
HUMAN ERROR IN TH E D ESIG N O F A

SAFETY-CRITICAL SYSTEM

by

Nick Shryane

A thesis submitted in fulfilment of the

requirements for the degree of

Doctor of Philosophy

at

The University of Hull

September, 2003

TABLE OF CONTENTS

1 Human error in the design of a safety-critical system 1

1.1 Human-Machine Systems 1
1.1.1 Safety-critical systems
1.1.2 Reliability
1.1.3 Human reliability

1.2 Human Error 7
1.2.1 Error types 11
1.2.2 Errors and expertise 12

1.3 Performance Shaping Factors 15
1.3.1 Attentional limitations 15
1.3.2 Mental models of the task environment 16
1.3.3 Individual differences 16

1.4 Summary 16

2 Task Analysis of the Solid State Interlocking system 18

2.1 Process analysis o f the Solid State Interlocking system 18
2.1.1 Method 18

2.1.1.1 Sources of data for the process analysis 19
2.1.2 Results 19

2.1.2.1 System goals 19
2.1.2.2 Environment 22
2.1.2.3 Hardware 23
2.1.2.4 SSI installation 23

2.1.2.4.1 The Design Workstation 24
2.1.2.5 Software 24
2.1.2.6 Liveware 25

2.2 Hierarchical Task Analysis o f the Solid State Interlocking system 26
2.2.1 The HTA process 27
2.2.2 Method 28

2.2.2.1 Sources of data 28
2.2.2.2 Participants 28
2.2.2.3 Procedure 28

2.2.3 Results 29
2.2.4 Discussion 35

2.2.4.1 Staff allocation 36
2.2.4.2 Automatic Data Preparation 37
2.2.4.3 Task Similarity and Diversity 38
2.2.4.4 Environmental influences 39

2.2.5 Summary 40

3 Error Analysis of the Solid State Interlocking system 41

3.1 Work sample o f the Data writing task 42
3.1.1 Method 43

3.1.1.1 Participants 43

i

Ux
 4

*.
W

3.1.1.2 Materials 44
3.1.1.3 Procedure 45

3.1.2 Results and discussion 45
3.1.2.1 Fault categorisation 48
3.1.2.2 Common-mode error 49
3.1.2.3 The effects of cognitive ability 51
3.1.2.4 The effects of personality 52
3.1.2.5 The effects of mood ' 53
3.1.2.6 The effects of experience 54

3.1.3 Summary 54

3.2 Error/fault logs 57
3.2.1 Method 57
3.2.2 Results and discussion 58

3.2.2.1 The iterative process of fault detection 61
3.2.2.2 Scheme complexity 63

3.3 Video recording task performance 65
3.3.1 Method 66
3.3.2 Results and discussion 66

3.3.2.1 Writing 66
3.3.2.2 Checking 66
3.3.2.3 Testing 67
3.3.2.4 Simulation screen design 67

3.3.3 Summary 67

3.4 Existing documentation and semi-structured interviews 67
3.4.1 Writing and/or checking errors 68
3.4.2 Testing errors 68

3.5 Conclusions 69
3.5.1 Diversity in the Design Process 69
3.5.2 Complexity 70
3.5.3 Automatic Data Preparation 73
3.5.4 Training 73
3.5.5 Personnel selection 74
3.5.6 Sub-routes 75

4 Mid thesis summary 76

4.1 Task analysis 76

4.2 Error Analysis 77

4.3 Need for Laboratory studies 81

4.4 Aims o f the laboratory programme 82

5 Sub-route labelling 83

5.1 Sub-routes explained 83

5.2 Sub-route experiment 1:12 o ’clock rule vs. 6 o ’clock rule 87
5.2.1 Method 87

5.2.1.1 Participants 87
5.2.1.2 Materials 87
5.2.1.3 Procedure 88

5.2.2 Results and discussion 89

5.3 Sub-route experiment II: 12 o ’clock rule vs. 9 o ’clock rule 90

ii

5.3.1 Method 90
5.3.1.1 Participants 91

5.3.2 Results 91

5.4 General discussion 9^

6 Task and Cognitive Diversity 95

6.1 Task and Cognitive diversity applied %

6.2 Dimensions o f diversity 99
6.2.1 Task environment 99
6.2.2 Domain Knowledge 100
6.2.3 Performance strategy 10°
6.2.4 Individual characteristics 100
6.2.5 Mental models 101

7 Cognitive Diversity Experiment I 103

7.1 Method 303
7.1.1 Participants 103
7.1.2 SSI simulation 104

7.1.2.1 Checking task 108
7.1.2.2 Testing task 108
7.1.2.3 Faults to be detected 109

7.1.3 Procedure HO

7.2 Results 33^

7.3 Discussion 333

8 Cognitive Diversity Experiment II 117

8.1 Method 333

8.2 Results 3333
8.2.1 Analysis of mental model data 120

8.3 Discussion 3^2

9 Cognitive diversity experiment III 125

9.1 Method 33^
9.1.1 Participants 126
9.1.2 Fault categories - 126
9.1.3 Procedure 127

9.2 Results 3^ 3
9.2.1 Individual differences . 128
9.2.2 Fault detection performance by treatment group 129
9.2.3 Analysis of diversity in performance 130
9.2.4 Diversity of Individual differences 131
9.2.5 Mental models 132

9.3 Discussion 33^
9.3.1 Diversity 135
9.3.2 Modelling diversity in fault detection 139

10 General Discussion 149

in

10.1 Summary o f empirical findings 149

10.2 Problem size and difficulty . 150

10.3 Description o f the Towers o f Hanoi 157

10.4 The TOHproblem space 159

10.5 Sierpinski’s Gasket 160
10.5.1 Distinctions between the Sierpinski game and TOH 162

10.6 A revised version o f the Sierpinski game 165
10.6.1 Abstract rules for the symbolic positional Sierpinski game 168

10.6.1.1 Rules for TOH 168
10.6.1.2 Rules for symbolic positional Sierpinski game 168

10.6.2 Stimuli in the TOH and SPS 170
10.6.3 Representation of problem states 171
10.6.4 Information structure of the Sierpinski gasket 174
10.6.5 Hierarchical addressing of the TOH problem space 176

10.6.5.1 Abstract rules for a hierarchically labelled SPS game 184

11 References 188

Appendices

Appendix A: Hierarchical Task Analysis of producing a commissioned SSI scheme

Appendix B:. Training and crib sheets used for Cognitive Diversity experiments 1-3

Appendix C: Mental Model questionnaires.

IV

LIST OF FIGURES

Figure 1; A system w ith two components arranged in series [a] or parallel [b]................5

Figure 2: Schematic of an example rail network.. 20

Figure 3: Exam ple SSI Geographic D a ta 21

Figure 4: Partial Hierarchical Task Analysis of the Solid State Interlocking

Geographical D ata design process...31

Figure 6:12 o’clock rule for track section labelling.. 84

Figure 7: Schematic o f diversity between checking and testing tasks in the SST

D P P .. 97

Figure 8: SSI sim ulator checking screen...................................... 106

Figure 9: SSI simulator testing screen.. 107

Figure 10: Illustration o f the Towers of H anoi puzzle .. 158

Figure 11: Graph of the Towers of H anoi p roblem ..160

Figure 12; Sierpinski’s gasket labelled with T O H problem states....................................161

Figure 13. T he three-disk T O H problem space labelled..178

Figure 14. H ierarchical numerical labelling o f the Sierpinski gasket.............................. 180

Figure 15. T he first four states in the shortest sequence to transform the column

from red to blue, using the hierarchical T O H rules..185

y

LIST OF TABLES

Table 1: M eans and standard deviations for com ponent and total task

completion tim e (s)... 47

Table 2: M eans and standard deviations for com ponent and total task errors.............. 47

Table 3: Breakdown of faults by signalling- principle violated for the data

writing w ork sam ple... 48

Table 4: M eans and standard deviations for cognitive ability: W ork sample and

nonnative sam ple.. 51

Table 5: ST EN scores for PREVUE scales................................. 52

Table 6: N um ber o f faults logged during checking and testing bv signalling

principle contravened.. 59

Table 7: N um ber o f faults logged across three checking and one testing stage

bv signalling principle contravened...62

Table 8: N um ber of faults logged across four checking stages by signalling

principle contravened... ...62

Table 9: N um ber of faults logged at the checking and testing stages o f the data

preparation process for schemes w ith less than 30 rou tes................................. 63

Table 10: N um ber of faults logged at the checking and testing stages o f the

data preparation process for schemes with m ore than 30 routes......................... 64

Table 11: Performance measures by labelling rule (12 o’clock rule vs. 6 o’clock

ru le).................. 90

Table 12: Performance measures by labelling rule (12 o’clock rule vs. 9 o’clock

ru le)................................. 91

Table 13: Proportion o f faults detected by task type, fault type and omission /

com m ission.................. 113

Table 14: Railway signalling constructs used in psychom etric m ental model

assessm ent................................... 118

Table 15: Proportion o f faults detected by task type, fault type and omission /

com m ission............................ 120

vi

Table 16: Proportion o f faults detected by task type, fault type and safety vs.

functionality... 129

Table 17: Proportion o f faults detected by m easure o f fault detection and

Virtual* pair type 130

Table 18: Results o f regression analysis o f m ental model differences on fault

detection perform ance.. 133

Table 19: Proportion o f faults m issed (ineffectiveness! in Experim ent III by

task type and signallings principle violated...145

Table 20: Proportion o f faults m issed (ineffectiveness! in Experim ent II I by

task type and whether the fault affected system safety or functionality........... 145

Table 1. Difference between SSI checking and testing tasks in term s o f problem

space size, move operator information, and the extent to w hich both are

well- or ill-formed..156

Table 22. A sequence o f transformations to turn DOG into CA T...................................166

Table 23. A winning’ Sierpinski game sequence in symbolic positional fo rm at.......... 167

Table 24. A w inning T O H game using hierarchical labelling... 179

Table 25. A w inning SPS game in num erical hierarchical form at...................................181

Vll

ACKNOWLEDGMENTS

Thanks indeed are due to Dr. Martin Crawshaw and Prof. Bob Hockey for all their

help and advice. Most importantly, I would like to thank Dr. Steve Westerman, my

colleague on the EPSRC grant on which this thesis is based.

Thanks must also go to all the folk at G.E.C. Alsthom Signalling Ltd, Interlogic

Control Engineering Ltd, Signalling Control UK Ltd, Sitec Ltd, and Westinghouse

Signals Ltd. They put up with a lot o f videoed intrusion o f their work and answered

many a stupid question.

I would also like to take the opportunity to thank God, just in case Pascal’s wager also

applies to viva voce examinations....

vui

DEDICATION

D a tt]v naCT(Ar]va fxou...

Chapter 1: Introduction

1 H um an error in the design of a safety-critical system

This thesis is an investigation into some of the causes and possible remedies to the

problem of human error in a complex human-machine system. The system in question

is engaged in the design of computer software for the control o f railway signalling

infrastructure. Error in its operation has the potential to be lethally destructive, a fact

that provides not only the system’s epithet but also the primary motivation and

significance for its investigation.

The thesis consists broadly of two parts. The first part is concerned with exploration of

the system, i.e. hypothesis generation, and is somewhat qualitative in nature. The

second part is in general more quantitatively based, involved in the testing o f the

candidate hypotheses. However, it ends with a fairly lengthy departure from

empiricism to consider some of the more fundamental issues raised but not answered

by the work.

Because o f the broad and exploratory nature of the initial investigation the themes on

which it is based are quite general: ‘human-machine systems’ and hum an error’. The

remainder o f this chapter will expound these terms. More specific literatures will be

discussed later, as and when required.

1.1 H um an-M achine Systems

From bone tools to spacecraft, humans have a long history o f using artefacts to help

them achieve their goals. For a long period these artefacts were relatively simple and

often used by their designers, promoting an easy mapping between intention and

operation. Especially since the industrialisation o f their production, however, artefacts .

have become much more complex and widely available, with a consequential decrease

in their ready usability.

However, it took the necessities o f wodd-war II to give birth to a discipline focused on

why people found it difficult to use artefacts propedy (for a brief history see Sanders

and McCormick, 1993). At this early stage the discipline betrayed its narrow interests

through one o f its names; man-machine studies. However, not all humans are men,

1

Chapter 1: Introduction

and not all artefacts are machines. Further, consideration o f a single person interacting

with a single artefact is only a simple example o f the general case, where complex

systems require the interaction of many people with many types o f artefact, both

tangible and informational. The broadening of the name o f the discipline to ‘human-

machine systems’ still misleads somewhat, but it is in current use and will serve its

purpose here.

At its basis a human-machine system can be thought o f as any number o f humans

interacting with any number o f artefacts in pursuit o f a goal or goals. This rather broad

definition will be structured further by way of Edwards’ (1972) SHEL model This

describes systems in terms of their components, partitioned into the following four

categories that make up the SHEL acronym:

• Software. Many aspects of a system are not physical in nature, but instead are

Virtual’ or informational. The rules of arithmetic and the meaning o f a clock-

face display, for example, are instances o f ‘software’. The term also includes the

definition that it has become synonymous with, i.e. computer programmes.

• Hardware. The physical aspects of the system, such as a computer mouse, or

a doorway.

• Environment: This is that which surrounds and may influence the system, but

which is not considered part o f the system itself. Relevant aspects o f the

environment can be physical in nature, such as temperature and size, or more

abstract, such as the economic environment The environment can be

considered to be the framework in which the system must operate.

• ‘Liveware’. The humans that are part o f the system, e.g. operators, managers;

their characteristics and abilities.

The attribution of system elements to the various categories is a somewhat arbitrary

exercise, particularly when it comes to defining the boundary between the system and

the environment For instance, consider a school It is likely that teachers, pupils,

caretakers, desks, toilets, books, numbers, roofs, emergency exit signs and electricity

would all be considered necessary elements o f a school system with the goal o f

2

Chapter 1: Introduction

educating children in the UK today. However, what about the ministry o f transport

and the environmental health inspectorate? Currently the majority of staff and pupils

must be able to get to a school, and that place must be reasonably safe from hazards.

Both institutions have influence on the conduct o f school business, but seem to be

more distant from the core goal of educating pupils. For my purposes here the

boundary between system and environment will be drawn based upon the smallest set

of elements that are causally interactive. A teacher can have an effect on a pupil and

vice versa, but a teacher cannot easily affect transport policy (although the converse is

true).

Within this SHEL framework, problems arise when there is a lack o f fit between the

abilities o f the liveware and the characteristics of the software and hardware. A 50 cm

high doorway, for instance, would be unusable for a large proportion o f the general

public. Instructions for the use of a hand-dryer written in Polish would be fine in a

Warsaw public toilet but be of less use, on average, in Seoul. The problem o f physical

correspondence between liveware and hardware, the domain o f anthropometry, will

not form part of this thesis, however. Rather, the fit between liveware and software will

dom inate- the realm of cognitive ergonomics.

1.1.1 Safety-critical system s

Safety-Critical Systems (SCSs) are those systems in which failure can lead to injury or

loss o f life; therefore it is in SCSs that the issue o f error has perhaps the greatest

importance. SCSs are often thought of as dealing with great physical forces or toxic

materials, for example nuclear power stations (Health and Safety Executive, 1992),

mass transportation systems (e.g. aviation: Weiner 8c Nagel, 1988) and medicine (e.g.

Bogner, 1994). Indeed, the SCS studied in this thesis is a computer-based railway

control system.

However, given the above definition o f SCSs I would argue that this common view is

too narrow. Much safety-critical activity is carried out in areas as diverse as social work

(e.g. child protection: The Victoria Climbie Inquiry, 2003) and sport and leisure (e.g. in­

line skating: Canadian Academy of Sport Medicine Sports Safety Committee, 1998),

where poor systems also cost lives. Therefore, although this investigation is context-

3

Chapter 1: Introduction

bound by nature o f the railway control system studied, the findings should be

applicable to any system where error is o f concern.

1.1.2 Reliability

The essential difference between safety critical- and non-safety critical systems is our

attitude towards their reliability. With the cost o f failure so high, SCSs must be as

reliable as is practically possible. The concept o f reliability is a central one to this thesis,

so it seems sensible to discuss exactly what is meant by this.

Systems are implemented to carry out specific functions for a period o f time. For

example, the Humber Bridge was designed to transport road traffic: across the Humber

estuary until at least the year 2100. If it stops doing this before that date, i.e. it fails (e.g.

physically, economically) through unintended acts or omissions, we could say that it

has failed to meet its reliability target - it would be an unreliable bridge. In this case

reliability is considered to be the probability of system failure within a given time span.

UK D ef Stan 00-55 (Ministry of Defence, 1997) is a widely-used standard for safety-

related computer software applications. For SCSs with the highest safety integrity level

(level four, where system failure could be “catastrophic”, resulting in multiple deaths),

the probability o f failure in any given year should be no greater than 1 x 10"4, or one in

ten thousand. In comparison, the Microsoft Windows™ Millennium Edition operating

system running on the PC used to write this thesis fails (Le. crashes, requiring a re­

boot) about once every two days - around a million times less reliable than a level-four

SCS. (This is actually an overestimate o f its reliability because the computer is not in

continuous operation.)

UK D ef Stan 00-55 gives a reliability target for SCSs. A crucial factor not addressed by

this standard, however, is how we should know when this target has been attained (or

indeed, how we can attain it). In the example o f the computer system (above) die

estimate o f reliability was based upon the observed behaviour o f the system whilst in

operation. This is clearly not an acceptable way to obtain reliability estimates for SCSs.

Rather, reliability analyses are carried out that seek to predict the reliability o f the whole

system based upon knowledge of the observed reliability of individual components of

4

Chapter 1: Introduction

[a] Reliability = .81

Reliability = .99

Figure II A system w ith two com ponents arranged in series [a] or parallel [b]

that system. For example, consider the following example related by Wickens and

Hollands (2000). It consists o f a very simple system, with only two components,

shown in Figure 1.

Each component has a probability of failure of .1, and therefore a reliability o f .9

(reliability = 1 - probability of failure). I f these two components are arranged in series

[a], then if either component fails then the system as a whole will fail. The reliability o f

the system as a whole is .9 x .9 = .81. On the other hand, if the components are

arranged in parallel [b] then the system will only fail if both o f them fail together. The

probability that the system will fail in this case is .1 x .1 = .01, giving a reliability o f .99.

When components o f a system are arranged in parallel the system is said to have

redundancy.

/. 1.3 Human reliability

Human Reliability Analysis (HRA) is the extension o f the above method into the

domain of human system components (see, e.g. Miller and Swain, 1987). HRA seeks to

decompose human task performance into a number o f components to which error

probabilities / reliabilities can be attached. These human error probabilities (HEPs) are

5

Chapter 1: Introduction

usually expressed in the form of a ratio o f the occurrence o f error divided by number

o f opportunities for error.

In doing so some methods rely upon databases o f human error statistics (e.g. THERP;

Miller and Swain, 1987; Swain and Guttman, 1983), while others rely upon expert

judgement (Absolute Probability Judgement; see Kirwan, 1994). There are, however, a

number of criticisms which have been made o f the HRA approach to absolute error

probability quantification (e.g., see Hollnagel, 1993; Miller and Swain, 1987;

Rasmussen, 1986). I t is certainly the case that HRA techniques are more dependable

when comparing the relative error probabilities associated with different parts o f a task

than when used to give absolute error probabilities (HSC, 1991). Comparison o f HRA

techniques has revealed variance in absolute judgements o f error probabilities

“...between teams as well as within teams, typically with a factor o f 10 or more”

(Hollnagel, 1993, p. 132). There are a number o f reasons why this might be the case.

First, it can be argued that unique circumstances which prevail in each task

environment mean that the statistics contained within error databases cannot be

generalised with sufficient accuracy (see Taylor-Adams and Kirwan, 1995). Second,

human error is often detected by the person carrying out the task him- or herself.

Therefore, it is difficult to derive the probability of system failure simply from the

probability of human error, as is discussed later in this chapter. The persistence of

human error within complex systems relates to the nature o f the task environment (i.e.

opportunities for self-detection), and the self-detection o f errors relates particularly to

specific types o f human error, as will also be discussed below. Third, a basic

assumption of HRA methods is that human errors are independent o f other human

errors and of non-human system failures. This is demonstrably not the case, and

furthermore the nature o f this dependence is complex and difficult to specify (see

Wickens, 1992, p. 432). However, some progress is made on this topic in § 9.3.2.

Even though absolute error probability judgements are problematic, I contend that the

identification and classification of human error, along with the consideration o f relative

(within task) error probabilities remain worthwhile and attainable goals, and will be

used in this thesis.

6

Chapter 1: Introduction

1.2 H um an Error

The concept o f human error seems intuitively important to reliability, and indeed will

provide the focus o f this thesis. What is meant by the term must therefore be made

clear before proceeding, as it is easily confusable with other related but distinct

concepts. The exposition below is informed greatly by the work of Norman (e.g. 1988)

and Reason (e.g. 1990).

First, errors relate to a failure to achieve a goal. Without a goal there can be no error per

se, and the same activities may be considered to be correct on one occasion and

erroneous on another depending on the goal to be achieved. For example, deciding to

clean my teeth might be considered a good thing shortly before going to bed, but an

error while trying to drive safely along a motorway.

Second, because errors relate only to goals they also relate only to entities that can

formulate and strive for goals. In human-machine systems the goals are set by humans,

and so in this context the term human error* is somewhat o f a tautology.

Third, errors relate to the cognitions and actions o f people, but they are distinct from

the consequences o f these cognitions and actions. The activities o f people may result in

undesirable elements and states of systems, but these follow from the errors and are

not the errors themselves. Specifically, errors may result in system faults, and system

faults may lead to system failures.

To illustrate the above, consider the ifollowing example o f a system. The system

consists o f a homeowner (the liveware), the homeowner’s house with a newly installed

alarm system (hardware), the instructions for using the alarm, written in English

(software), and the environment, which in this case is considered to be the threat of

burglary. Because o f the threat of burglary the homeowner would like to protect his or

her house from damage and theft. Therefore, he or she decides to activate the alarm

every time the house is vacated for more than a few moments. On leaving the house

the homeowner presses a sequence o f buttons on the alarm control panel, derived

from his or her understanding of the instructions, in the belief that the alarm will be

activated. However, in error the homeowner merely goes through the test sequence

7

Chapter 1; Introduction

rather than activating the alarm. Therefore, when the house is unoccupied the alarm

system is at fault in relation to the system goal (protect the house from theft and

damage). However, although the homeowner continues to erroneously operate the

alarm system in this way for many years, the fault never leads to system failure

because the house is never burgled.

N ot all systems can tolerate faults in this way without consistently leading to failure. I f

I fill the fuel tank o f my car with diesel fuel rather than unleaded petrol, the fault o f

having a tank mosdy full o f diesel will quickly lead to the car’s motive failure.

(However, whether the decision or action o f doing this would be considered an error

or not will o f course depend on whether my goal was to foul the engine.)

The extent to which faults lead quickly and consistendy to failures can be though o f as

the ‘coupling’ between system elements (Perrow, 1984). In tighdy coupled systems

faults lead rapidly and/or inexorably to failure. A good example o f a tighdy coupled

system is a house o f cards, where virtually any fault, i.e. a fractional misalignment o f a

card, will lead to collapse. Notice that the fault could be introduced by error, e.g.

clumsy placement o f a card, or the decision to construct the house o f cards in a

draughty room, but this is not the only way for a fault to occur; an earth tremor would

do the trick also, as would deliberate vandalism (a Violation’, as termed by Reason,

1990). On the other hand, in loosely coupled systems faults do not inevitably lead to

system failure. For example, the internet was designed to be a loosely coupled system,

able to tolerate many faults in its communications web and yet to continue functioning.

Faults do not always lead to failures, and similarly errors do not always lead to faults.

The Greek astronomer Claudios Ptolomaios (‘Ptolemy’), bom c. A.D. 85, constructed

a model o f the solar system that was in use for approaching 1500 years. Given the

goals and instruments o f astronomy at the time (predicting planetary motions, eclipses,

etc., all done without telescopes, or clocks as we now know them) it was a highly

accurate model, which is for the most part why it persisted for so long. However, it

was a geocentric model (i.e. with the earth at the centre of the solar system), a feature

probably based primarily upon an erroneous and egocentric interpretation o f the

apparent motion of the sun. We now know that the reasoning that led to the model

8

Chapter 1: Introduction

was in error, but the model itself did not lead to any verifiable faults until more

accurate data on planetary motions were produced by the Danish astronomer Tycho

Brahe (b. 1546).

The detection o f errors can come about before any fault or failure o f a system, of

course. For instance, motor control errors can be corrected very rapidly by comparing

an ‘efference c o p / o f the movement commands sent by the brain with a

representation o f the desired movement ‘goal’ (Kawato & Gomi, 1992; Rabbitt, 1978).

In fact, this system is so fast that motor outputs can be modified or inhibited before

they have had a chance to be put into action, i.e. errors are detected and corrected

before they result in faults. More generally, Rizzo, Ferrante & Bagnara, (1994)

described the concept of ‘inner feedback’ as information available to

awareness/working memory that did not arise from external sources. These internal

error-detection processes will not, however, be the focus o f error-detection in this

thesis. Rather, the processes by which faults are detected will be studied.

The detection o f faults, by definition, requires feedback from the human-machine

system external to the human operator. For instance, while writing this thesis I became

aware o f most of my typographical errors through the process o f visual perception o f

misspelled words (or perception o f spell-checking computer software cues), not

through the internal monitoring o f motor commands (although for a more skilled

typist the reverse might have been true). Therefore, to detect faults depends upon our

ability to perceive and distinguish between the actual state o f the system and the

desired state — to compare feedback with some representation o f the goal

The more ‘direct’ the comparison between existing and goal states the easier is likely to

be the fault detection. I f there is an accurate internal model o f the goal state and ample,

timely feedback about a relevant system state, then fault detection is fairly easy: the

equation 7 + 2 = 10 should be a dear and available stimulus to readers who have been

able to read this thesis thus far, but it does not seem to conform to the well-known

rules o f arithmetic As such, it is a fault, and therefore suggests the presence o f an error

in the thinking or behaviour of its author, if his goal was to correctly sum seven and

two. (I did intend it to demonstrate an error, which would make it a fault o f arithmetic

9

Chapter 1: Introduction

but not of exposition. If I now claim that it is an equation written in base nine, rather

than the expected and conventional base 10, then it is a correct example o f arithmetic,

but not of error...)

Clear and timely feedback is o f no use for fault detection if the internal representation

o f the goal state is itself flawed, however. Consider the English word that means ‘a

person who owns or runs a restaurant’. Restauranteur? The word is actually

‘restaurateur’, with no ‘n’. The former has become common, presumably because o f its

consistency with the spelling of the word ‘restaurant’.

Without the perception o f feedback on the mismatch between actual and desired

system states, errors and faults will remain undetected (until and unless they lead to

perceptible system failure). For example, Ptolemy’s theory o f the heavens was revealed

to be faulty only when more precise feedback became available, in this case in the form

of empirical data on the positions o f heavenly bodies.

(Reason, 1990, referred to faults that lie dormant for some time without providing any

feedback as to their existence as ‘latent system errors’, and faults that provide

“immediate” feedback as ‘active system errors’. I believe that Reason’s scheme, while

thematically consistent with the one described here, unnecessarily mixes notions of

errors, faults and failures, and the coupling between them.)

Even when feedback from faults is available, however, it may not be interpreted as

evidence of error, as the feedback itself may be dismissed as faulty. Improvements to

Newton’s theory of gravitation (1687) did not emerge from better observational data,

but by theoretical inconsistencies between it and James Clerk Maxwell’s (1873) theory

of electromagnetism. This is despite the existence o f observational data inconsistent

with Newton’s theory (‘problems’ with the orbit o f mercury noted by Leverrier in

1855), but which were attributed to observational deficiencies. More recently,

mounting evidence o f faults in the thermal protection system of the NASA’s space

shutde system did not lead the system’s managers to react as though they had found

evidence o f system error until the catastrophic failure o f the Columbia spacecraft in

2003 (Columbia Accident Investigation Board, 2003).

10

Chapter 1: Introduction

These issues o f error feedback are basically those discussed by Quine (the ‘Duhem-

Quine thesis’, 1961/1953) and Popper (e.g. 1972). Quine argued that it is impossible to

view any piece o f feedback as indicating unequivocally the presence o f error in a

system, because our understanding o f the system can never be known to be complete.

Popper argued that the existence o f error feedback is the only way to conclusively

demonstrate a faulty system. (Their topic was the practice o f science, but I would argue

that ‘science’ is a system containing humans and artefacts, like any other discussed

here).

1.2.1 Error types

Many classification schemes have been proposed that seek to address issues o f human

error through the nature o f faults. A well known example o f a generic

phenomenological error typology distinguishes between errors or faults o f omission (a

required act was not performed) and those o f commission (incorrect performance o f a

required act or performance of an act which was not required). A number o f authors

have proposed more extensive phenomenological classifications. For example, Miller

and Swain (1987) suggest that errors o f commission can be further divided into

selection errors, sequence errors, time errors, and qualitative errors. Hollnagel (1993)

proposed a scheme in which four basic phenotypes are used as the basis o f an attempt

to model comprehensively all possible sequences of task performance: i) correct action

- the correct sequence o f steps; ii) jump forward - the action sequence jumps forward,

missing steps from the correct sequence; iii) jump backward - the action sequence

jumps backwards to already executed action steps; and iv) intrusion - an action is

executed which is not part o f the current plan.

These approaches are limited if only the faults themselves are known. For instance,

consider the simple example of the formula above: 7 + 2 = 10. What are the possible

errors? Before making any suggestions, assumptions about the goal underlying

performance must be made. Assuming that the goal was to write a correct equation in

base 10 there are still myriad possibilities. There could have been an error o f

commission in the answer (7 + 2 = 9), but also in the numbers to be summed (e.g. 7 +

3 = 10), as well as in the operators (e.g. 7 + 2 i=-10). There could instead have been

11

Chapter 1: Introduction

errors of omission (e.g. 7 + 2 = 10 -1). These examples hopefully serve to show the

difficulties present when trying to infer errors from faults. However, knowledge of

faults and failures is often the only source of information available when trying to

investigate error.

1.2.2 Errors and expertise

In the earlier example, the goal of writing the word ‘restaurateur’ was initially failed and

the word was misspelled. This could be seen as the commission o f one error resulting

in one fault — a spelling mistake. However, it could also be viewed as the writing of

twelve letters correctly and the addition of an extra one erroneously. This is because

virtually all goals can be thought of as being composed of numerous sub-goals (e.g.

Newell and Simon, 1972). The extent to which we should consider it one or 12 goals

will depend upon how these goals are represented internally by the typist.

A total novice at typing would probably have to treat typing each individual letter as a

goal in itself, and perform each action in sequence to achieve the super-ordinate goal

o f typing the word. Performance would be slow, effortful and demanding o f short­

term memory resources (e.g. which letter to type next?) and conscious attention on the

task Errors would be quite likely and even more likely under stress, distraction or

. while performing other tasks concomitantly, especially those demanding similar,

limited processing resources (e.g. Wickens, 1991). With practice the typing o f

individual letters would become chunked into typing groups o f letters, until eventually

even these chunks were integrated into an effortless ability to type the whole word with

virtually no demands on short-term memory or conscious attention (Keele, 1968).

Errors when performing such a skilled task are relatively infrequent, even while under

stress and distraction (e.g. Tayyari and Smith, 1987).

This change in performance as skills are acquired has been extensively described: Fitts

and Peterson (1964), Anderson (1982), Rasmussen (1983) and Reason (1990) have all

described this process with models incorporating three levels o f behavioural control.

Performance at the novice level, called variously the ‘cognitive’ or ‘knowledge-based’

stage, is characterised by slow, consciously demanding and effortful performance.

Partially-skilled behaviour has been described as the ‘associative’ or ‘rule-based’ level,

12

Chapter 1: Introduction

where aspects o f the tasks can be performed without conscious attention, but these

task chunks still need conscious triggering and linking. Finally, expert performance has

been termed the ‘autonomous’ or ‘skill-based’ stage, where goal-directed behaviours

can be performed without conscious attention. Performance at the novice level is slow

and effortful but flexible and adaptable. In contrast, as performance becomes more

learned and nearer to the expert level it is quick and effortless but rigid and

stereotypical.

Regarding errors, Norman (1981) suggested a dichotomous classification based around

whether the goal itself is selected in error or whether the action taken to achieve that

goal is erroneous. O n the one hand, if a sub-goal is selected that will not lead to

fulfilment of the super-ordinate goal it is termed a ‘mistake’. O n the other hand, if the

activity selected to achieve the goal or sub-goal is performed incorrectly (or not

performed), this is termed a ‘slip’ (or ‘lapse’).

For example, I may have the goal o f driving safely and efficiently from my home to my

workplace. A sub-goal o f this is to obey traffic signs and signals. Part o f the route

involves crossing a traffic-light controlled junction with two route options: straight

_ ahead or a left turn, each controlled by its own traffic-light Imagine that both lights are

showing a red ‘stop’ signal, and that I am waiting to go straight on. I see die light in

front of me change to amber then green, and I formulate the sub-goal (not necessarily

with conscious awareness, if this is a well-practiced skill for me) to start on my way. I

do so, and promptly crash into a car turning across my path, down the (for me) left-

hand road. I had misperceived which traffic-light had turned green; in actuality it was

the left-turn light that had changed and the straight ahead light was still on red. In this

case I had made a mistake. I had formulated a goal (start driving) that, while performed

correctly, was in conflict with some o f my higher order goals, i.e. those o f driving safely

and obeying traffic signals. (It was consistent with another o f my goals, however, that

of driving from my home to my work.)

On the other hand, imagine me again waiting at the red traffic light This time I

perceive correctly my straight-ahead light change to green, and formulate the same goal

as before, to move off and continue on my journey. However, by accident I select third

13

C hapter 1: Introduction

gear instead o f first and stall the engine, jerking forward to a halt The driver in the car

behind, expecting to move forward, might even bump into the rear o f my car. In this

case the goal was correct but was not executed properly; I had made a slip.

It’s also quite feasible that I could have made both errors together; misperceiving the

traffic light and selecting the wrong gear. In this case the combination o f both errors

might have resulted in a more favourable outcome than if I had merely made either

one; I wouldn’t have crashed into the car in front, and the car behind, not expecting to

move, would have been less likely to have bumped into my rear. (However, this would

merely have been a fortuitous feature o f the coupling between errors, faults and

failures in this particular system; more errors and faults are usually worse for system

reliability than are fewer.) In general, though, the occurrence o f multiple errors and

faults is to be expected in any reasonably complex system; “there’s many a slip ‘twixt

the cup and the lip”, as the saying goes.

Using a combination o f Norman’s (1981,1988) and Rasmussen’s (1983,1986) models,

Reason (1990) offered an integration and slight elaboration on the above, with his

generic error modelling system. He proposed that slips and lapses were likely to

dominate in the domain o f expert, ‘skill-based’ behaviour. He also proposed that

mistakes come in two varieties, depending upon the level o f behavioural control. In

fully consciously-controlled behaviour, the ‘knowledge-based’ domain o f novice

performance, mistakes o f information processing occur, such as the overloading of

short-term memory, confirmation bias (e.g. Wason and Johnson-Laird, 1972) and the

like. In between these two endpoints, in the domain o f ‘rule-based’ behaviour, mistakes

o f perception dominate, whereby otherwise efficacious chucks o f behaviour are

inappropriately triggered when the situation is misclassified.

In the first example from the driving scenario related earlier, a rule-based mistake was

made when the driver misperceived the traffic light and initiated a skilled behavioural

sequence that would have been appropriate in other circumstances. In the second case,

the traffic light was perceived correctly and the correct goal, to start driving, was

selected, but the execution o f the skilled action was flawed.

14

Chapter 1: Introduction

1.3 Performance Shaping Factors

There are a number o f factors which will influence the propensity o f an individual for

error. These are often termed Performance Shaping Factors (PSFs: Miller and Swain,

1987) within the context o f HRA, and may be classified as either external (i.e. relating

to characteristics o f the task environment) or internal (relating to characteristics o f the

individual). Examples o f external PSFs are: work layout, environmental conditions,

work design, training, job aids, and supervision. In contrast, internal PSFs relate to the

“...skills, abilities, and attitudes that the worker brings to the job” (Miller and Swain,

1987, p.223).

In order to determine the influence o f PSFs upon task performance they must be

considered within the context of broader models o f cognition. Although a

comprehensive review is beyond the scope o f this thesis, I will briefly mention a few o f

the most influential factors which are applied within this context

1.3.1 Attentional limitations

Since the late 1950’s, much research effort has been devoted to developing models of

attentional limitations. Early work in this area focused upon attentional selectivity and

was concerned with identifying ‘bottlenecks’ in the information processing system (e.g.

Broadbent, 1958; Deutsch and Deutsch, 1963; Treisman, 1964). More recently, the

ability to simultaneously process information has become the central focus and models

which characterise attention as one (Kahneman, 1973; Moray, 1%7) or more (Wickens,

1984) pool(s) o f resources which can be flexibly allocated to task performance have

enjoyed much success in predicting task performance.

The implications for human error are that if task demands exceed attentional

processing capacity error is more probable. This may lead to “mistakes o f bounded

rationality” (Reason, 1987), which are reflected by simplified or incomplete planning of

actions. Alternatively, “mistakes of reluctant rationality” may occur, as a result of

individuals adopting task performance strategies which avoid novel thought (i.e. only

considering a restricted problem space) in order to minimise ‘cognitive strain’ (Bruner,

Goodnow, and Austin, 1956).

15

Chapter 1: Introduction

1.3.2 Mental models of the task environment

An influential theoretical approach which relates to the mental representation o f the

task environment is that o f the mental model (Gentner and Stevens, 1983; Johnson-

Laird, 1983). Mental model theories postulates that for any given task environment an

individual will inevitably form a mental model which is “...a rich and elaborate

structure, reflecting the user’s understanding o f what a system contains, how it works,

and why it works that way” (Carroll and Olson, 1988, p. 51). This will be used as the

basis for predicting the outcome of future interactions with the task environment. A

mental model may be incomplete or inaccurate, and as a consequence “mistakes o f

imperfect rationality” may occur. These errors may be typified by “procedures that are

too rule-bound, too rigid, and too conservative. Solutions to previous problems will

continue to be applied and too little account will be taken of actual or potential

change” (Reason, 1987, p. 18).

1.3.3 Individual differences

There are a number o f dimensions o f individual difference which will exert an

influence upon task performance. These may relate to labile differences, such as mood

or expertise, or to more stable differences, such as cognitive ability or personality (see

van der Veer, 1989). Individual differences can be predicted to interact with the effects

o f each of the frameworks o f cognition described above. For example, one o f the main

factors which will determine the availability o f attentional resources is expertise. As

individuals become more expert in task performance, so task performance becomes

automated (see Schneider and Shiffnn, 1977) and attentional resource demands are

reduced. This is analogous to the shift in performance level from Knowledge-based

through to Skill-based as tasks become more practised and expertise is acquired.

Similarly, expertise may reflect a more complete or more accurate mental model o f the

task environment which will serve to reduce errors.

1.4 Summary

To summarise, errors are failures in goal-directed activity, with a multitude o f potential

causes depending upon the knowledge, skills and abilities o f the individual concerned.

Errors often, but not always, introduce faults into the wider human-machine system,

16

Chapter 1: Introduction

and faults may lead to failure of the system in some way. Often a crucial goal o f an SCS

is seen as minimising error. Hopefully the preceding analysis has made it clear that,

while this is desirable, the actual overriding goal should be that o f minimising system

failures. To understand how this may be achieved first it is necessary to understand

what the system is composed of and how it is coupled together — how errors may lead

to faults, and how faults can lead to failures. This task is tackled in the following

chapter.

17

Chapter 2 : Task A nalysis

2 T ask Analysis o f the Solid State Interlocking system

This chapter presents a task analysis o f the way in which software for a computer-

based railway control system is produced. The control system is called Solid-State

Interlocking (SSI), and its purpose is to allow safe and efficient movement o f trains

over a railway network. It will be described in more detail through the course o f this

chapter.

First, a process analysis (Piso, 1981) of the SSI system will be presented. This provides

a description o f the ‘raw materials’ for later analyses to work upon (e.g. what elements

constitute the system?). Second, a Hierarchical Task Analysis (HTA; Annett &

Duncan, 1967) will be shown, which decomposes the jobs that make up the activity of

the SSI system.

2.1 Process analysis o f the Solid State Interlocking system

Piso (1981) proposed that a process analysis is a useful and necessary exercise to

conduct before the more formal Hierarchical Task Analysis (HTA). This is because

HTA represents data primarily about the goals and actions o f the human operators o f a

system, without explicitly describing what else the system consists o f (e.g. software,

hardware), its goals, how its components are arranged, the logic of its operation, and so

on. The process analysis is intended to give the reader the necessary framework within

which to view the subsequent task analyses.

2.1.1 Method

Piso (1981) suggests goals rather than methods should be used as a way to structure

the analysis. The analysis should result in a description o f what the system does and

how it does i t As an extension of Piso’s method the process analysis is structured here

in terms o f Edwards’ (1972) SHEL model: Software, Hardware, Environment and

Liveware. This extra categorisation provides more structure to the data and facilitates

integration of information from the Process- and more complex Hierarchical Task-

Analysis.

18

Chapter 2 : T ask A nalysis

2.1.1.1 Sources of data for the process analysis

Piso (1981) suggests interviews with task experts as the sole source o f information for

the process analysis. This investigation used approximately five hours o f interviews

with four senior participants drawn from the two main industrial collaborators, but

also task observations and task documentation. Documentary information was

gathered from a number o f sources: ‘SSI 8500 - Design of SSI Signalling Schemes’

gives a broad overview o f railway signalling rationale and implementation; ‘SSI 8003 -

Data Preparation Guide’ is the standard manual for the detailed design and coding of

the SSI programming language. Both manuals are comprehensive in their coverage o f

material, extending to over 100 pages each.

The primary focus o f this phase was not to examine the role o f human designer.

Neither was it intended to be a comprehensive description o f the hardware and

software components. For further details o f these systems the reader is referred to

Cribbens (1987) and Leach (1991).

2.1.2 Results

2.1.2.1 System goals

A railway network must satisfy two overriding goals:

1. It must be ‘live’, which means that it must allow trains to travel between points

in the railway network. The more trains that can travel across the network at

the same time, at higher speed and/or closer separation, the greater the volume

o f traffic the network can handle and so the greater the ‘liveness’ o f the system.

2. It must be safe. Trains must not be allowed to crash into one another or be

derailed. Additionally, trackside workers and the general public must be

protected or warned of approaching rail traffic when and where they are likely

to come into conflict.

The way that the SSI system achieves the above conceptual goals is by satisfying a

set o f more concrete goals:

19

Chapter 2 : T ask A nalysis

3. The SSI system maintains a real-time model o f the state o f the specific railway

network under its control. It receives and stores information about train

positions and the status of trackside equipment, e.g. points and signals, as well

as information regarding the commands to alter the system state issued by

human signal workers.

4. Based upon the information from the real-time model, the SSI controls the

status o f the trackside equipment under its command, allowing the system to

only enter certain permissible states (designed to achieve 1 and 2, above).

Figure 2, below, shows a simplified railway signalling track diagram, with two main

(horizontal) tracks connected by two short diagonal sections. Trains travel along the

tracks from signal to signal. The SSI system must ensure that only safe train

movements are allowed.

SI S3

s = signal t = track section p = points

Figure 2: Schem atic of an example rail network

As stated in goal 4., the SSI system must allow the railway network to enter only certain

permissible states, and to stop it entering any others. It uses the information from die

real-time model to feed into a control programme, which determines whether requests

from human signallers or automatic timetabling software would put the system into an

allowable or unallowable state. For example, a request to send two trains onto the same

section o f track at the same time should be refused by the SSI, as they would be in

danger o f crashing into one another.

20

Chapter 2 : T ask A nalysis

Figure 3, below, shows an example o f the “Geographic Data”, as the site-specific

computer programme is called, that would control some o f the functionality o f the

example rail network shown in Figure 2. It shows the conditions that must be fulfilled

before Route 2 (R2) can be set, allowing trains to travel from Signal SI to Signal S7.

This route involves a train starting on track section T2, moving onto track T3 and

down across the points onto track T9, then on via T10, T11 and T12 to signal S7.

*QR2 R2 a

P l c r f , P 2 c n f

U10-AB f , U3-BC f

then R2 s

U3-CB1, U9-CA1, U1OBA1,

11-BA1 U12-BA1

PI c r , P2 cn

S2 clear bpull

Figure 3: Exam ple SSI Geographic D ata

This entails checking that the route is available (R2 a), e.g. not barred because o f

maintenance; that the points are in the correct position, or it is safe to move them to

the correct position, to allow the train to cross from T3 to T9 (PI e r f , P2 enf); and

that other, conflicting routes are not already set, which is done by checking two

opposing ‘sub-routes’ to ensure that they are free (U10-AB f, U3-BC f). I f these checks

are passed, then the route is set (R2 s); the individual sub-routes in Route 2 are locked’

(U3-CB1, U9-CA1, etc.); the points are moved to the correct position (PI cr, P2 cn);

and the route entrance signal is checked to see if it is ‘clear’ to be changed to green (S2

clear bpull). In the final line shown in Figure 3, signal S2 is commanded to change to

green, an incorrect command as route R2 runs from signal SI. This error would be

potentially disastrous, allowing two trains travelling in opposite directions onto the

same section o f track.

/ Route label and availability

/ Points test

/ Opposing route(s) test

/ Route setting

/ Sub-route locking

/ Points controlling

/ Signal clearing

21

Chapter 2 : T ask A nalysts

It is the programming, verification and validation process for this ‘geographic data’ that

is the focus o f the present study. The SHEL model will be used to structure the

various elements that combine to achieve the above goals o f the system.

2.1.2.2 Environment

The environments in which the system operates have an over-arching effect on the

choices for how it should function. The commercial-economic environment will tend

to value liveness over safety concerns. The social-legal environment will tend to value

safety over liveness. This competition between goals may seem tenuously related to the

question o f how the SSI system achieves goals 1 and 2; however, this tension is likely

to have direct impact on the general approaches to control used by the system, and so

the methods that can be adopted to ensure the railway’s functioning.

An example o f this was seen in the wake o f the 1988 Clapham rail disaster. I t was

claimed that Automatic Train Protection (ATP) systems, not in use at the time

(although available), would have prevented the accident and 34 fatalities. ATP systems

seek to keep a minimum separation distance between trains, as opposed to the current

“absolute block” system which divides the rail network into sections which are only

supposed to contain a single train at any one time. However, analyses which sought to

enumerate the maximum amount of money a population (of rail users in this case)

would be willing to pay to prevent each fatality revealed a maximum estimate o f

around £2 million. ATP would have cost at least £15 million (per fatality) to install

(Hope, 1992; Jones-Lee & Loomes, 1995.) and so it’s introduction, though promised

by regulators, was dropped.

The economic and political climate has also forced radical organisational change onto

the UK rail industry over the past few years. Now defunct, British Rail was a single,

nationally-owned organisation responsible for all major aspects o f the rail service. It

therefore had responsibility and control over both safety and liveness, and could

strategically manage the tension between the two. The situation today, however, is

much more organisationally complex. There are many and various for-profit

companies that between them provide rail transportation in the U K The way that this

has been organised has meant that responsibility and control for safety goals and

22

Chapter 2 : T ask A nalysis

liveness goals do not lie wholly within the same organisation. Indeed, virtually any

aspect o f the operation o f the rail network in the UK today relies upon the interaction

o f many separate organisations, e.g. train operating companies, signalling companies,

engineering companies, all with sub-contractors and suppliers. (This situation,

however, is now changing again, with the demise o f Railtrack, the company that was

previously in charge o f rail infrastructure.)

The physical environment o f the UK’s rail network is compact and dense. Although

reduced in overall size in the last 50 years, in places (e.g. London, Crewe) the network

is still one o f the densest in the world. This has meant that the SSI system must be

complex and flexible enough to deal with the intricacy o f the rail network it must

control

Regarding the physical environment in which SSI design work is conducted, it is

carried out predominately in open-plan office-based environments. This means that

designers have easy access to one another (and their expertise), but they also have only

partial control over unwanted noise and distractions.

2.1.2.3 Hardware

2.1.2A SSI installation

The safety-critical processing of the ‘geographic data’ is carried out by three computer

micro-processors. Each contains a validated generic control program and location-

specific “geographic data” stored in Electronic Programmable Read-Only Memory

(EPROM). The control programme, standard to all SSIs, interprets the geographic

data. The geographic data is unique to each installation, however; each railway layout is

as different as, say, the road layout in each town or city. This geographic data specifies

information about the layout o f the rail network and also the logic o f the train

movements that are, and are not, allowed. Each SSI processor maintains a real-time

“map” o f the state o f the railway in Random Access Memory (RAM), including such

information as the state o f each signal and set o f points.

Each SSI system contains three identical control processors which operate on a

majority voting system. This is to guard against any one processor having control of

23

Chapter 2 : T ask A nalysis

the system should one o f the processors fail or have to be taken off-line for

maintenance. This defends against mechanical failures and corrupted memory, but will

not guard against incorrect geographic data, as the same version is loaded into each of

the three processors.

2.1.2.4.1 The Design Workstation

The critical task o f writing and validating the geographical data for each installation is

carried out using the ‘design workstation’ (DWS). The DWS comprises a workstation

computer (with a display screen, keyboard and mouse), and an SSI simulator with two

colour display terminals, each with a trackball controller. ‘Geographic data’, the SSI

computer code, is written using the UNIX-like DWS computer, which offers text­

editing applications, compilers and so forth. The code can then be uploaded to the SSI

simulator for testing. (The SSI simulator is essentially a cut-down SSI installation, with

only one control processor instead o f three, as 100% availability is not critical during

design.) The SSI simulator is fitted with RAM instead o f the usual EPROM to allow

quick loading o f newly written SSI code.

One o f the simulator display screens presents a representation o f the simulated state o f

trackside components (e.g. points, signals). The other screen shows a signaller’s panel,

which presents the controls and displays regarding the requesting and setting of routes

and related functions.

2.1.2.5 Software

The most important non-physical elements o f the SSI system are the Standard

Signalling Principles’ (SSPs) and the SSI geographic data ‘language’.

The SSPs embody the philosophy o f how the safety goals o f system operation are to

be achieved. The philosophy o f‘absolute block’ signalling is in use in the U K today,

and has been for over 50 years. The basic tenet is that only one train is allowed into

any one section o f track at a particular time. The entrance into each track section is

guarded by a signal which operates in a similar way to a traffic light. A green light

means the track section is clear and trains can enter, a red light means the section is

24

Chapter 2 : T ask A nalysis

occupied and the train must stop. That way if a train were to break down the last signal

passed by the train would be on red, barring the route to following trains.

The geographic data language is a proprietary programming language specific to SSI. It

was developed to have similar concepts and operational logic to the electro-mechanical

relay signalling systems it replaced, so allowing signalling engineers with expert

knowledge and skills in die previous system to be able to convert efficiently to SSL

Example SSI geographic data ‘code’ is shown in Figure 3; the similarity to generic, text-

based programming languages is evident.

2.1.2.6 Liveware

The signalling engineers, at least those working for the firms participating in this

project, were all male and from the UK ethnic majority. They tended to be from

science and engineering educational backgrounds and all seemed familiar and

competent with standard computer technology. They were heterogeneous with respect

to their ages and levels o f SSI knowledge and experience, however.

25

Chapter 2 : Task A nalysis

2.2 H ierarchical T ask Analysis o f the Solid State In terlocking system

There is a wide range o f task analytic techniques which may be used to describe and

evaluate human-machine and human-human systems, each with associated strengths

and weaknesses (cf. Diaper, 1989; Kirwan and Ainsworth, 1992). Within the present

context, a number o f varied, and potentially conflicting, demands were placed upon the

task analytic process.

The task o f SSI data design incorporates a diverse range o f component elements. It

was necessary that the task analytic method be capable o f describing this ‘macro*

structure o f the design process, including the rules governing the overt behaviour o f

the designer. However, it was also important that specific components o f the SSI data

design process could be described in fine detail. In order to meet these potentially

conflicting requirements o f breadth and depth Hierarchical Task Analysis (HTA) was

used.

HTA was originally specified in 1967 by Annett and Duncan at the University o f Hull

and has since been developed and refined by other workers (e.g. Piso, 1981; Patrick,

Spurgeon and Shepherd, 1985). There were a number o f reasons to believe that HTA

would be the most appropriate technique to provide a description o f the SSI design

process. HTA is a versatile and powerful tool which has been applied in areas as wide

ranging as the allocation of automation within human-machine systems (Fewins,

Mitchell and Williams, 1992), operational safety assessment (Rycraft, Brown and

Leckey, 1992) and the development and planning o f training provision (Patrick et al,

1985). It provides a logical, hierarchical breakdown process which enables tasks to be

specified in great detail. However, unlike other potential analysis methods such as

Task-Action Grammar (Payne & Green, 1986), it is not so formalised that it becomes

unworkable for very large tasks (such as SSI design).

In doing so, HTA focuses on the goals that the system is trying to achieve in terms o f

the activities that the human must perform to attain those goals. Thus, the activities o f

the human designer are linked direcdy to the systems requirements.

26

Chapter 2 : T ask A nalysis

2.2.1 The HTAprocess

HTA seeks to break down an overall system goal into a hierarchy o f sub-goals,

together with die attendant plans and operations required to achieve them within task

constraints. I t seems pertinent at this point to discuss exactly what these terms mean

within HTA, before going on to describe the procedure adopted for the analysis.

The basic concepts used in HTA are:

• Goals. HTA describes work activity in terms o f the goals that are to be achieved.

Goals in this context are related to attaining desired states o f the system under

control or supervision.

• Tasks. The task is the means o f achieving a goal. There may be a number o f

different tasks that can achieve the same goal. Various constraints, such as time,

availability o f resources (e.g. trained personnel), and habit will influence which

specific task is selected on any given occasion.

• O perations. Operations refer to units o f behaviour which must be carried out in

order to carry out a task. They specify the lower level "action-information-

feedback" loops that make up controlled activity. It is at this level that aspects o f

performance difficulty can be assessed. For example, by examining whether the

feedback from an operation is unambiguous.

• Plans. Plans refer to the circumstances under which various operations should be

carried o u t It is as important knowing when to carry out an operation as knowing

what exactly to do.

The HTA analyst takes an arbitrarily-selected overarching goal and decomposes it into

several sub-goals. A plan for scheduling the sub-goals is also derived, so that together

the sub-goals and plan can be considered equivalent to the superordinate goal. Each

sub-goal then becomes a candidate for decomposition into further sub-goals or

operations. This process o f decomposition could potentially continue adfinitum.

27

Chapter 2 : T ask A nalysis

Therefore, at some point the level o f detail o f description o f the sub-goals and

operations involved must be assessed to see if they are adequate. This decision is aided

by the use o f a stopping rule. For instance, a common rule is the "PxC" rule. In this

case, the probability (P) that the operation would be carried out unsatisfactorily is

multiplied by the cost (Q to the system if this occurs. I f the product is low the analysis

o f that particular branch o f the hierarchy is stopped, if high, the analysis is continued to

pinpoint the exact area o f difficulty. O ther stopping rules can be used and in this way

the analysis can be tailored to the overall goal o f the research.

2.2.2 Method

2.2.2.1 Sources of data

There are a number o f ways in which data can be collected for HTA. Where available,

documentation associated with the task, e.g. manuals or training information can

provide detailed task specifications. Observation o f the task can be particularly useful

for detecting task organisation and scheduling. Interviews with task experts, however,

provide the most flexible form o f data collection, allowing the analysis to proceed as

required at either the macro or micro level A combination o f methods can give a more

accurate result than would be possible with just a single method. The current study

employed interviewing as the major form o f data collection, supplemented by

observation and documentation.

2.2.2.2 Participants

Nine signalling engineers, from GEC Alsthom Signalling Ltd., Westinghouse Signals

Ltd and British Rail Engineering, took part in the analysis. All were male and between

30 and 55 years o f age. The bulk of interviewing (seven out o f sixteen interviews) took

place with the three most experienced engineers, all with over ten years o f signalling

experience. Each interview took place in a quiet room away from the interviewee's

normal work area and lasted between approximately one and three hours.

2.2.2.3 Procedure

Initially, a statement specifying the goal that the SSI designer (task-expert) must

achieve was elicited. The task-expert was then asked to restate the goal in terms o f a

number o f sub-goals or operations, together with a plan for carrying them o u t These

28

Chapter 2 : Task A nalysis

sub-goals, if performed according to the stated plan, should together be equivalent to

the super-ordinate goal Sub-goals were then assessed to decide if any o f them required

re-description at a more detailed level. Any sub-goals that required re-description were

then treated as the super-ordinate, and the task expert was asked again to re-describe

them in terms o f a number o f sub-operations together with the plan for carrying them

out. This process was iterated until all the relevant areas o f the hierarchy had been

adequately described.

When considering the point at which the re-description should stop two principles

were applied. The first was “PxC”, as related previously. In instances where there was a

difference o f opinion between task experts when using the ‘TxC” rule an additional

guiding principle was used. This concerned the degree to which task performance was

concerned with skilled m otor or cognitive operations. W hen tasks were concerned only

with fundamental skills, e.g. moving a mouse pointer or reading a manual, they were

not considered priorities for re-description.

As the task analysis progressed a semi-structured interview schedule was used to ensure

that all pertinent areas in terms o f the task analysis were covered. Areas o f questioning

included: the information used by operators in decision making; the manner in which

feedback about actions and general system state are conveyed to the operator, and;

potential problems or errors. After the first interview subsequent participants were

shown the current analysis at the start o f their interview. They were taken through it

and asked to make comments, highlighting areas o f disagreement or which they

thought required clarification. This confirmatory approach allowed the analysis to

continue to a greater depth than would otherwise have been possible with the available .

resources if the whole analysis was repeated at each interview.

2.2.3 'Results

The hierarchical goal structure of the task o f “Producing a commissioned SSI scheme”

(Goal 0) is rather large, and so is reproduced in full in Appendix A. To aid the

following discussion the first two levels are shown in Figure 4.

29

Chapter 2 : Task A nalysis

Figure 4: P artial H ierarchical T ask A nalysis o f the Solid State Interlocking

G eographical D ata design process.

30

Chapter 2 : T ask A nalysis

This HTA relates to the production o f a single SSL As can be seen, the overall goal can

be subdivided into two second level subordinate goals, the first o f which comprises an

office based design process using the design workstation (Goal 1), and the second

relates to the installation, checking and final commissioning o f the SSI on-site (Goal 2).

Given the previously stated aims o f this research project, it is the former o f these two

phases which is o f primary interest, and for this reason the level o f analytical detail is

greater in this area o f the task. However, it should be noted that many areas o f the on­

site checking process repeat earlier office-based checking stages (Goals 1.4 and 1.5) and

many on-site task components could be expanded by the inclusion o f some o f these,

previously described, elements.

The plan associated with Goal 0, indicates simply that office-based preparation is

followed by on-site installation. However, it should be noted that, as described in Plan

1.2, errors in the on-site phase may require that the design process return to an earlier

stage.

The first stage in the preparation o f SSI geographic data requires that the appropriate

source materials be obtained, or produced if they are not already in existence. These

materials include: a copy o f the operators requirements; the Standard Signalling

Principles (SSPs); the Data Preparation Guide (a.k.a. SSI 8003); the scheme plan; a

route list; and may also include control tables. Control tables are lists o f the formal

properties required from the interlocking and are produced from an analysis o f the

scheme plan. They are essential for the later checking and testing stages o f the design

process, but the point at which they are produced may vary according to the

complexity o f the scheme plan and the experience o f the signalling engineer.

Experienced signalling engineers may prefer to work from primary sources o f

information (i.e. the scheme plan) rather than introduce a secondary source (the

control tables) at this point in the process which could merely propagate errors in the

control tables. In this case the control tables may only be prepared immediately prior

to the formal checking o f the data. '

31

Chapter 2 : T ask A nalysis

Similarly, the preparation o f the TFM database (a computer file which records the

allocation o f trackside equipment to parts o f the SSI system) is included as a

subordinate o f Goal 1.1, as the contents are used in later stages o f the design process

as ‘source information’. This decision is somewhat arbitrary, and it would also be

reasonable to view the preparation o f this file as a subordinate o f Goal 1.2. However,

the constraints o f the task are such that the TFM database must be prepared before the

geographic data files are written.

The preparation o f the geographic data (Goal 1.2) requires that a number o f identity

files (Goal 1.2.1), data files (Goal 1.2.3), and panel files (1.2.4) are written. In addition

the simulation screens must be prepared and co-ordinated (matched to the

components o f the particular SSI).

Identity files define unique names which are used to represent the component

elements o f the railway (signals, points, track circuits, etc.), or which reference bits in

memory (‘flags’) which are used to retain information as to the state o f the railway (e.g.

timing information).

Data files contain statements defining the logic which will be applied to the operation

o f the railway. The IPT (input) and OPT (output) files control the input and output

signals from the SSI processors. The FOP (Flag Operations) file is primarily concerned

with dealing with the aforementioned ‘flags’ in memory that retain system state

information for future processing.

As the system must maintain a real-time map o f the state o f the railway network the

information contained in the above three data files is processed regulady (about every

about half a second). The information contained in the MAP (defining the elements o f

the railway, e.g. signals), PFM (which contain the logic for deciding if the Points are

Free to Move to different positions), and PRR (Panel Route Requests, as set manually

on the signaller’s screen or automatically by timetabling software) is only processed as

required. Panel data files contain information relating to the signaller’s display screen.

32

Chapter 2 : Task A nalysis

All o f these files may be produced using the DWS, which runs under a UNIX-like

operating system. However, many o f the engineers dislike the file editing facilities

which are afforded and opt to write files using a PC system, and port these files to the

UNIX platform. File templates may be used to speed the more repetitive elements o f

geographic data preparation. The data in these files may be regularly compiled in order

to detect syntax errors.

As indicated by Plan 1.2 the sequence in which these sub-goals are performed broadly

requires that the identity files be prepared first, followed by the preparation o f the

simulation screens. The preparation o f the data files and panel files can then proceed in

any order. The engineer may exercise some discretion over this sequence, choosing to

write each file in stages, or to return to earlier stages in order to deal with complexities

as they arise. Compilation o f the files may occur at any point in this process, but must

be the last operation performed in the completion o f Goal 1.2.

The preparation o f geographic data is followed by a process known as ‘set to run’

(Goal 1.3) in which the accuracy o f specific component elements o f the information

contained in the data files is tested by the same design engineer who wrote them, on

the SSI simulator. This takes the form o f an iterative process in which, as errors are

detected, the operator will return to the appropriate subordinate o f Goal 1.2 in order to

make the required corrections (see Plan 1). The tasks associated with this goal are in

some respects similar to those associated with Goal 1.5 (Simulation test data). The

main difference is in terms o f comprehensiveness; the set-to-run is less stringent, and

requires only that points and routes can be set, and that signals can show a green light

when required. However, it may be that, at the discretion o f the engineer, further

testing is completed at this stage.

A new Central Interlocking Status Record (CISR) must be created before the data is

passed on for checking. This provides version control for the data, and will follow the

data as it goes through the checking and testing processes, providing a record o f

corrections.

33

Goal 1.4 takes the form o f an independent check o f the geographic data code. This is

. performed by a different, and usually more experienced signalling engineer. A paper

copy o f each o f the files generated at Goal 1.2 is systematically checked against the

source information (control tables and signalling plans) for faults. I f faults are detected

at this stage they are logged and, once the check is complete, details are returned to the

engineers) who completed the initial preparation work, for correction.

The independent simulation test o f the data (Goal 1.5) is again conducted by a further

one or two highly experienced signalling engineers. This stage o f the design process

consists o f checking the working o f the SSI using simulation screens to represent

signaller’s and trackside information. A complex sequence o f testing is undertaken in

which the SSI is examined in relation to both the correct operation o f the component

elements o f the railway, and also the functional requirements o f the system.

The first stage o f this process involves a correspondence test (Goal 1.5.1), in which the

components on the signaller’s and trackside displays are tested to see if they are

correctly bound together (e.g. moving a particular set o f points on the signaller’s screen

should result in the trackside display showing the movement o f the same set o f points).

It was reported that faults detected at this point are most frequently associated with the

misallocation o f screen co-ordinates.

Correspondence testing is followed by ‘principles testing’ (Goal 1.5.2), in which the

logic associated with the functioning o f the railway is examined. The use o f control

tables is fundamental to this process. Faults are logged by the engineer, or engineers,

performing the simulation test, and details are returned to the engineer who completed

the initial preparation work (Goal 1.2) for correction.

Once these independent checking stages have been successfully completed the

EPROMs are prepared (Goal 1.6). These chips contain a permanent record o f the data

for installation on-site.

Chapter 2 : T ask A nalysis

34

Chapter 2 : T ask A nalysis

The on-site testing (Goal 2) has much in common with the simulation-testing stages

previously described, as the on-site SSI is run in ‘simulation’ mode (Goal 2.1). As with

the earlier simulation test, a correspondence test is the first subordinate goal (Goal

2.1.1), and this requires that information on die signaller’s display corresponds to the

state o f trackside equipment However, if the intedocking is a replacement for a

running system it may not be possible to incorporate the real trackside components in

the testing process, for safety reasons associated with the concurrent running o f the

railway. In this case trackside simulations o f signals, points, etc. are used in order to

verify the correct transmission o f information.

The on-site principles test (Goal 2.1.2) essentially covers the elements which could not

be achieved by the office-based simulation test (Goal 1.5), and includes elements such

as checking for lamp failures (Goal 2.1.2.1), timing problems (2.1.2.2), and complex

cross boundary operations (2.1.2.3) where die SSI system must communicate with

neighbouring railway areas.

The final commissioning o f the SSI (Goal 2.2) involves the completion o f the

necessary paperwork, certifying the correct operation o f the scheme, and handing over

to the operator.

2.2.4 Discussion

As stated earlier above, the aim o f this phase o f the project was to provide a descriptive

framework upon which to base subsequent field- and laboratory w ork The primary

areas o f interest will be the programming of the geographical data files (subgoals of

1.2), ‘set to run’ (Goal 1.3), desktop checking (Goal 1.4), and simulation testing (Goal

1.5). These components form the kernel o f the knowledge and skills required in

designing and writing reliable SSI code. From now on, these tasks will together be

referred-to as the SSI Data Preparation Process, or DPP.

Even regarding this circumscribed task domain there is still more detail available than

the limits o f this thesis would allow full treatment of. W hat follows therefore is

discussion o f a number o f important points which arose during the course o f HTA,

some o f which are used to guide further investigations in later chapters.

35

C hapter 2 : T ask A nalysis

2.2.4.1 Staff allocation

The allocation o f individual members o f staff to the various elements o f the DPP is

largely based upon experience. The least experienced design engineers are required to

write the data files. Some o f these files are more difficult to program than others, for

instance more experienced engineers may prepare the OPT and PRR files. More

experienced engineers will also perform the desktop checking process, and the most

experienced engineers will perform the simulation testing. Ideally this system o f staff

allocation provides an opportunity for training to take place, with less experienced

engineers learning from the errors which are detected by their more experienced .

colleagues during the checking and testing phases.

There are a number o f implications o f this staff allocation policy with respect to the

efficiency o f the DPP and the forthcoming error analysis in the next Chapter. First,

although the D PP is time consuming, it must be recognised that this is in part due to

training concerns. An opportunity is being provided for less experienced engineers to

develop their skills, and, as a consequence, it is probable that more errors will be made

in the stages o f the DPP where comparatively less experienced engineers are employed.

Obviously, if this staff allocation policy were not adopted, the changed demands placed

upon the experienced engineers and the suitability o f alternative training methods

would need to be considered.

Second, if the independence o f the checking and testing is to be maintained, this policy

requires that any assistance given to the less experienced engineers in order to correct

errors is not provided by the person performing the checking or testing. Allied to this,

care must be taken that ‘in house’ conceptual errors are not propagated (cf. Cutler,

1991).

Third, in these circumstances it will be difficult to determine whether a particular type

o f error is resistant to detection at a particular stage o f the D PP because o f the type o f

task demands, task environment, or because o f the level o f experience o f the engineer.

36

Chapter 2 : T ask A nalysis

2.2A.2 Automatic Data Preparation

A current area o f interest, which is strongly related to the issues above, concerns

attempts which are being made to automate the DPP. Work has been undertaken at

the University o f Warwick (Collyer and Wong, 1993), and is in progress in each o f the

major organisations involved in SSI, to automate some or all o f the tasks involved in

the DPP. Each o f these systems o f automation appears to differ from the others in

significant respects. However, it is recognised that 100% automation o f the DPP is not

currently realistic, and is perhaps undesirable (cf. Dennien and Needle, 1991), and that

80-90% might be a more achievable figure. The remaining 10-20% would comprise the

most complex elements o f the task and, as a consequence, time savings associated with

automation may be o f the order o f 50%.

Information relating to the development o f ‘automatic data preparation* in each o f the

collaborating organisations was subject to confidentiality agreements, and specific

details cannot, therefore, be included in this thesis. However, a number o f potential

problems arise from the change to partial automation o f the DPP.

The automated DPP will require fewer signalling engineers, but they will need to be

highly skilled and capable o f dealing with the most complex task components.

However, the opportunities to develop these skills on the simple parts o f the DPP will

be reduced. As a consequence, it will become more difficult to train engineers to the

required level.

Allied to these changes in the role o f the design engineer, the automation o f the DPP

may give rise to changes in the engineer’s mental model o f the system (see § 1.3.2) due

to changes in the opportunities for information acquisition (Satchell, 1993). In certain

circumstances automation has also been found to give rise to ‘complacency*

(Parasuraman, Molloy, and Singh, 1993), such that, for example, overconfidence in the

automated processes may lead to comparatively simple errors being missed at the eady

stages o f checking.

Given these developments, it may be that some elements o f the existing training

process, which incorporates the ‘on-task’ incremental development o f expertise, will no

37

Chapter 2 : Task A nalysis

longer be feasible and that new methods o f training must be investigated. One such

possibility would be Computer-Assisted Instruction (CAI). CAI provides die

opportunity to present material to trainees in a manner which can be tailored to the

needs o f the individual. ‘Closed loop’ methods can be used in which new learning can

be coached and tested through interaction with the computer application. Training

engineers in the use o f the computer programming language elements o f the DPP

could quite conceivably be accomplished in this way. In a variety o f domains CAI has

been found to provide efficiency gains in training, with reduced training costs resulting

from a reduction in training time and reduced demand for expert assistance (Eberts

and Brock, 1988). The systematic decomposition o f the SSI data design process which

was achieved using HTA would lend itself to representation in a computer-based

hypertext, and with some further elaboration o f the task components, this might be

developed to form the basis o f a CAI training package.

2.2.43 Task Similarity and Diversity

The general structure o f the HTA hierarchical diagram can be used to compare

different aspects o f the task being studied. For instance, the pattern o f the overall

diagram and the specific goals within this pattern indicate the similarity o f the writing

and checking tasks (Goals 1.2 and 1.4) compared to the set to run and testing tasks

(Goals 1.3 and 1.5). Both pairs of goals share certain common elements within the pair

that are diverse across pairs. For instance, the task environment (and perhaps mental

models engendered by the task environment) is similar within pairs. When performing

writing and checking the engineers are dealing with an abstract, symbolic

representation o f the SSI system, consisting o f flags, sub-routes, and so on. When

performing a “set-to-run” or functional testing the representation is very much more

concrete, or analogue, where the engineer is dealing with actual railway concepts such

as tracks and signals. This diversity in task environment will form a major part o f this

thesis in later chapters, and will be discussed in more depth there (starting in § 6).

38

Chapter 2 : Task A nalysis

Figure 4: Revised plan 1, for when checking (1.4) and testing (1.5) are
carried out in parallel.

2.2.4A 'Environmental influences

As discussed earlier, aspects o f the environment in which the system operates can

influence the way in which tasks are performed. One such influence was noted in

relation to the way that urgent work is carried out

Time pressure occasionally forces some checking and testing to be carried out in

parallel, leading to a revised plan 1 (see Figure 4). This means that the version control

for the data must be very tight, or unchecked data could be signed-off as safe by the

tester. Normally, each new version o f the data is given a unique version number by the

data writer (Central Interlocking Status Record; CISR). This number records how

many cycles o f checking and testing the data has gone through, but not whether the

latest version was generated because faults were found in a check or a te st I f it was a

test, then has that version o f the geographical data been checked as being error-free

before? The danger point is shown by the dashed lozenge in Figure 4. I f this decision is

made incorrectly then unchecked data could be released into service. This problem is

exacerbated by the contracting-out o f the checking or testing o f these ‘rush* jobs to

other signalling firms, with an attendant increase in the difficulty o f version control

39

Chapter 2 : Task A nalysis

2.2,5 Summary

The SSI DPP was revealed as a complex task involving multiple staff members. It can

be characterised as collaborative software production, but with the extra requirement

o f strict independence between processes to avoid the propagation o f design errors

through the production process.

The SSI DPP consists o f three main tasks that operate two major processes that rest

across two work ‘domains’. The tasks are writing, checking and testing. Regarding

work processes, there is the distinction between generation (writing) and validation

(checking/testing). Regarding the domains o f operation o f these processes,

writing/checking involves the use o f computer programme code, and testing involves

the use o f a simulator to directly interact with SSI system behaviour.

Although the SSI DPP is a collaborative process the channels o f communication

between writer, checker and tester are strictly limited, occurring through formalised

error/fault logs in an effort to allow only communication about the presence o f a

perceived problem.

The process- and task-analyses provided essential information regarding ‘structural’

properties o f the SSI DPP. In the following chapter this will be supplemented by

information on the dependability o f the tasks and processes thus described.

40

Chapter 3 : E rrorA n alysis

3 E rror Analysis o f the Solid State Interlocking system

The HTA provided a useful framework for the breakdown o f potential problem areas

in the SSI DPP. As discussed previously, structural elements o f the hierarchical

diagram can be used to show similarities and differences between tasks. However,

these similarities do not necessarily equate to similarities in actual task performance.

For example, although identified as similar by the HTA, performance in writing and

checking may not be identical even given identical requirements, i.e. code that is

difficult to write may be easy to check and vice versa. What HTA does not reveal is

how all o f the variables that may affect task performance will actually combine to

produce error.

This chapter, then, will focus on exacdy which errors and faults are observed in actual

SSI DPP tasks. N ot only the individual tasks in isolation, but also the combination o f

tasks that together make up the overall system needed to be assessed. The aim o f the

error analysis chapter will be to describe the types o f faults which are generated, the

stages within the design process at which they are most prevalent, and the likely causes

for these faults, i.e. error.

Several complementary techniques were chosen for the error analysis. These were

chosen partly on the basis o f availability, but also to give a broad range in terms o f the

type o f data they would provide. They were for the most part based on techniques

drawn from Human Reliability Assessment (HRA).

While the application o f Human Reliability Assessment (HRA) techniques may prove

useful in the identification o f human error and the assessment o f relative error

probabilities, as discussed earlier it is contended that the generation o f absolute Human

Error Probabilities (HEPs) is not a worthwhile goal in this context. There are a

number o f further reasons for this. The nature o f the SSI DPP task is such (complex

information processing) that it is probable that many errors will be mistakes (rule- or

knowledge-based errors). As discussed in § 1.2, it is a much more difficult proposition

to quantify these errors on the basis o f just fault information than it is to quantify skill-

based errors. Furthermore, with respect to the SSI DPP task, there are many features

41

Chapter 3 : E rror A nalysis

o f the task which are unique (e.g. the SSI ‘geographic data’ language). As a

consequence the utility o f generalised HEPs, derived from human reliability databases

will be limited. This is not to say, however, that HRA is not useful within this context

W hat is at issue is the ability o f HRA to produce absolute estimates o f the probability

o f human error. W hat is not at issue is the importance o f identifying the characteristics

o f human error and its causes, in order that human reliability can be improved.

To investigate errors committed during the writing phase o f the DPP a number o f

techniques were used. First, an SSI writer’s work sample test was devised, to provide

some control over extraneous variables that may affect the production o f errors in

actual task performance. Task observation with subsequent video walkthrough was

also used to provide some measure o f errors made but subsequendy corrected by the

writer himself.

The checking and testing phases o f the DPP task were investigated using logs o f actual

faults found during the production o f finished SSI schemes.

Further to this, data relating to errors generated at each stage o f the SSI design task

were gathered using structured interviews o f task experts and from existing

documentation. Each o f these areas o f investigation will now be discussed.

3.1 Work sample o f the Data writing task

In order to make a more detailed assessment o f the errors which are made during the

DPP writing task a work-based, controlled experiment was conducted in which SSI

design engineers completed a work sample. This technique presented the opportunity

to investigate error in a manner which was, like the purely observational work,

ecologically valid, but which also controlled for some o f the extraneous and

confounding factors present in a real work situation.

The specific task chosen was based upon the job content domain (e.g. Guion, 1988) o f

the writer’s task as previously described in the HTA. The test content domain was

selected in collaboration with the most senior SSI engineer available (who had

participated in the development o f the SSI system during the 1980s). A previously

42

Chapter 3 : E rror A nalysis

completed set o f SSI code files (for an SSI currently in service) had sections removed

and the participants’ task was to reinstate the missing code.

The primary aim for the work sample test was to provide some measure o f the type

and number o f faults committed by writers while controlling for the complexity o f the

work. The deleted sections o f code were chosen based upon Rasmussen’s (1983; 1986)

model o f skill-, rule-, and knowledge-based control o f behaviour. First, the greatest

part o f the task was selected from ‘run-of-the-mill’ code with which participants would

be familiar, and which would be amenable to rule-based performance; Second, code

was selected that controlled a function unique to the particular SSI scheme chosen,

which would require participants to devise a novel solution, and therefore would

require knowledge-based performance.

(It was decided that skill-based aspects o f the writing task could not be easily isolated

and mapped to sections o f the SSI code in the way described above, because skill-

based behaviour would underlie much if not all o f the work that would need to be

performed in order to carry out the rule- and knowledge-based sections; for instance,

reading manuals, working with the keyboard, operating the SSI workstation.)

The second goal o f this work was to gamer some measure o f the effect o f individual

differences among SSI engineers on task performance. A number o f studies have

found that variation in cognitive ability (particularly spatial ability) is associated with

variation in performance across many computer-based tasks, e.g. word processing

(Gomez, Egan & Bowers, 1986), information retrieval (Vicente, Hayes & WUliges,

1987), and programming (Foreman, 1988). There is less clear evidence in favour o f the

importance o f personality in computer-based tasks, although Podus (1991) conduded

that introverts tended to be better programmers on average than did extroverts.

3.1.1 Method

3.1.1.1 Participants

Fifteen SSI engineers were recruited from two organisations (three sites in total). All

were men aged between 20 and 46 years (Af = 32 years). (Although this is a small

43

Chapter 3 : E rror A nalysis

sample, fifteen engineers represents perhaps as many as a third o f the qualified

participants working in the UK at the time o f data collection.)

3.1.1.2 Materials

To ensure veracity, production o f the work sample task was carried out by a highly

experienced SSI engineer. The data files from an in-service SSI (Gerrard’s Cross) were

specially prepared with sections missing. The incomplete code consisted o f 1006 lines

in total, with the absent sections (which needed to be replaced) amounting to 124 lines.

The code corresponding to rule-based performance consisted o f 120 lines; the

remaining four lines corresponded to knowledge-based performance.

Participants were provided with all the usual supporting documentation for carrying

out the SSI DPP (see § 2.1.2.5 for details). Task performance was video recorded with

two VHS video cameras; one camera was focused upon the screen o f the Design

Workstation and recorded interaction with the computer. The second camera was

focused upon the surrounding desk area and recorded more general activities (e.g.

breaks from work activity).

The same engineer who designed the work sample task produced the necessary

materials and procedures to ensure the accurate scoring o f the participants’ solutions to

the task. This consisted o f a copy o f the complete and correct SSI source code that

formed the basis o f the task and a procedure to have the DWS produce a “difference

file” that showed all the areas where the participants’ solutions differed from the

original, correct version.

Prior to task performance participants completed a number o f measures o f individual

difference. These included:

• PREVUE (Bartram, 1994): This test provides data on four higher order*

personality factors: Independence; Conscientiousness; Extraversión; and Stability.

In addition, eight lower order’ factors (two for each o f the main factors) are

measured.

44

Chapter 3 : E rror A nalysis

• A battery o f cognitive ability measures drawn from the General Aptitude Test

Battery (U.S. Departm ent of Labor, 1982). The specific tests were: Name

Comparison (clerical perception); Three-Dimensional Space; Vocabulary, Tool

Matching; and Arithmetic Reasoning.

• The computer literacy subtest o f the Computer Aptitude, literacy, and Interest

Profile (Poplin, Drew, and Gable, 1984). This is a 30 item test o f computer-related

semantic knowledge.

• A questionnaire asking about previous education and SSI signalling experience.

In addition, participants completed the UWIST Mood Adjective Checklist (UMACL:

Matthews, Jones, & Chaimbedain, 1990) before and after task performance. This self-

report measure produces a three factor solution to mood, comprising: energetic

arousal; tense arousal, and; hedonic tone.

3.1.1.3 Procedure

The work sample test was conducted at the participant’s place o f work, in a room

containing a DWS that had been set aside for the sole use o f the study. Participants

first completed the set o f questionnaires described above. They then had a five minute

break before commencing with the work sample task The work sample materials

contained all o f the instructions necessary to complete the work sample te st

Participants were asked to complete the task as quickly and accurately as they could.

They were asked to repair the code to the point that they would normally complete an

initial “set-to-run” (an informal simulation test o f the code to see if it works, see § 2.2.3

for more details).

3.1.2 Results and discussion

The timing and sequence data were prepared for analysis by viewing the video

recordings and using purpose designed software which allowed the timing and

sequence o f specific events to be logged by pressing marked computer keys. In

particular, occasions when reference to documentation was made; time spent typing

time spent writing notes and time on break, were recorded.

45

Chapter 3 : E rror A nalysis

At the end o f each test the participant’s SSI data file was compared to the correct

version and a list o f differences was produced. These “difference files” were scored by

the researchers with reference to standard SSI signalling manuals. The results o f this

scoring procedure were reviewed by the senior signalling engineer who devised the test

in the first place, and two changes were made to the scoring.

Faults were categorised according to the signalling principles which they violated and

whether they were acts o f omission or commission. This categorisation was broadly

determined upon the basis o f the HTA.

It was necessary to use different criteria when scoring the frequency o f faults relating

to the rule- vs. knowledge-based task components. With respect to the rule-based task

component, faults were recorded upon the basis o f the functional accuracy o f the code

(i.e., according to the correctness o f individual functions). This avoided the problem of

participants being penalised many times for one conceptual error. For instance, code

must be written for every sub-route, specifying the conditions under which that sub­

route is released, and this code may consist o f many individual ‘words’. However, some

participants overlooked a whole sub-route, resulting in the omission o f many items o f

code even though they had probably committed only one ‘error’.

With respect to the knowledge-based component o f the work sample, errors were

recorded upon the basis o f the accuracy o f individual “words” within the completed

code. This was due to the fact that this part o f the code was short (four lines) and that

each separate item fulfilled a specific function. That is, errors for each item o f code

would not be confounded with those for other items o f code that were nearby in the

file. This is not the case for the rule-based code, where, as discussed above, whole lines

o f code may be highly related i.e. tightly coupled (cf. Perrow, 1984).

Owing to their inexperience two participants were unable to attempt the knowledge-

based component o f this work sample; therefore their data were excluded from the

analysis below, leaving N = 13.

All tests o f statistical significance are two-tailed with (X = .05 unless otherwise stated.

46

Chapter 3 : E rror A nalysis

Table 1 shows task completion times. There was a large variation in the time taken to

complete the work sample (the fastest participant took 5,005 seconds and the slowest

took 17,781 seconds [almost five hours]).

T able 1: M eans and standard deviations

com pletion tim e (s).

for com ponent and to ta l task

T ask com ponent C om pletion T im e

M SD

Rule-based performance

Knowledge-based performance

8,983 2,798

1,120 453

Total completion time 10,103 3,013

There was also a large difference in the time taken to complete the rule- vs. knowledge-

based aspects o f the task, with the rule-based performance taking on average more

than eight times longer than the knowledge-based performance. However, if the

amount o f code written is taken into account, the rule-based work (120 lines) took on

average 75 seconds per line, whereas the knowledge-based work (4 lines) took on

average 280 seconds per line, or about four times as long per line.

Correlations betw een speed and accuracy were not significant, although there was a

tendency for faster rule-based and knowledge-based performance to be associated with

increased faults in these task components.

Table 2 presents descriptive statistics for fault performance. Again, there are sharp

differences between performances at the rule- vs. knowledge-based levels. Rule-based

work accounted for approximately twice the number o f faults as the knowledge-based

task. However, again taking into account the size o f each section o f work, rule-based

performance (120 lines o f code) led to 0.06 faults per line whereas knowledge-based

performance (4 lines) led to 0.92 faults per line o f code, or about 15 times the number

o f faults per line.

47

Chapter 3 : E rrorA -tiafysis

Correlations between speed and accuracy were not significant, although there was a

tendency for faster rule-based and knowledge-based performance to be associated with

increased faults in these task components.

T able 2: M eans and standard deviations for com ponent and to tal faults.

T ask Com ponent Faults

M SD

Rule-based performance 7.15 4.06

Knowledge-based performance 3.69 1.84

Total 10.85 4.36

3.1.2.1 Fault categorisation

Table 3 shows a breakdown o f fault frequencies by signalling principle violated and.

fault type, i.e. whether the fault was one o f omission or commission.

T able 3: B reakdow n o f faults by signalling principle violated for the data

w riting w ork sam ple

Signalling Principle Faults

O m ission Com m ission T otal

Rule-based task component

Identity and labelling 0 2 2

Route setting 17 14 31

Aspect control 25 6 31

Approach locking 7 26 33

Opposing locking ■ 4 1 5

Aspect sequence 3 3 6

Other 21 13 34

Sub total 77 65 142

Knowledge-based task component

Siding occupation latch 32 16 48

Total 109 81 190

48

Chapter 3 : E rror A nalysis

Looking first at the rule-based performance data, the route-setting, aspect control,

approach locking and ‘other’ categories accounted for the largest number o f faults.

Acts o f omission and commission were roughly equally frequent, but acts o f omission

were more prevalent in conjunction with aspect control faults, and acts o f commission

were comparatively frequent with regard to approach locking faults.

Loglinear analysis o f rule-based performance showed a significant association between

signalling principle violated and fault frequency (%2lr [6, N = 142] = 81.93, p < .0001).

There was no main effect o f fault type (omission /commission), but the interaction

between signalling violation and fault type was significant (X2k [6, N = 142] = 30.03, p

< .0001). This is attributable to the relatively large number o f faults o f omission for

Aspect Control, and the large number o f faults o f commission for Approach locking.

For the knowledge-based component o f the task faults o f omission were more

frequent than those o f commission (%2 [1, N = 48] = 5.33, p < .05).

3.1.2.2 Common-mode error

It was found that a number o f the faults committed in the work sample test were made

by more than one participant, and all o f these faults were found within the rule-based

section o f the task. (In the knowledge-based code every participant made an error o f

some sort, but the faults were not identical.) However, in the rule-based part o f the

task there were eight specific faults that were made in identical fashion by more than

one participant two which were made by three participants, two o f which were made

by four participants and a further four which were made by more than half o f the

sample. These latter four faults are considered to reflect common mode failure, as

based upon these data they were more likely to be committed than n o t

Although, as noted earlier, determining common faults does not necessarily mean that

a common mode psychological error has been identified, it is strongly suggestive o f a

common process leading to error and this information nevertheless may be useful in

identifying weaknesses in the design process.

49

Chapter 3 : E rror A nalysis

The four “common-mode” errors are described below.

• All participants made an ‘approach locking’ fault relating to SSI timing routines.

According to the signalling manual a track circuit should have been occupied by a

train for more than five seconds in order to prove that the train was definitely in

the particular section o f track. However, due to SSI timing limitations it is

necessary to allow a two second margin for timing error, if this is a significant

proportion o f the timed interval. Consequently, the timing check in the data should

have been for a period o f seven seconds. All participants put down a timing period

o f five seconds.

• Eleven participants made an ‘aspect control’ fault concerning unconditional lamp

proving. M ost signals have an extra circuit that shows the signal controller if it is

alight, and the SSI programme will only use the signal conditional upon this circuit

being operational. Some non-critical signals, however, do not have the extra circuit

and must be set to light “unconditionally” . The 11 participants instead wrote the

default code.

• Nine participants made an ‘aspect control’ fault relating to a siding which required

last wheel replacement. Usually, a signal should turn red after the first axle o f the

train has passed i t However, for trains shunting into a siding backwards this would

result in the driver (now at the back o f the train) being shown a red light while still

moving past the signal For siding signals, then, the signal should turn red after the

last wheel o f the train has passed. These participants failed to include the necessary

code to achieve this.

• Seven participants made an ‘other’ fault relating to clearing the automatic working

function o f a signal. Usually, signals are set to allow operation by automatic

timetabling software as well as signallers, but sometimes (as here) this ftmctioning

must be turned off. Code which should have been included in order to cancel the

automatic working o f the signal was missed o u t

There was no significant association between the occurrence o f these faults and the

data collection site, i.e. the faults did not appear to be site or company specific.

50

Chapter 3 : E rror A nalysis

These common-mode errors all seemed to represent situations where habitual

behaviour (i.e. writing default, standard code) occurred instead o f the more appropriate

but less common behaviour. This has been termed variously “Einstellung” (“mind­

set”; Luchins, 1950) and “strong-but-wrong” habit intrusions (e.g. Norman, 1988;

Reason 1990).

3.1.2.3 The effects of cognitive ability

Table 4 presents descriptive statistics for measures o f cognitive ability, along with

normative data collected from a stratified sample o f 4000 o f the U.S. working

population at the time o f the development o f these tests (US Departm ent o f Labor,

1982).

T able 4: M eans and standard deviations for cognitive ability: W ork sam ple

and norm ative sam ple.

Cognitive Ability W ork sam ple N orm ative sam ple

(n = 13) (n = 4000)

M ean SD M ean SD

Clerical perception 60.23 10.60 46.68 17.89

3-D spatial ability 25.54 6.45 15.80 6.10

Vocabulary 29.92 7.26 20.14 10.23

Tool matching 29.46 4.59 30.72 7.41

Arithmetic reasoning 13.92 2.63 11.02 4.24

As can be seen, the present sample is o f comparatively high spatial ability and clerical

perception ability. In addition, the mean aptitude score on a measure o f fluid

intelligence (derived from a composite o f scores upon the three-dimensional spatial

ability, vocabulary, and arithmetic reasoning tests) was 123.33 (SD — 13.99) indicating

that the sample was also o f comparatively high fluid intelligence (normative

parameters: ft = 100; CT = 20)

51

Chapter 3 : E rror A nalysis

A series o f correlations were uséd to examine the effects o f cognitive ability in relation

to data preparation performance. The only significant correlation was between three-

dimensional spatial ability scores and completion times for the knowledge-based task

component (r[13] = -.65, p < .05), with high spatial ability individuals performing more

quickly than low spatial ability individuals. There was a non-significant tendency for

fluid intelligence to be associated with both quicker (r[13] = -.38) and more accurate

(r[13] = -.49) performance upon the knowledge-based task com ponent

3.1.2.4 The effects of personality

Table 5 presents the STEN scores for each o f the main PREVUE personality test

scales. As can be seen, the present sample was within the central range for each o f

these factors, although the mean for the Extraversión scale was significantly less than

the reference population (t[13] = 2.93, p < .05). The effect o f each o f the main and

minor factors was considered in relation to performance upon the work sample

Table 5: STEN scores for PREVUE scales

Personality Scale STEN

Mean SD

Independence 5.69 1.75

Conscientiousness 5.54 1.76

Extraversión 3.92 1.63

Stability 4.92 1.55

There was significant correlation between the minor scale II (tough minded,

competitive) and rule-based completion time (r [13] = -.53, p < .05), and with total

completion time (r [13] = -.57, p < .05), although the trend for 12 (forthright, assertive)

was in the opposite (positive) direction. The correlation between stability (major factor) ,

and total number o f errors just failed to reach significance (r [13] = -.55, p = .051).

However, this association was significant (r [13] = -.65, p < .05) for SI (unruffled, not

easy to upset or annoy). SI was also significantly correlated with knowledge-based

errors (r [13] = -.56, p < .05). In all these cases, high stability was associated with less

error-prone performance. I t may be that these results can in some degree be attributed

52

Chapter 3 : E rror A nalysis

to the experimental situation, with competitive individuals performing more quickly,

and stable, unruffled individuals performing more accurately. However, there is some

previous research evidence to suggest that stability may be associated with reduced

errors when performing an inspection task (Hsu & Chan, 1995).

E l (sociable, outgoing) was significantly correlated with knowledge-based performance

(r [13] = .56, p < .05), such that high extraversión was associated with slower

performance. Extraversión (combined) was also associated with knowledge-based

errors (r [13] = .70, p < .01) with high extraversión being associated with more error-

prone performance. Once again this appeared to be primarily attributable to E l (r [13]

= .81, p < .001), rather than E2 (group dependent). This result is consistent with

previous research which has examined personality differences in relation to computer

programming tasks, in which introversion has also been associated with better

performance (see Westerman, 1993, for a review).

3.1.2.5 The effects o f mood

A series o f t-tests revealed no significant differences in pre- vs. post-task mood

measures. Mood scores were therefore taken as an average o f these measures.

There was a significant association between general arousal and rule-based completion

time (r [13] = .54, p < .05), and the association with knowledge-based completion time

just failed to reach significance for both general arousal (r [13] = .47, p > .05) and

energetic arousal (r [13] =.48, p > .05). Surprisingly, in all cases the nature o f this

association was such that high arousal was associated with slower performance. It may

be that these correlations are indicative o f an association between arousal and

conscientious task performance, such that participants who reported high energetic

arousal took longer in an effort to minimise errors. However, the only significant

correlation with the number o f errors made was between tense arousal and total errors,

such that high tense arousal was associated with fewer errors (r [13] = -.59, p < .05).

Further analysis suggested that this effect is attributable to pre-task tense arousal (r [13]

= -.66, p < .05) as opposed to post-task tense arousal (r [13] = -.20, p > .05).

53

Chapter 3 ; E rror A nalysis

3.1.2.6 The effects of experience

There was a non-significant trend for the amount o f SSI data preparation experience to

be associated with rule-based (r [15] = -.50, p = .058), knowledge-based (r [13] = -.48,

p = .092), and total (r [13] = -.35, p >'.10) completion times. Data preparation

experience was significantly associated with rule-based (r [15] = -.67, p < .01), and total

(r [15] = -.60, p < .05) errors, with participants with greater experience committing

fewer faults.

3.1.3 Summary

In most respects the results from the work sample test were in agreement with

previous research. Looking at individual differences first, good performance (quick,

accurate) was associated with greater experience, higher spatial ability and greater

emotional stability. Given the restricted ranges o f many o f the variables and the small

sample size o f the study these results are encouraging if unsurprising.

To a certain extent the results are similarly predictable for the differences between rule-

and knowledge-based performance. Knowledge-based performance is both slower and

more error prone than is rule-based performance, as is commonly found (e.g. Reason,

1990).

However, it was the opposite state o f affairs when looking at common-mode error.

Although errors are relatively less likely in rule-based vs. knowledge-based

performance, when they do occur they are likely to manifest themselves in a much

smaller set o f possible faults than would be likely for knowledge-based errors. In

addition, the faults generated during rule-based performance are also more likely to

resemble correct performance than those at the knowledge-based level. In short, it

seems that although rule-based errors are overall less likely to occur, when they do

occur they are more likely to look like instances o f correct performance than are

knowledge-based errors.

This has major implications for the way in which common-mode errors are detected.

In domains such as statistical problem solving (Allwood, 1984) and computer database

54

Chapter 3 : E rror A nalysis

use (Rizzo, Bagnara &Visciola, 1987) it has been found that participants engaged in

three main types o f behaviour when detecting and correcting their errors:

• Direct error hypothesis behaviour. This is behaviour directly focused on a real or

suspected fault o f known type and location.

• Error suspicious behaviour. Although no actual or suspected fault had been

identified, procedures adopted did not lead to the expected conclusion.

• Standard check behaviour. In contrast to the above two behaviours, standard

checks are not dependent on task feedback, and merely reflect the good

practice of reviewing and checking work as it progresses.

Direct error hypothesis behaviour has been found most often in skill-based slips and

lapses, where the quality o f feedback from an action is good, often showing

immediately that an error has been made. Error suspicious behaviour is observed more

in the detection of Rule- and Knowledge-based mistakes, where the coupling o f errors

and outcomes is less immediate and potent However, in the case o f the work sample,

because the common-mode errors were so similar to contextually appropriate correct

performance, and because feedback from the task was poor, error suspicious

behaviour was not triggered. It is not clear from these data whether participants carried

out standard checks and failed to detect these errors, or whether they simply did not

carry out standard checks (perhaps because o f the time pressure imposed by the work

sample situation). However, it seems unlikely that standard check behaviour would

routinely detect the highly situationally appropriate faults such as the common mode

errors observed in the work-sample test

The work sample test has shown that intelligent, experienced and motivated engineers

are, like anyone else, prone to error. Some o f the faults observed seem attributable to

lack o f knowledge or simple slips, say, and could be expected to be readily Visible’.

However, some o f the faults do not seem to be the product o f idiosyncratic factors but

instead seem to be predictable based upon the status o f the task as “exception

handling”. Based upon their prevalence it seems unlikely that these errors would be

55

Chapter 3 : E rrorA nalysis

quite so Visible’ in the data writing stage of the DPP and their eradication would

therefore depend upon the veracity o f subsequent task stages. These will be evaluated

next.

56

Chapter 3 : E rror A nalysis

3.2 Error / fault logs

Currently, as a routine part o f the DPP, data on faults found at the checking and

testing stages (goals 1.4 and 1.5) are produced in the form o f ‘error* logs. This section

presents an analysis o f all the fault data contained in these logs which were made

available by the participating organisations. These logs will from this point on be

referred to as “fault logs’* to preserve the usual distinction between an error (a

psychological process) and a fault (an observable flaw in a system).

The main purpose o f the fault logs is to communicate the presence o f known or

suspected faults in the SSI code from the checker or tester to the writer, so that the SSI

code can be fixed. To preserve the independence of these stages of the DPP the

information in the logs is necessarily brief. The writer is given broad details o f the fault,

such as its location in the code or its manifestation in testing behaviour, but no

guidance is given as to the necessary remedial actions. Although this practice is

valuable within the immediate context o f the DPP, providing some degree o f safeguard

against the propagation o f common-mode error, it means that the amount o f

information available for analysis is limited.

Furthermore, there is much between-organisation (and even between-site) variation in

the form which these fault logs take, particularly with respect to checking logs. An

additional caveat is that the fault logs refer only to problems found in the office-based

DPP, not to on-site testing and post commissioning errors (if any). Unfortunately, no

data o f this nature were made available. That said, the fault logs do document actual

errors made during the DPP, and therefore have intrinsic validity.

3.2.1 Method

Fault logs were gathered from seven organisations (including sub-contractors), across

nine sites and relate to 12 different SSIs. Faults were initially categorised by two raters

working together according to die signalling principles violated (as for the work

sample). A small number o f the fault log categorisations (about 5%) were checked with

57

Chapter 3 : E rror A nalysis

professional SSI engineers and revealed no instances o f disagreement over die error

categorisation.

Limited data were available with respect .to the effects o f scheme complexity, and the

iterative design process, i.e. how many cycles of writing, checking and testing the SSI

geographical data had been through.

It should be noted that there are a number o f reasons why it is not possible to use

these data to make quantitative comparisons o f the relative efficacy of the checking or

testing stages o f the DPP. First, as mentioned, fault data were gathered from a number

o f different schemes and the checking and testing data are not completely matched.

Second, if faults are detected at the checking stage it will obviously not be possible to

detect them at the testing stage, and consequendy there is no means o f estimating the

efficacy of the testing process in detecting them. Third, there are no data relating to the

number o f faults that were initially present in the data. Finally, there were no data

available relating to faults detected at, or following, the ‘on-site testing’ phase of the

DPP. Once again, this makes the appraisal o f the efficiency of the testing stage

problematic. Nevertheless, given these qualifications, a qualitative appraisal o f the

relative error frequencies nevertheless provides useful information on factors possibly

affecting the reliability o f the DPP.

3.2.2 Results and discussion

A breakdown o f 1021 faults logged at the checking or testing stages o f the DPP by

signalling principle contravened is presented in Table 6.

The precise meaning of the various signalling principle categories in Table 6 will not be

discussed much here, because to do so would require a significant detour into railway

signalling lore (for those really interested, Hall, 1992 provides a good introduction). For

the purposes o f this thesis the various categories can be thought o f as similar to various

categories o f law-breaking, perhaps, for which two systems of detection (checking and

testing) are being compared. The law-breaking example might bring to mind an

objection to this approach, because different types o f lawlessness vary in their

‘seriousness’, and so surely different faults categories vary in their importance too.

58

Chapter 3 : E rror A nalysis

However, as argued by Broomfield and Chung (1995), there is no established

technique for mapping software faults on to system hazards anyway. (Stated a good

few years earlier by Benjamin Franklin (ini 757); “A little neglect may breed great

mischief; for want o f a nail, the shoe was lost, for want o f a shoe the horse was lost..”.)

Table 6: N um ber o f faults logged during checking and testing by

signalling principle contravened.

Signalling Principle Checking Testing Log O R

Identity and labelling errors 44 36 .00

Route setting 104 150 -.70

Signal aspect control 48 76 -.66

Approach locking 32 41 -.44

Opposing locking 27 64 -1.13

Aspect sequence 16 11 .42

Other 175 32 1.83

Sub total 446 410 -.45

None (no fault, false alarm) 102 63 .45

Total 548 473

Note: OR = odds ratio

So, the signalling principles violated will have for now to serve merely as a mechanism

for comparing the relative efficacy of checking and testing fault detection performance.

To aid interpretation the log odds ratio o f faults detected by checking and testing in

each category is given. This provides a symmetrical index of the relative efficacy with

which checking and testing detect faults o f the various types. The more positive the log

odds ratio, the greater the number o f faults detected at the checking stage in relation to

the number detected at the testing stage, and vice versa for negative values.

Identity and labelling faults (the misnaming o f data and screen objects) had a log OR

of zero, indicating parity in performance between checking and testing. However, it

59

Chapter 3: E rror A nalysis

should be noted that in the case o f testing these faults relate solely to the simulation

screen (i.e. all other naming faults appear to be detected at the checking stage).

Route setting was the category which accounted for the greatest percentage o f faults,

and like all o f the other categories bar ‘aspect sequence’ and ‘other*, the log OR was

negative, indicating superior fault detection by testing.

The difference between checking and testing performance was greatest for faults in the

‘other’ category. These are faults which did not obviously fall into any of the previously

defined categories. Problems in the layout of the SSI code accounted for the biggest

single sub-category o f ‘other* faults detected during checking (23.43%). Although this

type o f fault, which cannot be detected during testing, is not considered a safety-critical

feature of the code, it is likely nonetheless to contribute to the efficiency o f the design

process, determining the speed and accuracy with which data can be checked, and the

ease with which subsequent reworking can be done.

With respect to ‘other’ faults detected at testing, the highest percentage was accounted

for by control-table flaws (43.75%). Although these data suggest that these faults are

not easily detected during the checking phase o f the DPP it should be noted that the

faults included in this analysis relate only to instances where the control tables were

demonstrated to have been in error, which is most easily done during testing. There

were also an additional 36 faults reported at the checking stage (not included in the

present analysis) for which there was no evidence available to indicate whether the

control tables were in fact inaccurate. Nevertheless, it may be that testers have a better

overview o f the functionality of the system by virtue o f training, experience, or task

environment

The fault category in which testing outperformed checking by the greatest margin was

in ‘opposing locking*. A further breakdown o f these data revealed that, o f those fault

reports where sufficient detail was available to make an assessment, an important

factor was whether the opposing locking code involved the use o f code-constructs

called ‘sub-routes’. Sub-routes are used to specify the direction a train will take over a

section of track, which is important when deciding if a set o f points needs to be locked

60

Chapter 3 : E rror A nalysis

in place if a train is about to travel over them (the train will derail if the points are

moved under it). The difficulty in working with sub-routes will be addressed in § 5.

A high percentage (16%) o f all faults logged were false alarms (i.e., a fault was reported

where in fact none existed). Although there are undoubtedly safety-related advantages

associated with the use o f a lax response criterion (the preparedness o f the checker or

tester to signal a problem), these false alarms will inevitably reduce the efficiency of the

DPP because the data preparer must prepare a response to each fault logged. A further

breakdown o f these false alarms revealed that, o f those occurring during checking, a

high percentage resulted from either: a) functions which were required but dealt with

elsewhere in the code (12.7%), or; b) particular scheme-specific requirements (23.53%).

O f those false-alarms occurring during testing, scheme specific requirements also

accounted for the largest percentage o f false alarms (20.63%). “Scheme specific

requirements” is another way of saying that these are instances o f exceptions to the

normal specifications.

3.2.2.1 The iterative process of fault detection

Limited amounts o f data were available relating to the stages at which faults were

logged during the developmental life-cycle o f individual SSIs. Table 7 presents data

relating to a single scheme for three consecutive data checks followed by a test (There

were four checks, but by definition the final one detected no faults.)

As can be seen, by far the largest proportion o f faults (84.40%) was detected during the

first check One fault in the ‘other’ category, relating to the layout o f the code, was

detected at the first check, remained uncorrected, and was detected again at the second

check. All o f the other faults found on the first and subsequent checks were fixed

following their first report, therefore 16 unique faults ‘survived’ the initial check, 12

passed the second check, and 10 faults made it all the way through the checking

process (i.e. those 10 detected at testing). O f note is the single ‘opposing-locking’ fault

that survived the first check The overall number o f ‘opposing-locking’ faults was very

low, only three in total, yet one o f them passed initially undetected. Although only one

datum, this fits with the earlier finding, that opposing-locking code is difficult to check

61

Chapter 3 : E rror A nalysis

Table 7: N um ber o f faults logged across three checking and one testing

i stage by signalling principle contravened

Signalling Principle Checking cycle

1 2 3

Testing

Identity and labelling errors 15 2 0 3

Route setting (general) 9 0 0 0

Signal aspect control 6 0 0 1

Approach locking 5 0 0 0
Opposing locking 2 1 0 0

Aspect sequence 3 0 0 1

Other 52 2 2 5

Subtotal 92 5 2 10

None (no fault, false alarm) 2 0 0 6
Total 94 5 2 16

Table 8: N um ber o f faults logged across four checking stages by signalling

principle contravened

Signalling Principle Checking cycle

Ï 2 T
Identity and labelling errors 0 0 2 3
Route setting (general) 22 1 2 0
Signal aspect control 2 0 1 0
Approach locking 1 0 1 0
Opposing locking . 3 0 0 0
Aspect sequence 1 0 1 0
Other 24 2 1 4
Sub total 53 3 8 7

None (no fault, false alarm) 17 4 4 0
Total 70 7 12 7

62

Chapter 3 : E rror A nalysis

Table 8 presents the data relating to four sequential data checks on the same code.

Once again a large proportion of faults (74.65%) was detected during the first check.

O f the faults detected at later checks, identity and labelling faults accounted for

27.78%. Non-standard requirements also accounted for two faults detected at the third

check. O f the ‘other’ faults detected at the fourth check, three o f these related to

‘cosmetic data changes’.

32.2.2 Scheme complexity

In order to examine the effects of work complexity on fault detection, the faults

detected at the first check and first test were examined for SSI schemes comprising less

than 30 routes (three schemes with 14,17, and 19 routes, respectively), and more than

30 routes (three schemes with 32,33, and 75 routes). As above, only a brief qualitative

examination o f the data is presented, as data relating to checking and testing do not

necessarily relate to the same schemes. O f particular concern in this respect is the small

quantity of testing data for simple schemes.

Table 9: N um ber o f faults logged at the checking and testing stages o f the

data preparation process for schem es w ith less than 30 routes.

Signalling Principle Design Stage

Checking Testing

Total

Identity and labelling 23 3 26

Route setting (general) 57 1 58

Signal aspect control 23 4 27

Approach locking 14 3 17

Opposing locking 19 0 19

Aspect sequence 11 0 11

Other 106 8 114

Sub total 253 19 272

None (no fault, false alarm) 19 6 25

Total 272 25 299

63

Chapter 3 : E rror A nalysis

As can be seen from Table 9 and Table 10, the greatest percentage o f faults detected

for simple schemes were ‘other* faults (41.91%), whereas ‘route setting* faults

accounted for the greatest percentage o f faults detected in the more complex schemes

(39.31%) and ‘other ‘faults accounted for only 9.20%.

Table 10: N um ber of faults logged at the checking and testing stages of

the data preparation process for schem es w ith m ore than 30 routes

Signalling Principle Design Stage

Checking Testing

Total

Identity and labelling 4 33 37

Route setting (general) 24 147 171

Signal aspect control 4 67 71

Approach locking 1 36 37

Opposing locking 3 64 67

Aspect sequence 2 10 12

Other 23 17 40

Sub total 61 374 435

None (no fault, false alarm) 43 52 95

Total 104 426 530

False alarms accounted for only 8.36% of those faults reported for simple schemes,

whereas this percentage was 17.92% for the more complex schemes. It is possible that

this is attributable to design engineers adopting a more lax response criterion as

complexity increases. '

An examination o f the proportion o f faults detected at the checking vs. testing stages

of the DPP for schemes o f differing complexity suggest that checking is less efficient

at detecting all types of faults when scheme complexity is increased. However, it is

worth noting that the checking process apparently detected all ‘opposing locking* and

‘aspect sequence’ faults in simple schemes.

64

Chapter 3 : E rror A nalysis

3.3 Video recording task performance

The preceding analyses were concerned with identifying faults generated by a data

writer which remained undetected at that time, requiring detection at a subsequent

stage of the DPP. However, it is highly likely that during each of the design phases a

number o f errors (primarily slips) occur which are generally detected at that time (and

are therefore not recorded) but which decrease the efficiency of the design process and

are likely to be indicators of task difficulty. It may be that errors which are apparent

with relatively low frequency when checking or testing a previous phase o f the DPP, in

fact occur with high frequency, but the majority o f these occurrences are ‘self-detected’

(e.g. Rabbitt, 1978).

Investigating these errors, particularly within the context o f such a complex task, is

difficult The use o f concurrent verbal protocols was considered as a possible method

(see Ericsson and Simon, 1984). This technique requires that participants give a verbal

commentary while performing their task. The advantages o f this include: high face

validity; ease o f use in applied settings with minimal disruption, and; some access to the

cognitive processes associated with task performance, which would not otherwise be

readily accessible.

However, there are also a number o f associated drawbacks. With certain types o f

cognitive performance (e.g. automatic processing or processing spatially encoded

material) it may be that the mechanisms underlying performance are not readily

available for conscious verbal report (Yang, 2003) Crucially, however, there is evidence

to indicate that task performance whilst giving a concurrent verbal protocol may be

faster (Berry and Broadbent, 1990) or less error prone (Wright and Converse, 1992)

than normal task performance. This is obviously unacceptable in the context o f this

research.

For this reason a variation on Rabbitt’s (1978) “caught in the act” or “oops” technique

was used, coupled with elements from “video walkthroughs” (Diaper, 1989), described

next

65

Chapter 3 : E rror A nalysis

3.3.1 Method

Task performance was video recorded in a similar manner to that described for the

work sample (§ 3.1.1.3), with the exception of testing where one camera was focused

upon the signalman’s screen and the other was focused upon the trackside screen. The

observation comprised seven and a half hours o f writing, three hours o f checking, six

and a quarter hours o f testing, and one and a half hours o f simulation screen design

(strictly, a part o f the set-to-run task, but here included for its similarity to testing).

Observations were all carried out at Westinghouse Signals* Chippenham site. Two

participants were observed for date writing, three for testing, and one participant each

for checking and simulation screen design.

Task performance took place in as natural a manner as possible, with participants only

required to signal when they had detected that they had made, or had just stopped

themselves making, an error (Rabbit, 1978). Depending upon the complexity o f the

error, a brief description was given by the engineer at the time, or an explanation given

following task performance whilst viewing a replay o f the video recording (Diaper,

1989). To try to reduce the likelihood o f faking a lack o f errors the observed

participants were informed that their recording would be reviewed by another engineer

at a later date (although this did not, in fact, occur).

3.3.2 Results and discussion

3.3.2.1 Writing

In total there were 30 errors signalled by the participants over a combined period o f

seven and a half hours o f writing, or four per hour. O f these 17 were typographical

errors and two related to wrong file locations. O f note were four slips which were

identified as relating to opposing locking, three o f which related to specifying sub­

routes.

3.3.2.2 Checking

The checking phase o f the DPP was analysed for a period o f three hours. However, no

errors were recorded during this time.

66

Chapter 3 : E rror A nalysis

3.3.2.3 Testing

Errors identified at the data testing phase of the DPP included: incorrect identification

of ‘stations’ (areas) because o f the scrolling requirements o f the interface and poor

labelling methods (this occurred twice), and; selection o f the wrong route to perform a

test upon. In total five errors were identified during six and a quarter hours o f testing,

just under one per hour.

3.3.2.4 Simulation screen design

In one and a half hours o f observing the process o f simulation screen design three

errors were recorded (two per hour), all o f which were typographical errors.

3.3.3 Summary

Overall, few errors were self-detected by the SSI engineers as they performed their

various tasks. Viewed very broadly, the number o f self-detected errors seemed to vary

with the amount and type o f manual control input required o f the operator. Listing in

descending order o f control input (and self-detected error rate): writing and simulation

screen design both involve mouse and keyboard work; testing involves trackball use;

while checking does not require any substantive control actions to be performed

(turning a page, etc.).

It may be that this observational method o f analysis is only useful in recording errors in

relation to overt actions, and not covert cognitive processes. “There is some

evidence...that while people are good at catching their own errors o f action, they are

much less good at catching their own errors o f thinking, decision making, and

perception” (Senders and Moray, 1991, p.78).

3.4 Existing documentation and semi-structured interviews

As a means of validating the data reported above, and also to gather information

relating to rare errors, additional information was gathered from existing

documentation and the semi-structured interviews used for the HTA. The following

are the main points to arise.

67

Chapter 3 : E rror A nalysis

3.4.1 Writing and I or checking errors

A number o f specific errors, or potential sources o f error, were identified as being

common to the processes o f writing and/or checking data. These included:

• The copying o f information from one section of a file to another without

making all the necessary alterations required for the new context

• Insufficient information contained in comments making code hard to

comprehend.

• Data being laid out so that it is difficult to check the syntax (e.g. indicating

more than one blank line by putting several full stop, line terminators, on one

line).

• Misinterpretation of sub-routs.

• Code duplication (which may lead to timing errors).

• Interfaces to other, non-SSI, equipment

Further, at a more general level, it was reported that it is easier to check existing code

for correctness rather than to determine whether necessary code are missing; and that

writing errors tend to spring from unusual scheme requirements.

3.4.2 Testing errors

As stated earlier, no little evidence relating to faults detected at the on-site testing stage,

that would reveal errors at the DPP testing stage, was made available. However,

anecdotal evidence was obtained in interviews to indicate that faults do get past both

the simulation and on-site testing stages, i.e. into service.

Generally it would seem that faults which are not detected by the simulation testing are

concerned with: •

• Cross boundaries functioning (where the SSI system in control o f a section o f

track must communicate with a neighbouring interlocking)

• The interface with trackside equipment

68

Chapter 3 : E rror A nalysis

• Timing errors (where processing is not completed by the SSI modules in the

allotted time)

• Multiple route-setting.

Cross boundary faults may arise because o f poor communication between design

teams (incorrectly identifying the allocation of functions to each other, for instance).

Some of the faults that are detected on-site, for instance certain trackside equipment

and multiple route setting faults, cannot be replicated by the SSI simulator and

therefore it is no surprise that these occasionally make it through to on-site testing.

However, on occasion basic code faults are reported to come to light at this stage.

Finally, faults which have been detected in commissioned schemes (after on-site

testing) tend to arise from either very complex code, where the fault is only Visible’

when multiple interdependent conditions are fulfilled, or cross- boundary conditions

involving communication with non-SSI equipment

3.5 Conclusions

In drawing conclusions upon the basis of the data reported above, some qualifications

should be noted. First, the number o f participants who could be recruited to the work

sample was necessarily limited and conclusions drawn on the basis o f the correlational

statistics must be tentative. Second, the fault log data are all that were available at the

time, and the collection o f additional data, particularly from each iterative phase o f the

DPP, would allow more confidence in conclusions. Finally, as mentioned above, only

limited information relating to faults which are detected at the ‘on-site* testing phase,

or following commissioning, was available. If the reliability o f the testing process is to

be properly evaluated then these data are essential. Without it, the conclusions that can

be drawn relating to the reliability o f the testing process are somewhat limited.

3.5.1 Diversity in the Design Process

There are many beneficial features o f the DPP that seem to contribute to its reliability.

The present arrangement o f checking and testing produces a good deal o f task

diversity, as supported by several instances o f different types o f error being detected at

69

Chapter 3 : E rror A nalysis

different stages o f the design process. Although these errors were categorised earlier by

signalling principle, it was also noted that it seems that checking is particularly good at

detecting non-safety-critical function errors which relate to the ‘liveness’ o f the railway

and the readability (reusability) of code. By comparison, testing is good at detecting

errors which relate primarily to the safety o f the railway.

In contrast to task environment diversity, personnel diversity seemed to show the

opposite trend, at least when it came to the writing task. In the writing work sample

task a number of faults were made identically by experience and inexperienced staff

from various different companies. In such instances o f ‘common mode’ failure, errors

will be resistant detection within the DPP because design engineers, perhaps because

of similar background, training, or ability, approach the task in a similar manner. It has

been argued elsewhere (e.g. Westerman, Shtyane, Crawshaw, Hockey & Wyatt-

Millington, 1995) that one solution to common mode human errors lies in cognitive

diversity, such that individuals approach a checking or testing task utilising different

cognitive models/strategies. The investigation o f diversity in the SSI DPP will form the

bulk of the remainder of this thesis, from § 6 onwards.

3.5.2 Complexity

A number of broad factors can be identified as making faults particularly resistant to

detection during the DPP. As might be predicted, the complexity o f the code appears

to be associated with the propensity for human error. If the functionality required from

the SSI is complex, this makes faults more difficult to detect This may be attributed to

human attentional limitations which result in mistakes of ‘bounded rationality’ and

‘imperfect rationality’ (see § 1.3.1).

In order to reduce these effects it is necessary to alter the ratio o f attentional demands

(the requirements o f the task) to attentional resources (the capacities the design

engineer brings to the task). This might be achieved by: a) recruiting design engineers

who have greater cognitive abilities (increased attentional resource supply); b)

employing training strategies, such that task performance requires fewer attentional

resources (see Anderson, 1993), or; c) redesigning the task environment such that there

is a reduced information processing load placed upon the design engineer.

70

Chapter 3 : E rror A nalysis

There are a number o f ways in which redesigning the task environment could reduce

attentional demands. First, by incorporating more task support information in the task

environment (e.g. display based reasoning; Howes and Payne, 1990). This could take

the form of checklists o f sequences of required actions, or potential errors (e.g., see

Layton & Johnson, 1993); or the use of multiple windows, facilitating the performance

of tasks which require cross checking of items from a number o f different sources (see

Miyata and Norman, 1986). In order to gain some of the benefits associated with these

techniques it may be worthwhile making the checking phase o f the DPP more o f a

computer-based process than is currently the case.

Second, there are changes which can be made to the task environment which serve to

make errors more ‘visible’ (see Norman, 1988). In order to facilitate this process

computer-based display techniques may be used, such as the three-dimensional

representation o f data functions or railway layouts, which assist the design engineer in

Visualising’ the interplay o f variables in complex schemes.

However, the importance o f ‘context’ in this respect cannot be overstated. A model

that has been successfully used to provide increased contextual information (see

Vicente and Rasmussen, 1992) is the Abstraction Hierarchy (Rasmussen, 1986). This

model is based upon the premise that any given engineering system (task environment)

can be described in terms o f a number o f different levels o f abstraction. Lower levels

o f the hierarchy are concerned with how certain system functions are implemented

(the ‘nuts and bolts’ o f the system), whereas higher levels are concerned with why

system functions are required. Within the SSI DPP, additional contextual support

could be provided at the checking stage in the form o f ‘why* information; and at the

testing stage in the form o f ‘how’ information. I t should be noted, however, that this

approach may result in the checking and testing tasks becoming less diverse, and that

although more errors may be detected as a result o f these changes the potential to

avoid common mode errors may be reduced.

Novel or unusual requirements also appear to be an important factor in promoting

error and making errors more resistant to detection. There is evidence to suggest that

this may in part be attributable to design engineers making ‘mistakes o f reluctant

71

Chapter 3 : E rror A nalysis

rationality’; i.e., employing familiar performance strategies rather than engaging in the

increased cognitive demand associated with calculating novel solutions (e.g. Reason,

1990). With this in mind, it is worth noting that a high percentage o f the false alarms

recorded at both checking and testing phases of the DPP were attributable to scheme

specific requirements.

However, undoubtedly novel data requirements will also result in ‘mistakes of

imperfect rationality’, such that the design engineer has an imperfect mental model of

the task environment. An important improvement which could be implemented in this

area concerns the ‘usability5 of support documentation. For example, the accessibility

of documentation, the ease of search for target information, and the ease of updating

documentation could all be improved by providing on-line, i.e. computer-based,

documentation (Layton and Johnson, 1993). Further changes to reduce errors resulting

from unusual data requirements may also include an increased use o f checklists,

enforced cross-checks with increased functional redundancy, and the use of inspection

teams (see Fagan, 1976; 1986). Each of these techniques serves to test the assumptions

which are being applied by the design engineers to the task at hand. It can also be

argued that improvements in the ratio of attentional demands to attentional resource

supply, as described in the previous paragraph, will facilitate novel problem solving (see

Ohlsson, 1984a, 1984b, 1985). Consequently, techniques such as data visualisation can

also make an important contribution to the reduction o f these types o f errors.

Finally, limitations in the simulation equipment increase the difficulty o f the testing

task, and make it impossible to test for some complex errors. Although some o f the

changes which could usefully be implemented in this area are beyond the scope of the

present investigation, a number of human factors issues can be identified. For example,

scrolling requirements and labelling conventions have been found to cause orientation

problems during testing (see § 3.3.2.3). A combination o f improved equipment

specifications and the application of basic human factors principles could result in

improvements in this respect.

It is worthy o f note that checking seemed to be particularly poor at detecting opposing

locking faults, particularly those associated with the use o f ‘sub-routes’. The

72

Chapter 3 : E rror A nalysis

observation analysis reported above (see § 3.3) suggests that slips are frequent when

writing opposing locking, data, although given the relative frequency o f these faults it

would appear that most are self-detected.

3.5.3 Automatic Data Preparation

Given the type o f errors which are resistant to the DPP process, i.e. errors which relate

to complex and/or unusual data, it seems unlikely that Automatic Data Preparation

(ADP) will have a substantial positive effect upon (i.e. reduce) the probabilities o f these

errors occurring. Automation is most easily applied to skill-based and rule-based task

performance (see chapter 1). In contrast, those faults which are difficult to detect tend

to be knowledge-based errors. Nevertheless, there are, skill-, and rule-based task

components which humans apparendy perform poorly, e.g., opposing locking errors

during checking, to which ADP might usefully be directed. The benefits o f such a

strategy would be apparent in improved efficiency within the design process rather

than improved overall reliability.

In § 2.2.4.2 the potentially damaging effects of the current move towards Automatic

Data Preparation upon the training opportunities afforded design engineers was

identified. The current strategy appears to be one of automating all that is technically

possible. The danger o f applying this strategy too rigorously is that it results in design

engineers being left to complete only those (knowledge-based) task components which

cannot be automated, and this may be “... a fragmented, difficult-to-perform job for

which training is also a problem” (see Lockhart, Strub, Hawley, and Tapia, 1993, p.

1212). A viable alternative method o f providing training would be to use Computer-

Based Training. However, it can also be argued that less than maximum automation or

the flexible use o f automation may be useful alternatives which would allow design

engineers to acquire the necessary skills within a meaningful framework.

3.5.4 Training

There are a number o f areas of the DPP which can be identified upon the basis o f

these results as potentially benefiting from training interventions. First, several

common mode errors were identified by the work sample. It would appear that these

relate to deficiencies in the application of relatively straightforward principles (stated in

73

Chapter 3 : "Error A nalysis

SSI 8003) which are independent o f organisation and location. Second, training

methods may be applied to develop skills appropriate to dealing with novel

requirements (although see Patrick, 1992 for a discussion o f some o f the difficulties

inherent in this type o f endeavour). It is interesting to note that, in the work sample,

DPP experience was associated with rule-based errors but not knowledge-based errors,

suggesting that experience contributes to the acquisition o f basic skills but does not

necessarily impart the required skills for performing the more unusual task

components.

3.5.5 Personnel selection

Comparison with normative data suggests that the current selection process favours

engineers who are comparatively high in spatial ability, clerical perception, and fluid

intelligence. The validity o f spatial ability in this regard was supported by the negative

association with completion times for the knowledge-based component o f the work

sample. The correlations between fluid intelligence and knowledge-based task

performance, although not significant, were o f a magnitude which suggests that they

may also prove useful in the selection process. The fact that knowledge-based task

components are the least amenable to automation highlights the future importance o f

efficient personnel selection in this regard.

Further to this, there was some evidence o f an association between personality and

DPP performance. Although some o f the reported effects may have been attributable

to the experimental situation, the association between extraversión and performance is

consistent with previous investigations o f computer programming, with introverts

performing more quickly and more accurately. Similarly, the association between

stability and performance, with stable individuals making fewer errors, is consistent

with previous research concerning the performance of an inspection task (see §

3.1.2.3). Given that the sample were very much within the normal range of scores, it

would seem that the selection process is not tapping these differences, and that

personality testing could make a useful contribution in this area.

74

Chapter 3 : E rror A nalysts

3.5.6 Sub-routes

The use o f code constructs called sub-routes was repeatedly identified as a particular

area o f task difficulty. It is likely that this contributes to the difficulties encountered at

the checking phase o f the DPP in detecting opposing locking errors, as well as many

other error types. Sub-routes will be investigated more thoroughly in § 5.

Chapter 4 : M id-thesis Summary

4 Mid thesis summary

The previous chapters were exploratory and primarily qualitative in nature. They also

tended to focus on context-specific (i.e. SSI) issues rather than generally applicable

findings.

What follows is a brief discussion o f the main themes that emerged from the

fieldwork, and how these themes will be operationalised and submitted to test in the

latter half o f the thesis.

4.1 Task analysis

The HTA described a system of office-based software design with three stages: one of

production (writing) and two of quality control (checking and testing). I t was observed

that there existed diversity in the structure of the tasks that made up the quality control

phases. One o f the quality control tasks, checking, involved essentially the same

representations o f the same tasks that made up the production phase (writing). Both

checking and writing involve the use o f an abstract, text-based programming language

and both dealing with SSI functioning at the ‘micro’ level, manipulating verbal and

textual symbols, dealing with identical, abstract representations o f the railway, i.e. in

terms of bits, bytes and variables names (cf. Rasmussen & Lind, 1981).

The other quality control phase, testing, was markedly different The representation of

the tasks and the tasks themselves were distinct from those carried out in writing and

checking, and were based more on concrete railway concepts and a visual-spatial task

environment. In contrast to the writing and checking stages, testing requires the

engineer to map the specifications directly on to the functioning of the railway

network, as represented on the Graphical User Interface o f the testing simulator. The

tester deals with the ‘macro’, overall, functioning o f the SSI, using a concrete, spatial

representation of the railway (Le. signals, points and tracks). I t was proposed that these

differences between checking and testing, and the associated differences in the

demands they make on human performance, might manifest themselves in terms o f

the quantitative and qualitative aspects o f patterns o f faults detected at each stage.

76

Chapter 4 : M id-thesis Summary

4.2 Error Analysis

The error analysis consisted o f a work sample test, task observation, and an audit o f

the fault logs used to record faults found by checkers and testers.

The qualitative differences found between checking and testing tasks in the task

analysis were empirically investigated in the error analysis. For the fault log audit it was

found that different fault types were differentially detected by the checking and testing

stages. Simpler faults, and those affecting the basic functioning o f the railway, were

detected more frequently by checkers. More complex faults, and those to do with

safety-related operations, were found more frequently in testing. This ‘task diversity*

may hold promise as a way to combat ‘common mode* errors, such as those found in

the work sample test

The work sample test showed the influence o f expertise and complexity on the ease

with which fault-free task performance could be achieved. Routine work that could be

completed with skill- and rule-based performance was far less error prone than novel

or particularly complex knowledge-based work. These were factors also highlighted in

the HTA, where engineers commented on the challenging and prestigious nature of

complex, novel work.

However, the error analysis showed that, although complex and novel work was

indeed more error prone than more straightforward work when considering the

number of faults generated per unit of time or per lines o f code, faults in the less

demanding work actually seemed to represent a greater threat to the dependability o f

the SSI system. For instance, the error analysis found that only faults in straightforward

design tasks actually survived three cycles o f writing, checking and testing. In the work

sample test the only common-mode errors, made identically by at least half the

participants, were in supposedly ‘simpler’ code.

The engineers’ comments, then, seem to be an example of the base-rate fallacy (e.g.

Evans, Handley, Over & Perham, 2002). When performing any particular aspect o f the

SSI DPP there is a greater likelihood that an error will occur in knowledge-based

performance (e.g. complex or novel work) compared to skill-or rule-based

77

Chapter 4 : M id-thesis Summary

performance. However, the vast majority o f work is skill- and rule-based, so that when

confronted with any particular fault in the SSI programme, that fault is much more

likely to be the product of skill- or rule-based performance than of knowledge-based

performance. The correct way to include information about the prior probabilities of

events when making conditional probabilistic inferences was laid out in 1764 by

Thomas Bayes. However, there is a great body of research on normative reasoning that

has long recognised that people do not seem to make inference in such a ‘rational’

manner (e.g. Kahneman, 1973). Although first viewed as an example o f irrational bias

in human judgement, other authors have argued that these effects are partly

methodological in nature. For instance, Gigerenzer (e.g. Gigerenzer & Hoffrage, 1995)

has argued that it is the format in which the data on which the estimation task is to be

performed which is o f importance; information in the form o f probabilities (e.g. a

likelihood o f .05) leads to neglect o f the base-rate information, whereas the same

information in the form of frequencies (e.g. a likelihood of 1 out o f 20) does not lead

so frequently to fallacious inference.

Alas the exploratory phase of this research project was not designed with this issue

explicitly in mind, and therefore was not intended to be able to distinguish between the

competing hypotheses as to exactly why the base-rate fallacy occurs. However, there

are several points that do have relevance to this study.

The engineers that participated in the exploratory phase commented explicitly about

the high probability of error when dealing with novel and complex SSI w ork Based on

empirical evidence from the in situ data collection in this study, these comments seem

to be an accurate reflection of the likelihood of committing error when performing

such tasks.

The same engineers commented that because o f this high probability o f error in novel

or complex work relative to simpler tasks, these aspects o f the task should be, and

indeed are, allocated more resources (e.g. time, expertise) than more routine work.

These jobs are also seen as more interesting and prestigious.

78

Chapter 4 : M id-thesis Summary

On the one hand, this unequal allocation o f expertise is a necessary solution to a

practical problem, at least with regard to particularly difficult work. That is, there is a

minimum level of knowledge and expertise that is necessary to complete each task, and

if this is not met then the task cannot be completed. A clear example o f this was

observed in the work-sample test, when the two least-experienced engineers could not

make a reasonable attempt at completing the most complex parts o f the task.

However, as long as the minimum expertise requirement is met, it is not dear as to

whether the disproportionate allocation o f other resources (e.g. time, number o f staff)

to complex work is o f maximum benefit to the dependability o f the system. This

would depend in part on the relative amount o f complex to standard code in each SSI,

and the relative error-proneness o f the work.

In the case of the work sample test, an average o f four faults was generated per

partidpant in the four lines o f complex code that had to be written, giving an average

o f about one fault per line o f code. In the standard code an average o f seven faults

were made in 120 lines per code, giving a probability o f .06 o f committing an error per

line of code. Therefore the complex work seemed to be at least 16 times more error-

prone than the standard work (1/.06 = 16.67) per line o f code. However, there was 30

times the number o f lines o f code in the straightforward aspects o f the task compared

to the complex parts (120 lines / 4 lines = 30). So, although the complex parts o f the

task are much more error-prone than the more straightforward parts, they are also very

much rarer, proportionately speaking, and so are likely to contribute fewer faults

overall to the final SSI code.

The work sample was o f course a contrived task, and the actual proportions o f

complex vs. standard tasks, as well as the relative error-proneness o f each, will be

much more variable in real work However, it was devised by an experienced signalling

engineer to represent a realistic piece o f SSI DPP work, and highlights the issue o f the

actual vs. perceived importance of tasks in terms of the contribution to system safety.

This was the case even though on average the work sample participants devoted much

more time to the complex work compared to the standard work; the standard code

79

Chapter 4 : M id-thesis Summary

received on average 80 seconds per line o f code whereas the complex code received

280 seconds, three and a half times more. •

The situation is reversed if the task o f the checker is viewed in the same way. Taking

the figures above, we can be fairly sure that virtually every line of the complex SSI data

will contain a fault. However, there is a reasonably low probability that any particular

line o f the standard code will contain a fault From this point o f view checking the

complex code represents an easier task than checking the standard code; checking run-

of-the-mill code could be likened to looking for a needle in a haystack, whereas

checking complex code would be akin to looking for a nail in a matchbox.

The problem o f how best to allocate resources to the SSI DPP, highlighted above, is

compounded when also considering common-mode error. In die work sample test;

more than half o f the participants wrote identical faulty SSI code in four separate parts

of the straightforward task, i.e. four common-mode errors. For one particular fault, all

o f the participants wrote exactly the same, incorrect, code. When shown these faults in

the post-task debrief all o f the participants recognised what they had done incorrectly,

implying that this was skill- or rule-based performance that had gone wrong due to

strong “habit intrusion” (Reason, 1990). The fact that so many o f the participants

made these errors strongly suggests that the problem lay not with the particular

individuals involved but more likely with some aspect o f the task Therefore, even if

more resources were allocated to the straightforward aspects o f the writing task it is

likely that some errors would continue to be made with high frequency. Because o f the

similarity between writing and checking, though, and the reduced amount o f time that

such straightforward work receives, it is also likely that the checking process would not

be good at detecting these errors.

So, based upon the allocation of resources to work by perceived difficulty, it appears

that the SSI DPP may not be organised to optimise the reduction o f error commission

or the promotion o f fault detection. Additionally, even if resources were allocated

more optimally (i.e. based on difficultly and amount o f work), common mode error

would mean that the value o f any extra resources allocated would be diminished if the

80

Chapter 4 : M id-thesis Summary

extra resources were merely redundant repetitions o f the same task (e.g. more time on

task, or an extra repetition o f a task, even if by a different person).

It was hypothesised at the end of the in situ exploratory phase that it was the diversity

between the checking and testing tasks that protected the system from the

shortcomings discussed above. Two fault detection methods that make qualitatively

different demands upon human cognition, and that require different skills and

knowledge, may be more likely to detect a greater range o f faults than more similar

methods because o f reduced susceptibility to common mode error.

4.3 N eed for Laboratory studies

The data from the task- and error-analyses were collected in a naturalistic work

environment While being externally valid, the lack o f control and internal validity

meant a number o f factors may have biased and confounded the results. Most

importantly, in the fault-log audit, if a fault had been detected by a checker it would

then have been corrected and so be unavailable for subsequent detection by the tester.

This meant that the number and type o f faults within the SSI data would not be the

same for checkers and testers.

It was found in the task analysis that expertise o f the signalling engineer tended to

increase from writer to checker to tester. This would also tend to confound any effect

on fault detection performance due to task type.

In addition to the problem of internal validity, the ability to manipulate task factors was

limited in the actual work environment The safety-critical nature o f SSI design meant

that changes to equipment, procedures etc., could not easily be performed when ‘real

work’ was being conducted. Commercial considerations militated against the

collaborating signalling firms setting aside significant equipment or personnel resources

to investigate manipulations of task factors using ‘synthetic’ work.

So, to complement the fieldwork studies a programme of laboratory experimentation

was planned.

81

Chapter 4 : M id-thesis Summary

4.4 Aims o f the laboratory programme

The general aims o f the experimental programme were threefold: A) to confirm and

validate the results o f the field work; B) to further investigate the areas o f interest that

emerged from the task- and error-analyses, and; Q to develop the findings for

application to non-SSI domains.

Regarding validation o f the fieldwork, the biggest area o f uncertainty to remain after

the previous, predominately qualitative studies was that comprising the characteristics

and relative efficacy o f the checking and testing tasks. The fieldwork had provided

useful preliminary results, but too many factors remained unknown to provide firm

conclusions. The experimental programme would analyse the specific patterns o f error

detected by checking and testing, in terms of the quantity and characteristics o f faults

detected at each stage.

As regards extension o f the fieldwork, the main theme that emerged was the potential

of task and cognitive diversity to improve the resistance o f the verification and

validation stages o f the DPP to common-mode error. Various aspects o f diversity

would be investigated: Task factors, e.g. the differences between task environment and

fault types; and individual differences, e.g. abilities and mental models.

First, however, one o f the more persistent individual fault types found resistant to

checking, related to the use of sub-routes, will be investigated.

82

Chapter 5 : Sub-route labeling

5 Sub-route labelling

It was noted in the task- and especially the error-analysis that a particular fault type was

detected particularly poorly by the checking stage of the DPP. This involved barring

two conflicting, or opposing, train routes from being set at the same time. An

important element involved in this task is also used in many o f the other functions

found to be widespread in the fault logs, such as identity and labelling faults, and was

commented-on by the task experts in interviews. The particular task element is known

as “sub-route labelling”. This chapter will explore the reasons why performing sub­

route labelling is problematic.

5.1 Sub-routes explained

Any particular portion o f the railway under the control o f an SSI system is divided into

sections o f track. For any particular track section the SSI keeps a record o f whether it is

occupied by a train, and this information is used to inform the permitted movements

of trains over the interlocking. However, as well as knowing whether a particular track

section is occupied by a train or not, the SSI system also needs to make sure that the

points that control train movements are in the correct position ahead o f a train,

otherwise the train may not follow its intended route or may be de-railed.

The way that this information is encoded in SSI is in the form o f sub-routes. Sub­

routes correspond to track sections, but as well as defining the identity o f the section

of railway to which they pertain sub-routes also specify the expected direction o f a

train over the track section.

Configurations o f track sections are variable, so a rule is used to specify the mapping

between the route o f the train and a text label used to encode this information in an

SSI-interpretable way (Figure 5).

83

Chapter 5 : Sub-route labelling

120'dock

Figure 5:12 o’clock rule for track section labelling.

Ends o f track sections are denoted by letters (A, B and C), which is realised by imagining a

dock-face centred on the conjunction o f track ends, and alphabetically labelling the ends

while m oving dockwise from a 12 o’clock starting point The labd “CA” thus denotes a

train movement in the direction indicated by the arrows.

Figure 5 demonstrates the currently used rule, called the “12 o’clock” rule. I t shows a

small portion (two track sections) o f a highly simplified signalling plan. The parallel

horizontal lines represent two adjacent main-line railway tracks, with a diagonal track

connecting between them. There are sets of points at the intersections o f the main and

connecting lines, to guide trains along either the straight-line route, or across the

connecting section to the opposite line. The railway lines are divided into sections,

denoted here by the short vertical lines. There are thus two track sections shown, each

with a set of points and three ‘ends’. To demonstrate how the upper o f the two

sections (in bold) would be labelled, it has a dock-face superimposed over it, centred

on the points. Moving clockwise from the 12 o’dock meridian, each successive end of

the track section has been labelled in alphabetical order. So, for example, to denote the

route between the dotted arrows, the label “CA” would be used. I f this labd were

incorrectly spedfied (e.g. A Q a collision or derailment could potentially result

As discussed briefly in the preceding chapter, this labelling procedure was found to be

error-prone. Engineers committed errors when generating the labds, and more

importantly when performing an independent check of others’ labelling work.

84

Chapter 5 : Sub-route labeling

Errors associated with sub-routes tended to be errors o f commission rather than

omission, i.e. a sub-route label would be present but incorrecdy specified, rather than

missing. This suggested that the problem with sub-routes lay not with the decision of

when to use the sub-route labelling rule, but how it was applied or misapplied.

Two task-related factors were hypothesised that might influence observed

performance. First was the mismatch between the alphabetical order o f the label and

the spatial direction o f its corresponding route. With the twelve o’clock rule, all right-

to-left routes have labels with ascending alphabetical order, and vice versa. For readers

o f the Latin alphabet, ascending order has a very strong population stereotype (Smith,

1981) o f “left-to-right”.

This population stereotype o f alphabetical sequence has been found to affect rule-

based task performance. Eikeseth and Baer (1997) used a matching-to-sample

paradigm involving undergraduates learning relations between letters (e.g. A goes to B,

F goes to M), their symmetrical opposites (e.g. B goes to A, M goes to F), and their

transitive links (e.g. A goes to F, M goes to A). Errors were found to be increased

when complexity was at its highest (i.e. deciding on a coexistent symmetrical and

transitive relation), and also when the stimuli were adjacent letters in the alphabet;

“next-letter bias” as it was termed.

These effects may be the result of a spatially-based mechanism underling the

representation o f alphabetical letter sequence. Gevers, Reynvoet and Fias (2003) found

an association between letters earlier in the alphabet (e.g. A, D) and quicker responding

to the left visual field, and letters later in the alphabet (e.g. X, Z) and responding to the

right visual field.

This lack o f compatibility between internal models and task demands may lead to

response conflict and what Reason (1990) terms “strong-but-wrong” errors. A 6

o’clock rule, otherwise identical to the 12 o’clock version, would reverse the label

alphabetical order and leave it compatible with the spatial direction, so removing this

factor.

85

Chapter 5 : Sub-route labeling

The second factor hypothesised to affect labelling accuracy was the spatial variability of

• applying the 12 o’clock rule. The first step o f applying the rule is to site the imaginary

12 o’clock meridian over the points (if any) in the track section. The points are in

different places in different sections, however, as can be seen from die upper (in bold)

and lower track sections in Figure 5. Therefore before the labelling process can begin

there must be a visual search of the (densely cluttered) track diagram to locate the

appropriate point

Teidebaum and Granada (1983) found that inconsistendy-placed menu elements on a

computer screen increased visual search time by as much as 73% when performing

menu-search tasks. It is hypothesised that inconsistent track section layout could be

having a similar effect on sub-route labelling performance.

The track section / sub-route label positional inconsistency is also likely to increase

working-memory demands during task performance. This is because the starting point

for the labelling task has to be stored while labelling is proceeding and recalled if the

task is interrupted even momentarily. Extra memory or processing demands have been

found to increase reading times and error rates when reading aviation and industrial

analogue displays (e.g. Grether, 1949).

Having the meridian at 9 o’clock would mean a fixed starting point for labelling in all

cases, as there is always a horizontal component to the track section. This should

represent a more consistent spatial mapping for applying the labelling rule, reducing

the perceptual/attentional demands o f the sub-route labelling task.

Two experiments simulating label-checking were thus undertaken to test these

hypotheses, comparing label checking performance between: 1) 12- and 6 o’clock rules;

2) 12- and 9 o’clock rules. It was expected that sub-route label-checking performance

would be improved (quicker, more accurate) when using the revised rules than when

using the traditional 12 o’clock rule.

In addition to measures of task speed and accuracy it was thought necessary to

measure how hard the participants had to work in order to achieve their level o f

86

Chapter 5 : Sub-route labelling

performance. Various authors (e.g. Hockey, 1997) have shown how a given level of

performance on a task can be maintained at the expense of a greater investment of

effort, even though sustained effort will lead to fatigue and task decrement over time.

5.2 Sub-route experiment 1:12 o’clock rule vs. 6 o’clock rule

5.2.1 Method

5.2.1.1 Participants

Novice participants were chosen for this and the subsequent experiment because

experienced signalling engineers would already by highly practiced at using the 12

o’clock rule, so biasing the relative performance between the old and new labelling

rules.

Thirty-three novice participants (23 female, mean age 24 yrs), an availability sample

recruited on a UK University campus, each performed two within-partidpants labelling

conditions (12 o’clock vs. 6 o’clock rules).

5.2.1.2 Materials

A set of 96 “test” track section diagrams were produced for display on a VGA

computer screen. Each diagram consisted of:

• One of the four possible different track section “shapes” o f the type shown in

bold in Figure 5 (made by dther a horizontal and / or vertical reflection o f the

original Figure 5 shape)

• One o f the four possible different train directions that could travel over the

track section, denoted by arrows as in Figure 5

• Below the track section, one o f the six possible different two-letter sub-route

labds (e.g. AC, BA).

Additionally, a set o f 32 “practice” diagrams were produced, using each of die four

different track shapes combined with each of the four different train directions, but

this time showing the correct sub-route label for half and an incorrect one for the rest.

87

Chapter 5 : Sub-route labelling

Unlike Figure 5, none o f the diagrams contained a circular “dock face” feature — the

stimuli were designed to look like actual (but highly simplified) sections o f track

signalling layout maps.

Each diagram was approximately 60 mm high by 80 mm wide when displayed. lines

were approximately 2 points wide, and the labd text presented in 20 point Times New

Roman font Blue was used as the background colour on the computer display, white

as the diagram/ text colour.

A paper-based sub-route diagram very similar to that in Figure 5, along with a brief

explanation, was produced to teach the 12 o’dock and 6 o’dock rules to the

partidpants.

The NASA TLX multi-dimensional workload scale (VIdulich and Tsang, 1986) was

used to provide an overall workload score associated with task performance.

The practice and test stimuli, and the NASA TLX workload scale, were programmed

for display on an IBM PC compatible computer using Borland C++. The computer

also recorded the partidpant’s response key press and reaction time.

5.2.1.3 "Procedure

Partidpants were required to complete the labd checking task using both the 12

o’dock and 6 o’dock rules, and so they were first randomised to dther an AB (12

o’dock rule first) or BA (6 o’dock rule first) counterbalance sequence.

Each condition then followed the same pattern. First, the relevant labelling rule was

explained to the participant using the explanatory diagram. The partidpant was then

presented with the 32 practice stimuli one at a time in random order on the computer.

When each stimulus appeared on screen the partidpant had to dedde if the train

direction shown on the diagram correctly corresponded to the label shown below the

diagram, by applying the current sub-route labelling rule. Responses were forced-

choice: if the partidpant thought file labd was correct they pressed the “Z” key, if they

88

Chapter 5 : Sub-route labeling

thought it was wrong they pressed the “.” key. No feedback regarding the correctness

of responses was presented.

At the end o f the practice stimuli the participant was required to go through the

practice session again if they had failed to achieve a level o f 75% accuracy on the

practice items.

After the practice had been successfully completed the participants were given the

opportunity to ask questions before moving on to the test stimuli. When ready, the

participants were told to complete the coming task using the labelling rule they had

been taught “as quickly as you can without making mistakes”. The 96 test stimuli were

then displayed one at a time in random order in an identical fashion to the practice

stimuli.

When all test stimuli were finished the NASA TLX was displayed and completed by

the participant. Finally, the procedure described above was repeated for the other

labelling rule.

5.2.2 Results and discussion

One participant’s data were removed due to incorrect completion o f the NASA TLX.

All statistical tests were two-tailed, 0C = .05. Table 11 shows the time o f correct

responses, accuracy and workload mean scores by labelling rule used. The 6 o’clock

labelling rule was somewhat more error-prone (by 1.3% on average) than the 12

o’clock rule, with the response time and workload scores showing very small

differences between rules. A multivariate, repeated-measures analysis o f variance was

conducted, with labelling rule (12 o’clock vs. 6 o’clock) as the repeated independent

variable and error rate (%), time for correct response (s) and NASA TLX workload

score (0 = “minimum”, 100 = “maximum” workload) as dependent variables.

89

C hapter5: Sub-route labeling

Table 11: Performance measures by labelling rule (12 o’clock rule vs. 6 o’clock

rule)

Performance measure 12 o’clock rule 6 o’clock rule

M (S D) M {S D)

Error rate
(%)

4.00 (3.60) 5.30 (6.30)

Tim e for correct response
(s)

4.19 (0.95) 4.35 (1.12)

TLX workload score
(maximum score=100)

60.00 (15.00) 59.20 (14.90)

Note: N = 32

There was no significant difference found between conditions (F [2, 30] < 1). A repeat

of the analysis with counterbalance order included as an additional between-

participants independent variable also showed no significant effect.

The results suggest that, at least in this circumscribed context, the mismatch between

label stereotype and spatial direction does not have a significant effect on speed or

accuracy o f performance, nor on how difficult the tasks are perceived.

5.3 Sub-route experiment II: 12 o’clock rule vs. 9 o’clock rule

5.3 .1 M ethod

The method for this experiment was identical to that for experiment one, barring the

substitution for the 9 o’clock labelling rule here for the 6 o’clock rule used in

experiment one.

90

Chapter 5 : Sub-route labeling

5.3.1.1 'Participants

Sixteen novice participants (nine female, mean age 23 yrs) were recruited by

opportunity sampling at the same UK University campus as used in experiment one.

Each participant performed two within-participants labelling conditions (12 o’clock vs.

9 o’clock rule) in the same way as for experiment one.

5.3.2 Results

Table 12 shows the performance measures (mean scores o f time o f correct response,

accuracy and workload) associated with sub-route labelling-

Table 12: Perform ance measures by labelling rule (12 o’clock rule vs. 9

o’clock rule)

Performance m easure 12 o'clock rule 9 o’clock rule

M (SD) M (SB)

Error rate
(%)

7.30 (4.00) 8.30 (5.50)

Time for correct response
(s)

4.21 (1.04) 3.32 (1.02)

TLX workload score
(maximum score=100)

63.50 (11.00) 55.10(11.40)

N = 16

The 9 o’clock rule labelling condition showed a slightly higher error rate (8.3% vs.

7.3%) and lower time for correct response (3.32 s vs. 4.21 s) than the 12 o’clock rule

condition. Workload was also somewhat lower for the 9 o’clock rule labelling

condition (55.1) compared to the 12 o’clock condition (63.5).

An identical analysis to that carried out for experiment one was performed on the data

from experiment II: a repeated measures multivariate analysis o f variance with rule

91

Chapter 5 : Sub-route labelling

condition as the independent variable and speed o f correct response, error rate and

workload scores as the dependent variables.

In this case, however, there was a significant difference between conditions (F [2,14] =

6.84, p < 0.01). Subsequent univariate analysis showed mean tkrje for correct response

(F [1,15] = 22.3, p < 0.01) and NASA TLX score (F [1,15] = 11.3, p < 0.01) both

individually differed significantly across conditions, with the 9 o’clock rule producing

better performance in each case. Again, the analysis was repeated with counterbalance

order included as a between participants independent variable with virtually identical

results.

To check for possible speed-accuracy trade-offs the times for correct responses were

correlated with accuracy for both the 12- and 9 o’clock conditions. The obtained

coefficients, r (16) = .15 and r (16) = .14 respectively, were not significant “Micro”

speed-accuracy trade-offs (e.g. Rabbitt, 1966) were checked by comparing the mean

time for correct responses with the mean time for incorrect responses within

condition. There were no significant differences for either the 12 o’clock (t [15] = .48,

p > .05) or the 9 o’clock (t [15] = .79, p > .05) conditions.

5.4 General discussion

The hypothesis that the mismatch between route spatial direction and label

alphabetical order leads to poor performance on the safety-critical route labelling task

was not supported (experiment one). However, it seems that using a spatially

inconsistent vs. a spatially consistent labelling rule does have an effect on performance

(experiment two).

The lack o f support for the population stereotype mismatch hypothesis may suggest

that the labels generated by the various rules are not viewed as sections o f an ordered

alphabet, but rather as abstract, two-letter acronyms, where the concept of

alphabetical-order has no reliable association. Even if viewed as part o f the ordered

alphabet, there is only the smallest possible ‘distance’ between the stimuli used in this

experiment, i.e. A, B and C.

92

Chapter 5 : Sub-route labeling

It could be argued that use of “6 o’clock” as opposed to “12 o’clock” represents a

much weaker population stereotype relating to clocks, leading to less efficient use of

the analogy, and a possible confounding factor with changes in performance due to

alphabetical order. However, the 9 o’clock rule used in experiment two would not

seem to represent a stereotypical starting point for reading a clock face any more than

the 6 o’clock rule, but performance in that condition was significandy better than in the

standard 12 o’clock rule condition.

In experiment two, participants were significantly faster in making correct responses

for the 9 o’clock labelling condition. The lower workload ratings suggest that this is at

least partly due to them finding this condition less difficult The lack o f a significant

difference in error rates may be due to a lack o f statistical power, probably confounded

by the restriction o f range in the scores as the participants concentrated on achieving

accuracy. Although there was no significant difference between the error rates for the

two conditions, the 9 o’clock rule was more error prone than the 12 o’clock rule. This

did not seem to reflect an underlying speed-accuracy trade off, however, as speed and

accuracy were not well correlated, and correct responses were not significandy slower

than erroneous ones.

Although participant numbers for the second experiment were quite low there was a

good similarity between participants’ performance while using the 12 o’clock rule

across the two experiments: average error rate was within 4% and average response

time differed by less than .1 second.

There is some question over the generalisability o f the results from these experiments.

The participants in both were novice to the practice of sub-route labelling and

therefore the reasons underlying variations in their performance may not hold true for

experienced signalling engineers. This criticism is undeniable but it is mitigated by a

number o f factors.

First, an experiment using experienced SSI engineers would not have allowed a fair test

of the new labelling rules as responses would have inevitably have been biased by

extreme familiarity and experience in using the existing 12 o’clock rule. Second,

93

Chapter 5 : Sub-route labelling

important characteristics of the participants in these experiments are likely to be

broadly similar to the ones seen in the work sample test (§ 3.1). The signalling

engineers were found to have higher levels o f cognitive abilities (e.g. vocabulary,

clerical perception) than the norm, and this is also likely to be true for samples of

University students such as the participants in these experiments.

Based, as this task is, on the work of designers o f safety critical systems, errors and

their reduction would seem to be o f utmost importance. However, the ability to work

faster while reporting less overall workload clearly shows a lower demand for limited

mental resources (e.g. Wickens, 1984) when using the 9 o’clock labelling rule. From a

practical point o f view, for instance, this means that the engineer will be less vulnerable

to the distractions and interruptions ever present in the open work environment in

which the SSI DPP is conducted. Perhaps more importantly, it means that the designer

will be better able to manage the complex, “knowledge-based” (Rasmussen, 1980),

higher-level task elements that make up the “bigger picture” o f design tasks, if they are

not getting bogged down with the details. -

The greater efficiency o f the 9 o’clock labelling rule demonstrates the importance o f

the way tasks are represented to the operators. Even the minor modifications used in

these experiments demonstrated measurable benefits in relatively simple

implementations o f the actual safety-critical signalling tasks.

The goal o f the following chapters will be to look at what effect diverse task

representations can have on qualitative as well as quantitative aspects o f performance,

i.e. not just how many errors, but what type o f errors are more likely with different

representations, and how this can be used advantageously by the system.

94

6 T ask and Cognitive Diversity

The concept o f cognitive diversity is related to the practice o f using multiple

components in a system. The use o f multiple components to improve the fault

tolerance o f systems is well established (see § 1.1.2). In its most common manifestation

this involves the use o f two or more identical system components to perform the same

function. I f the failure modes of the component are known, the system can be

designed with one o f the components off-line; if the master component should then

fail, this can be detected and the off-line component can take over system functioning.

If the failure modes o f the component are not known, then the multiple components

can run in parallel with their outputs compared with one another. I f the different

components do not produce the same output given the same input, at least one is

assumed to have failed.

This use o f multiple component redundancy can guard against failures due to

essentially random processes, such as radiation altering the state o f a bit in memory, or

faults in manufacture or fitting. However, identical components will be equally

susceptible to conceptual errors in their design or use. These ‘common-mode’ errors

occur because o f the lack o f diversity in performance o f each one; they share the same

strengths but also the same weaknesses. To combat this lack o f ‘product diversity’, the

concept o f ‘process diversity’ can be applied during the design o f components. When

applied to the human elements of the system, this can be conceptualised as ‘cognitive

diversity’.

Redundancy o f human components has been demonstrated to have beneficial effects

in programming tasks. For instance, Bisant and Lyle (1989) demonstrated

improvements when two people engaged in code checking. Wilson, Nosek, Hoskin

and Liou (1992) found improved problem-solving for teams o f programmers; the

principle demonstrated was that if one individual ‘fails’ in some aspect o f a task, then a

co-worker may be able to detect the mistake. However, as demonstrated in the work-

sample task from the error analysis (§ 3.1.2.2), different individuals can be susceptible

to common-mode error.

95

Although human components will not be identical in the same way that redundant

mechanical components can be, they may share similar performance capacities,

knowledge and strategies that result in common-mode error. For instance, uniform

selection and training practices within an organisation will serve to reduce the variety

o f approaches to a task. As asserted by Senders and Moray (1991), “The use of

multiple humans in the way multiple inaccurate components are used is not a reliable

way to enhance human-machine system reliability”.

One way to combat this problem is to increase the diversity between human

components in the system. Fagan (1986) found that if software inspection team

members are diverse in terms of task perspective, software quality can be improved. A

more general approach to diversity can be taken from a model o f human-dependent

failure (HDF) put forward by Hollywell (1993). Here, HDFs arise when H oot Causes’

(e.g. distraction, working memory limitations), impact on human actions through

‘Coupling Mechanisms’ (e.g. task environment, training). In effect, the coupling

mechanism “creates the conditions for multiple human actions to be affected by the

same root cause”. Defences against HDF can be directed at the root cause and/or the

coupling mechanism. Addressing the root causes, through the application o f Human

Factors knowledge, will serve to increase the overall ‘quality’ o f the system. However,

complete eradication o f error is not likely to be possible (e.g. Frese and Zapf, 1991).

Another approach would involve increasing the diversity o f coupling mechanisms so

that human performance is not so narrowly and directly related to root causes. This

approach underlies the use of task and cognitive diversity to reduce system

vulnerability to common-mode error.

6.1 Task and Cognitive diversity applied

In plain terms, the use of diversity does not seek to reduce the number o f errors

committed by personnel. Rather, it seeks to ensure that, by the use o f varied coupling

mechanisms, the root causes of error are manifest in different ways, or types o f error.

The reciprocal o f this error-focused description is that correct performance will differ

in its characteristics across different coupling mechanisms.

96

The following sections o f the thesis will be concerned with fault finding performance

between the checking and testing stages o f the SSI DPP. Checking and testing

represent diverse coupling between human capabilities and task performance by the

way the tasks are represented. Task diversity and the related concept o f ‘cognitive

diversity* that it engenders are discussed by Westerman, Shryane, Crawshaw, Hockey

and Wyatt-Millington (1995) and Westerman, Shryane, Crawshaw and Hockey (1997).

Figure 6 represents diversity by use o f a Venn diagram. The outer rectangle represents

the set o f all faults in an SSI geographic data programme (A). The shaded ellipse (Q

represents a subset of A containing the set of faults that could possibly be detected

during checking (C C A). The dotted ellipse (I), also a subset of A, contains the set of

faults detectable during testing (T C A).

SSI D PP.

The area in the middle, where C and T overlap, contains the set of faults detectable

during both checking and testing (C n T). This middle portion represents redundancy

97

The area in the middle, where C and T overlap, contains the set o f faults detectable

during both checking and testing (C n 1). This middle portion represents redundancy

in the system, where, if a check failed to detect the fault, it would still be potentially

detectable in testing. The area o f C that is not also in C n T represents those faults

detectable only during checking, and so represents diversity in the system. Similarly, the

area o f T not also i n C n T represents those errors detectable only during testing

another instance o f diversity in detection. In total, diversity can be represented as (C O

T) u (c m) .

For simplicity, in the example above faults were considered to be detectable or not by

either task. This is gives conveniendy defined boundaries to the various ellipses,

because a procedure is considered to be able to detect a fault in principle, or n o t

However, in the real world o f the SSI DPP very few types o f faults are entirely

undetectable in one o f the two tasks. For most real faults there will be some non-2ero

probability that it will be detected by a ‘typical’ engineer working on a ‘typical’ job.

Faults are then characterised as being more or less ‘eas / or hard’ (Visible?), depending

on whether the probability associated with their detection is high or low. However, for

the purposes o f the explanatory model, the case as described conveys the main thrust

There are at least two factors that must hold to be true before the use o f diversity, as

shown in Figure 6, can be of benefit.

First, there must be some constancy to error detection; there should be a somewhat

consistent relationship between error detection and task type. More formally, we

should expect that the distribution of detected errors is not random across task type.

That is, the circumstances that promote error must be related to the nature o f that

error. This assertion is well supported in the literature (e.g. Reason, 1990).

Second, neither of the fault detection methods should be a subset o f the other. I f it

were possible for checking or testing to consistently locate all o f the faults that were

detected by the other method, again there would be no requirement for diversity (in

Figure 6, C (£ T and T <X Q - use of the subordinate method would be futile. (There is

98

a special instance of this requirement, where one detection method is perfect and

always detects all o f the faults. In this case there would be no need for a second

method as it would just be a subset o f the perfect method).

Finally, it is worth pointing out that diversity as conceptualised here does not depend

on quantitative differences between fault detection strategies, but rather on qualitative

differences; that is, it’s not the number o f errors detected by each method that is o f

prime importance, but whether or not they are of a variety o f fault detected well or

poorly by the other method.

For example, in Figure 6 the ellipses representing checking and testing are drawn of

equal size, suggested that C and T are equally effective at fault detection when applied

singly. However, even if C was half the area o f T, that is, able to detect only half the

number o f faults, it could still be highly worthwhile applying both C and T as long as C

detected faults that T missed.

6.2 D im ensions o f diversity

Figure 6 illustrates the use o f diversity with reference to variety in task environment

This is only one o f the many dimensions that could be exploited in the drive to reduce

common-mode error.

6.2.1 Task environment

In the case o f the SSI DPP, checking and testing represent diverse task environments.

As discussed previously, checking can be characterised as a textually-based, abstract

task. Testing can be characterised as a spatial, concrete task. These and other

differences are likely to lead to differences in performance characteristics, as different

methods and modalities o f information presentation have been shown to lead to

different perceptual and cognitive biases (e.g. Baddeley, 1986; see Wickens & Hollands,

1999, for a review). The saliency of information presented to the operator may also be

very different in various task environments (Rasmussen and Lind, 1981). This will

impact on the types o f errors committed directly, but also indirectly by the

encouragement and support o f different mental models and performance strategies.

99

6.2.2 Domain Knowledge

Domain knowledge is likely to be an important factor in cognitive diversity, but one

that will have benefits and drawbacks depending on the extent o f the difference. I f two

methods / individuals share identical domain knowledge, then they will be highly

susceptible to common-mode error. On the other hand, if the two share no domain

knowledge then this can be seen as specialisation, with no overlap in their combined

performance. Domain knowledge will be closely related to, but not necessarily defined

by, task environment

6.2.3 Performance strategy

The nature o f the checking task means that engineers deal with the ‘nuts and bolts’ of

the SSI data language, from which they construct the railway signalling functionality.

This is likely to encourage ‘bottom-up’ performance strategies. Testing is the reverse,

as engineers deal directly with the high level functioning (e.g. setting a route), and then

deconstruct this into its constituent parts (e.g. point movement, signal colour change).

This is likely to encourage ‘top-down’ performance strategies. Research has shown that

there are quantitative differences in fault-finding performance associated with different

performance strategies. Morrison and Duncan (1988) found that ‘top-down’ strategies

are more cognitively demanding than ‘bottom-up’ ones, but potentially more effective.

In the context of diversity, it may be that the various strategies differ in the

characteristics o f their performance (e.g. fault types detected) as well as their

effectiveness (e.g. number of faults detected).

6.2.4 Individual characteristics

There are a number of dimensions of individual difference that might be useful in

terms of cognitive diversity, e.g. personality, cognitive ability, cognitive style. Cognitive

ability in particular has been found to be associated with programming skill (e.g. Egan,

1988), and in the work sample test (§ 3.1) spatial ability was associated with better .

performance. Studies addressing this issue have been concerned with predicting

absolute levels o f performance. However, when considering diverse systems of

verification and validation what is also of interest is the association between diversity of

ability and diversity in the characteristics o f fault-finding performance.

100

For instance, it has been proposed that a distinction exists between the mental

representations adopted by individuals while performing problem solving tasks (see

MacLeod, Hunt & Matthews, 1978). Participants high in spatial ability will tend to use

mental representations that are essentially spatial, while others, high in verbal ability,

will tend to use verbally-based representations. I f different faults are more differentially

conspicuous with different representations, diversity in fault finding should be

apparent

Another area of promise for diversity is that o f cognitive style. While measures o f

cognitive ability are normally concerned with maximum performance, cognitive style

“...implies the measurement of propensities in terms of typical performance with the

emphasis on a predominant or customary processing mode” (Tiedeman, 1989, p.263).

Previous research in fault finding performance (Morris and Rouse, 1985; Morrison and

Duncan, 1988) has found benefits associated with a reflective rather than impulsive

style, and with analytic as opposed to global styles.

The concept o f cognitive style has been criticised by some researchers (e.g. McKenna,

1984), who suggest that styles are strongly related to aspects o f cognitive ability, and so

not really universally available ‘styles’ of processing at all. However, in the context of

diversity, any dimension that leads to predictable variation in an individual’s

performance characteristics across tasks will be o f interest As long as the two factors

underlying the benefits o f diversity are met (§ 6.1), differences in terms of absolute

performance are not as important as the characteristics o f that performance.

6.2.5 ';; Mental models

A mental model has been defined as “...a rich and elaborated structure, reflecting the

user’s understanding o f what the system contains, how it works, and why it works that

way” (Carroll and Olson, 1988, p. 51). An individual’s mental model o f a system will

depend somewhat on the extent and accuracy o f their domain knowledge, and also the

task representation. However, the concept of a mental model also includes the

structure and inter-relationships o f the information it contains, and so even if two

individuals could be found with identical ‘knowledge’ of a system there could still exist

extensive variation between their mental models. For these reasons differences in

mental model could be a valuable source o f cognitive diversity.

A programme of three experiments investigating cognitive diversity was therefore

enacted. These experiments, described next, will be used to study the use o f cognitive

diversity as a method for improving fault detection performance.

102

7 Cognitive Diversity Experiment I

The first experiment investigating cognitive diversity in the SSI DPP was designed to

confirm (or otherwise) the findings o f the previous task- and error-analyses, and to

investigate factors o f diversity associated with fault detection performance as outlined

in the previous chapter.

As was done for the fault log audit, the differences in between the checking and testing

stages o f the DPP would be examined. Specifically, it was hypothesised that the two

stages would differ in their effectiveness in detecting different types o f fault, thus

demonstrating diversity through task environment For this experiment, however,

some o f the major confounding variables present in the work-based data collection

would be controlled.

It was also hypothesised that differences in people’s relative spatial and verbal abilities

may lead them to adopt a predominantly spatial or verbal style o f processing. It was

hypothesised that a spatial processing style would be most advantageous in the testing

task, and a verbal style most advantageous in the checking task This would lead to

greater fault detection performance if the individual’s style o f processing matched their

task environment. Differences in style would also be expected to lead to diversity in the

type of faults detected by each processing style, which would be manifest as an

interaction between style and task environment

7.1 Method

7.1.1 'Participants

It became apparent after the error analysis work-sample task that it would not be

possible to obtain sufficient numbers o f trained SSI engineers to participate in

experiments. Fifteen engineers took part in the work-sample test, and while this was

low for statistical purposes, it represented a significant proportion o f all o f the suitably

qualified candidates in the U K While this was sufficient for exploratory work,

numbers per cell would drop too low if the sample was divided into treatment groups,

as would be the case with the laboratory studies.

103

As for the sub-route experiment (see § 5) naïve participants would be used. This would

not have the external validity of using SSI engineers, but naïve participants would not

be biased by conventions in task performance (e.g. methods, strategies, expectations)

as the experienced engineers would, and their level o f experience would not be

confounded with the type o f task that they were most experienced in (testers tend to

be more experienced than checkers in the SSI DPP). The naive participants would all

be matched in terms o f SSI experience, i.e. ah initio, but to allow for this lack o f

expertise, simplified versions of real SSI tasks were developed.

Therefore, 27 participants with an engineering or computer science background were

recruited from the student population at a UK University. Engineering and Computer

Science students were chosen as a more homogeneous sub-set o f participants in terms

o f their experience o f de-bugging software compared to the general student

population. Additionally, less training would need to be given in the basic features of

fault-detection tasks, so more time could be spent on SSI-specific training.

The participants were randomly allocated to one of two conditions. In one condition

the participants were to perform the task of SSI checking (n = 13; mean age = 24 yrs).

In the other condition the participants would perform the task o f SSI testing (n = 14;

mean age = 23 yrs). All o f the participants were male.

7.1.2 SSI simulation

To enable the aims of the experimental programme to be fulfilled, simulations o f the

DPP checking and testing tasks were developed. Because the participants for the

experiments would have no SSI experience the tasks chosen for simulation were only a

sub-set of the full range o f work that would normally be carried out in designing an

SSI. Specifically, only the functioning associated with the setting o f routes across the

railway network would be simulated. Faults would then be seeded into the simulations,

and the detection performance of checkers and testers could be compared.

Although checking is predominantly paper-based and testing computer-based, it was

decided to build a common computer interface for simulations o f both tasks. This

would allow the differences in interaction methods for the two tasks to be controlled

104

and assure that task-related information presentation was consistent across checking

and testing tasks.

The SSI simulator was programmed in Borland C++, and runs on IBM-compatible

PCs under MS-DOS. Control of the simulator is via mouse for screen elements and

keyboard to type in details of faults found.

The simulator computer-screen was divided in half horizontally. For both tasks,

signalling layout diagrams were shown in the upper half o f the screen. These included

the tracks, points and signals and also a list o f the possible routes in the layout For the

checkers, the lower half of the screen showed print-out o f the SSI Geographic Data

files; the testers instead had an array o f controls (e.g. for points) and indications (e.g. of

signals) to enable the testing of the behaviour o f the system. There were three track

layouts programmed into the simulator, one for training and two for actual

performance: the simple layout used in training contained only four routes; die two

layouts for data collection contained seven and nine routes, respectively. The screens

for checking and testing tasks, showing the seven- and nine-route layouts, are shown in

Figure 7 and Figure 8, respectively.

105

Figure 7: SSI simulator checking screen

DEMONSTRATION
SI S2

Route List: Rl=fS2toS<ll: R2=fS2toS81: R3=fS3to S41: R4=fS3toS8* R5=fS6to S31: RS=fS7toSl): R7°(S7toSS1
/ P R R D a t a fo x » L a y o u t 1
« Q R 1 i f

t h e n

«Q R 2 i f

t h e n

R 1 a
P I o x > f, P 2 c n f
U 3 -C B 1 , U 6-C A 1 , U 7-C A 1 , U 8 -B A 1
P I c p , P 2 c n
S 2 c l e a r b p u l l

P i e r f , P 2 e r f
U 1 4 -A B f » U 3 -A C f
R 2R2 s
U 3 -C B 1 , 116—CA I , 117—CB
1113—CA 1 , 1114—BA I , 1115- BA

Note: The upper part o f the screen shows the signalling plan for the simulated SSI

scheme, including a list o f routes. The scheme shown here is the simpler o f the two

used in experiments I, II and HI, with seven possible routes (only four o f which were

to be checked). The lower part o f the screen displays the SSI ‘geographic data’ code to

be checked. Navigation between and within the different SSI ‘files’ is achieved by use

of the buttons on the right hand side.

106

Figure 8: SSI simulator testing screen

DEMONSTRATION

TI T3_ T3 T4 TS T6 T7 T8 T9 T10 TU T12 T13 TM T1S T16 Tl? T18

Note: The upper part o f the screen shows the signalling plan for the simulated SSI

scheme, including a list o f routes. The scheme shown here is the more complex o f the

two used in experiments I, II and III, with nine possible routes (only four o f which

were to be checked). The lower part o f the screen displays the controls and indicators

that are used to test the functionality of the SSI ‘geographic data’ code. Route controls

are labelled ‘R’, track sections are labelled T , points T ’ and signals ‘S’.

107

7.1.2.1 Checking task

The simulator requires the participants to search for faults in SSI programme code

concerned with setting routes across the railway network Checkers do this by

browsing through three ‘files’: PRR, PFM and OPT, each accessed by clicking on the

respective button. The TRR’ file (Panel Route Request) contains the SSI data

specifying the conditions that must be fulfilled before a route can be set, eg. points in

their correct positions, no opposing routes already set The PFM (Points Free to

Move) specifies when it is safe to move the points from one position to the other (eg.

no train travelling over them). The OPT (OutPuT) file ensures that only one train is

allowed into a route at a time, by controlling when a signal is sent (output) to change

the route’s entrance signal to green.

The checkers search for faults by reading through the SSI code, ensuring that it

complies with the signalling rules that apply to the particular SSI signalling layout

shown in the diagram in the upper part of the screen.

7.1.2.2 Testing task

Testers search for faults by making sure that safe actions can be carried out but unsafe

ones are not allowed. The lower part o f the simulator screen contains buttons

corresponding to each o f the screen elements, eg. points, signals and track sections.

Each one o f these can be toggled to different states, eg. points can be in one o f two

positions, and can be free to move or locked; track sections can be empty or have

trains situated in them. For example, a prime safely concern is that points should not

move from one position to the other while a train is crossing over them as the train

would be de-railed. This is tested by taking a section o f track containing a set o f

points, and then setting the state o f the track section to represent a train situated within

the track section. The points should be fixed in position, unable to be moved until the

track section has its state changed to represent no train in the section.

108

7.1.2.3 Faults to be detected

The faults to be detected by the participants were seeded into the simulators. To

ensure that performance by checkers and testers was comparable exactly the same set

o f faults was used for both simulators. In the real SSI checking and testing tasks, some

fault types exist that would not be detectable by both methods. For instance,

duplicated code may be visible in checking, but would not necessarily affect specific

functionality o f the railway during testing, and so be invisible. Only when the data were

installed on-site could the extra processing demands o f the superfluous code lead to

system failure. Other problems, such as timing constraints, may be input-dependent

and so not detectable by checking the SSI code alone. To avoid these problems only

faults that would in practice be detectable by both checking and testing were included.

Faults from four signalling categories were chosen to be seeded into the simulations,

based upon common fault types found in the error analysis:

1) ASPect control (ASP). Faults in this category affect whether a green fight, or

aspect, is shown appropriately by a signal

2) Opposing Route, Same points position (ORS). The SSI system should not

allow a route to be set if another route which uses similar parts o f the track

network (an opposing route) has already been set Some opposing routes

require the points to be in the same position for both routes; other opposing

routes require points in different positions. The SSI system deals with these

; two classes o f opposing routes in different parts o f the SSI code. This category

deals with faults affecting opposing routes over the same points’ position.

3) Opposing Route, Different points position (ORD). This category deals with

the second class o f opposing routes, those set over different points positions.

Both o f these opposing route categories were used because it was thought that

the different methods o f coding may lead to performance differences between

categories for checkers.

109

4) ROUte setting (ROU). This category deals with faults affecting whether a

route can be set appropriately, e.g. ensuring that the sets o f points required by

the route are moved to the correct position.

These fault categories were chosen from those recorded in the fault log audit section of

the error analysis chapter (§ 3.2), because o f either their high frequency o f occurrence

or because o f large differences between the performance o f checkers and testers. These

fault categories thus represent an attempt at a robust manipulation o f the fault-type

variable, so increasing the statistical power o f an otherwise “small” experiment.

7.1.3 Procedure

Data collection took place in groups of up to 10 participants at a time. Each participant

worked individually, seated at a PC workstation running the SSI simulator.

All participants initially completed tests of verbal and spatial ability taken from the

General Aptitude Test Battery (US Dept, of Labor Employment and Training

Administration, 1982). This was followed by two periods of training lasting

approximately 45 minutes each.

In order to standardise the training for the tasks between checkers and testers as far as

possible all participants first completed a ‘core’ component which related to the general

working o f SSI and railway signalling rules. This was followed by specific training in

which each experimental group was taught how to use the particular interface

associated with their task to find faults in the simulated SSL Between training sessions,

and between training and testing, participants were given 5-minute refreshment breaks.

During training the SSI simulator was running a simplified, practice SSI track layout

For the core training participants were presented with an information sheet, and this

was read through by an experimenter who explained the various concepts to the

participants and answered any questions that they had. The participants also had a crib

sheet to use while performing the training and actual task. The training and crib sheets

can be found in appendix B.

110

The specific training included a practice session, where participants searched for two

faults in a demonstration layout o f the experimental task presented on the SSI

simulator. At the end of the specific training session the practice faults were shown to

the participants, along with the reasoning and actions that should have been followed

to find them. Questions about the training, e.g. the signalling rules, were fielded from

the participants at this point; the participants were told that questions could not be

answered once the task proper had begun.

For the actual task participants were required to complete two signalling layouts,

presented one after the other. One layout consisted o f seven train routes; the other,

nine. Presentation order o f the two layouts was counterbalanced within conditions. For

each layout participants were instructed to check or test the code / behaviour o f four

o f the routes (specified on the crib sheet) and to search for any faults that might be

present Just four routes were specified for the task because as the number o f active

routes increases linearly the interactions between routes increase exponentially.

Thoroughly testing more than four routes would have made the data collection

sessions too long. Although only actually looking for faults in four o f the routes, the

extra routes present in each layout would represent additional information and clutter,

thus making the task more demanding and avoiding ceiling effects.

Each layout contained eight faults, but the participants were not informed as to how

many faults there were to find. There were four fault types (ASP, ORD, ORS and

ROU, as described earlier), two o f each type per layout Further, for each fault type,

one of the faults per layout was an error o f commission, i.e. incorrect SSI code, and

one was an error o f omission, i.e. missing code.

If the participant found a fault they were instructed to log it by clicking a button on the

display and inputting a description allowing the fault to be identified. The task was self-

paced. Participants were instructed to continue searching for faults until they were

satisfied that they could find no more. When they had finished inspecting a layout they

clicked on another button on the display, which either took them to the next layout, or

terminated the simulator programme. Participants were paid £15 for completing the

experiment

1 1 1

7.2 Results

The data from one of the participants in the checking condition was excluded from the

analysis because of misinterpretation of experimental instructions.

There was no significant difference between checking and testing groups in spatial

ability. However, the testing group scored significantly higher (t [24] = 2.24, p < .05) in

verbal ability. Correlations between the measures o f cognitive ability and fault detection

performance were examined separately for each group. No significant associations

were found.

To test whether differences in spatial and verbal ability were related to error detection

performance, a measure o f relative spatial / verbal ability was constructed. Each

participant’s standardised verbal ability score was subtracted from their standardised

spatial ability score, to give a measure (S-V) that was at a maximum for those relatively

high in spatial ability and at a minimum for those relatively high in verbal ability (after

Cronbach and Snow, 1977). The difference between S-V scores for all possible

“virtual” checker / tester pairs was computed, and correlated with the number o f faults

detected by either one or both members o f the virtual pair (C u l) . A big difference

between S-V scores would indicate a diverse pair in terms of their relative spatial/

verbal abilities. However, no significant association was found between this measure

and fault detection performance o f the pair.

The mean proportion o f faults detected in each o f the experimental cells is shown in

Table 13.

Error detection performance was analysed using a 2 (task type - checking, testing) x 4

(fault type - ASP, ORD, ORS, ROU) x 2 (CO - commission, omission) ANOVA. Task

type was a between participants measure, the fault type and CO factors were within

participants measures.

1 1 2

Table 13: Proportion o f faults detected by task type, fault type and

om ission / com m ission

Fault type Checking (n = 12) Testing (n = 14)

Omission Commission Omission Comm ission

M (SD) M (S B) M (SD) M (SD)

ASP .96 (.14) .92 (.29) .83 (.39) .42 (.51)

ORD .67 (.49) .71 (.37) 1.00 (.00) 1.00 (.00)

ORS .92 (.29) .75 (.45) .92 (.29) .88(31)

ROU .96 (.14) .83 (.39) .38 (.31) 1.00 (.00)

There was no significant main effect o f task type (F [1,24] < 1) or fault type (F [3,72]

= 2.08, p > .05). Errors o f commission were detected significandy less well than errors

o f omission (F [1,24] = 10.01, p < .01). There was a highly significant interaction

between task type and fault type (F [3,72] = 10.58, p < .001). This interaction seems

attributable to poor performance o f checkers in detecting ORD faults, and poor

performance o f testers in finding ASP faults. This effect was clarified by a significant

third order interaction between task type, fault type and CO (F [3, 72] = 5.59, p <

.005). This was attributable to the low number of ASP faults o f commission detected

by testers. This result also probably accounted for the significant second order

interaction found between fault type and CO (F(3,72) = 4.32, p < .01), where ASP

faults o f commission were detected poorly compared to faults o f omission.

7.3 D iscussion

The results must first be considered in relation to the conditions that must be met

before diversity could play a beneficial role in fault detection (see § 6.1. for details).

113

First, there was consistency to error, as evidenced by variation in performance being

associated with different fault types across task conditions. Second, neither o f the task

conditiona was a subset o f the other in terms o f fault detection performance. Also, the

task was sufficiently complex that perfect performance was not achieved, as evidenced

by the lack o f 100% fault detection. In fact, the two conditions were not even found to

differ significantly from each other in terms o f overall faults detected.

The first o f the above points highlights the main finding; that there was diversity o f

fault detection across task environments. Checkers detected fewer ORD (Opposing

Route - Different points position) faults than testers. Testers were comparatively poor

at detecting ASP (ASPect control) faults, and this was particularly the case for faults o f

commission. These differences in performance can be understood if considered in the

context o f the mechanics o f the actual fault finding process that checkers and testers

must go through.

To detect ORD faults, the checker must first work out which routes are opposing to

each other from the signalling diagram. Then, the points positions for each o f these

opposing routes must be established. When this is done, the direction that trains would

travel as they cross the points, for those routes that must not be set together, must be

worked out and translated into a machine readable SSI sub-route label (see § 5). This

sub-route labelling has been found to be a comparatively error-prone procedure, as it

does not consistently produce the same label for the same spatial direction o f route for

different track layouts. Only when these activities have been carried out can the

checker assess whether the code shown on screen is correct or not.

On the other hand, the tester has a much more straightforward task to find the same

fault They must also first work out which routes are opposing to each other, but then

they merely have to attempt to set the two opposing routes at the same time by

clicking on the two route buttons. I f they can be set together, as shown by an

indication on the screen turning from red to green, there is a fault This result

replicated a finding from the error analysis o f the DPP (detailed in § 3.2.2), where

checkers were again poorer than testers at detecting opposing locking faults.

114

In contrast to the above, checkers are superior in detecting ASP faults o f commission.

To the checker these faults would be reasonably obvious. In the SSI code for a

particular route, there would appear a reference to a section o f track that was irrelevant

to the route in question. For the tester to discover this fault; however, would involve

them repetitively searching through all the track sections in die layout, whether part o f

the route under test or not, to see if any affected the functioning o f the route under

test This finding is contrary to that found in the field studies. In the fault log audit,

testers were found to be superior to checkers for ASP faults. This difference could be

because o f the nature o f the simulation. For instance, because o f the restricted

functionality o f the SSI simulator, it was not possible to include more than eight faults

per layout Any more and it would have become impossible to test due to the lack of

working functions. This meant that the individual faults seeded into the simulation

were necessarily only a fraction o f the variety that can occur in the actual DPP. It was

possible that those particular faults chosen for inclusion, while taken from examples in

the fault log audit, were not entirely representative.

Cognitive abilities do not appear to have been related to fault finding in this

experiment There were no significant associations found between measures o f spatial

or verbal ability and the type of faults found. However, there were not even any

significant correlations found between ability and overall fault detection performance.

Spatial and verbal ability have been shown in the past to be strongly related to

performance in computer-based tasks. It was possible that a number o f factors to do

with the sample may have been having an effect First, the experiment was somewhat

exploratory, and so the sample size was small. Second, the sample had a significantly

higher mean and lower standard deviation for cognitive ability than that found in a

reference sample of the general population. This was equivalent to a mean IQ of 120

(SD = 15) for the participants in this study compared to an IQ o f 100 (a = 20) for a

normative sample o f the U.S. adult population. However, it could also be argued that

people employed in the ‘real world’ task o f safety-critical software validation would

also be highly selected engineers.

115

Overall, the data tentatively support the findings from the field studies. They indicate

that the use o f diversity in terms o f task environment is an achievable method of

promoting diversity in fault detection performance in the SSI design task. However, it

is not dear how the various factors that go together to make up task diversity

contributed to the results. As discussed earlier, factors such as differences in

information saliency, modality of presentation o f information etc., are the most

obvious dimensions o f contrast between checking and testing. However, other, less

directly related factors necessarily go hand-in-hand with task diversity. For instance, the

domain knowledge presented to checkers and testers was somewhat different This was

unavoidable because o f their different tasks, and the differences were controlled where

possible with common training. However, the variation that remained may have led to

systematic differences between checkers and testers in terms o f their mental model of

even the higher-level SSI system. Also, the natural variation between individuals’

mental models within tasks may be found to be a useful source o f diversity.

This factor, in particular, will be investigated further in the next chapter.

116

Chapter 8 : Cognitive D iversity Experim ent I I

8 Cognitive Diversity Experim ent II

Experiment II was planned to investigate the role that differences in participants’

mental models played in diversity o f fault detection. In experiment I it was found that

task environment was strongly associated with the types, but not numbers, o f faults

found by participants in the simulated SSI task The second experiment would probe

the role that variations in participants’ mental models played upon diversity in fault

detection.

Differences in mental models have been studied in computer programming

environments, usually in relation to the differences between novice and expert

programmers. Adelson (1981) found differences in the recall o f previously presented

programme code by groups o f programmers with different levels o f experience. Expert

programmers’ recollections tended to be organised semantically, novice programmers’

syntactically. Cooke and Schvaneveldt (1988) also found differences between expert

and novice programmers in terms of relatedness-ratings o f programming concepts,

with experts tending to mis-define concepts less often than novices. Although these

differences between expert and novice mental models have been used to account for

the usually superior programming and debugging performance o f experts, this has not

always been shown to be the case. For instance, Adelson (1984) found that experts

performed better when presented with materials encouraging an abstract

representation o f a programming task. However, when materials encouraging a

concrete representation were presented the performance o f novices was better.

These studies show that although differences in mental models can lead to differences

in performance the reasons for this are not only because some mental representations

are better or worse than others, but also because in different contexts some are more

or less appropriate than others. The differences between models can thus be exploited

as a dimension o f cognitive diversity.

The difficulty with this approach lies in achieving a quantitative assessment o f a mental

model. One possible method is to use psychometric measures o f conceptual distance

with respect to concepts within the task environment (see Cook, 1994 for a review).

117

Chapter 8: Cognitive D iversity E xperim ent U

Although little work has been done in this area, there are some encouraging indications

of the validity of this method (Coury, Weiland and Cuqlock-Knopp, 1992; Pallant,

Timmer and McRae, 1996).

8.1 Method

Twenty four participants (four female) were recruited from the student population at

the same UK University that hosted experiment one. All participants were enrolled on

science-based courses. Mean age was 25 yrs (SD = 3 yrs). Participants were assigned

randomly to either the checking condition or the testing condition, with the constraint

that each condition should have 12 participants.

Experiment II was conducted in essentially the same manner as experiment I, but with

the following difference. Instead of completing measures of spatial and verbal ability,

after the period of ‘core’ training (but before task-specific training) participants

completed psychometric measures designed to evaluate their mental models o f the task

environment Eight constructs were chosen to represent the task environment These

comprised the four components o f the railway, combined with the binary states that

each could assume, as shown in Table 14.

Table 14: Railway signalling constructs used in psychom etric mental

m odel assessm ent

Construct Component Possible states

1. Points a. Free to move

2. b. Locked

3. Route a. Not set

4. '. . b. Set

5. Signal a. Green

6. b. Red

7. Track section a. Clear

8. b. Occupied

118

Chapter 8 : Cognitive D iversity E xperim ent I I

Three questionnaires were administered in total. The first was an assessment o f die

conceptual distance between all possible pairings o f constructs. For each pairing,

participants were asked to mark on a 0 - 100 scale the ‘distance’ they perceived

between the constructs, zero being lowest possible distance, 100 the highest

The second questionnaire required participants to rate the relative contribution that the

constructs made to tbe safe running o f the railway. For each possible pairing o f

constructs a 100 - 0 - 100 scale was shown, with the members o f the pair as scale

anchors. Participants were asked to rate which o f the two constructs contributed most

to the safety o f the railway, or to give a rating towards the middle (0) o f the scale if they

adjudged the two constructs to be equally important for safety.

The third questionnaire was identical to the second, except that it required participants

to evaluate the constructs in relation to the concept o f “functionality”; the efficient

running or ‘liveness’ o f the railway. All mental model questionnaires are shown in

appendix C.

8.2 Results

The mean proportion o f faults detected in each o f the experimental cells is shown in

Table 15.

Fault detection performance was again analysed using a 2 (task type - checking, testing)

x 4 (fault type - ASP, ORD, ORS, ROU) x 2 (CO - commission, omission) ANOVA,

the latter two factors being within-participants measures.

There was found to be no main effect o f task type, or o f CO. There was a significant

main effect o f fault type, however (F [3,66] = 8.37, p < .001), with both ORD and

ORS opposing route faults being detected poorly and ROU faults detected best This

difference in fault detection performance was highlighted by a significant second order

interaction between task type and fault type (F [3,66] = 4.94, p < .005). This effect

seemed due to testers being less effective in detecting ASP faults, and checkers less

effective in detecting ORS faults.

119

Chapter 8 : Cognitive D iversity "Experiment I I

T able 15: P roportion o f faults detected by ta sk type, fau lt type and om ission

/ com m ission.

F ault type Checking (n = 12) T esting (n = 12)

O m ission Com m ission O m ission Com m ission

M (S D) M (SD) M (SU) M {SD)

ASP .75 (.45) .75 (.45) .71 (.43) .25 (.45)

ORD .42 (.51) .58 (.51) .58 (.51) .38 (.48)

ORS .33 (.49) .25 (.45) .46 (.50) .58 (.51)

ROU .88 (.31) .75 (.45) .67 (.49) .67 (.49)

These effects were further clarified by a significant third-order interaction between task

type, fault type and CO (F [3, 66] = 4.62, p < .01). This is attributable to testers

showing a great disparity between errors o f omission and commission in ASP faults,

with errors o f commission detected particularly poorly.

8.2.1 Analysis of mental model data

The distance between constructs from the three mental model questionnaires were

analysed separately using the INDSCAL Multi-Dimensional Scaling (MDS) procedure

(as described in Young and Harris, 1992). Each participant’s responses to each

questionnaire were assumed to represent ordinal rather than interval- or ratio-level

data, therefore requiring non-metric MDS. Participants’ responses were made to all

possible pairs o f constructs; therefore the data were represented as square, symmetrical

matrices. For each questionnaire the matrices from all participants were aggregated to

produce one overall model based on weighted Euclidean distances.

A scree-plot o f S-stress against dimensionality suggested a two-dimensional solution

for each questionnaire. Inspection o f the weirdness index for each participant showed

120

Chapter 8 : Cognitive D iversity E xperim ent E

no values greater than .8. Particularly high or low weirdness values were not found

predominantly from either the checkers or testers, indicating that the MDS solution

was acceptable for both groups. Overall RSQ values for each questionnaire were not

high (all between .50 and .60), but S-stress values were acceptable (< .3), and lower

than for 1 -or 3-dimensional solutions.

With a two dimensional model, one flattened weight was produced per participant for

each o f the conceptual distance, safety, and functionality questionnaires. The flattened

weights provided an index o f an individual’s deviation from the mean solution for the

entire sample, and therefore an index o f how similar or different the participants’

mental models were from the average.

The flattened weight from each questionnaire was correlated with the number o f faults

detected. N o significant associations were found, showing no straightforward

association between individual performance and mental model “deviation”.

To gauge the effects o f diversity o f mental models on error detection, Virtual’ pairs o f

participants were constructed. All possible different combinations o f participants were

first listed; this is equal to ¡N * N — 1] / 2, or 276 virtual pairs in this case. For each

virtual pair the difference between flattened weights was computed for each o f the

questionnaires.

A number o f different measures o f fault detection performance could have been taken

for these pairs. The mean o f two participant’s individual fault detection scores gives an

indication o f the overall merit o f the pair, but does not include any information as to

the levels o f diversity or redundancy in the pair. A better indication o f the practical

benefit o f task diversity is to look at the total number o f faults detected by pairs

corresponding to C U T in Figure 6. This corresponds to the total number o f faults

detected by both members of the pair, and so to their overall effectiveness.'

This “effectiveness” fault detection variable was then correlated with each o f the

mental model difference variables. Only the difference in the ‘functionality’ mental

Chapter 8: Cognitive D iversity Experim ent I I

model scores was found to be significandy related to fault detection performance (r

[276] = .24, p c.001).

8.3 D iscussion

Overall, the pattern o f performance found in this experiment was similar to that found

in experiment I. Testers were again found to be relatively poor at detecting ASP faults

o f commission, and checkers were again found to be poor in detecting opposing

locking faults, but this time for routes set over the same points position rather than

different points position. While this finding is slightly different from that found in

experiment I, it replicates the pattern found in the field studies, and relates once again

to the use o f sub-routes.

In general error detection was poorer in experiment II than experiment I. This could

be attributable to the less stringent sampling criterion. Although the participants came

from a similar population in terms o f educational level, pragmatic considerations meant

that sampling could not be constrained to only engineers and computer scientists. The

resulting participants would therefore not necessarily have had experience o f code

inspection and functional testing before the experiment

Considering the analysis o f mental model data, the results showed no relationship

between mental model measures and absolute performance. This suggests that the

participants’ mental models were not significandy ‘better’ or V orse’ but merely

different

The diversity measure between Virtual’ pairs o f participants showed only one

significant relationship, between diversity with respect to concepts o f functionality and

overall fault detection effectiveness o f the pair. There are a number o f speculations

that can be made about this finding.

O n the one hand, what constitutes the functionality or liveness o f a system may be a

more fluid notion than that o f safety, and therefore admit more variation in its

conception. Safety and liveness are concepts central to the operation o f systems that

have similar properties to the railway considered here. For instance, distributed

122

Chapter 8 : Cognitive D iversity E xperim ent II

computer systems have to move multiple packets o f data (analogous to trains) across

fixed wiring networks (analogous to rail networks) as efficiently as possible without

losing data. It has been demonstrated in this domain that proving the existence o f

safety properties o f networks is an easier job than doing the same for liveness (Alpem

and Schneider, 1987), in part because o f the greater ease with which safety can be

defined.

To illustrate this point, think about trying to evaluate the state o f a railway for its safety

and liveness. For the purposes o f this example I will define ‘railway’ quite simply; just

two railway lines (A and B) that cross each other, with two sets o f signals (A and B,

one on each line protecting the junction) and two trains (A and B), one on each line. If

train A is travelling along its line towards the crossing point, then signal B (on the other

line) should be red. If train B were obeying signal B, and had stopped before it, then

the railway would certainly seem to be within its envelope o f safe operation. However,

is the system within its liveness envelope? On the one hand, train B is stationary and

that doesn’t seem very ‘live’. However, this delay is surely a necessary part o f a safe

system, and will only conflict with liveness goals if signal B continues to show a red

light long after train A is clear of danger. Therefore, a red signal is always good from a

safety point o f view, but sometimes acceptable and sometimes not from a liveness

point o f view.

However, if the degree o f variation possible within a concept is the im portant factor,

then ‘conceptual distance’ should have also been related to error detection. Unlike the

safety and functionality/liveness questionnaires, the participants were not given any

guidance as to the goal that any similarity or difference between railway elements

should serve with the conceptual distance questionnaire. Thus, conceptual distance

should perhaps have accommodated even more variation between participants’ mental

models than did functionality.

It could be argued, however, that it was precisely the focus on task relevant factors

given by the safety and functionality questionnaires that was im portant Participants

might have used many task-irrelevant factors to decide their answers on the conceptual

distance questionnaire, e.g. how big the railway elements are.

123.

Chapter 8: Cognitive D iversity Experim ent II

This point is unlikely to be resolved here by debate based on such limited data.

Experiment HI would provide a further test o f the exploitability o f mental models in

the service o f diverse task performance.

Chapter 9 : Cognitive D iversity E xperim ent III

9 Cognitive diversity experiment III

O f the mental model measures, only differences relating to the functionality o f the

railway were found to be associated with improved fault-finding performance in

Experiment II. This indicated that if people have different models o f what constitutes

efficient working o f the railway, they will tend to find different faults. Functionality

corresponds to flexibility or ‘liveness’ o f the network, where points are flee to be

moved and routes can be set without undue restriction. This perhaps allowed more

diversity between people’s mental models than the more constrained and perhaps

easier to define concept o f safely. However, the conceptual distance measure should be

the most freely definable o f them all, supporting large differences in mental models.

Perhaps in the case o f conceptual distance, the range in mental models was too diverse,

leading to no predictable association with performance. ‘Conceptual distance’ alone

may be too sprawling a notion to have any useful im pact

In experiment II the psychometric mental model measures were administered after the

core training in railway principles, but before the specific training for checking or

testing. This meant that the variation found between participants’ mental models

would have represented natural variations between their understanding and

conceptualisation o f the training, without any systematic effect o f the different tasks

they were to perform (i.e. checking vs. testing) or die variations in domain knowledge

that the specific training would bring. The large and consistent interaction between

fault- and task-type found in experiments I and II may also have been due in part to

the influence o f ‘environment-sponsored’ differences in the range o f mental models

that each task supported, or that fit ‘best’. Any environment-sponsored differences in

mental model would play a mediating role in the type o f faults found by participants in

each condition.

The dimension o f safety vs. functionality showed some promise in experiment II.

Safety and functionality were used in this experiment to investigate the effects that task

environment perse, and the influence o f task environment upon participants’ mental

models, has upon fault detection performance. Therefore, the faults seeded into

experiment III differed in terms o f whether a fault affected the safety or functionality

125

Chapter 9 : Cognitive D iversity E xperim ent H I

o f the railway network. It would then be possible to investigate whether the task

environment is associated with the numbers o f safety and functionality faults detected.

Participants would also be asked to search specifically for either faults o f safety or

faults o f functionality. I f their mental model o f the safety or functionality o f the railway

is psychologically meaningful, over and above the effect o f the environment itself, then

this should be evident in their ability to find their assigned faults.

9.1 Method

9.1.1 'Participants

Eighty-eight participants (9 female) with a science background were recruited from the

student populations at four UK universities and two sixth-form colleges. Mean age was

20 years, (SD = 3 yrs). Participants were randomly assigned to conditions; thirty nine

participants were assigned to the checking condition, 49 to the testing condition.

(Numbers are unequal because of the unforeseen cancellation o f an experimental

session.)

Experiment III was then conducted in a similar manner as experiments one and two,

but with the following differences.

9.1.2 Fault categories

In the previous experiments the sixteen faults seeded into the SSI simulator were made

up o f two each from four signalling categories: ASP, ORD, ORS and ROU. Each

category contained one error o f omission and one o f commission. In this experiment it

was still necessary to have the four signalling categories, but this time a completely new

set o f sixteen faults was chosen so that each o f the categories contained one fault

affecting the safety o f the railway and one affecting the functionality. To subdivide the

categories any further would not be possible with only sixteen faults, so the

commission/omission dimension was controlled for by having only faults o f

commission. (Having more than sixteen faults would have made the testers’ task

unworkable, as different faults would start to hide’ each other). Training was slightly

altered to emphasise the distinction between the safety and functionality o f the railway,

and the practice session included faults o f both types. The new within-partidpants

factor o f safety vs. functionality was named S_F.

: 126 :

Chapter 9: Cognitive D iversity Experim ent E l

9.1.3 Procedure

The experiment was initially conducted as per experiment I. All participants completed

tests o f verbal and spatial ability taken from the General Aptitude Test Battery (US

D ep t o f Labor, 1982). This was followed by both core and specific training sessions.

Participants then completed the three psychometric mental model measures used in

experiment II. Note, in this experiment, as opposed to experiment II, the psychometric

mental model measures were presented to participants after they had completed both

their core (general) and specific (checking or testing) training. This was to emphasise

the potential task environment-mediated differences between the mental models o f

checkers vs. testers.

Before the participants proceeded with the fault finding task they were allocated

randomly into another two groups. Approximately half in each condition were

instructed to concentrate 80% of their effort on finding faults o f functionality (and

20% on safety), the other half were told to concentrate 80% o f their effort on finding

faults o f safety (and 20% on functionality). This factor was referred to as INST

(ENSTructions).

A time limit was this time imposed on task performance, amounting to approximately

75% o f the mean time that participants in the previous experiments took before

finding their final error. For layout one (with seven routes) this corresponded to 30

minutes; for layout two (with nine routes) this was 40 minutes. (Participants were free

to finish their task before the time limit.) I t was felt that if the task was self-paced, as in

previous experiments, participants might be able to detect too high a proportion o f the

errors. This ceiling effect would mask distinctions between their efforts to find errors

o f safety vs. functionality and vice versa.

Participants then proceeded to complete the task. After they had finished both layouts

the mental model questionnaires were completed for a second time. Three additional

questionnaires were then administered. The Error Orientation Questionnaire (EOQ;

Rybowiak, Frese, Garst & Batinik, 1999); eight scales designed to elicit participants’

self-rated attitudes to their own errors. The Cognitive Style Index (CSI; Allinson and

Hayes, 1996) contains one bipolar scale o f self-rated cognitive style. A low

127

Chapter 9 : Cognitive D iversity "Experiment H I

score indicates a global, holistic problem-solving approach; a high score indicates an

analytic approach. Finally a personality assessment questionnaire was completed.

Prevue ICES (Bartram, 1994) contains four scales; Independence, Conscientiousness,

Extroversion and Stability, each made up from two minor scales.

9.2 Results

Three participant’s data were removed from the analysis: two testers detected no faults

at all, and there was some doubt as to whether they had fully understood the final task

instructions; one checker detected all o f the faults in both layouts (which, for this

individual, meant that perfect performance seemed to be reliably obtainable, obviating

the need for diversity [see § 6.1]). Thus, 85 participants’ data were retained for analysis.

9.2.1 Individual differences

There were no significant differences between groups in terms o f spatial or verbal

ability. Both spatial ability (r [85] = .35, p < .005) and verbal ability (r [85] = .51, p <

.001) were found to have significant positive correlations with the overall number o f

faults detected. There were found to be no significant correlations between fault

detection performance and analytic/global cognitive style, or any o f the personality

scales. There was a marginally non-significant negative trend between fault detection

and the EO Q scale of covering-up errors (r [85] = -.21, p = .053), so that poorer fault

detection performance was associated with individuals who report that they tend to

hide their errors. No other EOQ scales were significantly associated with performance.

There was a significant correlation between the number o f faults detected and whether

English was the participant’s first language or not (rpb [85]= .27, p < .05), such that

those with English as their first language tended to find more faults. This language

variable is also confounded with checking and testing groups, such that the testing

group contained more participants whose first language was not English than did the

checking group (t [68] = 3.87, p < .01, with Welch's correction because o f unequal

variances between groups). To control for this potentially biasing factor, whether the

participant’s first language was English or not was used as a covariate in subsequent

analyses.

128 :

Chapter 9: Cognitive D iversity Experim ent 127

9.2.2 Fault detection performance by treatment group

The data were analysed using a 4 (fault type) x 2 (S_F) x 2 (task type) x 2 (INST:

instructions to search for either safety or functionality faults) ANOVA, with ‘English is

First Language’ (EFL) as a covariate. The first two factors were within participants, the

latter ones between participants.

There were found to be no significant effect o f INST (F[l,80] < 1), so the analysis was

repeated without i t Table 16 shows the proportions o f faults detected by task type,

fault type and S_F.

Table 16: Proportion o f faults detected by task type, fault type and safety

vs. functionality

F ault type Checking (n = 47) Testing (n = 38)

Safety Functionality Safety Functionality

M (SD) M (SD) M (SD) M (S D)

ASP .58 (.32) .70 (.36) .67 (.38) .22(37)

ORD .44 (.39) .79 (.30) .72 (.37) .26 (.31)

ORS .27 (.33) .54 (.39) .62 (.37) .49 (.45)

ROU .86 (.29) .69 (.38) .85 (.26) .26(38)

In this analysis the overall effect o f EFL was marginally non-significant (F [1, 82] =

3.84, p = .052), but it was decided to retain it as a covariate as it was found to be

significantly associated with poorer performance on ASP and ROU safety faults.

There were no main effects of task type (F[l, 82] = 1.37, p > .05), fault type (F[3,246]

= 2.44, p = .065), or S_F (F[l, 82] < 1). As found previously there was a significant

129

Chapter 9 : Cognitive D iversity E xperim ent III

two-way interaction between task type and fault type (F [3,246] =10.22, p < .001),

most notably because o f the checkers’ somewhat superior performance in detecting

ASP and ROU faults, and their poorer performance in the detection o f ORS faults.

There was a significant interaction between task type and S_F (F [1, 82] = 163.25, p <

.001), with checkers detecting more functionality faults compared to safety faults, and

vice versa for testers.

Finally, there was a significant three-way interaction between task type, fault type and

S_F (F [3,246] = 3.23, p < .05). For ASP, ORD and ORS fault types, checkers

detected more faults o f functionality, testers more faults o f safety. But for ROU faults,

checkers detected more faults o f safety than o f functionality.

9.2.3 Analysis of diversity in performance

To investigate diversity in fault detection, as before all possible virtual combinations of

pairs o f participants were constructed. Previously, the total number o f faults detected

by the pairs, corresponding to C U T in Figure 6, was used as the measure o f fault­

finding effectiveness. However, this measure does not give an indication o f the amount

o f diversity in fault detection for the pair, and so their resistance to common mode

error. A measure o f diversity is given by the number o f faults detected by only one or

other member o f the pair, but not both, and corresponds to the area o f diversity, (C O

T) U (C n T) in Figure 6. The data were also broken down by pair type; the virtual

pairs o f participants consisted o f checkers with checkers (n = 703), testers with testers

(n = 1081), or checkers with testers (n = 1786). The mean proportion o f faults

detected, for each fault measure and by pair type, is shown in Table 17.

For the mean faults measure there was a significant difference between pair types (F [3,

3567] = 86.26, p < .001). Post-hoc Bonferroni multiple comparison tests showed that

each group was significandy different to the others with pairs o f checkers having the

highest mean score and pairs of testers the lowest

Table 17: Proportion o f faults detected by measure of fault detection and

‘virtual’ pair type

130

Chapter 9 : Cognitive D iversity E xperim ent H I

M easure o f fault

detection

‘V irtual’ pair type

Checker and
Checker

T ester and
T ester

Checker
and T ester

M (SD) M (SD) M (S 1 7)

M ean o f pair .61 (.15) .51 (.15) .56 (.16)

R edundancy
and diversity
C U T

.80 (.14) .71 (.17) .82 (.16)

D iversity
(C n T ’) u (C ’ n T)

.40 (.15) .40 (.14) .52 (.14)

Note: n(checker and checker) = 703; n(tester and tester) = 1081; n(checker and tester) = 1786

When considering the C U T measure, there was again found to be a significant

difference between pair types (F [3,3567] = 117.13, p < .001). Post-hoc tests showed

that pairs o f testers were detecting significantly fewer faults than the other two pair

types, but checker with checker pairs were not significantly worse than checker with

tester pairs.

The difference between groups for the diversity measure [(C f iT)U (C’ n T)] was

highly significant (F [3,3567] = 349.56, p < .001). Post hoc analysis showed pairs

containing a checker and a tester detected significandy more diverse faults than the

pairs containing either only checkers or only testers.

9.2.4 Diversity of Individual differences

It was hypothesised that differences in cognitive style, cognitive ability and personality

would lead to differences in the types o f faults detected, rather than merely the

number. To investigate this all the possible unique pairings o f participants were

constructed as before. The absolute difference between the two members o f the pair

131

Chapter 9 : Cognitive D iversity E xperim ent IE

was then taken for the above mentioned variables. Correlations between the difference

measures and the measure o f absolute fault detection performance o f the pair (C U T)

and diversity performance [(C n T) U (C’ n T)] were then calculated. Because o f the

large number o f pairs in this analysis (N = 3570) a correlation o f only slighdy more

, than .03 would be significant at the .05 level. Because o f this and the large number o f

correlations being performed, only correlations with an absolute value above .10 are

reported to avoid too many seemingly significant but spurious relationships.

None o f the differences for the cognitive ability variables, personality variables or the

cognitive style index were found to have correlations o f greater than .10 with fault

detection. Regarding the EO Q scale, differences in ‘error risk taking’ (r[3570] = .12, p

< .001) and ‘thinking about errors’ (r[3570] = .13, p < .001) were found to correlate

with overall fault finding performance (C u l) .

9.2.5 /Mental models

As for experiment II, the distance between constructs from the three mental model

questionnaires were analysed separately using the INDSCAL multidimensional analysis

procedure. Parsimonious solutions for each questionnaire were derived, again seeking

to minimise S-stress while maximising the proportion o f variance accounted for by the

solution. For the conceptual distance measure this was a three dimensional model

accounting for 49% of the variance in the original distance matrix. A four dimensional

solution accounting for 56% of the variance was selected for die Functionality

measure. Finally, a two dimensional solution (43% o f the variance) was chosen for the

safety questionnaire.

For each questionnaire a number o f flattened weights were derived, equal to the

number o f dimensions in the solution minus one. These weights gave an index o f the

difference between each participant and the mean for the entire sample. For each o f

the possible pairs o f participants, the absolute difference between each o f the

participant’s flattened weights was taken as a measure o f dissimilarity o f the pair. These

difference measures where then used in a regression analysis to predict the C U T fault

detection performance measure for the pair (Table 18).

Table 18: Results o f regression analysis o f mental model differences on

fault detection performance

Chapter 9 : Cognitive D iversity Experim ent ZZZ

Predictor R R2 F
[2,3567]

P <

ß t
[3567]

P <

Conceptual .06 .00 6.38 .005
distance

Wl .03 1.96 .051
W2 ' -.06 3.42 .001

Functionality .16 .03 30.47 .001

Wl .14 8.03 .001
W2 -.09 5.56 .001
W3 -.07 4.31 .001

Safety .08 .01 22.94 .001

W l -.08 4.79 .001

Note: W l, W2, etc. = Multidimensional scaling flattened weight

All three sets o f flattened weights were significantly associated with fault detection

performance, as shown in Table 18 . For all o f the mental model difference measures

the association with fault detection performance was lower than that found for

experiment U; only the functionality measure had a multiple correlation coefficient o f

greater than .10. O f the individual P weights for the functionality measure only the

most important contributor, weight 1, is positively associated with fault detection; the

others are associated negatively with performance.

The relationship between individual weights and fault detection was further

investigated by dividing the sample into three equal groups for each o f the three

functionality weights. Each pair o f participants was thus a member o f one o f three

groups for each o f the weight measures: low diversity, medium diversity and high

diversity. Mean fault detection performance was then analysed by diversity group using

one-way ANOVAs with post hoc Bonferroni multiple comparisons. For weight one,

the high diversity group detected significantly more faults than either the middle or low

diversity groups (F [2,3567] = 17.20, p < .001). For weight 2, the high diversity group

133

Chapter 9 : Cognitive D iversity E xperim ent III

this time detected significantly fewer faults than either o f the other two groups (F [2,

3567] = 10.20, p < .001). Weight three showed evidence o f a quadratic relationship

between diversity and fault detection. The middle diversity group this time detected

significantly more faults than the either the low or high diversity groups (F [2,3567] =

20.52, p < .001).

9.3 Discussion

Although experiment HI used a different set o f faults to that used in the experiments I

and II, there were similar patterns found in fault finding performance across tasks.

Again, the worst fault detection performance for testers was for ASP faults, and for

checkers it was ORS faults (involving sub-routes).

There was a significant relationship between task-type and whether the faults found

were predominately ones o f safety or o f fiinctionality/liveness. Checkers tended to be

better at detecting faults affecting safety rules whereas testers tended to be better at

finding faults that affected only functionality.

The reason why testing should be better for safety faults and checking better for

functionality faults is not wholly apparent It does not seem to be due in any great part

to matters o f individual effort or goal preference, as the manipulation o f task

INSTructions (where one half of participants were asked to predominandy search for

safety faults and vice versa) was not found to have any significant effect This is so

despite the experiment having adequate statistical power to detect ‘moderate’ effects.

(Experiment III had a power o f .78 to detect ‘moderate’ differences [e.g. Cohen’s f >

.3] between INST groups [with CL = .05, two-tailed]).

The relation o f safety vs. functionality efficacy between checking and testing is in

agreement with findings from the error analysis (§ 3.5.1), however. There, it was argued

that being able to see the all o f the component parts o f the code allowed checkers to

notice additions what were clearly not part o f the route being evaluated, and which

usually specified additional restrictions on the liveness o f the railway. To find the same

fault testers would have to laboriously evaluate all o f the elements o f the railway that

were not part o f the route under te st

134

Chapter 9 : Cognitive D iversity E xperim ent III

The only individual difference measures found to have substantial relationships with

individual fault-detection performance were spatial and verbal ability. This is in

agreement with previous literature on programming skill (see van der Veer, 1989, for a

review), although in this experiment verbal ability was found to have a stronger

relationship with fault-finding performance than did spatial ability, whereas the reverse

has been found to be more often the case.

The effect o f spatial and verbal ability on fault finding did not emerge in the first

experiment, however, probably because o f the more highly selected nature o f the

sample in that case. In the first experiment participants were aged around 24 years, a

mix o f post- and undergraduate students, and all had backgrounds in engineering or

computer science. Participants in the third experiment were younger, around 20 years

on average, and were predominately undergraduates or final-year sixth-form students

with ‘only* a science background.

None o f the Cognitive Style, Personality, or Error Orientation measures was found to

be significantly related to individual fault detection performance.

9.3.1 Diversity

Differences between virtual pairs o f participants in terms o f their individual difference

measures scores were not found to be substantially related to any measure o f fault

detection. The only measures that did correlate above a level o f .10 were the EOQ

scales o f ‘error risk taking* (r = .12) and ‘thinking about errors’ (r = .13). Another

EO Q scale, ‘covering-up errors’ was found to be marginally non-significandy related to

individual fault detection (r = -.21). While these results seem connected by virtue o f

their parent questionnaire (the EOQ), they are all separate scales, and show, at best,

weak relationships with fault detection performance. For example, the differences in

EO Q scales accounted for little more than 1% o f the variation in virtual pair fault

detection performance.

Regarding the psychometric mental model measures, a very mixed pattern o f results

was obtained. O n the one hand, very different Multi-Dimensional Scaling solutions

were found between experiments II and HI. In experiment n , two-dimensional

1 3 5 ;,'''

Chapter 9 : Cognitive D iversity E xperim ent m

solutions were arrived at for conceptual distance, safety and functionality. In

experiment HI, three-, four- and two-dimensional models were found, respectively.

This could indicate that the changes made to the administration o f the mental model

scales between experiments II and II had some effect. The extra, task-relevant training

that the participants completed in experiment III compared to experiment II could

have resulted in more complex mental models in experiment III, as demonstrated by

the more complex MDS solutions. However, the solutions for experiment HI

accounted for slightly ¿ess o f the variance in the raw responses than did the more

‘complex’ experiment HI solutions.

On the other hand, it was found consistently in experiments H and H that variation in

conceptions o f the functionality or liveness o f the railway was m ost importantly related

to fault-finding performance, and not variations in the concept o f safety (or o f

conceptual distance).

However, in both experiments the amount o f variation in fault detection scores

accounted for by the functionality measure was very small; 6% and 3% respectively.

Further, o f the three functionality-related flattened MDS weights used in the regression

analysis in experiment HI, only one was actually related positively with error detection

performance. This is particularly problematic because the ‘meaning’ o f the various

dimensions in the MDS solutions is difficult to determine (unlike factor analysis

methods, where the meaning o f the individual items can be abstracted to latent

variables).

In summary, it seems that there is perhaps some promise in using individual

differences as a domain for cognitive diversity. However, the data presented suggest

that it is individual’s conceptions o f the task, rather than their abilities or styles, which

may be most im portant A first step in investigating this issue further might be to use a

more established technique in eliciting mental models, e.g. Repertory Grids (Kelly,

1955). This technique in particular would allow the participant to produce their own

conceptions o f the important elements in the task space, as well as the relationships

between elements, in an interpretable manner.

136

The only factor that was strongly related to diversity in fault detection performance

was the task-type: checking or testing. This is a confirmation o f the findings from the

first two diversity experiments. However, is this diversity a useful factor in promoting

more robust fault detection?

Inspection o f Table 17 shows that, when considering the mean fault detection

performance o f pairs o f checkers (CC), testers (TT), and checker/tester pairs (CT), CC

pairs were the most effective, finding 61% of faults on average. CC pairs were

significantly better than CT pairs (56%), who were also better than TT pairs (51%).

The mean fault detection figures for CC and TT pairs are merely the mean number o f

faults found by individual checkers and testers, respectively. (This can be confirmed by

taking the mean o f the checkers’ and testers’ scores from Table 16 and comparing

them with the mean detection performance figures in Table 17. The figure for CT pairs

is just the mean o f the individual checkers’ and testers’ performances [CT = 56% =

(61% + 51%) / 2]. The mean detection performance o f virtual pairs is thus just the

mean o f individual performances. When taken as N = 85 individuals this difference

[61% for checkers, 51% for testers] was not significant. However, the same difference

was launched into statistical significance when considered as N = 3570 pairs; however,

this is not valid statistically, as the 3570 pairs are not independent)

I f there existed no other information about fault detection performance across

checking and testing, the superiority o f checking would point to abandoning the testing

task and merely having two checking phases. Any use o f the ‘weaker’ testing task

would seem to just be diluting the performance o f the checkers. However, this position

ignores the influence o f common-mode error, as will be shown below, r

Checking was found, on average, to detect 61 % o f faults, and therefore leave 39%

undetected. Therefore, we might assume that a second check o f the same code would,

on average, detect 61% o f the remaining 39% o f faults, giving a grand total o f 85% o f

errors detected after two checks (39% x .61 = 23.79%. 61% + 23.79% = 84.79%,

rounded to 85%. An easier way to compute the same thing would be to consider the

proportion o f faults missed: checkers found .39 on average, so a second application

Chapter 9 : Cognitive D iversity E xperim ent III

137

Chapter 9 : Cognitive D iversity Experim ent IE

would miss .39 o f the original .39, i.e. .392 = .15.1 - .15 = .85 o f faults found).

However, if we look at the total number o f faults detected by one or both members o f

the pair (i.e. C U T in Table 17), the measured figure is only 80% detection on average,

5% less than the 85% figure that might have been expected.

The same pattern is found for TT pairs. Mean fault detection performance o f

individual testers (and TT pairs) is 51%, so the proportion o f faults missed was .49. A

second application o f testing would therefore be expected to miss the proportion.492 =

.24. This is .76 or 76% of faults detected. However, the C U T measure o f pair

performance was only 71%, again 5% less than might have been expected.

There seems to be a pattern whereby paired performance o f checkers with checkers

and testers with testers is less effective than might be anticipated when considering

individual performance. This pattern is reversed when considering CT pairs. .

The average error detection performance o f CT pairs, from Table 17, was 56%.

(Remember that this is inferior to the mean performance o f CC pairs, who managed

61 %.) As was pointed out earlier, this figure o f 56% is just the mean o f the average

error detection performance o f checkers and testers, who missed 39% and 49% o f

faults, respectively. Therefore, we might then expect a CT pair to miss on average .39 x

.49 = .19, or 19% o f faults, finding the other 81%. However, C U T performance for

CT pairs is actually slightly better than might have been anticipated, at 82% detection.

In fact, CT pair performance (82% detection) is superior to CC pair performance

(80%), even though individually checkers outperform testers, on average.

The reason why ‘diverse’ performance is better is although testers don’t find so many

faults on average as checkers they do tend to find somewhat different faults to checkers.

This can be seen by inspecting the measure o f diversity in performance in Table 17 ((C

n T) U (C ’ n T)). For both CC and TT pairs, only about 40% o f the faults detected

are unique to either member o f the pair. For CT pairs, on average 52% o f faults

detected by the pair a re ‘diverse’.

138

Chapter 9 : Cognitive D iversity 'Experiment III

The above findings informally demonstrate the benefit o f diversity in fault detection

processes. A double application o f the same fault detection method, i.e. redundancy, is

not likely to be as effective on the second application as it was on the first, over and

above the normal law o f diminishing returns. This is because, on average, die faults

missed by the first application will be ‘harder’ ones. A second application o f the same

method will find these faults no less difficult, indeed probably more so because they

will be more thinly spread. I f die second application is with a diverse fault detection

method, however, then some o f the faults remaining from the first method might be

quite ‘easy* ones as far as the second method is concerned, and so be more easily

detected.

These conclusions need to be tempered somewhat The data on which they are based

were obtained from a ‘toy* programming task, with naïve participants, which only

looked at code checking and functional testing tasks. This begs the question as to what

are the general properties o f task diversity in fault detection, and how can these be

reliably measured and used.

9.3.2 Modelling diversity in fault detection

In software design, diversity has been proposed as means o f achieving highly reliable

systems. Using the metaphor of hardware redundancy (i.e. by arranging components in

parallel; § 1.1.2), the practice of N-version computer programming has become

widespread in industrial and military safety-critical applications (e.g. Leveson, 1995;

Rouquet and Traverse, 1986). N-version programming involves developing two or

more separate programmes designed to do the same job. By making the development

processes o f the different software versions independent it was hoped that the same

mistakes would not be made in identical fashion by the different development teams,

and therefore the N different versions o f software would fail independently o f each

other. So, although different versions o f the software might vary in their individual

reliabilities, when used in the same system they should be unlikely to fail upon the

same control input or demand, and so together would be likely to ensure greater

reliability than any single version.

139

Chapter 9 : Cognitive D iversity E xperim ent III
I

However, hopes that this initial promise o f N-version software could be fulfilled were

dashed by a number o f experiments which showed that independently-developed

software versions tended to fail in correlated fashion, i.e. an input or demand that

caused one version to fail was likely to make the other versions fail, too (e.g. Eckhardt

et al, 1991; Knight & Leveson, 1986). (Note that it is not implied that a failure in one

version would cause another version to fail on the same input, merely that there would

be a correlation bew een failures o f the different versions.)

The reasons why this should be so were outlined in a model by Eckhardt and Lee

(1985). Although different teams developing different software versions could be

notionally independent, the difficulty o f the real-world problem solved by the software

would be the same for all. This notion o f ‘difficulty’ can be used to classify system

demands: some operations that the software must manage could be labelled as ‘easy*,

such as the requirement for a signal to turn red when passed by a train. O ther

operations would be hard’, such as working out the multiple constraints presented by

multiple trains approaching the same track junction. Although independently

developed, the N-versions o f software would thus be more likely to fail when required

to perform a hard’ operation than when doing an ‘easy* one, and they would therefore

show correlated (dependent) failure, rather than independent failure.

The Eckhardt and Lee (1985) model o f dependent failures was generalised by

Iittlew ood and Miller (1989). They showed that if the different development teams o f

the N-versions o f software were to use processes that differed in how ‘easy* or hard’

different aspects o f the programme seemed to them, then the different versions o f

software produced might even fail in negatively correlated ways. That means that on an

input or demand on which version A might be very likely to fail, version B might be

very unlikely to fail.

Negatively correlated failure is a better scenario than even independent failure between

versions. It is akin to the following example for the cautious investor. Imagine that two

companies are competing for a large government contract The stock price o f the

winner is likely to rise, whereas the price o f the loser will probably fall, all other factors

being equal. However, you don’t know which will win or which will lose, so how do

140

Chapter 9 : Cognitive D iversity E xperim ent III

you invest your money? To be guaranteed o f not losing money, you should spread

your investment across both companies; if you have ¿20 to spend then invest ¿10 in

each. If company A wins and their stock doubles, you will have turned ¿10 into ¿20.

However, company B’s stock may have fallen by half, too, reducing your investment

there to ¿5. However, your final sum is still better than you started with, ¿25 vs. ¿20,

and would be the same if company B won instead o f company A.

The im portant factor in the example above is the negative correlation between the

stock prices. As long as one goes up when the other goes down (and by the same ratio)

then the initial investment is safe. Similarly, as long as a software design manager can

be reasonably sure that they have negatively correlated versions then the pair will

always be more reliable than either individual programme.

There are two big problems with the apparent panacea o f negatively correlated In­

version software, however.

First is the matter o f cost By definition N-version programming is likely to at least

duplicate the costs o f a single version. However, even though in theory two perfectly

negatively correlated software versions may together always be likely to produce the

correct output given an arbitrary input, it is not an easy matter to decide which version

is actually telling the ‘truth’. When hardware fails it is usually fairly obvious, as the

component in question often stops working. Failed software may also stop working,

but more often it tends to keep working but in a ‘faulty* fashion; in effect, it lies’.

Guaranteeing the detection and correction o f “Byzantine Failure” as it has been called,

relies upon at least four versions o f the software (Shasha & Lazere, 1998). This means

that to fully reap the benefits of N-version software at least four completely

independent versions o f the software have to be produced. Safety-critical software is

inherently expensive to develop, but multiplying these costs by at least four is often

seen as prohibitively expensive, especially in light o f the following, second, pit-fall o f

N-version programming.

Second, it is not at all clear how to construct the N-different versions o f the software

so that they will fail in independent or negatively correlated ways; indeed, it is not an

141 "

Chapter 9 : Cognitive D iversity E xperim ent III

easy task even to evaluate the independence o f a specific set o f diversely developed

programmes (Popov & Strigini, 1998). This is because the models o f Eckhardt and Lee

(1985) and Litdewood and Miller (1989) are purely conceptual models o f software

diversity, and relate to how versions will fail ‘on average’ rather than in any specific

case. Knowledge o f specific cases is precisely what is needed in practice, however. For

instance, the experiments conducted by Knight and Leveson (1986) found that,

although multiple-version software was on average very much more reliable than any

individual version, they also found that some o f the best single programmes were more

reliable than the worst o f the multiple-versions.

So, to use the Eckhardt and Lee (1985) and Littlewood and Miller (1989) models in a

practical fashion means being able to estimate the key ‘difficulty’ distribution

parameters for an actual set o f programmes. However, that would mean having access

to data from a large sample o f faults from a large sample o f programmes to estimate

the distribution o f ‘difficulty* for each programme. Although this has been done in

experiments, where many different versions o f software were developed (e.g. Nicola

and Goyal, 1990), it is not a feasible solution for real safety-critical programming

applications.

Further, as the desired reliability o f the software becomes greater and greater, as for

safety-critical applications, then fault-detection processes become less and less useful

for estimating their reliability. This is because as faults become rarer there is

correspondingly less and less evidence upon which to make a judgement o f reliability.

In effect, as the desired reliability o f a system increases, the sample size o f faults or

failures decreases and the confidence limits on those estimates widen.

A way round these problems was put forward by Littlewood, Popov, Strigini and

Shryane (2000). They found that if the dependencies between different fault-finding

strategies for a single software version are modelled, instead o f the dependencies

between N-different versions, then the task of estimating the required parameters for a

given piece o f software is tractable.

142

Chapter 9 : Cognitive D iversity E xperim ent III
t

As in the Eckhardt and Lee (1985) and Littlewood and Miller (1989) models, the

Litdewood et al (2000) model assumes that different fault-finding tasks vary in how

‘difficult’ particular faults are to find. This ‘difficulty* function is likely to vary across

faults in relation to fault finding strategy; some faults being easier to detect with one

method, others being easier for the other method. The difficulty o f a particular fault

for a particular fault-finding method is represented in the model as the probability that

a randomly-chosen application o f the fault finding method will fail to detect the fault.

The mean o f these individual probabilities can then be thought o f as the

ineffectiveness o f the fault-finding method as a whole. Finally, the covariance between

the ineffectiveness measures o f the fault-finding methods is taken as the measure o f

diversity. The expected fault-finding performance o f an application o f two fault-finding

methods will then be the product o f the average ineffectiveness measures plus their

covariance, as shown below:

Overall ineffectiveness — (ineffectiveness of method A * ineffectiveness ofmethod B) + covariance AB.

Positive correlation between measures will thus add to the ineffectiveness o f the

overall performance, negative correlation will reduce ineffectiveness, i.e. improve fault-

detection.

In the case o f experiment III, the proportion o f participants not finding a particular

fault was taken as the ineffectiveness measure for that fault Averaging over all 16

faults the overall ineffectiveness o f checking was .3947 and testing was .4920, i.e. just

the average proportions o f faults missed. The covariance between checkers and testers

for the 16 individual faults was -.0127. Therefore, the ineffectiveness o f a checker-

tester (C l) pair would be expected to be:

CT ineff. = (C ineff. x T ineff.) + covCT

CT ineff. = (.3947 x .4920) + -.0127 = (.1942) + -.0127 = .1815

143

Chapter 9: Cognitive D iversity 'Experiment H I

An ineffectiveness o f .1815 corresponds to an effectiveness o f .8185 (= 1 - .1815),

which is the measured C U T overall fault-detection performance reported in Table 17

(.82 rounded to two decimals).

The above figures are based upon the full set o f 16 faults in Experiment III. In this

case the identity and location of each fault were known beforehand, and using this full

fault data allowed the performance between checking and testing to be exactly matched

and the precise covariance computed. However, this information will never be

normally available in practice (as it is the identity and location o f the faults that is being

sought!).

Treating each fault as an individual entity means that any fault-detection data collected

from actual testers and checkers will m ost probably not be exactly matched in this way,

i.e. they will not discover exactly the same faults. (Indeed, that checkers and testers

discover different faults is precisely what is hoped for with diverse methods.)

To circumvent this problem, individual faults can be categorised and grouped into

fault-classes. Although individual faults will tend to be ‘sparse’, by aggregating them

into classes enough data can more easily be obtained to allow estimation o f the

required probabilities and covariances.

For example, in Table 17, rather than present data on all 16 faults from experiment EH,

the probabilities o f detection are aggregated by signalling principle violated and

whether the faults were ones o f safety or o f functionality. In Table 19 and Table 20 the

data from experiment HI is presented again, this time as ineffectiveness figures (1 -

effectiveness) broken down by one fault class per table; signalling principle in Table 19

and safety/functionality in Table 20, respectively.

144

Chapter 9 : Cognitive D iversity E xperim ent H I

T able 19: P roportion o f faults m issed (ineffectiveness) in

E xperim ent I I I by task type and signalling princip le violated.

C T CxT

ASP .3618 .5585 .2021

ORD .3882 .5160 .2003

ORS .5987 .4468 .2675

ROU .2303 .4468 .1029

M ean .3947 .4920 .1932

Mean o f C x Mean o f T = .1942

Covariance CT = -.0010

Note: C — mean proportion o f faults missed by checkers; T = mean proportion o f faults
missed by testers.

T able 20: P roportion o f faults m issed (ineffectiveness) in

E xperim ent I I I by task type and w hether the fault affected system

safety or functionality

C T CxT

Safety .4671 .2872 .1342

Functionality .3224 .6968 .2246

M ean •: .3947 .4920 .1794

Mean o f C x Mean o f T = .1942

Covariance CT = -.0148
Note: C = mean proportion of faults missed by checkers; T = mean proportion o f faults
missed by testers.

145

Notice that in both Table 19 and Table 20 the mean figures for C and T

ineffectiveness are the same (and the same as was found from the full set o f 16 faults).

Therefore, the ‘naive’ figure for CT ineffectiveness, i.e. the ‘mean o f C x mean o f T’ is

.1942 in both tables, because it is simply the product o f the average ineffectiveness

figures for checking and testing.

The degree to which this ‘naive’ figure is an over- or under-estimate o f the ‘true’ figure

(.1815) is dependent upon the covariance between the checking and testing processes,

i.e. the extent to which they are diverse. However, by grouping the raw fault data in

different ways, the measured covariance between checking and testing will differ, as

shown below.

As we know from the full data for all 16 faults, the ‘true’ covariance is -.0127. Based

upon the data in Table 19, aggregated by signalling category, the figure is estimated to

be -.0010. While this is still in the same direction as the true figure, i.e. negative

covariance, it is an order o f magnitude too small Therefore, the best estimate that we

can make of the ineffectiveness o f an application o f CT fault-finding based upon these

data is .1932 (.1942 + -.0010), which overestimates the true ineffectiveness o f .1815.

The situation is reversed when the data are presented broken-down by safety

/functionality (Table 20). Here, the covariance between C and T is -0.0148, and the

estimate o f CT ineffectiveness is therefore .1794 (.1942 + -.0148). Compared to the

true figure o f .1815 the covariance was overestimated and so the ineffectiveness

underestimated, i.e. the benefits o f diversity have been overstated.

Categorising faults in different ways leads to different estimates o f the covariance

between checking and testing because the categorised data ‘package’ the variation o f

fault ‘difficulty’ within fault-class differently. The difficulty o f each fault or fault class is

shown in Table 19 and Table 20 as the product o f the C and T ineffectiveness values,

CxT. The CxT index is therefore a measure o f the extent to which a fault or fault class

is difficult. For example, in Table 19 fault class ASP has a CxT value o f .2021, and fault

class ROU has a value o f .1029. Therefore, overall we could consider ASP faults to be

nearly twice as difficult as ROU faults.

Chapter 9 : Cognitive D iversity E xperim ent H I

146

Chapter 9 : Cognitive D iversity E xperim ent III

Taking the mean of all o f the CxT values gives an estimate o f the overall difficulty o f

the programme being checked. Notice that it is the same estimate as was arrived at

earlier by taking the product o f the overall checking and testing ineffectiveness

measures and adding the covariance. For example, Table 20 categorises faults by

whether they affected the safety or functionality o f the SSI system. Taking the product

o f the mean fault detection performances for checking and testing gives, as always,

.3947 x .4920 = .1942. Adding the covariance produces the predicted ineffectiveness o f

an application o f checking and testing: -.0148 + .1942 = .1794. This is the same figure

as is obtained by taking the average o f the difficulty values (CxT) for safety faults and

functionality faults: (.1342 + .2246) / 2 = .1794.

The overestimate o f the magnitude o f the covariance between fault classes is identical

to the average covariance within fault classes. Within safety and functionality classes

the mean covariance = [.0128 (safety) + -.0086 (functionality)] / 2 — .0021. Adding

the average covariance within classes to the overall ineffectiveness estimate gives .0021

+ .1794 = .1815, the true measure o f CT ineffectiveness.

This problem o f covariance within classes does not arise when using the raw fault data.

In effect, each fault is a ‘class’ all o f its own. In this case the covariance o f fault

difficulty within classes is automatically zero, and therefore none o f the covariance

between checking and testing is hidden’ from the attempt to characterise i t Therefore,

when using aggregated fault-class data to estimate the true effectiveness o f a set o f

diverse fault-detection procedures, the lower the covariance within fault classes is, the

more accurate the estimate o f the benefits o f diversity will be. As the covariance within

classes approaches zero then the estimates produced for diverse performance will

approach the exact, true figure.

Further exposition and a formal proof o f the details behind this approach to measuring

diversity in software are given in Iitdewood et al (2000). The methods used for

characterising diversity, illustrated above, allow proof o f the general assertion that,

broadly speaking, diversity between methods is beneficial for fault-detection, and more

diversity is better than less. The results are also shown to generalise to situations with

147

Chapter 9 : Cognitive D iversity E xperim ent III

any number o f fault detection methods, not necessarily just two as was considered

here.

How does the above analysis work to benefit software safety in practical terms?

Considering just checking and testing for now, each fault-finding process would be

applied to a given programme independently and in roughly equal ‘amount*. (Quite

what is meant here by ‘amount* is discussed in Litdewood et al, 2000. For now suffice

to say that the methods could be applied until they had detected roughly equal

numbers o f faults.) The faults detected by each method would then be categorised in

some way, and data on the difficulty o f each fault category could then be computed.

The estimated effectiveness/ineffectiveness o f the combined CT process could then be

computed. ‘Confidence limits’ could then be applied to this estimate based upon our

beliefs about the covariance between methods within fault class. I f we believed that the

within-class covariance was zero then the effectiveness prediction would be exact, and

as covariance increased then the prediction would deviate accordingly. Data from

previous studies and software projects could be used to estimate the extent o f intra­

class covariance, and ideally classes with close to zero within-class covariance between

methods could be selected.

148

Chapter 10: G eneral Discussion

10 General Discussion

This thesis set out to investigate some o f the factors that influence the extent to which

it is possible to build a reliable human-machine system with unreliable (human)

components.

The approach taken was initially context-bound: the system in question was an existing

safety-critical software development process. Two phases o f research were undertaken:

an exploration phase, which sought to describe the system and generate hypotheses,

and; an evaluation phase, which sought to test these hypotheses and generalise them.

This final chapter o f the thesis represents a third phase, where the questions that have

arisen due to the work must be addressed.

10.1 Summary of empirical findings

The exploration phase collected ecologically valid but uncontrolled data regarding the

SSI DPP. A range o f DPP tasks were described, concerned with creating and then

assuring the quality o f safety-critical computer software. Although the various tasks

were found to be error-prone, the system as a whole seemed robust in detecting and

eradicating faults from the code. It was suggested that at least part o f the reason behind

this was the diversity inherent in the fault-finding tasks employed, which may protect

the system against the type o f common-mode errors observed in the work sample.

Following a conceptual description o f diversity a series o f controlled experiments

investigated possible dimensions that may have been able to contribute to diverse task

performance, e.g. spatial and verbal abilities, task instructions, mental models.

The strongest case for the demonstration o f cognitive diversity came from the

characteristics o f the two tasks compared: checking and testing. One o f the most

consistent findings was that the different fault-finding tasks, which had different

representations o f the ‘problem’ (i.e. checking and testing), led to qualitatively different

performances in finding faults. A general model o f the effects o f diversity in fault­

finding task performance was presented. This model shows the benefits o f diversity as

the interplay between intra- and inter-category covariance between fault finding

149

Chapter 10: G eneral Discussion

strategies. I t represents an advance over previous models in that the estimation o f

model parameters should be possible in a practical fashion, based on existing data on

fault finding categories.

Among a few other candidate explanations it was suggested that the task

representations (checking and testing) might differ in their suitability for spatial vs.

verbal processing, and that this might be the source o f cognitive diversity. However,

some o f the empirical findings do not support this view. I f it is assumed that, say,

checking was more suitable for verbal-linguistic processing, then those high in verbal

ability would have been expected to perform relatively better at checking compared to

testing. Those higher in spatial ability would be expected to show die opposite

association. However, there were no such interactions found between spatial/verbal

abilities and task type (checking or testing). This could be because o f a restriction in

range in participants’ verbal and spatial ability scores — all were from educational or

occupational populations that are selected on these traits. In addition, the levels o f

verbal and spatial abilities are not independent, and will tend to be highly correlated.

A more substantial objection to the condusion that verbal vs. spatial processing was

the heart o f the observed diversity is found when considering the equivalence o f the

checking and testing tasks, particularly in terms o f their ‘size’ and ‘difficulty5. These

topics will be addressed in the remainder o f this chapter, where a paradigm for

investigating diversity in problem-solving on a surer footing will be outlined.

10.2 Problem size and difficulty

It has been assumed until now that because the checking and testing tasks are different

manifestations o f the same problem, they must also be comparable in terms o f their

difficulty (or size, or complexity, etc.). This assumption recdved support in the

laboratory simulation tasks, where ndther checkers nor testers were found to

outperform the others in overall fault-finding. However, in a seminal paper, N ewd and

Simon (1972) proposed an analysis o f problem-solving tasks that highlighted the role

o f at least two independent factors that contribute to task difficulty; the size o f the

problem space and the characteristics o f the ‘move5 operators. It will be argued below

150

J

Chapter 10: G eneral Discussion

that the SSI tasks cannot be considered to be equivalent in terms of either the size of

the problem space or the difficulty o f the move operators. Nevertheless, a task

paradigm that does have such equivalence will be presented as a format for further

investigation o f the characteristics o f cognitive diversity.

As mentioned above, Newel and Simon (1972) highlighted the problem space and

move operators as crucial factors in task difficulty. Problem space is the term given to

all possible states o f a problem that could be encountered by a problem solver. Move

operators are the methods by which the problem solver can transform one problem

state into another, i.e. the way in which they can ‘move’ within the problem space. The

problem is then solved by searching through (or constructing an internal

representation of) the problem space. Good performance is that which transforms

initial to goal state in the smallest number o f moves, i.e. with fewest steps in between,

or in the shortest time, say.

It was initially thought that the crucial factor affecting performance was the size o f the

problem space. For instance, chess is considered to be a more difficult game than

draughts, and fittingly chess has a problem space which is almost unimaginably large

compared to that for draughts. (Chess is estimated to have around 1040 different

possible games compared to around 1020 for draughts; Chellapilla & Fogel, 2001. By

way o f comparison, the difference between chess and draughts in terms o f problem

space size is approximately the same (log) ratio as the difference between the possible

games o f chess and the number o f atoms in the observable universe, about 1078.)

Newell and Simon’s (1972) theory describes the difficulty o f solving the problem as the

difficulty in acquiring an effective internal representation o f the problem space. Ideally,

such a representation should support algorithmic solutions to the problem, where a

particular strategy is guaranteed to arrive at the solution. In practice, however, the

problem solver cannot represent even a very large portion o f the entire problem space

internally, and so cannot determine that any particular strategy will definitely lead to the

goal state. What the problem solver must instead do is adopt heuristics (e.g. means-end

analysis); strategies that move the game into states that seem nearer to the goal state

151

Chapter 10: General Discussion

(but with no guarantee that the goal will be reached). The larger the problem space, it

was reasoned, the more extensive the search through the space would have to be, and

the more information would have to be stored to build an effective internal

representation o f the problem space.

Estimates o f problem space size can be computed for the checking and testing tasks.

The testing task is discrete, meaning it can only adopt a limited number o f possible

states. Even for the simplified SSI simulator task this number is large. For instance, in

the training layout there are 12 track sections, and each one can be either occupied or

unoccupied. This gives 212 = 4,096 different arrangements o f just the tracks. Including

points (42 states) and routes (24 states) brings the total to 1,048,576 different possible

states that the simulator could be in, any o f which could potentially reveal an error.

This space o f over a million different states could be taken to represent the problem

space in which the 4 errors are hidden*.

Computing the size o f the problem space is less easy when considering the checking

task. Using the same criteria as for the testing task would not provide a sensible

estimate, as we would count only one state (the fixed code). A better measure would be

to take the amount o f code present as an estimate o f the total size o f the problem

space. Even this presents problems, however, as was found when scoring the

performance o f checkers throughout the data collection. The code could be measured

character by character, for instance. The industry-standard convention, though, is to

measure the number o f lines o f code. The training layout contains 7 lines o f code for

each o f the four routes in the PRR file, and one line per route in the OPT file. The

PFM file contains 2 lines for each o f the 2 sets o f points. There are then 36 lines to

inspect for the checkers.

At face value there seems to be a very large difference between the sizes o f the

checking and testing task’s problem states; 36 lines vs. over a million separate states,

respectively (for the training layout). The methods for establishing problem space size

given above are not very satisfactory, however. For instance, the checkers cannot

assume that the code is complete, and so the ‘correct5 code could be arbitrarily larger

152 '

Chapter 10: General Discussion

than that they are presented with initially. This may seem a trivial problem in the SSI

simulator, where there seems only limited opportunity for extra code (e.g. there are

only so many routes, and each route has only a limited number o f functions that

needed to be coded for). However, quite what would constitute this extra code could

be drawn from the entire lexicon o f SSI code language.

To illustrate with a natural language example, imagine what might be missing in the

following sentence: “Call m e____ ”. It is a very small sentence and so, to use the same

metric as was used above for the checking task, we would conclude that it has a very

small problem space. W ithout any knowledge o f what the sentence is supposed to be

representing, however, there are a very large number o f nouns, adjectives, pronouns

etc. that would fit into the sentence. Therefore, the mental search space is actually very

large. O f course, the SSI checker has some idea what the code is supposed to represent

and this reduces the problem space size considerably. However, what remains is still

likely to be very large. To illustrate, if I tell you that the sentence above is the first

sentence in Herman Melville’s “Moby Dick’ (first published under the tide T he Whale’

in 1851), does that help? 1

These issues will be revisited later. For now, it is enough to say that the methods

adopted above for measuring problem space size in the SSI task are likely to be more

convenient than precise. More damningly, because different methods were used to

measure the problem spaces o f checking and testing it is difficult to demonstrate their

comparability. W hat is needed is a way to understand the effects o f problem-space size

on problem-solving in a more rigorous fashion.

Hayes and Simon (1977) provided just such a paradigm. They looked at problem

solving behaviour when presented with isomorphic problems — problems with the

same problem space size and structure. They found that problem-solving performance

differed greatly depending on how the isomorphs were presented to the participants,

i.e. what ‘cover-story* was given to explain the problem. Similar findings were

produced in studies o f logic-problem solving. The well-known Wason card-selection

1 Moby Dick begins “Call me IshmaeL”

153

Chapter 10: G eneral Discussion

task (e.g. W ason & Johnson-Laird, 1972) is notoriously difficult to solve optimally,

with around 90% of participants failing to do so on their first attem pt However, if the

abstract card-selection task, which just involves arbitrary relations between letters o f

the alphabet, is recast in more familiar terms, then the problem becomes very much

easier. Griggs and Cox (1982) found that an isomorph o f the card-selection task that

involved the relation between age and permission to drink alcohol allowed participants

to solve the problem optimally on their first attempt more than 75% o f the time. This

showed the large effect that the participant’s prior knowledge o f a problem has on

their ability to solve that problem, as long as the problem is represented in a way that

allows the problem-solver to recognise the relevance o f this knowledge.

So, problem space size alone is not responsible for the ease or difficulty with which

problems can be solved. Rather, more recent attention has focused on differences in

how move operators are perceived and used by problem-solvers.

Move operators are the methods by which the problem is changed from one state to

another, i.e. the methods by which the problem space can be traversed. Kotovsky,

Hayes and Simon (1985) showed that it was the memory load imposed by the move

making process that accounted for differences in problem solving performance among

isomorphic problems with different representations. The higher the memory load the

more difficult it was for the participants to “become expert at utilizing the problem

rules to make moves...” (p.290). They found that learning (i.e. automation) o f move

operator information, and thus reduction in working memory load, was necessary

before participants were able to start planning ahead and using strategies for solving

the problem.

Zhang (1997) extended this work by demonstrating how dissimilar representations o f

isomorphic problems differ in the amount o f move-operator information they provide

explicitly and externally (and therefore not imposing working memory load). Difficult

representations required the problem-solvers to hold all o f the move operator

information internally, i.e. in working memory; easier versions represent much o f this

154

Chapter 10: G eneral Discussion

information externally, i.e. perceptually, therefore relieving working memory o f this

requirement

The previously discussed findings were all conducted using well-defined, or well-

formed, problems. Well-formed problems have well-defined problem states, with

clearly defined start and goal states, and the operators are also clearly defined. Ill-

formed problems do not have such clearly defined parameters; “develop a cure for

cancer” would be such a problem.

Kotovsky and Simon (1990) used problem isomorphs that varied in the well-formed

nature o f their move operators. They used a task called the ‘Chinese-ring5 puzzle,

which involves removing five metal rings from a bar to which they are interlinked with

cord. They compared the actual, physical, problem with computer-based ‘digital’

version that represented the states o f the problem explicitly, as balls being moved into

and out o f boxes (i.e. rings being moved on and off the bar). In one digital version

there was no external information about the move operators, in the other the way in

which moves could be made was represented explicitly, by showing the lids o f the

boxes as open when the ball could be moved into or out from the box.

Kotovsky and Simon (1990) found that in the physical (‘analogue5) version o f the task,

almost no participants could solve the problem within two hours. Solving the digital

versions was completed on average in less than half an hour. The authors found that

when attempting the analogue version o f the task most participants could not discover

what constituted a move, let alone use this information to explore the problem space

in search o f the goal state. They argued that the three problems were not actually

; isomorphs until the participants had discovered the move operators. Performances on

; the two digital versions o f the task were found to be very similar once the participants

: could identify and make legal moves with equivalent efficiency; the version without

explicit move information was found to be easier because move-operator information

was provided, thus reducing memory load and steepening die learning curve.

155

Chapter 10: G eneral Discussion

Recently, Anderson and Douglass (2002) have also shown that the memory load o f

different problem-solving strategies affects performance, in addition to the load

engendered by the problem representations perse. They found that memory for these

strategies, involving creating and using sub-goals, is just like any other information in

working-memory such as memory for problem states.

Applying work on problem-spaces to the checking and testing tasks we can see that

there are marked differences between checking and testing (Table 21).

Table 21. Difference between SSI checking and testing tasks in terms o f

problem space size, move operator information, and the extent to w hich both

are w ell- or ill-formed.

Checking Testing

Problem space
size

Although the code is finite in
size, it is not necessarily
complete, so in principle the
‘correct’ version could be
arbitrarily large

Finite but large

Move operator
information

To make ‘moves’, the checker
must imagine how the code will
behave based upon remembered
signalling rules. The checker
must also be able to envisage
how alterations to the code
would affect functioning.
Memory load is therefore likely
to be high.

The move operators are
discrete and represented
explicitly by the toggle
switches on the simulator.

Well formed? No. The problem space is not
defined, and move operators are
unlikely to all be available from
memory at any one time.

Yes. The problem space is
finite and move operators
are all defined

156

Chapter 10: G eneral Discussion

So, it cannot be assumed that the checking and testing tasks are isomorphic in terms o f

either problem space or move operators. Therefore, there is no guarantee that the

observed diversity was not because o f the action and / or interaction o f these factors.

To investigate further diversity between spatial and verbal processes, what is needed is

a well-formed problem-solving paradigm that has problem representations isomorphic

in terms o f their problem spaces and the explicit information they provide about move

operators, but that are presented in primarily spatial vs. verbal formats.

The remainder o f this chapter will present a description and discussion o f the “Towers

o f Hanoi” (TOH) puzzle, and how it could be used to investigate diversity between

different representations o f problems. This discussion will continue to some length,

but will finish having specified particular isomorphic representations o f the TOH that

will be suitable for studying isomorphic representation o f problems, without so many

confounding factors as present in the SSI case study.

10.3 Description o f the Towers o f Hanoi

The TOH was chosen as it is has been well studied by mathematicians and cognitive

psychologists, and is well known and understood compared to other, similar problems.

Figure 9: Illustration o f the Towers o f Hanoi puzzle.

Pegs are labelled Left; Middle & Right; disks are labelled 1 ,2 & 3 (3 being the largest).

Left peg
0)

Middle peg
(2)

Right peg
(3)

Disk 1
Disk 2
Disk 3

157

Chapter 10: General Discussion

TOH is played on a board with three vertical pegs, over which fit a number o f circular

disks o f different sizes. Figure 9 shows a three-disk TOH, with all o f the disks stacked

on the left-hand peg.

The aim o f the game is to move the disks from one arrangement to another. This is

most often from the starting point where all o f the disks are on the left-hand peg, to a

finish point where all o f the disks are stacked on the right-hand peg. There are a

number o f constraints on how this can be achieved, however. The disks must be

moved only one at a time, and each “move” must transport a disk from one peg to

another peg. Also, bigger disks cannot be placed on smaller disks. Finally, only the

smallest disk in a pile can be moved on any particular move. These rules can be stated

as follows:

TOH Rule 1\ One, and only one, disk must be moved on each turn from one
peg to another peg.

TOH Rule 2: I f a peg contains more than one disk, only the uppermost disk can
be moved.

TOH Rule 3: A disk can only be placed on a peg with no smaller disks below i t

Perfect performance is achieved when the disks are moved from the start to the finish

points in the fewest possible moves. In its three-peg, three-disk incarnation, as shown

in Figure 9, a sequence o f seven moves is the shortest that can be achieved. With more

disks and /or more pegs the finish point becomes more ‘distant* from the start point

and a greater number o f moves is required to finish the puzzle. For example, with four

disks instead o f three, 15 moves are required; with five disks, a minimum.of 31 moves

is necessary.

158

Chapter 10: G eneral Discussion

The reason why these exact numbers o f moves are required to complete games with

different numbers o f elements (i.e. disk and pegs) can be seen by mapping out the

problem space o f the TOH in graphical form.

10.4 The TO H problem space

A problem state in TOH is a particular legal arrangement o f the disks on the pegs. So,

the state o f the TOH game shown in Figure 9, with each o f the disks on the left-hand

peg, represents just one problem state. From this position, moving the smallest disk

from the left-hand to the middle peg moves to a new problem state. Because there is a

finite number o f both disks and pegs (and rules for moving the disks on the pegs) it

can be seen that the number of different problem states that are possible in the TOH

is also finite - there are only so many different ways o f arranging the disks on the pegs.

In the case o f the three-disk TOH the total number o f problem states is 27. This

collection o f problem states is what was referred to earlier as the problem space. The

problem space can be thought o f as defining an abstract space in which the different

possibilities o f the game are bound.

This problem space can be represented by drawing it out in the form o f a graph. A

graph is a diagram consisting only o f points, or vertices, and lines connecting the

points, called edges. The TOH state-space will thus consist o f 27 vertices, or points,

because it has 27 different states that the disks and pegs can be in. The vertices will be

joined by edges (lines), each edge showing where one problem state can be reached

from another by making a legal move. The most efficient way o f drawing out these 27

vertices and associated edges is shown in Figure 10.

Chapter 10: G eneral Discussion

A

Figure 10: Graph o f the Towers o f H anoi problem space
Boxes A, B and C show the arrangement of disks represented by the associated vertices. For example,

Box A is associated with the uppermost vertex, signifying that this vertex represents the state o f a TOH

game where all of the disks are on the left-hand peg. Vertices A, B, and C can all be reached from one

another by making a legal move, therefore they are interconnected by edges

10.5 Sierpinski’s Gasket

The triangular shape in Figure 10 has been called Sierpinski’s Gasket, after a

mathematician o f the same name who did extensive work on its properties in the early

part o f the 20* century. (As well as being useful in understanding the TOH,

Sierpinski’s gasket is fundamentally related to the binomial distribution and the

distinctive, serrated shape o f the B-2 Stealth Bomber, amongst other things.) The

relationship between the Sierpinsld gasket and the TOH problem space will be easier

to visualise if each of the twenty seven possible states o f the game is properly labelled.

160

However, to do this in the space allowed means adopting a more space-efficient

method o f labelling than that used in Figure 10.

Chapter 10: General Discussion

Cl .1.1)

Figure 11: Sierpinski’s gasket labelled with TO H problem states.

Each vertex has a three digit label; the first num ber denotes the peg that the smallest ring is on,

1 being the left-hand peg, 2 being the middle and 3 being the right-hand peg. The second digit

denotes the peg position o f the next biggest disk, and the final digit the position o f the largest

disk. The top vertex (1,1,1) represents all the disks on peg 1 (the left-hand peg).

In Figure 11, each vertex has a label denoting the state o f the TOH game that it

represents. The state with all disks on the left-hand peg, labelled A in Figure 10, is here

labelled (1,1,1). The first number denotes the peg that the smallest ring is on (the left-

hand peg is 1, the middle peg is 2 and the right-hand peg is 3). The second digit

denotes the peg position o f the medium-sized disk, and the final digit indicates the

position o f the largest disk. So, (1,1,1) means that the smallest, medium and largest

disks are all on peg 1. The goal state, where all o f the disks are stacked on the right-

hand peg (peg 3), is labelled (3,3,3) at the bottom right-hand comer.

The edges connecting the vertices represent all o f the allowable moves by which the

various problem states can be transformed from one to another. So, Figure 11 shows

that the starting state, (1,1,1) is connected to (3,1,1) and (2,1,1). This means that the

. 161

Chapter 10: G eneral Discussion

smallest disk can legally be moved to either the 2nd or 3rd pegs. N o other connections

are shown; the connections represent the sum total o f allowable moves, which in this

case are the options available when starting the game with all o f the disks on the I s* peg

(1 ,1 ,1).

A game analogous to the Towers o f Hanoi could be played on the Sierpinski gasket

Imagine that a counter, representing the current game state, is placed on the (1,1,1)

vertex at the top o f a drawing of the gasket such as in Figure 11. The goal is then to

move the counter to the (3,3,3) gasket at the lower right-hand side, one vertex at a

time, in the smallest number of moves possible. A move is made by moving the

counter from the current vertex to an adjacent one, i.e. one connected by an edge to

the current vertex.

To complete the game in the fewest moves the player has to able to discern the

shortest path, in terms o f connected vertices, which links the start point with the goal

po in t From Figure 11 it can be seen that in this case the game is trivially easy to

complete. A straight line o f links making up the right-hand edge of the gasket connects

the start and finish points in seven moves. Seven moves is exactly the same as needed

for TOH because the two games are isomorphic, they have the same-sized problem

spaces. Even though the Sierpinski game is isomorphic with the Towers o f Hanoi

game in terms o f problem space size, it is much easier to succeed at because the games

differ in how they represent that problem space and their representations o f move

operators.

10.5.1 D istinctions between the Sierpinsldgam e and TO H

Although the Towers o f Hanoi and the Sierpinski games are isomorphic in terms o f

their problem spaces, the move operator information is very different

For instance, the Sierpinski game shows the problems states in parallel, i.e. all at the

same time, whereas the TO H game shows them sequentially, one at a time. When

viewing the Sierpinski gasket we are essentially seeing all the possibilities o f the game

laid out in a naturalistic, spatial metaphor: a map; where all o f the points in the

162

Chapter 10: General Discussion

problem space are presented from the perspective o f an observer situated outside o f

the space itself — a so-called allocentric or ‘God’s eye view*. This makes the task akin to

navigating a 2-dimensional space viewed from a point in 3-dimensional space. A similar

scenario is produced when, say, navigating across an essentially flat landscape from an

aircraft. All o f the points o f the problem space are laid out in a 2-D plane ‘below’ the

player. Perceptual processes expert in dealing with such spatially-mapped visual

information can then decode the scene into an internal model o f the 2-D problem

space quickly and without memory load. This model can then be used as input to goal-

orientated processing that maps the desires o f the player (e.g. to make a ‘good’ move)

onto cognitions and ultimately actions, to reduce the distance between current and goal

states. To refer back to Kotovsky, Hayes and Simon’s work (1985), when playing the

Sietpinski game almost any player with adequate vision will be an expert in terms o f the

move operators before they have even played the game. In addition, total information

about the problem space is available externally and so does not need to be maintained

in working memory.

The TOH game, on the other hand, can only represent states discretely; one at a time,

through a ‘temporal window’. To work out the correct path in the TOH game the

passage o f sequences o f states must be remembered, and future states imagined. When

playing the TOH game the Viewpoint’ o f the player is situated within the problem

space itself, located at the current problem state. This means that the game, while still

involving the navigation o f a flat landscape (the problem space map, in effect), is

instead done from the point o f view o f a hiker walking across the problem state-plane.

This hiker will not have access to the same amount and quality o f problem state

information as would the ‘airborne’ Sierpinski game-player.

In both games there is a representation o f the distance between different problem

states, i.e. the extent to which states o f the game are ‘near’ or far from one another. In

the Sierpinski game knowledge about the distance between states is derived from the

God’s-eye view perspective. Here the states are projected onto a 2-D plane which has

all points essentially equidistant from the observer (player). The observer potentially

has knowledge o f each o f the states in equal measure, and as stated above the

163

Chapter 10: G eneral Discussion

information about relations between states (which ones are nearer the goal, say) will be

provided by effortless perceptual processes.

In the TOH game, on the other hand, the perspective point o f die observer (i.e. where

the player sees the game from) is egocentric, situated within the problem space. We can

imagine what the TO H hiker* navigating across the problem state-landscape would be

able to see. They would be able to see their current location, i.e. problem state, direcdy

represented around them. This could perhaps take the form o f a place-name. Knowing

how place-names work (i.e. knowing the rules o f TOH) would give the hiker some

clues as to the destinations that could be reached by taking one o f the ‘paths’ leading

away from their current location. These paths would represent legal moves, and would

lead to different locations on the Sierpinski game-landscape. However, knowledge

about the states outside of the current location would depend upon the hiker being

able to infer or remember them. It would be fairly easy to find out what adjacent

locations looked like, because a path could be selected (even at random) and it would

definitely lead to a new location (state) somewhere in the landscape. (Contrast this with

the Chinese ring puzzle [Kotovsky and Simon, 1990]. In the analogue version o f the

game it was not obvious what even constituted a move; to our hiker this is equivalent

to not having any paths marked out) Although knowing the whereabouts o f paths, the

hiker would have no map, however, and so planning a route would involve having to

remember or discover which paths lead to where via which other locations. Distance

on this TOH landscape would have a more direct meaning; rather than the observer

being located equidistantiy from all problem states — as with the Sierpinski game’s

allocentric view — the hiker is actually nearer to some states and further away from

others. Distance here really means the number o f locations between the current and

goal states, or the time it takes to make all the intervening state-transformations, or

some other appropriate sequential (ordinal) relation.

Combining these factors it can be seen that the TOH and Sierpinski games are far

from being isomorphic as they stand. The spatial map o f problem states in the

Sierpinski game represents an external (Le. not memory dependent) source from which

the distance and orientation between the present and goal state can be obtained by

164

Chapter 10: General Discussion

automatic perceptual processes. This then makes the task o f selecting the appropriate

move no more demanding than finding a route on a fairly simple map.

The TO H game, on the other hand, is sequential and memory dependent. Rather than

showing all o f the game states at one time, each state can only be inspected while the

others are hidden. To obtain strategic information the player must hold internally the

relation o f their current state with past and future states. For die TO H this means

representing the locations and relative positions o f the disks on each peg, or at least the

differences between their relative positions from state to state (Le. ‘move’ information).

For novices at the game the amount o f information needed to represent the full

problem space is likely to overburden conscious short term memory capacity. Only the

current problem state will be memory independent; because it is the only one on

display at any given time. Knowledge about the other possible game states will thus

tend to decrease as their ‘distance’ from the current state increases. Knowledge about

which possible future states are nearer to the goal state than the current state (i.e.

planning information) will also vary with the level o f knowledge o f the local ‘territory’

o f the TOH ‘landscape’, i.e. problem space .

10.6 A revised version o f the Sierpinski gam e

The differences between the Sierpinski and TOH games, discussed in the previous

section, can be removed by representing the Sierpinski game in a different fashion.

Instead o f the Sierpinski game showing all o f the problem space at one time, we can

imagine playing it in a dark room with a weak flashlight, so that only a very small

proportion o f the game map could be illuminated at any one time. I f only one vertex

label could be seen (and no edges), this situation would be equivalent to the TOH

game. In both cases, the only thing that would be visible at any one time would be the

current problem state. All other information, such as previous and possible future

states, would have to be internally modelled or remembered.

To put the ‘restricted view’ Sierpinski game described above into a more playable form

(without needing dark rooms and flashlights), another game type can be invoked. A

suitable choice is the game where words are transformed from one to another by

165

C hapter 10: G eneral Discussion

constructing intermediate words that differ only by one letter from the preceding and

succeeding words. For instance, to transform the word D O G into CAT, the sequence

shown in Table 22 achieves this in the fewest possible steps (3):

Table 22. A sequence o f transformations to turn DOG into CAT.

M ove D escrip tio n W ord

0 Start Starting w ord D O G

1 Change D to C C O G

2 Change G to T C O T

3 Finish Change O to A CAT

O f course, as in the TOH, there are rules governing the moves that can be made. A

sequence o f three symbols has to be manipulated, one symbol at a time, to produce a

goal sequence in the smallest number o f ‘moves’. Rules governing moves are

concerned with which symbols can be manipulated and how: Only one symbol (letter)

can be changed at a time; only symbols from the English alphabet are allowed (no “£ \

“>K” or “Ç”, for instance); each intermediate word must be a correctly-spelled English

word (no XOG), and; importantly, symbols are substituted for others based upon their

position in the sequence, like for like. Therefore, this format can be labelled a

“symbolic positional” format. Table 23 shows the “restricted view” Sierpinski game in

this symbolic positional format.

In Table 23, instead of the frill map o f the problem states given by the Sierpinski gasket

in Figure 11, there is now just a sequence of adjacent states that represents the shortest

possible sequence o f moves from starting to goal state. The information from the

gasket showing the relationship between the current state and all other possible states,

166

Chapter 10: General Discussion

as well as the paths between them, is now hidden. In this format only the particular

arrangements o f game elements (here, the number symbols) are visible, just as in the

TOHgam e.

Looking just at the right-hand column in Table 23 (labelled “vertex”) the symbolic

positional Sierpinski game is represented only as a sequence o f symbols arranged into

columns. The rules for transforming one problem state into other are based upon the

rules outlined earlier in the chapter for the TOH game, but in this new context (i.e. the

symbolic positional Sierpinski game) the disks and pegs seem to hold little relevance

any more. Surely there must be a set o f rules that is mapped onto the purely symbolic

and positional world o f the vertex labels, without reference to the world o f disks and

pegs?

Table 23. A winning Sierpinski gam e sequence in symbolic positional format

M ove D escription Vertex

0 Start A ll disks on peg 1 1,1 ,1

.1 D isk 1 to peg 3 3 ,1 ,1

2 D isk 2 to peg 2 3,2 ,1

3 D isk 1 to peg 2 2 ,2 ,1

4 D isk 3 to peg 3 2 , 2 ,3

5 D isk 1 to peg 1 1,2 ,3

6 D isk 2 to peg 3 1 ,3 ,3

7 Finish D isk 1 to peg 3 3 , 3 ,3

NOTE: “Vertex” refers to the labels given to denote TOH disk positions, as in Figure 3. Each vertex has

a three digit label; the first number denotes the peg that the smallest ring is on, 1 being the left-hand peg,

2 being the middle and 3 being the right-hand peg. The second digit denotes the peg position o f the

medium-sized disk, and the final digit the position o f the largest disk. The first vertex (1,1,1) therefore

represents the TOH state where all o f the disks are on peg 1 (the left-hand peg).

167

Chapter 10: G eneral Discussion

10.6.1 A bstract rules for the sym bolic positional Sierpinski gam e

Inspection o f the TOH rules should reveal the basic functions that they perform and

the operators on which they act A set o f rules describing the conduct o f the familiar

TOH game rules is shown below.

10.6.1.1 Rules for TOH

Synopsis. The game is played with three disks (small, medium and large) arranged on

three pegs (left, middle, right). Any peg can contain any disk The goal o f the game is

to move a starting stack o f disks onto another peg (the goal state) using only the rules

below for moving disks. «*■

TOH rule 1\ One, and only one, disk must be moved to another peg each turn.
(There are three pegs: left, middle and right)

TOH rule 2. If there is more than one disk on a peg, only the topm ost disk can
be moved.

TOH rule 3. A disk can be moved to any peg not containing a smaller disk.

Each rule is concerned in essence only with the relationship between disks and pegs.

Rule 1 deals with the basic fact o f translation o f disks among pegs; rule 2 is concerned

with the preference o f disks within pegs, and; rule 3 deals with the preference o f disks

among pegs.

By mapping the above relations onto the symbolic and positional elements o f the

Sierpinski game, it can be seen that the symbols used in the Sierpinski game (1,2, and

3) encode the peg ‘information’ in the TOH. The positions o f the symbols in the

vertex label (first character, second character, third character) represent the identities o f

the disks in the TOH (column 1 = small disk, column 2 = medium disk, column 3 =

large disk).

By substitution, the rules for the symbolic positional Sierpinski game are as follows:

10.6.1.2 Rules for symbolic positional Sierpinski game

Synopsis. The game is played with three symbols (1, 2 and3) arranged in three columns

(left, middle, right). Any column can contain any symbol. The goal o f the game is to

Chapter 10: G eneral Discussion

transform a starting set o f symbols into a goal set using only the rules below for

changing symbols. .

Sierpinski 'Rule /: One, and only one, symbol must be changed each turn into
another symbol. (There are three symbols: 1 ,2 or 3.)

Sierpinski Rule 2: I f more than one column contains the same symbol, only the
leftmost o f those can be changed.

Sierpinski Rule 3\ A symbol can be changed into any symbol that does N O T
appear to its left

The similarity between the TOH and Sierpinski game rules is evident, even if some o f

the operators are differently labelled (e.g. ‘peg' instead o f ‘symbol’). For instance, the

information contained in TOH rule three just states that a bigger disk can’t be placed

on a smaller one.2 In terms o f the Sierpinski rules, rule three states that a symbol can

only change into one that’s not found on its left. “Left” in the Sierpinski game is

equivalent to “smaller” in the TOH. The concepts o f “disk” or “peg” are no longer

necessary to play the Sierpinski game. Even the term “move”, meaning changing the

game from one state to another, has its genesis in actually moving the game pieces,

which no longer is taking place. Instead, the player is “changing” or “switching”

symbols, or whatever appropriate term is preferred (cf. Hayes and Simon, 1977; some

isomorphs o f the TOH were ‘move’ problems involving moving game elements, other

isomorphs were ‘change’ games).

So, we now have a version o f the symbolic positional Sierpinski game in which the

representation and rules are fully isomorphic with the TO H game. Well, no t quite.

There is one major distinction between the TOH game and the symbolic positional

Sierpinski game as described above. Above, the history o f previously used / visited

symbols is visible. This is, in effect, a view o f the ‘path’ from the initial state to the

current state. This is information equivalent to our Sierpinski hiker keeping a diary o f

place-names visited, and doesn’t direcdy provide information about the path to the

2 The actual TOH rule 3 is stated as a negation: “A disk can be moved to any peg not containing a smaller disk”, but
only to efficiently accommodate the situation where there are no disks on the destination peg. I f the rule were
stated only as relation between two disks (e.g. “you can’t put a larger disk on a smaller one”), the relationship

169 ;'U i

Chapter 10: G eneral Discussion

goal state. It could be considered irrelevant to problem resolution, therefore. However,

there is no such equivalent in the TOH game, and so the history information should be

removed to preserve equivalence between the symbolic positional Sierpinski game and

the TOH. In practice this would mean being able to view only the last row o f symbols

at any one time in the symbolic positional Sierpinski game.

With this fully isomorphic version o f the TOH, the only differences that remain

between the Symbolic Positional Sierpinski (SPS) and TO H games are in terms o f the

stimuli used to represent the games states, for both input modality and output

modality, and the associated learning that these stimuli invoke.

10.6.2 Stim uli in the TO H and SPS

The stimuli in TOH games were traditionally physical in nature, i.e. actual pegs and

disks. These days research into the TOH is often conducted with computer based

visual / spatial simulations o f the ‘physical’ TOH (primarily because it allows greater

ease o f data collection). The required behaviours in the physical game involve using,

say, a hand, for direct, physical manipulation o f the game pieces. In the simulated

TOH the required behaviours are very similar, but in most cases involve indirect

manipulation o f the pieces using a mouse or similar pointing-device. (Manipulation o f

the game is indirect in the sense that there is an additional layer o f stimulus-response

mapping required — hand to mouse to visual feedback, vs. hand to visual feedback in

the physical TOH game.)

The visual stimuli available to the player o f a simulated TOH game can be made

arbitrarily similar to the stimuli in the physical game, but usually the representation is

fairly low fidelity. Analogous schematic representations, such as that used in Figure 9,

usually suffice. In terms o f transitions between game states, a low fidelity simulation

could omit these and merely show the various states as snapshots that could be cycled-

through akin to a slide-show (but here with access to the states being governed by the

rules o f the game). Higher fidelity simulations could be used, perhaps to represent the

would be undefined when there were no disks on the destination peg. Alas this is the way that null hypothesis
significance testing works, too

170

Chapter 10: G eneral Discussion

transitions between problem states by, say, allowing mouse-mediated ‘direct’

manipulation o f the pieces on-screen, i.e. using the mouse to ‘move’ the disks.

It is easy to imagine how the SPS game could be similarly implemented. A computer

would show the current state of the game on a screen, consisting o f the three symbols.

The state that the player would like to move to could be input via the keyboard (if

numeric symbols were used, as they are in Table 2). Alternatively, the options for

selecting or changing symbols could be made part o f a graphical user interface that

could be manipulated with the mouse, akin to the TOH simulations discussed in the

previous paragraph. When the player had selected a move the screen could merely

change to the new representation (if a legal move was specified), which would make

the SPS game equivalent to the low-fidelity TOH simulation.

In low-fidelity simulations, where transitions between states is not represented, for

both the TOH and SPS cases there would be 27 different screens that could be

displayed, i.e. the 27 states o f the problem space. Each screen would show the

representation o f that state in the format appropriate to the game (SPS or TOH).

Movement between states (screens) could be controlled in both cases by identical

behaviours using a mouse controller. In this case the two games, TOH and SPS would

be fully isomorphic, identical in all but the stimuli used to represent the different

problem states.

10.6.3 Representation o f problem states

It is argued informally above that low-fidelity simulations o f both the TO H and SPS

games, as described, represent isomorphic problems that differ only in the particular

representations o f their problem states (and therefore also the different associations

that these will bring to mind).

The visual stimuli used on the computer-based TOH are designed to evoke a spatial

metaphor based upon the physical presence and properties o f real disks and pegs (e.g.

movement: pegs are fixed; disks can be moved). The metaphor is useful because it

seamlessly encodes much o f the move operator information that is usually taken for

171

Chapter 10: G eneral Discussion

granted. For instance, we fully expect that the disks won’t start moving around on their

own, because our expectations of disks and pegs probably precludes movements o f

any kind without the actions of some external force (e.g. us, the wind, an earthquake).

More fundamentally, we probably don’t expect the disks to be able to be placed into

the same physical space on the peg; only on-top o f or underneath one another, for

example.

The TO H simulation physical metaphor also provides useful information about the

actual game rules. For instance, as well as encoding disk identity, the physical size of

the disks is used by the third TOH rule (no bigger disks on smaller ones), and so the

very appearance o f the disks provides a memorial hook for the rule. This information

is always available externally, too, because there are always three different sized disks to

look at, whatever the game state. It still must be remembered by the player that larger

disks don’t go on smaller ones instead o f the converse (i.e. smaller disks don’t go on

larger ones), but stacking things into piles with the biggest things at the bottom, not the

top, is probably a well-learned association before the TOH game is ever encountered.

There are versions o f the TOH where this rule is even more deeply embedded in the

game metaphor; instead o f disks there are cups o f different sizes (or Russian dolls) that

must be fitted inside one another, and so the converse to the rule cannot physically be

made to occur.

A well as encoding useful information, the physical metaphor o f the TOH is also

responsible for mistakes that commonly occur when first playing the game. For

instance, distance between the physical elements o f the game does not correspond to

distance in the problem space. Therefore, moving a disk physically nearer to the goal

peg does not always, move the game nearer to conclusion (this is how a strategy based

upon a means-end heuristic could fail, for instance). In contrast, in the game played

with a counter on the Sierpinski gasket map, moving the counter nearer to the goal

always shortens the path to the goal (if played from the 1,1,1 starting position).

The SPS game does not have such reliance on a physical / spatial metaphor. Disk

information is represented spatially, or at least sequentially, as disk size increases from

172

Chapter 10: G eneral Discussion

left to right in the vertex label. However, peg information is encoded by the identity o f

the visual symbols. It is identical in this respect to written alphabetic language, where

both the identity and position information o f a symbol within a word are necessary to

identify the word. (For example, the words “dog” and “god” are not synonymous,

despite being composed o f identical symbols.) Using the same analogy, words in an

alphabetic language are equivalent to problem state labels (vertex labels) in the SPS

game. For this reason it is quite likely that some or all o f the very well learned skills that

we acquire for dealing with words, or numbers, will be used when playing the SPS

game. Metaphors based upon linguistic or mathematical knowledge are likely to

dominate.
■■mm-

This linguistic metaphor will also provide some o f the taken-for-granted move

operator information. As is found with alphabetic writing, the SPS labels are symbolic

and positional. Therefore, general information, such as the fact that symbols can be

substituted for others and that they have different meanings in different positions, can

be inferred by a player that can recognise the problem format (Le. a player that can

read; notice, however, that it will be the problem format; not the problem space, which

must be recognised.)

In contrast to general game information, the specific game information, i.e. the specific

rules for manipulating symbols, is less easy to map on to a widely known metaphor for

the SPS game. Such a metaphor would allow us to effortlessly ‘see’ why the sequence

o f SPS labels (1,1,1) (3,1,1) (3,2,1) (2,2,1) is better than, say (1,1,1) (3,1,1) (3,2,1) (1,2,1),

in the same way that the Sierpinski gasket allows us to see the straight vs. the crooked

path to the goal.

In the same way as for the TOH spatial metaphor, there are some properties that we

can attribute to the SPS symbols that could provide heuristic information. The spatial

metaphor can lead to the erroneous expectation in TOH that moving a disk nearer to

the goal peg is always equivalent to moving nearer to the goal state. I f the symbols used

in the SPS vertex labels are given numerical status (Le. at least ordinal, as opposed to

173

Chapter 10: G eneral Discussion

categorical scale properties) then changing a symbol for a ‘higher’ one (‘nearer* to the

‘goal’ symbol, 3) would manifest itself as a similarly flawed heuristic in the SPS game.

Given these differences, the TOH and SPS games could be expected to provide a

useful paradigm for comparing spatially-based vs. verbal/numerically-based problem

solving. The reasoning outlined above suggests that these tasks, if implemented as

described, would be identical in virtually all respects except the processing ‘codes’ used,

symbolic/spatial (SPS) vs. spatial (TOH). Performances on the TOH and SPS games

would then be expected to vary, for instance, with the spatial and verbal abilities o f the

players.

To put the TOH and SPS games into a form more relevant to the programme­

debugging tasks o f the SSI DPP, they could instead be set as fault-finding tasks. The

rules o f the games could be cast as the rules o f operation o f the game simulation.

Faults could be seeded into the simulations o f the games that allowed, say, illegal

moves between certain problem states. The relative efficacies o f the two games in

fostering detection o f errors o f various types could then be judged.

If the spatial (TOH) and verbal (SPS) versions o f the game support processing

metaphors that detect non-overlapping sets o f errors, then cognitive diversity will have

been demonstrated. If, after accounting for speed-accuracy trade-offs, the error sets do

not show diversity then it can be argued that the representations are functionally

equivalent In such a case it would be interesting to speculate on whether an intrinsic

feature o f the information processing system had been encountered, one based upon

the information as opposed to the modality that delivers (and pre-processes) that

information. Just such speculation will be indulged in the next section.

10.6.4 Information structure of the Sierpinski gasket

What, then, might be the fundamental properties o f the ‘information’ contained within

the TO H and SPS games? A reasonable starting point to answer this question is to

look at the elements o f the games themselves. Each game consists o f two sets o f three

elements: One series encodes disk/column information (three disks, three columns);

174

Chapter 10: General Discussion

the other encodes peg/symbol information (three pegs, three symbols). However the

sum o f problem states that could be encoded with such a scheme is only 32, or nine

states. This is not enough to code the 27 possible states o f the games.

A clue to the location o f the extra information is contained in the rules, o f which there

are three. As well as specifying relations between disks (3) and pegs (3), they also specify

the rules for disks within pegs. There are also three ways in which disks can be arranged

on a peg. The position o f the largest disk is entirely redundant — if on a peg it always

occupies the bottom position — and so it carries no informational load*. We need one

piece o f information to decide where the medium disk is located; if it*s not on the

bottom itself it must be one up from the bottom, on the largest disk. We need to ask

two questions (two bits o f information) to find out where the smallest disk is, however.

First, is it on the bottom? Second, is it one up from the bottom? I f the answers are

both ‘no’, then it’s on the top o f the pile. A fyes’ at any point obviously locates the disk.

So, an additional dimension o f information is required to code these three possibilities.

This gives a total o f three sets comprising three states each that have to be encoded; 33

= 27, the number o f problem-states in the TOH and SPS games.

In the TO H game the problem-state identity information is carried by the 27 possible,

legal, arrangements o f the game pieces. In the SPS game the information is carried by

the 27 possible arrangements o f the three symbols in their three-column labels. Either

game can then be said to have embedded the problem-states into a three-dimensional

space, each dimension having three points. (The use o f the term ‘three-dimensional’ is

not meant here as the familiar, Cartesian, spatial, physical world which we inhabit, but

rather an abstract problem-space with three independent parameters.) We could map

the problem space into differently dimensional spaces, however.

Instead o f labelling the Sierpinski gasket as we have done up to now, we could instead

simply label the vertices sequentially from top to bottom and left to right with the

letters o f the English alphabet plus another symbol, the Greek symbol omega, ‘Q ’

(say), giving the required 27 symbols. This would translate (1,1,1) into [A], (2,1,1) into

[B], (3,1,1) into [C] and so-on until (2,3,3) into [Z] and finally (3,3,3) into [Q]. The SPS

175

Chapter 10: General Discussion

game with such coding would mean that each game state would be represented by a

single symbol. Instead o f a symbolic positional coding scheme, a purely symbolic

coding based on one dimension with 27 states (symbols) would remain. This would

embed the TOH problem space in an abstract one-dimensional space with 271 points,

i.e. 27. (Having two symbols instead o f one would give a possible 272, or 729 states for

a hypothetical TOH-272 game) The game player would then be tasked with changing A

to Q in the fewest legal steps. (Defining what constitutes a legal’ step, i.e. the rules o f

the game, I ’ll leave to the interested reader. The winning sequence would be: [A] (start),

[q , PE], H , pq, [O], [S] [Q](finish).)

So, if the problem space can be mapped onto any number o f abstract informational

dimensions, is it important which particular scheme is adopted when considering how

easy it would be for humans to navigate the space? The answer is perhaps to be found

in the manner in which the problem is (quite literally) addressed.

10.6.5 Hierarchical addressing o f the TO H problem space

So far, the addressing systems used to label the TOH/SPS problem states have all had

their semantic roots in the physical manifestation o f the TO H game (i.e. disks and

pegs). This allows the isomorphic nature o f the problem spaces to be clearly seen.

However, as was demonstrated with die alphabetical labelling, this is not the only way.

Any scheme that had enough information-carrying ability (i.e. to represent 27 separate

states) would be equally valid.

A brief inspection o f Figure 10 shows that the entire Sierpinski gasket is shaped like a

triangle. However, the relation to a triangle does not stop there. The big triangle is

composed o f three smaller triangles, and each o f these is composed o f triangular

triplets o f vertices. The Sierpinski gasket is self-similar — small bits o f it are identical in

structure to larger bits. I f we were to add another disk to the three-disk TOH problem,

we wouldn’t need to redraw the problem-space map (i.e. Sierpinski’s gasket), we could

just take Figure 10 and photocopy it to produce three copies o f equal size, which could

be arranged into bigger triangle with 81 (27 x 3) vertices — the problem space o f the

four-disk TOH.

176

Chapter 10: G etterai Discussion

This recursive self-similarity could be used to label the vertices o f Figure 10 with an

addressing system that would make this structure obvious. Again, three symbols in

positional format could be used to label the vertices, say A, B and C. However, the

symbols would not represent disk on peg position, but rather the address o f the vertex

within the problem space. So, reading the symbols in conventional fashion from left to

right, the first symbol would show the location o f the vertex in the smallest triangle.

The second symbol would show which o f the three medium sized triangles the vertex

was in, and the final symbol would show in which o f the three largest triangles the

vertex was located.

To borrow Luger’s (1976) terminology, each triplet o f three vertices represents the

problem-space o f a one-disk TOH, i.e. the one-disk subspace. This means that it

represents the three choices that we have when ‘arranging’ one disk on the three pegs.

Similarly, each group o f three triplets represents a two-disk subspace, and the entire

problem space is a three-disk subspace, because it represents the three-disk TOH.

To put this into practice, within triangles o f the same sub-space ‘scale’, the top-m ost

comer could be labelled “A”. Moving clockwise, the bottom-right comer would be

labelled “B”, and the bottom-left, “C”. Figure 12 shows how such a hierarchical

addressing system would appear.

177

Chapter 10: G eneral Discussion

Figure 12. The three-disk TO H problem space labelled hierarchically
The problem space should be conceived as consisting o f three big, linked triangles, each made up of

three smaller linked triangles (one set of these is labelled ‘two-disk subspace^, each o f which is made up

of three linked vertices (‘one-disk subspace’). In each ‘subspace’ the uppermost comer is labelled A, and

then on in alphabetical order clockwise; B for the bottom-right comer, C for the bottom left comer. For

clarity only the vertices in the top triplet are shown labelled with ‘one-disk subspace’ labels. The full,

three symbol ‘address’ is shown for two of the vertices (boxes).

In effect Figure 12, uses the same labelling system that is used for postal addresses. For

a postal address, we give a separate piece o f information corresponding to the location

o f our target address, on a number o f different ‘scales’. Later lines o f the address refer

to larger-scale constructs, earlier lines refer to smaller-scale constructs. For instance,

the first line o f a postal address usually locates a building in a street The pext line

locates, perhaps, the street within a town, and the next a town within a country (and so

on, to an old school-favourite conclusion: “...Earth, solar system, Milky W ay...”).

178

Chapter 10: G eneral Discussion

Similarly, the first symbol in a hierarchical TOH vertex address locates the vertex

within a one-disk subspace; the next symbol locates the triplet within the two-disk

subspace, and; the final symbol locates the vertex within the entire, three-disk problem

space. So, the vertex (B, B, A) is the bottom-right vertex in the bottom -right comer o f

the two-disk subspace, located in the uppermost comer o f the full three-disk problem

space. The shortest winning path using these labels is shown in Table 24.

Table 24. A winning TO H game using hierarchical labelling

Move Vertex

0 Start a , a , a

1 B . A . A

2 A B , A

3 B ,B ,A

4 A A B

5 b , a b

6 A B , B

7 Finish b , b , b

NOTE: ‘'Vertex” refers to the symbolic positional hierarchical labels given to denote TOH disk

positions. Each vertex has a three-letter label; the first letter denotes location o f the vertex in the smallest

problem space division (A for the top, and B and C for bottom-right and bottom-left; respectively). The

second letter refers to the location of the vertex in the next largest region o f the problem space, and the

final one the location of the vertex in the hugest division. The first vertex (A, A, A) therefore represents

the TOH state where all of the disks are on peg 1 (the ‘start’ position). The final vertex (B, B, B) denotes

the goal state, located at die bottom right-hand comer o f the problem space.

It is immediately obvious that at no point does the winning sequence require that the C

symbol is ever used. This gives a key insight into die dimensional structure o f the

information represented. Previously, the TOH task was likened to a hiker navigating a

179

Chapter 10: General Discussion

2-dimensional plane (the problem space). However, what the previous TOH labelling

schemes didn’t make obvious is that the shortest-sequence o f moves is in fact just a

straight line drawn through this space. A plane has two dimensions, but a line has only

one. By using a labelling scheme that represents the self similarity inherent in the

problem space, a whole dimension o f the space is now redundant.

So, the hierarchical labelling o f the Sierpinski gasket seems to have revealed the simple

structure o f the problem space. Before going on to show how all o f this gaming and

labelling can be used to understand human problem solving, it is worth showing just a

couple more hierarchical labelling systems for the Sierpinski gasket The first is shown

in Figure 13.

Figure 13. Hierarchical numerical labelling o f the Sierpinski gasket.
As in Figure 12, the space should be conceived as consisting o f three linked triangles, each made up of

three smaller linked triangles, each made up o f three linked vertices. In each triangle the uppermost

comer is labelled 0, and then on in numerical order clockwise; 1 for the bottom-right comer, 2 for die

bottom left comer. For clarity only die vertices in the top triplet are shown labelled with ‘one-disk

subspace’ labels. The full, three symbol ‘address’ is shown for two o f the vertices (boxes).

180

Chapter 10: G eneral Discussion

In Figure 13 only two changes are made to the scheme outlined in Figure 12. Instead

o f the letters A, B and C, the figure is labelled with the numbers 0,1 and 2,

respectively. Then instead o f the first symbol from the left representing the smallest

‘scale’ (triangle), the first digit on the right will show this information. The left-m ost

digit then gives information about the vertex location in the largest triangle (the largest

scale). This just means that where previously the labels were read from left to right

(meaning small-scale to large-scale information), the labels are now read from tight to

left to give the same meaning. The shortest sequence o f moves to transform 0 ,0 ,0

into 1 ,1 ,1 is shown in Table 25.

Table 25. A winning SPS game in numerical hierarchical format

Move Vertex

0 Start 0 ,0 ,0

1 0 ,0 ,1

2 0 ,1 ,0

3 0 ,1 ,1

4 1 ,0 ,0

5 1,0,1

6 1 ,1 ,0

7 Finish 1,1 ,1

NOTE: “Vertex” refers to die symbolic positional hierarchical labels given to denote TOH disk

positions. Each vertex has a three-letter label; the right-hand digit denotes location o f the vertex in the

smallest problem space division (A for the top, and B and C for bottom-right and bottom-left;

respectively). The middle digit refers to die location o f the vertex in the next largest region o f die

problem space, and the left-hand digit the location of the vertex in die hugest division. The first vertex

(0, 0, 0) therefore represents the TOH state where all o f the disks are on peg 1 (the left-hand peg). The

final vertex (1,1,1) denotes the goal state, located at the bottom right-hand comer o f the problem space.

181

Chapter 10: G eneral Discussion

In contrast to the labelling schemes used before, it is now quite possible that you can

actually ‘see* which the good moves are (depending on your familiarity with binary

numbers). This is because the winning sequence is now mapped perfecdy onto the task

o f counting in base 2. The labels map perfecdy because in effect they specify the same

thing. On the one hand the labelling is designed to show the coordinates o f the vertices

in a 2-dimensional space. However, the winning sequence can be represented as a 1

dimensional line; the line across the full problem space from start point to goal point

This can in effect be seen as the distance from the start point (0, 0, 0, or just 000) to

the goal point (111) in terms of how many moves along it is. To decode this

information in more familiar decimal format, we just convert the label from binary to

decimal as though it were a number. Therefore, the start point, 000, is zero distance

from the start The next move, 001, is one move away from the start The label 010 is

binary for 2, and the similarly-labelled vertex is indeed two moves from the start. The

goal state, 111, is just seven in decimal notation. So, this number just represents

distance in a one dimensional space, where you can go just forward or backward,

towards the goal or away from i t

O n the other hand, if the labels can be seen to represent distance from the goal state,

they can also be seen as purely specifying some quantity (not necessarily ‘distance* in

any Euclidian sense) that is an index o f how complete the game is. I f this quantity is

represented as a natural number (albeit in binary notation), then we can count upwards

(towards the goal) or downwards (away from the goal). Again, only one dimension o f

information is invoked; the information given by the vertex label regarding the quantity

o f ‘game completeness’..

In the binary counting version o f the SPS game we can use our pre-leamed knowledge

o f the familiar symbolic, positional number system that we use to represent everyday

numbers. This will give us implicit knowledge o f how we can manipulate the symbols

to achieve the operators o f ‘add one’ or ‘subtract one’, in the same way that implicit

knowledge o f physical objects gives relevant information in the physical TO H game.

182

Chapter 10: G eneral Discussion

The above is actually a simplification o f any plausible use o f a counting paradigm to

encode the rules for playing the hierarchical SPS game. For completeness, we must

consider that the actual problem space is not just the 1-dimensional shortest-path line

(represented in binary). Therefore, move operators must allow movement across the 2-

dimensional space (which would require the use o f all three symbols; base 3). For

example, any move from one vertex to the adjacent one to its bottom-right would be a

move towards the (1,1,1) goal, and would in effect be a binary addition. Similarly, any

move that took the player off the winning path by moving to the bottom -left (e.g. O il -

012) would again be the addition o f 1, but this time in base 3, as the extra dimension o f

the problem space is called into play. Moving down the path from the top (0 ,0 ,0) to

the bottom-left vertex (2,2,2) is a one-dimensional path just like the winning path.

However, it would involve more complex addition in base 3 than just adding one to

account for the following sequence o f four moves that starts the path: (000) (002) (020)

(022). This seems to consist o f adding two, then four, then two again. (Actually, this is

just binary addition using the symbols 0 and 2 instead o f the more conventional 0 and

1). ‘Horizontal’ moves between states (e.g. 012 - 021) are even more difficult to

accommodate within a simple addition-based cover story for the game rules.

In the above case o f the numerical hierarchical labelling, as in the other cases

discussed, the metaphor brought to mind (counting) is not mapped perfectly onto the

problem space. As well as the difficulties raised above, the counting paradigm might

lead a player to believe that, if their job is to change 000 into 111, and they are allowed

to add one or two or four (in base 2 or 3) each go, then they might get to the goal in

only three moves by adding four then two then one (equalling seven [binary]; the goal

state). This is not the case.

In effect, by telling participants to transform 000 to 111 by adding one in binary each

‘move’ is to give explicit instructions to the problem solver as to the correct direction

to take across the problem space, and the operators to use to get there, to solve the

problem.

183

Chapter 10: General Discussion

A set o f operators can quite easily be constructed however, that would allow the

effective manipulation o f the abstract symbols that are used to give address-labels to

the vertices in game-legal ways. A set o f rules that works generally is described below.

10.6.5.1 Abstract rules for a hierarchically labelled SPS game

Synopsis: The game is played with three symbols (0,1 and2) arranged in three columns

(left, middle, right). Any column can contain any symbol. The goal o f the game is to

transform a starting set o f symbols (0, 0, 0) into a goal set (1 ,1 ,1) using only the rules

below for changing symbols.

Hierarchical Rule 1: The right-most symbol can be exchanged for any other
symbol.

; Hierarchical Rule 2: The middle symbol and the symbol to its right can be
exchanged.

Hierarchical Rule 3: The left-hand symbol can be exchanged (identity for
identity) with the two symbols to its right, if they are both the same.

These then, are general rules for manipulating arbitrary symbols that represent

information in a recursively-addressed problem space. However, the symbols used so

far (letters and numbers) will cloud our ability to make inferences about the effects o f

the informational structure on task difficulty in any experiments that are conducted

using these tasks. This is because o f the pernicious effects o f prior learning — any

experience that participants may have with alphabetic or numerical symbol systems is

likely to drive their internal problem representation, and thus bring with it knowledge,

assumptions, and skill in using move operators that will be hard to control-for and may

not be valid for the problem context Rather than try and seek out adult participants

who have had no experience with any symbolic positional information system (i.e. no

written language or number system!) it would probably be easier to use symbols or

analogies that do not carry such ‘baggage’. The use o f coloured patches as stimuli has a

long and distinguished history (e.g. Stroop, 1935), and would seem a good choice in

this case. Instead o f the symbols A, B C, or 1 ,2 ,3 , patches o f three different colours

could be used.

184

Chapter 10: General Discussion

Using colour patches would allow comparison o f reconcilable symbolic positional

systems. It would still fail to capture the spatial move operator information inherent in

the original TOH game, though. This would make inference difficult when trying to

separate the effects o f the new perceptual formats from the effects o f the

informational manipulations given by the hierarchical labelling. However, as always, a

new representation can be derived; Figure 14 shows such as a system. It is based on the

hierarchical labelling o f the Sierpinski gasket, but represents move operators as

mechanical, spatial actions, much like in the original TOH.

O' -----► 1 "2ai,: -1 ► 2b — ► 3 • — ► 4a ------ ►

Figure 14. The first four states in the shortest sequence to transform the

colum n from ’red' to ’blue' (light grey), using the hierarchical TO H rules.
Tbe three hierarchical rules are represented by the black dots (which are grey when in operation). Step

one uses the first rule to transform the upper block to the goal state (blue [light grey]). Step two uses

the middle rule to swap the upper and middle blocks (two pictures, 2a and 2b are shown, to show the

operation o f the rule). Step three uses the first rule again. Finally, step four shows the initiation o f the

use o f rule 3, which swaps the upper two blocks for the lower one. Numbers with arrows show the

step, numbers in brackets show the hierarchical numerical label from Table 25.

Chapter 10: G eneral Discussion

The representation shown in Figure 14 merely implements the hierarchical rules shown

in this section, and is so is isomorphic with the original TO H problem. Each problem

state is represented by a column divided into three blocks. The colour o f the block (in

this case red [dark grey], green [not shown] and blue [light grey]) denotes identity o f the

symbols used to label the problem space. The top block shows the address o f the

problem state within the one-disk subspace (i.e. the right-hand symbol o f the

hierarchical label). The middle block shows the location within the 2-disk subspace

(middle symbol), and the bottom block shows the location o f the state in the three-disk

subspace. Like in the TOH, the rules are represented physically in the game; the rules

consist o f axes, around which the rule operates to rotate the symbols to their

appropriate locations.

As shown, Figure 14 actually has a combination in the way that rules are represented.

Rule 1 ‘changes’ the colour o f the top block; rules 2 and 3 ‘move’ the blocks to

different locations. As such it is an admixture o f Kotovsky, Hayes and Simon’s (1985)

‘move’ and ‘change’ TOH isomorphs. Kotovsky etal found change problems to be

roughly twice as difficult as move problems. They interpreted this as evidence for the

preference for spatial coding of information, which allows information encoded in

different locations to be kept relatively interference-free from information associated

with other spatial locations. Change problems were thought to require the storage of

volatile (i.e. subject to change) information at each spatial location, which would be

more prone to decay and interference. It is possible, however, that the participants

were just much more practiced at encoding the movement o f objects in our spatial

world than we are at encoding any wholesale transformations that they may undergo

(depending on our expectations for that object; I don’t expect wooden blocks [or

crystal globes] to be able to mutate in size, but I do expect a balloon to be able to, for

instance).

Altering the isomorph in Figure 14 so that rule one operated by actually ‘swapping’ the

top block for one o f a different colour would implement an entirely ‘move’-based

problem representation. By not animating the block transitions, and instead just

showing them changing colour, would implement a completely ‘change’-based

Chapter 10: General Discussion

isomorph. This would allow a more abstract and perhaps more robust test o f the

‘move’ vs. ‘change’ issue highlighted by Kotovsky, Hayes and Simon (1985).

Returning finally to the justification for this detour into problem solving lore, the

problem representation shown in Figure 14 should be directly comparable with the

representation shown in Table 24 and Table 25. All have identical problem spaces and

move operators, the only differences to be found are in the fundamental skills that

encode much o f the procedural knowledge for using the move operators. In the

example in Figure 14 these are the skills involved in dealing with spatial relations o f

solid objects. In Table 24 the skills for dealing with discrete symbol systems are

invoked; in this case an alphabetic one. The format shown in Table 25 again rests upon

skill in dealing with a discrete symbol system, but this time one designed to represent

magnitude, i.e. number.

Embedding these representations in a computer programme would allow ‘bugs’ to be

introduced that would affect the outcome of the operations o f move operators. These

‘bugs’ would then be the target for fault-finding efforts which could be compared

across tasks. The interdependence between fundamental spatial and verbal / numerical

skills in aiding fault-finding and diversity in fault-finding could then be ascertained.

Additionally, the representations discussed above, all using hierarchical addressing o f

the problem space, could be compared with ‘traditionally’ addressed representations

that separate global vs. local knowledge, eg. as described in §10.6.1.2. I t is likely that

the difference in structure o f the apparent problem space would lead to different

mental models o f the problem, which could then facilitate the use o f diverse strategies

for task performance.

This discussion could continue on, recursively and without end. However, better it is

left here, after specifying in detail a ‘purer’ task environment for the study o f diverse

problem representation.

187

'References

11 References

Adelson, B. (1984). When novices surpass experts: The difficulty o f a task

may increase with expertise. Journal ofExperimental Psychology: Learning

Memory, and Cognition, 10(3): 483-495.

Adelson, B. Problem solving and the development o f abstract categories in

programming languages. Memory and Cognition, 9, 422-433.

Allinson, C. W. and Hayes, J. (1996). The Cognitive Style Index: a measure o f

intuition-analysis for organisational research. Journal of Management

Studies, 33:119-135.

Allwood, C.M. (1984). Error detection processes in statistical problem

solving. Cognitive Science, 8,413-437.

Alpem, B. and Schneider, F.B. (1987). Recognizing safety and liveness.

Distributed Computing, 2 (3):in -126

Anderson, J. R. (1982). Acquisition o f cognitive skill. Psychological Review, 89,

369-406.

Anderson, J. R (1993). Problem-Solving and Learning. American Psychologist,

48(1), 35-44.

Anderson, J. R. and Douglass, S. (2002). Tower o f Hanoi: Evidence for the

.:. Cost o f Goal Retrieval Journal of Experimental Psychology: Learning

Memory, and Cognition, 27(6).

Annett, J and Duncan, K.D. (1967). Task analysis and training design. Journal

of Occupational Psychology, A l, 211-221.

Bartram, D. (1994). PREVU E Assessment technical manual. Hull, UK: Newland

188

References

Park Associates.

Berry, D . G , and Broadbent, D. E. (1990). The Role o f Instruction and

Verbalization in Improving Performance on Complex Search Tasks.

Behaviour & Information Technology, 9(3), 175-190.

Bisant, D . and Lyle, J. (1989). A two-person inspection method to improve

programming productivity. IE E E Transactions on Software Engineering

15(10): 1294-1304.

Bogner, M.S. (1994). Human Error In Medicine. Hillsdale, NJ: Erlbaum.

Broadbent, D. E. (1958). Perception and communication. Oxford: Pergamon

Press.

Broomfield, E.J. and Chung, P.W. (1995). Using Incident Analysis to Derive

a Methodology for Assessing Safety in Programmable Systems. In F.

Redmill and T. Anderson (Eds.) Achievement and Assurance of Safety:

Proceedings of the Safety-Critical Systems Symposium, Brighton, 1995. London:

Springer-Verlag. pp 223-239.

Bruner, J.S., Goodnow, J.J. and Austin, G.A. (1956) A Study of Thinking. New

York, NY: Wiley.

Columbia Accident Investigation Board (2003). Columbia Accident Investigation

Board, Report Volume 1. Washington, DC: U.S. Government Printing

Office.

Cooke, N.M., and Schvaneveldt, R.W. (1988). Effects o f computer

: programming experience on network representations o f abstract

programming concepts. InternationalJournal of Man-Machine Studies, 29,

■ 407-427.

Coury, B.G., Weiland, M.Z. and Cuqlock-Knopp, V.G. (1992). Probing the

Mental Models o f System State Categories with Multidimensional

189

References

Scaling. InternationalJournal of'Man-Machine Studies 36(5): 673-696.

Cribbens, (1987) Solid-state interlocking (SSI): An integrated electronic

signalling system for mainline railway. IE E Proceedings, 134,3,148-158.

Cronbach, L. J. and Snow, R. E. (1977). Aptitude and instructional methods. New

York, NY: Irvington.

Cullyer, J. and Wong, W. (1993) Application o f formal methods to railway

signalling - a case study. Computing <& Control Engineering Journal, Feb., 15-

22.

Cuder, A.N. (1991) Improving the efficiency o f design checking and

implementation testing - some fundamental considerations. In

Proceedings of ASP EC T ‘91: A n International Conference on Railway Control.

London, 7-9 October. Reading: Fericon Press.

Dennien, C.S. and Needle, B. (1991) Signalling design automation. In

Proceedings of A SP E C T ‘91: A n International Conference on Railway Control.

London, 7-9 October. Reading: Fericon Press.

Deutsch, JA.. and Deutsch, D. (1963). Attention: Some theoretical

considerations. Psychological Review, 70, 80-90.

Diaper, D. (1989) Task Analysis for Human-Computer Interaction. Chichester: Ellis

Horwood.

Eberts, R.E. and Brock, J.F. (1988) Computer-based instruction. In M.

Hellander (Ed.) Handbook of Human-Computer Interaction. Amsterdam:

Elsevier Science.

Eckhardt, D. E. and Lee, L. D. (1985). A Theoretical Basis o f Multiversion

Software Subject to Coincident Errors. IEEE Transactions on Software

Engineering, 11,1511-7.

190

References

Edwards, E., (1972). Man and machine: Systems for Safety. Proceedings of

British Airline Pilots Associations Technical Symposium, British Airline Pilots

Associations, London, 1972, pp. 2136.

Egan, D.E. (1988) Individual differences in human-computer interaction. In

M. Hellander (ed.) Handbook o f Human-Computer Interaction.

Elsevier Science: N orth Holland, pp. 543-569.

Eikeseth, S., and Baer, D . M. (1997). Use o f a preexisting verbal relation to

prevent the properties o f stimulus equivalence from emerging in new

relations. In D. M. Baer and E. M Pinkston (Eds.), Environment and

behavior (pp. 138-144). Boulder, CO: Westview Press.

Ericsson, K.A. and Simon, H.A. (1984). Protocol analysis: verbal reports as data.

Cambridge, MA: MIT Press

Evans, J. St.B. T., Handley, S. J., Over, D. E. and Perham, N. (2002).

Background beliefs in Bayesian inference. Memory and Cognition,

;.. 30(2): 179-190.

Fagan, M.E. (1976). Design and code inspections to reduce errors in program

development. IBM Systems Journal, 3,182-211.

Fagan, M E. (1986). Advances in Software Inspections. IE E E Transactions on

Software Engineering, 12(7): 744-751.

Fewins, A., Mitchell, K. and Williams J.C. (1992). Balancing automation and

human action through task analysis. In B. Kirwan and L.K. Ainsworth

(Eds) A guide to Task Analysis, pp. 241-252. London: Taylor & Francis.

Fitts, P.M. and Peterson, J.R. (1964). Information capacity o f discrete motor

responses. Journal o f Experimental Psychology, 67(2): 103-113.

Foreman, K.H.D. (1988). Cognitive style, cognitive ability, and the acquisition

of initial programming competence. In MR. Simonson and JiC.

191

'References

Frederick (Eds.), Proceedings of the Annual Meeting of the Association for

'Educational Communications and Technology. New Orleans, LA: AECT.

Frese, M. and Zapf, D. (1991). Eehlerbei der Arbeit mitdem Computer. Ergebnisse

von Beobachtungen und Befragungen im Biirobereich. Bern: Huber.

G.R.J. Hockey (1997) Compensatory control in the regulation o f human

performance under stress and high workload: A cognitive-energetical

framework. Biological Psycholog 45(1-3), 73-93.

Gentner, D. and Stevens, A.L. (1983). Mental Models. Hillsdale, NJ: Erlbaum.

Gevers, W., Reynvoet, B. and Fias, W. (2003). The mental representation o f

ordinal sequences is spatially organized. Cognition, 87(3): B87-B95.

Gigerenzer, G., and Hoffrage, U. (1995). How to improve Bayesian reasoning

without instruction: Frequency formats. Psychological Review, 102(4): 684-

704.

Gomez, L. M., Egan, D. E., and Bowers, C. (1986). Learning to use a text

editor. Some learner characteristics that predict success. Human-

Computer Interaction, 2 ,1-23.

Grether, W.F. (1949). Instrument reading I: The design o f long-scale

indicators for speed and accuracy o f quantitative readings. Journal o f

Applied Psychology, 33,263-372.

Griggs, RA. and Cox, J.R. (1982). The elusive thematic-materials effect in

wason's selection task. British Journal cf Psychology, 73:407-420.

Guion, R. M. (1988). From Psychologists in Organizations - Special Section.

Journal of Applied Psychology, 73(4), 693-694.

Health and Safety Commission (1991). A SC N I Study Group on Human Factors.

Second Report Human reliability assessment - a critical overview. London:

192

’References

HMSO.

Health and Safely Executive (HSE) (1992). The Tolerability of Task from Nuclear

Tower Stations. London: HMSO.

Hollnagel, E. (1993). The phenotype o f erroneous actions. InternationalJournal

of Man-Machine Studies, 39(1): 1-32.

Hollywell, P. Human Dependent Failures: A Schema and Taxonomy o f

Behaviour. In E.J. Lovesey (Ed.) Contemporary Ergonomics. London:

Taylor and Francis. 171-177.

Howes, A. and Payne, S.J. (1990). Display-based competence: towards user

models for menu-driven interfaces. InternationalJournal of Man-Machine

Studies, 33:637-655

Hsu, S-H. and Chan, T. (1995). A study o f inspection performance and the

personality o f quality inspectors. InternationalJournal of Quality &

Reliability Management, 11(3), 55-65.

Johnson-Laird, P.N. (1983). MentalModels. Cambridge: Cambridge University

Press.

Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice-

.. Hall. ■

Kawato, M., Gomi, H. (1992). A computational model o f four regions o f the

cerebellum based on feedback-error learning. Biologfcal Cybernetics 68: 95-

103

Keele, S. W. (1968). Movement Control in Skilled Motor Performance.

TtychologcalBulletin, 70: 387-402. Discussed in Anderson, J. R. (2000).

Teaming and Memory: A n integrated approach. New York, NY: Wiley.

Kelly, G. (1955). The Psychology of Personal Constructs. Norton.

193

References

Kirwan, B. (1994). A Guide to Practical Huma» Reliability Analysis. London:

Taylor and Francis.

Kirwan, B. and Ainsworth, L.K (1992). A guide to Task Analysis. London:

Taylor & Francis.

Knight, J. G , and Leveson, N. G. (1986). An Experimental Evaluation o f the

Assumption o f Independence in Multiversion Programming. TREE

Transactions on Software Engineering, 12(1), 96-109.

Kotovsky, K. and H. A. Simon (1990). What makes some problems really

hard: Explorations in the problem space of difficulty. Cognitive Psychology

22:143-183.

Kotovsky, K., Hayes, J.R., and Simon, H.A. (1985). Why are some problems

hard? Evidence from Tower o f Hanoi. Cognitive Psychology, 17(2): 248-

294.

Layton, C.F. and Johnson, W.B. (1993). Job performance aids for the flight

standards service. In Proceedings of the Human Factors & Ergonomics Society

37th Annual Meeting. Santa Monica, CA: HFES.

Leach, M. (Ed.) (1991) Railway Control Systems. London: Black.

Leveson, N (1995). Software: System Safety and Computers. Washington, DC:

Addison Wesley

Litdewood, B. and Miller, D . R. (1989). Conceptual Modelling o f Coincident

Failures in Multi-Version Software. IEEE Transactions on Software

Engineering, 15(12): 1596-614.

Luchins, A.S., and Luchins, E.H. (1950). New experimental attempts at

preventing mechanization in problem solving. Journal of General

Ptychology, 42,279-297.

194

References

Luger, G.F. (1976). The use o f the state space to record the behavioral effects

o f subproblems and symmetries in the Tower o f Hanoi problem,

InternationalJournal of Man-Machine Studies, 8: 411-421.

MacLeod, C.M., Hunt, E.B. and Mathews, N.N. (1978). Individual differences

in the verification o f sentence—picture relationships. Journal of Verbal

Learning and Verbal Behavior, 17: 493—507.

Matthews, G., Jones, D.M., and Chamberlain, A.G. (1990) Refining the

measurement o f mood: The UWIST Mood Adjective Checklist British

Journal of Psychology, 81,17-42.

Maxwell, J. Clerk. (1873). 'Electricity and Magnetism.

McKenna, F.P. (1984). Measures o f field dependence: Cognitive style or

cognitive ability? Journal of Personality and Social Psychology. 47(3): 593-603.

Miller, D.P. and Swain, A.D. (1987). Human error and human reliability. In

G. Salvendy (Ed.), Handbook of Human Eactors, New York, NY: Wiley.

Ministry o f Defence (1997). DefStan 00-55: Requirementsfor Safety Belated

Software in D fence Equipment. London: MOD.

Miyata, Y. and Norman, D.A. (1986). Psychological issues in support o f

multiple activities. In D A . Norman and S.W. Draper (Eds.), User

Centered System Design. Hillsdale, NJ: Erlbaum.

Moray, M. (1967). Where is capacity limited? A survey and a model. Acta

Psychologica, 27, 84-92.

Morris, N. and Rouse, W. (1985). Review and evaluation o f empirical research

in troubleshooting. Human Doctors, 27(5): 503-530.

Morrison, D.L. and Duncan, K.D. (1988). Strategies and Tactics in Fault

Diagnosis. Ergonomics, 31(5): 761-784.

195

References

Newell, A., and Simon, H.A. (1972). Human problem solving. Englewood Cliffs,

NJ: Prentice Hall.

Newton, I. (1687). Philosophiae Naturalis Principia Mathematica.

Nicola, V.F. and Goyal, A. (1990). Modeling o f Correlated Failures and

Community Error Recovery in Multiversion Software. IE E E

Transactions on Software Engineering, 16: 350-359.

Norman, D A . (1981) Categorization o f action slips. Psychological Review, 88,1-

15

Norman, D A . The psychology o f everyday things. New York, NY: Basic

Books.

Ohlsson, S. (1984a). Restructuring revisited I: Summary and critique o f

Gestalt theory o f problem solving. Scandinavian Journal of Psychology, 25,

65-76.

Ohlsson, S. (1984b). Restructuring revisited II: An information processing

theory o f restructuring and insight Scandinavian Journal of Psychology, 25,

117-129.

Ohlsson, S. (1985). Retrieval processes in restructuring: Answer to Keane.

Scandinavian Journal of Psychology, 26, 366-368.

Pallant, A., Timmer, P. and McRae, S. (1996). Cognitive mapping as a tool for

requirements capture. In SA. Roberson (Ed.), Contemporary Ergonomics

1996. London: Taylor & Francis. Pp. 495-500.

Parasuraman, R., Molloy, R., and Singh, I.L (1993) Performance

consequences o f automation induced “complacency”. International

Journal of Aviation Psychology, 3,1,1-23.

Patrick, J. (1992) Training: Research and Practice. London: Academic Press

196

References

Patrick, J., Spurgeon, P., and Shepherd, A. (1985) A Guide to Task Analysis:

Applications o f Hierarchical Methods. Aston Science Park,

Birmingham: Occupational Services Ltd.

Payne, S.J. and Green, T.R.G. (1986) Task-action grammar: A model o f

mental representation of task languages. Human-Computer Interaction, 2 ,2,

92-133.

Perrow, C. (1984). Normal accidents. New York, NY: Basic Books

Piso, E. (1981). Task analysis for process-control tasks. Journal of Occupational

Psychology, 45,247-254.

Podus, K. E. (1991). Personality Factors in Human-Computer Interaction - a

Review o f the Literature. Computers in Human Behavior, 7(3): 103-135.

Poplin, M.S., Drew, D.E., and Gable, RS. (1984). Computer Aptitude, Literacy,

<& Interest Profile. Austin, TX: Pro-Ed.

Popov, P. and Strigini, L. (1998). Conceptual Models for the Reliability o f

Diverse Systems - New Results. Presented at FTCS’28 ,23 - 25 June,

1998, Munich, Germany.

Popper, K .R (1972). The Logic of Scientific Discovery (6th Ed.). London:

Hutchinson.

Quine, W. V. O. (1961/1953). Two dogmas o f empiridsm. In W. V. O.

Quine (Ed.), From a logicalpoint of view, pp. 20-46. New York: Harper &

Row (Originally published in 1953).

Rabbitt, P.M. (1966). Errors and error correction in choice-response tasks.

Journal ofExperimentalPychology, 71:264 —272.

Rabbitt, P.M. (1978). Detection o f errors by skilled typists. Ergonomics (21)11:

945-958 ’

197

References

Rasmussen, J. (1980). The human as a system’s component. In H.T. Smith

and T.R. Green (Eds.), Human interaction with computers. London:

Academic Press.

Rasmussen, J. (1983). Skills, rules, and knowledge; signals, signs, and symbols,

and other distinctions in human performance models. IE E E

Transactions on Systems, Man and Cybernetics, 13,257-266.

Rasmussen, J. (1986) Information Processing and Human-Machine Interaction.

Amsterdam: North-Holland.

Rasmussen, J. and Lind, M. (1981). Coping With Complexity. Proceedings of

the European Conference on Human Decision Making and Manual Control,

Delft, Holland. 1981.

Reason, J. (1987). A Preliminary Classification o f Mistakes. In J. Rasmussen

(Ed.) New Technology and Human Error,. New York: J. Wiley, pp. 15-22

Reason, J. (1990). Human Error. Cambridge: Cambridge University Press.

Rizzo, A., Bagnara, S., and Vlsciola, M. (1987). Human error detection

processes. InternationalJournal of Man-Machine Studies, 27(5-6), 555-570.

Rizzo, A., Ferrante, D., Bagnara, S. (1994). Handling human error. In JM .

Hoc, P.C. Cacciabue and E. Hollnagel (Eds.), Expertise and Technology:

Cognition and Human Computer Interaction. Lawrence Erlbaum Associates,

New Jersey

Rouquet, J.C. and Traverse, P.J. (1986). Safe and reliable computing on board

the Airbus and ATR aircraft ScfeComp ’86: Proceedings of the 5* IFAC

Workshop on the Safety of Computer Control Systems. Sadat, France.

Rybowiak, V., Garst, H., Frese, M. and Batinic, B. (1999). Error Orientation

Questionnaire (EOQ): Reliability, validity, and different language

198

’References

equivalence. Journal of Organisational Behavior, 20,527-547

Rycraft, H., Brown, F. and Leckey, N. (1992). Operational safety review o f a

solid waste storage plant In B. Kirwan and L.K. Ainsworth (Eds.) A

guide to Task Analysis, pp. 355-362. London: Taylor & Francis.

Sanders, M. S. and McCormick, E. J. (1993). Human factors in engineering and

design. New York, NY: McGrawHill.

Satchell, P. (1993) Cockpit Monitoring and Alerting Systems. A ldershot Ashgate.

Schneider, W. and Shiffnn, R.M (1977). Controlled and automatic human

information processing I: Detection, search and attention.

Psychological review, 84,1-66.

Senders, J.W. and Moray, N.P. (1991) Human Error Cause, "Prediction, and

Reduction. Hillsdale, N.J.: Lawrence Erlbaum.

Shasha, D . and Lazere, C. (1998). Out of Their Minds: The Lives and Discoveries of

15 Great Computer Scientists.. New York, NY: Copernicus.

Shryane, N.M., Westerman, S.J., Crawshaw, C.M., Hockey, G.R.J. and Sauer,

J. (1998). Task analysis for the investigation of human error in safety-

critical software design: A convergent methods approach. Ergonomics,

41:1719-1736.

Smith, S. (1981). Exploring compatibility with words and pictures. Human

Factors, 23,305-316.

Sport Safety Committee o f the Canadian Academy o f Sports Medicine (1998).

Safety Aspects of In-Line Skating. Gloucester, O n t CASM.

Stroop, J. R. (1935). Studies o f inference in serial verbal reactions. Journal of

Experimental Psychology, 18,643-662.

Swain, A.D. and Guttmann, H.E. (1983). A Handbook of Human Reliability

199

References

Analysis with Emphasis on Nuclear Power Plant Applications. United States

Nuclear Regulatory Commission, Report NUREG/CR-1278.

Washington, DC: USNRC.

Taylor-Adams, S. and Kirwan, B. (1995). Human reliability data requirements.

InternationalJournal of Quality and Reliability Management, 12(1): 24-46.

Tayyari, F. and Smith, J. L. (1987). Effect o f music on performance in human

computer interface. Proceedings of the 31st annual meeting of the human factors

society, pp. 1321-1325. Santa Monica, CA: Human Factors Society.

Teitelbaum, R.C. and Granada, R.E. (1983). The effects o f positional

constancy on searching menus for instructions. Proceedings of the

Conference on Human Factors and Computing Systems 1983, Poston, M A. New

York, NY: Association for Computing Machinery, pp. 150-153.

The Victoria Climbie Inquiry (2003). A report o f an inquiry by Lord Laming.

London: HMSO.

Tiedeman,J. (1989). Measures of cognitive style. Educational Psychologist, 24(3),

261-275.

Treisman, AJM. (1964). Selective attention in man. British Medical Bulletin, 20,

12-16.

U.S. Department o f Labor Employment and Training Administration (1982).

General Aptitude Test Battery. Washington, DC: U.S. Employment

Service.

van der Veer, G.C. (1989). Individual differences and the user interface.

Ergonomics, 3 2 ,1431-1449.

Vicente, K.J. and Rasmussen, J. (1992). Ecological interface design:

Theoretical foundations. TF.F.F. Transactions on Systems, Man, and

200

'References

Cybernetics, 22, 589-606.

Vicente, K.J., Hayes, B.C. and Williges, R.C. (1987). Assaying and isolating

individual differences in searching a hierarchical file system. Human

Factors, 29(3), 349-359.

Vidulich, M.A. and Tsang, P.S. (1986). Collecting NASA workload ratings: A

paper and pencil package. (Working Paper, NASA Ames Research

Center, M offett Field, CA).

Wason, P.C. and Johnson-Laird, P.N. (1972). Psychology of Reasoning. Structure

' = andContent. London: Batsford.

Weiner, E.L. and Nagel, D. L. (1988). Human factors in aviation.. London:

Academic Press.

Westerman, S.J., Shryane, N.M., Crawshaw, CJM., and Hockey, G.R.J. (1997).

Engineering cognitive diversity. In F. Redmill and T. Anderson (Eds.)

Safer Systems: Proceedings of the Fifth Scfety-Critical Systems Symposium,

Brighton, UK. London: Springer, pp. 111-120.

Westerman, S.J., Shryane, N.M., Crawshaw, CM., Hockey, G.R.J. and Wyatt-

Millington, C.W. (1998). A work sample analysis o f safety-critical

programming. InternationalJournal of Quality and Reliability Management,

15(1): 61-71. : j:

Westerman, S.J., Shryane, N.M., Crawshaw, C.M., Hockey, G.R.J., and Wyatt-

! Millington, C.M. (1995). Cognitive diversity: A structured approach to

trapping human error. In G. Rabe (Ed.) Safecomp'95. Proceedings of the

14th International Conference on Computer Safety, Reliability and Security,

Belgirate, Italy. London: Springer, pp. 142-155.

Wickens, C.D. (1984). Engineeringprycbology and human performance. Glenview,

CA: Scott, Foresman and Company.

201

WIckens, C.D. (1991). Processing resources and attention. In D . Damos

(Ed.), Multiple task performance. London: Taylor and Francis.

Wickens, C.D. and Hollands, J. (1999). Engineering Psychology and Human

Performance (3rd Edition). New York, NY: Pearson Education.

Wilson, J.D ., Nosek, J.T., Hoskin, N., Liou, L.L. (1992). The Effect o f

Collaboration on Problem-Solving Performance among Programmers.

Proceedings ofthe I t IP 12th World Computer Congress. Volume 1: Algorithms,

Software, Architecture, Madrid, Spain, 1992. Amsterdam: Kluwer, 86-93.

Wright, R.B. and Converse, SA.. (1992) Method bias and concurrent verbal

protocols in software usability testing. In Proceedings of the Human Factors

Society 36th Annual Meeting. Santa Monica, CA: HFES. pp. 1220-1224.

Yang, S.C. (2003). Reconceptualizing think-aloud methodology: refining the

encoding and categorizing techniques via contextualized perspectives.

Computers in Human Behavior,; 19(1): 95-115.

Young, F.W. and Harris, D.F. (1990). Multidimensional Scaling: Procedure

ALSCAL. InJ.J. Norusis, SPSS Professional Statistics. 1992. Chicago, IL:

SPSS Inc. pp. 396-461.

Zhang. J. (1997). The nature o f external representations in problem solving.

Cognitive Science, 21(2): 179—217

Eeferences

2 0 2

A ppendix A .

Appendix A: Hierarchical T ask Analysis o f producing a
com m issioned SSI schem e

203

Hierarchical task analysis of the task o f producing
| a commissioned Solid State Interlocking (SSI) signalling

scheme

i

A ppendix B

Appendix B:. Training and crib sheets used for Cognitive Diversity
experim ents 1-3

A p p e n d ix B : D ive rs ity e x p e rim e n ts L-IH tra in ing m a te ria ls

G e n e ra l, ‘c o m ’ tra in in g m aterials

1. F a u lt d ia g n o s is in ra ilw a y s ig n a llin g s o ftw a re

Th& experim entaLtaskyou. w illb a perfaBTiing.is based around the job of people w ho se a rch for
faults in the software that controls railway signalling com puter system s. Called 'Solid-State
Interlocking’ (S S I), these system s are Installed in Britain's.railways and around the w orld . T h e y
are used to ensure the safe and efficient operation of the railway, by m anaging the points, signals
and so o n , in the railway. W h e n the signalm en and w om en operating the rail network w ant to
allow train m ovem ents, they do so via the S S I com puter, w hich, based on the software it
contains^should notallow unsafe m ovem ents to take place. O bviously, a n y faults in the S S I
software could affect the safe and efficient running of the. railway,

Y oiiLta sk w ilLh e to search for fauttaiii a P C -b a s e d simulation, of the S S I com puter. T o enable you
to do this, the following is intended as a guide, to teach you the basic elements of the railway and
the signallingprinciples that are followed in its operation.

2. Elements of the Railway

Appendix B

S4 S6

fig u re 1. Exam ple railway networks

fig u re 1 shows, an. exam ple railway ne tw o rk-Th e different-elements that go to m ake up the railway
network will now be described.

2.1. T ra c k s .
Railw ay tracks are represented on the diagram as horizontal or diagonal lines. Each line
represents one railway track (le . the tw o rails that the train travels o n). Figure 1 consists o f two
main tracks, running horizontally, with two short diagonal sections connecting them . W here the
horizontal and diagonal tracks converge or diverge there is a gap , representing a set of points
(described later).

2 .2 . T ra c k c ircu its .
Ea ch track is divided into sections called track-circuits, labelled T 1 , T 2 etc. in figure 1 (a bit like
the w a y the track of a model railway com es in sections). T h e track circuits are divided on the
diagram by the short vertical lines, each one m arkingone of the ‘ends’ of the track circuit Most
track circuits are straight, with just two ends (T 7 , T 4 etc.). A track circuit with a set of points in it
(T 3 , T 5 etc.) has three ends.

Efig&JBl

Appendix B

T1

T7

T2

TS

T4

TW-

T5 T6

T il T12

figure 2: Track circuits in figure 1.

T h e track sections are called ‘circuits’ because each one has an electrical potential between, the
rails, and w hen a train is on a particular track it com pletes the circuit between them . Using this
information th e signalling com puter can detect whether there is a train in a n y particular track
circuit. T h e track circuit is referred to as either ‘occupied’ w hen there is a train on it, o r ‘clear1
w h en there is n o t (T h e reason British Rail u se d their notorious.‘leaves on the line’ excuse tor
delayed trains w a s because the leaves acted as an insulator belween the track and the train, and
the signalling com puter could n o tb a sure w h e re th e trains w e re!)

2.3. Signals.
Signals (labelled S 1 ^ S 2 e tn .in figure 1)operate in the sa m e w a y as traffic lig h ts jn th a ta ^ re e n
light allows the train to pass and a red light m eans the train m ust stop. T h e signal points to either
the left o r the right o n the diagram* and this show s in which direction routes (discussed next) are
set from that signal.

2A. Routes.
Routes are the paths across the railway network that trains travel along. Routes run between
adjacent signals; the route starts from a n ‘enhance’ signal and finishes at an ‘exit s ig n a l A s
mentioned earlier, the direction that the signal is pointing gives the direction of routes that are set
from that signal. Fo r instance, S I ispointin g to the right,and m u te 1 (R 1) goe s to th e rig h t
Routes only ran between signals pointing in the sam e direction,, for instance, there is no route
from S 5 to S4. A route is ‘set’ if it has been selected by the signalm an, or ‘not set*, if it has n o t
Th e re are tour routes that can be set in the demonstration network, shown in the table below.
(Notice that all possible routes are not listed, e.g. there is no route defined between S 6 and S 4)

T a b le 1: R o u te s in fig u re 1
Route N am e Entrance Signal Exit signal
R1 " ■ S1 S 3 .
R 2 "S1 S 7
R 3 S 5 S7
R T S6~ S Z

A route can.be considered to be m a d e up o tth a track circuito (and suh-routes, described later)
that lie between the entrance and exit signals. Th e s e are taken from the first track circuit in line of
route after fee one that the entrance signal is on_untilthe cine that the exit signal is on. F o r
exam ple, R 2 runs from S1 to S 7 , and is m ade up of T 3 , T 9 , T 1 0 , T 1 1 and T 1 2 (shown below).

SI

Page-B2-

Appendix B

H ow ever, as well as R2, T 3 is a part of R1 (from S1 to S 3) and also R 4, (from S 6 to S 2). T o
enable u s ta tell th e com puter e x a c flyw h ic h m u te is se t over a particular track circuit_we can
describe the direction of the route over the track circuit in term s of sub-routes.

2AjL Sub-routes.
S u b routes correspond to track circuitsubut in addition to defining a section of track, they also
give the direction of the route that they are part of. F o r exam ple, figure 4 below is intended to
represent the two track circuits to the right of S2 in figure 1,* T 3 e n d T 4 .

12 o’ clock 12 0 clock

fig u re 4 : S u b -ro u te d ire ctio ns

If R1 (S1 to S3Xis s e t then the route is m ade up of T 3 and T 4 . Considering just T 4 firsLw e have
to denote that the route is going from left to right across T 4 , rather than right to left T o d o this,
each end of the track circuit is g ive n a label, and then the direction of the sub-route is given by
specifying the labels corresponding to the ends of the track circuit that the train enters and leaves
by.

T h e labels for the ends of the sub-route are derived by imagining a clock face laid o ve rth e track
circuit (see figure 4). T h e im aginary clock face should be centred on the track circuit if there are
no sets of points in the track circuit Q.e. T 4) . If there is a set of points in the track circuit, the clock
face should be centred on them (e.g. T 3). Starting at the im aginary 12 O ’clock point and m oving
clockwise, each successive end of the track circuit is labelled A , C etc.

S o , T 4 , above, has two ends. Clockw ise from the 12 O 'clock point th e first end is th e right-m ost
one and this is labelled A . T h e next end is the left-most one and this is labelled B. T h u s , the
direction of the R1 sub-route over T 4 is B to A , or just B A .

T 3 has three ends. Th e s e are labelled using exactly the sam e method as before. Clockwise from
the 12 O'clock point the first end is the right-m ost one and this is again labelled A . T h e next end is
the bottom one (adjoining T 9 in figure 1)a n d this is labelled B. T h e leftm ost end is again the last
and is labelled C . S o , the R1 subm ute corresponding to T 3 is labelled C A . Th e re are two other
routes that run over T 3 , and their corresponding sub-routes are: R 2 (S1 to S 7) = C B ; R 4 (S 6 to
S 2) = B C .

W hen a route is set, all of the sub-routes that make up the route are said to be ‘locked’. If a su b ­
route is not in a route that has been set it is said to be ‘free’.

2.5. P o in t s ." .
W here tw o railway lines meet, that is, w here two tracks diverge or converge, there has to be a
method of safely guiding the train down one track or the other. Th is is accomplished by a set of
pointst wbich physically m oves the end of the track so it com pletes the required path.

in figure 1, points are shown as a small gap between the two adjoining lines. Th e re are two sets
of points in figure 1, labelled P1 and P 2 , each, of w hich has two ‘ends’. T h e two ends o f P1 are in

P a g e JB S -

Appendix B

T 3 and T 9 (both labelled P 1); the two ends of P2 are in T 5 and T 1 1 (both labelled P 2). Ea ch point
end c a a be in oae of two positions, called ‘normal’ or ‘reverse’. N orm al is the position that allows
a train to travel on the m ain, horizontal path across the points. Reverse is the position that guides
the train d o w n the diagonal path.

T h e two ends of a set of points always work together, i.e. they are always either both normal or
both reverse. Th is allows trains to travel either straight along the main horizontal line, or to cross
over from one main line to the other. Because they are always at the sam e position (norm al or
reverse)-, the railway signalling software nam es and treats the two ends of a set of points as
though they are a single entity,

Inaddition to their position, the points c a a also be in o n e of two. states. T h e y can be “free’ to m ove
from one lie to the other, or they c a a be ‘locked.’ ia a particular position.

T h e s e ,th e n , are the elements that make up a railway, N e x t jh e rules that are applied in the
running of the railway are explained,

3 . R a ilw a y S ig n a llin g P rin cip le s

S o m e rules m ust be applied in the working of the railway, to ensure that trains are allowed to
travel across the network w hen it is safe to do so, .but stopped w hen it is not. Th e s e are called
‘Railway Signalling Principles!’, and the experiment deals with those to do with point locking and
route setting.

3.2. P o in t lo ck in g

T o allow flexibility of route s e ttin g jh e points in the network should be free to m ove from one lie to
the other w henever possible. Th e re a re two. exceptions to this, h o w e ve r

T ra c k .c irc u it lo ck in g
T h e points should be locked if there is a train travelling over them , a s m oving them would de-rail
the train. S S I controls this by checking the track circuits with points in them . If they a re occupied,
the relevant points should be locked, and not allowed to m ove. O n ly the track circuits with points
in them should do this, how ever. T h e occupation of any other track circuits should not affect the
functionality of the points.

Route locking
In addition to not m oving the points when a train is actually travelling over them , the high speed
and m om entum of trains m eans that the points should n o t b e allowed to m ove in front of a train
w hen it is about to cross the points. Th is is accomplished by the locking of all relevant sub-routes
w hen a route is set. Th is has th e effect o f locking all the points within a route w hen th at route is
set. O n ly the points within a route should be locked by its setting, F o r instance, R1 should lock
P 1 , but not P2.

3.1. Route Setting.

T h e signalling principles for route setting are based on the philosophy of allow ingonly one train at
a time into any particular area of the nelwork. W hen a signalman o r wom an presses a button to
request a_route_tQ be s e t th e .S S I m u st evaluate whether this will be the case by using the
principles relating to opposing routes and signal control.

Opposing, routes.
O p p osing routes are those that use one or more similar track circuits, i.e. two o r more routes that
travel, at som e point, over the sa m e bit of track. F o r instance, R 2 and R 3 are opposing, a s they
both travel over T 9 , T 1 0 , T11 and T 1 2 . T h e y sh o u ld not, therefore, be allowed to be set at the
sa m e time. N ot all routes are opposing; R1 and R 3 travel on parallel tracks, and at n o point do
they use the sam e track circuit. T o allow the greatest functionality of the railway (i.e. the m ost
trains running at the sam e tim e) they s h o u ld be allowed to be set together.

Page-B4

Appendix B

S S I controls the setting of opposing routes by checking the status of the points within a route, to
se e if they_are already in, o r free to m ove t o jh e correct position for the route to be set (either
normal o r reverse); o r if they a rotocke d-inthe w ro n g position for th e route. ’

If two routes require the s a m e sets of points in exac% _the sa m e positions then inspecting the
points will not show them to be o p p o s in g F o r these ‘directly’ opposing routes (e .g .R 2 a n d R 4)
som e of the sub-routes that are set b yth e op posingjoute are also checked to m ake sure they are
fre e .

Signal control
After a route is set, steps m ust be taken to ensure that only one train is allowed into the route at a
time. Th is is accomplished by controlling the colour of the route’s entrance signaL T h é signal,
normally at red, m ust be changed to green to allow the train into the route. T h is is only allowed if
there are no trains already in the route. S S I controls this h y inspecting the state of the track
circuits in the route, which should all be clear. If any of the track circuits are occupied, the
entrance signal should stay red, Conversely, on ly the track circuits that m ake up a route should
control the route’s signal colour. If other track circuits, outside of the route, are occupied this
should not stop the signal from turning green.

Page ES-

Appendix. B

fig u re 1. Exam ple railway network.

T l T2

T7 T8

T5 T6

~ 7 ------------ -

T il T Î2

fig u re 2; T ra c k c ircu its ip fig u re 1.

T a b le 1: R outes in figu re 1
Route Nam e Entrance Signal Exit signal S .

R t s i - S 3 - .
R 2 S t s ? -
R 3 -S 5 - -S 7 -
R 4 - -S 6 - S 2 -

fig u re 3: R oute 2

fig u re 4 : S u b -ro u te d irections

PageBfL

Appendix B

Checkers specific training materials

Checking.

The signallingrules (described earlier) that the SSI computer operates to must first be programmed into the
computer by signalling engineers. The programme must allow the maximum functionality from the rail
network whilst ensuring its safety. The programme is therefore extensively checked and tested before
installation.

Your task will be a simplified version o f the checking procedure. You will be presented with a display
showing a diagram o f a section o f railway. A t the bottom o f the diagram is a list o f all the routes that are in
the network. Below the diagram is a dialogue window which will display the code that will enable the
signalling computer to safely operate the railway. You will be checking this code for mistakes. The code is
arranged into three areas, ‘PRR’, ‘PEM ’and ‘OPT!, each accessed by their associatedbuttons.

PRR stands for ‘Panel Route Request’. This means the code associated with a signalman or woman’s
request to set a route. When the button on the signalling panel is pressed to set a route, the computer
evaluates the PRR file to check that the conditions for the setting o f die particular route are met. The PRR
file* in effect, contains the signalling principles fbrsettingtheroutes in the layout.

PFM stands for ‘Points Free to Move’. This code contains the conditions that must be met before each set
of points can be moved from one position to the other.

When the PRR and PFM process a route request, the outcome is either ‘true’ (set the route requested) or
‘false’ (do not set the route). If ‘true!, thepoints are instructed to move to th e position required.

OPT is short for ‘Output Telegram’. If a ‘true’ value is returned by the PRR and PFM, the request is passed
to the OPT file, which evaluates whether the conditions to give a green light on die entrance signal o f the
route are m et If this test is passed then a message is sent to the signal to change to green.

Route
requested — [—

ifn q n n ^ ^
^ T ~ ■ ~ t - * * ~ .

t i I» ' ■ »«route, •
PFftf j - tafcpcinte-‘

Figure 1: Schematic showing the relationship between files when processing a route request.

Your task today will be to check the data In the three ‘files’ to see if i t conforms to the signalling principles
outlined earlier. The following isintended as a guide to enable you to do this. The type o f data in each file
will be explained and examples used frem die Demonstration layout-(which is NOT the same as the layout
in the previous handout) to illustrate what you should be checkingfor, when you come to perform the task
for ‘real’. ■

■ 1. PRR. i ;

Clicking on the PRRbutton.bringsup thePRRdata into the text window. The data within this is diyided up
into routes, with the data for the first route in the layout, then the second, and so on. Each set o f route data
contains the conditions required. befors_the.mute can b ese t, and the. actions that must be carried out to then
set die route. The code can be scrolled through by clicking on the ‘up’ and ‘down’ buttons (one click per
line). Alternatively,, the data can be scrolled by the route byclicking, the *route+’ button

For an example, we will work through the data for R2. This can be accessed by scrolling through the data
for RLuntiL all o fth e data for R2 (starting_‘*QR2 if R2 a’) is visible.

BageJ32

Appendix B

The PRR route data is laid out thus:

1. Route label and availability *QR2
2. Points test
3. Directly opposingroute(s) test
4. Route setting
5. Sub-route locking

if R2 a
P I c rf,P 2 cnf
U10-AB f , U3-BC f

6. Points controlling
7. Signal clearing.

then R2 s
U3-CB1, U9-CA 1, U10-BA1, U11-BA1
U12-BA1
PI c r,P 2 c n
S2_ clear bpull

The code is divided into a set o f conditions following the ‘i f (lines 1 to 3) and a set o f actions following
the ‘then! (line 4 to 7), If the ‘i f conditions are passed, the ‘then’ actions are applied.

1.1. R oute label and availability»

*QR2_ islhe laheLfbr the R2 route data.. All routes have *Q.at thestart^w hichstands for ‘route reQuest’.
This should then be followed by the route name, R2 in this case. After the if conies the set o f conditions
that must be satisfied for the route to be set. The first o f these» R2 a , checks that the route beingrequested
is available (i.e. has not been barred because of engineering work, or ‘leaves on the line’).

13^ Points test.

Next, all the points in the route are tested. For R2 there are two sets of points P 1 and P2. These must be
reverse and normal respectively. So P I are checked to ensure that they are Controlled Reverse or Free to be
controlled reverse (erf). If the points are already at their reverse position then this test is passed. If not, then
the computer inspects the PFM file {described later) to discover i f they are free to be moved reverse. P2 are
similarly tested, this time to see if they are ControllecLNormal or Free (cnf). Only the points that are
required by the route need to be tested For instance, R1 (S2 to S3) does not travel over P2, so the PRR
code for R1 w ill not include ateslforPJL.

13 . Directly opposing routes te s t

This part o f the code is testing to see if any routes that are directly opposing to our route (R2 in this case)
are set, (i.e. those routes that, between the two respective entrance signals, require die same position o f 1he
sets of points as the route we are requesting). Only the directly opposing routes need be tested for here, as
other opposing routes (requiring different points positions) have already beendealt with by testing the
points themselves (described earlier and in die PFM section). If there were no direedy opposing routes then
there would be no data here.

For R2, the only directly opposingroute is R4. The other opposing routes, R1 and R3, need P 1 normal. To
ensure that R4 is not set we test the sub-routes that would have to be locked if R4 was set. Two sub-routes
are tested for each opposing; route:.

1 J .a . The first corresponds to the track circuit that the opposingroute’s entrance signal is situated on
13 .b . The second corresponds to the first track circuit in the route we are requesting.

Tn both cases we test fo r the suh-route direction that corresponds to the opposmgroute. So the data means:

U is the label used for sub-routes, the number corresponds to the trade circuit (U10 is a sub-route across
T10). The first subroute number is the same as the track circuit corresponding to the opposing route’s
entrance signal (T10), and the direction o f the sub-route (the direction of the opposing route) is given by the
letters AB (right to left). The second subroute corresponds to the first track circuit in. the route we are
requesting (T3), again in the direction of the opposing route, BC (bottom-right to top-left). In both cases the
f denotes that we are testing the sub-route to ensure that it is free.

Page-B8-

If there are no directly opposing routes, there is no data required here and line 3 should be blank. If there is
a directly opposing route orroutes_ then for each one the two sub-routes detailed in 1.3.a+b should be
included.

L4. Route setting
If all the conditions are met then the route can be set. The first part o f this is to register the route as set,
shown by the route name followed by an ‘ s ‘ for set. by the route name, then an ‘s’.

1.5. Sub-route locking
Next the route must be locked. This is achieved by_individually lockingjeach sub-route o f the route we are
setting. So, each sub-route o f the m ule is listed^followed-by an I for locked.

1.1.6. Points controlling
Here, the points are controlled to the position required by the route, in this case, controlled reverse (cr) for
P I, controlled normal (cn) for P2,

1.7. Signal clearing
The entrance signal for the route is cleared J jy writing_‘clear bpull’ after the entrance signal .label. This
requests the OPT file to check the data to clear this signal to green. *

2.PFM

This is the Points Free to Move data As stated before, if the points are in the wrongposition when a route
is requested, the PFM data is consult«! by IheJPRR to see i f it is safe to move them to the required position.
For each set o f points in a network there will be data to check if the points can be moved normal and data to
check if the points can be moved reverse. The data for P I is as follows:

1. *P1N T 3 c ,T 9 c ,V 3 -B C f ,U 9 -C A f
2. *P1R T 3 c ,T 9 c ,U 3 -C A f ,U 9 -B A f

2.1. P IN , :

*PL specifies that this is the PFM datafor Points 1, showingthe conditions required to move the points
Normal (PIN). The asterisk is thelabel usecLfor points in the PFM data

T i c ,T9 c
First the track circuit(s) that the points are in are tested to make sure they are clear, ft is obviously not very
safe to move the points with a train moving over them.

U3 B-C f , U9 C-A f
The programme then, looks to see if any routes have been set over the points which would require them in .
the opposing direction to the way that we wish to move them, in this case normal. This has the effect o f
testing for sub-routes from opposingroutes that require die points to be at Ihe opposite position as die way
we want to move them.

For P IN , two routes require that the points be Reverse: R2 (from S2 to S6Xand R4 (from S5 to SIX Rather
than test for all o f the sub-routes in those routes, the code just tests the last sub-route in line o f route over
the points.

The sub-routes set by R2 across the points are U3-CB and U9-CA. Only the last sub-route, in the direction
the train would be travelling, is needed. As R2 goes from S2 to S6, a train on this route crosses U9-CA last,
so only this needs inclusion.

The other route that requires P 1 reverse is R3,from S5 to SI. The two sub-routes in this case are die ones
describing the reverse directions to the above, namely U9-AC and then U3-BC. Again, only the last one is
required^U3-BC. BodLsub-routes are followed by an ‘ f? \ as they are tested to see if they are ‘free*.

2.2 P1R

Appendix B

PageBSL

Appendix B

For P1R, the same track circuits are checked as for PIN . This time, though, we must test the sub-routes
over the points o f those mutes that need PI to he normal Those mutes areR l and R3 R1 sets IT3 -CA and
R3 sets U9-BA, so these are the sub-routes that are tested.

3. OPT data.

3 .1 *S2 R2 T 3 c ,T 9 * T 1 0 c ,T llc . ,T 1 2 c

The PRR and PFM data check whether it is safe to set a route. If it is then the request is passed to Ihe OPT
which checks that there are no trains in the route before sending the OutPut Telegram to the signal for the
route, telling it to turn green. The first part o f ihe OPT data will be a ‘*s followed by the entrance signal
for the route. Next, because there can be more than one route set from a signal, will be the route name.
Following this, all Ihe track circuits in the route are listed, each with a ‘c’ after it, signifying we are testing
it to see if it is clear. Each route should have a separate line r>f OPT data

4. Fault reporting.

The purpose o f this exercise is to find any errors that may be present in the code that you will check. If you
do find an error then report it in the following manner:
Click on the button marked ‘log error’ in the bottom right-hand comer o f the screen. A cursor will now
appear in the box at the bottom o f the screen. You can type in up to two lines o f text to specify the error that
you found, pressingretum at the end o f the first line to gel onto the second.

For each error you find, include the following information:

The file you are in (PRR, PFM or OPT)
The part o f the file (Route name forPRR and OPT, Point name and direction fa r the PFM)
The specifics o f the error, i.e. w hat is w rong and why it is wrong.
Whether the error is one o f safety or o f functionality

For example:

PRR, R4, ‘R4 s’ is missing after the ‘then’. Safety
or
PFM, P2R, subroute ‘U5-BC’ is wrong,should serTC-BA^insTead. Safety
or
GPTJRT,.n2"included unecessarify. Function

When you have finished typing, just click on the ‘log error’ button again. This saves your text, and you can
continue checkingfor more errors-. If you start typing and then realise that you have made a mistake (i.e.
there is no error where you thought there was), just press the ‘Esc’ key. This w ill return you to checking,
but not save thecoatents o f theerror window.

PagafilOL

Appendix B

Reference Guide

S I S2 S i

Entrance Signal Exit signal Route Name
S2 S3 R1
S2 ■ S6 R2
S4 "SB- RT"
S5 ~Sl RA

1. Conditions to set a route:

A) The points must be set to the correct position, or free to be set.
B) No opposing routes must be set.
C) No trains must already be in theroute.

1.1. Actions when the conditions have been passed:

D) All the sub-routes are locked
E) The points are. controlled to the required position

2. The signalling code specify ing the ahove for R IB looks like:

R IB

if E l erf
U3 B-C f
T3 c ,T 9 ,T10 c , T il c sT 12c

then set RIB
U3 C-B 1,U 9 C-A1, U1.0 B.-A1,U11 B-A 1,1112 B -A 1
PI cr

Points Free to Move

P IN T3 c ,T 9 c ,U 3 B -C £,U 9 C -A f

PageB IL

Appendix B

T rack circuits T [x], T£y], T[z]
Sub-routes V\x-AB\ , U[y-A E \, \5\z-AB\
Points P [x],P [y],P [z]
Signals S[x], S[y], S[z]
Routes R [x], R [y], R[z]

Sub route direction given by:

120 clock 120 clock 120 clock

PRR (Panel Route Request)
One block such, as this per route

1. Route label and availability *Q[route number1 if R froute number1 a
2. Points test
3. Directly opposing route(s) test Of required)
4. Route setting
5. Sub-route locking (all sub-routes in the route)
6. Points controlling
7. Signal clearing^

PFM ‘Points Free to Move’
One block such as this per set o f points

P[x7 {cnf (normal) or erf (reverse)}, P{y]...
U[x-AB] f, \5\p-AB] f

then R [route number] s
H[x-AB] l \5\y-AB] X, U...
V[x] {cn (normal) or cr (reverse)} ,P [y]...
S[entrance signal] clear bpull

*P[x]N T[x]_c»_. ..(track circuits for£[x]}U[x-AS]_f,....(last sub-route over the points for each route
that requires the points reverse)

*P[y]R T[x] c ...(track circuits for P[y]) U[x-AB] f, ...(last sub-route over the points for each route
that requires the points normal)

O P T ‘Output Telegram’
One block such as this per route

*S[x] R[x] T[z] c, T[y] c, T[z] c,(all the track circuits in the route)

PageE12.

Appendix. B

Testers specific training material

Testing.

The signalling rules (described earlier) that die SSI computer operates to must first be programmed into die
computer by signalling engineers. The programme must allow die maximum functionality from the rail
network whilst ensuring its safety. The programme is therefore extensively checked and tested before
installation.

Your task will be a simplified version o f die testing procedure. This testing is carried out on a simulator o f
the SSI computer. The code that the signalling engineers have written for die rail netw orkis used by the
simulator, which mimics the behaviour o f the real railway. Conditions can be set up and tested on it to
ensure that the railway is conforming to the signalling principles discussed earlier.

1. Testing simulator.

The simulator consists o f a diagram o f the. railway network in the upper half of the screen^and a collection
of buttons and indications in the lower half of the screen (please note that the example layout shown is
NOT the same as the layout in the previous handout). The routes in the network are defined in a route list
under the diagram.

1.1. Track circuits.
The row of buttons at the bottom,.labelled T1 ,T 2 etc. are the buttons for the track circuits,. which are
similarly labelled on the diagram. When the track circuit is clear, ie . there is no train on it, the buttaa is
green. The button can be clicked on to simulate a train occupying the track circuit In this situation the
button turns red.

1.2. Signals.
The red circles represent the signals in the layout They cannot be clicked nnJ but instead they show the
colour that their associated signal is showing, either green or red.

: 1J. Points.
Each set o f points on the diagram has two blue buttons associated with i t The left-most button controls the
position o f the points, and shows an N when the points are normal, R when they are reverse. The right-hand
button shows whether the points have been ‘keyed’ by the signalman (K) or are free (F). If the points
have bear keyed, then their position, either normal or reversejs locked, and they cannot be moved until
they are un-keyed, or made free. If they are free then they can be moved between normal and reverse by
clicking on the position button.

The points position can be changed by the simulator. For instance, if a route button is pressed and all the
conditions are met for the route to set, then the points w ill be moved to their correct position for that route.
Only the tester can key (lock) the points, however.

;; 1.4. Routes. "i/
The buttons at the top left are for settingthe routes in the network. The entrance and exit signals for each
route are given in a list just below .the diagram. When a route button is clicked on the simulator evaluates
the signalling principles programmed into it, and if they are met then the route is set If a route is set, then
the route button should change from red to green. Additionally, the entrance signal o f the route should also
change to green (unless one o f the track circuits in the route is occupied, in which case the sigial should
stay red). .

2. Testing procedure.

Your taric.wilLbe.ta test the network, ensuring that points are.locked.Qr freehand routes.wilLset_only when
the signalling principles outlined earlier are met. The tests that need to be carried out will be described
below. While testing, however, it is WQrth.bearmgin.mind the followingthree areas, which are what the
tests ultimately boil down to:

Eage-R13

Appendix B

Points. To set a route the points must either be already at the correct lie, or be free to move to the correct
he; when the route sets only the points required-by the route should.be altereduand when set in a.route or
with their track circuits occupied they shouldn’t be moveable until the route is un-set or the track circuit is
no longer occupied. However, thepoints should be free to move at all other times

Routes. To set a route, no opposing routes must already be set. If two routes are not opposing they should
be settable aLthe same time.

Trains. Before the signal for a route will change to green, there must be no occupied track circuits in the
route. If a route is set with any o f its track circuits occupied, the signal should stay red. Track circuits
should only influence the route that they are part of, and if occupied, they should not stop the signals o f any
other routes from turning green

To ensure that the above holds true for the network, die following tests should be performed:
2.1. Prelim inary tests.
Are all the buttons present and correctly labelled? Each button must initially be operated to ensure that it is
working properly.

2.2. T rack circuit locking.

when the trade circuit button corresponding to the track circuit over a set o f points is pushed, simulating a
train occupying the track circuit^the points should not be moveable from norm al to reverse or vice versa,
regardless o f the ‘keyed’ button position.

2.3. Point moving and locking. These tests ensure that thepoints are moved correctly byroutes^and are
then locked.
23.1 . Individually, each set o f points inarou te should be moved^and keyed^to conflict w ith that route. For
example, R2 needs P2 to be normal, then P2 moved reverse and keyed. R2 should not be settable. This test

23.2. Conversely, each route should be set, and each set o f points within the route individually tested to
ensure they are locked (cannot be moved).
2 3 3 . With no routes set, move all points to normal.. Set a route. Only the points required reverse by Ihe
route should move to reverse. Repeat with points initially set to reverse.

2.4.1. To ensure that each track circuit in.aixmte.will stop the entrance signal from changingto gjeen if it is
occupied, occupy a track circuit in that route and then set the route. The route should set, but the signal
should stay at red.
2.4.2. Conversely, each track circuit not in a particular route should have no affect on the entrance signal to
the route from changing to green.

2.5. Opposing locking.
23.1,W iih a route set, ensure that allopposingroutes cannot be set.
2 3 3 . With a route set, ensure that all routes that are not opposing routes can be set

3. E rro r reporting.

The purpose o f this exercise is to find any errors that may be present in the behaviour of the network that
you will subsequently test If you do find an error then report it in the following manner:

Click on the button marked ‘log error’ in the bottom right-hand comer o f the screen. A cursor will now
appear in the box at the bottom of the screen. You can type in up to two lines o f text to specify die error that
you found, pressingretum at the end o f the first line to get onto the second.

For each error you find, include the following information:

2.4. T rain in route locking.

Page-BT4-

Appendix B

The elements of the railway under test, and their state (e.g. P I locked, T3 dear, R4 set)
The specific functionality that is not correct, i.e. w hat is wrong, and why it is wrong.
Whether the error is one of safety or of functionality [e.g. for experim ent IH]

For example:

T3 occupied, R4 set, S4 does not change to gneenwhen it should.Function

R4 set, can also set opposing R6. Safety

PI keyed N„R4 will set when it shouldn’t Safety

When you have finished typing, just click on the Tog error’ button again. This saves your text, and you can
continue checking tor more errors. Ifiyou.start.typingjmd thenrealise thatyou have made a mistake (i.e.
there is no error where you thought there was), just press Ihe ‘Esc’ key. This will jetum you to checking,
butnot save the contents of the error window.

PageT345-

A ppendix C

Appendix C: M ental M odel questionnaires.

205

Appendix C

Appendix C : Mental model questionnaires

Conceptual distance questionnaire

This questionnaire is intended to gauge how similar or different you perceive the various
elements and states of the railway to be.

Each item contains a pair of constructs on the left hand side. Each construct consists of an
element of the railway, e.g. points, track circuits, and one of the two possible ‘states’ it could be
in, i.e. points can be ‘free’ or ‘locked’, track circuits can b e ‘clear’ o r ‘occupied’.

Specifically, w e ’d like to find o u t in your opinion, w hat the ‘conceptual distance’ between the two
constructs is.

For instance, th e first item pairs ‘pointsfree’ and ‘points locked’ together. Y a irm a y believe that,
because both constructs are dealing with points, the conceptual distance between them is very
low (Le_they.are both ve ry sim ilar). ln th a lc a s e _yo u ’d mark th e scale line n e a rte tb e left hand,
zero, end of the scale.

o
Points Ires [
Points locked [____ 1 I L I t I-4.

100

Altem atively^you m a y think that because the constructs refer to veryjdifferent states of the joints,
‘free’ and ‘locked’, that they are ve ry conceptually distant (i.e. dissimilar). In that case, y o u ’d m a rk
the scale line tow ards the right-hand ,_1 OO^end of the scale.

Points free ~
Points locked L I r i

100

Fo r each item, please m ake one m ark on the scale indicating how conceptually distant o r similar
you think each pair of constructs are. The re are no ‘right* o r ‘w rong’ answers, ifs yo u r opinion that
w e ’re after. D o n ’t think too long about each answer, it’s your first impression that is often the best.

Th e results of this questionnaire will be kept confidential, so please rem em ber to write dow n only
your participant num ber in the space provided over the page.

Page-CI

Appendix C

‘Safety' questionnaire

T h is questionnaire is. fete ndacLto. gauge relatively h o w m uch you perceiyethe various elem ents
and states of the railway contribute to its safe operation.

Each, item contains a pair of constructs below th e scale_one on the left one on the rig h t Each
construct consists of an elem ent of the railway, e.g. points, track circuits, and one of the two
possible ‘states’ it could be in J .e . points can bis fre e ’ or ‘locked’, track circuits can be ‘clear* or
‘occupied’.

Specifically, w e ’d like to find o u t jn your opinion jv h ic h one of the two constructs contributes
m ost to the safe running of the railway. Note that w e ’d like to know for each item, th e re lative
c o n trib u tio n to safety of the on e c o n s tru c t c o m p a re d to th e o th e r , not the overall am ount of
safety that the constructs contribute to the safety of the railway.

F o r instance_one of the items pairs ‘points locked’ and tracks clear’ together. Y o u may_believe
that ‘points locked’ contributes m ore to the safety of the railway than tracks clear*. In that case,
yo u ’d m ark the scale line towards the left hand e n d,sh o w in g Jh a t ‘points locked’ is m ost important
in term s of safety.

Modlmpcrtart.

i f y i- h i .

eqgaT

n
........... M ost important

h > f r .
Points locked Track clear

Alternatively, you m ay believe that tracks clear’ contributes more to the safety of the railway than
‘points locked’. In that case, yo u ’d m aik the scale line towards the right hand end, showing that
tracks clear’ is m ost important in terms of safety.

Most im portait

,J _ 1 __ t — 1.

equal

i t • \ j .

Most im partait

1 h i i K- h K H k
Points locked Track clear

Y o u might instead think that both constructs contribute approximately equally to the safety of the
railway. In that case, yo u ’d mark.the.scale towards, the centre.

Most im portait

\ f \ I

equal

h l~ h h n f f

Most important

h t h k
Points locked Track clear

Fo r each item, please make o n ly o n e m ark on the scale indicating which construct of the two
y o u feel contributes m ost to the.safety of th a ta ilw ayJTh eta are no ‘right’ o r ‘wrong! answers, it’s
yo u r opinion that w e ’re after. D on't think too long about each answer, it’s yo u r first impression that
is often the best.

T h e results of this questionnaire will be kept confidential, so please rem em ber to write dow n only
yo u r participant num ber in the space provided over the page.

Page-C2-

Appendix C

*Functionality' questionnaire

Th is questionnaire is intended to gauge relatively how m uch you perceive the various elem ents
and states of the railway contribute to its functionality.

Each item contains a pair of constructs below the scale, one on the left one on the righ t Each
construct consists of an elem ent of the railway, e.g. points, track circuits, and one of the two
possible ‘states’ it could be in, i.e. points can be ‘free’ or ‘locked’, track circuits can be ‘clear’ or
‘occupied’.

Specifically, w e ’d like to find out, in your opinion, which one of the two constructs contributes
m ost to the functionality of the railway. M ote that w e ’d like to know for each item, th e relative
co n trib u tio n to fu n ctio n a lity o f the one c o n s tru c t c o m p a re d to the other, not the overall
am ount of functionality that the constructs contribute to the functioning of the railway,

Fo r instance, one of the items pairs ‘points locked’ and ‘tracks clear’ together. Y o u m a y believe
that ‘points locked’ contributes more to the functionality of the railway than tracks clear*. In that
case, yo u ’d mark the scale line towards the left hand end, showing_that ‘points locked’ is m ost
important in terms of functionality.

Most impartait

r i \-

equal

h...± I- h I- h h h h 1

Most im parfa it

h - h — L
Poirtis locked Track clear

Alternatively, you m ay believe that tracks clear’ contributes more to the functionality of the
railway than ‘points locked’J n that case, y o u ’d m ark the scale line towards the right hand end,
showing that tracks clear’ is m ost important in terms of functionality.

Most importait.

■I - . . L - L 1

equal.

J _ ± I- H I- I" K H 1

MortJroporfarf

h h > V
Points locked Track d e a r

Y o u might instead think that both constructs contribute approximately equally to the functionality
of the railway. In that case, y o u ’d mark the scale towards the centre.

Most impartart equal

\ \ \ i Y i- h y [h -1 h I-

Most im portait

h K f~ i
Points locked Track clear

F o r each item, please make o n ly o n e m a rk on the scale indicating which construct of the two
you feel contributes m ost to the functionality of the railway. Th e re are no ‘right’ or W o n g ’
answers, it’s your opinion that w e ’re after. D o n ’t think too long about each answer, it’s yo u r first
impression that is often the b e st

T h e results of this questionnaire wilLbe kept confidential, so please rem em ber to write dow n only
your participant num ber in the space provided over the page.

JPage C3-

