned to enable the exchange of astronom#'l e
ical image data between different hardware platforms and s0 solve the problems
caused by drfferences in the way pnmrtrve bmary values were represented In ad-‘
-dition to tlus FITS was able to solve the problem of descrrblng what sort ofi mstru-
» | ’ments were used to acquire the data and where they were drrected to obtam the data ' S
- FITS has evolved to include other metadata new storage functlonahty like spanmng,f :; :

‘anda range of strucmre and syntax for deﬁmng astronomwal mformatwn

DICOM Dlgttal Imagmg Commumcatrons m Medlcme (DICOM) 1s a fOrm at for the
L transfer of generalrzed medrcal nnages Developed by a Jomt commrttee of the o
o . Amenean College of Radtology (ACR) and the Nauonal Flectrrcal Maﬂufacm.f \

e Assocratron (NEMA)’ itisa multr Pm Standard to facxlrtate the mterchange of :

B unaglng and assoorated mecheal mformatton between dlfferent computer systemsf e

ina medlcal envrronment It defines how values are enooded struetuled and used; o
' alongsxde a host of different possrble data elements whrch can be stored thext re~ :
e latronshxps and speclﬁcatrons for drlferent types of medlcal unagmg whrch can be'f

i descrrbedbythxs format e R e S T
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These examples illustrate a few of the field-specific file formats which are widely used. As
aresult, these specific examples are usually supported by scientific visualization software,
and while important they are not the primary target for this research. However, other less
common field-specific files formats are a target for this research. The type of data such

formats store and the different approaches to storing are illustrated by these examples. - -

2.3.2 Language-based file formats

The use of a language as a method of data description and storage _has been applied in L

a range of file formats. VRML (Virtual Reality Mark-up Language), XML (eXtensi-
- ble Mark-up Language), XDR (eXternal Data Representation by Sun Microsystems) and L
PostScript by Adobe Systems Inc are all notable examples of language-based formats and i

~ are described below

| VRML (Carey et al, 1997) was developed to support the access of 1nteract1ve 3D V1r-,'

tual worlds and objects over the World Wide Web (WWW) VRML uses plam text e

descnpnon unhzmg tags thh a hxerarchlcal scene graph to descnbe scenes and ob- - o

jects. It is a common import and export format for many 3D graplucs packages £

because of its portablhty and platfoxm mdependence

XML (Extenszble Markup Language (XML) I 0 1998) has been desngned to descrxbe data \“ |
and is an extensible platform mdependent mark-up language XML ﬁles are plam ::;v

7 text whxch when used in combmauon w1th either DTD or XML Schema can deﬁnefff:*; : |

self—descnbxng data structures XML compnses named elements enclosed in tags. - S

. Elements are placed around text values to give them a meamng and hlerarchlcal iy

relationship to the elements There is a parent-child relatwnshxp between enclosmg T

B ~ tagsand thelr content and as this. can mclude other elcments this allows hlerarchlcall:f:?\,

 structures and ‘many forms of data to be descrlbed XML has two mam problems as ‘_ =

~a storage medxum these are 1ts verbose nature and openness to bad desrgn practlces e
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XDR (Network Working Group 1987) is both a standard and API that defines what is
transferred at the ISO presentation layer. It uses implicit typmg and value represen-
tations at a binary level, This solves problems caused by different platforms havmg
different byte ordering and byte alignments. XDR transfers as a language similar
to C or Pascal, however it is a data description language (DDL) nota programming
language. This form of data description is very flexible and enablesthe unam-
biguous definition of data structures and their content. XDR is supported through
library routines, which encode and decode XDR data streams. The XDR standard
defines portable binary interpretations and a DDL for transmission of structured

data formats,

PostScript (Adobe Systems Incorporated et 'sl._ 1990) from Adobe is another language |
- based file format. It is known as a ‘page description’ language because of its
common use in specifying printed layout. Postseript files are scripts" containing
a sequence of commands that provide a rich command base in relatxon to defining o
~graphical data and page layouts. PostScnpt is device mdependent the language e
- uses postfix notation and is stack-based It deﬁnes graphxcal data w1th the target
applications of printing and graphrcal document transfer. A complex language L
PostScript is an industrial standard language that is now mostly run by the pnnters :
and software dealing which them, though human readable, most PostScrlpt files are‘ B

machine created from the source’s graphical data. -

Language-based ﬁle formats use programmatlcally deﬁned structures to desorlbe thelr‘ B
data. As a result they have the potentxal to be unamblguous, human readable self-
descnbmg and extensible although to provide access, software can need quxte complet LR
compilers or mterpreters The relatrve ments of these languages can be measured m termsﬁ Gy ‘
of how well they are supported by their proponents and how easy it 1s to gam access to 8
comprehensive hbrary routmes They need tobe recogmsed because many of these types £ : i' P

~of file format are field mdependent and used m a w1de range of apphoatxons
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2.3.3  Self describing ‘generic’ file formats

The production of a single file format that can be used to exchange any type of scientific
data has been a goal of the simulation community for some time. NASA’s Common Data
Format (CDF) is an example that has been in use since 1985. Self{déscribing file formats .
use abstracted data storage, access and manipulation routines in the form‘ of libraries
that can be linked to several different programming languages and are compiled under
a wide range of platforms and operating systems. Software prograrruned wrth a CDF
reader can then access any file saved in CDF regardless of the file’s subject matter. CDF
- Network Common Data Form (netCDF) and the Hlerarchlcal Data Format (HDF) are

notable examples of these formats and descrrbed below

CDF was developed by NASA to umfy the storage and mampulatron of scientific data o

from a range of different disciplines. It achieves this through descnbmg drfl‘erent |

~ datasets with a data drcnonaxy that is stored alongsrde the data values In tlns Way,‘ R L

each file contains all the necessary semantics to be self describing. CDF is lmple-
mented as an abstract interface with associated lrbrarres, the format of CDF ﬁles is |
" hidden from the programmer, with the interface provrdmg accees fo all file content

and the libraries carrying out all the file input and output The CDF data model

" supports multidimensional gndded data (descrrbed on page 59) and erthcr multi- g

variate data on a shared grid or individual variables each wrth their own grld A EEREIES
comprehensrve descrrptron of CDF can be fOund by Goucher and Mathcws (1994) S

, netCDF was orrgmally developed to prov1de a common platfonn—mdependent mterface i

_ between Unidata apphcauons and real-nme data sources. It employs several power- : i e
ful concepts from CDF, including the abstract mterface and hbrary, in conjunctlon ; _v - -

" with *XDR-like’ platfonn—mdependent bmary types netCDF files store data in selll‘"»" . o
descrrbmg objects that can be accessed lransparently through the lxbrary netCDF i .

offers a smular abstractron to that offered by graphrcal Irbrarles Slmply put 1t ,_,v“ ;’ - :
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- defines both datatypes and valid access functions for these types. ‘The underlying
Workings of netCDF and the actual storage of netCDF data are hldden from the
user. netCDF also uses a standard file format which is 1mp1emented ina sumlar

" manner to XDR implicitly specrfymg byte order and how data should be mter-

| preted in netCDF files. Information on NetCDF can be found at (Network Common :
- Data F orm 2000) ‘ ’ ‘ '

HDF development was started by the National Center for Supercomputer Apphcatrons ' L ‘_ |
‘ (NCSA) in 1988, HDF was 0 fac1htate scientific data management by offenng e

~ a standard and extensrble method for scxentlﬁc data transfer whtch was eﬁicrcnt * i 5 i
whilst also supportmg many platforrns HDF is 1mplemented and supported by a | 'v Lo

: data access hbrary and APl as well as a range of software tools The file fonnat 1s ' L
tag-based and supports multidimensional gndded data, multrvarxate datasets, raster, e

. image data, mesh data, spreadsheets, ﬁnxte element data and sparse matnces HDF e

. 1nformatlon can be found at (Hzerarchzcal Data Format 2000)

All these formats are w1dely used in screntlﬁc crrcles, they are oﬁen suppoxted by MVES o o ]

and arenota prlmary target for tlns work. They are rnterestmg because they each 1llustrate :?2 Gt
 different ways of descrrbmg data. They offer a prescnptxve solutron to ﬁle mput thh thetr Sl
self-descrrptrve design, which is lacked by other file fonnats Users who own or create; e i

~ software wlnch outputs data in one of these formats wrll be able fo load tt mto an MVE

~with ease. Any tool for data mput will need to descnbe data usmg a snnllar range of

‘ attnbutes and structure deﬁmtrons that these formats use to descrlbe thelr data . Fee i
234 :USér-'dsﬁned ahdnori-stanaara ﬁle ‘forssm

| ‘“Grven the range of formats we have already seen and the countless others whlch exrst
itcan be seen that there are many good reasons for the use of an ex1st1ng standard ﬁle

» format mcludmg
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o de-facto standards provide an easy route to portability and data exchange
o time and resources are released by not developing an ‘in house’ format

e developmental supp‘ort, APIs and libraries may be available which reduce the cost

of using a standard

o industrial bodies or field encourages and promotes the use of a standard.

* However, there are also reasons which prevent the use of a standard and instead lead to 8-

non-standard, native or user-defined file format:

°a standard is not widely enough advertised or adopted to encourage itsuse -

. protectron of commercial interests through the use of a propnetary standard

the lack ofa sultable standard for the user’s data requrrements (thrs is unlxkely) A

a surtable standard exists but licensing fecs may hmrt its uptake P

scription ora storage intensive nature

alack of access to or control over the source software s output or lack of access to

those who could modrfy it. .

a standards use may be discouraged by an unwieldy API, an overly complex dew il il

As a result many programs output a native, propnetary or closed format whrch is unpub- R :

lished or rarely used. These formats, often desrgned by programrners, have a tcndency to =

fall into one of three categories:

Text records are commonly used to store varrablcs for screntlﬁc data They usually com-_ - L

prise a plam text ﬁlc, with a line whrch describes the vanables usmg names lrke g

Lo ‘height’, ‘pressure’ and speed’,f[hrs header line is then usually followed by lines
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of values with the corresponding number of variables. While storage-intensive,
this informal storage format is easy to produce, platform independent and relatively
easy to support because it can be analysed so easily. Values in these files are either
separated by spaces or control symbols such as commas. For large datasets, this
format is generally too storage-intehsivé, nonetheless examples do exist of large

datasets stored using text records.

Row and column files can offer storage for 2D data; a header usually defines how many
rows r and columns c are in the block of data. What follows are r lines of separated o
values with c values per line. A simple but storage«mtenswe format for data storage ’

Many examples of 2D scalar datasets hke heu,ht ﬁelds are stored in thlS format.

Raw bmary files usually store an array as a COntiguous block of data sometlmes pre-
ceded by a header. Essentially this format is usually just a copy of an axray from
memory, and as such is simple and much less storage-mtenswe than plain-text (al-
though platform dependent) ‘They can be very difficult to mput unless all therr e
parameters are known, such as the rank and shape of the array, and what sort of T

binary values it contains. . .

Some of these categories are supported by visualization tools which will be described in
the next section. However, the ease ‘with which they are input depends entirely onhow -
~ much the user knows about their file and how easy it is to use the vrsualrzauon system s '*"_ e

input tool.
24 Visualization tools

~This sectron will revnew several current systems supporhng szc and what they offer-
the user in terms of file input support The review has been complled from dlrect usage »
experience where possxble, the Advxsoxy Group on Computer Graphlcs (AGOCG) Revxew ., s

Cof vrsuahzauon systems Brodlre et al (1995) and Sc1ent1ﬁc Vrsuahzatlon‘ Techmques and ; :f ‘
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Applications Brodlie et al. (1992b) in addrtlon to the reference matenals each package
provides.
e AVS Express -

o IRIS Explorer 5

o IBM Open Data Explorer OpenDX 7

e PV-Wave § |

¢ AMIRA

e VisiQuest (formerly Khoros)

241 AVS |

Advanced szual Systems (AVS) ortgmally developed by Upson etal. (1989) is an MVE =

based on the dataflow model. It uses the umﬁed ﬁeld data ‘model descmbed in section

2.1. 2 and has developed from a dataﬁow paradigm to an object-orrented model in the] S
latest edltlon AVS Express. AVS is an apphcatxon bullder, it enables the user to create : e

‘v1suahzat10n apphcatlons in either a visual workspacc by connectmg modules or with 1ts T '

internal V scripting system AVS suppons ﬁle mput through the followmg techmqucs

e arange of data unport modules for dlfferent ﬁle formats mcludmg AVS ’s own range Ll

of nattve ﬁle formats;

. o the AVS ﬁle input W1zard which detects ﬁlename extensrons and proposes one of o ;f SN

the above modules for mputtmg the data It also enables the user to ﬁll in any . :

= parameters they may need,

e the ﬁeld ﬁle format, this format is 1mplemented as user edlted text ﬁles Each ﬁle' R

contams reserved words and parameters recogmsable by AVS These descnbe a
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referenced file’s content in the terms of the AVS field data structure, If tl'le file
contains data or datatypes which cannot be described by AVS field data structures
then this solution will be ineffective for that particular problem. A more advanced -
version of the field file format has been developed by Manchester’s I‘ntemational ’

AVS Centre (IAC) to handle data whxch has a cell regular structure,

e ADIA is a tool for making field headers using a GUI from AVS §, wluch isnotin
AVS EXPYCSS- It produced field file format headers taking the user through step-by-
step ch01ces to specxfy thelr field data; | L N

e ﬁle access objects are AVS Express funcnons Wthh can be comblned to create

fields, no GUI, functions with archaic putameters to enter data;

o thefile inlpoﬂ tool produoee an AVS file irnput‘solution, given. a rauge of berameters; : \vf -

e V scripts usi’ng’vﬁle acoesbsk‘objects to import data; | | o |
- . nlaking anew eXtendion to AVS using’ C++

2.4.2 IRIS Explorer

IRIS Explo_ret wae originally deVeloped by Silioon Graphics Indigo (SGI) andxs euxfrently i ,:, . |

~ owned by the Numerical Algorithms Group (NAG). The present version IRIS Explorer 5
is an MVE based on the dataflow model. It provides the user with the facilities to build -

apphcatlons and complle them into stand alone data vxsuahzatlons as well as offemng ef-»i"_’ L ‘. -

 fective collaborative visualization through a range of collaboratwe modules (Wood 1998) s

It offers the user several routes (dependent on platfonn) to mput their ﬁle data

ea range of data i mput modules for dlfferent file formats 1ncludmg scvelal modules” BN

 which offer multiple mput facilities fori 1mages

e aparameterised text reader module for simple text file form_ats; St
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e DataScribe, a UNIX tool, can produce script files that map the users data into IRIS
Explorer’s data structures;

o the IRIS Explorer APIs offer easy access end manipulatioh of data r“or prograrnmr'ng

extensions to the system;

e QuickLat offers a simpler way of programming an extension for a reader module,
making the internal data structures of IRIS explorer easier to access when program- -

mmg using this external tool;

e Module builder also simplifies the process of programmed extensron, enabhng the
user to build an interface and describe the parameters Wthh are needed by a mod—

ule then lmk them wrth the code the user has wrrtten

2.43  IBM Data eXplorer

IBM s Data eXplorer and the open source version OpenDX use both dataﬂow and the uni- - '7
fied ﬁeld data model. OpenDX offers a range of file mput tools though its data prompter -

e the general array header file format Thls much hke AVS s ﬁeld ﬁle format enables e
" the user to descnbe their data usmg keywords and values Wthh can SpeleY ﬁle - '~ e

-~ input parameters and metadata

. Data prompter a tool for mputtmg data It creates a general array heador through -
 step-by-step mteractlons with the user, offermg a sunpler way of descnbmg therr e

ﬁle 1f is in a form descrrbable by the general array header format 3 4 :
e HDF NetCDF and CDF are all supported through the Data prompter ﬁle mput tool
‘e a range of i tmage ﬁle formats are also supported through tlus tool S
e spreadsheets are also supported through a parameterrsed reader tool

o programmed extensron is also supported m IBM ‘OpenDX.' o
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24.4 Amira Viz

The Depamnent of Scientific Visualization of the Konrad-Zuse-Zentrum fur Information- .
stechnik Berlin (ZIB) has provided the newest MVE, Amira Viz, distributed by Template
Graphics Inc (TGS). It is a package which specialises in image and volume datasets, Tt
has suppdrt for non-standard external data using three methods. The firstis a header file
for defining stacked slices to form a volume dataset. The slice description ﬁle enables the
user to specify each slice of a volume through a different file name, its position coordinate
in the stacked axis and, overall, the pixel aqpeet ratio of all the images. Ithasa header file "

format called stacked—shces, which describes the files that compose a volume dataset. The :

parameters for a volume, including the x and y pixel size of the images and the spacing .~

for each image is stored in addition to the names and locations of the sllce ﬁles. o

The second method Amira supports, is the input of raw binary data'using a parameterized o
reader, which enables the file to be loaded by specifying a header size as well as and -

the bounding box dimensions and coordinates ofuptoal _dimensional array.  Other

- parameters include the ‘index order’, which specifies whether the first dimension or the i

last dimension is varying fastest, the byte ordering, type of binary primitives in thf} array ..

and number of variables.

Finally, it advocates the constructxon of own export or convert ﬁlter to produce Ami-

raMesh or HxSurfaces which seems to indicate that the user can elther modlfy then' own e :

software to output Amira companble types or produce an extension to Amlra S

245 "Krhor(')s ~

, Khoros ongmally developed by the Umversny of New Mexxco and now under the name . . -

~of VmQuest and owned by AccuSoft was orlgmally an 1nteract1ve 1mage dxsplay paekage ) Fe

, V1s1Quest has a range of reader modules and some parametensed tools for aecessmg, ST e
- simple ASCII and binary data files. Finally, data can be input thxfough peog:exnmlng" el




CHAPTER 2. VISUALIZATION MODELS, FILE F ORMATS AND INPUT TOOLS 43

an extension to VisiQuest.

2.4.6 PV-WAVE

PV-WAVE 8 oy Visual Numerics is an array-oriented language for creating applications |
for visualization and data analysis. Users of PV-WAVE can enter commands from the key- .
board which are immediately executed or write scripts that can be compnled and executed.
It supports data input through arange of functlon calls. For unsupported file formats there e
are read and write routines in both bmaxy and plain fext. Fmally, for partxcularly complex .

ﬁle formats there are low-level file access functlons

- 24.7 | MVE file input sumluary -

All the visualization systems revieWed in section 2.4 share common techniques for solving - -

the problem of file input. They can be classiﬁed in oheof six ways. These aT c.
- hard-coded readers -
o header files

e script readers

monolithic tools

. modular networks

prograxﬁxhed extensions. h

Each classlﬁcatlon can lead to many solutmns for ﬁle mput problems Hard—coded solu-:, e :
' tions are currently the most prolific and exist in every program whxch has to access any‘, o

" file-based data The three latter solutions prowde compatlbxhty betweon scwnuﬁe soft-'nf e

’ ware and extstmg vnsuahzatxon systems Table 22 hxghhghts what each system supports“

_in addltton to programmed extensmn whtch they all support
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T |

Visualization || Approx. No. | Header Scnpt- MOHOllthIQ Modular
package hard-coded “files | Readers tools networks |
readers w : e
VisiQuest 29 ~Raw data .
(Khoros) ; tool
PV-WAVE 8 13 ,
AMIRA 41 Slice Raw data
o description tool
o _file B R
IRIS ExplorerS 25(18)t yes | DataScribe & |-
At s e b o QuickLat
AVS Express . 41 Field . yes - | Import Wizard
format | | &File 1mport access:
IR R header - tool OJbects
IBM Data 12 ~ General | DataPrompter | .
eXplorer - ' amay R
~ (OpenDx) header

Table 2.2: Visualization software ﬁle mput provisions other than programmed extcnsmn
]‘the number of modules which are used to produce this mput ‘

H ard—coded readers All v1suahzatlon software prov1des functlonallty wluch allows users

o input their ﬁles ‘The majomty Ofthese provrsrons can be dcscrlbed as hard—codcd " s

G they are extrcmcly snnple to use and work inan efﬁcwnt yet mﬂexrble manner On]y o

the location of the file is normally needed to mput a dataset usmg a hard- coded s0- iy

lutlon _This will result in a successful mput if the ﬁlc format matches the format B !

~ built into the solutron Any deviation in the file from that foxmat ancl thc solutlonviff“i'; S

| w1ll rctum an error mcssage and fail to load any data

' Each solutton is spccxﬁc to the format chosen, w1th the result that hard-codcd solu{ o

tions arc only provrded for ﬁle formats that are mdustnal standards or w1dcly uscd

o fThere is httle incentive for developers of vmuahzatron systems to produce hard- ;f
S ‘coded readers for less common ﬁle formats Addmonally, dxﬁ“erent vers:ons of a
k ﬁlc fomnat can make its support an ongomg process, requmng updates to pxcvcnt
 the system s epecrﬁc unplementatlon from becommg 1ncompat1ble Wuh newer vor{

o ,swm of the format A cost 1s mcurred for the developer in kcepmg mput modulcs,
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up-to-date.

Most MVEs have hard-coded solutions packaged up into modules which can be
placed into the working environment, thus usually placing the emphasis on the user

to find the correct reader for the correct file format.

Header files enahle the user to create a separate description of a file’s content by provid-
ing metadata in a format that the MVE can read. A header file can either ignore,
| replace or supplement any metadata held in the file dcpcndlng on its own structure
and flexibility. In this respect, header descrxptlon ﬁles are similar to DDLs. They
are limited though by their ability to describe another file (or files) in terms of the
MVE’s own internal data structures and, if the file data cannot be described in these

terms, then this type of solution will be inapplicable.

Scrlpted readers Scrlpt ﬁles can perform a smular although more complex, task to a
header file. Just as a header file can descnbe the file i in terms of the apphcatlon s :
data structure a scripted reader can convert the data into the appllcatlon $ data A
structures. One example of such a reader can be found i in IRIS Explorer runnmg in
Unix: the scnpts are generated with an external too] and combme parameters wu:h e

a mappmg between file content and IRIS Explorer s data structures

Monohthlc tools These are provided with the MVE and are usually orgamsed into one S
or more dialogues, which enable the user to speclfy a range of mput optlons, pro-f:'-“,‘f:“'f; o
viding the user with chouces for the type of grid or connectivity, the vanab]es and £

- the dimensions of arrays Wh1le they can be sunple, thls 1s not always the case ' ‘
Addmonally, they are inflexible and cannot easrly be extended by the user to 1nput o - |
files Whlch are out of the scope of their Parameters Most MVEs have one of these, :

~ beit a s1mp1e raw data reader lxke that found in Amua VlZ or a more complex tool i

like DataPrompter in IBM DX

~ These tools are prov1ded as part of the MVE package They usually have a sunple'- | r e
step by step mterface wlnch allows the user to choose the type of data in the ﬁle and : "_'
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then fill in the parameters the tool needs to produce a solution. The solutions that
these tools produce can range from directly inputting the file to the production of a
reusable script or header file that enables the chosen file to be input again without

~ using the tool.

Modular networks A modular solution utilises the MVE’s wor kspﬁce to build an inpuf
solution by wiring modules together. AVS is the ohly package to offer this form
of solution and uses a range of different,modules called ‘file access objects’ (Core.
AVS/Express and the Object ‘Manager 2004) to import data from files. Thei'e are
 other modules in AVS called ‘mappers’, ‘combiners’ and ‘extractors’ which can
manipulate this data into the AVS field data types. This method is much sxmpler»
than creating a file reader by programmmg since it only uses the same skills which |
: are needed to produce a v1suahzat10n in the envxronment However, 1t 1s still more e ’

’complex than using a hard-ooded reader.

- Programmed extensions All the MVEs reviewed provide the user with APIs and toolle e
to extend them, Usually, a programming language like C or FORTRAN isused
to implement new modules in an MVE that oan’tﬁen be 'coxinected into module
networks providing user-defined functionality. | ' '
-~ Extending a visualization system by pronamxﬁing a new module is the most com- L
plex route for users to input their data. To produce a new module successfully the
user needs detailed knowledge about the data and the file format. Moreover, users ..
need the skills to implement a module in the MVE 1ncludmg famxhanty thh the'
data structures and APIs and a level of competcncy thh the supported program-
' mmg language \ ' ‘ " SRR i s
‘Some MVEs sunphfy this process, provxdmg external tools that encapsulate the »
user’s code and prowde simple access to the sections of the MVE data structuresb M
they need to use. One example is IRIS Exploxcr s QulckLat tool (IRIS Explorer; : :
Users Guzde (W‘ndows NT/ZOOO) 2000) However, even thh suoh tools pro-f".:’ s
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grammed extension remains a complex un‘dertaldng.’
2.5 Discussion

Thrs chapter has rev1ewed the relevant data models, process models, frameworks and

“classification systems for VISC The problem of data mput deals w1th many data sources,

‘drfferent examples of file formats from such sources have been descrtbed and cla531ﬁed i S

* into four groups ‘ﬁeld-spemﬁc’ ‘language-based’ ‘self descnbmg and user-deﬁned’

The drfferent vrsuahzatlon systems and parttcularly thezr data mput techmques have also : s
. been revxewed From thlS rev1ew $ix dlfferent techmques for data 1nput have been 1dent1~f( ;‘

: ﬁed in the present range of MWEs, these are, ‘hard—coded’ ‘header ﬁles scrlpted read— e

~The user wﬂl often have data files of a ﬁeld—spemﬁc or user»deﬁned fonnat As a result & :

 they will rarely be able to use a hard-coded techmque to mput therr data leavmg the

~ latter five MVE supported file input techmques Each of these needs technxcal skills and G
knowledge to produee a solutxon. As a result the task of entenng data can be the hardest _k"z

5 problem users face when attemptmg to v1sualtze theu' data

 The next chapter wrll deﬁne the problem thxs research will aim o solve and xts scope m"‘ bl

w2 terms of desrred outeomes for the VISC ﬁeld and software components




~could concewably contam anythmg however, common sense and the nature of scrcnhﬁc

~Chapter 3

~ Data input considerations

The prev1ous chapters have descnbed what is meant by data mput m the context of sci- '
ntrﬁc Vlsuahzatlon they have also deﬁned the scope of thls research Now We are golng e o

to look further into the central difficulties of ﬁndmg out how sc1ent1ﬁc data 18 stored and f s

. retneved from storage

30 Understmding lesorage

i Our interest wuh file storage hes not in the physxcal or low-level mechamsms of how or. - ~:j- .
- where files are stored, nor does our mterest lie with how the operatmg system retriev ‘33»‘ ‘15 & S
* transfers or acCIulres the contents of a file when one is OPeBCd fOl’ readmg The mam’

1nterest hes in what is retneved after these vanous mechamsms have been apphed

Ata high level a ﬁle can be descnbed as a block of memory Thxs block of memoryv 2
= contams whatever a program places into it, whxch is deﬁned by the ﬁle creatlon routmee 3

- used in the program 'I'hese routmes are created by programmers and thh ﬂns notlon a ﬁle

: data have led many programmers to sxmxlar solutlons when stormg d;fferent forms of data ”

o » Contmumg thh the notron of a ﬁle asa block of memory, 11: can be seen that most systems‘

s ,‘rmport data ina twoﬂstep sequentral process, ﬁrstly readmg a spemﬁed value and then‘




E " first group concerns oontent-orrented metadata, whrch descnbe the data content of the file ix

il garusatron of the ﬁle leferentratton between eontent-»orrented and ﬁle—onented metadata 3

descrrbe theu' content

o Examples of ﬁle-onented metadata mclude the posmons of vameus blocks of clata relattv
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placing it into a data structure The sequentlal nature of most loadtng processes comes

about as each value is read when this happens, the pomter to the file content moves

towards the end of what was read

~ An example would be loadrng ﬁve ﬁoatrng-pomt valucs Each value could be read in by i
mleldua”Y incrementing the pointer in the file to the end of each value Alternatrvely L
they could all be read in at once takrng the pointer in the file to the end of all five values T

o Other data stxuctures can be read in a 51m11ar way, by accessmg thexr ﬁelds 1nd1v1dually, - |

or, if the file mirrors the memory layout of the data stxucture, they can be accessed as a; %} | ' :‘ : :

smgle block of data

- The process of loadmg is usually dynamrc, in the sense that some values at specxﬁc posr-' S ‘
" tions in a file can alter the way the rest of the file is read into a program s data structure SEae
The utrhty of havmg such control or descnptwe, values can be seen as grvmg a ﬁle or ﬁle L G

format greater ﬁCXIblhty, by parametensmg some aspect of the mput process

v R These descrtptrve values tenned metadata, can be classxﬁed 1nto one ef two groups The
: The second group concerns ﬁle-orrented metadata, whrch descnbe the ﬁle fermat or e, -

is unportant because the former descnbes the data w1thm our target program, whereas

: the latter could be an xmportant tool in dectphenng ltS format

'Some examples of content~or1ented metadata 1nclude the d;tmensxons of a data set such as‘ :
" the helght and width of an unage, the number of vartables or ﬁelds in a record, a boundrng «;
N box for the data, the physreal measurements for separatron between adjacent samplcs thei'

e type of bnck connectlwty for ﬁmte glement cell data and textt headers for ﬁelds whrchi

o the start of the ﬁle, the type of compressron used the versron of the ﬁle, rts creatron ?
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date, and the delimiters or run-length encoding tags used.

Since metadata is descriptive it is common for programmers to create systems that place
metadata (of both forms) at the start of the file. The benefits of thlS approach when later
reading the file include the ability to allocate memory dynarmcally for data structures
without having to read the entire file first, and simplicity in the sense that there isonly a

single structure that predcfines the rest of the file.

Metadata at the start of the file is referred to as a *header’. In some file formats this header |
is in an entirely different file, leavmg a data-only file to fulﬁl the majorlty of the storage
requirements. The hcadcr-only system works for many kmds of data, but often due to
their complexity, or _)ust through d:ffcrent ﬁcxxbxhty reqmrcments some formats place

metadata in between data in the file.

One example of storing metadata in between blocks of data values could be for anag-
gregate datasct, where several different sets of data are held in one ﬁlc, and so require a

descrxptxon for each mdrvrdual block

Metadata can sometimes be storcd at the end of a ﬁle ina srmrlar manner to thc header by _

using a ‘footer’. This also allows a groupmg of metadata to be separated out from the core

of the file. Howcver unhke a header, a footer is only useful for controllmg the loadmg

process if the whole file is buffered first, ahhough a footer could be a scnsrble place to . :
store attribute values and other individual paramctcrs that may affect thc mterpretatron of oy =

the data.

311 Iriterpret}atioxi i§ evcrything o

“Interpretatron, the acuon of explammg the meanmg of somcthmg” (Pearsall 1998b

OED) is exactly what data mput is all about. All computer programa work through the -

‘use of i mtexpretauons hnkmg values mth meanrngs w1thout knowmg what numcncal By

data means, how can 1t bc u5cd corrcctly L
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The need for interpretation exists at many levels, from individual bytes to large arrays
of complex records. Files are generic storage, and in loading a file we need the correct
interpretation in order to retrieve the values as they were orlgmally placed in the file.
From our understanding of files 50 far we can break the problem of mterpretlng a ﬁle mto

three sections.

At the lowest level interpretation needs to take plvacefor’ the bytes read from the file.
This is because a single byte can have several meanings, which include it being part of
a larger value representation, e. g. a32-bit or 64-bit value, or on its cwu, being a signed
or unsigned numeric value representation. Without this mterpretatlon we can gather no
values from the file, and hence are unable to read anytbmg of use, Existing ways for
* loading data apply an mterpretatmn to bytes by havmg the byte mterpretatlons bullt-m to
| the software ' '

At a higher level interpretation is requlred to show the organisation of values wrthm the -

- file. This is in terms of what the connectivity, domain and range of the data i is. ThlS can S

be expressed by defining the possible meanings of an arrangement of values w1thln a ﬁle

Finally, at the highest level mterpretatlon conveys the meamng of values, in terms of the . L

_ s1gmﬁed such as colour, pressure, drstance tlme and denstty This final rntclpretatlon may o

be necessary to descnbe data within the visualization system or specxfy avariable’sname

or a variable’s type e.g. that the followmg vanable isa date or time and hence comprlses': R

several values

"'3 1.2 Bmary interpretations

VWhen a ﬁle is read, blocks of bytes are 1nterpreted as vanous bmary values Interpret- :

“ ing a block of bytes is usually done by copymg the spccrﬁed range of bytes from the ﬁle' S

‘mto a block of memory This memory has been deﬁned as containing 8 speclﬁc bmary ety

representatron and labelled asa varrable In most prog,rammmg languages there are sev-; , -
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eral standard types of value representation according to which one or more bytes can be

interpreted.

All the langﬁages examined in the course of this proj ect have stored binary numeric values
in one or more bytes. These includeFortran,‘ Cobol, Pascal, C, C++ and Java. It can be
conceded that there exist value representations of less than one byte, however the great
majority of programs and file formats will deal with values at a byte level. There are
also subtle differences between the programmmg languages, in terms of the pl‘CClSIOIl
and storage of certam binary types. However;) for the purposesof this research they can;
be generalised as part of one j)roblem, and that is the correct identification of the type ‘
representation for a block of bytes The questlon we seek to answer is not what are the n
choices available for storing a binary value; the answer to this questxon 1s both deﬁmte .

and finite. The questxon is, rather, which of the chonces touseasa representauan e

Further comphcanons of binary mterpretatxon include the ‘endian’ of the hardware or -
software that writes a file. The term ‘endian’ The Jargon chtzonary Terms ‘The

M Terms : middle-endian (2003) describes the sequence in which bytes are stored and

mterpreted Big endian is used to describe storage of bytes ina most mgmﬁcant byte e o

first’ fashion, and little endian i is with the least sxgmﬁcant byte ﬁrst There is also the little

used variant of mxddle endian, where the sxgmﬁcance of the bytes is not ina lmear order o

and is neither ascendmg nor descendmg The unphcatmn is that 1f we take a numerxc value Sy

from a file stored in an endxan different from that of our current system, the mterpretatlon » |

of all the mulu-byte numenc values held in the file will be mcorrect

Related to the problems of type and endxan mterpretatxon is byte ahgnment In mterpretmg

- an array of bytes into an array of mulu-byte values, we need to consuler where to start, o

In hard-coded loading solutxons the start of an array of yalues is either known because of SRy

other prevxously encountered data statmg where it is sequennally, or isata pomt whlch, e

when other data leadlng up to it are read in, will leave the file open at the posmon where o

the values are stored. For this work there is no such specified start point and ,so 1,t 13:? i i
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both possible and likely that there will be other file content preceding the block of values
which needs to be interpreted. When this occurs the start point for the values sought will
neither be clear, nor likely to be aligned by chance with the start of the first value. Any
misalignment from the start will either miss values from the desxred set, or cause incorrect
interpretations for multi-byte values and all those following, as shown in ﬁgure 31. In
figure 3.1 the bytes we are trying to interpret al'e labelled B, the effect of using the correct
start point for the interpretation and hence the correct alngnment is labelled A, whilst the
 effect of an incorrect ahgnment is shown i m C. The dark grey byte value i IS out of the _
 range of the dataset, and could be any value that followed the block we want to interpret.
A smnlar effect occurs when the mtexpretatlon begms before the correct start mstead of |

after it.

Finally values can dxrectly correspond to some form of symbolxc system llke text charac- L 7,

ters. This can indicate a text~based representatlon of numeric data values or Just nommal

data values this is dlscussed in the next sectxon '

To summanse, all the data we wnsh to extract from a ﬁle into values W1ll requlre mtor- :

pretation. Furthermore for mult1~byte values a correct alignment and endlan needs to be e

. specified. Finally, whether the values are text in nature or not needsdetermmmg. = -
3.1.3 Text interpretations

- The alternatlve to storing data in binary form is to convert the values into text and store

them in a text-based file format. The benefits of storing values as text 1nclude removmg

. problems caused by the type of endtan, byte allgnment or bmary prlmmve type mterpre, "

tation. Text values can also be mtexpreted in a manner Whlch is hardware mdependcnt

- We stﬂl need to know that the ﬁle contams text though and many such ﬁles are not i

labelled as text, so the first questxon is: does thls file contam text? The answer to tlus can

~ be found either by direct examination by the user, i.e. leohtng at( 1t ;epresehted as text’ o
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A B C

Figure 3.1: Byte alignment; a) a set of four floating point values, b) the byte values which
make up the floating point values, c) the effect of incorrectly aligning the array by one
byte

or by a test to see if the majority of its byte values contain numbers within the range of

characters and symbols used for text storage.

In a text-based file each byte encodes a single character; these can be combined to produce
larger strings of characters which may pertain to the values for which we are looking and
by parsing these strings we can find entire values. If these values are numeric they will
need to be converted into a binary primitive type in order to be used within the target

visualization system.

It is important to note that data encoded as text is far simpler to comprehend because it is

stored in a human-readable form and has, as a result, values clearly separated by spaces,
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line returns, or symbols etc. However, ambiguity remains as to the level of precision
required to represent values or the range of integers. |

The process of identifying andkcorubiningk characters can take several different routes,
each having a different degree of complexity in terms of implcmentation. The simplest

form uses delimited or separated values. Dehmmng uses a specific character to iden-

tify where one value ends and another starts Some formats use mult1ple dehmrters o

separate records or rows from columns. Examples of this formattmg include comma-
separated value or ‘CSV” files which are a corru'hon form of export format in spreadsheet o
and database applications. Another example of this formatting is a row and eolumn out- -
put, where columns are delimited by spaces and rows are delimited by ne\v lines. These
- specific formats are used by a large number of commercral packages as well as tnany '
scientific applications, although there are many other formats which, whrle srmrlarly de~ .

limited, are not compatrble with visualization systems thhout further descrxptxon

The more complex forms of text file format are those whlch use contextual tags such as o
SGML, HTML, XML, TEX and MSI. The characterrstlc of these formats is that sequences '
of characters can define reserved words which can alter the meamng of the values held - it
near or inside pairs of tags. Also in this type of file there are varxable assngnments where ’ v

a named variable i is set equal toa value hterally, wrltten out as . g “WIDTH*"ZOO" or S

| “DENSITY=0.005¢-03".

F mally, an attempt can be made to extract values from text ﬁles wrthout knowmg how,f' =

E they are formatted by usmg rule-bascd parsmg Usmg thls technlque WC can deﬁne some_ :'
. basxc rules whrch can 1dent1fy pnmltlve numenc and text data types. These rules are then 8
‘ apphed to separate out sequences of characters into their respectrve types. These strmgs o

. of characters are then converted into binary data types if they represent numenc data, - -

. Once again, the levels of complexrty and functlonahty m such systems cau vury a great (o

' deal

| Dehmltlng and rule-based parsing of text files ’,{vill form thernam tlnust'of this reseéreh" .
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3.1.4 Structural interpretations

Structural interpretation is concerned with how data values are related. All datasets com-
prise one or more nodes which in turn contain one or more variables. Most datasets
have connections between these nodes. The structure of a dataset describes the connec-
tions présent between the nodes and so defines their respective ncighbours. In describing
structure we need to look at how these conocctionscan be specified and encoded into "

sequences of values.

Many solutions to the problem of structural mterpretauon take mto account the notion of ’
physical positions and, as visualization deals with physical phenomena, this is a reason-
able assumption. However, this section assumes that positions are just another vanable of .

the dataset, with the emphasxs bemg on how nodes are connected to other nodes
Connectivity

First datasets will be classified as having‘fo‘ur possible types of COnnectivity' theso are

scattered, grzdded cell regular, and cell varzable There are two concepts by whlch each , S

of these classifications is deﬁned that is the way the connectlons are deﬁned betweeu -

nodes and the way the arrangement of these connections forms cells.

Scattered data has no connections present bctwcen nodes in the dafasfet. Scattér}é‘d_da’ta

nodes have no neighbours. Any techniques for rendering or processing which re- |

- quire some connectivity information will requlre itto be generatcd usmg a process - - -

“ such as tnangulanon

Cell variable data has no consistent pattern of conncctlons betwcen its nodes, thus re-

Qumng explxclt deﬁmnon of each connectxon and then how these connecnons arc I

built up into cells. ‘The key notxon here is that cells may be of different types ﬂus S

" means that the number of nodcs and nodal connecmos pctj cell ncedg to bo Spe‘??f
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fied. An example could be a series of polygons, where there is a different number

of sides for each polygon.

Figure 3.2: An exainple of a structure exhibiting cell variable connectivity - - -

Cell regular data implies each cells connections. All nodes are connected into lines,

triangles, quadrilaterals, hexahedrons or some other n-node cell. The key notion

compared with cell variable connectivity is that all the cells are of the same typél
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F igure 3.3: An example of a structure exhxbmng cell regular connecnvnty, in thxs case ,‘
having tnangular cells : : o s

For each group of n nodes there needs to be a deﬁnmon of the cormectlons whmh P

form the cell. This is usually aclneved by statmg nodal values in the ordcr whlch’ o

| they need to be placed into each cell Some examplcs of commonly used cells arc g

K lllustrated in table 3 1
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No. Nodes

58

Example connections

N

B

%%Hbi

Y

PA
.A\.;- @

Q

&

27

Table 3. 1 Founeen n-node cells whxch are commonly used for dcmvmg connectmns m

cell regular and cell variable data
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Gridded data implies the connections for each node of the dataset. It is the most com-
 pact form for storing connection information. It also has the most stringent require-
ments for regularity in the type of information stored. Linear connecuons between
nodes are assumed along each of m linearly independent axes over which the data
is defined. This results in 2m connectlons per _mtemor node to neighbouring nodes

in each axis.

Q"‘"Q'"Q"'? i
: : ‘ e : b
| 1 i !

G0

Figure 3.4: An example of a gridded connection structure -

Compact array storagé _

An 1mportant consxderatlon whcn attemptmg to determme the structure of a dataset is
the use of compact data representations. Many compact reprcsentauons use array 1nd1ces R
to 1mply more information about data held within an array This sectlon will look at

examples of such representatxons and then 1llustrate thexr use m relatmn to tlus work

Arrays hold a number of e]ements Wthh can be referenced usmg mdlces These 1ndxces" R
, canbe uscd to create a compact representatxon for a datasct Umform rectangular gnds are / :",’:1;11
_ prime cases where arrays are used to provide compact data storagc A umform rectangular o ;‘,: i
grid has both gridded connectivity and regularly spaced coordmates for the Posmons of 4;'

i each node in the datasct as 1llustrated in ﬁgure 3 5:.In a ‘uniform rectangu]m. gn d the';
B cormecuons betwccn the gndded nodes of the dataset can be unphed usmg the mdxces of ‘» : |

thc array. Connecuons ina umfoxm rectangular grld are formed between array elementsf'f




CHAPTER 3. DATA INPUT CONSIDERATIONS . ' 60

with adjacent indices. As well as a compact description of the connections in a uniform
rectangular grid, the positional regularity is used to remove the need to explicitly state
coordinates for every node. Instead, functions are used to generate the ccordinates for
each node. An example of such a function is shown in equation 3.1; in this function the
coordinate z is generated using a minimum and maximum value for z which are min,
and maz, as well as the number of data points along the z axis described by dim, and
the location of the node along the x-axis as defined by its index ¢ in the array. A common
example of data using uniform rectangular grids can be found in digital elevation models,
where an array of height values are stored as a 2D array, with the physical coordinates for
each node produced from a single fixed point and two spacing measurements,
R R R
Y IR
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Figure 3.5: Umform rectangular positions in two dimensions. The dlfference between e

coordmate values for each d1mens1on is constant

mary — ming .

T = f(ming, maz,,i, dim =min.+i- ,
f( Ty 271 2) SR ] d7ma;""1 I

~ Uniform rectangular gnds area spemal case of var 1able rectangular grlds and 80 are not the T

f (3.1)'_"_’

only example ofa gndded data structure which uses a compact form to store coordmates s

A vanable rectangular grid has the same grlddcd structure as a umform rectangular grl Gy

but has a variable cell size. The coordmate data held in a vanable rectangular grid has‘ LA

 each node at a given posmon along each axis shanng a common coordmate value as e

' IHUSUated m ﬁgure 3.6, In a vanable rectangular gnd each dlmensmn requlres a vector of : £




CHAPTER 3. DATA INPUT CONSIDERATIONS , 61
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Figure 3.6: Variable rectangular positions in two dimensions. Coordmate values are
shared for all nodes at the same intersection along each axis: : : '

explicit coordinate values; these coordmate values are constant over all othcr dlmensxons NN

of the dataset. The common way to 1mplement this type of scheme is to use the data

- array mdxces to refer to the vectors of values which store coordmate posmons for each
axis. Varlable rectangular grids are used in many fonns of sunulanon mcludmg MHD

(magneto-hydrodynamxcs) and CFD (computatlonal flow dynamxcs)

Figure 3. 7: Body fitted posmons in two dmtenswns Coordmate values are dlfferent m L |

each dzmensmn and for all other coordmates in other dunensmns

Finally body fitted gnds store gndded data whose coordmates can have a dlﬂ'erent value ;- o

for every node in the grid. An example of such a structure is 1llustrated in ﬁgure 3 7 =

Because each node can have dlfferent coordmates they requlre storage per node m the

same manner as dependent varxables Thcse types of gnd are often used in the aerospace A
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‘ Array(i,j, k) Xuniform rectangulor Xvariable rectangular Xbody fitted | -
55,5 2 3 125
10, 10, 10 2 10 1000
20, 20, 20 2 20 - 8000

Table 3.2: Illustrating the storage required for coordinate X when using dlfferent rectan-
gular and body fitted grids

industry for work involving aerodynamic surface simulations.

The benefit of 'u‘sing' these different data ‘strucnues_ﬁfor storing coordinaies is outlined in
table 3.2, This table shows the number of values required to hold a single coordinate value
X for each of uniform rectangular, variable rectangular and body fitted gn'ds of different
sizes. B . ’ F

Afray row j

sif 4] s

Array(i, j)
| ———p

e

g Hexaheural
Conncctnvxty

Flgure 3 8: Array(l, ]) stores nodal posmons in its columns and mdmdual cells in its a
~ rows, - : v . S : : S

Further compact representatlons based on array structure ansc w1th cell regular data In i

'these datasets the connecnons are unhke thOse in gndded data because the number of ) . e

connections per node is variable. However, there is regulauty m these structures because S

each cell has the same number and conﬁguratlon of connectlons Wthh allows the d.«na
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array indices to imply connections. If we take a cell definition and number tlie nodal
positions in the cell from 1...n then in the data array we can use one of the indices to
imply these nodal positions. Individual cells are distinguished by using another index. An
example for hexahedral cells is illustrated in figure 3.8.

The last two structures, cell variable and scattered, do not benefit from cornpact represen- -
tations as gridded and cell regular structures do: cell variable structures have less regular-
ity to use for 1mplymg nodal connectivity and scattered data has no structure to encode. _
Cell variable data can be described in many ways mcludmg the use of cell regular prum-
tives like lines, triangles and quadnlaterals to construct more complex cells like polygons
prisms and bricks or it can be described by using a dxcnonary of pre-defined cells whxch
are then repeatedly referred to. All cell regular data requires additional 1nfom1atxon o

describe individual cells, and this can be implied or exphcxt in a dataset.

Each of these compact representatlons can be achleved for variables and stmcture whlch o

exhibit certain regulantles ‘From these examples we can determme that structural mfor~ e

manon does not need to be exphcltly stated for every connecnon in the dataset nodal

connectxons and the make—up of a cell can be determmed when assumpnons about how o £

data is connected are written into the loading system. Equally, vanables do not requlre e

to be stated for every node in the dataset if they also exhlbxt regulanty Wthh allows for_ e

~ them to be reduced in a similar manner and then nnphed for every node in the dataset

Recogmsmg the existence of these space-savmg methods and their use  not only in vxsual- | S
ization data structures but also in file formats, may allow the development of algornhms o

‘and mechanisms by whlch they can be handled So to summanse, an array mdex can 1m-‘ S

ply a nodal posmon in an n-node cell or a nodal posmon ina gndded dataset and 1t can, -

w1th addmonal values and mterpretatlon, 1mply one or more vanables that are in some' B o

| way dependent on the index value Thxs 1s 1llustrated in table 3 3
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1o i 19 i3 k
_7:0 12123146185 0 | o1 | 62 | 3
.7'1 1.2 2-3 4.6 8v5 jn 1-2 2.3 4.6 8,5
Ja (12123146185 : T
ja ) 1.2 12346 8.5 | (b)Compact representation '

(a) Normal representation

Table 3.3: Table 3.3(a) A 4 by 4 Array confaining variable X which, given any location
in i is constant for all locations at j. Table 3. 3(b) illustrates a compact representation of

the same data.

Array metadata

Now that we know how arrays can be used to descrxbe d&fferent structures, we move on

| to describe the metadata which defines an array Therc are two 1tcms of mctadata whlch ‘ o

are requxred to correctly interpret an array its rank and shape The rank isa smgle value .

which corresponds with the numbcr of hnearly independent indices over wluch the data .

ranges. The shape of an array is a hst of n values whrch specify thc maxxmum value of -

each index. A rank n array has n' mterpretauons of the order in whxch 1ts dlmensmns are e

~ laid outin the file.

To 1dent1fy the rank and shape of an array Of values we need to kIlOW if multxple vanablus o

are stored in a smgle array. - If so,

the rank of the overall dataset 1s mcremented by one . i

to provrde a vanable index which has an extent correspondmg to the number of variables e

w1thm the array Any varlable at any pomt in the dataset should then be acces51blc by tlle"" s

useof n+1 mdrces

L Thediﬁ'erent effects of ‘ihtérpréting the shape of an aﬂ‘éY can b? seen m ﬁg.ull‘é”,3-9;! the i
dia gram 111ustrates one dataset with five varrables Three of the variables are schematically? i o

| 1llustmted in the f gures by white, grey and dark grey colouring; these three are dcpendent» S

upon the remammg two mdepcndcnt vanables the ‘bexght and wlchh' dunensxons of thé

| array, Overall, we ﬁnd a total of three dunensxons for the anay (the hexght deth and “ : 'ﬁ_‘
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a) width, height, data

¢) width, data, height d) height data, width

e) data, width, height 0 data, height, width

Figure 3.9: The 3! possible ways of interpreting the shape of an array containing three
variables over two dimensions



CHAPTER 3. DATA INPUT CONSIDERATIONS . ' 66

number of dependent variables), which gives us 3! possibilities for the order in which the

dimensions can be interpreted.

In interpreting structure we have two aims: firstly, to define the metadata for arrays of val-
ues and hence describe the data’s actual storage; secondly, to define the nodal cOnnectivity

involved and thus describe the data’s actual structure,

The results of such interpretations should be a series of arrays which have scattered, gnd-
ded, cell regular or cell variable connect1v1ty For scattered connect1v1ty nothlng more is
required; for gndded connectivity only the array metadata needs to be defined correctly.
Cell regular arrays need to have the type of cell and the mdex to node relauonshrp defined

before they can be used ThlS type of structure often refers to nodal vanables held in .

another array (descrrbed in next sectxon) However for structural mterpretauon we need

to know how to generate the connections required for each cell in the dataset andhence

only need think about how these connecuons can be formed at this point. As for cell

variable arrays there are numerous ways in which their connections can be determmed

This data can have cells formed by references to other arrays contammg cell regular data s

references to arrays of nodes, or dictionary stylc cell deﬁmtrons
315 Semantic interpvretations‘
At some point the mterpretauon of data from the file ceasestobe a problem for the data e

input system, and becomes a problem for th
The border for thxs changeover is blurred but must be recogmsed lest we attempt to re-' i

e ﬁlter stage of the vxsuahzatmn plpelme o

implement or redesxgn existing techmques for mampulatmg data pnor to vxsuahzatmn < i

Semantic mterpretahon for data input occurs at this border and descrlbes the PfOCess.mg of | '; . i

data which has been correctly interpreted from the file. It is requu‘ed because of two mam ’

problems. First, the structure of the data in the file is unlikely to mu'ror directly that of - 2

- the vxsuahzanon system Second the values in the ﬁle may not have a vahd mterpretatlon 7 :




CHAPTER 3. DATAINPUT CONSIDERATIONS 67
within the visualization system.

Certain locations within a visualizatiou system’s data structures are designed with the
'pulpose of holdmg certam types of data, a common example bemg coordmate data for =
nodal posmons Equally some of the processes in vxsuahzatlon systems ‘employ com- -
~‘mon mterpretahons for certain types of data, for example image data in IRIS Explorer ‘
is recognised as RGB tnplets These standards may differ from those used in the source ,‘
program wluch produced the ﬁle and so we ﬁnd two basic requlrements for semantlc m-

_ terpretation, ﬁrstly to place vanables wluch have a partlcular meanmg in the correct part
| ~ of each data structure and secondly to offer conversxons and transformatmns whxch allow i

~data not dlrectly supported by the vxsuallzatxon system to be used

' The next three subsectxons will outlme examples of semantlc mterpretatxons and convert o
sions necessary to enable a v1suahzatlon system to use a partlcular kind of data. Flrst s
the compatlblhty of pnmltlve types, the second is concemmg wsuahzatton vanables andf i .

the third is concerning indirection vanables. &

’ Compatibility of[}rlmiﬁye type‘s} e

Prev1ous sectxons have predommantly dealt w1th ﬁndmg and descnblng the content wzthm . | :
| ﬁles thh this knowledge we still have a cructal problem' 1t IS not whether we can decode' |
' the file into an equ:valent data structure, but whether we cau store and use thls decoded‘
~ data. Interpretauons may result in data wluch though correctly extracted cannot be used 3 o

' dlrectly by the rest of the system, such data wxll requlre conversxon

If we cannot support a file" s pmmtwe bmary value representatxou, then 8 safe convexslon
must be provxded to force the values into somethmg that the vxsuahzatlon system can use S
" For example ifa pamcular vxsuahzatlon system cannot mampulate 16~b1t unsxgned tnte-f, .

gers then an appropnate converszon, mto a type whlch it can mampulate, wﬂl be requlred
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Concerning visualization variables

Not all types of data have a drrect v1sual mappmg Varlables wrthout such a mapping
are abstract and can be mapped to any compatrble abstract Vtsuallzatron object. However
those variables which do have a visual meanmg can require addmonal mterpretanon for -
their use in a visualization system, Three examples of visualization variables follow which

describe some of the problems which can occur: -

Coordinates represent a location in physical space, in one to three dimensions; These =

could be in the Cartesian coordinate system or another axral system such as polar,

cyhndrrcal or torordal Inboth IRIS Explorer and IBM Data Explorer there are spe-' o

- cially allocated sectrons of the data structures that contam coordmate mformanon
 Axial systems that are not supported will requrre a safe eonversron to one that is,

for example convertmg polar eoordmates to Cartesxan coordmates

Glyphs are used to represent data comprising multlple values per node wlnch alter some g

_vrsual property ofa graphtcal ObJECt One example is two dtrnensronal drrectlonal

vector arrows, whlch use two varrables, or one vanable conststmg of two compo- o
nents, to set the drrectlon of the arroWS

Ani issue arises when using glyphs due to the order in whrch the vanables are m-;

- terpreted If the visualization system ] mterpretatlon differs from the storage 111 the S

" file then the variables will need to be reordered Llnked wrth thls lssue 1s a need i ' 1

tos separate the variables whxch are to be rendered usmg glyphs from any others in "

the dataset. Equally the processes whtch generate glyphs often reqmre orxly 8 Sln{ :
gle array contammg the necessary vanables. Overall v1suahzmg data: utnng Slyphs | i

requu'es the ab;hty to group, separate and reorder vamables m arrays e ,,' § f ‘

- Colour data represents an unage or texture usmg one or more eolour channels Usrng i

colour presents two dlfﬁcultres Frrst there are many dxﬁ‘erent colour models and - 2

hence many dtfferent meanmgs can be asmgned to the var:ables in a colour tuple ‘
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Several examples include: greyscale; red, green, blue (RGB); hue, Saturation, value
(HSV); cyan, yellow, magenta, black (CYMK); red, green, blue, alpha (RGBA).
If the colour ‘model is not supported by the visualization system, then the colour
values wrll require conversion. For example, a HSV triplet to an RGB tnplet The
second problem relates to the way that the colour channels are stored in an array. An
example is the triplets of a Windows bitmap picture (BMP), which uses the RGB
colour model but stores the values in reverse order from blue to red, resultmg 1n a

requirement for v1suahzatron software to reorder the values.

Three major requirements can be extracted from this drscussron of vrsuahzatron vanables

These are: the ability to extract, group and reorder the arrangement of variables in an o

array; conversions for colour and coordmate data into compatrble forms the abrhty to'

allocate varrables toa partrcular sectron of the system s data structures

~ Visualization systems also contain variables whlch are used to link nodal valucs in other :

arrays together These ‘indirection vartables are described in the next sectron

Concerning indirection yariables -

Not all that is extracted from a ﬁle contains measured values relevant to the data some —

provides a useful way of compressing or structuring the data Reference data and iden-

tifier values are two examples. Values in reference data represent nodes’ whose actual :
values are stored in another array or locatlon Thrs locatron is mdexed by the reference i

value and so can be found if the source data is known Cell vanable and cell regular:

data structures are often stored using this method w1th nodal data held separately from S

connection information. Colour table images are another example where reference data is e

 used to reduce the amount of storage needed by stormg references to colours in an array L S

whrch has gndded connectrvrty

’ Idennﬁer data is another example of mdrrectron data Instead of refemng to tuples or;_-“ i




CHAPTER 3. DATA INPUT CONSIDERATIONS . 70

T Yy z d T y z
TZo Yo 2o 23 T3 Yoz 223
T N o4 42 T4 Y2 22
To Yy 2| |10 16 Yo 210
Ton Yn Zn| |dn Tia Yid 24

a) b) :
Figure 3.10: Arrays illustrating the absence (a) and presence (b) of identifier data |

records by an offset index from the start of the array, an identifier va_riabsle cun expiicitiy S
state the tuple’s order or give a unique point of reference in an array. Tdentiﬁer data is
not used for the purposes of compressxon, and has utrhty often based upon the notion of -
a unique identifier within the source software. Thxs type of vanable is illustrated in table

© 3.10 where coordinate values z, y and 2 are listed a) without and b) with identifier data,

A common use of identifier data can be found in file formats storing cell-regular andcell-
variable data. Finite element data is Just one example of an applxcatlon ﬁeld that uses |
identifier data. References to specify individual cells are held in another array or data -

structure. These can refer to either an mdex value in table a) or an 1dentxﬁer in table b)

‘ In a sxmllar manner connectwrty data can also contam 1dent1ﬁer data ThlS can allow oells S

constructed from nodes to, in turn, be used to construct more complex cell structures For i

example hexahedral cells can be constmcted usmg six references to quadnlateral cells i

33 Tttt dnaiop

' The most complex and necessary series of mteractxons whlch most vnsuahzahon system._ e

users face is 1mportmg their data. There needs tobea way of enablmg the user to ﬁnd a0

solution, because no genenc automatxc soluuon exists, Users have an 1mportant role o

 play in the problem of data input. For current soluuons they have to choose the correct‘

parameters and pr ogram the correct funcuon in order to load thelr data In the system we'g.ff» b




o as the user may not share termmology commonly used for descrtbmg the data they want

o - edge of the ﬁle format used except for clues such as the ﬁle extensxon or what others mi ght

i have told them Users of the source soﬁware may have an tdea what sort of data is used'
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propose they will not requlre such detailed knowledge, but any they do have can be of
value and utilised to speed up the process of data input. In order to see the value of user :
knowledge we need to look at what they know, in terms of technrcal and apphcatlon-based

expcrtence

A user’s knowledge can be categortsed by looking at how they have worked with the data -
source software and target visualization system. At this hlgh level we cannot dxrectly ey
describe a user’s technical skills or knowledge but their ttme workmg w1th the data does =

, gtve us insight mto what sources of mformatton they may possess from theu‘ experrences i : o

Visualization system Source software | - ’. ¥
o . ' Expemence w1th
experience - experience " g
None . - None e o B T
s Ul Use o Viewed o
Expert . | | . Expert “ Worked wnh : i i

~ - Table3.4: USerkndivtedge of a file inpstpfobtem~{:,,‘:€‘;,5~ir‘

Table 3. 4 1llustrates the dtfferent categones and levels of expertence a user can have when e
g attemptmg to solve a file 1nput problem The first category 1s eXpertcnce wuh the vrsual- : o

ization system mto whlch they wrll be unportmg the ﬁle If they have no expertence or are :

‘ Just a user then they 1 may not be able to customtse the system to load theu' data The result ey

s that they wrll be unable to use the system for thetr data thhout hclp frotn an expert or e

vrsroneer At thlS Ievel we need to provrde non—techmcal tools for the descnptton of data

: to load. AItemattvely, expert expertence m tlus area means that the user 1s eapahle of
| altermg the system to mcet their own requrrements In thts case we should try to srmphfy'.

: the task of i mput s0 that it takes less tune and fewer resources @ b

B The second category of user knowledge covers the1r expenence wrth the source software

kthat produced the ﬁle thh no experrence of the soﬁtware, tho user wxll have no knowl-f
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and may also have knowledge about the way in which the data needs to be processed. The
author of the software should be able to specify in detail the data structures used and the
format of the file. | ' |
The last category of user knowledge eoyers their expexiencewith the data itself. This is ] k
the most effective source of knowledge for our’ ihput problem as it is not usually speeiﬁc
to e particular program, and does not require the user to have worked with any particular |
“software. Thus it is a general source of info‘nnation and may be more commonly available
than the others so far considered. If the user has ever viewed the data in a numeric form,
| they may be able to describe maxima or minima of the dataset, or the number of veriables, -
and types of values involved (floating point or integer). Moreov_er if they have ever seen it
visualized they may know its dimensionality or be able to correct its interpretation 1f this -

is in error. If the user has analysed the data they may have knowledge about the number of

variables, what they measure and their structure or type of structure in some ﬁeld spectﬁc L

termmology

I the user has all the details about their data, the file and the target system then the':': B |

problem of file input is how to specify these details i ina swxft and sunple manner. If they L

lack lcnowledge about aspects of thelr data the ﬁle and the system, then for each of these" ,

knowledge deﬁc1ts they will have to dlscover the values and 1nterpretatlons they requlre S

| 33 | Summai'y

 In this chapter we have oescribed in detail the problems ‘fdced wherl we ettempt to ihterQ e

pret a ﬁle The data models 1llustrated m chapter 2 present the stmctural and semantlc

_ attnbutes of sc1ent1ﬁe datasets They focus on the data requtrements for presentmg vmual = -

mformatxon and therefore, the data structures relevant to producmg 8 dlsplay They do e fvf

. not focus on the low-level representatton of these structures or ﬁle storage needs Thls'

chapter has taken such descnptlons and tllustrated how they relate to file storage 1t has | i
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also shown the different interpretations needed to represent values in file storage. From

this we have defined several key notions of how files are organised:

o A file’s content can only be used after a series of interpretations and transforma-

tions;

o Files contain many values which need to be interpreted. These values can be data
or they can be file- or content-oriented metadata, Data cdmbﬁécs the variables that
need to be stored for a scientific dataset. Content-oriented metadata describes or
controls the description of the data. F iic~orientcd mctadata describes or controls

the description of the file;
e File content can be interpreted at three levels o

o Thc first set of interpretations descnbe the bmary and plaxn text mtcrprctatlons

nceded to reprcscnt individual values;

o The second set of interpretaticns are the structural interptctationé, Thcy show how -
the different types of connectivity, defined by the data models from section 2.1,can -~

be represented using arrays of values;

° The third set of mterprctanons bridge the gap between ﬁle content and wsuahza- L
tion data structures. They address the necd to place vanables, as dcﬁned by thc =
o ~data models i in section 2.1, into areas of the MVE data structures that rcﬂect then‘ :

meaning,

In addition to these key notions, this chapter has described the importance of 'ﬁse‘r'knawx; s
edge in the file input process. Section 3.2 outlines the different levels of knowledge th’tt
a user may have about thexr file input problcm and how this affects the complcxlty gf i

forming a solution.




e The common rcqulrement among loadmg systems has bcen 1dcnt1ﬁod m scctxon 3. 1.1

e i 'hlghhghtcd as a valuable asset in solvmg ﬁlc mput preblems Thc user s parttclpatxon Wﬁ
. always be necdod as either part of formmg a solunon or vcnfymg one By focusmg on the

) checkmg the mtcrpretatxon used for a ﬁle and spec:fymg its content

Chapter 4
A s omronc s M b=

This chapter will preSént o new ihfetéctive approach for sol‘v'i'xigﬁlc input pi‘oblélﬁs | Thls

approach wﬂl be supported by a model and archltecture for ﬁle mput Wthh wﬂl deﬁne

B the necessary mtexpretanons rcqulred to solve such problcms

& ,,The approach we propose should be as ﬁcx1ble as e)usnng scrlptmg and programmmgi;‘i :
methods. It should allow i interpr etatlon tO be parametcnscd where reqmrcd and bo su'nplc
, ’and conswtent in usage w1th the rest of thc target vxsuahzatlon system A core Pﬂrt 0 of ﬂlls‘iﬂ
. approach Wln be t° UUPICk the process of 1mportmg data mto a more detallcd modsl 0 .

- - how data is retneved and then stored thhm v1suahzat10n systems

;as specxfymg the nght mtcrpretatlon In the prevxous chapter. thc uscr s knowlcdge Was:

- hlgh-levcl data aspects of a problcm the uscr s knowledgo may bc more caslly apphcd to

o A key problcm in the creanon of ﬁle mput solutlons, is that some mfonnauon ahout th
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way data.is stored may be missing. In these cases, a methodical examination of different
file input parameters is needed. If we use the notion of ‘forensically’ examining of a
file, by taking what is known about its content and then trialling different parameters and
interpretations to gain insight into any missing information, this could lead to a better

specification of the file’s content.

In such an examination there will need to be tools to discover (or redi‘scover). these values
Feedback is an essentral part of the way this approach will tackle the problem The abrlrty '
to provrde a user wrth interactive or near interactive vrsual results from parameter changes
should enable them to trial solutions in a timely manner. Also, in provrdmg the right kind ,
of feedback we may be able to speed up the process of i rmportmg a ﬁle and help theuser

to ﬁnd errors in their file input solutlons B

Our approach is to abstract away from descrxblng drﬁ‘erent types of file format mstead i

pursumg solutions for drfferent types of data The aim is to produce a w1dely applrca-' ,'

ble solution for file 1nput problems and encompass a wrde range of problems Takrng a" C

data-orrented pornt of view, many file fonnats can be seen as contarmng the same data e

constructs, it is this which will allow the des1gn and creation of a gencral solutron to the :

file mput problem The use of approprrate feedback and parameter malhng 1s another , ot

- important part of this new approach. By enablmg the user to apply therr knowledge to," L i

the problem, and discover mrssrng specrﬁcatlons for thelr ﬁle content some ﬁle 1nput wha

problems may be greatly srmphﬁed

The next section wrll descnbe a dataﬂow model whrch provrdes a hrgh level descnptmn‘

- of the relationship between 1nterpretatrons in the file input process Followrng the model 2

a software architecture w1ll be descnbed whrch deﬁnes the low level processes by whrch f . L

the model may be unplemented




CHAPTER 4. A NEW APPROACH TO FILE INPUT T 7%

4.2 The file input dataflow model

Current solutions to the problem of data mput for scientific v1suahzat10n have no common
thread, no standard way to break down the problem and no spe01ﬁc way of 1mpomng a
file’s content into the apphcatlon s data structures Because sctentxﬁc vxsuahzauon has '
never had a specrﬁc or well described model for the storage or retrleval of data many‘
ad hoc approaches have been used instead. This in turn has resulted in users havmg to
program and script their mput solutions. Each instance ofa so]utlon is very similar i in .
functionality to the next, 1mplemented ina s1mrlar manner, but with Just enough mﬂexr-

bility to be useless for anything else,

Our contribution to this field is a dataflow model for the file input proceSS that typilles a
systematic decomposntton of the problem mto three dlstmct stages that allow us to classrfy |
both the general process for each stage and the data commumcated to the next stage Wlth
this model a more generic approach to solvmg file mput problems can be adopted The'

model is illustrated in ﬁgure 41, w1th the value, structural and semantlc mterpretatlon

stages each “having the type of data they require ﬂowmg between them Value mterpres ;“'

tation 1ntexprets bytes from the file into usable values. Structural mterpretatlon takes 1

these values and both descnbes thelr connectmty and forms them mto arrays. Semantlc e

- interpretation provides support for modifying arrays 1nto meamngful structures and for' ‘, S

- converting the values into a form whrch can be used by the target VISuahzatlon SYStem :

Variables

“Fie T \ Value \ Structural Array‘s> » Semantic

Contenj_l/ Interpretation V"”“/ Interpretation | " Interpretation

| Figure 4L T_he d_ataﬂow model vfor ﬁle mput ‘ o T

" The first of the three stages the value mterpretauon stage, takes raw ﬁle content and
converts it mto values It does tlus by mterpretmg the data tnto a machme—usable bmary

| 7 form e. g convertmg four bytes mto a ﬂoatmg pomt value or convertmg the ASCII
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sequence ‘3402’ into a 16-bit integer binary value.

The next stage provides a structural description for the values passed to it. This structure
is defined in terms of nodal connectivity and the arrangement of values into arrays. Nodal
connectivity is necessary for deﬁmng where values lie in the domain of the dataset and

" the definition of arrays determines where values lie within data structures

Finally the semantic stage allows the grouping, extraction, and referencing of data as
well as conversion of variables to allow them to enter the filter stage of the dataflow
pipeline. An example might be identifying three variables as being'com_ponents of a three
dimensional vector, or identifying a block of values as depth data instead of height data’ .

for an array of values describing bathymetry.
43 A software architecture for ﬁ_lep input

| :Lookmg in more detarl at how each of these stages breaks down provndes a set of mter—

connectmg processes whrch enable the descrlptlon of dxfferent file formats

4.3.1 The value interpretation stage

- As we discussed in section 3.1.1 interpretations are the key to this model, and the value

stage provides the interpretations outlined in section 3.1.2, namely the conversion of raw .«‘

file content from bytes into useful binary values.

- The input to this stage isa sequence of bytes of a spec1ﬁed length (the length of the i v;:

file), which is essentlally a buffer for the complete contents of the file. The stage outputs e

values, either as individual values or as sequences of values These can then erthcr be used

in the vxsuahzatlon software or further mterpreted in a subsequent stage For the most : ; L

basic mput problems the output from this stage may requlre no further mterpretauon For :

' kexample any data Wthh is a smgle vanable in one dxmenswn could be loaded at t}us"zfj ;;'v;._-:?i'v_'v;




CHAPTER 4. A NEW APPROACH TO FILE INPUT L o ; 78

Bytes

Convert to
. numeri¢
values

Values | -

Figure 4.2: The Valué Stége éifchitécture e
;stage and if the vanable was ina form usable to the vxsuahzatxon system, m dld not'

requlre conversxon then no further mterpretatxon is neccssary The mterpretatmn of ﬂus e

type of data could be V1sually venﬁed when rendered as a gr'iph or vwwcd as text g
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The first process in this stage is a selection process. Making several selections allows
multiple interpretation pipelines to be made. The utility of such multiple pipelines will -

become apparent later.

The question still remains as to which primitive type is héld»in the selected portion of data;
the next process in figure 4.2 interprets a block of bytes as a specific binary primitive typel
The result of this process is a sequence of numeric values, including 8-bit values which
are capable of having a text as well as a numeric interpretation. From this process there
are two possibilities for interpreting the resulting values; the first is to contmue using them

as binary numeric values, the second is to mterpret them as text.

~ In order to correctly mterpret multiple-byte bmary primitive types their endian must be
determined. There are two common choices: little- and big- endlan and several other ‘

rarely used byte orderings; all could be implemented but the first two are requlred. o

Alternatively, interpreting the bytes as text requires two processcs' First the character
values need to be parsed into separate strmgs and then the next process down converts

~ these strmgs into binary numeric value represcntatlons

The output from this stage comprises both mdlvxdual values and scquences of \?allles.

These can be used or visualized in a manner which allows the parameter choices for value = -

interpretations to be verified, This verification can be done either by comparing thevdata s

values produced at the end of the value interpretation stage w1th lcnown values i in the file ;. C

~ or by graphical evaluatlon using a hlstogram or graph
432 The structural in‘terpr'etation'stage :

This stage allows us to re-descnbe sequences of values as arrays of values Moreover o

it enables us to recreate nodal connccthty for the data in these arrays I t enables mulh_ “ -

variate and multi-dimensional data to be reprcsented wuhm thc vxsualxzauon system by EES

. spocxfymg a descnptxon of its structure. Oncc agam, a selecuon proccss can be used to o
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separate contiguous blocks of values for different interpretations.

Values

Arrays |

Figure 4.3:‘4Tl1estructural staée 'érchitecmre' e s e

After values have been selected by the ‘Select value(s) process m ﬁgure 4 3 they have two _» o : 8 |

‘types of mterpretatlon unposed upon them The first is apphed by the ‘Descrlbe Array

process which places the values ina rank n array by assocratmg array metadata WIth

. the selected values. Next, the ‘Determine Array Connectmty process allows an arrayb_ f

~ to be described in terms of scattered, cell vanable cell regular or grxdded connectrvrty

The output from this process consists of arrays of values with some fonn of connecuvuyy :- v

~ relationship.
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4.3.3 The semantic interpretation stage

This stage is an interface between the arrays of values produced by the structural inter-
pretation stage and the data structures of the target visualization system. It deals with
the restructuring énd conversion of arrays coming from the previous stage and determines
potential relationships between them. The results‘of this stage are output as variables that

can be visualized.

Arrays

Stack arrays Variable

ag variable

: Variable
Variables '

- Variable .

Varisble

: Figure 4.4: The 'semantkic}stage‘ 'a‘rchitecture‘ S

~ In this stage multiple arrays of values can be slxced aud stackcd ina dlﬁ'erent order to )

produce a form that is useful to the system These procceses are xllustrated m ﬁgure 4 4 o

Reference vanables are 1nterprcted here, w1th varlables in one array refexrmg to exther o

* indices or variables i in another array. Fmally, conversmns are apphed to vanables whlch‘ i‘i." f_

are not dxrectly usab]e by the target visualization system Examples mclude vanables 1 .
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identified as requiring normalisation or processing into a different axial system such as

transforming polar coordinates to Cartesian coordinates.

4.3.4 File input parameters

Each stage of the architecture has processes that transform data and the user’s control
over these processes is dictated by the parameters each one requires to describe their
respective transformations. These file input parametex‘s include tnetadata and file cOntrol '

values needed to make the data usable; they can be descrlbed as exther exphcxt or unphctt

Exphclt file mput parameters are found i in the ﬁle and comprise metadata and control

parameters which have been stored alongside the data to enhance the ﬂex1b111ty of the file v |

format. They describe aspects of this data Wthh may dlﬁ"er betwcen files of the same i_

format Examples of explicit file mput parameters often include array dtmensmns 11ke =
the helght and width of an 1mage file, physical boundmg boxes and shce separanon in CT :

datasets

~ Implicit file input ‘parameters for the purpbses of this research ean be regatded as ﬁle E i

mput parameters which cannot be found in the ﬁle, mstead they are usually codtﬁed mto :
input software. Implicit file input parameters can mclude the number of colour channe1s> .
in an image ﬁle format, the bmary pnmmve type ueed for a vartable and the locatlons of : ?j_": :

 different data items thhm afile format

E 4.4 Summary

- This chapter has described a new approach to producmg ﬁle mput soluttons To support _
~ this approach a model of file mput has been put forward that 1llustrates the mterpretatlons

"~ required to mput a ﬁle (outhned in chapter 3).

' The requtrements for producmg these mterpretatxons have been descnbed in terms of the 3 o
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processes and metadata necessary to parameterise the process of file input. The ndtion
that metadata can be built into the reader and found in the file or user has been posed,
and the notion that the user can prove an effective source for metadata has been further

explored.

The file input dataﬂow model has been presented as an effective way of breaking‘down the
problem along with a flexible software architecture for visually programming file input
solutions. The benefits of such a system include a flexibility which is similar to thét of -
programmed or scripted solutions, and some of the snnphcnty and definitive user choices :

for interpretation which can be found wuh monohthxc input solutions,

The next chapter descnbes an implementation of the archltecture named the “Interactive
File Input Toolkit” (IFIT) whxch allows the solution for many of these ﬁle mput problems
to be descnbed




Chapter 5

» Using the Interactlve Flle Input Toolklt
(IFIT) R

The previous chapter discussed the problems that are involved in descrihing data and ac-

cessing ﬁle-stored data; xt also described an mterpretanon—based model for data mput that

descnbed the necessary mterpretattons to convert file content into useful data structures : 1

within an MVE., The file input architecture following the model descnbes the processes

that are requtred to 1nterpret a wide range of file fonnats using a data—onented V1ew of ﬁle i "" -

~ input. This chapter wxll ﬁrst outline a new approach to producmg solutlons to ﬁle mput

problems before presenting a software toolkit for solvmg file input problems named IFI‘T.,J" o

5.1 Forensic file examination |

'In chapter 3, user knowledge was htghhghted as a valuab]e asset m solvmg ﬁle lnput f'

prob]erns User participation will always be needed as elther part of creatmg a soluuon .

~or venfymg one The amount users know about then' ﬁle forrnats and data sets affects the o

complexity of creatmg and venfymg a soluuon The problem is that some mformatton

about the way their data is stored may be mlssmg, the notion of forens1c examxnatxon"

. ttempts to tackle the problem by developmg tools that can be used to dtscover (01' rechs- |

cover) this mformatxon Once captured the mformauon can then be apphed in the creatmn £
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or validation of a file input solution. Examining a file forensically involves taking' what is
known about the file and data it contains and applying it in an investigation where the file
is tested to discover what input parameters are needed and what they are. This is done by‘ a
using a combination of traditional ﬁle analysis technlques and iteratively trialling param-

eter values using visual tools. This approach for dtscovermg and then extracting stored
data is technically possible with some existing tools and through programmed extension.

However, current solutions can hamper the user, ﬁrstly with the time taken to set up each |

trial and secondly by theu' lack of approprtate feedback to analyse the outcome

Facilitating forensic examination requtres that the user is provrded where poss1b1e thh
adequate feedback and interactions which wrll allow the raprd tnallmg of dtﬁ'erent input

parameters. Performance improvements in comprehendmg data and parameter change ‘

by using interactive feedback can be seen in the field of computattonal steerlng (Johnson o :

and Parker 1994). In this ﬁeld, simulations are bl-drrectlonally linked to a vrsuallzatron .

allowing the user to change pararneters by mteractmg w1th the vmuahzatron ThlS real- i

~ time feedback allows the user to see ‘the effects of drfferent parameter changes and test_

dlfferent ideas much more qulckly and intuitively than with a batch mode sunulatlon

Linking similar visual feedback mechanisms to insightful vxsuahzatrons of file data atw i

different stages in the data input model would facilitate forensic analysxs by allowmg‘ SE

users to trial what they know and drscover what they lack.

A tool to solve file input problems forensrcally requtres new and mfom'ratwe v1ews of ,‘ o

file storage in addition to those from extstmg dragnosuc and exammatton tools used by o

v1sualtzatron experts Binary files currently present the greatest problem, as the standard - e

means of examining their content involves the user vrsually rmpectmg them wrth elther a -

text or hexadecimal display tool. While useful to those who know what to expect and are

seekmg vertﬁcatron thcse vrews are largely meanlngless to most users and oﬂ'er ltttle in fk . o

most caqes
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5.2 Final requirements‘ for a file input' tool

The final requirements for a file input tool are described in the three sections below; they

are broken down into requirements for the user, output, functionality and implementation.

5.2.1 User requirements

The first task any MVE user faces before they can visualize their data is to load it. As
a result this aspect of an MVE’s usability has important ramiﬁcations for all users. The

following requirements relate to the needs of MVE file input tool users.

Consistency of interface The GUI and usage of this tool must be cousistent Nlelsen
(1993) with those found elsewhere in the MVE." o '

| Unamblguous terminology Tenninology used in the'iuterface must avoid using words

Whlch are overloaded with many ﬁeld-specxﬁc meamngs that could cause problems et .

for users from a pamcular field.

: Clear feedback and Outputs The effect of parameter choxces should be 1llustrated to thei |

~ user by an appropnate feedback mechamsm Feedback should always be avaxlable' T

to the user regardless of the stage they arc atin the problem solvmg process Outputs _' =

should allow validation tcstrng to be performed upon any solutlon and errors to be\

~ tracedto a pamcular stage of the file 1nput process

- Transparency and accuracy The user must be made aware of' any changes that havef[l

been made to the raw data values durmg the ﬁlc rnput process Equally, opcratrons g

which modify data values should do soina manner whrch preserves theu' accuracy . |

“Thei 1mportance of provrdmg the user with an accurate proture of what has becn donc’ j

to their data up to the pomt of rendermg is crucral for retammg scnennﬁc acouracy =

andi mtcgrrty in the way any rendered output is mterpreted
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5.2.2 Output requlrements

IRIS Explorer is to be used as the primary MVE platform for demonstrating this file input -
tool. Outputs from this tool must use IRIS Explorer’s core data types. They must also be
compatible with IRIS Explorer’s conventions for mterpretmg different types of data. The

following output requlrements mirror the data constramts of IRIS Explorer S

Data structures IRIS Explorer has three core data structures of interest'to this work:

- lattices, pyramlds and pararneters Any tool must output these to be of use m 1he o

environment. Lattices are the main storage medium for data values, they offer the oL

ability to hold multidimensional, multivariate gridded and scattered data, provxded L

the variables are all of the same binary prmntlve type. Stonng multxple varxables of

differ ent bmary primitive types requires multlple lattlces to be used ‘The pyramld A

data type (The 2000) uses latnces to store nodal data whrch lS then referred to 2

by connection data to store cell~regular and cell-vanable data Pyram1d cell—based, - -

| ~data only allows mdex offset references as opposed to 1dent1ﬁer reference data for .. .

‘ connectlons Finally IRIS Explorer supports generahsed parameter values N S

~ Common data interpretatlons The ﬁxed xnterpretauons whlch IRIS Explorer expems"f
for graphxcal data are in the followmg forms R ' : o
e colour 1mage pixels are descrxbed usmg RGB trlplets

. coordmates are descnbed using the Cartes1an axml system wuh one to three :

components in an XYZ ordermg, S

. vectors can be descnbed usmg one to three components m a XYZ ordermg

Bmary value restrictlons IRIS Exploxer suppons 8 16 and 32~b1t s1gned bmary mte~

. ger values in addmon to 32 and 64-b1t ﬂoatmg pomt values m both the Iattu:e andz

pyramld data types. Th‘S means that un51gned bmary mtegcr data and other bmﬁl‘y o




o Interactrve feedback Approprrate vrsual feedback needs to be &.euerated for the ‘user;
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value 1nterpretatrons will requlre conversron or castmg 1nto an approprlate bm’u‘y :

prrmmve type.
5.2.3 Functional requirements

The scope of the project described iu chapter 1 6 and analysis of existing systems from‘ :
chapter 2, along with experience of producmg file mput software, produces the followmg i o

requrred ﬁmctronalrty for an MVE’s ﬁle mput system e

. Broad apphcabxhty The software needs te offer a way of producrng ﬁle mput solunons_’f»z i
for a w1de range of MVE users who have non-standard file formats wluch cannot e

: be inputina tnvral manner by usmg the exrstmg tools o e L

VSupport for genenc data operattons A dataset may be spread over muluple ﬁles, cow

| versely, many datasets may be condensed together 1nto a smgle ﬁle The ﬁle 1nput ShEE
architecture 1llustrates all the processes necessary to mput file data, any unplemen« .

i tanon must offer all the mmrmum functronaltty outlmed in the arclutecture. R

o 'Extensrble The software needs to offer rhe abrlrty to extend the system to allow mamte{f‘x ;
- nance and development Tlus enables files whrch present a umque ehallenge to the ;

system to be handled usmg a combmatron of IF IT and programmed extensron =

. ‘»?Reusable The abrlrty to produce solutrons that enable the user to lood ﬁles of the serne '_ ;
| v format whlch have subtly dlfferent mput parameter values rs requrred These solu
o trons should automaucally take values from the ﬁle (1f they exrst) to set parameter

- needed in the mput process A complete soluuon wluch can be reused should b

: f'a possrble output of the system Other partlal solutrons are t.hen poss1ble for prob
- ‘y'lerns tlrat due to a lack of user knowledge or hmrtatrons of the tool may sull prov

1 useful to the user and perhaps prov1de a stagmg pomt for extensron
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This feedback should be linked to the underlying file input parameters using direct

image mampulatlon (Chatzinikos and Wright 2003).

5.2.4 Implementation requirements

A key aim of the implementation is to prove the utility of the architecture and dataflow
model for file input. It should also illustrate how effective the forensic app'roach.is to

producing file input solutions and the worth of visual feedback in file input problems,

Several simplifications can be made with respect to implementing a solution based upon e

these general aims:

o The tool will only support the binary pximitive types that are available in standafd C.

These types are fairly comprehenswe but it must be acknowledged that others exwt E

examples include binary coded decimal numbers and fixed point blnary numbers :
For a complete solution, other bmary pnmmve types would need to be 1dent1ﬁed 2

“and be developed as part of the toolkit’s 1nterpretatlons

. Arrays that contain multxple bmary primitive types can use only thelr first or last -

dimension to index the dlfferent vanables in an array This i 1s another reasonable B
assumption for the majority of input ﬁlcs, and likewise, could be developed furth | her 5

after this project.

As IRIS Explorer is the fest environment for tlus project, ‘its data types and thelr mter? 7

pretations have been identified as a desirable part of IFIT’s output Also IRIS Explorer s

extensxon mechanisms must be taken mto consxderatlon Thesc include Schema scrtptmg,

& module and data API and the abllxty to extend the system usmg FORTRAN, ( o or c++"

programmmg
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5. 3 An overview of IFIT

IFIT is a collectron of modules that extend the file mput facrhtles of IRIS Explorer It’

is nnplernented usmg C and C++ wrth both OpenGL and the IRIS Explorer data access - g
AP], as an extension to IRIS Explorer s module lrbrary IFIT allows the constructron of 2
module networks which are capable of rnterpretmg ﬁle content into usable data. Unhke g ,
many existing systems IFIT leaves the monolithic and ad~hoc approaches to file input

with a modular desxgn The mherent ﬂexxbrhty of modular networks and several newl e
| , vrsuahzatrons enable the user to forensrcally examine files, allowmg them to mvestlgate

“and verify dxlferent mterpretatron parameters in real- hme

IFIT modules can be placed mto one of the three followmg groups n‘ansformatron, spec~
g 1ﬁcatron and vrsual mteracuon Thrs section wrll bneﬁy describe each of the groups m En
& more detarl as well as 1llustratmg each module s usage and locatron in the ﬁle mput arclu» o 2

‘ tecture ‘ e

e 53.1 TranSformatloxi of us‘er’ "dat‘al f'

Transformatron modules nnplement the core of the ﬁle mput arclutecture eonvernng ﬁle .y

'content fo values, arrays and then vamables Table 5.1 shows both IFIT cxtensrons and

‘ exrstmg IRIS Explorer modules which rmplement the transfonnatron sectrons of lhe ﬁle

input architecture, Modules are located in the. table wrth respect to therr mputs and out- :

 puts, rhese COFfCSPOnd to the data transferred between the stages of the dataﬁow model

‘ for ﬁle mput

The locatron of IRIS Explorer s modules in thrs table 1s a result ef 1ts exxstmg data ma-
e mpulatron frmctxonalxty wlnch focuses upon arrays and &anables These \»ould be the 5
normal output from us orxgrnal ﬁle mput software and modules The abxlxty to handle E

 arrays and varmbles is needed in the ﬁlter stage of the vrsuahzatron plpelme At llus level
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the visualization input pipeline becomes blurred.

IFIT’s transformation modules fill the positibns outlined in the dataﬂow'input model for

which IRIS Explorer lacks an implementation. IFIT also provides modules that allow the -

parametric description of variables and address the user’s need to produce more complex -

structures to describe their data. These modules are described in the next section.

Inputs Outputs :
‘ Bytes Values Arrays Variables -
File location || ReadRawBinary
Bytes  SelectBytes BytesToValues
: SearchSelectBytes  TextToValues
TextReéordToValucs .
Values SelectValues ChangeDimLat
g SelectValues
Arrays SteckDimLat | - DimToVar
. SliceDiml.at ChannclMerget
: CropLatf SR fo et
Variables ChannelSelect} . Mixert
R SphcreToCartest
MultnChannelSclectt

Table 5.1: Transformation modules in IFIT and IRIS Explorer; those marked tarepro- -
- vided with IRIS Explorer ‘The table shows the mput and output of each module by xts B
location. L

532 Spéciﬁcation modules g

CIFIT has several modules which combin¢ or add information to arrays and hence do

. riOt transform the data but specify additiém’al attributes‘for its intérpréiétion ' Table 520

- shows specxﬁcatlon modules and their mam mputs and outputs and lmked usage. Com-.

~ posePyr takes an array of connections and an array of nodal data to crcate ccll—regular or

7 cell-vanable structures. IFIT extends this module s functionahty W1th VarIdentnﬁerMap. W '

B Wh‘Ch takes both arrays and convex’(s the connectlon data from name—based to mdex—based e

- references. The ComposePyr module can then use these references to define connectw;ty e f
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in conjunction with nodal data. Alternatively IRIS Explorer’s Trangulate2D or Trian-
gulate3D modules can be used with just nodal data to produce a connected cell-regular

structure.

SetUniformCoords and SetCurvCoords both provide the user with a way of speeifying
the physical coordinates for a gridded array. SetUniformCoords provides three different
ways of specifying coordinates for a bounding box: minimum per dimension with either
the maximum, range or sample spacing defining the bounds in' each dlmenSlon This

enables the user to use metadata directly for deﬁmng the bounds of their data in any of

- these three forms. SetCurvCoords enables the user to combine an array of data values and

an array of coordinate values to produce data nodes with md1v1dual coordxnate values for

body fitted, cell-regular or scattered data.

Inputs - 2 Outputs
o Co e Gridded data Cell regular data
Scattered nodes . : | Trisngulate2Dt
R L Trisngulate3dt
Gridded array . |t SetUniformCoords e
- Gridded array and || seCunCoords |
Coordinate array R -
Scatterednodesarray .| . | - ComposePyrt -
and array of index references 7 '
 Scattered nodes array T " ComposePyrt
and array of named references || - VarldentifierMap

- Table 5.2: Specification modules in IFIT and IRIS Explorer; those marked 1 are provid'ed' b

with IRIS Explorer. This table shows which modules are needed to specnfy the two types S
of output data ngen the set of avaxlable mputs o o : SHR

5.3.3 Visual feedbaek modules

IFIT contams three modules Whlch allow the forensxc dxscovery and venﬁcatxen of ﬁle ;

' mput parameters by using mteractxve feedback The ﬁrst of these modules is called ;

' Texthew and prov1cles a wmdow that shows byte values mterpreted as plam text It has s
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several options for interpreting standard eud—of-liue characters and can show the effects
of using different delimiters to separate values in ﬂae file. Its main benefit compared with
an external text editor is that, as part of the environment, it can be more closely integrated
with IFIT modules. TextView is a useful tool for dissecting a file format: however, if the |
file contains binary data _then all it can do is verify that fact because the output will appear
largely meaningless. In this case there would normally be little recourse for a user, unless
they had either produced the software which had output the file or had a detailed descrip- -
 tion of its content. IFIT solves this problem by providing lmage\frew band‘VolumeView. :

Both are modules that can produce a view of a file’s content regardless of how it is stored, |

ImageView generates a greyscale image of the values 'with whicb it is previded The user
interacts with the image using mouse drag actions to change 1ts Wldth ‘this actrvrty is in
real-time and forces the given values to be interpreted as a new image wrth the new width,
The visual effect is both simple and powerful allowing 1D arrays held in the file to be -

located and, for 2D arrays their dimensions to be found. Moreover, the artefacts whrch e

’are generated by incorrect interpretations can be lughly effectlve in 1dent1fy1ng whlch ‘} s

interpretation parameters are wrong or what else is in the v1ewed area of the file.

VolumeView extends the funcuonahty of ImageView into 3D preeentmg the user wrth

 three views and allowrng them to find the shape ofarank 3 array. Each of VolumeVrew s

"~ three views present a slice throngh the array usmg a dlfferent avus Three v1ews alone

~ cannot convey the content of the entire array, §0 ammauon has been provrded to allow"?'

‘the user to have a better view animation. The animation pushes each slice through its '

respective axrs in the array, preventmg arrays thh large areas contarmng zero values_';

B from causmg the user problems because they have no mfonnatlon and 50 prescnt no useful S

* view. The animation also provxdes additional feedback that can guxde the user toward the o

correct dunensrons ofa rank 3 array
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5.4 Using the transformation and specification facilities
ofIFIT

This section describes how IFIT can be used to solve file input problems. First, IFIT’s
general usage will be discussed, followed by examples of simple module networks for

extracting different types of data from files.

Loading any file using IFIT requires the construction of an appropriate module network;
this involves placing modules into the MVE work area and then setting their parameters
and ‘wiring’ them together. Wiring modules is a simple process of clicking on the output
button of a module and then on the input button of another module to create a pipeline
between those modules which transfers data. An IFIT module network can extract single
values and arrays of values from a file; once the required values and arrays have been
obtained they can be used to describe other aspects of the dataset, combined or visualized.
The resulting topology and choice of modules in any network is dependent upon the
number, structure and content of files that are to be input, in addition to the intended
usage of the solution. The way in which a network is constructed depends upon how
much of the file’s content the user requires in order to visualize their dataset, and the

user’s knowledge about their data and file storage.

Figure 5.1: A simple 1FIT example

For example, figure 5.1 shows a network of four IFIT modules that input a file containing
a header followed by a single array of binary values. The first module in this network is
ReadRawBinary which accesses the file and produces a cache of byte values. The next
module linked to ReadRawBinary’s output is a SelectBytes module which selects the data
portion from the file. Following this a BytesToValues module interprets the selection

into a rank 1array of values. The last module, connected to BytesToValues’ output, is
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ChangeDimLat which specifies the rank and shape of the array; it also assigns a bounding
box with the same shape as the array which permits the array to be rendered. The output
from ChangeDimLat can be rendered or manipulated with the many tools at the user’s

disposal in IRIS Explorer.

The network in figure 5.1 can be used to input one array with a maximum dimensionality
of rank 9, which is the limit in the user interface in ChangeDimLat. To describe this
array six parameters are required. These describe the location and content of the array
with an additional two to ten parameters needed to describe the rank and shape of the
array. It illustrates the type of module network needed to input a file containing only
implicit file input parameters (See section 4.3.4 on page 82 for a description of both
implicit and explicit file input parameters). Explicit input parameters can dramatically
affect tiie complexity of solutions made using IFIT, because each one requires a set of
interpretations, which for the majority of cases are not shared with other items of data

held in the file.

£3(*  SétosSgit 0 B#>uieVitoi D Clwi-vfclwitauZi ti i
CUZICZ.t il

TP eStKiaVic*.:?« Q
[ C o N )il

Figure 5.2: A module network that can import a file containing an array and two explicit
parameters which define its shape

The module network in figure 5.2 illustrates how explicit parameters can be used to spec-
ify an array using IFIT and how they affect the complexity of a solution. In the example
a binary file stores a rank 2 array and two parameters, that describe die array’s dimen-
sions. The solution interprets both the parameter values as dimensions for the array, and
then interprets the array and sets its shape using the two parameters, which are wired into
ChangeDimLat, The first module in this network is ReadRawBinary which accesses the

file and produces a cache of byte values. The next two modules, linked to ReadRawBi-



CHAPTER 5. USING THE INTERACTIVE FILE INPUT TOOLKIT (IFIT) 96

nary’s output, are both SelectBytes modules which select the data portions from the file.
These are followed by two BytesToValues modules which interpret each selection into a

differently typed rank 1 array of Valtles. At this point the way the values are interpreted |
differs; the lower route has two SelectValues modules which take the array of two header
values and select individual values to becbme parztmeters. ‘The upper route connects to a
ChangeDimLat which re-dimensions the array using the two parameters from the loWer

route, finally outputting a rank 2 array of values.

Complete file interpretations may not be nécessztry for ény given problem; afile ntay tton-
tain data and parameters that are not needed by the user. A file may contain information
which, though needed, can be specified by the user instead of being described in IFIT.
This choice is dependent upon what the user needs from the file in order to vxsuallze their
data, and whether the user intends to make a solutlon that allows thc rcpeated input of the
file and others ofa similar format. Where the need for access is one-ume only, xt is easxu‘

for the user to ldentxfy their data, extract 1t and then leave the rest of the ﬁle unmterpreted

This results in a much less complex soluuon and a reduction i in the numbcr of modules ~

and mput parameters that need to be spe:cxﬁed to mput explicit paramctcrs stored i in the

file.

When a user needs a solution that can input many files of a format which uses several
explicit parameters to store necessary metadata, each exphcxt parameter wxu have to be

interpreted and wired into the network. otherwxse the user wﬂl have to specxfy each one on

a per-file basxs If the txrnc taken to accommodate a parameter is less than the tune taken

to specify it for the range of files which will be mput, then the choice is obvxous “The e

* choice is harder when less is known about the file fmmat, as a search through the pomom. k i,

of the file \xhxch have been left umnterpreted w 111 be requlred to locatc and descmbe any ERE

cxphut parametcrs w hxch havc been dxscovered

Array pammeters can casxly be dtscovcred using Imachewer and Volmnerewer How~ |

' ever if the user is attemptmg to extract vahzes from pamans of the ﬁlc contammg mxxed c
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binary values or other binary structures, they face a much ha.rde.r‘problem. The user needs |
to know either where and how they are stored in the file or the actual target value that they
are seeking. Without either of these the problcm of extractmg values from mixed bmary

structures in a file becomes mtractable »

If the unphc1t and explicit ﬁle mput parameters are known they can be manually entered .

by the user into the appropriate stage of a solutlon 1f not, they will then need to be
discovered using IFIT’s visual tools. Once the exphc it parameter values w }uch are needed

by the user have been dxscovered their locat:on m thc ﬁle will need to be found and the ‘
| values described using IFIT. These parameters can then be wired mto the appropnatei 7
module. The effect of this is to acquxre the parameter from each ﬁlc wlnch conforms to

the user’s IFIT network descnptmn

Each value or array we mtend to acquxre fmm afiler reqmres an mterpretatxon p:pelme o’ i
 be created. AII plpelmes ﬂow from at 1east one ReadRameary madule, “hxch caches‘ g

g the whole ﬁle content into memory. Each ptpelme allows a dlﬁuent mterpretauon to be' il

: made of a selection of the ﬁle s content The next secuon will dxscuss how IFIT modules o

“canbe combmed to create nem orks that can mput a user s data

o Simple value intei‘pretétien o

B i Extractmg cuher an an'ay ora smgle value from a ﬁle requu*cs both a Iocauon and value T

A' represcntanon to be speuﬁed The Iocauon can be specxﬁed wuh one of t\m mndu}ee
- SelectBytes or SearchSelectBﬁes Th:":se prowde the abxhty ta sdef:t pomcns of ihé;vf?%:’?l’{’:'
. file and aﬂaw the creat;an ef multiple mdapendunt mterpretaunn plpelmes fc:r dxfferant

sectwns of a file. For exampk, the ﬁle header may reqmre ﬁve dxi}lrent smglmvalue* )
lmerpretatxons and the data pomon of the ﬁle 3ust ene, ezther way a totai of sxx dxfferent 4

: interpretaixons wﬂ! be needcd to get ﬂle ret:pccuve values out and hcnce szx dlﬁ‘erent .

o ,SeIecﬁS}“tes eﬁ'ers se\erai éxfferent parametem, iﬁﬂs“‘m‘i in ﬁgure 5. 3 [fer se!e: Lo
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Figure 5.3: SelectBytes’ user interface;.

file’s content. The selected area is inclusive of bytes from the ‘selection start’ to the
‘selection end’. Both ends of die selection can be set to ‘fixed’ or left tree to extend to
the size of the file on changes in the module’s input. Finally, there is a parameter which

selects from which end of the file the selection’s start and end are measured.

These parameters have been chosen to give the user the greatest scope for producing a se-
lection which does not require parameters to be taken from the file. They increase the like-
lihood that the user can produce a selection which does not become invalid with different
files of the same format. SearchSelectBytes does a similarjob, although it is more flexible
to change in both the size and position of a selection than SelectBytes. This is because it
uses user-defined search strings to determine the location of an item. Thus, an item’s posi-
tion within the file becomes less ofan issue, SearchSelectBytes can output a single value
after matching a single tag, which caters for assignment statements e.g. “width ~ 108"

or it can output a series of values between a pair of tags e.g. “vectors,.. end".

When a portion ofthe raw file has been selected, the next step is to choose an appropriate

module for the selection’s value representation and connect it to the selection module’s
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telp

Endian

[[Keep Endian mm3

type
jUnsigned Byte

Figure 5.4: BytesToValues’ user interface.

output. There are three IFIT modules that convert file content into values: BytesTo-
Values, TextToValues and TextllecordToValues. BytesToValues, illustrated in figure 5.4,
interprets a sequence of bytes as binary values. TextToValues delimits and then parses
text value representations as does TextRecordToValues. TextToValues’ parameters are il-
lustrated in figure 5.5. It can input values separated by delimiting characters and values

which are stored using a fixed number of characters per value.

Type di values

vantes using:
< Sep'.uitingchu.ja(eiE

:C Fixed Iwigth values

Character sep&utihg values

P ©iste e sopawiei

‘Em 1

Figure 5.5: TextToValues’ user interface
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Finally, TextRecordToValues caters for plain text arrays which have different types of
values. Its user interface is not illustrated as it is very similar to TextToValues with three
additional parameters to specify the number of values per record, which value is to be
extracted and whether the record stores values adjacently in the array using the first di-
mension as the variable index or separated using the last dimension of the array. At this
point the dimensions of the array are not known, as it has not been inteipreted. How-
ever, if the record length is known then these two arrangements of values can be found

irrespective of the array's dimensions.

The output from all these modules can be used in IRIS Explorer. Once interpreted, another
selection at the value level is offered by SelectValues, which has a similar interface to
SelectBytes with the addition of a single value or array output from which to choose.
Figures 5.6 to 5.8 illustrate three simple module networks that extract individual values

from a file for use as parameters. Figures 5.9 to 5.11 illustrate three other similarly simple

module networks that can extract arrays from a file.

Figure 5.6 shows the network needed to extract a single value, held as a binaiy primitive
type, from a file. It uses the SelectValues module, to take a single value from BytesTo-
Values' output and turn it into a parameter. SelectValues makes a selection with either
user entered or wired in start and end parameters. It can output either a single value or a
range of values, and, like SelectBytes, its selection bounds can be fixed or free to accom-
modate different sized array bounds. Figure 5.7 shows how three adjacent values of the
same binaiy type can be extracted and used as parameters, and finally, figure 5.8 shows

how tliree non-adjacent values or three values with different binary types can be extracted

from a file.

NN - i - ,..0 OH fue.. 1

Figure 5.6: A module network that can import a single parameter from a file
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Figure 5.7: A module network that can import three adjacent parameters from a file
ffedHils P N Q P LUV P
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Figure 5.8: A module network that can import three non-adjacent or differently typed
parameters from a file

Array manipulation and structural interpretation

The architecture for the structural stage defines how values extracted from a file can be
interpreted as arrays that have a defined connectivity. In addition, the semantic stage
architecture defines how these arrays can be combined or sliced into variables, as well as
offering further aids to define their connectivity. This section will highlight modules that
deal with describing and manipulating array structures and producing different types of

connectivity.

Figure 5.9 shows the network needed to extract a single array of binary values from a file.
The output from BytesToValues is wired to ChangeDimLat, which reinterprets the output
from BytesToValues from a rank 1 array to a rank n array (where 1 < n < 9) with
user specified parameters. ChangeDimLat uses a static interface with 9 shape parameters

although its algorithm holds for any shape of array.

Figure 5.10 shows the same functionality illustrated in figure 5.9 but for a file which uses
plain text to store numeric values. Finally figure 5.11 shows how TextRecordToValues is

wired into a module network to extract three variables from an array containing several
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different types of numeric value.

RaRBMi O a O evboYMu« Q  OagDhila  Cli
~1

Figure 5.9: A module network that can extract an array of binary values from a file
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Figure 5.10: A module network that can extract an array of text values from a file
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Figure 5.11: A module network that handles an array of differently typed text values
extracting three for usage

Any sequence of values extracted from a file using the modules outlined above can be

used as a one dimensional univariate dataset with either gridded or scattered connectivity.

IFIT’s ChangeDimLat module was illustrated in the previous section; it allows the user to
set the rank and shape of an array as illustrated in figure 5.12. In addition it produces a
coordinate bounding box which allows the array to be visualized as a univariate gridded
dataset. ChangeDimLat prevents impossible settings from being applied to an array, i.e.
those settings which would extend the array’s size beyond the number ofvalues it actually
has. It also warns the user when the settings produce an array that does not include the

complete sequence of input values.

Essentially arrays which are output from ChangeDimLat can be used as gridded multi-
dimensional univariate data. Multivariate data held in a single array can be described
using DimToVar. DimToVar takes a single parameter, this specifies which dimension of

the array which is to be interpreted as a variable index. This changes the meaning of the
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Figure 5.12: ChangeDimLat’s user interface; the rank of the array is specified with the
‘Dimensions’ parameter, this enables parameters 'DimQO’ ... ‘Dim9’ which are otherwise
hidden. These parameters are then be used to specify the shape of the array

structure in IRIS Explorer and raises the number of variables in the array from one to
the shape of that dimension, whilst reducing the rank of the array by one. For example
if a rank 3 array has the dimensions: 2, 50 and 45, converting the first dimension into
a variable dimension would mean that there would now be two variables, in an array of
rank 2 with dimensions of 50 and 45. DimToVar’s output can be used as a scattered or

gridded multivariate dataset.

Three other modules provide array manipulations. StackDimLat sequentially combines
arrays ofrank n with the same shape into a new array ofrank n + 1. The shape ofthis new
array is that of the source arrays with the additional dimension describing the total number
of arrays merged. This is particularly useful for sliced volumes where each 2D cross-
section of the volume data is held separately. StackDimLat has a clear parameter which
frees the currently accumulated data and an output option which sends an accumulated
dataset every time the module is fired. The final parameter defines which dimension data
is slacked. SliceDimLat has the opposite functionality; for any rank n array input it
outputs a rank n I array taken as a cross-section through a chosen dimension of the
array. Its parameters select first which dimension the cross-section passes through, and

second, which slice in that dimension to extract. Finally, CropLat allows a portion of an
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array to be selected by choosing minimum and maximum index ranges.
Variable definition

The semantic stage of the 'ﬁyle input architecture specifies selections and conversions which
alter the meaning of arrays and values within the MVE. IFIT supports this stage with
~ a range of modules that enable the user to combme and mampulate data to use IRIS

Explorer s own conventlons for a wzde range of chffex ent vanables

Any module after the value mterpretanon stage outputs sequences of values that can be e

used as a vanablcs Therefore an output from BytesToValues, TextToVaIues or Tex- s

| tRecordToVa!ucs can be used as a vanable, as can any outputs from modules wluch "

process their data Muluvanate axrays can be dcscnbed usmg IFIT wnh two dlfferent

approachcs Flrst, the army $ rank and shapf, mcludmg the vanable mdex descrlbed m :

‘ chapter 3.1 4 is dcﬁncd usmg ChangermLat DlmToVar is then usod to spemfy whxch

~ dimension s of the array’s shape refers to the wanables in the array, uhere 1 < 3 < mnk "

This is usually the ﬁrst or last dunensxon of the shape, however DmeoVar can turn any | e

| dnnenswn mto thc variable mdex The output for DlmToVar is a ran& -1 data structurc

-~ with a number of vanables con'eapondmg to the size of dimensmn s, Second mulbple; ','

umvanatc arrays w}uch have the same shape can be mcrgcd mto a smglo multwamte ar-‘

V:ray usmg ChannelMerge Vanables can be sclccted from these mulmanate arrays usmgi e

' 1he exxsung ChanneiSeloct and Mu!thhannelSelact modules uhxch reepecuvely ﬁutput a | ‘

. oneor subset of thc \ranabies in the mu&manaio array uhlch was mput

| anelSelwt or MuiuChannelSelcct modules To use some typcs of vanables theu‘ urdor

- must be altered, for ewcampic BGR colour channels carmot be du*ecﬂy mterpretod m IRIS

! Explorer, instead they need to be arranged mto an RGB order Chang,mg tho order of

i vanabics can be dzme m two w ays, ﬁrst if the data has not had its vanable mdox com erted k

: 8 wxih Dun‘l‘oVar ﬂxea ;t can be Shuﬁd aiong the vanabie mdex and ihen Channcleréod;
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(a) Slicing the array to swap and then combine the variables

(b) Converting the array variable index and swapping the channels by reverse selection

(c) An example of the output
these networks produce

Figure 5,13: Two networks that can input a Windows bitmapped picture (BMP) file, These
solutions illustrate how values can be taken from tire file and wired in as parameters for
the file input process. The height and width of the image are taken from the 54 byte header
and then used with the knowledge that this file has three values (blue green red (BOR))
per node to dimension the array. The solutions show the different way in which colour
channels can be swapped from BOR to RGB

forming a multivariate array as shown in figure 5.13(a). Alternatively, DimToVar can
be used with MuitiChannelSeleet to re-order the variables in the array as shown by the

module network in figure 5.13(b).

Variables like coordinate data can be specified in a number of different ways. Many grid-

ded datasets have uniform rectangular coordinates; these can be specified within different
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file formats in several ways, including bounding boxes and sample spacings SctUniform- :
Coords enables the user to set uniform coordinates in one of three manners, prov1dmg a
flexible way in which they can be deﬁned Bcdy-ﬁtted coordinates can be attached to data |
values using SctCueroords which takes as inputs a univariate or multivariate array and
combines it with an array of coordinate values to output a bcdy-ﬁttcd IRiS kExplcrcr data‘ -
structure. Finally for coordiriates the SphereToCartes modulc'ﬁts into tthemantic Stagc B
of the modular approach It can convert sphcncal coordmates mto Cartesian coordmatcs :

| 1llustratmg how vanables with the samc type of mfonnauon can have dxffercnt scmantxc " o

mcanmgs and therefore need to be converted

Vanablcs like xdennﬁer data are foxmat and not data related Idcnuﬁcr da(a can be han dl cd | .
clthcr by i xgnormg it or, if it shows that thc nodcs arc stored out of order in an array, it

can be mapped to the nodal data using VarIdcntxﬁerMap Thxs module 3pec:1ﬁes, ﬁrst, i
. whxch variable in the i incoming array of data valucs is the 1dent1ﬁcr vanable and then,

with another mput, thc connectxv:ty data xs mappcd to thc correct ncdes Such data w111 o
- often be cell regular, the ‘mapped connections, (or ‘mma}lpcd of thcrc was 1o 1dcnnﬁer
- information) can be composed into a cel!, cguyla;;dat‘a_smcme _95 ing IRI S_cxplcrer s

o ComposePyr modulc. L

| 55 Usmg v:sual fcedback

B 'ﬁ IFIT'S support of v xsual feedback thrcugh Text& zcw, Imachzew and Vc!ume\hew allcw : i
unportant dmgnosuc mformanon to be gicaned from a file, Tlus scctmn vulI detall how

ﬂzc user can gather and dx»ccver dxffcrcnt 1tcms of mfcrmatmn by usmg thcsc mcis

f,551 TextView ,

Tcxthew (di‘usﬂ'atcd in f gurc 5. 14) prmldes the user. wnh a plam—tcxt prcsentauon cf'
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screen space in rows: it can be altered to make it more readable by interpreting common
control characters or through specifying delimiters and line wrapping options. Finally
selections can be taken with the mouse in a similar manner to existing text editors like
emacs and notepad, by clicking and dragging over the area desired. In TextView this

outputs the start and end of a selection which can be wired into SelectValues to acquire a

selection of a file’s content.

=cuotoifU
U ! Isatl”S

</vrMVisrdifttett
N «i< dW fr.tei Dand lf
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Figure 5.14: TextVriew in action; two views of the same file using different plain-text
character interpretations, the first illustrating a direct view of the file’s content as plain
text, the second interpreting using control characters and white space to separate values

onto different lines.

The view which TextView presents allows the user to discover if a file contains binary or

plain-text (ASCII) values. In addition, it enables the following information to be gathered
for files containing plain-text:

« the different types (like floating points and integers) of values present;

» header information can define the meaning of other values in the file;

« structural details of the file and a determination of whether it contains a data held

using a DDL or using contiguous arrays of values;
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e explicit input parameters like the dimensions of the data or the number of variables
and their bounds;

e delimiters and tags present in the file;
e selection parameters for data desirable to the user.

TextView’s utility over an external text editor is its ability to output paramcters directly

into other modules.

5.5.2 ImageView

Imagerew s visual output and the artefacts which can oceur in it allow the user to iden-
tify many forms of array-based data, including some forms of storage like run length ‘
encoded data, that IFIT cannot 1mpoxt at present. Imagcv"xew offersa powerful dlagnosnc S

tool for the purposes of forensic file analysis. It allows any user who has worked with

or seen the data or the phenomenon it describes to search for its locatlon in the fileand

find its dxmensxons Thxs ability differentiates this solution from exxsung input tools and i

facﬂxtatcs forensic examination by providing effeetwe feedback. Even users who have -

not seen the dataset but have experience of identifying artefacts and a little expenence

using the feedback can find data they have never actually v1ewed before ImageView 5 -

user interface consists of an interactive viewing area whxch supports mouse drag mterae- "

nons and has a menu to sct the 2oom factor The user has control m«er the mterpreted : f .

image’s width, this, with successxve mtcracnons with the v1ew enab!es the user to ‘tune "

the i image to the shape of the seiected sequence of values wnhout knowmg any parame~ E

ters a pnon Figure 5.15 illustrates a sequence of different images taken from Imagerew

which 1llustrate how changmg the w 1dth of thei nnage aﬁ‘ects its v1sual output

ImageView's visual outputs contain certam pattcms that are indicative of correct or mcor-

rect mput parametcrs "However, thcre are oﬁen several possxble causes fer each pattcm o
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this leads to an element of ‘visual debugging’ when interacting with the view. These arte-
facts can be used as important guides towards discovering file input parameters. Several
common patterns that have been identified through the course of this work will now be

described in detail:

Figure 5.15: The visual effect of trialling different widths for an array whose actual width
is 640

Skewing and diagonal lines or non vertical bands Skewing and diagonal to near hor-
izontal bands illustrated in figure 5.15 are caused by tire width parameter in Im-
ageView not matching the correct value for the array. When adjusting this param-
eter, the changing thickness of these bands indicates if the user’s interactions are

in the appropriate direction. Thickening bands indicate the user is closing upon a

factor or multiple of the correct value.
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Figure 5.16: Vertically interleaved lines casued by the width being less than the actual
width of the array.

Vertically interleaved lines are the same effect as the bands caused by tuning the width
parameter. They indicate that the width parameter of the array in ImageView is less
than the actual width and causing a wrapping of what would be a single line in the
image. The resulting effect is that the values which are vertically adjacent are not

vertically continuous as illustrated in figure 5.16.

Figure 5.17: Horizontal repeats caused by the trial image width being a multiple of the
correct dimension

Apparent repeats of data If there appear to be exact horizontal repeats of the data this
can indicate that the trial width is a multiple of the actual width of the dataset. The
solution is to reduce the trial width until no repeats are present in the view. Shown

in figure 5.17.
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@) Same DEM exhibiting (b) Correctly interpreted DEM
‘psychedelic’ banding

Figure 5.18: DEM data comparison illustrating ‘psychedelic’ banding

‘psychedelic’ banding figure 5.18(a) and 5.18(b) show the difference between an Im-
ageVicw of a sequence of values exhibiting this artefact and a correctly interpreted
sequence of values for the same data. The patterns illustrated in figure 5.18(a) are
caused when the binary primitive type has been interpreted with incorrect parame-
ters for its byte order or alignment. The effect is caused by the value range being
misinterpreted due to the either an incorrect byte order caused by the users choice
of endian parameter or the selection start for the bytes which were interpreted into
the sequence of values. Psychedelic banding only occurs in integer values of eight
bits or more. The effect results in the number range of the binary primitive type be-
coming divided up into multiple smaller repeated ranges, in effect creating ‘contour
like” bands through what is a single continuous value range. This interpretation can
be corrected either by trying different byte alignments or by adjusting the start point
of the selection by I..n - 1bytes in a positive or negative direction (where n is the

size of the primitive type).
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(a) Regular vertical breaks of continu- (b) Apparent vertical repeats
ity

Figure 5.19: Two examples of artefacts caused by the actual rank of the array exceeding
ImageView’s rank 2 output

Regular vertical breaks of continuity or apparent vertical repeats Both ofthese arte-
facts occur in the ImageView outputs shown in figure 5.19(a) and 5.19(b). They can
indicate that the dataset has a further dimension which has not been interpreted at
this stage. The correct course of action would be to try to interpret the sequence
of values using VolumeViewer, described later. The repeat or break effect can be
strong or relatively weak depending upon whether the variable changes subtly or
dramatically between slices in that axis. Data which has a strong continuity or pat-
tern, which makes the ‘top’ edge of a slice different from the ‘bottom’ edge, will
usually have a strong break of continuity effect. Data which is closely sampled or
has similar edges (e.g. blank or noisy) in all slices will tend more to a repeating
effect; data with sparsely sampled slices and similar edges will exhibit an output in
ImageView' with a vertical ‘movie reel’ effect. All these effects occur when the user
has discovered one dimension (or a factor or multiple of it). The effect causing the
breaks of continuity is caused by adjacent values in the interpreted array not having
adjacency in the rawrdata. The repeating or frame effect is caused by the way slices

of volume data are stored adjacently in an array.
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(a) A ‘wood grain’ text texture (b) A low contrast text texture

Figure 5.20: Text values in a file as viewed through ImageView

Low contrast texture or a ‘wood grain’ texture for 8-bit values These textures, shown
in figure 5.20(a) and figure 5.20(b), are both likely indicators that the array contains
text values. To verify this the user sends the data to TextView; if text numbers are
present they will need to be interpreted using TextToValues or TextRecordToVal-
ues. The low contrast effect is caused because numeric values in a file utilise only
a small subset of the possible range of an 8-bit number. The vertical line texture
is caused because successive lines of numeric values will have numerically similar
digits in similar spacing patterns, although the differences will often cause enough

irregularity to usually prevent complete vertical lines from forming.
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(a) A correct view of a CT dataset (b) A similar view of the same dataset,
however its aspect ratio distorts the

image which may lead the user to
check the parameters they have used

Figure 5.21: Aspect ratio as an indicator of incorrect input parameters

Incorrect aspect ratio Sometimes the data may appear to have dimensions that differ
greatly from observations taken elsewhere. This can indicate an incorrect dimen-
sion which is a factor of the actual dimension has been used in conjunction with a
similar but incorrect binary primitive type. Together these input parameters have
produced a view which looks like the original data, but may have a different range
of numeric values and dimensions. Both parameters will usually need changing, the
width will be a factor of the data’s actual width. The difference between the correct
primitive type and the current primitive type’s size in bytes will determine the factor
that the incorrect width must be multiplied by to obtain the correct dimension, once

the correct primitive type is chosen.
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(a) 8-bit unsigned (b) 16-bit signed

Figure 5.22: Two different binary interpretations of 32-bit values that result in line arte-
facts

Vertical lines through data Vertical lines can indicate that either an incorrect binary
primitive type has been chosen or that there are multiple variables in this array
stored adjacently in a dimension which has not been taken into account. Figure
5.22 illustrates the effect of choosing an incorrect binary primitive type and figure

5.23 shows the effect of multiple variables.

(a) Binary data with multiple vari- (b) Text with fixed width records
ables

Figure 5.23: Textures illustrating the effect of multiple variables in an array
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Figure 5.24: Single distinct vertical break of continuity

Single distinct vertical break of continuity This artefact, illustrated in figure 5.24 can
occur when the start of the array is incorrectly positioned in the file. The effect
is produced by either unwanted values leading into the array or by missing some
of the array’s data. This in turn alters the interpretation of the values in the array,
moving what would be the wrapped edges of the array’s first dimension to another
location in the first dimension of the interpreted array. This results in the edges
of the original array becoming adjacent values at some mid point in the array, and
because the edges are not continuous, they will form a visible break in continuity.
Correcting this artefact requires the user to alter the start point for the selection until
the discontinuity coincides with one of the edges and all the array data is present.
It is important to note that the size of the array must be checked to prevent loss of

data or the addition of non-data values into the array.
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(a) High contrast texture caused by er- (b) Low contrast caused by an incor-
ror values rect selection including non-data val-
ues

Figure 5.25: Contrast problems found when using ImageView with an automatic range
generation for mapping data values to greyscale values

A high or low contrast image This texture can be caused by error values and unwanted
values in the data selection. Unusually bright or dark areas in the middle of the tex-
ture can indicate error values have been used in this dataset. Such values usually lie
at the limits of the binary primitive type used for the data set. Their value can make
the use of the data’s minimum and maximum limits ineffective for use in mapping
the data’s values into greyscale pixels for presenting the data with ImageView. An
illustration of this contrast effect is presented in figure 5.25(a) and figure 5.25(b).
Error values can be tested for by manually setting the range for greyscale mapping
in ImaveView. An alternative cause can be found when the start or end of the selec-
tion is incorrect and including values which are not part of the array. The bottom
and top of the view can be used to discover if this has happened. Figure 5.25(b)
illustrates data preceding the array in the file which has been accidentally included
in the data selection. Unwanted data values can be remedied through altering selec-

tion’s start and / or end.
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Figure 5.26: ‘White-noise’ like texture taken from an ImageView of a JPEG image

White noise texture This effect, illustrated in figure 5.26, can indicate one of three possi-
ble underlying causes. First is that compression or encryption has been used on the
selected values. Second it can indicate the area of the file contains many different bi-
nary primitive types stored in no regular order. Lastly it can, like ‘psychedelic band-
ing’, indicate that the alignment is incorrect for the binary primitive type, which can

be solved in the same manner by adjusting the selection’s start.

(a) Different blocks oftext values (b) Difffereni blocks of binary values

Figure 5.27: ImageView textures that show different blocks of data, each block occuring
where the texture changes dramatically.

Irregular horizontal discontinuities This can point to data present in the selection which
is undesired. Changing the selection parameters is the appropriate course of action.

Examples of this can be seen in figure 5.27(a) and figure 5.27(b).
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5.5.3 VolumeView

VolumeView enables the description of 3D arrays and presents the‘interface shown in fig-
ure 5.28. The three windows each present to the user a cross-section through a different
axis of the selected data. Each window accepts two-directional mouse drag actions to
change the shape of the dimension in the two axes the view presents. These dctions can
be limited to one dimension allowing the user to concentrate on adjusting one dimension
at a time: other parameters include a menu choice which changes the speed at which the
mouse affects the shape. Finally there is control over the Zoom factor and an optibn ani-
mation, which are both accessible from the menu. Zooming offers the sainev fuﬁcﬁonaiity
as presented in ImageView; the animation option pushes the presémed slice in each axis

through the array, effectively producing an animation of each axis’ content. |

VolumeView’s feedback is caused by the same factors as the feedback from Imﬁgc\fxew,
| except in more dimensions. Howevcr, when animated, é directi(jnal movexhent can be
detected for sonie datasets with incorrect dimensions. Muth likea cincma'ﬁ‘lm récl Which
is run at an incorrect speed, the frames slide up or down at a specd dcpendmg upon how -
~much the parameters are in error. Interactlons in the opposxte dxrecnon to the movemem

can lead the user to the correct parameter

Neither Volunie\’iew nor ImageView are designed to cater for non-gridded dat‘av }‘Iowk- s
~ ever, they work well for determining the dimensions of any array of data values in 8 ﬁle,

mcludmg those which hold multiple wanables, and discontinuous data which xnvolves i

: multxple variables. Although non-gridded data cannot be trialled or verified usmg any of

IFIT’s current visual tools, it can be passed through the full visualization pxpehne This
is currently the only way in which nodal data “hith is scattered or ceﬁ-reguiar can be i
visually trialled to venfy its xntcrpretauon : ‘

‘Some data is stored in a manner whlch prevcms the user from ﬁndmg the dzmens'wns of o

the array because they cannot find a trial wxdlh x\here the data values apparemly ahgn :
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Figure 5.28: VolumeViewer displaying an incorrectly dimensioned array, and the same
array when correctly dimensioned

into an interprctable image. This effect can be caused when one or more dimensions of
the array, in effect, has a variable length. This prevents ImageViewer from ever produc-
ing array dimensions because there is no regular dimension. Such effects can indicate
text fields or text value representations, variable length binary record data or finally run
length encoding (RLE). Ifa text interpretation is not the cause then IFIT will be unable to
describe the dataset; variable length records introduce another level of complexity which
IFIT is currently unable to handle, as does RLE. RLE can be detected with ImageView
because it does not change the meaning of all the values in a dataset, instead it replaces
sequences of repeated values with markers, thus some data is still viewable, although not

accessible.

5.6 Summary

This chapter has described a forensic approach to file input, the requirements for an in-

teractive file input toolkit and a software implementation which supports the forensic
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approach. IFIT implements the processes found in the file input architecture presented in
chapter 3. Its structure and usage has been described from a design level and on an appli-
cation level using a range of example module networks. This chapter has also described
how the visual feedback modules can be used to discover, debug and verify a file input

solution.

The next chapter will evaluate how IFIT compares with the existing solutions and how

effective it is at acquiring a user’s data and meeting the initial requirements.



Chapter 6
Evaluation of IFIT

The previous chapter described a new forensic methodology and a toolkit (IFIT) support-

ing the solution of file input pmbicms‘ This chapter will present a range of test cases and

then evaluate IFIT over a range of criteria to show its utility with respect to supporting

file input for ViSC.
6.1 Test case selection

A!l thé solutions presenied in tije following section are of sdcceséﬁxl teét cases and havé
been selected to demonstrate the range of different data types which can be input using
IFIT. The unsuccessful cases and the limitations théy'have raised will be discussﬁd in

section 6.3.2; , they have not been inclixdcd in the éxaﬁxple test caées bécause' ihe 'rriédule‘ 8

networks that they comprise tend to simply illustrate the usc of the forensic tools up to e

the point where it was discovered that the raw values could not be extracted from the ﬁle .

ina meamngful manner usmg IF IT

Each solution was constructed by the author. The test cases in the ncxt secnon have bccn o

" chosen from a suite of 34 successfui IFIT sohmons taken from 43 dxiTcrent ﬁle xnpnt‘
problems. These problems were pmvxded by a range of users and user groups and all the, -

test cases are instances of rud w orld‘ data sources. Aﬂ the saluucvns W h:ch are preseme:d S

m
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have been solved based on the user’s visualization requirements. This means that not all
the information, particularly metadata, stored in the file was necessarily needed to fulfil
the user’s requirements. However, in each case all the data the user requested was located

and visualized.

The diversity of examples illustrates some of IFIT’s capabilities with data from differ-
ent applications and fields which have a mixture of proprietary, commercial and user-
generated file formats. The majority of the test cases presented contain different forms
of gridded data. Most of the solutions required one or more input parameters to be dis-
covered using the visual tools. Finally, all the solutions have been validated against data
values, visualizations obtained by loading the same file into the source software, taking a
hardcopy output and discussions with the user. The next section will present the test cases

and discuss them on a per-case basis.

6.2 Test cases

6.2.1 Case 1: Medical imaging data

Figure 6.1: A file containing two X-Ray images held in a single array.

The first case is a medical imaging dataset; figure 6.1 illustrates the solution. The file was
described by the user as containing two X-ray images, one for high energy and one for low.

These were the user’s desired output for this case. After an investigation using TextView
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the file was found to contain binary values. ImageViewer was then used to locate the two
images and their dimensions. They were found to have the same physical dimensions and
held in a single rank 3 array. The horizontal image dimension was found to vary the
fastest, the vertical image dimension next faStest and the variable diménsion slowest. The
header structure was then searched using the values of these dimensions. Se»l‘ecutByte‘s and
BytesToValues were used in conjunction with an IRIS Explorer pri.nt_ module to display
the value at a given location in the file. This search located both the horizontal dimension
value and vertical dimension value in the header; the selection was then fixed and the
parameters where mterpreted and w1red into ChangeDimLat. As a ) result, assummg the
hcader of this format has a fixed structure and will not changc size or coment other files

in this format with dxffercntly sized images can be input, -

“The medical imager’s output is a proprietary ﬁlc format and as such it lacks a pubhshed :

description. The software related to this i imaging equipment also lacks any output that i is

compatible with the MVE. The IFIT network successfully met the user’s requxrements for - N

this case in two steps, first by allowing them to see the data, second by giving them useful -

information about how their data was stored.
6.2.2 Case 2: Elipsometry data o

The second caseisa chcrmstry dataset, ﬁgure 6.2 illustrates the solutxcm and output The |
file was debcnbed as contammg elipsometry data The user provxded an output frorn the =

source program which listed in a table the values which were sought These were then )

found using the IRIS Explorer graphing modules in combination with IFIT, The seicx_uans E .

were determined by locaung values v«hxch were in the tablc and then scamhlng from the

_ends of the array until values, which were out of the mngc or st the hmlts of the numem |

representation, were found. These indicated that the values were not part of the data‘ . |

but either from another array or of a different binary prumt;ve t)pg. 'ﬁus pmvxdcd a v

good estimator of where the different arrays in the file started and ended. The first graph
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Figure 6.2: A proprietary chemistry file format containing several variables.

illustrates the data desired by the user, the second two illustrate further data which was
discovered and, when shown to the user, were identified as related variables which they
did not know were stored in the file. The desired data output had a higher accuracy than
the user expected and more values than the original listing contained, although these were
of no consequence. From this information a file reader was produced which extracted the
required data from this type of file and was successfully applied to the user’s archive of

these files.

6.2.3 Case 3: CT data

Computed Tomography (CT) volume data is often held in individual slice files. The case
shown in figure 6.3 highlights how each slice can be loaded and accumulated into a single
array. Figure 6.3 shows how a volume made up from sliced can be input using Stack-
DirnLat to combine each slice into a rank 3 array. D1COM (found in section 2,3.1) is
not directly supported by the version of HUS Explorer used for this project, DICOM files

can be compressed: however the data for this case was in an uncompressed form which
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Figure 6.3: A DICOM CT dataset containing slices of a pig femur.

allowed the discovery tools to be used. In terms of discovery the headers of DICOM files
are variable in nature. They contain string data and numerous other items of information,
which in this case were of no interest to the user. As a result, once the slice dimensions
were discovered using ImageView', the design of the network ignores the header and has
a one-time specification of the slice dimensions. The data portion is selected and then all

the slices are loaded in the same way.

Each file contains a rank two array of 16-bit binary values. As all the filenames follow a
set pattern the IRIS Explorer’s NumberedFile module can specify the filename for Read-
RawBinary, the data is then extracted and described in a fixed manner as all the files
are the same size. Finally the data is accumulated and given a set bounding box using

SetUniform Coords,
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Figure 6.4: A file containing bathymetry (sea depth measurements) in the form ofa grid-
ded DEM.

6.2.4 Case 4: Bathymetry' data

Case four was provided by a user who requested a visualization of their undersea depth
field data (bathymetry). They provided a comprehensive specification of their file format
including its structure, binary content and dimensions. They also noted that there was
a border in the array of values used for overlapping tiles of this data. In figure 6.4 the
module network reads a binary' undersea digital elevation model. The file contains a
rank 2 array of height values and a header containing the shape of the array and physical
bounds of the grid. Once the array was inteipreted it needed to be cropped, to account for
the border. As many files of this format exist, repeated usage was desired; as a result the

bounding box and dimensions were located in the header portion of the file and wired to
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the appropriate modules.

6.2.5 Case 5: Multivatiate data

Figure 6.5: A file holding a scattered array of sample points with many variables of
different bincry types.

Case five highlights a file containing text records. TextRecordToValues is used to extract
each numeric variable and make it accessible in the MVE work area. The numeric vari-
ables have been individually extracted from the array in the file and then combined into
a single array with ten variables. This allows variables which contain text strings to be
skipped and other variables of no interest to be excluded. Finally some of the variables
are spherical coordinates; these have been converted to Cartesian coordinates so they can

be rendered by IRIS Explorer.
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6.2.6 Case 6: Scattered data array
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Figure 6.6: A file containing a scattered set of 3D points and one additional vairable

Figure 6.6 shows a module network and visualization of a file which has single multi-
variate array. The four variables are stored using a text value representation. Three of
the variables are coordinate data and have been interpreted as such using the mixer mod-
ule. The nodes in this dataset are scattered, so triangulation has been used to generate the

surface shown in the rendering. The surface has been coloured using the fourth variable.

6.2.7 Case 7: Computational flow dynamics data

The CFD case shown in figure 6.7 comprises two files, both containing values stored us-
ing a text representation. One file contains just metadata, the other file contains the actual
data. The first file, interpreted by the top four input pipelines, inputs four parameters that
describe the dimensions of the array held in the data file. The second file is interpreted by
the bottom input pipeline. Tire parameters in the top pipeline are wired into theChangeD-
imLat which describes the rank and shape of the incoming data array. Finally, the data
array is a multivariate array, and the variable index is converted using DimToVar. The

image below the module network shows a rendering of the output.
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Figure 6.7: A volume containing flow and pressure. The metadata is held in an external
file (top pipelines). The loading network combines the metadata providing a reusable file
reader for different sized volumes with this number of variables

6.2.8 Case 8: Computational flow dynamics data

The CFD case shown in figure 6.8, is a similar gridded volume to the previous case but,
has a single file with the descriptive parameters as a text header followed by a binary data
array. The metadata include die dimensions of the array and its physical bounds. These
are all input by six input pipelines: the topmost pipeline interprets the binary array, the
next three input the dimensions of the array and the lower two pipelines input the physical
bounds for the array. Again this case illustrates a multivariate array which is handled using
DimToVar: this time the physical bounds for the array are set using SetUniformCoords

and the six parameters taken from the last two input pipelines.
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Figure 6.8: A file containing simulation flow data
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6.2.9 Case 9: Finite element data

Figure 6.9: A 2D finite element CFD dataset comprising quadrilateral cells over a surface.

The case nine illustrates a solution for a computational flow dynamics finite element
dataset illustrated in figure 6.9. The file holds four separate arrays, which are of inter-
est to the user, and these are marked using keywords in the file. Each of the four pipelines
in this solution selects a region of the file using these keywords and converts the values
held in the region from a text representation to binary. The topmost pipeline inputs an
array of floating point vales for pressure at each node. The next one down inputs a 3D
vector variable for each node. The third pipeline down inputs 2D positions for each node,
each wfith an identifying number. The coordinates have their identifier data removed and
go through mixer which is used to interpret them as coordinate data. They are combined

with all the other nodal data into a single multivariate nodal array using ChannelMerge.
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The pipeline at the bottom of the network inputs an array of references. The first dimen-
sion of the array is four and specifies quadxilateral cell connectivity. The references relate
to the identifying number of each node. After this array is input its references are con-
verted to zero index offsets to the array holding the nodal values using VarIdenﬁfe.rMap.
This module takes an array of identifier references and an array holding variables, one of
which is an identifier variable. It finds the index offset for each identifier and converts the
reference array accordingly. The output from this is then combined with the nodal array
from ChannelMerge usiné ComposePyr to create a cell-regular output in IRIS Explorer.
The final output is visualized below the map in figure 6.9. This has been the moét com-
plex dataset to debug because the visual tools do not axd the user for this type of data. The

file’s text format simplified matters,
6.2.10 Case 10: Gel electrophoresis data :

The final test case involves gel electrophoresis DNA profiles. The file was output froma
proprictary hardware device, and the user had no knowledge of its format. A hardcopy
of a graphical output from the package that was used in conjunction with the device was

provided This hardcopy illustrated processed tracks of genetics data and was used ds the i

target output in a visual search of the file using Imagerew The search found thc bmary o

array of values 1llustrated in ﬁgure 6.10(b). The array contamcd 40 \arlables of genetics

data. The solution shown in figure 6. 10 still has TextView and Image\’iew connectcd mto h
the input pipeline in order to discover the mput parameters and data held in the ﬁlc The' '

resulting network is a single solution which will work for thxs file but s leas lxkely to work }_ ,

for other files of this format and will require one or more input paran;eters\ changing and o

discovering for other files of a similar type.



CHAPTER 6. EVAIUATION OFIFIT 134

(a) Gaieties data input map with discovery modules still attached

(b) ImageView output of the (c) IRIS Explorer graph with
detected genetics data array one profile from the data

Figure 6.10: This data was previewed on printed output. The file format was proprietary
and from old hardware. This prevented the user from accessing it for further analysis and
visualization purposes. What was found was an array containing an 40 variables each of

a genetics plot

6.3 Test case evaluation

This section will now describe the scope of IFIT in terms of successful applicability and

limitations to application.

6.3.1 Successful application

IFIT can be successfully applied to files that store the user’s data as contiguous arrays

of raw values that use the supported binary primitive types or text interpretations. IFIT’s
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output, as stated on page 87, in the initial requirements needs to be IRIS Explorer data
structures. IFIT produces IRIS Explorer structures which have the following attributes:

o Numeric values of two’s compiement integers with 8, 16 and 32-bits or IEEE 754

floating point values of 32 and 64-bits.

¢ Multidimensional arrays up to rank 9.

o Multivariate arrays c}f one or more variables.

e Data point connectivity of either scattered (none), gridded or cell-regular type.

e Coordinates in either body-fitted or uniform rectangular form are supported for

gridded data and nodal coordinates are supported for scattered and cell regular data.

User data which has these attributes can be described using IFIT, however its succeé.sful :
input will largely depend upon how data is organised and stored within the user's file. |

Files with the following range of attributes are supiaoned:

| e Multiple files can bedescrribed and combined to producé an IRIS Expldtcr data S
structure. This includes slices of data in files, and separated metadata and raw d»ata1 »

contained in different files..

e Binary value unsi gned integers, two’s cémplement integers and IEEE 754 floating |

'point values are supponed with stated conversions and accuracy reduction. .
o Plain text values are shpponéd for both floating point g‘ndmint'egér rc;ii"ebscntati‘()ins’. N f(’ 5
e Multivariate 8313 is supported either ina single' array or mergcd fxfém several ‘rs‘epa—f
rétcarré)’?‘. | o S
| ¢ Multivariate arrays containing different x{élues of mﬁm man cmé type aré supponcd 5 i

- intext,
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¢ Named references are supported which enable the creation of cell-regular data from
nodal data with identifiers.

o Spherical coordinates are supported through conversion to Cartesian coordinates

using an existing IRIS Explorer module.

This enables many field-specific and user-defined file formats to be‘ input using IFIT,
including DICOM, DEM and FITS which were described in sectlon 2.3.1. Within the test
suite, IFIT can solve 34 of the 43 test cases giving a success rate of 79.1%. The majority
of these cases contain different forms of gridded data which include images and volumes

- with multiple variables of different physxcal phenomena.

IFIT solutions are produced on a per-file bas:s, as opposod to the per-format basts of
the hard-coded solutions. Reusable solutions can be constructed for some file formats,
However, this depends on the user’s data input needs and the complexity of the ﬁ1¢ format,
The test cases highlight three types of file input solution, nzixmely‘ coinplete-use, Singl&ﬁse

and discover-use,

Complete-use solutions have described all the content of the file and therefore should -
be robust enough to handle all files in the same format. This type of solution can
only usually be produced for sxmple file formats and has the same functmnahty as

a hard-coded solution,

Singk&use solutions have described cnough of the file to access the data rcpeatedly for

one specific file. However, the salunon has not described all the parameters in the o

ﬁlc and therefore may not \mrk with other files of the same format

Discover-use soiutions require the user to discover some input paramcters every time

they input the file, therefore there is ﬂexxb;hty but also an mt,reqsc in the amount of s

time and user interactions needed to input the data
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6.3.2 Limitations to application

IFIT is limited in its application by the following attributes of datasets and file format,
each of which individually prohibits the input of a usable dataset. Each attribute is listed

below:

o Binary primitive types of less than one byte, floating points which do not adhere to
the IEEE 754 standard, fixed point values, binary coded decimal, and values which

do not have a byte order that is little- or big-endian.

e The user’s data is stored parémctrica!ly, resulting in no raw data which IFiT can
extract from the file. Additionally, no feedback can bc gieaned from these files
because of the lack of raw data values and as such they are an‘ intractable problem.
Without extensive user knowledge and a way of exiabling them to perform their
calculations on these parameters they cannot be input, Compress’ion ahd enc'ryp'tioxi: l'

are both subsets of this group.

¢ Data values whxch are stored inafile \xhxch uses a data descnpuon language (DDL)

to assign values to variables.
e The formatusesa language to assign values and give meaning to values.

o The file contains arrays that have a variable index which is neither the first nor last

dimension of thexr shape, no such arrays have been found in over the c&urse of the

rescarch they are  however plausible, = =

e Vanable lcnz,th records or any type of data structures that can have a dxfkrent num-, B e

ber of values held at each node or in cmh record. 'ﬂns mcludes rmxed bmary and ; >

. text records where the text ﬁelds affect each record § chgth ina local m'umer

. Vanable rectan gular coordinates for gndded data.
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e Nodal data (e.g. colour table images) where the references are gﬁdded and the data

is a list of numbered values.
o All cell-variable connectivity.
¢ Cell-centroid or point data is not supported.
; Cell-regular data structures w‘hich are not specified using s_épérated nodés and con-

nections.

One or more of these attributes were present in the nine failed cases from the 43 file

input problems that the test suite was selected from, While this provides a ﬁgure of

20.9% representxng problems that are intractable using IFIT, it cannot be considered a -

representative figure for all file formats. The author suspects that the fi gure is hlgher given
the usage of file formats containing cell-variable connectivity and the usage of DDLsin

various scientific fields.

For some types of file format, particularly self»descnbmg formats hke IIDF and XML the '

‘ format does not necessanly prevent IFIT from producmg a solutmn Instead the way that: l,

data is an'anoed in these files becomes the hnntmg factor, The same can be saxd for ﬁlc e

formats which have optional compressxon schemas Although the use of compressxon was e

 excluded in chapter 1.6 from the scope of the project, its use must be noted. Scientific file.

fomiats mostly found in the fields of medical and satellite iﬁmégihg; u:»e several difféfeht e

comprcss:on schemes These include run length cncodmg (RLE) u‘na;,,e quantxymmn and 5

the LZW algorithm. thle IFIT cannot currentiy mput data in this fcrm, several ﬁlu i

- formats have options for stanng data wnhaut compn:ssxon Thercfare, for soma cases, L

~ data can be re-saved wsthom comprcssmn from thc source soﬂware or usmg an extemal S

tool. The result in some cases will be a file of the same format albcﬁ mmh larger thnt'-;‘

will enable the user to access their data w ith IFIT and w ith their source softw are. This is

: currently the on!y option for users w vith compnessed dnta
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Complex binary structures can prove too hard to describe using IFIT. If the data is held
using complex binary structures or cannot be visualized without a large number of values
taken from such structures, it is likely that IFIT will be able to solve that particular file

input problem.

Each limitation can be addressed by future developmental work to make IFIT a more com-
pléte solution. The essential problems of how any data can be accessed and manipulated
have been given proof of concept, as have the utiiity of visual tools for file input. Every
process in the file input architecture has one or more modules which show its utility wiih

respect to file input and inputting a user’s data.

Within the scope described in chapter 1, the following file formats outlined in chapter 2
cannot be described by IFIT without additional ‘programmcd éxtension: mmCIF, GRIB
and BUFR. In the case of mmCIF, while a field-specific file format, it is also a langage-
based file format. In the cases of GRIB and BUFR, IFIT’s ébih'ty to input data from them
depends upon how they have been configured by the user or the source software. »

6.3.3 Factors affeéting the utility of the usual tech'niqﬁe’s e e

The visual feedback techmques presented in sect:on 5.5 (page 106) have some 11m1tatmns

which are inherent with any information system The amount and type of “information’

present in the datasct can affect the user’s abxhty to elicita recogmsable view of dam ina

file.

In order for ény meaningful parameters to be discovered, visual fecdback requirés arela- |

tionship to exist between the values which are to be examined. This relationship can result e

from a single continuous van'able muhiple cominuous variablcs or multiplc discominu- L

ous variables. For a single continuous varxabie the rclauanshxp bem een valucs vxhxch

are adjacent in the data, but not adjacent in the user’s interpretation of the data, causes sa i

selection of visual artefacts to be produced which indicate incorrect parameter choxccs_.‘
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The same can be said for multiple continuous variables in addition to the visual artefacts
caused when the variables are adjacent in the first dimension of the array. The artefacts

are produced by the relatively weak relationship between different variables values.

Finally, data sampled at irregular spacings, like scattered or cell data, can still generate

useful visual feedback if there are mulnple variables at each node which are stored adja—

cently in the array. The visual eﬁ"ect cause by this will enable the user to percexved the

number of variables in such cases; other dimensions in the array will not be obvious using

the visual techniques due to the data’s lack of continuity.

The availability of values is a prerequisite for using visual feedback; if raw data values ; S

“cannot be extracted from a file due to ¢ompression, encryption or an unknown binary

primitive type, no meaningful feedback can be generatcd The abxl:ty to extract smgle 2

byte values is always avaxlablc to the user; how ever, if the type used by the data cannot i

be converted then IFIT has no mterpretauon which will enable thc user to mput thexr data ,
" and the feedback may only indicate atmbutcs of the data | S i

The amount of mfoxmanon present inan array affects the user’s abxhty to ehcxt a recog-

nisable view, Arrays devoid of mfonnauon or those witha hxgh nmse content can prevcnt e

- any recogmsable feedback from bemg gencrated Repeated pattems in the dataset can e

:albo either prcvent or hmder the discovery of an array’s shape The user rcqmres a min- iy |

7 1mum recogmsablc feature to ehcﬁ a useful response cyclc Thls feamre is sc)methmg‘r e

- they know from an extemal source s\hxch is in the dataset and shows up in Lhe raw values g -

o clearly, From the cases in the last chaptcr the bathymetry test case on page 127 has a sh:p o

*_ which shows up clearly and mds the user in finding the correct dimensions. Comersely i :

* an experiment 10 input an image containing rastm”izcd text tnok much 1ongf:r to discover S

- the dimensions, bccau% the data mislead the user’s perceptmn of haw clase: thcy were

: gemng to thc correct parameter Most cannnuous datasets are ¢asy m dmcover umng thc

visual methods and most of d:e anefaets descnbed :n section 5 5, xf commmucateﬁ to';f e

S the user, enable quxck trials aad paramezer chan ges ta Iead to the answer Overaii the : f -
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amount of data involved improves the feedback effect; very small array dimensions leave
little scope for finding an answer. VolumeViewer’s am'niation effects are equally limited
in their usefulness by the third dimension of the array: if it is very small then it is unlikely
to produce any guidance other than the image artefacts. VolumeViewer’s fixed frame rate
for animation can also prevent arrays with a small third dimension from produéing per-
ceivable animation artefacts. The key factors affecting the utility of visual feedback are

listed below:
¢ Data contains continuous domains or multiple variables. |
e Dimensions are large enough to enable the user to recognise a pattern.
o The information content is not masked by high levels of noise. | . o

e There is a minimum of information content, i.e. the data is not constant.

'« There are no strongly repeated patterns or totally identical adjacent areas in arréys; R

~ @ Values are accessible and in their raw form.

634 Féctoré 3ffe°ﬁ“g Si‘-‘ftware perfcrmance S

IFIT’s ab11ny to solve a file i input problcm can bc affected by both the p!atfnrm on whxch B ;

IRIS Explorer, and hence IFIT 1s executed and the size of thc ﬁle or dataset ulmh thc ;.

o user needs to input, The mam !nmtatmn is IFIT $ abihty to produce real-nme mteracmc L

' feedback

. Creatmg afile mput solunon \uth IFIT and a forenstc appmach requxres (he whe)e ﬁlc o

| ‘m be loaded in order to generate the 3??!@?!13&% feedback. This can cause pm’biems for

 users with large datasets that exceed the hardware resources which are avaﬂabk, czther in l -

terms of memory reqmrements or in mms of prolubmve execution time far a pamcular

dmplay algomhm eg. marchmg cubcs for ;aowrﬁxcmg
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Space complexity The hardware must have enough available memory or virtual memory
resources to store whole files in their entirety. On common desktop systems this can
prove problematic for files with a size of over 100MB. At a design level, because
many IFIT modules convert data whilst requiring a copy of it to be left for other
posmble interpretations, there can be several copies of a dataset at different stages‘ ;s

- in the pipeline. Future developments may be able to sunphfy this but in the current
version this can lead to a dramatic increase in the amount of data being handled
by the systém. IFIT can be used to solve problems with a high space complekity,
howévér, the hardware must have enough avai‘labley resources to vallow storage bf the

whole dataset. e

Tlme complexity only becomes an issue when usmg modules in the host MVE which v
~ have a high order of complexity. The visual output whxch is produced solely by' |
IFIT uses minimalistic computation, with most processes havmg O(n) complcxuy, . 7
* s0 only modules from outside the toolkit like tnangulauon or nsosuxffacmg cancause i
" time complexity issues. i R s »
The plaifomi which IRIS Explorer runs on does afréct the ’pe‘rféxrhancé of 'ééme T
modules Visual modules in pamcular do not transi‘er well to d:ﬁ“erent operaung“
ystems and graphlcs systems. OpenGL accelerauon is an a prxorx rcquxremcnt
however, as this is also a need for the MVE, thls does not present a concern. The‘ : : |
| feamrcs of 0penGL v.h;ch have been pcrfonnance-cnhanced for thc graphxcs card:; ? ‘E

_inuse also effect the performancc of the wsual taols i

Group compﬂatnon IRIS Expinrer maps can ’be gmuped and ccmpxled i nt 0 s smgle :
module with only the raqmrcd paramelcm visible. This fcamre allows fast et in tcr.,"_ f

- process communication and a simplified interface o be gene:mted fcr fﬁe farmats‘

* for which the user has prcduced a solutmn or part solutmn As 2 resnlt of IR{S i
vExplorer s ability to provide this functxm;ahry, mc:)duif: netwc}rk solutmns wzli m}f o

neccssanly be slower ﬁmn hard-mded so!atmns or programmed extensmn ahhough e §
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this will largely depend on how optimised they are for their specific file input prob-

lem,
6.4 Usability evaluation

The user requirements outlined in section 5.2.1 and an assessment of the complexity of
- producing IFIT solutions will be used as the core of this usability evaluation. Section

5.2.1 described the following requirements for a file input toolkit:
o Consistency of interface.
, . Unainbigubus terminology.
e Clear feedback and outpixis. o
* Transparency and accuracy.‘, ‘]
-Two skxlls are requxred to mput data usmg IF IT in IRIS Exp!crcr Fxrst, competency in" ;i
: building module networks within the IRIS Explorer work area changmg modulc paramc~ . j o i
o ters and Wmng mputs and outputs Second, the less quantxﬁable problem solvmg abﬂmes », , : l L

needed to discover any unknown parameters, choose the appropnatc modules and wxre L

'i them together fora pamcular filei mput problem

 The first skill should be known to novice users cf IRIS Explorer b@cause itis pa:t of thef e
system’s general usage In ﬂns respect IFIT oﬁ‘ers no addxtmnai dxﬁicuhy m 1ts usage ﬁnm

‘ the usage of the MVE Meraover xt 13 a consxatent way of usmg t‘nf: system rather than :

| sthchmg to some monohdnc tool or mzar-i In thxs way H‘IT mcets the rcquxrement for) P

a conslstent user xntx,rface

o 'The second skxll is 1ess tangxblc and only axded by the meﬂxods assocmted thh the forcn?
sie mcthodology of file exammanon and descnpuon and expcncnce or examp!es A

- ’sclecuon of tumnals and warkcd cases may be one way cf msuﬂmg thxs anm !cdhc and .
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providing the user with a mental model of how their problem relates to others and thus

how it can be solved.

IFIT attempts to use unambiguous terminology for naming conventions and user parame-
ters as set out in the requirements. It departs from computing terminology like stride and
offset where possible to use more generally understandable terms like selection, start and
end. In. defining byte order, the user does not need to know the make of their machine or
what byte order the file uses. If the data does not display correctly, a ‘swap byte’ 6ption
is suggested as a simple way of handling the byte order. | |

IFIT's modular structure mirrors the file input architecture and therefore enables data to
be extracted at any point and examined. This examination is facilitated through the visual ‘
feedback modules which pfovidc the user with a range of options for visualizing semi-
interpreted data values. The feedback IFIT offers is ctfectivc fofdiagnbsi\ng arange of
different incorrect file input parameters. There is a definite need for guidance to aid the 1

userk in intérprcting what Lhéy seé. Given no aid, some of the textures v&hxcharc gencmtc‘d‘ .
by ImageView and VolumeView are coumcr-intuitiveband will lead the user away from the

correct answer. However, with guidance, in the form of a selection of explained texture

swatches or a tutorial, many file input parameters can be discovered quickly and easily.

Modular networks provide a type of file input solution which shows the user what has bccn

performed upon their data at every step since it entered the system, including any conver-

sions and interpretations which have been made. This is important for-scientiﬁc intégrity,

~as the user is aware of the processes which have been perfonned upon their data prmr to

passing into the visualization pxpchne In this respect modular solutions offer more than .

the ‘black boxes’ which other file mput ‘solutions ofien reprcsmt Equaﬁy unponant 1:  '

the ability to va lidate a solution. Withall file input tools, itis entxrely posmb!e to produce i

an output from a file which looks similar to the original datasei but has radxcally dlfferent.ﬂ o

numeric values. For prevxousiy un\ 1suahzed datasets it is entxrely possxble to creme a:"‘

visual mappmg which has a cempellmg view that is mcorrect Xn this respes:m IFIT is na S
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different from any other file input solution which has been user generated. Some solutions
warn or terminate if some parameters fail to produce reasonable results, like iags are not
found or dimensions are out of bounds. IFIT does not, it will always produce an output,
but will warn when errors have occurred about which the user should be informed. Every |
module logs events that do not seem to offer useful results and the user is notified of these
eilents. IFIT modules enable the user to check at any point in tho file input’pipeline what
the values of the data are and if they match their expectations. Therefore, the requlrement ‘

for transparency is met through IFIT’s modular approach.

- Overall, the complexity of any solunon made using IFIT is dcpendcnt upon the followmg :

ﬁve factors ,

| e Thedata’s complexfty.

o The ﬁl"cy;s oomplexity. i

. VThe dota’s visuaiization fequironionL S
e Tho user’s know lodge

e The soluuonsmtended usage. .

* One method for measuring the general complexxty of a ﬁle mput sohmon 1s 1o count thek F

numbcr of modules whlch are requxred to mput the user’ s data Tho numbcr of modules m

each of the successful cases m the test sulte was totai!cd, as werc the number of exphmt o :

 file input parameters and arrays neoded from aach ﬁle “On average. ﬁ‘ﬁ‘w modu}es are

; requxred for cach xtem ﬁxat ﬂxe user ncoda to mput ﬁ‘om a ﬁle Usmg thxs mct,m: thc totalr ;

number of i items ncedod from a ﬁle mcrcases thc complexxty of creatmg a solutxon As a- %"

result files comamm g many vanablcs of dxf‘fercnt bmary pnmmve types mﬂ need a much ” ¢ :

‘ "ldrgcr nmnber of modules. o extract data from, makmg them, by this mctnc, thc: most e

- complex. However, the data involved can play a much larger role in the compkxuy of

’ makmg a soluuon 'I'lns is bccausc xhc gndded d.ata is best supponed by the current rango S
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of visual feedback modules. The construction of file input solutions for univariate gridded
data is the most simple, followed by multivariate gridded data and then cell regular data
which is the most complex type of data structure that can be input using IFIT.

The complexity of the file format also contributes to the complexity of producing a solu-
tion. Some files contain a lot of information which describes aspects of the data which
are not needed by the user, equally some file formats separate or group dataina manner

which makes their extraction for use harder than others which store similar data.

The data’s visualization requirement describes the amount of information the user ne‘eds‘

from the file. If they do not need all the information in a file then this can snnphfy the con-

struction of a solution, conversely, if they need all the data then thzs can add compiexxtyv i

to the construcuon of a solutmn

Another factor in the complcxxty of maiung a solunon is how much thu user knows about e

their pmblem, in terms of metadata data and ﬁ!e fcrmat. If they lack any mformatmn the i i -

problem wﬂl require the user to dxscovcr the mxssmg mformanon as cppcased to gust spccz* ‘ L

| fymg what they know When a user knows little about thclr ﬁle the complexnty Of makmg o |

' asolutionis mostly determined by the format and data’s complc)uty Afile mput problcm i

may be therefore be intractable if the user knows little and :.he file fonnat is camplex nr‘f i

contams data wh;ch prov;dcs no useful view usmg Image\’icw or Volume\ﬁe:w =

Fmally 1f i.he user needs a speaﬁc type cf soiutmn fmm one of the three outlmed in sm:nan b

- 63.1 then that can also add compiesuty to the t:reanen of a so}utmn

N Complete-use soluuons are the most compixcated as they reqmre thc user to have ﬁrsﬂy j‘::

dxscovered what all the values i m xhc ﬁle mcan and how they arc descnbed and? .

; Sw’“‘ﬂy to ha"c bf?@ﬂ Bbié to use them in censtrucung a meduiar net“ ork sa!auan;

‘How ever, !hey are thc cas:csx 1o use sub&equemiy fmr iea;img many ﬁles ﬁf the same 1_ s

foxmat

Single-use so]utions are moderately simple to constﬁx(:t' Once the inpm paﬁzm«?tfgrs are
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discovered and set they are then saved with the module network. These solutions

will repeatedly load the file for which they were constructed.

Discover-use solutions are the simplest type of solution to construct, and, once they are
made, can load different files by discovering their parameters with visual feedback.

However, they are the most time consuming solution with which to input files.

For the experienced user of IFIT, file input problems revolve around information discovery
and identifying the structures in the file that IFIT can input, followed by constructing

- an appropriate network., For the novice user, the utility of IFIT modules needs to be

 highlighted by example and by tutoring them in the structure of an IFIT solution, There is E ‘

anecdotal evidence of novxce users who have created a ﬁle mput solution witha minimal

explanatxon of IFIT and only an unage to guide them in their search for the ﬁli} 8 data

IFIT most beneﬁts the expenenced vxsuahzatxon user, visioneer or vmuahzatmn expert s

o For any of these users it will enable them to mput a wide range of formats whxch are :

thhm IF IT’s limits. IFIT mlmmxses the necd for thc vxsuahzahon expert to have extemxve S

and iterative commumcanons wsth the user, resenmg such nme-consummg acuvmes tc) P

verlfymg the output

’.6?5  IFIT compared with existing s_omﬁong I

Thc AVS ﬁlc access o‘bgects (see 2 4 l) are thc only comparable case of a ﬁlc mput tool i

‘ “hich uses the modular appmach AVS s File Access Obj&ts (FAOs) ﬁeld mapperz,,,'} o

g extractors and combmers pmvzde a mnge af mudulas funcuons am! AVS abjﬁcts wh&ch ff, G

~in theory, offer a similar utihty to ﬁle trassﬁmnanon and gpec:ﬁcaucn range of meduicsﬂ ;ﬂ.:

present in IFIT. They enable the user to build AVS ﬁeids by e\tractmg data va!ues and'

‘arrays from files and combmmg them into AVS stmcmre& Tab!c 6 1 mmpares AVS

 FAOs wnh IFIT in 1crms of the !ypes of dam and file “hxch they can mput and thezr user:_

mterface
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~ File input attribute | AVS FAO - IFIT |
Visual feedback via |  Pipeline | Pipeline and
only visual tools
User interface || Texttype-in |  Widgets
Supports very large file input Vv X
Solution restart for changes Vv X
Binary primitive types supported 5 11

Supports little- and big-endian X Vv
Extensible Vv Vv
Scattered data Vv v
Umform—rectangular gridded data v Vv
Variable-rectangular gridded data v X
Body-fitted gridded data N v
Cell-regular data v Vv
Cell-variable data Vv X
Axial Systems supported 3 2

Table 6.1: Comparison between AVS's File access objects and IFIT’s input facilitigs

In some respects AVS’s mOdules cover a much wider range of problems because they - i

have implemented functions and data interpretations for many different high-level map-
pings, handling data of different axial systems and types of structurmg However, IFIT :
has some better low-level functionality for handlmg values, particularly bmary IFIT’ |
ability to convert bmary pnmxtxve types which are not directly supponed by the MVEs ;

data structure and handle issues like bytc ordering are not supponed in AVS's file access
objects.

The interface and GUI usage of AVS's file access Objects functxons and modules makeq

them difficult to use. The File Access Objects require typed text mputs which can contam | o

V script as their control parameters. While ﬂexxble this i 1s nota sxmplc user mterfacc L
Whm viewed in relation to the tcrmmology and dcscnptmn of some of thcse parameters, :

the usage of file access objects can leave users opting for the tcchmcally hardcr mmes of )

programmcd extension and usc of AVS sown scnpung language V

There are several ma;or dxfferenccs in the way II'IT and AVS 8 FAOs opemn, and theu* | v
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intended use. FAOs handle the file using a file pointer, and no data is accessed from the
file until the data structure, which has been described with them and the field mappers
and combiners, is accessed. This shows their intended usagé as a descriptive tool for
large datasets where inputting the whole dataset may result in system resource ‘problems.

Their technique instead is to construct a solution, fill m ihe parameters and then load ixi
| the portion of the dataset the user requires. It enaBles the user to load and process the

dataset in small sections.

By contrast IFIT caches the whole file, and will operaté correctly if parameters are leﬁ

blank. When parameters are chanﬂed, IFIT will be able to altcr the mterpretation from BRI |

that point forward as opposed to the FAOs which requzre the whole process to be restarted
(probably to reset the ﬁle pointer, although this is an assumpuon)

Overall, the way in wluch AVS FAOs operate is less useful for forensxc exammatmn B

because 1t hmdurs the pmcess of tnaﬂmg mput parameters Tius s becausc ﬁlc access '

usmg ‘them operates in a similar manner to the way tradmonal programmmg 1anguage P

perform file input. Parameters for AVS FAOs need to bc}ﬁlledqn in advance mherwxs‘c' L

“wholly incorrect outputs are produced which have no apparent relation to the raw values o

in the ﬁle

AVS lacks any feedback tools for ﬁle mput Asa result any parameter changes need o :

~ be sent through the whole visualization pipeline. Wi ithout specific tools for file mput;, o

the interactions with these views pmduced by AVS and the actual usuahzauons AVS o
supports will be lcss useful than 1he eutput fmm IFIT's Vlsual fwdback modules. The v :

file access objects and other tools present in AVS sxmpiy were :xot desxgned to d}bCOVET e

‘ mformatlon from files, mstead prov 1dmg the user with the ablhty to dcscnbe ﬁle comem | ; o

IFIT pmvxdes a way of discmermg xnfermatmn, AVS' s modular appreach, mt}mut the

- ability to effectively oﬁer forensic anaiy’m of file cantent, W 11! not be able to solve seme e

~_ file input problems where IFIT has bcm successful..

: | IHT as a modular nemork so!utxon, cannm bc compared dxrmtiy \\xth Cflh or dx fferem e
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Simplicity Flexibility
of use
Most || Hard-Coded Programmed
Monolithic tool Modular
Modular Scripted
Header files Header files
Scripted -~ | Monolithic tool
Least || Programmed Hard-coded

Table 6.2: The modular network approach in relatxon to other types of file mput ap-
proaches

forms of file input solution. However, from anecdotal evidence we can form the compar-
ative assessments shown in table 6.2 for both the simplicity of use and flexibility of each

particular technique.

The level of flexibility shown in table 6.2 describes the ability to change a solution once .'
it has been created. If the user cannot change the implicit ﬁle input parametérs ori the :
description of the file’s cdhtent then the solution can be regarded a§ inflexible. Changes
can be made at compile-time, run-time or real-time. In IFIT, par:iméters can be changed
in real-time as opposed to hard-coded solutions where, for the vast majonty of these

solutions, implicit parameters can only be changed at complle~ume

Snnp11c1ty of use relates to the level of autonomy and the sunphcnty of the user mterfacc
for solving a file input problem with the given type of approach. Hard-codl:d readers are

usually automatic and have the simplest interface, with usually just a file name to cnter N

Conversely, programmed solutions require fmmlxanty with many different aspects of the_‘ el

system, file and MVE.

The modular approach and therefore IFIT as shown i in table 6 2,can be seen as casxer lhan

using a pro;,mmmed appmach and margmally simpler than the other scnpted and he:adcr' !

approaches This can be sugg,csted because the other techmqucs all requtre addxtmnal S

knowledge and skills over those needed to use a modular approach which is an extension

of the general use of an MVE systcm. The modular approach can be seen as more flexible -
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and adaptable than all but the programmed approaches because it is extensible and easily
reconfigurable. However it is less flexible than a programmed approach which provides

the user with the maximum level of control over the input process.

By learning a programming API, a set of dialogs, or a header description format the
user is engaging in something which is not consistent with the rest of the MVE’s usage.
IFIT allows the user to apply their knowledge of modular programming which is used
elsewhere in the MVE and instead learn about the applicability of the IFIT modules to

their particular problem.

6.6 Discussion

This chapter has reviewed a selection of cases where IFIT has been applied successfully.

The lessons from these cases and others have been used in evaluating IFIT. The evaluation =

has focused upon the attributes of both user file formats and user data which enable and -

limit successful application, These attributes have been grouped into those which dirdctly

affect the use of the toblkit and those which affect software performance and the usage -

of the visual techmques Finally IFIT has been evaluated for its snmplxcﬁy of use and it

has been compared with present forms of file input solutions.

The test suite contained 43 diﬁ”ercnt file formats, of these IFI’I‘ was used td solS/e 34V While

this results in a success rate of approxlmatcly 79.1% for the test suite, the translation of » e

this into an overall figure for all file input problems faced by users is unquanuﬁable This

is because the test suite is a combination of problems received by vxsuahzanon experts and .

NAG for IRIS Explorer. The actual number of users who have access to MVE software " K

but either cannot use it because of file access problems, or choose to solve their problem - -

without consulting visualization experts is hard to judge. The quantity of gridded data

in the test suite was high compared to the quantity of nodal and cc!l-baéed data. Given =~

the usage of nodal and cell-based data in fields like finite clcfneri{ analysis, computcr -
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aided design and geographical information systems, file formats containing such data are

probably more numerous than the number found in the test suite.

Unlike other solutions, which are designed as purely descriptive tools, IFIT enables the '
user to experiment freely with the interpretation of their data and visually trial different |
file input parameters in real-time. Its visual outputs can offer much hiorc to ihe user‘ than
just text views of file content 6r hexadecimal views. If the hser lacks knowledge of the
file format or dataset IFIT provides them with facilities to discover the information they -
need. It requires no a priori knowiedge in order to input the content of a file. IFIT's
data-orientation allows a user v»ho ‘knows nothing about the header or sﬁucture of the s
data of their file to extract raw data values, provided the file is within IFIT’s envelopc of
descnptxon Given sufficient experience, IFIT can allow a user t input what would bean

intractable problem with other file input solutions.

- Like other solutions, IFIT can input a wide range of files éontaining scattered, gridded

and cell-regular data in a range of binary and plain text numeric representations. It can |

also produce reusable solutions, which once created, act like hard-coded ihput solutions. . - -




Chapter T

Towards au‘to’nomous data input

Towards the end of this project the use of ImageV1ew and Vohunthew provxded msrghts”
which implied the possibility ofan algorithmic method for discovering the shape of anar- ~
ray. As most file formats store values as arrays, this functlonahty would be of tremendous

use. This chapter documents the resulting research into finding an autonomous solution to

this problem and illustrates one clear advance toward an automatlc system for data mput o S5

' one of the main alms of thlS research outlined on page 10 in chapter 1

The mteractlons required to discover the drmensmns of an array using Imagevlew Were i )

-the first mqplratlon that there could be an automatic method for finding the Shape of an ep

array. Initially, the search looked toward systems that could analyse the output of Im"f}‘ G

ageView and then provide corrective control parameters, Such a system would essentially

perform the same task as the user by iteratively correctmg the param eters untll the armay’s i

- shape was found. This notron led to ex1stmg work in the field of machine vtston and .

Optlcal character recogrutxon. Algorxthms in these fields are able to prov1de parameters C .

like the angle of skew for ObjeCtS in an 1mage and the dlrectxon of texture ﬁow These

* parameters in turn could be used in either a formulaic correctxon to the lmage or used in | o

an iterative solver as a comparatwe measure of correctness

Durmg this search for a greater Tevel of autonorny, a much sxrnpler exammatton of ar-' PO

rays fr om a range of data ﬁlcs was undertaken ThlS searoh used shcmg and graphmg toj‘ ol

1
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find simple patterns which could be used to detect the ‘edges’ of an array and, therefore,
determine parameters for its shape. During this work, it was noted that graphing a multi-
dimensional array appeared much like a graph of a periodic phenomena. When flattened |
to a sequence of values, arrays exhibited periodicity caused by their different dimensions,
The notion of an array’s dimensions creéting wave patterns which could be detected and

applied in an algorithmic solution lead towards the use of the Fourier transform.

7.1 The Fourier transform

The Fourier Transform (FT) equations provide a forward ‘and inverse transformation of
values in the time domain to values the frequency domain. The forward FT decomposes o
a waveforin into sinusoids of different frequencies which, when summed, will combine
to produce the original waveform. It distinguishes different fre(iucncy sinusoids and th'eir'_, |
amplitudes. The FT stated in equation 7.1 can take the values of physical proces‘s hasa
function of time ¢ (h(t)), or an amplifude Hasa function ofe. frequency FCH() and " 4
transform them. The FT is widely used (Bracewell 1978), often i 1n the physwal sclences :

o lFlgure 7.1 illustrates a sine wave in both the time domain and the ﬁ'equency domain,
Figure 72 shows the relationship between the time amplltude and frequency amplxtudev‘ '

domains,

H(f) = h( ) tdg

-=00

-0

= H(f)e*“f'df e

- The Discrete Fourier Transform (DFT) and the tlme-efﬁclent Fast Fourier Transfonnf"j o

(FFT) both transform from the time amphtude domain to the frequency amphtude do- |

mam for dlscretely sampled data For the purposes of this research it 1s more couvement, =
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h(t) H{ﬁ

/\/\ [ |1
vV

v _ v

(a) The time amplitude domain (b) The frequency amplitude domain

‘Figure 7.1: A sine wave represented in both domains

Time

o Frequency
domain ~ domain

measurements . fmeasurements L

Flgure 7.2 The relatxonshlp between three dlfferent measurements in the time domam
and the frequency domam -

to work wrth the real quantrty output by the power spectrum densrty funcnon Parse- .

val’s theorem states that the power of a signal represented by ﬁmctlon h(t) is the same _‘ ’v o

1rrespect1ve of which space itis measured m, that i rs,

TOtalroeweré f " I Pde = / m,.{fil(if)lzdf | (72)‘ .

-00

To ﬁnd the power in the frequency mterval f and f +df we requrre P( f ) or the one—mded : . 4
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Shape | = Peak
frequency
spacing
3 3.3333 x 10+
128 | 2.6041 x 10™3

Table 7.1: The expected spacings between peaks in the frequehcy domain for a rank 3 »
array

power spectral density function. For the real data of this application this is defined as

P(f)=2H(f)E 0<f<oo Ly

7.1.1 Application to data input

The hypothesis was that an array, when unfolded (or ﬂattened) tor 1D, Will V‘produce a
periodic pattern. This periodic pattern will have frequencnes in it whlch relate to the
wavelengths of the underlying data, which in turn are dxrectly related to the dlmensmns
of the transformed array.” A power spectrum will show these frequenc:tes as peaks in
the frequency amplitude domain, enabling peak detectlon heuristics to evaluate themand

determine the shape of the array,

The pel’lodICIty formed by flattening an array,f}fom rank n to t"ank 1 appeai's inthe powef -

spectrum as n - 1 pulse trains with different spacings. Figure 7.3(b) illustrates the "p(i,w#r L

: spectrum of the rank 2 array di\s'played‘in figure 7.3(a), and ﬁgure 7. 3(d) shows the power .

spectrum fora rank 3array illustrated in 7.3(c). Each pulse train has a separation between "

its peaks which is related to the sxze of the dimension it represents and the posmon of that : -

dimension in the shape of the array. The frequency spacing for a given dnnensmn is the"' i
product of the size of that dunensxon and all those whxch vary faster in the array. Table -
7.1 illustrates the expected separatxon between peaks in the two pulse trains when gwen n

the first two dimensions of a rank 3 array
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x(1) P(f) S
- ) 4 - 1/
d, mwr
(a) z(t) with periodicity di in a (b) The power spectrum pulse train
rank 2 array P(f) of z(t) with a peak separation
of -
x(1) P(h) L
, .TTTTTTTTTTTT I ERARAANENES
| | T dpa, T
4—- d, -—> <+ 1d, - ERE I PR
" (¢) z(¢) with periodicity caused by the  (d) The power spectrum pulsevtrain |
dimensions d; and d; of a rank 3 ar- P(f) of z(t) with two sets of peaks
ray , with separations corrcspondmg to EL
o wdgg

Figure 7.3: The pulse trains in power spectra for a mnk 2and fa-nk 3 array - y

, Gwen the shape of the array D the expected spacing s of the n"‘ pulse train in the pQWe r g

spectrum will be -
s(n, D).._._..l......, - :
HD, ;
where

1<ng rank D= [dh"--hdrdn}c] : o S (74) Sl
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The rank of an array can be determined the number of distinct pulse trains. Each pulse |
train is superimposed in the power spectrum and has very different average amplitude -
as illustrated in the example spectrum shown in figure 7.4. All but the last rank of an
array will create periodicity in the array when it is flattened. A poWer spectrum will
exhibit rank — 1 pulse trains. Figure 7.4 also shows how measuring the spacing between
adjacent peaks in each pulse train can be used to find an average spacing that can be used '

to find the arrays dimensions.

7.1.2 Limitations to data input

MatLab was chosen as a testing environment and was used to produce power spectra of

thirteen datasets in the same manner. The tests progressed over four phases. - -

o The first phase was a feasibility test. It contained correctly interpreted arrays of =~
values. These were flattened into sequences of values. This test was to discover if

- an array’s dimensions would show up as peaks ina poWer spect'rumy.

° The second phase was an evolutnon of the ﬁrst phase Its aun was to determme if the v !
length of the bmary primitive type could also be dxscovered for correctly mterpretcd -
arrays of values. Again the arrays were ﬂattened into sequenccs of values but thls” -
time the individual values were also broken up into theu' constituent bytes. These - S

byte values were then tested.

e The thlrd phase took whole ﬁles as sequences of byte values with the mtemxon of

dlscovermg if additional information in the selection would affect the test B
: ‘o The fourth and ﬁnal phase took syntheuc arrays and tested for the effect of mlrrored ‘ '

and repeated data

The analysxs of the first phase found that the full rank and shape of an array could bc f -

determmed for real world data when the i mcommg values were correctly mterpreted and S
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~ Figure 7.4: The pulse trams in thc power spectrum of a real world dataset Wthh was a
rank 4 array. The spacings which can be used to acqulrc dunensxons d1
on each view of the spectrum

d3 are marked
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the array was correctly selected. If the array was not correctly selected then only‘mnk -1
dimensions of the shape could be determined; the last dimension would not be fonnd from
the spectrum because the total number of values input determines the frequency at which
the powers are output. Therefore if the selection was incorrect, the value for the last

dimension, as taken from the smallest spacing in the spectrum, would be invalid.

The analysis of the second phase concluded that the length ot‘ the binary prirhitive type
could be found for univariate arrays, but not for multivariate arrays. Arrays containing
values which have a binary primitive type of more than 8 bits can be considered to have
an additional dimension For example a rank 3 array of 32-bit ‘values can be considered
to be a rank 4 array of 8-bit values. The size of this additional dxmensron is the number

of bytes in the binary prnmttve type The additional dlmensmn of the bmary prlmltlve'

~ type will always precede the existing shape of the array, for example if an anay of 32-bit 5

values had a shape of 22, 22, 15 then the same array analysed as byte values would have‘ ‘;
~ ashape of4 22,22, 15. :

Univariate arrays when ﬂattened to 1D and interpreted as bytes produce a power 'sp’ectruni B
which has a peak of significant magmtude at the frequency which cot'rcspon ds to the .
length of the binary prumtlve type If the data was ongmally 8-bit, no such peak wﬂl < .

appear.

Multrvanate arrays do not produce a peak correspondlng to the length of the bmary prtm.."‘ s

~ itive type. Instead they produce a pulse train for the first two drmensxons of the shape o ; ",j,
whose spacing fits equation 7.4 for n=1 The variable index and the length of the bmary‘ '

primitive type effectively formmg one pulse train instead of two, For example a rank 3 o
 array of 32-bit values with a shape of 5, 22 22 can be consrdercd to have a shape of 4, 5 | v
22,22 when mterpreted as byte values. When vrewed as a power spectrum the ﬁrst two S

' dunensrons will appear as one which has a size of 20. Byte values will have a str ong rela- i ‘_'4

1onsh1p with similarly positioned byte values in the same variable. However, when byte e

values are compared with CIthel' byte values at a different posmon in the same vanable“ £
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or different Byte values from different variables there is no relationship. Therefore, when
an array of multi-byte values is interpreted as just bytes there is no strong relationship
between adjacent byte values in the array. A strong relationship is only found between
bytes whose separation is the product of the number of variables and the length of the

binary primitive type.

The analysis of the third phase concluded that a spectrum of whole files input as byte -
values provided similar information as for arrays interpreted as byte values, The main
difference, as found in the first phase, is that without a correct selection of the array only

‘rank — 1 dimensions can be found reliably. When other arrays are present inafile, peaks

are present for rank — 1 dimensions of each array, Arrays sharing common dimensions

result in much larger peaks at frequenc1es correspondmg to those dimensions. The effect

caused by two or more arrays with different dxmensmns is much less dlstmct than for a

file contammg a smgle array.

The analysis of the fourth phase looked at mirrored data and repeated data Mn'rored data,k % :
where there is complete Symmetry through one or more dunensxons of the array, did not _‘
affect the spectrum in an adverse way, Repeated data on the other hand, where the content :
of the array in a pamcular dimension is exactly repeated multlple times, eauses the peak ; “
spacings for the dimensions containing the repeats to increase by a factor correspondmg . i;

to the frequency of the repeat,

* While a power spectrum of an array can ‘pmvide meaningﬁxl results for many. dataéets

there are some limitations. If the all the dimensions of the data are requlred the array i

- must contam continuous information. DISCODtanOUS data lacks the penodxcxty needed to .

generate an output. However, dlscontmuous multivariate data may still yleld one output o

namely the number of variables. This can be found because there i isa strong relauonshnp e

between individual values taken from the same vanable when compared wuh the weaker :

relationship between values taken from dxfferent variables. It must be noted that tlus .

effect dopends enurely ona strong relatxonshlp between va]ues in a pamcular vanable 1 ;
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Continuous data also has limitations; arrays of constant value have no periodicity and
hence no information about their dimensions can be gathered from their spectra. Equally
the spectrum of very noisy data or random data will hold little value for dimensioning an

array.

For any array with continuous data and sufficient information content rank’—-l dimensions
of the array may be found. If the data is raw file content, i.e. byte values from the file,
then the product of the length of the binary primitive type and the arxay s first dimension

comprise the first major frequency.

Some datasets do not yield the correct shape because of artefacts i in the data 1ncludmg :

dimensional repeats too much noise or too little information content.

7.2 Summary

Power spectrum analysis offers a new avehuc of reseérch into automatic techniques for
determining file input parameters. This work relates directly to the automatic discovexjf :
of the rank and shape of a dataset. Furthermore, it can also be used to detect either the |
number of variables in an array or the product of the number of variables and the number'

of bytes in the binary primitive type.

| This work has illustrated how some areas of IFIT and ’the'ﬁle ioput architccttire could

" be automated given detailed analysis, Fourler analysrs allows a sequence of values to oo

be taken from a file and probed for its shape raising the possibility of an 1nteract10n~£ree‘
shape detection algorithm. As arrays are a predommant form of storage for scientific data, 3

if this is researched to ﬁumon a wide range of file input problems could be sunphﬁcd




Chapter 8

Conclusions and further Work |

8.1 Summary of achievements

This thesis has foeused upon the area of data input for visuaiiiatioﬁ in scientiﬁc coﬁlp\iré o
ing, The problem’s scope was outhned in chapter 1 on page 10. Wuhm this area, many of .
the relevant models for data transformation and storage have been rev1ewed In addition, “

a range of ﬁle formats found in scientific computing and the drﬁ'erent techmques MVES‘ e

prov1de to mput non—standard file formats have been revrewed

In chapter 1 the aims and scope of this project were stated. The mairr aims wéf_e o

" o simplify the problem of creating soiutions to file input problems for VxSC‘ sysfems{ :

e finda solutlon whrch can be apphed toa broad range of screntrﬁc ﬁle mput prob-v :

lems;

o work towards an autornatic solution for user file input. .

| - The ﬁl‘St aim has heen met by the forensrc approach and the supportlng dataﬂow model
put forward In Chapter 4. The forensic approach uses the vxsual techmques presented in’ o
~ chapter 5 as an aid to dxscovermg ﬁle input parameters and facxhtatmg the applrcatron‘ :

~of a user’s knowledge The model and accompanymg file mput archrtecture lllustrates o
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“the interpretations and steps necessary to take raw file content and transform it into the
target application’s data structures. Together they are an alternative to the present ‘ad-
hoc’ approaches. They simplify the process of solving file input problems because they
take the emphasis of constructing a solution away from the format, source apphcatton and

discipline, instead focusing upon the data and user knowledge available for each problem .

This theoretical work enabled the creation of IFIT, a software toolkit for creating file
input solutions. IFIT enables the user to input many different scientific datasets from a
wide range of file formats that store data values in one or more arrays of values. IFIT
provides the user with both investigative and descriptive tools for specifying how data is ‘k
stored from numerous file formats that use arrays as the predominant means of storing
data values. This enables many problems which could not be solved due to a lack of user
v information to be solved through the dxscovery process outlined in chapter 5 as well as

those which srmply requlre the specxﬁcatron of input parameters -

Power spectrum analysis of arrays and ﬁles has been presented in chapter 7 Thls work
stemmed from the development of the visual tools and provndes a theorettcal basrs for

the productmn of modules to automatically determine an array’s rank and shape using - ». ,7
power spectra. This novel method of array metadata detemunatlon has been tested usmg_'
MatLab. The further work section describes how the results from chapter 7 could be

developed into a new module i m IFIT,

- IFIT provides the user witha distinct form of modular network solution ‘As a result, it e

has the flexibility of programmed solutions combmed with the ability to raprdly develop :

prototypes afforded by the use of visual programmmg It differs from current approaches o

because, not only can it describe a file in a flexible manner, but it can also be used to dls—
cover a file’s content, Tlns abthty enables an IFIT user to input a wrde range of problems ;
which using the present range of file mput techmques wxll be much hardcr or mtractable

when information about the file’s content is mxssmg

IFIT’s novcl wsual tools TextView, Imagerew and VolumeView can all be used to interf s
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actively trial different parameters for interpreting a file’s content. Their use in the forensic
examination of a file’s content can enable the user to discover a wide range of input pa-

rameters that can aid them in visually programming a solution to their prohlem.

Solving and debugging file input problems using visual programming requires the user
to be presented with a visual form of feedback. However, using the st_andetrd filter map -
render sequence of an MVE to test input solutions provides several problems for the user.
First, they oeed to know how to choose the appropriate set of rnodules to visnalize their
data. Second, the interactions they can have with the system are usually external to the
view of the data; they cannot easily steer the appropriate parameters in their solution. Fi-
nally, the performance of using a filter map render éequence can bpreVent the interactive'
trialling of parameters for large datasets. TFIT provideé the user with modules \vhich offer
them direct manipulation of file input parameters and Vis'lial feedbeck usmg sitnple Ad'is- :
play algorithms. This allOWs_ them to ropidly trial different irxterpretations and metadata,
This use of visual feedback provides a method for diagnosirrg probleinsy in a éolution, 3

‘whilst also allowing the user to discover unknown metadata values and gain msrght 1nto'

a file's content These visual modules provrde sumlar functtonalrty to the work found in o

' computatronal steering, where the user adapts a parameter values and vxews the results in
‘ real-trme The msrghts found by these modules can lead toa swrfter file mput solutton by f» :

offermg unique views of the data in a timely manner

v The usage and apphcablhty of IFIT has been demonstrated through a range of exam;;les - ’}

presented in chapter 5 and test cases which where presented and evaluated in chapter 6

The test cases 1llustrate the three different types of solunon whlch can be unplemented et

inIFIT: ‘drscover-use’, ‘smgle—use and complete-use Fmally, the examples show how Lt

the complex1ty of the ﬁle, the data and the user’s needs w1thm the v1suahzamon system

' eﬁ“ect the complexrty of creatmg a ﬁle mput solunon .

IFIT is 1mplemented in IRIS Explorer, however, any of the 1deas found in IFIT can be j

’eas1ly 1mplemented in MVEs capable of programmed extensron many of the algortthmsﬂ S
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would be easily transferred to other MVEs. AVS with its comprehensive range of field
mappers would the easiest MVE to extended to produce IFIT-like results.

In terms of platform dependence, IFIT’s visual modules are the only modules that would
require major reimplementation for other operating systems as they link directly to win-
dows control and display routines and therefore would require changing; However, their '
design and use of OpenGL would minimise this to a rebinding and movement of the call-
ing and initialization functions to the alternate operating systems callbacks,' reducixtg the '
difficulty of such a platform conversion. All the other IFIT modules are standard C,or

C++ and can be simply recompiled for the other platforms.

To summarise, the ideas offered in this research propose a unified method for dealing with
file input as opposed to present *ad-hoc’ and format-oriented approaches which are of a

purely descriptive nature. IFIT and the forensic approaoh presented in this thesis illus-

trate how file input solutions can be solved by using visual programming and 'interactirve e

discovery.

The visual techmques for ﬁndmg the dlmensmns of an array and the Founer analy51s o

methods both represent novel contrrbutlons to the field of sc1ent1ﬁc v1suallzatlon They. L

- prove the power of both the software archttecture and model by dlustratmg how they have i H

enabled processes to be solved using a range of dlfferent techmques

File standards have often been suggested as s the ultimate remedy to the probleths of data =

companbrhty and file access problems Formats like CDF and data descnptton languages e

like XML have made mroads into this problem ‘However, there are rnany reasons Why‘ RPN

~ these powerful methods of provrdxng data compatrbrhty may not be used. Equally, the I
new standards for screntlﬁc data like XML can be used j just like tradmonal bxnary formats N

~ producing data descnptwns which cannot be correctly rnterpreted by other software The iy

“notion of tools to 1nterpret and discover ﬁle content rather than Just descnbe file content is oo

a powerful notion that can be apphed to many ﬁelds where multxdxsmplmary data sources e L

need to be accessed.
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This work has solved a range of questions related to file input and provided a viable model
for file input. In addition, this work has put forward several proposals for automating

aspects of file input. A fully automatic method to file input may, one day, be achievable.

- However, this will require additional research into the other aspects of file input which

have been discovered and classified during the course of this Work

The next section will describe future research and development which expands on some

of the discoveries made durlng thts research.

8.2 Further work

1. The visual feedback modules provide a format independent view of the data and

- so provide the user with a powerful method of discovery and error detection. Im-

s
A,m/"'w

ageView and VolumeView both work best with g gridded data of low a dimeusioh- S

ality. The other three types of structural connectivity (descrlbed in chapter 3) and -
the other semantlc meamngs for data that can be found i m an array, hke vector or S
colour data, would be more mtultxvely supported throu gh v1sual tools whlch present B

a more appropriate v1sualtzatton for the type of data mvolved and can drscover the : T

addmonal parameters which are relevant to that data.

. Nodal and cell data would benefit the most from new Visual feedback :modulesl' 7}‘ L

A vrsuahzer that could dlsplay both the source nodal data values and posxtrons o

as well as the linkages between nodes and cells would dramatlcally unprove fer

over ImageView in examining such data, Trialling this type of data would . _:. .

involve searching for several parameters includingthe lirrkages between nodes; a

~and the type of coordinates involved. ‘Thivs could take the form of dvirectly_. o

wiring a template for cell connectrvxty or just plottmg all the nodal pornts and B

then enablmg the user to trial the drfferent combmattons of connectlons

R Flow data is another type of data whrch would be better suppoxted through a
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2.

different visualization technique. Vector lines and spot noise (van Wijk 1991)

can both be used to generate views of vector components that provide an ex-

cellent feedback method for the forensic discovery of arrays containing vector -

data. Modules similar to ImageView and VolumeView could be used to gener-

ate interactive flow field feedback that could enable the user to discover input

parameters in a similar manner to ImageView. This has been trialled using -

existing IRIS Explorer modules for spot noise generation. While lacking the
interactive element found in ImageView the visual feedback did provide sim-

ilar artefacts which could be used to detennme file i mput parameters

‘o Graphs, tables and other simple graphlc feedback tools to illustrate the content

of an array are also useful tools for investigating the content of a file. Addmg
modules which enable the file to be examined using a range of dxfl‘erent mter—

pretatlons would offer useful functtonallty for data input..

.
P

-
e

Combining all these interactive tools with a view manager that can present different o

sections of the file to the user may provide performance benefits in drscovertng file

input parameters, especially if it offers comparatlve v1ews of the sarne data under I

different mterpretatwns

Chapter 7 descnbed the use of power spectrums as a means of ﬁndmg the drmen— -

sions of an array. This ol‘fers the possxbxhty of an autornatxc solutlon to tlte problem ’

of determlrnng the shape of an array. By linking a power spectrurn of the data wrth, o

a peak detection algontlnn to ﬁnd peak magmtudes and spacmgs the resultlng m- b

formatlon could be uscd to ﬁnd the dimensions of an array thh little or no ueerj S

interaction. This could then lead to a module wlnch erther replaces ChangeDtmLat . -j

_or sets its rank and shape parameters

Monolithic input tools whlle inflexible are simple to use. A ‘novice t'riendly" ﬁleln—_ N |

put tool could be created using IFIT by addmg an extra mterface layer that enables. . _ T

users to specify their data ina step-by-step manner and then generate appropnate -
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IFIT networks for their problems. The interface to this tool should aim to describe
as many aspects of the user’s file in a visual manner using icons and as few parame-
ters as possible for any given problem. The module network geherated dynamically
or taken from a library of solutions that can be described by the user’s choices.
Using IFIT as the underlying system for such a tool would enable the range of
solutions to be extended, the resulting networks would be user customisable and
unlike existing tools unknown parameters could be handled through connectmg vi-

sual feedback modules into the network at the appropriate places

5. Language-based file formats and those using a data dxctxonax_‘y, or data descﬁption
language (DDL) (as described in chapter 2, present a different methodology‘ for
storing data. While this methodology fits into the dataﬁow model for file mput -
and the file mput architecture, IFIT has no modules whlch can effectwely deal w1th
this form of storage. These files often contain the equxvalent of fixed record data
although the DDLs can describe much more in a flexible manner. Thcrc ,aro several
reqoirements for modules to handle this type of storage. These include the ability
to identify separate values in the file, group them into vzm'ablesrand oon\(et‘t them

into a usable binary form. -

One approach would be to produce ‘file compxler usmg techmques taken from cx- ) L

1stmg compilers (See Trembley and Sorenson (1985) for a descnptton on the thcory, o

of compnlers) This approach would use regular expressxons and producuon rules tol |

first discern different types of numeric value and formattmg tag, and then compxled o | o

~ the discovered data values into a bmary form which could then be accessed by IFIT. '

Sucha tool could mcludc some pnmmve rules which deﬁne how values lzke ﬂoat-. LIRS

~ ing point numbers and integers are represented. Other sunpler approaches mclude - |

producing simple parsers, which when meeting a user-defined tag can perform a |

specified operation. One example would be gathering a list of values that matcha

particular tag, e.g. “COORDINATE =",
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6. Future tools should aim to enhance the forensic approach by providing tools to
search a file to find the location and description of file input pérameters and meta-
data that have been discovered. The resulting set of matches could allow the user
to then specify how the file is laid out in a reusable manner, overall this would have

the effect of simplifying the production of reusab]e module networks

7. Compression was excluded from the scope of this project in the early stages due
to both the additional complexity and the generally lower usage of compression in
the user-defined, field-specific and non-standard file formats found in the scientific
community. Different compression techniques can have very different performance
with different types of data. Their effect on the information content also differs
with some techniques ‘lossy’ and others “lossless” in their effect on the data in-
volved. Compression can also radically change the co ntén ¢ structure ahd meéning -
of a dataset. For example, RLE data still has the same pﬁm‘itiveltypé and values
meanings as the source data. RLE replaces repeated values in the dataset with tég;i B

which define regions of constant value. Conversely Lempel-Zif (LZW) encoding

radically alters the meaning of the bytes from their omgmal form and changes the .

~ files values meanings into a selection of references into a dxctxonary of values The e

interpretation pipeline and dataflow model for file input do not explicitly prevent -
the interpretation of compressed files. It may be possible to take some commonly. E
used compression schemas and prowde them as modules Operatmg at thexr relevant h

place in the pipeline.
8. The'model and architecture as they stand provide a unidiréctional pipeline whi_ch‘
ﬁows from a ﬁle's content to the application’s data stmc.mres "This could be éx- '

tended to produce a bx-du'ecnonal model, including ﬁle output as well as mput .

Thxs would use a range of processes which offer the i mverse functionality of those S

found in the ﬁle mput pxpelme Starting w 1th metadata and data structures fmm the

application and interpreting them into file contcnt whxch can thcn be directly out—v" i
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put. This could potentially solve a range of data exchange problems which occur

between scientific systems.

9. Finally, the techniques applied in the design of IFIT may be applied in the gathering
of digital evidence. Future work in this field would involve the kde\.'clopment and
feasibility tcsting;of tools to enable the discovery of ‘hidden data’ _w‘ithin files on
suspects hard drive. For example, data hidden in media files. Methods of discovery
found in the dynamic feedback element of IFIT could be developed to enable a user
to search for the structures which would be present in such files thqt woi;ld 6cciir in

addition to their ‘visible’ content.
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Figure 5.24: Single distinct vertical break of continuity

Single distinct vertical break of continuity This artefact, illustrated in figure 5.24 can
occur when the start of the array is incorrectly positioned in the file. The effect
is produced by either unwanted values leading into the array or by missing some
of the array’s data. This in turn alters the interpretation of the values in the array,
moving what would be the wrapped edges of the array’s first dimension to another
location in the first dimension of the interpreted array. This results in the edges
of the original array becoming adjacent values at some mid point in the array, and
because the edges are not continuous, they will form a visible break in continuity.
Correcting this artefact requires the user to alter the start point for the selection until
the discontinuity coincides with one of the edges and all the array data is present.
It is important to note that the size of the array must be checked to prevent loss of

data or the addition of non-data values into the array.



