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Chapter 1: Introduction

1 H um an error in the design of a safety-critical system

This thesis is an investigation into some of the causes and possible remedies to the 

problem of human error in a complex human-machine system. The system in question 

is engaged in the design of computer software for the control o f railway signalling 

infrastructure. Error in its operation has the potential to be lethally destructive, a fact 

that provides not only the system’s epithet but also the primary motivation and 

significance for its investigation.

The thesis consists broadly of two parts. The first part is concerned with exploration of 

the system, i.e. hypothesis generation, and is somewhat qualitative in nature. The 

second part is in general more quantitatively based, involved in the testing o f the 

candidate hypotheses. However, it ends with a fairly lengthy departure from 

empiricism to consider some of the more fundamental issues raised but not answered 

by the work.

Because o f the broad and exploratory nature of the initial investigation the themes on 

which it is based are quite general: ‘human-machine systems’ and hum an error’. The 

remainder o f this chapter will expound these terms. More specific literatures will be 

discussed later, as and when required.

1.1 H um an-M achine Systems

From bone tools to spacecraft, humans have a long history o f using artefacts to help 

them achieve their goals. For a long period these artefacts were relatively simple and 

often used by their designers, promoting an easy mapping between intention and 

operation. Especially since the industrialisation o f their production, however, artefacts . 

have become much more complex and widely available, with a consequential decrease 

in their ready usability.

However, it took the necessities o f wodd-war II to give birth to a discipline focused on 

why people found it difficult to use artefacts propedy (for a brief history see Sanders 

and McCormick, 1993). At this early stage the discipline betrayed its narrow interests 

through one o f its names; man-machine studies. However, not all humans are men,
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Chapter 1: Introduction

and not all artefacts are machines. Further, consideration o f a single person interacting 

with a single artefact is only a simple example o f the general case, where complex 

systems require the interaction of many people with many types o f artefact, both 

tangible and informational. The broadening of the name o f the discipline to ‘human- 

machine systems’ still misleads somewhat, but it is in current use and will serve its 

purpose here.

At its basis a human-machine system can be thought o f as any number o f humans 

interacting with any number o f artefacts in pursuit o f a goal or goals. This rather broad 

definition will be structured further by way of Edwards’ (1972) SHEL model This 

describes systems in terms of their components, partitioned into the following four 

categories that make up the SHEL acronym:

• Software. Many aspects of a system are not physical in nature, but instead are 

Virtual’ or informational. The rules of arithmetic and the meaning o f  a clock- 

face display, for example, are instances o f ‘software’. The term also includes the 

definition that it has become synonymous with, i.e. computer programmes.

• Hardware. The physical aspects of the system, such as a computer mouse, or 

a doorway.

•  Environment: This is that which surrounds and may influence the system, but 

which is not considered part o f the system itself. Relevant aspects o f  the 

environment can be physical in nature, such as temperature and size, or more 

abstract, such as the economic environment The environment can be 

considered to be the framework in which the system must operate.

•  ‘Liveware’. The humans that are part o f the system, e.g. operators, managers; 

their characteristics and abilities.

The attribution of system elements to the various categories is a somewhat arbitrary 

exercise, particularly when it comes to defining the boundary between the system and 

the environment For instance, consider a school It is likely that teachers, pupils, 

caretakers, desks, toilets, books, numbers, roofs, emergency exit signs and electricity 

would all be considered necessary elements o f a school system with the goal o f
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Chapter 1: Introduction

educating children in the UK today. However, what about the ministry o f transport 

and the environmental health inspectorate? Currently the majority of staff and pupils 

must be able to get to a school, and that place must be reasonably safe from hazards. 

Both institutions have influence on the conduct o f school business, but seem to be 

more distant from the core goal of educating pupils. For my purposes here the 

boundary between system and environment will be drawn based upon the smallest set 

of elements that are causally interactive. A teacher can have an effect on a pupil and 

vice versa, but a teacher cannot easily affect transport policy (although the converse is 

true).

Within this SHEL framework, problems arise when there is a lack o f fit between the 

abilities o f the liveware and the characteristics of the software and hardware. A 50 cm 

high doorway, for instance, would be unusable for a large proportion o f the general 

public. Instructions for the use of a hand-dryer written in Polish would be fine in a 

Warsaw public toilet but be of less use, on average, in Seoul. The problem o f physical 

correspondence between liveware and hardware, the domain o f anthropometry, will 

not form part of this thesis, however. Rather, the fit between liveware and software will 

dom inate- the realm of cognitive ergonomics.

1.1.1 Safety-critical system s

Safety-Critical Systems (SCSs) are those systems in which failure can lead to injury or 

loss o f life; therefore it is in SCSs that the issue o f error has perhaps the greatest 

importance. SCSs are often thought of as dealing with great physical forces or toxic 

materials, for example nuclear power stations (Health and Safety Executive, 1992), 

mass transportation systems (e.g. aviation: Weiner 8c Nagel, 1988) and medicine (e.g. 

Bogner, 1994). Indeed, the SCS studied in this thesis is a computer-based railway 

control system.

However, given the above definition o f SCSs I would argue that this common view is 

too narrow. Much safety-critical activity is carried out in areas as diverse as social work 

(e.g. child protection: The Victoria Climbie Inquiry, 2003) and sport and leisure (e.g. in­

line skating: Canadian Academy of Sport Medicine Sports Safety Committee, 1998), 

where poor systems also cost lives. Therefore, although this investigation is context-
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Chapter 1: Introduction

bound by nature o f the railway control system studied, the findings should be 

applicable to any system where error is o f concern.

1.1.2 Reliability

The essential difference between safety critical- and non-safety critical systems is our 

attitude towards their reliability. With the cost o f failure so high, SCSs must be as 

reliable as is practically possible. The concept o f reliability is a central one to this thesis, 

so it seems sensible to discuss exactly what is meant by this.

Systems are implemented to carry out specific functions for a period o f time. For 

example, the Humber Bridge was designed to transport road traffic: across the Humber 

estuary until at least the year 2100. If  it stops doing this before that date, i.e. it fails (e.g. 

physically, economically) through unintended acts or omissions, we could say that it 

has failed to meet its reliability target -  it would be an unreliable bridge. In this case 

reliability is considered to be the probability of system failure within a given time span.

UK D ef Stan 00-55 (Ministry of Defence, 1997) is a widely-used standard for safety- 

related computer software applications. For SCSs with the highest safety integrity level 

(level four, where system failure could be “catastrophic”, resulting in multiple deaths), 

the probability o f failure in any given year should be no greater than 1 x 10"4, or one in 

ten thousand. In  comparison, the Microsoft Windows™ Millennium Edition operating 

system running on the PC used to write this thesis fails (Le. crashes, requiring a re­

boot) about once every two days -  around a million times less reliable than a level-four 

SCS. (This is actually an overestimate o f its reliability because the computer is not in 

continuous operation.)

UK D ef Stan 00-55 gives a reliability target for SCSs. A crucial factor not addressed by 

this standard, however, is how we should know when this target has been attained (or 

indeed, how we can attain it). In the example o f the computer system (above) die 

estimate o f reliability was based upon the observed behaviour o f the system whilst in 

operation. This is clearly not an acceptable way to obtain reliability estimates for SCSs. 

Rather, reliability analyses are carried out that seek to predict the reliability o f the whole 

system based upon knowledge of the observed reliability of individual components of
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Chapter 1: Introduction

[a] Reliability =  .81

Reliability =  .99

Figure II A  system  w ith two com ponents arranged in  series [a] or parallel [b]

that system. For example, consider the following example related by Wickens and 

Hollands (2000). It consists o f a very simple system, with only two components, 

shown in Figure 1.

Each component has a probability of failure of .1, and therefore a reliability o f .9 

(reliability =  1 -  probability of failure). I f  these two components are arranged in series 

[a], then if either component fails then the system as a whole will fail. The reliability o f 

the system as a whole is .9 x .9 = .81. On the other hand, if  the components are 

arranged in parallel [b] then the system will only fail if both o f them fail together. The 

probability that the system will fail in this case is .1 x .1 =  .01, giving a reliability o f .99. 

When components o f a system are arranged in parallel the system is said to have 

redundancy.

/. 1.3 Human reliability

Human Reliability Analysis (HRA) is the extension o f the above method into the 

domain of human system components (see, e.g. Miller and Swain, 1987). HRA seeks to 

decompose human task performance into a number o f components to which error 

probabilities /  reliabilities can be attached. These human error probabilities (HEPs) are
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Chapter 1: Introduction

usually expressed in the form of a ratio o f the occurrence o f error divided by number 

o f opportunities for error.

In doing so some methods rely upon databases o f human error statistics (e.g. THERP; 

Miller and Swain, 1987; Swain and Guttman, 1983), while others rely upon expert 

judgement (Absolute Probability Judgement; see Kirwan, 1994). There are, however, a 

number of criticisms which have been made o f the HRA approach to absolute error 

probability quantification (e.g., see Hollnagel, 1993; Miller and Swain, 1987; 

Rasmussen, 1986). I t is certainly the case that HRA techniques are more dependable 

when comparing the relative error probabilities associated with different parts o f a task 

than when used to give absolute error probabilities (HSC, 1991). Comparison o f HRA 

techniques has revealed variance in absolute judgements o f  error probabilities 

“...between teams as well as within teams, typically with a factor o f  10 or more” 

(Hollnagel, 1993, p. 132). There are a number o f reasons why this might be the case. 

First, it can be argued that unique circumstances which prevail in each task 

environment mean that the statistics contained within error databases cannot be 

generalised with sufficient accuracy (see Taylor-Adams and Kirwan, 1995). Second, 

human error is often detected by the person carrying out the task him- or herself. 

Therefore, it is difficult to derive the probability of system failure simply from the 

probability of human error, as is discussed later in this chapter. The persistence of 

human error within complex systems relates to the nature o f the task environment (i.e. 

opportunities for self-detection), and the self-detection o f errors relates particularly to 

specific types o f human error, as will also be discussed below. Third, a basic 

assumption of HRA methods is that human errors are independent o f other human 

errors and of non-human system failures. This is demonstrably not the case, and 

furthermore the nature o f this dependence is complex and difficult to specify (see 

Wickens, 1992, p. 432). However, some progress is made on this topic in § 9.3.2.

Even though absolute error probability judgements are problematic, I contend that the 

identification and classification of human error, along with the consideration o f relative 

(within task) error probabilities remain worthwhile and attainable goals, and will be 

used in this thesis.

6



Chapter 1: Introduction

1.2 H um an Error

The concept o f human error seems intuitively important to reliability, and indeed will 

provide the focus o f this thesis. What is meant by the term must therefore be made 

clear before proceeding, as it is easily confusable with other related but distinct 

concepts. The exposition below is informed greatly by the work of Norman (e.g. 1988) 

and Reason (e.g. 1990).

First, errors relate to a failure to achieve a goal. Without a goal there can be no error per 

se, and the same activities may be considered to be correct on one occasion and 

erroneous on another depending on the goal to be achieved. For example, deciding to 

clean my teeth might be considered a good thing shortly before going to bed, but an 

error while trying to drive safely along a motorway.

Second, because errors relate only to goals they also relate only to entities that can 

formulate and strive for goals. In human-machine systems the goals are set by humans, 

and so in this context the term human error* is somewhat o f a tautology.

Third, errors relate to the cognitions and actions o f people, but they are distinct from 

the consequences o f these cognitions and actions. The activities o f people may result in 

undesirable elements and states of systems, but these follow from the errors and are 

not the errors themselves. Specifically, errors may result in system faults, and system 

faults may lead to system failures.

To illustrate the above, consider the ifollowing example o f a system. The system 

consists o f a homeowner (the liveware), the homeowner’s house with a newly installed 

alarm system (hardware), the instructions for using the alarm, written in English 

(software), and the environment, which in this case is considered to be the threat of 

burglary. Because o f the threat of burglary the homeowner would like to protect his or 

her house from damage and theft. Therefore, he or she decides to activate the alarm 

every time the house is vacated for more than a few moments. On leaving the house 

the homeowner presses a sequence o f buttons on the alarm control panel, derived 

from his or her understanding of the instructions, in the belief that the alarm will be 

activated. However, in error the homeowner merely goes through the test sequence

7



Chapter 1; Introduction

rather than activating the alarm. Therefore, when the house is unoccupied the alarm 

system is at fault in relation to the system goal (protect the house from theft and 

damage). However, although the homeowner continues to erroneously operate the 

alarm system in this way for many years, the fault never leads to system failure 

because the house is never burgled.

N ot all systems can tolerate faults in this way without consistently leading to failure. I f  

I  fill the fuel tank o f my car with diesel fuel rather than unleaded petrol, the fault o f 

having a tank mosdy full o f diesel will quickly lead to the car’s motive failure. 

(However, whether the decision or action o f doing this would be considered an error 

or not will o f course depend on whether my goal was to foul the engine.)

The extent to which faults lead quickly and consistendy to failures can be though o f as 

the ‘coupling’ between system elements (Perrow, 1984). In tighdy coupled systems 

faults lead rapidly and/or inexorably to failure. A good example o f a tighdy coupled 

system is a house o f cards, where virtually any fault, i.e. a fractional misalignment o f a 

card, will lead to collapse. Notice that the fault could be introduced by error, e.g. 

clumsy placement o f a card, or the decision to construct the house o f cards in a 

draughty room, but this is not the only way for a fault to occur; an earth tremor would 

do the trick also, as would deliberate vandalism (a Violation’, as termed by Reason, 

1990). On the other hand, in loosely coupled systems faults do not inevitably lead to 

system failure. For example, the internet was designed to be a loosely coupled system, 

able to tolerate many faults in its communications web and yet to continue functioning.

Faults do not always lead to failures, and similarly errors do not always lead to faults. 

The Greek astronomer Claudios Ptolomaios (‘Ptolemy’), bom c. A.D. 85, constructed 

a model o f the solar system that was in use for approaching 1500 years. Given the 

goals and instruments o f astronomy at the time (predicting planetary motions, eclipses, 

etc., all done without telescopes, or clocks as we now know them) it was a highly 

accurate model, which is for the most part why it persisted for so long. However, it 

was a geocentric model (i.e. with the earth at the centre of the solar system), a feature 

probably based primarily upon an erroneous and egocentric interpretation o f the 

apparent motion of the sun. We now know that the reasoning that led to the model

8



Chapter 1: Introduction

was in error, but the model itself did not lead to any verifiable faults until more 

accurate data on planetary motions were produced by the Danish astronomer Tycho 

Brahe (b. 1546).

The detection o f errors can come about before any fault or failure o f a system, of 

course. For instance, motor control errors can be corrected very rapidly by comparing 

an ‘efference c o p / o f the movement commands sent by the brain with a 

representation o f the desired movement ‘goal’ (Kawato & Gomi, 1992; Rabbitt, 1978). 

In fact, this system is so fast that motor outputs can be modified or inhibited before 

they have had a chance to be put into action, i.e. errors are detected and corrected 

before they result in faults. More generally, Rizzo, Ferrante & Bagnara, (1994) 

described the concept of ‘inner feedback’ as information available to 

awareness/working memory that did not arise from external sources. These internal 

error-detection processes will not, however, be the focus o f error-detection in this 

thesis. Rather, the processes by which faults are detected will be studied.

The detection o f faults, by definition, requires feedback from the human-machine 

system external to the human operator. For instance, while writing this thesis I became 

aware o f most of my typographical errors through the process o f visual perception o f 

misspelled words (or perception o f spell-checking computer software cues), not 

through the internal monitoring o f motor commands (although for a more skilled 

typist the reverse might have been true). Therefore, to detect faults depends upon our 

ability to perceive and distinguish between the actual state o f the system and the 

desired state — to compare feedback with some representation o f the goal

The more ‘direct’ the comparison between existing and goal states the easier is likely to 

be the fault detection. I f  there is an accurate internal model o f the goal state and ample, 

timely feedback about a relevant system state, then fault detection is fairly easy: the 

equation 7 + 2 = 10 should be a dear and available stimulus to readers who have been 

able to read this thesis thus far, but it does not seem to conform to the well-known 

rules o f arithmetic As such, it is a fault, and therefore suggests the presence o f an error 

in the thinking or behaviour of its author, if  his goal was to correctly sum seven and 

two. (I did intend it to demonstrate an error, which would make it a fault o f  arithmetic

9



Chapter 1: Introduction

but not of exposition. If  I now claim that it is an equation written in base nine, rather 

than the expected and conventional base 10, then it is a correct example o f arithmetic, 

but not of error...)

Clear and timely feedback is o f no use for fault detection if  the internal representation 

o f the goal state is itself flawed, however. Consider the English word that means ‘a 

person who owns or runs a restaurant’. Restauranteur? The word is actually 

‘restaurateur’, with no ‘n’. The former has become common, presumably because o f its 

consistency with the spelling of the word ‘restaurant’.

Without the perception o f feedback on the mismatch between actual and desired 

system states, errors and faults will remain undetected (until and unless they lead to 

perceptible system failure). For example, Ptolemy’s theory o f the heavens was revealed 

to be faulty only when more precise feedback became available, in this case in the form 

of empirical data on the positions o f heavenly bodies.

(Reason, 1990, referred to faults that lie dormant for some time without providing any 

feedback as to their existence as ‘latent system errors’, and faults that provide 

“immediate” feedback as ‘active system errors’. I believe that Reason’s scheme, while 

thematically consistent with the one described here, unnecessarily mixes notions of 

errors, faults and failures, and the coupling between them.)

Even when feedback from faults is available, however, it may not be interpreted as 

evidence of error, as the feedback itself may be dismissed as faulty. Improvements to 

Newton’s theory of gravitation (1687) did not emerge from better observational data, 

but by theoretical inconsistencies between it and James Clerk Maxwell’s (1873) theory 

of electromagnetism. This is despite the existence o f observational data inconsistent 

with Newton’s theory (‘problems’ with the orbit o f mercury noted by Leverrier in 

1855), but which were attributed to observational deficiencies. More recently, 

mounting evidence o f faults in the thermal protection system of the NASA’s space 

shutde system did not lead the system’s managers to react as though they had found 

evidence o f system error until the catastrophic failure o f the Columbia spacecraft in 

2003 (Columbia Accident Investigation Board, 2003).
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These issues o f error feedback are basically those discussed by Quine (the ‘Duhem- 

Quine thesis’, 1961/1953) and Popper (e.g. 1972). Quine argued that it is impossible to 

view any piece o f feedback as indicating unequivocally the presence o f error in a 

system, because our understanding o f the system can never be known to be complete. 

Popper argued that the existence o f error feedback is the only way to conclusively 

demonstrate a faulty system. (Their topic was the practice o f science, but I would argue 

that ‘science’ is a system containing humans and artefacts, like any other discussed 

here).

1.2.1 Error types

Many classification schemes have been proposed that seek to address issues o f human 

error through the nature o f  faults. A well known example o f  a generic 

phenomenological error typology distinguishes between errors or faults o f omission (a 

required act was not performed) and those o f commission (incorrect performance o f a 

required act or performance of an act which was not required). A  number o f  authors 

have proposed more extensive phenomenological classifications. For example, Miller 

and Swain (1987) suggest that errors o f commission can be further divided into 

selection errors, sequence errors, time errors, and qualitative errors. Hollnagel (1993) 

proposed a scheme in which four basic phenotypes are used as the basis o f an attempt 

to model comprehensively all possible sequences of task performance: i) correct action 

- the correct sequence o f steps; ii) jump forward - the action sequence jumps forward, 

missing steps from the correct sequence; iii) jump backward - the action sequence 

jumps backwards to already executed action steps; and iv) intrusion - an action is 

executed which is not part o f the current plan.

These approaches are limited if only the faults themselves are known. For instance, 

consider the simple example of the formula above: 7 + 2 =  10. What are the possible 

errors? Before making any suggestions, assumptions about the goal underlying 

performance must be made. Assuming that the goal was to write a correct equation in 

base 10 there are still myriad possibilities. There could have been an error o f 

commission in the answer (7 + 2 = 9), but also in the numbers to be summed (e.g. 7 +

3 = 10), as well as in the operators (e.g. 7 + 2 i=-10). There could instead have been
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errors of omission (e.g. 7 +  2 = 10 -1). These examples hopefully serve to show the 

difficulties present when trying to infer errors from faults. However, knowledge of 

faults and failures is often the only source of information available when trying to 

investigate error.

1.2.2 Errors and expertise

In the earlier example, the goal of writing the word ‘restaurateur’ was initially failed and 

the word was misspelled. This could be seen as the commission o f one error resulting 

in one fault — a spelling mistake. However, it could also be viewed as the writing of 

twelve letters correctly and the addition of an extra one erroneously. This is because 

virtually all goals can be thought of as being composed of numerous sub-goals (e.g. 

Newell and Simon, 1972). The extent to which we should consider it one or 12 goals 

will depend upon how these goals are represented internally by the typist.

A total novice at typing would probably have to treat typing each individual letter as a 

goal in itself, and perform each action in sequence to achieve the super-ordinate goal 

o f typing the word. Performance would be slow, effortful and demanding o f short­

term memory resources (e.g. which letter to type next?) and conscious attention on the 

task Errors would be quite likely and even more likely under stress, distraction or 

. while performing other tasks concomitantly, especially those demanding similar, 

limited processing resources (e.g. Wickens, 1991). With practice the typing o f 

individual letters would become chunked into typing groups o f letters, until eventually 

even these chunks were integrated into an effortless ability to type the whole word with 

virtually no demands on short-term memory or conscious attention (Keele, 1968). 

Errors when performing such a skilled task are relatively infrequent, even while under 

stress and distraction (e.g. Tayyari and Smith, 1987).

This change in performance as skills are acquired has been extensively described: Fitts 

and Peterson (1964), Anderson (1982), Rasmussen (1983) and Reason (1990) have all 

described this process with models incorporating three levels o f behavioural control. 

Performance at the novice level, called variously the ‘cognitive’ or ‘knowledge-based’ 

stage, is characterised by slow, consciously demanding and effortful performance. 

Partially-skilled behaviour has been described as the ‘associative’ or ‘rule-based’ level,
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where aspects o f the tasks can be performed without conscious attention, but these 

task chunks still need conscious triggering and linking. Finally, expert performance has 

been termed the ‘autonomous’ or ‘skill-based’ stage, where goal-directed behaviours 

can be performed without conscious attention. Performance at the novice level is slow 

and effortful but flexible and adaptable. In contrast, as performance becomes more 

learned and nearer to the expert level it is quick and effortless but rigid and 

stereotypical.

Regarding errors, Norman (1981) suggested a dichotomous classification based around 

whether the goal itself is selected in error or whether the action taken to achieve that 

goal is erroneous. O n the one hand, if  a sub-goal is selected that will not lead to 

fulfilment of the super-ordinate goal it is termed a ‘mistake’. O n the other hand, if  the 

activity selected to achieve the goal or sub-goal is performed incorrectly (or not 

performed), this is termed a ‘slip’ (or ‘lapse’).

For example, I may have the goal o f driving safely and efficiently from my home to my 

workplace. A sub-goal o f this is to obey traffic signs and signals. Part o f the route 

involves crossing a traffic-light controlled junction with two route options: straight 

_ ahead or a left turn, each controlled by its own traffic-light Imagine that both lights are 

showing a red ‘stop’ signal, and that I am waiting to go straight on. I  see die light in 

front of me change to amber then green, and I formulate the sub-goal (not necessarily 

with conscious awareness, if this is a well-practiced skill for me) to start on my way. I 

do so, and promptly crash into a car turning across my path, down the (for me) left- 

hand road. I had misperceived which traffic-light had turned green; in actuality it was 

the left-turn light that had changed and the straight ahead light was still on red. In this 

case I had made a mistake. I had formulated a goal (start driving) that, while performed 

correctly, was in conflict with some o f my higher order goals, i.e. those o f driving safely 

and obeying traffic signals. (It was consistent with another o f my goals, however, that 

of driving from my home to my work.)

On the other hand, imagine me again waiting at the red traffic light This time I 

perceive correctly my straight-ahead light change to green, and formulate the same goal 

as before, to move off and continue on my journey. However, by accident I  select third
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gear instead o f first and stall the engine, jerking forward to a halt The driver in the car 

behind, expecting to move forward, might even bump into the rear o f my car. In this 

case the goal was correct but was not executed properly; I had made a slip.

It’s also quite feasible that I could have made both errors together; misperceiving the 

traffic light and selecting the wrong gear. In this case the combination o f both errors 

might have resulted in a more favourable outcome than if I had merely made either 

one; I wouldn’t  have crashed into the car in front, and the car behind, not expecting to 

move, would have been less likely to have bumped into my rear. (However, this would 

merely have been a fortuitous feature o f the coupling between errors, faults and 

failures in this particular system; more errors and faults are usually worse for system 

reliability than are fewer.) In general, though, the occurrence o f multiple errors and 

faults is to be expected in any reasonably complex system; “there’s many a slip ‘twixt 

the cup and the lip”, as the saying goes.

Using a combination o f Norman’s (1981,1988) and Rasmussen’s (1983,1986) models, 

Reason (1990) offered an integration and slight elaboration on the above, with his 

generic error modelling system. He proposed that slips and lapses were likely to 

dominate in the domain o f expert, ‘skill-based’ behaviour. He also proposed that 

mistakes come in two varieties, depending upon the level o f behavioural control. In 

fully consciously-controlled behaviour, the ‘knowledge-based’ domain o f novice 

performance, mistakes o f information processing occur, such as the overloading of 

short-term memory, confirmation bias (e.g. Wason and Johnson-Laird, 1972) and the 

like. In  between these two endpoints, in the domain o f ‘rule-based’ behaviour, mistakes 

o f perception dominate, whereby otherwise efficacious chucks o f behaviour are 

inappropriately triggered when the situation is misclassified.

In the first example from the driving scenario related earlier, a rule-based mistake was 

made when the driver misperceived the traffic light and initiated a skilled behavioural 

sequence that would have been appropriate in other circumstances. In the second case, 

the traffic light was perceived correctly and the correct goal, to start driving, was 

selected, but the execution o f the skilled action was flawed.
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1.3 Performance Shaping Factors

There are a number o f factors which will influence the propensity o f  an individual for 

error. These are often termed Performance Shaping Factors (PSFs: Miller and Swain, 

1987) within the context o f HRA, and may be classified as either external (i.e. relating 

to characteristics o f the task environment) or internal (relating to characteristics o f the 

individual). Examples o f external PSFs are: work layout, environmental conditions, 

work design, training, job aids, and supervision. In  contrast, internal PSFs relate to the 

“...skills, abilities, and attitudes that the worker brings to the job” (Miller and Swain, 

1987, p.223).

In order to determine the influence o f PSFs upon task performance they must be 

considered within the context of broader models o f cognition. Although a 

comprehensive review is beyond the scope o f this thesis, I will briefly mention a few o f 

the most influential factors which are applied within this context

1.3.1 Attentional limitations

Since the late 1950’s, much research effort has been devoted to developing models of 

attentional limitations. Early work in this area focused upon attentional selectivity and 

was concerned with identifying ‘bottlenecks’ in the information processing system (e.g. 

Broadbent, 1958; Deutsch and Deutsch, 1963; Treisman, 1964). More recently, the 

ability to simultaneously process information has become the central focus and models 

which characterise attention as one (Kahneman, 1973; Moray, 1%7) or more (Wickens, 

1984) pool(s) o f resources which can be flexibly allocated to task performance have 

enjoyed much success in predicting task performance.

The implications for human error are that if task demands exceed attentional 

processing capacity error is more probable. This may lead to “mistakes o f bounded 

rationality” (Reason, 1987), which are reflected by simplified or incomplete planning of 

actions. Alternatively, “mistakes of reluctant rationality” may occur, as a result of 

individuals adopting task performance strategies which avoid novel thought (i.e. only 

considering a restricted problem space) in order to minimise ‘cognitive strain’ (Bruner, 

Goodnow, and Austin, 1956).
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1.3.2 Mental models of the task environment

An influential theoretical approach which relates to the mental representation o f the 

task environment is that o f the mental model (Gentner and Stevens, 1983; Johnson- 

Laird, 1983). Mental model theories postulates that for any given task environment an 

individual will inevitably form a mental model which is “...a rich and elaborate 

structure, reflecting the user’s understanding o f what a system contains, how it works, 

and why it works that way” (Carroll and Olson, 1988, p. 51). This will be used as the 

basis for predicting the outcome of future interactions with the task environment. A 

mental model may be incomplete or inaccurate, and as a consequence “mistakes o f 

imperfect rationality” may occur. These errors may be typified by “procedures that are 

too rule-bound, too rigid, and too conservative. Solutions to previous problems will 

continue to be applied and too little account will be taken of actual or potential 

change” (Reason, 1987, p. 18).

1.3.3 Individual differences

There are a number o f dimensions o f individual difference which will exert an 

influence upon task performance. These may relate to labile differences, such as mood 

or expertise, or to more stable differences, such as cognitive ability or personality (see 

van der Veer, 1989). Individual differences can be predicted to interact with the effects 

o f each of the frameworks o f cognition described above. For example, one o f the main 

factors which will determine the availability o f attentional resources is expertise. As 

individuals become more expert in task performance, so task performance becomes 

automated (see Schneider and Shiffnn, 1977) and attentional resource demands are 

reduced. This is analogous to the shift in performance level from Knowledge-based 

through to Skill-based as tasks become more practised and expertise is acquired. 

Similarly, expertise may reflect a more complete or more accurate mental model o f the 

task environment which will serve to reduce errors.

1.4 Summary

To summarise, errors are failures in goal-directed activity, with a multitude o f  potential 

causes depending upon the knowledge, skills and abilities o f the individual concerned. 

Errors often, but not always, introduce faults into the wider human-machine system,
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and faults may lead to failure of the system in some way. Often a crucial goal o f an SCS 

is seen as minimising error. Hopefully the preceding analysis has made it clear that, 

while this is desirable, the actual overriding goal should be that o f minimising system 

failures. To understand how this may be achieved first it is necessary to understand 

what the system is composed of and how it is coupled together — how errors may lead 

to faults, and how faults can lead to failures. This task is tackled in the following 

chapter.
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2 T ask  Analysis o f the Solid State Interlocking system

This chapter presents a task analysis o f the way in which software for a computer-

based railway control system is produced. The control system is called Solid-State

Interlocking (SSI), and its purpose is to allow safe and efficient movement o f trains

over a railway network. It will be described in more detail through the course o f this

chapter.

First, a process analysis (Piso, 1981) of the SSI system will be presented. This provides 

a description o f the ‘raw materials’ for later analyses to work upon (e.g. what elements 

constitute the system?). Second, a Hierarchical Task Analysis (HTA; Annett &

Duncan, 1967) will be shown, which decomposes the jobs that make up the activity of 

the SSI system.

2.1 Process analysis o f the Solid State Interlocking system

Piso (1981) proposed that a process analysis is a useful and necessary exercise to 

conduct before the more formal Hierarchical Task Analysis (HTA). This is because 

HTA represents data primarily about the goals and actions o f the human operators o f a 

system, without explicitly describing what else the system consists o f (e.g. software, 

hardware), its goals, how its components are arranged, the logic of its operation, and so 

on. The process analysis is intended to give the reader the necessary framework within 

which to view the subsequent task analyses.

2.1.1 Method

Piso (1981) suggests goals rather than methods should be used as a way to structure 

the analysis. The analysis should result in a description o f what the system does and 

how it does i t  As an extension of Piso’s method the process analysis is structured here 

in terms o f Edwards’ (1972) SHEL model: Software, Hardware, Environment and 

Liveware. This extra categorisation provides more structure to the data and facilitates 

integration of information from the Process- and more complex Hierarchical Task- 

Analysis.
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2.1.1.1 Sources of data for the process analysis

Piso (1981) suggests interviews with task experts as the sole source o f information for 

the process analysis. This investigation used approximately five hours o f interviews 

with four senior participants drawn from the two main industrial collaborators, but 

also task observations and task documentation. Documentary information was 

gathered from a number o f sources: ‘SSI 8500 - Design of SSI Signalling Schemes’ 

gives a broad overview o f railway signalling rationale and implementation; ‘SSI 8003 - 

Data Preparation Guide’ is the standard manual for the detailed design and coding of 

the SSI programming language. Both manuals are comprehensive in their coverage o f 

material, extending to over 100 pages each.

The primary focus o f this phase was not to examine the role o f human designer. 

Neither was it intended to be a comprehensive description o f the hardware and 

software components. For further details o f these systems the reader is referred to 

Cribbens (1987) and Leach (1991).

2.1.2 Results

2.1.2.1 System goals

A  railway network must satisfy two overriding goals:

1. It must be ‘live’, which means that it must allow trains to travel between points 

in the railway network. The more trains that can travel across the network at 

the same time, at higher speed and/or closer separation, the greater the volume 

o f traffic the network can handle and so the greater the ‘liveness’ o f  the system.

2. It must be safe. Trains must not be allowed to crash into one another or be 

derailed. Additionally, trackside workers and the general public must be 

protected or warned of approaching rail traffic when and where they are likely 

to come into conflict.

The way that the SSI system achieves the above conceptual goals is by satisfying a

set o f more concrete goals:
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3. The SSI system maintains a real-time model o f the state o f the specific railway 

network under its control. It receives and stores information about train 

positions and the status of trackside equipment, e.g. points and signals, as well 

as information regarding the commands to alter the system state issued by 

human signal workers.

4. Based upon the information from the real-time model, the SSI controls the 

status o f the trackside equipment under its command, allowing the system to 

only enter certain permissible states (designed to achieve 1 and 2, above).

Figure 2, below, shows a simplified railway signalling track diagram, with two main 

(horizontal) tracks connected by two short diagonal sections. Trains travel along the 

tracks from signal to signal. The SSI system must ensure that only safe train 

movements are allowed.

SI S3

s =  signal t =  track section p =  points

Figure 2: Schem atic of an  example rail network

As stated in goal 4., the SSI system must allow the railway network to enter only certain 

permissible states, and to stop it entering any others. It uses the information from die 

real-time model to feed into a control programme, which determines whether requests 

from human signallers or automatic timetabling software would put the system into an 

allowable or unallowable state. For example, a request to send two trains onto the same 

section o f track at the same time should be refused by the SSI, as they would be in 

danger o f crashing into one another.
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Figure 3, below, shows an example o f the “Geographic Data”, as the site-specific 

computer programme is called, that would control some o f the functionality o f the 

example rail network shown in Figure 2. It shows the conditions that must be fulfilled 

before Route 2 (R2) can be set, allowing trains to travel from Signal SI to Signal S7. 

This route involves a train starting on track section T2, moving onto track T3 and 

down across the points onto track T9, then on via T10, T11 and T12 to signal S7.

*QR2 R2 a

P l c r f , P 2 c n f  

U10-AB f , U3-BC f  

then R2 s

U3-CB1, U9-CA1, U1OBA1,

11-BA1 U12-BA1 

PI c r , P2 cn 

S2 clear bpull

Figure 3: Exam ple SSI Geographic D ata

This entails checking that the route is available (R2 a), e.g. not barred because o f 

maintenance; that the points are in the correct position, or it is safe to move them to 

the correct position, to allow the train to cross from T3 to T9 (PI e r f , P2 enf); and 

that other, conflicting routes are not already set, which is done by checking two 

opposing ‘sub-routes’ to ensure that they are free (U10-AB f, U3-BC f). I f  these checks 

are passed, then the route is set (R2 s); the individual sub-routes in Route 2 are locked’ 

(U3-CB1, U9-CA1, etc.); the points are moved to the correct position (PI cr, P2 cn); 

and the route entrance signal is checked to see if it is ‘clear’ to be changed to green (S2 

clear bpull). In the final line shown in Figure 3, signal S2 is commanded to change to 

green, an incorrect command as route R2 runs from signal SI. This error would be 

potentially disastrous, allowing two trains travelling in opposite directions onto the 

same section o f track.

/  Route label and availability 

/  Points test 

/  Opposing route(s) test 

/  Route setting 

/  Sub-route locking

/  Points controlling 

/  Signal clearing
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It is the programming, verification and validation process for this ‘geographic data’ that 

is the focus o f the present study. The SHEL model will be used to structure the 

various elements that combine to achieve the above goals o f the system.

2.1.2.2 Environment

The environments in which the system operates have an over-arching effect on the 

choices for how it should function. The commercial-economic environment will tend 

to value liveness over safety concerns. The social-legal environment will tend to value 

safety over liveness. This competition between goals may seem tenuously related to the 

question o f how the SSI system achieves goals 1 and 2; however, this tension is likely 

to have direct impact on the general approaches to control used by the system, and so 

the methods that can be adopted to ensure the railway’s functioning.

An example o f this was seen in the wake o f the 1988 Clapham rail disaster. I t  was 

claimed that Automatic Train Protection (ATP) systems, not in use at the time 

(although available), would have prevented the accident and 34 fatalities. ATP systems 

seek to keep a minimum separation distance between trains, as opposed to the current 

“absolute block” system which divides the rail network into sections which are only 

supposed to contain a single train at any one time. However, analyses which sought to 

enumerate the maximum amount of money a population (of rail users in this case) 

would be willing to pay to prevent each fatality revealed a maximum estimate o f 

around £2 million. ATP would have cost at least £15 million (per fatality) to install 

(Hope, 1992; Jones-Lee & Loomes, 1995.) and so it’s introduction, though promised 

by regulators, was dropped.

The economic and political climate has also forced radical organisational change onto 

the UK rail industry over the past few years. Now defunct, British Rail was a single, 

nationally-owned organisation responsible for all major aspects o f the rail service. It 

therefore had responsibility and control over both safety and liveness, and could 

strategically manage the tension between the two. The situation today, however, is 

much more organisationally complex. There are many and various for-profit 

companies that between them provide rail transportation in the U K  The way that this 

has been organised has meant that responsibility and control for safety goals and
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liveness goals do not lie wholly within the same organisation. Indeed, virtually any 

aspect o f the operation o f the rail network in the UK today relies upon the interaction 

o f many separate organisations, e.g. train operating companies, signalling companies, 

engineering companies, all with sub-contractors and suppliers. (This situation, 

however, is now changing again, with the demise o f Railtrack, the company that was 

previously in charge o f rail infrastructure.)

The physical environment o f the UK’s rail network is compact and dense. Although 

reduced in overall size in the last 50 years, in places (e.g. London, Crewe) the network 

is still one o f the densest in the world. This has meant that the SSI system must be 

complex and flexible enough to deal with the intricacy o f the rail network it must 

control

Regarding the physical environment in which SSI design work is conducted, it is 

carried out predominately in open-plan office-based environments. This means that 

designers have easy access to one another (and their expertise), but they also have only 

partial control over unwanted noise and distractions.

2.1.2.3 Hardware 

2.1.2A  SSI installation

The safety-critical processing of the ‘geographic data’ is carried out by three computer 

micro-processors. Each contains a validated generic control program and location- 

specific “geographic data” stored in Electronic Programmable Read-Only Memory 

(EPROM). The control programme, standard to all SSIs, interprets the geographic 

data. The geographic data is unique to each installation, however; each railway layout is 

as different as, say, the road layout in each town or city. This geographic data specifies 

information about the layout o f the rail network and also the logic o f the train 

movements that are, and are not, allowed. Each SSI processor maintains a real-time 

“map” o f the state o f the railway in Random Access Memory (RAM), including such 

information as the state o f each signal and set o f points.

Each SSI system contains three identical control processors which operate on a 

majority voting system. This is to guard against any one processor having control of
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the system should one o f the processors fail or have to be taken off-line for 

maintenance. This defends against mechanical failures and corrupted memory, but will 

not guard against incorrect geographic data, as the same version is loaded into each of 

the three processors.

2.1.2.4.1 The Design Workstation

The critical task o f writing and validating the geographical data for each installation is 

carried out using the ‘design workstation’ (DWS). The DWS comprises a workstation 

computer (with a display screen, keyboard and mouse), and an SSI simulator with two 

colour display terminals, each with a trackball controller. ‘Geographic data’, the SSI 

computer code, is written using the UNIX-like DWS computer, which offers text­

editing applications, compilers and so forth. The code can then be uploaded to the SSI 

simulator for testing. (The SSI simulator is essentially a cut-down SSI installation, with 

only one control processor instead o f three, as 100% availability is not critical during 

design.) The SSI simulator is fitted with RAM instead o f the usual EPROM  to allow 

quick loading o f newly written SSI code.

One o f the simulator display screens presents a representation o f the simulated state o f 

trackside components (e.g. points, signals). The other screen shows a signaller’s panel, 

which presents the controls and displays regarding the requesting and setting of routes 

and related functions.

2.1.2.5 Software

The most important non-physical elements o f the SSI system are the Standard 

Signalling Principles’ (SSPs) and the SSI geographic data ‘language’.

The SSPs embody the philosophy o f how the safety goals o f system operation are to 

be achieved. The philosophy o f‘absolute block’ signalling is in use in the U K  today, 

and has been for over 50 years. The basic tenet is that only one train is allowed into 

any one section o f track at a particular time. The entrance into each track section is 

guarded by a signal which operates in a similar way to a traffic light. A green light 

means the track section is clear and trains can enter, a red light means the section is
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occupied and the train must stop. That way if  a train were to break down the last signal 

passed by the train would be on red, barring the route to following trains.

The geographic data language is a proprietary programming language specific to SSI. It 

was developed to have similar concepts and operational logic to the electro-mechanical 

relay signalling systems it replaced, so allowing signalling engineers with expert 

knowledge and skills in die previous system to be able to convert efficiently to SSL 

Example SSI geographic data ‘code’ is shown in Figure 3; the similarity to generic, text- 

based programming languages is evident.

2.1.2.6 Liveware

The signalling engineers, at least those working for the firms participating in this 

project, were all male and from the UK ethnic majority. They tended to be from 

science and engineering educational backgrounds and all seemed familiar and 

competent with standard computer technology. They were heterogeneous with respect 

to their ages and levels o f SSI knowledge and experience, however.
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2.2 H ierarchical T ask  Analysis o f the Solid State In terlocking system

There is a wide range o f task analytic techniques which may be used to describe and 

evaluate human-machine and human-human systems, each with associated strengths 

and weaknesses (cf. Diaper, 1989; Kirwan and Ainsworth, 1992). Within the present 

context, a number o f varied, and potentially conflicting, demands were placed upon the 

task analytic process.

The task o f SSI data design incorporates a diverse range o f component elements. It 

was necessary that the task analytic method be capable o f describing this ‘macro* 

structure o f the design process, including the rules governing the overt behaviour o f 

the designer. However, it was also important that specific components o f the SSI data 

design process could be described in fine detail. In  order to meet these potentially 

conflicting requirements o f breadth and depth Hierarchical Task Analysis (HTA) was 

used.

HTA was originally specified in 1967 by Annett and Duncan at the University o f Hull 

and has since been developed and refined by other workers (e.g. Piso, 1981; Patrick, 

Spurgeon and Shepherd, 1985). There were a number o f reasons to believe that HTA 

would be the most appropriate technique to provide a description o f the SSI design 

process. HTA is a versatile and powerful tool which has been applied in areas as wide 

ranging as the allocation of automation within human-machine systems (Fewins, 

Mitchell and Williams, 1992), operational safety assessment (Rycraft, Brown and 

Leckey, 1992) and the development and planning o f training provision (Patrick et al, 

1985). It provides a logical, hierarchical breakdown process which enables tasks to be 

specified in great detail. However, unlike other potential analysis methods such as 

Task-Action Grammar (Payne & Green, 1986), it is not so formalised that it becomes 

unworkable for very large tasks (such as SSI design).

In  doing so, HTA focuses on the goals that the system is trying to achieve in terms o f 

the activities that the human must perform to attain those goals. Thus, the activities o f 

the human designer are linked direcdy to the systems requirements.
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2.2.1 The HTAprocess

HTA seeks to break down an overall system goal into a hierarchy o f sub-goals, 

together with die attendant plans and operations required to achieve them within task 

constraints. I t seems pertinent at this point to discuss exactly what these terms mean 

within HTA, before going on to describe the procedure adopted for the analysis.

The basic concepts used in HTA are:

•  Goals. HTA describes work activity in terms o f the goals that are to be achieved. 

Goals in this context are related to attaining desired states o f the system under 

control or supervision.

• Tasks. The task is the means o f achieving a goal. There may be a number o f 

different tasks that can achieve the same goal. Various constraints, such as time, 

availability o f resources (e.g. trained personnel), and habit will influence which 

specific task is selected on any given occasion.

•  O perations. Operations refer to units o f behaviour which must be carried out in 

order to carry out a task. They specify the lower level "action-information- 

feedback" loops that make up controlled activity. It is at this level that aspects o f 

performance difficulty can be assessed. For example, by examining whether the 

feedback from an operation is unambiguous.

• Plans. Plans refer to the circumstances under which various operations should be 

carried o u t It is as important knowing when to carry out an operation as knowing 

what exactly to do.

The HTA analyst takes an arbitrarily-selected overarching goal and decomposes it into 

several sub-goals. A plan for scheduling the sub-goals is also derived, so that together 

the sub-goals and plan can be considered equivalent to the superordinate goal. Each 

sub-goal then becomes a candidate for decomposition into further sub-goals or 

operations. This process o f decomposition could potentially continue adfinitum.
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Therefore, at some point the level o f detail o f description o f the sub-goals and 

operations involved must be assessed to see if  they are adequate. This decision is aided 

by the use o f a stopping rule. For instance, a common rule is the "PxC" rule. In  this 

case, the probability (P) that the operation would be carried out unsatisfactorily is 

multiplied by the cost (Q  to the system if  this occurs. I f  the product is low the analysis 

o f that particular branch o f the hierarchy is stopped, if  high, the analysis is continued to 

pinpoint the exact area o f difficulty. O ther stopping rules can be used and in this way 

the analysis can be tailored to the overall goal o f the research.

2.2.2 Method

2.2.2.1 Sources of data

There are a number o f ways in which data can be collected for HTA. Where available, 

documentation associated with the task, e.g. manuals or training information can 

provide detailed task specifications. Observation o f the task can be particularly useful 

for detecting task organisation and scheduling. Interviews with task experts, however, 

provide the most flexible form o f data collection, allowing the analysis to proceed as 

required at either the macro or micro level A combination o f methods can give a more 

accurate result than would be possible with just a single method. The current study 

employed interviewing as the major form o f data collection, supplemented by 

observation and documentation.

2.2.2.2 Participants

Nine signalling engineers, from GEC Alsthom Signalling Ltd., Westinghouse Signals 

Ltd and British Rail Engineering, took part in the analysis. All were male and between 

30 and 55 years o f age. The bulk of interviewing (seven out o f sixteen interviews) took 

place with the three most experienced engineers, all with over ten years o f signalling 

experience. Each interview took place in a quiet room away from the interviewee's 

normal work area and lasted between approximately one and three hours.

2.2.2.3 Procedure

Initially, a statement specifying the goal that the SSI designer (task-expert) must 

achieve was elicited. The task-expert was then asked to restate the goal in terms o f a 

number o f sub-goals or operations, together with a plan for carrying them o u t These
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sub-goals, if  performed according to the stated plan, should together be equivalent to 

the super-ordinate goal Sub-goals were then assessed to decide if  any o f them required 

re-description at a more detailed level. Any sub-goals that required re-description were 

then treated as the super-ordinate, and the task expert was asked again to re-describe 

them in terms o f a number o f sub-operations together with the plan for carrying them 

out. This process was iterated until all the relevant areas o f the hierarchy had been 

adequately described.

When considering the point at which the re-description should stop two principles 

were applied. The first was “PxC”, as related previously. In instances where there was a 

difference o f opinion between task experts when using the ‘TxC” rule an additional 

guiding principle was used. This concerned the degree to which task performance was 

concerned with skilled m otor or cognitive operations. W hen tasks were concerned only 

with fundamental skills, e.g. moving a mouse pointer or reading a manual, they were 

not considered priorities for re-description.

As the task analysis progressed a semi-structured interview schedule was used to ensure 

that all pertinent areas in terms o f the task analysis were covered. Areas o f questioning 

included: the information used by operators in decision making; the manner in which 

feedback about actions and general system state are conveyed to the operator, and; 

potential problems or errors. After the first interview subsequent participants were 

shown the current analysis at the start o f their interview. They were taken through it 

and asked to make comments, highlighting areas o f disagreement or which they 

thought required clarification. This confirmatory approach allowed the analysis to 

continue to a greater depth than would otherwise have been possible with the available . 

resources if  the whole analysis was repeated at each interview.

2.2.3 'Results

The hierarchical goal structure of the task o f “Producing a commissioned SSI scheme” 

(Goal 0) is rather large, and so is reproduced in full in Appendix A. To aid the 

following discussion the first two levels are shown in Figure 4.
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Figure 4: P artial H ierarchical T ask  A nalysis o f the Solid State Interlocking 

G eographical D ata design process.
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This HTA relates to the production o f a single SSL As can be seen, the overall goal can 

be subdivided into two second level subordinate goals, the first o f which comprises an 

office based design process using the design workstation (Goal 1), and the second 

relates to the installation, checking and final commissioning o f the SSI on-site (Goal 2).

Given the previously stated aims o f this research project, it is the former o f these two 

phases which is o f primary interest, and for this reason the level o f analytical detail is 

greater in this area o f the task. However, it should be noted that many areas o f the on­

site checking process repeat earlier office-based checking stages (Goals 1.4 and 1.5) and 

many on-site task components could be expanded by the inclusion o f some o f these, 

previously described, elements.

The plan associated with Goal 0, indicates simply that office-based preparation is 

followed by on-site installation. However, it should be noted that, as described in Plan 

1.2, errors in the on-site phase may require that the design process return to an earlier 

stage.

The first stage in the preparation o f SSI geographic data requires that the appropriate 

source materials be obtained, or produced if they are not already in existence. These 

materials include: a copy o f the operators requirements; the Standard Signalling 

Principles (SSPs); the Data Preparation Guide (a.k.a. SSI 8003); the scheme plan; a 

route list; and may also include control tables. Control tables are lists o f the formal 

properties required from the interlocking and are produced from an analysis o f the 

scheme plan. They are essential for the later checking and testing stages o f the design 

process, but the point at which they are produced may vary according to the 

complexity o f the scheme plan and the experience o f the signalling engineer. 

Experienced signalling engineers may prefer to work from primary sources o f 

information (i.e. the scheme plan) rather than introduce a secondary source (the 

control tables) at this point in the process which could merely propagate errors in the 

control tables. In  this case the control tables may only be prepared immediately prior 

to the formal checking o f the data. '
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Similarly, the preparation o f the TFM database (a computer file which records the 

allocation o f trackside equipment to parts o f the SSI system) is included as a 

subordinate o f Goal 1.1, as the contents are used in later stages o f the design process 

as ‘source information’. This decision is somewhat arbitrary, and it would also be 

reasonable to view the preparation o f this file as a subordinate o f Goal 1.2. However, 

the constraints o f the task are such that the TFM database must be prepared before the 

geographic data files are written.

The preparation o f the geographic data (Goal 1.2) requires that a number o f identity 

files (Goal 1.2.1), data files (Goal 1.2.3), and panel files (1.2.4) are written. In  addition 

the simulation screens must be prepared and co-ordinated (matched to the 

components o f the particular SSI).

Identity files define unique names which are used to represent the component 

elements o f the railway (signals, points, track circuits, etc.), or which reference bits in 

memory (‘flags’) which are used to retain information as to the state o f the railway (e.g. 

timing information).

Data files contain statements defining the logic which will be applied to the operation 

o f the railway. The IPT (input) and OPT (output) files control the input and output 

signals from the SSI processors. The FOP (Flag Operations) file is primarily concerned 

with dealing with the aforementioned ‘flags’ in memory that retain system state 

information for future processing.

As the system must maintain a real-time map o f the state o f the railway network the 

information contained in the above three data files is processed regulady (about every 

about half a second). The information contained in the MAP (defining the elements o f 

the railway, e.g. signals), PFM (which contain the logic for deciding if the Points are 

Free to Move to different positions), and PRR (Panel Route Requests, as set manually 

on the signaller’s screen or automatically by timetabling software) is only processed as 

required. Panel data files contain information relating to the signaller’s display screen.
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All o f these files may be produced using the DWS, which runs under a UNIX-like 

operating system. However, many o f the engineers dislike the file editing facilities 

which are afforded and opt to write files using a PC system, and port these files to the 

UNIX platform. File templates may be used to speed the more repetitive elements o f 

geographic data preparation. The data in these files may be regularly compiled in order 

to detect syntax errors.

As indicated by Plan 1.2 the sequence in which these sub-goals are performed broadly 

requires that the identity files be prepared first, followed by the preparation o f the 

simulation screens. The preparation o f the data files and panel files can then proceed in 

any order. The engineer may exercise some discretion over this sequence, choosing to 

write each file in stages, or to return to earlier stages in order to deal with complexities 

as they arise. Compilation o f the files may occur at any point in this process, but must 

be the last operation performed in the completion o f Goal 1.2.

The preparation o f geographic data is followed by a process known as ‘set to  run’

(Goal 1.3) in which the accuracy o f specific component elements o f the information 

contained in the data files is tested by the same design engineer who wrote them, on 

the SSI simulator. This takes the form o f an iterative process in which, as errors are 

detected, the operator will return to the appropriate subordinate o f Goal 1.2 in order to 

make the required corrections (see Plan 1). The tasks associated with this goal are in 

some respects similar to those associated with Goal 1.5 (Simulation test data). The 

main difference is in terms o f comprehensiveness; the set-to-run is less stringent, and 

requires only that points and routes can be set, and that signals can show a green light 

when required. However, it may be that, at the discretion o f the engineer, further 

testing is completed at this stage.

A new Central Interlocking Status Record (CISR) must be created before the data is 

passed on for checking. This provides version control for the data, and will follow the 

data as it goes through the checking and testing processes, providing a record o f 

corrections.
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Goal 1.4 takes the form o f an independent check o f the geographic data code. This is 

. performed by a different, and usually more experienced signalling engineer. A  paper 

copy o f each o f the files generated at Goal 1.2 is systematically checked against the 

source information (control tables and signalling plans) for faults. I f  faults are detected 

at this stage they are logged and, once the check is complete, details are returned to the 

engineers) who completed the initial preparation work, for correction.

The independent simulation test o f the data (Goal 1.5) is again conducted by a further 

one or two highly experienced signalling engineers. This stage o f the design process 

consists o f checking the working o f the SSI using simulation screens to represent 

signaller’s and trackside information. A  complex sequence o f testing is undertaken in 

which the SSI is examined in relation to both the correct operation o f the component 

elements o f the railway, and also the functional requirements o f the system.

The first stage o f this process involves a correspondence test (Goal 1.5.1), in which the 

components on the signaller’s and trackside displays are tested to see if  they are 

correctly bound together (e.g. moving a particular set o f points on the signaller’s screen 

should result in the trackside display showing the movement o f the same set o f points). 

It was reported that faults detected at this point are most frequently associated with the 

misallocation o f screen co-ordinates.

Correspondence testing is followed by ‘principles testing’ (Goal 1.5.2), in which the 

logic associated with the functioning o f the railway is examined. The use o f control 

tables is fundamental to this process. Faults are logged by the engineer, or engineers, 

performing the simulation test, and details are returned to the engineer who completed 

the initial preparation work (Goal 1.2) for correction.

Once these independent checking stages have been successfully completed the 

EPROMs are prepared (Goal 1.6). These chips contain a permanent record o f the data 

for installation on-site.

Chapter 2 : T ask A nalysis
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The on-site testing (Goal 2) has much in common with the simulation-testing stages 

previously described, as the on-site SSI is run in ‘simulation’ mode (Goal 2.1). As with 

the earlier simulation test, a correspondence test is the first subordinate goal (Goal 

2.1.1), and this requires that information on die signaller’s display corresponds to the 

state o f trackside equipment However, if  the intedocking is a replacement for a 

running system it may not be possible to incorporate the real trackside components in 

the testing process, for safety reasons associated with the concurrent running o f the 

railway. In  this case trackside simulations o f signals, points, etc. are used in order to 

verify the correct transmission o f information.

The on-site principles test (Goal 2.1.2) essentially covers the elements which could not 

be achieved by the office-based simulation test (Goal 1.5), and includes elements such 

as checking for lamp failures (Goal 2.1.2.1), timing problems (2.1.2.2), and complex 

cross boundary operations (2.1.2.3) where die SSI system must communicate with 

neighbouring railway areas.

The final commissioning o f the SSI (Goal 2.2) involves the completion o f the 

necessary paperwork, certifying the correct operation o f the scheme, and handing over 

to the operator.

2.2.4 Discussion

As stated earlier above, the aim o f this phase o f the project was to provide a descriptive 

framework upon which to base subsequent field- and laboratory w ork The primary 

areas o f interest will be the programming of the geographical data files (subgoals of 

1.2), ‘set to run’ (Goal 1.3), desktop checking (Goal 1.4), and simulation testing (Goal 

1.5). These components form the kernel o f the knowledge and skills required in 

designing and writing reliable SSI code. From now on, these tasks will together be 

referred-to as the SSI Data Preparation Process, or DPP.

Even regarding this circumscribed task domain there is still more detail available than 

the limits o f this thesis would allow full treatment of. W hat follows therefore is 

discussion o f a number o f important points which arose during the course o f HTA, 

some o f which are used to guide further investigations in later chapters.
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2.2.4.1 Staff allocation

The allocation o f individual members o f staff to the various elements o f the DPP is 

largely based upon experience. The least experienced design engineers are required to 

write the data files. Some o f these files are more difficult to program than others, for 

instance more experienced engineers may prepare the OPT and PRR files. More 

experienced engineers will also perform the desktop checking process, and the most 

experienced engineers will perform the simulation testing. Ideally this system o f staff 

allocation provides an opportunity for training to take place, with less experienced 

engineers learning from the errors which are detected by their more experienced . 

colleagues during the checking and testing phases.

There are a number o f implications o f this staff allocation policy with respect to the 

efficiency o f the DPP and the forthcoming error analysis in the next Chapter. First, 

although the D PP is time consuming, it must be recognised that this is in part due to 

training concerns. An opportunity is being provided for less experienced engineers to 

develop their skills, and, as a consequence, it is probable that more errors will be made 

in the stages o f the DPP where comparatively less experienced engineers are employed. 

Obviously, if this staff allocation policy were not adopted, the changed demands placed 

upon the experienced engineers and the suitability o f alternative training methods 

would need to be considered.

Second, if  the independence o f the checking and testing is to be maintained, this policy 

requires that any assistance given to the less experienced engineers in order to correct 

errors is not provided by the person performing the checking or testing. Allied to this, 

care must be taken that ‘in house’ conceptual errors are not propagated (cf. Cutler, 

1991).

Third, in these circumstances it will be difficult to determine whether a particular type 

o f error is resistant to detection at a particular stage o f the D PP because o f the type o f 

task demands, task environment, or because o f the level o f experience o f the engineer.
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2.2A.2 Automatic Data Preparation

A current area o f interest, which is strongly related to the issues above, concerns 

attempts which are being made to automate the DPP. Work has been undertaken at 

the University o f Warwick (Collyer and Wong, 1993), and is in progress in each o f the 

major organisations involved in SSI, to automate some or all o f the tasks involved in 

the DPP. Each o f these systems o f automation appears to differ from the others in 

significant respects. However, it is recognised that 100% automation o f the DPP is not 

currently realistic, and is perhaps undesirable (cf. Dennien and Needle, 1991), and that 

80-90% might be a more achievable figure. The remaining 10-20% would comprise the 

most complex elements o f the task and, as a consequence, time savings associated with 

automation may be o f the order o f 50%.

Information relating to the development o f ‘automatic data preparation* in each o f the 

collaborating organisations was subject to confidentiality agreements, and specific 

details cannot, therefore, be included in this thesis. However, a number o f potential 

problems arise from the change to partial automation o f the DPP.

The automated DPP will require fewer signalling engineers, but they will need to be 

highly skilled and capable o f dealing with the most complex task components. 

However, the opportunities to develop these skills on the simple parts o f the DPP will 

be reduced. As a consequence, it will become more difficult to  train engineers to the 

required level.

Allied to these changes in the role o f the design engineer, the automation o f the DPP 

may give rise to changes in the engineer’s mental model o f the system (see § 1.3.2) due 

to changes in the opportunities for information acquisition (Satchell, 1993). In  certain 

circumstances automation has also been found to give rise to ‘complacency* 

(Parasuraman, Molloy, and Singh, 1993), such that, for example, overconfidence in the 

automated processes may lead to comparatively simple errors being missed at the eady 

stages o f checking.

Given these developments, it may be that some elements o f the existing training 

process, which incorporates the ‘on-task’ incremental development o f expertise, will no
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longer be feasible and that new methods o f training must be investigated. One such 

possibility would be Computer-Assisted Instruction (CAI). CAI provides die 

opportunity to present material to trainees in a manner which can be tailored to the 

needs o f the individual. ‘Closed loop’ methods can be used in which new learning can 

be coached and tested through interaction with the computer application. Training 

engineers in the use o f the computer programming language elements o f the DPP 

could quite conceivably be accomplished in this way. In  a variety o f domains CAI has 

been found to provide efficiency gains in training, with reduced training costs resulting 

from a reduction in training time and reduced demand for expert assistance (Eberts 

and Brock, 1988). The systematic decomposition o f the SSI data design process which 

was achieved using HTA would lend itself to representation in a computer-based 

hypertext, and with some further elaboration o f the task components, this might be 

developed to form the basis o f a CAI training package.

2.2.43 Task Similarity and Diversity

The general structure o f the HTA hierarchical diagram can be used to compare 

different aspects o f the task being studied. For instance, the pattern o f the overall 

diagram and the specific goals within this pattern indicate the similarity o f the writing 

and checking tasks (Goals 1.2 and 1.4) compared to the set to run and testing tasks 

(Goals 1.3 and 1.5). Both pairs of goals share certain common elements within the pair 

that are diverse across pairs. For instance, the task environment (and perhaps mental 

models engendered by the task environment) is similar within pairs. When performing 

writing and checking the engineers are dealing with an abstract, symbolic 

representation o f the SSI system, consisting o f flags, sub-routes, and so on. When 

performing a “set-to-run” or functional testing the representation is very much more 

concrete, or analogue, where the engineer is dealing with actual railway concepts such 

as tracks and signals. This diversity in task environment will form a major part o f this 

thesis in later chapters, and will be discussed in more depth there (starting in § 6).
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Figure 4: Revised plan 1, for when checking (1.4) and testing (1.5) are 
carried out in  parallel.

2.2.4A 'Environmental influences

As discussed earlier, aspects o f the environment in which the system operates can 

influence the way in which tasks are performed. One such influence was noted in 

relation to the way that urgent work is carried out

Time pressure occasionally forces some checking and testing to be carried out in 

parallel, leading to a revised plan 1 (see Figure 4). This means that the version control 

for the data must be very tight, or unchecked data could be signed-off as safe by the 

tester. Normally, each new version o f the data is given a unique version number by the 

data writer (Central Interlocking Status Record; CISR). This number records how 

many cycles o f checking and testing the data has gone through, but not whether the 

latest version was generated because faults were found in a check or a te st I f  it was a 

test, then has that version o f the geographical data been checked as being error-free 

before? The danger point is shown by the dashed lozenge in Figure 4. I f  this decision is 

made incorrectly then unchecked data could be released into service. This problem is 

exacerbated by the contracting-out o f the checking or testing o f these ‘rush* jobs to 

other signalling firms, with an attendant increase in the difficulty o f version control
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2.2,5 Summary

The SSI DPP was revealed as a complex task involving multiple staff members. It can 

be characterised as collaborative software production, but with the extra requirement 

o f strict independence between processes to avoid the propagation o f design errors 

through the production process.

The SSI DPP consists o f three main tasks that operate two major processes that rest 

across two work ‘domains’. The tasks are writing, checking and testing. Regarding 

work processes, there is the distinction between generation (writing) and validation 

(checking/testing). Regarding the domains o f operation o f these processes, 

writing/checking involves the use o f computer programme code, and testing involves 

the use o f a simulator to directly interact with SSI system behaviour.

Although the SSI DPP is a collaborative process the channels o f communication 

between writer, checker and tester are strictly limited, occurring through formalised 

error/fault logs in an effort to allow only communication about the presence o f a 

perceived problem.

The process- and task-analyses provided essential information regarding ‘structural’ 

properties o f the SSI DPP. In the following chapter this will be supplemented by 

information on the dependability o f the tasks and processes thus described.
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3 E rror Analysis o f the Solid State Interlocking system  

The HTA provided a useful framework for the breakdown o f potential problem areas 

in the SSI DPP. As discussed previously, structural elements o f the hierarchical 

diagram can be used to show similarities and differences between tasks. However, 

these similarities do not necessarily equate to similarities in actual task performance. 

For example, although identified as similar by the HTA, performance in writing and 

checking may not be identical even given identical requirements, i.e. code that is 

difficult to write may be easy to check and vice versa. What HTA does not reveal is 

how all o f the variables that may affect task performance will actually combine to 

produce error.

This chapter, then, will focus on exacdy which errors and faults are observed in actual 

SSI DPP tasks. N ot only the individual tasks in isolation, but also the combination o f 

tasks that together make up the overall system needed to be assessed. The aim o f the 

error analysis chapter will be to describe the types o f faults which are generated, the 

stages within the design process at which they are most prevalent, and the likely causes 

for these faults, i.e. error.

Several complementary techniques were chosen for the error analysis. These were 

chosen partly on the basis o f availability, but also to give a broad range in terms o f the 

type o f data they would provide. They were for the most part based on techniques 

drawn from Human Reliability Assessment (HRA).

While the application o f Human Reliability Assessment (HRA) techniques may prove 

useful in the identification o f human error and the assessment o f relative error 

probabilities, as discussed earlier it is contended that the generation o f absolute Human 

Error Probabilities (HEPs) is not a worthwhile goal in this context. There are a 

number o f further reasons for this. The nature o f the SSI DPP task is such (complex 

information processing) that it is probable that many errors will be mistakes (rule- or 

knowledge-based errors). As discussed in § 1.2, it is a much more difficult proposition 

to quantify these errors on the basis o f just fault information than it is to quantify skill- 

based errors. Furthermore, with respect to the SSI DPP task, there are many features
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o f the task which are unique (e.g. the SSI ‘geographic data’ language). As a 

consequence the utility o f generalised HEPs, derived from human reliability databases 

will be limited. This is not to say, however, that HRA is not useful within this context 

W hat is at issue is the ability o f HRA to produce absolute estimates o f the probability 

o f human error. W hat is not at issue is the importance o f identifying the characteristics 

o f human error and its causes, in order that human reliability can be improved.

To investigate errors committed during the writing phase o f the DPP a number o f 

techniques were used. First, an SSI writer’s work sample test was devised, to provide 

some control over extraneous variables that may affect the production o f errors in 

actual task performance. Task observation with subsequent video walkthrough was 

also used to provide some measure o f errors made but subsequendy corrected by the 

writer himself.

The checking and testing phases o f the DPP task were investigated using logs o f actual 

faults found during the production o f finished SSI schemes.

Further to this, data relating to errors generated at each stage o f the SSI design task 

were gathered using structured interviews o f task experts and from existing 

documentation. Each o f these areas o f investigation will now be discussed.

3.1 Work sample o f the Data writing task

In order to make a more detailed assessment o f the errors which are made during the 

DPP writing task a work-based, controlled experiment was conducted in which SSI 

design engineers completed a work sample. This technique presented the opportunity 

to investigate error in a manner which was, like the purely observational work, 

ecologically valid, but which also controlled for some o f the extraneous and 

confounding factors present in a real work situation.

The specific task chosen was based upon the job content domain (e.g. Guion, 1988) o f 

the writer’s task as previously described in the HTA. The test content domain was 

selected in collaboration with the most senior SSI engineer available (who had 

participated in the development o f the SSI system during the 1980s). A previously
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completed set o f SSI code files (for an SSI currently in service) had sections removed 

and the participants’ task was to reinstate the missing code.

The primary aim for the work sample test was to provide some measure o f the type 

and number o f faults committed by writers while controlling for the complexity o f the 

work. The deleted sections o f code were chosen based upon Rasmussen’s (1983; 1986) 

model o f skill-, rule-, and knowledge-based control o f behaviour. First, the greatest 

part o f the task was selected from ‘run-of-the-mill’ code with which participants would 

be familiar, and which would be amenable to rule-based performance; Second, code 

was selected that controlled a function unique to the particular SSI scheme chosen, 

which would require participants to devise a novel solution, and therefore would 

require knowledge-based performance.

(It was decided that skill-based aspects o f the writing task could not be easily isolated 

and mapped to sections o f the SSI code in the way described above, because skill- 

based behaviour would underlie much if not all o f the work that would need to be 

performed in order to carry out the rule- and knowledge-based sections; for instance, 

reading manuals, working with the keyboard, operating the SSI workstation.)

The second goal o f this work was to gamer some measure o f the effect o f individual 

differences among SSI engineers on task performance. A number o f studies have 

found that variation in cognitive ability (particularly spatial ability) is associated with 

variation in performance across many computer-based tasks, e.g. word processing 

(Gomez, Egan & Bowers, 1986), information retrieval (Vicente, Hayes & WUliges, 

1987), and programming (Foreman, 1988). There is less clear evidence in favour o f the 

importance o f personality in computer-based tasks, although Podus (1991) conduded 

that introverts tended to be better programmers on average than did extroverts.

3.1.1 Method

3.1.1.1 Participants

Fifteen SSI engineers were recruited from two organisations (three sites in total). All 

were men aged between 20 and 46 years (Af =  32 years). (Although this is a small
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sample, fifteen engineers represents perhaps as many as a third o f the qualified 

participants working in the UK at the time o f data collection.)

3.1.1.2 Materials

To ensure veracity, production o f the work sample task was carried out by a highly 

experienced SSI engineer. The data files from an in-service SSI (Gerrard’s Cross) were 

specially prepared with sections missing. The incomplete code consisted o f 1006 lines 

in total, with the absent sections (which needed to be replaced) amounting to 124 lines. 

The code corresponding to rule-based performance consisted o f 120 lines; the 

remaining four lines corresponded to knowledge-based performance.

Participants were provided with all the usual supporting documentation for carrying 

out the SSI DPP (see § 2.1.2.5 for details). Task performance was video recorded with 

two VHS video cameras; one camera was focused upon the screen o f the Design 

Workstation and recorded interaction with the computer. The second camera was 

focused upon the surrounding desk area and recorded more general activities (e.g. 

breaks from work activity).

The same engineer who designed the work sample task produced the necessary 

materials and procedures to ensure the accurate scoring o f the participants’ solutions to 

the task. This consisted o f a copy o f the complete and correct SSI source code that 

formed the basis o f the task and a procedure to have the DWS produce a “difference 

file” that showed all the areas where the participants’ solutions differed from the 

original, correct version.

Prior to task performance participants completed a number o f measures o f individual 

difference. These included:

•  PREVUE (Bartram, 1994): This test provides data on four higher order*

personality factors: Independence; Conscientiousness; Extraversión; and Stability.

In addition, eight lower order’ factors (two for each o f the main factors) are 

measured.
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•  A battery o f cognitive ability measures drawn from the General Aptitude Test 

Battery (U.S. Departm ent of Labor, 1982). The specific tests were: Name 

Comparison (clerical perception); Three-Dimensional Space; Vocabulary, Tool 

Matching; and Arithmetic Reasoning.

•  The computer literacy subtest o f the Computer Aptitude, literacy, and Interest 

Profile (Poplin, Drew, and Gable, 1984). This is a 30 item test o f computer-related 

semantic knowledge.

• A questionnaire asking about previous education and SSI signalling experience.

In  addition, participants completed the UWIST Mood Adjective Checklist (UMACL: 

Matthews, Jones, & Chaimbedain, 1990) before and after task performance. This self- 

report measure produces a three factor solution to mood, comprising: energetic 

arousal; tense arousal, and; hedonic tone.

3.1.1.3 Procedure

The work sample test was conducted at the participant’s place o f work, in a room 

containing a DWS that had been set aside for the sole use o f the study. Participants 

first completed the set o f questionnaires described above. They then had a five minute 

break before commencing with the work sample task The work sample materials 

contained all o f the instructions necessary to complete the work sample te st 

Participants were asked to complete the task as quickly and accurately as they could. 

They were asked to repair the code to the point that they would normally complete an 

initial “set-to-run” (an informal simulation test o f the code to see if  it works, see § 2.2.3 

for more details).

3.1.2 Results and discussion

The timing and sequence data were prepared for analysis by viewing the video 

recordings and using purpose designed software which allowed the timing and 

sequence o f specific events to be logged by pressing marked computer keys. In 

particular, occasions when reference to documentation was made; time spent typing 

time spent writing notes and time on break, were recorded.
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At the end o f each test the participant’s SSI data file was compared to the correct 

version and a list o f differences was produced. These “difference files” were scored by 

the researchers with reference to standard SSI signalling manuals. The results o f this 

scoring procedure were reviewed by the senior signalling engineer who devised the test 

in the first place, and two changes were made to the scoring.

Faults were categorised according to the signalling principles which they violated and 

whether they were acts o f omission or commission. This categorisation was broadly 

determined upon the basis o f the HTA.

It was necessary to use different criteria when scoring the frequency o f faults relating 

to the rule- vs. knowledge-based task components. With respect to the rule-based task 

component, faults were recorded upon the basis o f the functional accuracy o f the code 

(i.e., according to the correctness o f individual functions). This avoided the problem of 

participants being penalised many times for one conceptual error. For instance, code 

must be written for every sub-route, specifying the conditions under which that sub­

route is released, and this code may consist o f many individual ‘words’. However, some 

participants overlooked a whole sub-route, resulting in the omission o f many items o f 

code even though they had probably committed only one ‘error’.

With respect to the knowledge-based component o f the work sample, errors were 

recorded upon the basis o f the accuracy o f individual “words” within the completed 

code. This was due to the fact that this part o f the code was short (four lines) and that 

each separate item fulfilled a specific function. That is, errors for each item o f code 

would not be confounded with those for other items o f code that were nearby in the 

file. This is not the case for the rule-based code, where, as discussed above, whole lines 

o f code may be highly related i.e. tightly coupled (cf. Perrow, 1984).

Owing to their inexperience two participants were unable to attempt the knowledge- 

based component o f this work sample; therefore their data were excluded from the 

analysis below, leaving N  = 13.

All tests o f statistical significance are two-tailed with (X = .05 unless otherwise stated.
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Table 1 shows task completion times. There was a large variation in the time taken to 

complete the work sample (the fastest participant took 5,005 seconds and the slowest 

took 17,781 seconds [almost five hours]).

T able 1: M eans and standard deviations 

com pletion tim e (s).

for com ponent and  to ta l task

T ask  com ponent C om pletion T im e

M  SD

Rule-based performance 

Knowledge-based performance

8,983 2,798 

1,120 453

Total completion time 10,103 3,013

There was also a large difference in the time taken to complete the rule- vs. knowledge- 

based aspects o f the task, with the rule-based performance taking on average more 

than eight times longer than the knowledge-based performance. However, if  the 

amount o f code written is taken into account, the rule-based work (120 lines) took on 

average 75 seconds per line, whereas the knowledge-based work (4 lines) took on 

average 280 seconds per line, or about four times as long per line.

Correlations betw een speed and accuracy were not significant, although there was a 

tendency for faster rule-based and knowledge-based performance to be associated with 

increased faults in these task components.

Table 2 presents descriptive statistics for fault performance. Again, there are sharp 

differences between performances at the rule- vs. knowledge-based levels. Rule-based 

work accounted for approximately twice the number o f faults as the knowledge-based 

task. However, again taking into account the size o f each section o f work, rule-based 

performance (120 lines o f code) led to 0.06 faults per line whereas knowledge-based 

performance (4 lines) led to 0.92 faults per line o f code, or about 15 times the number 

o f faults per line.

47



Chapter 3 : E rrorA -tiafysis

Correlations between speed and accuracy were not significant, although there was a 

tendency for faster rule-based and knowledge-based performance to be associated with 

increased faults in these task components.

T able 2: M eans and standard deviations for com ponent and to tal faults.

T ask  Com ponent Faults

M SD

Rule-based performance 7.15 4.06

Knowledge-based performance 3.69 1.84

Total 10.85 4.36

3.1.2.1 Fault categorisation

Table 3 shows a breakdown o f fault frequencies by signalling principle violated and. 

fault type, i.e. whether the fault was one o f omission or commission.

T able 3: B reakdow n o f faults by signalling principle violated  for the  data

w riting w ork sam ple

Signalling Principle Faults

O m ission Com m ission T otal

Rule-based task component

Identity and labelling 0 2 2

Route setting 17 14 31

Aspect control 25 6 31

Approach locking 7 26 33

Opposing locking ■ 4 1 5

Aspect sequence 3 3 6

Other 21 13 34

Sub total 77 65 142

Knowledge-based task component 

Siding occupation latch 32 16 48

Total 109 81 190
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Looking first at the rule-based performance data, the route-setting, aspect control, 

approach locking and ‘other’ categories accounted for the largest number o f faults. 

Acts o f omission and commission were roughly equally frequent, but acts o f omission 

were more prevalent in conjunction with aspect control faults, and acts o f commission 

were comparatively frequent with regard to approach locking faults.

Loglinear analysis o f rule-based performance showed a significant association between 

signalling principle violated and fault frequency (%2lr [6, N  =  142] = 81.93, p < .0001). 

There was no main effect o f fault type (omission /commission), but the interaction 

between signalling violation and fault type was significant (X2k [6, N  =  142] =  30.03, p 

< .0001). This is attributable to the relatively large number o f faults o f omission for 

Aspect Control, and the large number o f faults o f commission for Approach locking.

For the knowledge-based component o f the task faults o f omission were more 

frequent than those o f commission (%2 [1, N  = 48] = 5.33, p <  .05).

3.1.2.2 Common-mode error

It was found that a number o f the faults committed in the work sample test were made 

by more than one participant, and all o f these faults were found within the rule-based 

section o f the task. (In the knowledge-based code every participant made an error o f 

some sort, but the faults were not identical.) However, in the rule-based part o f the 

task there were eight specific faults that were made in identical fashion by more than 

one participant two which were made by three participants, two o f which were made 

by four participants and a further four which were made by more than half o f the 

sample. These latter four faults are considered to reflect common mode failure, as 

based upon these data they were more likely to be committed than n o t

Although, as noted earlier, determining common faults does not necessarily mean that 

a common mode psychological error has been identified, it is strongly suggestive o f a 

common process leading to error and this information nevertheless may be useful in 

identifying weaknesses in the design process.
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The four “common-mode” errors are described below.

• All participants made an ‘approach locking’ fault relating to SSI timing routines. 

According to the signalling manual a track circuit should have been occupied by a 

train for more than five seconds in order to prove that the train was definitely in 

the particular section o f track. However, due to SSI timing limitations it is 

necessary to allow a two second margin for timing error, if  this is a significant 

proportion o f the timed interval. Consequently, the timing check in the data should 

have been for a period o f seven seconds. All participants put down a timing period 

o f five seconds.

•  Eleven participants made an ‘aspect control’ fault concerning unconditional lamp 

proving. M ost signals have an extra circuit that shows the signal controller if it is 

alight, and the SSI programme will only use the signal conditional upon this circuit 

being operational. Some non-critical signals, however, do not have the extra circuit 

and must be set to light “unconditionally” . The 11 participants instead wrote the 

default code.

• Nine participants made an ‘aspect control’ fault relating to a siding which required 

last wheel replacement. Usually, a signal should turn red after the first axle o f the 

train has passed i t  However, for trains shunting into a siding backwards this would 

result in the driver (now at the back o f the train) being shown a red light while still 

moving past the signal For siding signals, then, the signal should turn red after the 

last wheel o f the train has passed. These participants failed to include the necessary 

code to achieve this.

•  Seven participants made an ‘other’ fault relating to clearing the automatic working 

function o f a signal. Usually, signals are set to allow operation by automatic 

timetabling software as well as signallers, but sometimes (as here) this ftmctioning 

must be turned off. Code which should have been included in order to cancel the 

automatic working o f the signal was missed o u t

There was no significant association between the occurrence o f these faults and the 

data collection site, i.e. the faults did not appear to be site or company specific.
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These common-mode errors all seemed to represent situations where habitual 

behaviour (i.e. writing default, standard code) occurred instead o f the more appropriate 

but less common behaviour. This has been termed variously “Einstellung” (“mind­

set”; Luchins, 1950) and “strong-but-wrong” habit intrusions (e.g. Norman, 1988; 

Reason 1990).

3.1.2.3 The effects of cognitive ability

Table 4 presents descriptive statistics for measures o f cognitive ability, along with 

normative data collected from a stratified sample o f 4000 o f the U.S. working 

population at the time o f the development o f these tests (US Departm ent o f Labor, 

1982).

T able 4: M eans and standard  deviations for cognitive ability: W ork sam ple 

and norm ative sam ple.

Cognitive Ability W ork sam ple N orm ative sam ple

(n =  13) (n = 4000)

M ean SD M ean SD

Clerical perception 60.23 10.60 46.68 17.89

3-D spatial ability 25.54 6.45 15.80 6.10

Vocabulary 29.92 7.26 20.14 10.23

Tool matching 29.46 4.59 30.72 7.41

Arithmetic reasoning 13.92 2.63 11.02 4.24

As can be seen, the present sample is o f comparatively high spatial ability and clerical 

perception ability. In addition, the mean aptitude score on a measure o f fluid 

intelligence (derived from a composite o f scores upon the three-dimensional spatial 

ability, vocabulary, and arithmetic reasoning tests) was 123.33 (SD — 13.99) indicating 

that the sample was also o f comparatively high fluid intelligence (normative 

parameters: ft = 100; CT =  20)
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A series o f correlations were uséd to examine the effects o f cognitive ability in relation 

to data preparation performance. The only significant correlation was between three- 

dimensional spatial ability scores and completion times for the knowledge-based task 

component (r[13] =  -.65, p  <  .05), with high spatial ability individuals performing more 

quickly than low spatial ability individuals. There was a non-significant tendency for 

fluid intelligence to be associated with both quicker (r[13] =  -.38) and more accurate 

(r[13] =  -.49) performance upon the knowledge-based task com ponent

3.1.2.4 The effects of personality

Table 5 presents the STEN scores for each o f the main PREVUE personality test 

scales. As can be seen, the present sample was within the central range for each o f 

these factors, although the mean for the Extraversión scale was significantly less than 

the reference population (t[13] = 2.93, p  <  .05). The effect o f each o f the main and 

minor factors was considered in relation to performance upon the work sample

Table 5: STEN scores for PREVUE scales

Personality Scale STEN

Mean SD

Independence 5.69 1.75

Conscientiousness 5.54 1.76

Extraversión 3.92 1.63

Stability 4.92 1.55

There was significant correlation between the minor scale II (tough minded, 

competitive) and rule-based completion time (r [13] = -.53, p <  .05), and with total 

completion time (r [13] =  -.57, p < .05), although the trend for 12 (forthright, assertive) 

was in the opposite (positive) direction. The correlation between stability (major factor) , 

and total number o f errors just failed to reach significance (r [13] =  -.55, p = .051). 

However, this association was significant (r [13] = -.65, p <  .05) for SI (unruffled, not 

easy to upset or annoy). SI was also significantly correlated with knowledge-based 

errors (r [13] =  -.56, p < .05). In all these cases, high stability was associated with less 

error-prone performance. I t may be that these results can in some degree be attributed
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to the experimental situation, with competitive individuals performing more quickly, 

and stable, unruffled individuals performing more accurately. However, there is some 

previous research evidence to suggest that stability may be associated with reduced 

errors when performing an inspection task (Hsu & Chan, 1995).

E l (sociable, outgoing) was significantly correlated with knowledge-based performance 

(r [13] = .56, p < .05), such that high extraversión was associated with slower 

performance. Extraversión (combined) was also associated with knowledge-based 

errors (r [13] = .70, p <  .01) with high extraversión being associated with more error- 

prone performance. Once again this appeared to be primarily attributable to E l (r [13] 

= .81, p  < .001), rather than E2 (group dependent). This result is consistent with 

previous research which has examined personality differences in relation to computer 

programming tasks, in which introversion has also been associated with better 

performance (see Westerman, 1993, for a review).

3.1.2.5 The effects o f mood

A series o f t-tests revealed no significant differences in pre- vs. post-task mood 

measures. Mood scores were therefore taken as an average o f these measures.

There was a significant association between general arousal and rule-based completion 

time (r [13] =  .54, p <  .05), and the association with knowledge-based completion time 

just failed to reach significance for both general arousal (r [13] = .47, p >  .05) and 

energetic arousal (r [13] =.48, p > .05). Surprisingly, in all cases the nature o f this 

association was such that high arousal was associated with slower performance. It may 

be that these correlations are indicative o f an association between arousal and 

conscientious task performance, such that participants who reported high energetic 

arousal took longer in an effort to minimise errors. However, the only significant 

correlation with the number o f errors made was between tense arousal and total errors, 

such that high tense arousal was associated with fewer errors (r [13] =  -.59, p < .05). 

Further analysis suggested that this effect is attributable to pre-task tense arousal (r [13] 

=  -.66, p < .05) as opposed to post-task tense arousal (r [13] = -.20, p >  .05).
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3.1.2.6 The effects of experience

There was a non-significant trend for the amount o f SSI data preparation experience to 

be associated with rule-based (r [15] =  -.50, p =  .058), knowledge-based (r [13] =  -.48, 

p  =  .092), and total (r [13] =  -.35, p >'.10) completion times. Data preparation 

experience was significantly associated with rule-based (r [15] =  -.67, p <  .01), and total 

(r [15] =  -.60, p <  .05) errors, with participants with greater experience committing 

fewer faults.

3.1.3 Summary

In  most respects the results from the work sample test were in agreement with 

previous research. Looking at individual differences first, good performance (quick, 

accurate) was associated with greater experience, higher spatial ability and greater 

emotional stability. Given the restricted ranges o f many o f the variables and the small 

sample size o f the study these results are encouraging if  unsurprising.

To a certain extent the results are similarly predictable for the differences between rule- 

and knowledge-based performance. Knowledge-based performance is both slower and 

more error prone than is rule-based performance, as is commonly found (e.g. Reason, 

1990).

However, it was the opposite state o f affairs when looking at common-mode error. 

Although errors are relatively less likely in rule-based vs. knowledge-based 

performance, when they do occur they are likely to manifest themselves in a much 

smaller set o f possible faults than would be likely for knowledge-based errors. In 

addition, the faults generated during rule-based performance are also more likely to 

resemble correct performance than those at the knowledge-based level. In  short, it 

seems that although rule-based errors are overall less likely to occur, when they do 

occur they are more likely to look like instances o f correct performance than are 

knowledge-based errors.

This has major implications for the way in which common-mode errors are detected.

In domains such as statistical problem solving (Allwood, 1984) and computer database
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use (Rizzo, Bagnara &Visciola, 1987) it has been found that participants engaged in 

three main types o f behaviour when detecting and correcting their errors:

•  Direct error hypothesis behaviour. This is behaviour directly focused on a real or 

suspected fault o f known type and location.

• Error suspicious behaviour. Although no actual or suspected fault had been 

identified, procedures adopted did not lead to the expected conclusion.

• Standard check behaviour. In contrast to the above two behaviours, standard 

checks are not dependent on task feedback, and merely reflect the good 

practice of reviewing and checking work as it progresses.

Direct error hypothesis behaviour has been found most often in skill-based slips and 

lapses, where the quality o f feedback from an action is good, often showing 

immediately that an error has been made. Error suspicious behaviour is observed more 

in the detection of Rule- and Knowledge-based mistakes, where the coupling o f errors 

and outcomes is less immediate and potent However, in the case o f the work sample, 

because the common-mode errors were so similar to contextually appropriate correct 

performance, and because feedback from the task was poor, error suspicious 

behaviour was not triggered. It is not clear from these data whether participants carried 

out standard checks and failed to detect these errors, or whether they simply did not 

carry out standard checks (perhaps because o f the time pressure imposed by the work 

sample situation). However, it seems unlikely that standard check behaviour would 

routinely detect the highly situationally appropriate faults such as the common mode 

errors observed in the work-sample test

The work sample test has shown that intelligent, experienced and motivated engineers 

are, like anyone else, prone to error. Some o f the faults observed seem attributable to 

lack o f knowledge or simple slips, say, and could be expected to be readily Visible’. 

However, some o f the faults do not seem to be the product o f idiosyncratic factors but 

instead seem to be predictable based upon the status o f the task as “exception 

handling”. Based upon their prevalence it seems unlikely that these errors would be
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quite so Visible’ in the data writing stage of the DPP and their eradication would 

therefore depend upon the veracity o f subsequent task stages. These will be evaluated 

next.

56



Chapter 3 : E rror A nalysis

3.2 Error /  fault logs

Currently, as a routine part o f the DPP, data on faults found at the checking and 

testing stages (goals 1.4 and 1.5) are produced in the form o f ‘error* logs. This section 

presents an analysis o f all the fault data contained in these logs which were made 

available by the participating organisations. These logs will from this point on be 

referred to as “fault logs’* to preserve the usual distinction between an error (a 

psychological process) and a fault (an observable flaw in a system).

The main purpose o f the fault logs is to communicate the presence o f known or 

suspected faults in the SSI code from the checker or tester to the writer, so that the SSI 

code can be fixed. To preserve the independence of these stages of the DPP the 

information in the logs is necessarily brief. The writer is given broad details o f the fault, 

such as its location in the code or its manifestation in testing behaviour, but no 

guidance is given as to the necessary remedial actions. Although this practice is 

valuable within the immediate context o f the DPP, providing some degree o f safeguard 

against the propagation o f common-mode error, it means that the amount o f 

information available for analysis is limited.

Furthermore, there is much between-organisation (and even between-site) variation in 

the form which these fault logs take, particularly with respect to checking logs. An 

additional caveat is that the fault logs refer only to problems found in the office-based 

DPP, not to on-site testing and post commissioning errors (if any). Unfortunately, no 

data o f this nature were made available. That said, the fault logs do document actual 

errors made during the DPP, and therefore have intrinsic validity.

3.2.1 Method

Fault logs were gathered from seven organisations (including sub-contractors), across 

nine sites and relate to 12 different SSIs. Faults were initially categorised by two raters 

working together according to die signalling principles violated (as for the work 

sample). A small number o f the fault log categorisations (about 5%) were checked with
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professional SSI engineers and revealed no instances o f disagreement over die error 

categorisation.

Limited data were available with respect .to the effects o f scheme complexity, and the 

iterative design process, i.e. how many cycles of writing, checking and testing the SSI 

geographical data had been through.

It should be noted that there are a number o f reasons why it is not possible to use 

these data to make quantitative comparisons o f the relative efficacy of the checking or 

testing stages o f the DPP. First, as mentioned, fault data were gathered from a number 

o f different schemes and the checking and testing data are not completely matched. 

Second, if faults are detected at the checking stage it will obviously not be possible to 

detect them at the testing stage, and consequendy there is no means o f estimating the 

efficacy of the testing process in detecting them. Third, there are no data relating to the 

number o f faults that were initially present in the data. Finally, there were no data 

available relating to faults detected at, or following, the ‘on-site testing’ phase of the 

DPP. Once again, this makes the appraisal o f the efficiency of the testing stage 

problematic. Nevertheless, given these qualifications, a qualitative appraisal o f the 

relative error frequencies nevertheless provides useful information on factors possibly 

affecting the reliability o f the DPP.

3.2.2 Results and discussion

A breakdown o f 1021 faults logged at the checking or testing stages o f the DPP by 

signalling principle contravened is presented in Table 6.

The precise meaning of the various signalling principle categories in Table 6 will not be 

discussed much here, because to do so would require a significant detour into railway 

signalling lore (for those really interested, Hall, 1992 provides a good introduction). For 

the purposes o f this thesis the various categories can be thought o f as similar to various 

categories o f law-breaking, perhaps, for which two systems of detection (checking and 

testing) are being compared. The law-breaking example might bring to mind an 

objection to this approach, because different types o f lawlessness vary in their 

‘seriousness’, and so surely different faults categories vary in their importance too.
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However, as argued by Broomfield and Chung (1995), there is no established 

technique for mapping software faults on to system hazards anyway. (Stated a good 

few years earlier by Benjamin Franklin (ini 757); “A little neglect may breed great 

mischief; for want o f a nail, the shoe was lost, for want o f  a shoe the horse was lost..”.)

Table 6: N um ber o f faults logged during checking and  testing by 

signalling principle contravened.

Signalling Principle Checking Testing Log O R

Identity and labelling errors 44 36 .00

Route setting 104 150 -.70

Signal aspect control 48 76 -.66

Approach locking 32 41 -.44

Opposing locking 27 64 -1.13

Aspect sequence 16 11 .42

Other 175 32 1.83

Sub total 446 410 -.45

None ( no fault, false alarm) 102 63 .45

Total 548 473

Note: OR = odds ratio

So, the signalling principles violated will have for now to serve merely as a mechanism 

for comparing the relative efficacy of checking and testing fault detection performance. 

To aid interpretation the log odds ratio o f faults detected by checking and testing in 

each category is given. This provides a symmetrical index of the relative efficacy with 

which checking and testing detect faults o f the various types. The more positive the log 

odds ratio, the greater the number o f faults detected at the checking stage in relation to 

the number detected at the testing stage, and vice versa for negative values.

Identity and labelling faults (the misnaming o f data and screen objects) had a log OR 

of zero, indicating parity in performance between checking and testing. However, it
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should be noted that in the case o f testing these faults relate solely to the simulation 

screen (i.e. all other naming faults appear to be detected at the checking stage).

Route setting was the category which accounted for the greatest percentage o f faults, 

and like all o f the other categories bar ‘aspect sequence’ and ‘other*, the log OR was 

negative, indicating superior fault detection by testing.

The difference between checking and testing performance was greatest for faults in the 

‘other’ category. These are faults which did not obviously fall into any of the previously 

defined categories. Problems in the layout of the SSI code accounted for the biggest 

single sub-category o f ‘other* faults detected during checking (23.43%). Although this 

type o f fault, which cannot be detected during testing, is not considered a safety-critical 

feature of the code, it is likely nonetheless to contribute to the efficiency o f the design 

process, determining the speed and accuracy with which data can be checked, and the 

ease with which subsequent reworking can be done.

With respect to ‘other’ faults detected at testing, the highest percentage was accounted 

for by control-table flaws (43.75%). Although these data suggest that these faults are 

not easily detected during the checking phase o f the DPP it should be noted that the 

faults included in this analysis relate only to instances where the control tables were 

demonstrated to have been in error, which is most easily done during testing. There 

were also an additional 36 faults reported at the checking stage (not included in the 

present analysis) for which there was no evidence available to indicate whether the 

control tables were in fact inaccurate. Nevertheless, it may be that testers have a better 

overview o f the functionality of the system by virtue o f training, experience, or task 

environment

The fault category in which testing outperformed checking by the greatest margin was 

in ‘opposing locking*. A further breakdown o f these data revealed that, o f those fault 

reports where sufficient detail was available to make an assessment, an important 

factor was whether the opposing locking code involved the use o f  code-constructs 

called ‘sub-routes’. Sub-routes are used to specify the direction a train will take over a 

section of track, which is important when deciding if a set o f points needs to be locked
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in place if a train is about to travel over them (the train will derail if the points are 

moved under it). The difficulty in working with sub-routes will be addressed in § 5.

A high percentage (16%) o f all faults logged were false alarms (i.e., a fault was reported 

where in fact none existed). Although there are undoubtedly safety-related advantages 

associated with the use o f a lax response criterion (the preparedness o f  the checker or 

tester to signal a problem), these false alarms will inevitably reduce the efficiency of the 

DPP because the data preparer must prepare a response to each fault logged. A further 

breakdown o f these false alarms revealed that, o f those occurring during checking, a 

high percentage resulted from either: a) functions which were required but dealt with 

elsewhere in the code (12.7%), or; b) particular scheme-specific requirements (23.53%). 

O f those false-alarms occurring during testing, scheme specific requirements also 

accounted for the largest percentage o f false alarms (20.63%). “Scheme specific 

requirements” is another way of saying that these are instances o f  exceptions to the 

normal specifications.

3.2.2.1 The iterative process of fault detection

Limited amounts o f data were available relating to the stages at which faults were 

logged during the developmental life-cycle o f individual SSIs. Table 7 presents data 

relating to a single scheme for three consecutive data checks followed by a test (There 

were four checks, but by definition the final one detected no faults.)

As can be seen, by far the largest proportion o f faults (84.40%) was detected during the 

first check One fault in the ‘other’ category, relating to the layout o f the code, was 

detected at the first check, remained uncorrected, and was detected again at the second 

check. All o f the other faults found on the first and subsequent checks were fixed 

following their first report, therefore 16 unique faults ‘survived’ the initial check, 12 

passed the second check, and 10 faults made it all the way through the checking 

process (i.e. those 10 detected at testing). O f note is the single ‘opposing-locking’ fault 

that survived the first check The overall number o f ‘opposing-locking’ faults was very 

low, only three in total, yet one o f them passed initially undetected. Although only one 

datum, this fits with the earlier finding, that opposing-locking code is difficult to check
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Table 7: N um ber o f faults logged across three checking and one testing 

i stage by signalling principle contravened

Signalling Principle Checking cycle 

1 2  3

Testing

Identity and labelling errors 15 2 0 3

Route setting (general) 9 0 0 0

Signal aspect control 6 0 0 1

Approach locking 5 0 0 0
Opposing locking 2 1 0 0

Aspect sequence 3 0 0 1

Other 52 2 2 5

Subtotal 92 5 2 10

None (no fault, false alarm) 2 0 0 6
Total 94 5 2 16

Table 8: N um ber o f faults logged across four checking stages by signalling 

principle contravened

Signalling Principle Checking cycle

Ï 2 T
Identity and labelling errors 0 0 2 3
Route setting (general) 22 1 2 0
Signal aspect control 2 0 1 0
Approach locking 1 0 1 0
Opposing locking . 3 0 0 0
Aspect sequence 1 0 1 0
Other 24 2 1 4
Sub total 53 3 8 7

None (no fault, false alarm) 17 4 4 0
Total 70 7 12 7
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Table 8 presents the data relating to four sequential data checks on the same code. 

Once again a large proportion of faults (74.65%) was detected during the first check. 

O f the faults detected at later checks, identity and labelling faults accounted for 

27.78%. Non-standard requirements also accounted for two faults detected at the third 

check. O f the ‘other’ faults detected at the fourth check, three o f these related to 

‘cosmetic data changes’.

32.2.2 Scheme complexity

In order to examine the effects of work complexity on fault detection, the faults 

detected at the first check and first test were examined for SSI schemes comprising less 

than 30 routes (three schemes with 14,17, and 19 routes, respectively), and more than 

30 routes (three schemes with 32,33, and 75 routes). As above, only a brief qualitative 

examination o f the data is presented, as data relating to checking and testing do not 

necessarily relate to the same schemes. O f particular concern in this respect is the small 

quantity of testing data for simple schemes.

Table 9: N um ber o f faults logged at the checking and testing stages o f the 

data preparation process for schem es w ith less than  30 routes.

Signalling Principle Design Stage 

Checking Testing

Total

Identity and labelling 23 3 26

Route setting (general) 57 1 58

Signal aspect control 23 4 27

Approach locking 14 3 17

Opposing locking 19 0 19

Aspect sequence 11 0 11

Other 106 8 114

Sub total 253 19 272

None (no fault, false alarm) 19 6 25

Total 272 25 299
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As can be seen from Table 9 and Table 10, the greatest percentage o f faults detected 

for simple schemes were ‘other* faults (41.91%), whereas ‘route setting* faults 

accounted for the greatest percentage o f faults detected in the more complex schemes 

(39.31%) and ‘other ‘faults accounted for only 9.20%.

Table 10: N um ber of faults logged at the checking and testing stages of 

the data preparation process for schem es w ith m ore than  30 routes

Signalling Principle Design Stage 

Checking Testing

Total

Identity and labelling 4 33 37

Route setting (general) 24 147 171

Signal aspect control 4 67 71

Approach locking 1 36 37

Opposing locking 3 64 67

Aspect sequence 2 10 12

Other 23 17 40

Sub total 61 374 435

None (no fault, false alarm) 43 52 95

Total 104 426 530

False alarms accounted for only 8.36% of those faults reported for simple schemes, 

whereas this percentage was 17.92% for the more complex schemes. It is possible that 

this is attributable to design engineers adopting a more lax response criterion as 

complexity increases. '

An examination o f the proportion o f faults detected at the checking vs. testing stages 

of the DPP for schemes o f differing complexity suggest that checking is less efficient 

at detecting all types of faults when scheme complexity is increased. However, it is 

worth noting that the checking process apparently detected all ‘opposing locking* and 

‘aspect sequence’ faults in simple schemes.
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3.3 Video recording task  performance

The preceding analyses were concerned with identifying faults generated by a data 

writer which remained undetected at that time, requiring detection at a subsequent 

stage of the DPP. However, it is highly likely that during each of the design phases a 

number o f errors (primarily slips) occur which are generally detected at that time (and 

are therefore not recorded) but which decrease the efficiency of the design process and 

are likely to be indicators of task difficulty. It may be that errors which are apparent 

with relatively low frequency when checking or testing a previous phase o f the DPP, in 

fact occur with high frequency, but the majority o f these occurrences are ‘self-detected’ 

(e.g. Rabbitt, 1978).

Investigating these errors, particularly within the context o f such a complex task, is 

difficult The use o f concurrent verbal protocols was considered as a possible method 

(see Ericsson and Simon, 1984). This technique requires that participants give a verbal 

commentary while performing their task. The advantages o f this include: high face 

validity; ease o f use in applied settings with minimal disruption, and; some access to the 

cognitive processes associated with task performance, which would not otherwise be 

readily accessible.

However, there are also a number o f associated drawbacks. With certain types o f 

cognitive performance (e.g. automatic processing or processing spatially encoded 

material) it may be that the mechanisms underlying performance are not readily 

available for conscious verbal report (Yang, 2003) Crucially, however, there is evidence 

to indicate that task performance whilst giving a concurrent verbal protocol may be 

faster (Berry and Broadbent, 1990) or less error prone (Wright and Converse, 1992) 

than normal task performance. This is obviously unacceptable in the context o f this 

research.

For this reason a variation on Rabbitt’s (1978) “caught in the act” or “oops” technique 

was used, coupled with elements from “video walkthroughs” (Diaper, 1989), described 

next
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3.3.1 Method

Task performance was video recorded in a similar manner to that described for the 

work sample (§ 3.1.1.3), with the exception of testing where one camera was focused 

upon the signalman’s screen and the other was focused upon the trackside screen. The 

observation comprised seven and a half hours o f writing, three hours o f checking, six 

and a quarter hours o f testing, and one and a half hours o f simulation screen design 

(strictly, a part o f the set-to-run task, but here included for its similarity to testing). 

Observations were all carried out at Westinghouse Signals* Chippenham site. Two 

participants were observed for date writing, three for testing, and one participant each 

for checking and simulation screen design.

Task performance took place in as natural a manner as possible, with participants only 

required to signal when they had detected that they had made, or had just stopped 

themselves making, an error (Rabbit, 1978). Depending upon the complexity o f the 

error, a brief description was given by the engineer at the time, or an explanation given 

following task performance whilst viewing a replay o f the video recording (Diaper,

1989). To try to reduce the likelihood o f faking a lack o f errors the observed 

participants were informed that their recording would be reviewed by another engineer 

at a later date (although this did not, in fact, occur).

3.3.2 Results and discussion

3.3.2.1 Writing

In total there were 30 errors signalled by the participants over a combined period o f 

seven and a half hours o f writing, or four per hour. O f these 17 were typographical 

errors and two related to wrong file locations. O f note were four slips which were 

identified as relating to opposing locking, three o f which related to specifying sub­

routes.

3.3.2.2 Checking

The checking phase o f the DPP was analysed for a period o f three hours. However, no 

errors were recorded during this time.
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3.3.2.3 Testing

Errors identified at the data testing phase of the DPP included: incorrect identification 

of ‘stations’ (areas) because o f the scrolling requirements o f the interface and poor 

labelling methods (this occurred twice), and; selection o f the wrong route to perform a 

test upon. In  total five errors were identified during six and a quarter hours o f testing, 

just under one per hour.

3.3.2.4 Simulation screen design

In one and a half hours o f  observing the process o f simulation screen design three 

errors were recorded (two per hour), all o f which were typographical errors.

3.3.3 Summary

Overall, few errors were self-detected by the SSI engineers as they performed their 

various tasks. Viewed very broadly, the number o f self-detected errors seemed to vary 

with the amount and type o f manual control input required o f the operator. Listing in 

descending order o f control input (and self-detected error rate): writing and simulation 

screen design both involve mouse and keyboard work; testing involves trackball use; 

while checking does not require any substantive control actions to be performed 

(turning a page, etc.).

It may be that this observational method o f analysis is only useful in recording errors in 

relation to overt actions, and not covert cognitive processes. “There is some 

evidence...that while people are good at catching their own errors o f action, they are 

much less good at catching their own errors o f thinking, decision making, and 

perception” (Senders and Moray, 1991, p.78).

3.4 Existing documentation and semi-structured interviews

As a means of validating the data reported above, and also to gather information 

relating to rare errors, additional information was gathered from existing 

documentation and the semi-structured interviews used for the HTA. The following 

are the main points to arise.
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3.4.1 Writing and I  or checking errors

A number o f specific errors, or potential sources o f error, were identified as being 

common to the processes o f writing and/or checking data. These included:

•  The copying o f information from one section of a file to another without 

making all the necessary alterations required for the new context

•  Insufficient information contained in comments making code hard to 

comprehend.

•  Data being laid out so that it is difficult to check the syntax (e.g. indicating 

more than one blank line by putting several full stop, line terminators, on one 

line).

•  Misinterpretation of sub-routs.

• Code duplication (which may lead to timing errors).

•  Interfaces to other, non-SSI, equipment

Further, at a more general level, it was reported that it is easier to check existing code 

for correctness rather than to determine whether necessary code are missing; and that 

writing errors tend to spring from unusual scheme requirements.

3.4.2 Testing errors

As stated earlier, no little evidence relating to faults detected at the on-site testing stage, 

that would reveal errors at the DPP testing stage, was made available. However, 

anecdotal evidence was obtained in interviews to indicate that faults do get past both 

the simulation and on-site testing stages, i.e. into service.

Generally it would seem that faults which are not detected by the simulation testing are 

concerned with: •

•  Cross boundaries functioning (where the SSI system in control o f  a section o f 

track must communicate with a neighbouring interlocking)

•  The interface with trackside equipment
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• Timing errors (where processing is not completed by the SSI modules in the 

allotted time)

•  Multiple route-setting.

Cross boundary faults may arise because o f poor communication between design 

teams (incorrectly identifying the allocation of functions to each other, for instance).

Some of the faults that are detected on-site, for instance certain trackside equipment 

and multiple route setting faults, cannot be replicated by the SSI simulator and 

therefore it is no surprise that these occasionally make it through to on-site testing. 

However, on occasion basic code faults are reported to come to light at this stage.

Finally, faults which have been detected in commissioned schemes (after on-site 

testing) tend to arise from either very complex code, where the fault is only Visible’ 

when multiple interdependent conditions are fulfilled, or cross- boundary conditions 

involving communication with non-SSI equipment

3.5 Conclusions

In drawing conclusions upon the basis of the data reported above, some qualifications 

should be noted. First, the number o f participants who could be recruited to the work 

sample was necessarily limited and conclusions drawn on the basis o f the correlational 

statistics must be tentative. Second, the fault log data are all that were available at the 

time, and the collection o f additional data, particularly from each iterative phase o f the 

DPP, would allow more confidence in conclusions. Finally, as mentioned above, only 

limited information relating to faults which are detected at the ‘on-site* testing phase, 

or following commissioning, was available. If  the reliability o f the testing process is to 

be properly evaluated then these data are essential. Without it, the conclusions that can 

be drawn relating to the reliability o f the testing process are somewhat limited.

3.5.1 Diversity in the Design Process

There are many beneficial features o f the DPP that seem to contribute to its reliability. 

The present arrangement o f checking and testing produces a good deal o f task 

diversity, as supported by several instances o f different types o f error being detected at
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different stages o f the design process. Although these errors were categorised earlier by 

signalling principle, it was also noted that it seems that checking is particularly good at 

detecting non-safety-critical function errors which relate to the ‘liveness’ o f the railway 

and the readability (reusability) of code. By comparison, testing is good at detecting 

errors which relate primarily to the safety o f the railway.

In contrast to task environment diversity, personnel diversity seemed to show the 

opposite trend, at least when it came to the writing task. In the writing work sample 

task a number of faults were made identically by experience and inexperienced staff 

from various different companies. In such instances o f ‘common mode’ failure, errors 

will be resistant detection within the DPP because design engineers, perhaps because 

of similar background, training, or ability, approach the task in a similar manner. It has 

been argued elsewhere (e.g. Westerman, Shtyane, Crawshaw, Hockey & Wyatt- 

Millington, 1995) that one solution to common mode human errors lies in cognitive 

diversity, such that individuals approach a checking or testing task utilising different 

cognitive models/strategies. The investigation o f diversity in the SSI DPP will form the 

bulk of the remainder of this thesis, from § 6 onwards.

3.5.2 Complexity

A  number of broad factors can be identified as making faults particularly resistant to 

detection during the DPP. As might be predicted, the complexity o f the code appears 

to be associated with the propensity for human error. If  the functionality required from 

the SSI is complex, this makes faults more difficult to detect This may be attributed to 

human attentional limitations which result in mistakes of ‘bounded rationality’ and 

‘imperfect rationality’ (see § 1.3.1).

In order to reduce these effects it is necessary to alter the ratio o f attentional demands 

(the requirements o f the task) to attentional resources (the capacities the design 

engineer brings to the task). This might be achieved by: a) recruiting design engineers 

who have greater cognitive abilities (increased attentional resource supply); b) 

employing training strategies, such that task performance requires fewer attentional 

resources (see Anderson, 1993), or; c) redesigning the task environment such that there 

is a reduced information processing load placed upon the design engineer.
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There are a number o f  ways in which redesigning the task environment could reduce 

attentional demands. First, by incorporating more task support information in the task 

environment (e.g. display based reasoning; Howes and Payne, 1990). This could take 

the form of checklists o f sequences of required actions, or potential errors (e.g., see 

Layton & Johnson, 1993); or the use of multiple windows, facilitating the performance 

of tasks which require cross checking of items from a number o f different sources (see 

Miyata and Norman, 1986). In order to gain some of the benefits associated with these 

techniques it may be worthwhile making the checking phase o f the DPP more o f a 

computer-based process than is currently the case.

Second, there are changes which can be made to the task environment which serve to 

make errors more ‘visible’ (see Norman, 1988). In order to facilitate this process 

computer-based display techniques may be used, such as the three-dimensional 

representation o f data functions or railway layouts, which assist the design engineer in 

Visualising’ the interplay o f variables in complex schemes.

However, the importance o f ‘context’ in this respect cannot be overstated. A model 

that has been successfully used to provide increased contextual information (see 

Vicente and Rasmussen, 1992) is the Abstraction Hierarchy (Rasmussen, 1986). This 

model is based upon the premise that any given engineering system (task environment) 

can be described in terms o f a number o f different levels o f abstraction. Lower levels 

o f the hierarchy are concerned with how certain system functions are implemented 

(the ‘nuts and bolts’ o f the system), whereas higher levels are concerned with why 

system functions are required. Within the SSI DPP, additional contextual support 

could be provided at the checking stage in the form o f ‘why* information; and at the 

testing stage in the form o f ‘how’ information. I t should be noted, however, that this 

approach may result in the checking and testing tasks becoming less diverse, and that 

although more errors may be detected as a result o f these changes the potential to 

avoid common mode errors may be reduced.

Novel or unusual requirements also appear to be an important factor in promoting 

error and making errors more resistant to detection. There is evidence to suggest that 

this may in part be attributable to design engineers making ‘mistakes o f reluctant
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rationality’; i.e., employing familiar performance strategies rather than engaging in the 

increased cognitive demand associated with calculating novel solutions (e.g. Reason, 

1990). With this in mind, it is worth noting that a high percentage o f the false alarms 

recorded at both checking and testing phases of the DPP were attributable to scheme 

specific requirements.

However, undoubtedly novel data requirements will also result in ‘mistakes of 

imperfect rationality’, such that the design engineer has an imperfect mental model of 

the task environment. An important improvement which could be implemented in this 

area concerns the ‘usability5 of support documentation. For example, the accessibility 

of documentation, the ease of search for target information, and the ease of updating 

documentation could all be improved by providing on-line, i.e. computer-based, 

documentation (Layton and Johnson, 1993). Further changes to reduce errors resulting 

from unusual data requirements may also include an increased use o f checklists, 

enforced cross-checks with increased functional redundancy, and the use of inspection 

teams (see Fagan, 1976; 1986). Each of these techniques serves to test the assumptions 

which are being applied by the design engineers to the task at hand. It can also be 

argued that improvements in the ratio of attentional demands to attentional resource 

supply, as described in the previous paragraph, will facilitate novel problem solving (see 

Ohlsson, 1984a, 1984b, 1985). Consequently, techniques such as data visualisation can 

also make an important contribution to the reduction o f these types o f errors.

Finally, limitations in the simulation equipment increase the difficulty o f the testing 

task, and make it impossible to test for some complex errors. Although some o f the 

changes which could usefully be implemented in this area are beyond the scope of the 

present investigation, a number of human factors issues can be identified. For example, 

scrolling requirements and labelling conventions have been found to cause orientation 

problems during testing (see § 3.3.2.3). A combination o f improved equipment 

specifications and the application of basic human factors principles could result in 

improvements in this respect.

It is worthy o f note that checking seemed to be particularly poor at detecting opposing 

locking faults, particularly those associated with the use o f ‘sub-routes’. The
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observation analysis reported above (see § 3.3) suggests that slips are frequent when 

writing opposing locking, data, although given the relative frequency o f these faults it 

would appear that most are self-detected.

3.5.3 Automatic Data Preparation

Given the type o f errors which are resistant to the DPP process, i.e. errors which relate 

to complex and/or unusual data, it seems unlikely that Automatic Data Preparation 

(ADP) will have a substantial positive effect upon (i.e. reduce) the probabilities o f these 

errors occurring. Automation is most easily applied to skill-based and rule-based task 

performance (see chapter 1). In contrast, those faults which are difficult to detect tend 

to be knowledge-based errors. Nevertheless, there are, skill-, and rule-based task 

components which humans apparendy perform poorly, e.g., opposing locking errors 

during checking, to which ADP might usefully be directed. The benefits o f  such a 

strategy would be apparent in improved efficiency within the design process rather 

than improved overall reliability.

In § 2.2.4.2 the potentially damaging effects of the current move towards Automatic 

Data Preparation upon the training opportunities afforded design engineers was 

identified. The current strategy appears to be one of automating all that is technically 

possible. The danger o f applying this strategy too rigorously is that it results in design 

engineers being left to complete only those (knowledge-based) task components which 

cannot be automated, and this may be “... a fragmented, difficult-to-perform job for 

which training is also a problem” (see Lockhart, Strub, Hawley, and Tapia, 1993, p. 

1212). A viable alternative method o f providing training would be to use Computer- 

Based Training. However, it can also be argued that less than maximum automation or 

the flexible use o f automation may be useful alternatives which would allow design 

engineers to acquire the necessary skills within a meaningful framework.

3.5.4 Training

There are a number o f areas of the DPP which can be identified upon the basis o f 

these results as potentially benefiting from training interventions. First, several 

common mode errors were identified by the work sample. It would appear that these 

relate to deficiencies in the application of relatively straightforward principles (stated in

73



Chapter 3 : "Error A nalysis

SSI 8003) which are independent o f organisation and location. Second, training 

methods may be applied to develop skills appropriate to dealing with novel 

requirements (although see Patrick, 1992 for a discussion o f some o f the difficulties 

inherent in this type o f endeavour). It is interesting to note that, in the work sample, 

DPP experience was associated with rule-based errors but not knowledge-based errors, 

suggesting that experience contributes to the acquisition o f basic skills but does not 

necessarily impart the required skills for performing the more unusual task 

components.

3.5.5 Personnel selection

Comparison with normative data suggests that the current selection process favours 

engineers who are comparatively high in spatial ability, clerical perception, and fluid 

intelligence. The validity o f  spatial ability in this regard was supported by the negative 

association with completion times for the knowledge-based component o f the work 

sample. The correlations between fluid intelligence and knowledge-based task 

performance, although not significant, were o f a magnitude which suggests that they 

may also prove useful in the selection process. The fact that knowledge-based task 

components are the least amenable to automation highlights the future importance o f 

efficient personnel selection in this regard.

Further to this, there was some evidence o f an association between personality and 

DPP performance. Although some o f the reported effects may have been attributable 

to the experimental situation, the association between extraversión and performance is 

consistent with previous investigations o f computer programming, with introverts 

performing more quickly and more accurately. Similarly, the association between 

stability and performance, with stable individuals making fewer errors, is consistent 

with previous research concerning the performance of an inspection task (see §

3.1.2.3). Given that the sample were very much within the normal range of scores, it 

would seem that the selection process is not tapping these differences, and that 

personality testing could make a useful contribution in this area.
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3.5.6 Sub-routes

The use o f code constructs called sub-routes was repeatedly identified as a particular 

area o f task difficulty. It is likely that this contributes to the difficulties encountered at 

the checking phase o f the DPP in detecting opposing locking errors, as well as many 

other error types. Sub-routes will be investigated more thoroughly in § 5.
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4 Mid thesis summary

The previous chapters were exploratory and primarily qualitative in nature. They also 

tended to focus on context-specific (i.e. SSI) issues rather than generally applicable 

findings.

What follows is a brief discussion o f the main themes that emerged from the 

fieldwork, and how these themes will be operationalised and submitted to test in the 

latter half o f the thesis.

4.1 Task analysis

The HTA described a system of office-based software design with three stages: one of 

production (writing) and two of quality control (checking and testing). I t was observed 

that there existed diversity in the structure of the tasks that made up the quality control 

phases. One o f the quality control tasks, checking, involved essentially the same 

representations o f the same tasks that made up the production phase (writing). Both 

checking and writing involve the use o f an abstract, text-based programming language 

and both dealing with SSI functioning at the ‘micro’ level, manipulating verbal and 

textual symbols, dealing with identical, abstract representations o f the railway, i.e. in 

terms of bits, bytes and variables names (cf. Rasmussen & Lind, 1981).

The other quality control phase, testing, was markedly different The representation of 

the tasks and the tasks themselves were distinct from those carried out in writing and 

checking, and were based more on concrete railway concepts and a visual-spatial task 

environment. In contrast to the writing and checking stages, testing requires the 

engineer to map the specifications directly on to the functioning of the railway 

network, as represented on the Graphical User Interface o f the testing simulator. The 

tester deals with the ‘macro’, overall, functioning o f the SSI, using a concrete, spatial 

representation of the railway (Le. signals, points and tracks). I t was proposed that these 

differences between checking and testing, and the associated differences in the 

demands they make on human performance, might manifest themselves in terms o f 

the quantitative and qualitative aspects o f patterns o f faults detected at each stage.

76



Chapter 4 : M id-thesis Summary

4.2 Error Analysis

The error analysis consisted o f a work sample test, task observation, and an audit o f 

the fault logs used to record faults found by checkers and testers.

The qualitative differences found between checking and testing tasks in the task 

analysis were empirically investigated in the error analysis. For the fault log audit it was 

found that different fault types were differentially detected by the checking and testing 

stages. Simpler faults, and those affecting the basic functioning o f the railway, were 

detected more frequently by checkers. More complex faults, and those to do with 

safety-related operations, were found more frequently in testing. This ‘task diversity* 

may hold promise as a way to combat ‘common mode* errors, such as those found in 

the work sample test

The work sample test showed the influence o f expertise and complexity on the ease 

with which fault-free task performance could be achieved. Routine work that could be 

completed with skill- and rule-based performance was far less error prone than novel 

or particularly complex knowledge-based work. These were factors also highlighted in 

the HTA, where engineers commented on the challenging and prestigious nature of 

complex, novel work.

However, the error analysis showed that, although complex and novel work was 

indeed more error prone than more straightforward work when considering the 

number of faults generated per unit of time or per lines o f code, faults in the less 

demanding work actually seemed to represent a greater threat to the dependability o f 

the SSI system. For instance, the error analysis found that only faults in straightforward 

design tasks actually survived three cycles o f writing, checking and testing. In  the work 

sample test the only common-mode errors, made identically by at least half the 

participants, were in supposedly ‘simpler’ code.

The engineers’ comments, then, seem to be an example of the base-rate fallacy (e.g. 

Evans, Handley, Over & Perham, 2002). When performing any particular aspect o f the 

SSI DPP there is a greater likelihood that an error will occur in knowledge-based 

performance (e.g. complex or novel work) compared to skill-or rule-based
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performance. However, the vast majority o f work is skill- and rule-based, so that when 

confronted with any particular fault in the SSI programme, that fault is much more 

likely to be the product of skill- or rule-based performance than of knowledge-based 

performance. The correct way to include information about the prior probabilities of 

events when making conditional probabilistic inferences was laid out in 1764 by 

Thomas Bayes. However, there is a great body of research on normative reasoning that 

has long recognised that people do not seem to make inference in such a ‘rational’ 

manner (e.g. Kahneman, 1973). Although first viewed as an example o f  irrational bias 

in human judgement, other authors have argued that these effects are partly 

methodological in nature. For instance, Gigerenzer (e.g. Gigerenzer & Hoffrage, 1995) 

has argued that it is the format in which the data on which the estimation task is to be 

performed which is o f importance; information in the form o f probabilities (e.g. a 

likelihood o f .05) leads to neglect o f the base-rate information, whereas the same 

information in the form of frequencies (e.g. a likelihood of 1 out o f 20) does not lead 

so frequently to fallacious inference.

Alas the exploratory phase of this research project was not designed with this issue 

explicitly in mind, and therefore was not intended to be able to distinguish between the 

competing hypotheses as to exactly why the base-rate fallacy occurs. However, there 

are several points that do have relevance to this study.

The engineers that participated in the exploratory phase commented explicitly about 

the high probability of error when dealing with novel and complex SSI w ork Based on 

empirical evidence from the in situ data collection in this study, these comments seem 

to be an accurate reflection of the likelihood of committing error when performing 

such tasks.

The same engineers commented that because o f this high probability o f error in novel 

or complex work relative to simpler tasks, these aspects o f the task should be, and 

indeed are, allocated more resources (e.g. time, expertise) than more routine work. 

These jobs are also seen as more interesting and prestigious.
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On the one hand, this unequal allocation o f expertise is a necessary solution to a 

practical problem, at least with regard to particularly difficult work. That is, there is a 

minimum level of knowledge and expertise that is necessary to complete each task, and 

if this is not met then the task cannot be completed. A clear example o f this was 

observed in the work-sample test, when the two least-experienced engineers could not 

make a reasonable attempt at completing the most complex parts o f the task.

However, as long as the minimum expertise requirement is met, it is not dear as to 

whether the disproportionate allocation o f other resources (e.g. time, number o f staff) 

to complex work is o f maximum benefit to the dependability o f the system. This 

would depend in part on the relative amount o f complex to standard code in each SSI, 

and the relative error-proneness o f the work.

In the case of the work sample test, an average o f four faults was generated per 

partidpant in the four lines o f complex code that had to be written, giving an average 

o f about one fault per line o f code. In the standard code an average o f seven faults 

were made in 120 lines per code, giving a probability o f .06 o f committing an error per 

line of code. Therefore the complex work seemed to be at least 16 times more error- 

prone than the standard work (1/.06 =  16.67) per line o f code. However, there was 30 

times the number o f lines o f code in the straightforward aspects o f the task compared 

to the complex parts (120 lines /  4 lines =  30). So, although the complex parts o f  the 

task are much more error-prone than the more straightforward parts, they are also very 

much rarer, proportionately speaking, and so are likely to contribute fewer faults 

overall to the final SSI code.

The work sample was o f course a contrived task, and the actual proportions o f 

complex vs. standard tasks, as well as the relative error-proneness o f each, will be 

much more variable in real work However, it was devised by an experienced signalling 

engineer to represent a realistic piece o f SSI DPP work, and highlights the issue o f the 

actual vs. perceived importance of tasks in terms of the contribution to system safety. 

This was the case even though on average the work sample participants devoted much 

more time to the complex work compared to the standard work; the standard code
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received on average 80 seconds per line o f code whereas the complex code received 

280 seconds, three and a half times more. •

The situation is reversed if the task o f the checker is viewed in the same way. Taking 

the figures above, we can be fairly sure that virtually every line of the complex SSI data 

will contain a fault. However, there is a reasonably low probability that any particular 

line o f the standard code will contain a fault From this point o f view checking the 

complex code represents an easier task than checking the standard code; checking run- 

of-the-mill code could be likened to looking for a needle in a haystack, whereas 

checking complex code would be akin to looking for a nail in a matchbox.

The problem o f how best to allocate resources to the SSI DPP, highlighted above, is 

compounded when also considering common-mode error. In die work sample test; 

more than half o f the participants wrote identical faulty SSI code in four separate parts 

of the straightforward task, i.e. four common-mode errors. For one particular fault, all 

o f the participants wrote exactly the same, incorrect, code. When shown these faults in 

the post-task debrief all o f the participants recognised what they had done incorrectly, 

implying that this was skill- or rule-based performance that had gone wrong due to 

strong “habit intrusion” (Reason, 1990). The fact that so many o f the participants 

made these errors strongly suggests that the problem lay not with the particular 

individuals involved but more likely with some aspect o f the task Therefore, even if 

more resources were allocated to the straightforward aspects o f the writing task it is 

likely that some errors would continue to be made with high frequency. Because o f the 

similarity between writing and checking, though, and the reduced amount o f time that 

such straightforward work receives, it is also likely that the checking process would not 

be good at detecting these errors.

So, based upon the allocation of resources to work by perceived difficulty, it appears 

that the SSI DPP may not be organised to optimise the reduction o f error commission 

or the promotion o f fault detection. Additionally, even if resources were allocated 

more optimally (i.e. based on difficultly and amount o f work), common mode error 

would mean that the value o f any extra resources allocated would be diminished if the

80



Chapter 4 : M id-thesis Summary

extra resources were merely redundant repetitions o f the same task (e.g. more time on 

task, or an extra repetition o f a task, even if by a different person).

It was hypothesised at the end of the in situ exploratory phase that it was the diversity 

between the checking and testing tasks that protected the system from the 

shortcomings discussed above. Two fault detection methods that make qualitatively 

different demands upon human cognition, and that require different skills and 

knowledge, may be more likely to detect a greater range o f faults than more similar 

methods because o f reduced susceptibility to common mode error.

4.3 N eed for Laboratory studies

The data from the task- and error-analyses were collected in a naturalistic work 

environment While being externally valid, the lack o f control and internal validity 

meant a number o f factors may have biased and confounded the results. Most 

importantly, in the fault-log audit, if  a fault had been detected by a checker it would 

then have been corrected and so be unavailable for subsequent detection by the tester. 

This meant that the number and type o f faults within the SSI data would not be the 

same for checkers and testers.

It was found in the task analysis that expertise o f the signalling engineer tended to 

increase from writer to checker to tester. This would also tend to confound any effect 

on fault detection performance due to task type.

In addition to the problem of internal validity, the ability to manipulate task factors was 

limited in the actual work environment The safety-critical nature o f SSI design meant 

that changes to equipment, procedures etc., could not easily be performed when ‘real 

work’ was being conducted. Commercial considerations militated against the 

collaborating signalling firms setting aside significant equipment or personnel resources 

to investigate manipulations of task factors using ‘synthetic’ work.

So, to complement the fieldwork studies a programme of laboratory experimentation 

was planned.
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4.4 Aims o f the laboratory programme

The general aims o f the experimental programme were threefold: A) to confirm and 

validate the results o f the field work; B) to further investigate the areas o f interest that 

emerged from the task- and error-analyses, and; Q  to develop the findings for 

application to non-SSI domains.

Regarding validation o f the fieldwork, the biggest area o f uncertainty to remain after 

the previous, predominately qualitative studies was that comprising the characteristics 

and relative efficacy o f the checking and testing tasks. The fieldwork had provided 

useful preliminary results, but too many factors remained unknown to provide firm 

conclusions. The experimental programme would analyse the specific patterns o f error 

detected by checking and testing, in terms of the quantity and characteristics o f faults 

detected at each stage.

As regards extension o f the fieldwork, the main theme that emerged was the potential 

of task and cognitive diversity to improve the resistance o f the verification and 

validation stages o f the DPP to common-mode error. Various aspects o f diversity 

would be investigated: Task factors, e.g. the differences between task environment and 

fault types; and individual differences, e.g. abilities and mental models.

First, however, one o f the more persistent individual fault types found resistant to 

checking, related to the use of sub-routes, will be investigated.
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5 Sub-route labelling

It was noted in the task- and especially the error-analysis that a particular fault type was 

detected particularly poorly by the checking stage of the DPP. This involved barring 

two conflicting, or opposing, train routes from being set at the same time. An 

important element involved in this task is also used in many o f the other functions 

found to be widespread in the fault logs, such as identity and labelling faults, and was 

commented-on by the task experts in interviews. The particular task element is known 

as “sub-route labelling”. This chapter will explore the reasons why performing sub­

route labelling is problematic.

5.1 Sub-routes explained

Any particular portion o f the railway under the control o f an SSI system is divided into 

sections o f track. For any particular track section the SSI keeps a record o f whether it is 

occupied by a train, and this information is used to inform the permitted movements 

of trains over the interlocking. However, as well as knowing whether a particular track 

section is occupied by a train or not, the SSI system also needs to make sure that the 

points that control train movements are in the correct position ahead o f a train, 

otherwise the train may not follow its intended route or may be de-railed.

The way that this information is encoded in SSI is in the form o f sub-routes. Sub­

routes correspond to track sections, but as well as defining the identity o f  the section 

of railway to which they pertain sub-routes also specify the expected direction o f a 

train over the track section.

Configurations o f track sections are variable, so a rule is used to specify the mapping 

between the route o f the train and a text label used to encode this information in an 

SSI-interpretable way (Figure 5).
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120'dock

Figure 5:12 o’clock rule for track section labelling.

Ends o f track sections are denoted by letters (A, B and C), which is realised by imagining a 

dock-face centred on the conjunction o f track ends, and alphabetically labelling the ends 

while m oving dockwise from a 12 o’clock starting point The labd “CA” thus denotes a 

train movement in the direction indicated by the arrows.

Figure 5 demonstrates the currently used rule, called the “12 o’clock” rule. I t shows a 

small portion (two track sections) o f a highly simplified signalling plan. The parallel 

horizontal lines represent two adjacent main-line railway tracks, with a diagonal track 

connecting between them. There are sets of points at the intersections o f the main and 

connecting lines, to guide trains along either the straight-line route, or across the 

connecting section to the opposite line. The railway lines are divided into sections, 

denoted here by the short vertical lines. There are thus two track sections shown, each 

with a set of points and three ‘ends’. To demonstrate how the upper o f the two 

sections (in bold) would be labelled, it has a dock-face superimposed over it, centred 

on the points. Moving clockwise from the 12 o’dock meridian, each successive end of 

the track section has been labelled in alphabetical order. So, for example, to denote the 

route between the dotted arrows, the label “CA” would be used. I f  this labd were 

incorrectly spedfied (e.g. A Q  a collision or derailment could potentially result

As discussed briefly in the preceding chapter, this labelling procedure was found to be 

error-prone. Engineers committed errors when generating the labds, and more 

importantly when performing an independent check of others’ labelling work.
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Errors associated with sub-routes tended to be errors o f commission rather than 

omission, i.e. a sub-route label would be present but incorrecdy specified, rather than 

missing. This suggested that the problem with sub-routes lay not with the decision of 

when to use the sub-route labelling rule, but how it was applied or misapplied.

Two task-related factors were hypothesised that might influence observed 

performance. First was the mismatch between the alphabetical order o f the label and 

the spatial direction o f its corresponding route. With the twelve o’clock rule, all right- 

to-left routes have labels with ascending alphabetical order, and vice versa. For readers 

o f the Latin alphabet, ascending order has a very strong population stereotype (Smith, 

1981) o f “left-to-right”.

This population stereotype o f alphabetical sequence has been found to affect rule- 

based task performance. Eikeseth and Baer (1997) used a matching-to-sample 

paradigm involving undergraduates learning relations between letters (e.g. A  goes to B, 

F goes to M), their symmetrical opposites (e.g. B goes to A, M goes to F), and their 

transitive links (e.g. A goes to F, M goes to A). Errors were found to be increased 

when complexity was at its highest (i.e. deciding on a coexistent symmetrical and 

transitive relation), and also when the stimuli were adjacent letters in the alphabet; 

“next-letter bias” as it was termed.

These effects may be the result of a spatially-based mechanism underling the 

representation o f alphabetical letter sequence. Gevers, Reynvoet and Fias (2003) found 

an association between letters earlier in the alphabet (e.g. A, D) and quicker responding 

to the left visual field, and letters later in the alphabet (e.g. X, Z) and responding to the 

right visual field.

This lack o f compatibility between internal models and task demands may lead to 

response conflict and what Reason (1990) terms “strong-but-wrong” errors. A 6 

o’clock rule, otherwise identical to the 12 o’clock version, would reverse the label 

alphabetical order and leave it compatible with the spatial direction, so removing this 

factor.
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The second factor hypothesised to affect labelling accuracy was the spatial variability of 

• applying the 12 o’clock rule. The first step o f applying the rule is to site the imaginary 

12 o’clock meridian over the points (if any) in the track section. The points are in 

different places in different sections, however, as can be seen from die upper (in bold) 

and lower track sections in Figure 5. Therefore before the labelling process can begin 

there must be a visual search of the (densely cluttered) track diagram to locate the 

appropriate point

Teidebaum and Granada (1983) found that inconsistendy-placed menu elements on a 

computer screen increased visual search time by as much as 73% when performing 

menu-search tasks. It is hypothesised that inconsistent track section layout could be 

having a similar effect on sub-route labelling performance.

The track section /  sub-route label positional inconsistency is also likely to increase 

working-memory demands during task performance. This is because the starting point 

for the labelling task has to be stored while labelling is proceeding and recalled if the 

task is interrupted even momentarily. Extra memory or processing demands have been 

found to increase reading times and error rates when reading aviation and industrial 

analogue displays (e.g. Grether, 1949).

Having the meridian at 9 o’clock would mean a fixed starting point for labelling in all 

cases, as there is always a horizontal component to the track section. This should 

represent a more consistent spatial mapping for applying the labelling rule, reducing 

the perceptual/attentional demands o f the sub-route labelling task.

Two experiments simulating label-checking were thus undertaken to test these 

hypotheses, comparing label checking performance between: 1) 12- and 6 o’clock rules; 

2) 12- and 9 o’clock rules. It was expected that sub-route label-checking performance 

would be improved (quicker, more accurate) when using the revised rules than when 

using the traditional 12 o’clock rule.

In addition to measures of task speed and accuracy it was thought necessary to 

measure how hard the participants had to work in order to achieve their level o f
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performance. Various authors (e.g. Hockey, 1997) have shown how a given level of 

performance on a task can be maintained at the expense of a greater investment of 

effort, even though sustained effort will lead to fatigue and task decrement over time.

5.2 Sub-route experiment 1:12 o’clock rule vs. 6 o’clock rule

5.2.1 Method

5.2.1.1 Participants

Novice participants were chosen for this and the subsequent experiment because 

experienced signalling engineers would already by highly practiced at using the 12 

o’clock rule, so biasing the relative performance between the old and new labelling 

rules.

Thirty-three novice participants (23 female, mean age 24 yrs), an availability sample 

recruited on a UK University campus, each performed two within-partidpants labelling 

conditions (12 o’clock vs. 6 o’clock rules).

5.2.1.2 Materials

A set of 96 “test” track section diagrams were produced for display on a VGA 

computer screen. Each diagram consisted of:

• One of the four possible different track section “shapes” o f the type shown in 

bold in Figure 5 (made by dther a horizontal and /  or vertical reflection o f the 

original Figure 5 shape)

•  One o f the four possible different train directions that could travel over the 

track section, denoted by arrows as in Figure 5

•  Below the track section, one o f the six possible different two-letter sub-route 

labds (e.g. AC, BA).

Additionally, a set o f 32 “practice” diagrams were produced, using each of die four 

different track shapes combined with each of the four different train directions, but 

this time showing the correct sub-route label for half and an incorrect one for the rest.
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Unlike Figure 5, none o f the diagrams contained a circular “dock face” feature — the 

stimuli were designed to look like actual (but highly simplified) sections o f track 

signalling layout maps.

Each diagram was approximately 60 mm high by 80 mm wide when displayed. lines 

were approximately 2 points wide, and the labd text presented in 20 point Times New 

Roman font Blue was used as the background colour on the computer display, white 

as the diagram/ text colour.

A paper-based sub-route diagram very similar to that in Figure 5, along with a brief 

explanation, was produced to teach the 12 o’dock and 6 o’dock rules to the 

partidpants.

The NASA TLX multi-dimensional workload scale (VIdulich and Tsang, 1986) was 

used to provide an overall workload score associated with task performance.

The practice and test stimuli, and the NASA TLX workload scale, were programmed 

for display on an IBM PC compatible computer using Borland C++. The computer 

also recorded the partidpant’s response key press and reaction time.

5.2.1.3 "Procedure

Partidpants were required to complete the labd checking task using both the 12 

o’dock and 6 o’dock rules, and so they were first randomised to dther an AB (12 

o’dock rule first) or BA (6 o’dock rule first) counterbalance sequence.

Each condition then followed the same pattern. First, the relevant labelling rule was 

explained to the participant using the explanatory diagram. The partidpant was then 

presented with the 32 practice stimuli one at a time in random order on the computer. 

When each stimulus appeared on screen the partidpant had to dedde if  the train 

direction shown on the diagram correctly corresponded to the label shown below the 

diagram, by applying the current sub-route labelling rule. Responses were forced- 

choice: if the partidpant thought file labd was correct they pressed the “Z” key, if they
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thought it was wrong they pressed the “.” key. No feedback regarding the correctness 

of responses was presented.

At the end o f the practice stimuli the participant was required to go through the 

practice session again if they had failed to achieve a level o f 75% accuracy on the 

practice items.

After the practice had been successfully completed the participants were given the 

opportunity to ask questions before moving on to the test stimuli. When ready, the 

participants were told to complete the coming task using the labelling rule they had 

been taught “as quickly as you can without making mistakes”. The 96 test stimuli were 

then displayed one at a time in random order in an identical fashion to the practice 

stimuli.

When all test stimuli were finished the NASA TLX was displayed and completed by 

the participant. Finally, the procedure described above was repeated for the other 

labelling rule.

5.2.2 Results and discussion

One participant’s data were removed due to incorrect completion o f the NASA TLX. 

All statistical tests were two-tailed, 0C = .05. Table 11 shows the time o f correct 

responses, accuracy and workload mean scores by labelling rule used. The 6 o’clock 

labelling rule was somewhat more error-prone (by 1.3% on average) than the 12 

o’clock rule, with the response time and workload scores showing very small 

differences between rules. A multivariate, repeated-measures analysis o f variance was 

conducted, with labelling rule (12 o’clock vs. 6 o’clock) as the repeated independent 

variable and error rate (%), time for correct response (s) and NASA TLX workload 

score (0 = “minimum”, 100 = “maximum” workload) as dependent variables.
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Table 11: Performance measures by labelling rule (12 o’clock rule vs. 6 o’clock 

rule)

Performance measure 12 o’clock rule 6 o’clock rule

M  (S D ) M  {S D )

Error rate 
(%)

4.00 (3.60) 5.30 (6.30)

Tim e for correct response
(s)

4.19 (0.95) 4.35 (1.12)

TLX workload score 
(maximum score=100)

60.00 (15.00) 59.20 (14.90)

Note: N = 32

There was no significant difference found between conditions (F [2, 30] <  1). A repeat 

of the analysis with counterbalance order included as an additional between- 

participants independent variable also showed no significant effect.

The results suggest that, at least in this circumscribed context, the mismatch between 

label stereotype and spatial direction does not have a significant effect on speed or 

accuracy o f performance, nor on how difficult the tasks are perceived.

5.3 Sub-route experiment II: 12 o’clock rule vs. 9 o’clock rule

5.3 .1  M ethod

The method for this experiment was identical to that for experiment one, barring the 

substitution for the 9 o’clock labelling rule here for the 6 o’clock rule used in 

experiment one.
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5.3.1.1 'Participants

Sixteen novice participants (nine female, mean age 23 yrs) were recruited by 

opportunity sampling at the same UK University campus as used in experiment one. 

Each participant performed two within-participants labelling conditions (12 o’clock vs. 

9 o’clock rule) in the same way as for experiment one.

5.3.2 Results

Table 12 shows the performance measures (mean scores o f time o f correct response, 

accuracy and workload) associated with sub-route labelling-

Table 12: Perform ance measures by labelling rule (12 o’clock rule vs. 9 

o’clock rule)

Performance m easure 12 o'clock rule 9 o’clock rule

M  (SD) M  (SB )

Error rate 
(%)

7.30 (4.00) 8.30 (5.50)

Time for correct response
(s)

4.21 (1.04) 3.32 (1.02)

TLX workload score 
(maximum score=100)

63.50 (11.00) 55.10(11.40)

N = 16

The 9 o’clock rule labelling condition showed a slightly higher error rate (8.3% vs. 

7.3%) and lower time for correct response (3.32 s vs. 4.21 s) than the 12 o’clock rule 

condition. Workload was also somewhat lower for the 9 o’clock rule labelling 

condition (55.1) compared to the 12 o’clock condition (63.5).

An identical analysis to that carried out for experiment one was performed on the data 

from experiment II: a repeated measures multivariate analysis o f variance with rule
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condition as the independent variable and speed o f correct response, error rate and 

workload scores as the dependent variables.

In this case, however, there was a significant difference between conditions (F [2,14] = 

6.84, p < 0.01). Subsequent univariate analysis showed mean tkrje for correct response 

(F [1,15] =  22.3, p < 0.01) and NASA TLX score (F [1,15] =  11.3, p <  0.01) both 

individually differed significantly across conditions, with the 9 o’clock rule producing 

better performance in each case. Again, the analysis was repeated with counterbalance 

order included as a between participants independent variable with virtually identical 

results.

To check for possible speed-accuracy trade-offs the times for correct responses were 

correlated with accuracy for both the 12- and 9 o’clock conditions. The obtained 

coefficients, r (16) = .15 and r (16) = .14 respectively, were not significant “Micro” 

speed-accuracy trade-offs (e.g. Rabbitt, 1966) were checked by comparing the mean 

time for correct responses with the mean time for incorrect responses within 

condition. There were no significant differences for either the 12 o’clock (t [15] =  .48, 

p > .05) or the 9 o’clock (t [15] = .79, p >  .05) conditions.

5.4 General discussion

The hypothesis that the mismatch between route spatial direction and label 

alphabetical order leads to poor performance on the safety-critical route labelling task 

was not supported (experiment one). However, it seems that using a spatially 

inconsistent vs. a spatially consistent labelling rule does have an effect on performance 

(experiment two).

The lack o f support for the population stereotype mismatch hypothesis may suggest 

that the labels generated by the various rules are not viewed as sections o f an ordered 

alphabet, but rather as abstract, two-letter acronyms, where the concept of 

alphabetical-order has no reliable association. Even if viewed as part o f the ordered 

alphabet, there is only the smallest possible ‘distance’ between the stimuli used in this 

experiment, i.e. A, B and C.
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It could be argued that use of “6 o’clock” as opposed to “12 o’clock” represents a 

much weaker population stereotype relating to clocks, leading to less efficient use of 

the analogy, and a possible confounding factor with changes in performance due to 

alphabetical order. However, the 9 o’clock rule used in experiment two would not 

seem to represent a stereotypical starting point for reading a clock face any more than 

the 6 o’clock rule, but performance in that condition was significandy better than in the 

standard 12 o’clock rule condition.

In experiment two, participants were significantly faster in making correct responses 

for the 9 o’clock labelling condition. The lower workload ratings suggest that this is at 

least partly due to them finding this condition less difficult The lack o f a significant 

difference in error rates may be due to a lack o f statistical power, probably confounded 

by the restriction o f range in the scores as the participants concentrated on achieving 

accuracy. Although there was no significant difference between the error rates for the 

two conditions, the 9 o’clock rule was more error prone than the 12 o’clock rule. This 

did not seem to reflect an underlying speed-accuracy trade off, however, as speed and 

accuracy were not well correlated, and correct responses were not significandy slower 

than erroneous ones.

Although participant numbers for the second experiment were quite low there was a 

good similarity between participants’ performance while using the 12 o’clock rule 

across the two experiments: average error rate was within 4% and average response 

time differed by less than .1 second.

There is some question over the generalisability o f the results from these experiments. 

The participants in both were novice to the practice of sub-route labelling and 

therefore the reasons underlying variations in their performance may not hold true for 

experienced signalling engineers. This criticism is undeniable but it is mitigated by a 

number o f factors.

First, an experiment using experienced SSI engineers would not have allowed a fair test 

of the new labelling rules as responses would have inevitably have been biased by 

extreme familiarity and experience in using the existing 12 o’clock rule. Second,

93



Chapter 5 : Sub-route labelling

important characteristics of the participants in these experiments are likely to be 

broadly similar to the ones seen in the work sample test (§ 3.1). The signalling 

engineers were found to have higher levels o f cognitive abilities (e.g. vocabulary, 

clerical perception) than the norm, and this is also likely to be true for samples of 

University students such as the participants in these experiments.

Based, as this task is, on the work of designers o f safety critical systems, errors and 

their reduction would seem to be o f utmost importance. However, the ability to work 

faster while reporting less overall workload clearly shows a lower demand for limited 

mental resources (e.g. Wickens, 1984) when using the 9 o’clock labelling rule. From a 

practical point o f view, for instance, this means that the engineer will be less vulnerable 

to the distractions and interruptions ever present in the open work environment in 

which the SSI DPP is conducted. Perhaps more importantly, it means that the designer 

will be better able to manage the complex, “knowledge-based” (Rasmussen, 1980), 

higher-level task elements that make up the “bigger picture” o f design tasks, if  they are 

not getting bogged down with the details. -

The greater efficiency o f the 9 o’clock labelling rule demonstrates the importance o f 

the way tasks are represented to the operators. Even the minor modifications used in 

these experiments demonstrated measurable benefits in relatively simple 

implementations o f the actual safety-critical signalling tasks.

The goal o f the following chapters will be to look at what effect diverse task 

representations can have on qualitative as well as quantitative aspects o f  performance, 

i.e. not just how many errors, but what type o f errors are more likely with different 

representations, and how this can be used advantageously by the system.
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6 T ask  and Cognitive Diversity

The concept o f cognitive diversity is related to the practice o f using multiple 

components in a system. The use o f multiple components to improve the fault 

tolerance o f systems is well established (see § 1.1.2). In its most common manifestation 

this involves the use o f two or more identical system components to perform the same 

function. I f  the failure modes of the component are known, the system can be 

designed with one o f the components off-line; if the master component should then 

fail, this can be detected and the off-line component can take over system functioning. 

If  the failure modes o f the component are not known, then the multiple components 

can run in parallel with their outputs compared with one another. I f  the different 

components do not produce the same output given the same input, at least one is 

assumed to have failed.

This use o f multiple component redundancy can guard against failures due to 

essentially random processes, such as radiation altering the state o f a bit in memory, or 

faults in manufacture or fitting. However, identical components will be equally 

susceptible to conceptual errors in their design or use. These ‘common-mode’ errors 

occur because o f the lack o f diversity in performance o f each one; they share the same 

strengths but also the same weaknesses. To combat this lack o f ‘product diversity’, the 

concept o f ‘process diversity’ can be applied during the design o f components. When 

applied to the human elements of the system, this can be conceptualised as ‘cognitive 

diversity’.

Redundancy o f human components has been demonstrated to have beneficial effects 

in programming tasks. For instance, Bisant and Lyle (1989) demonstrated 

improvements when two people engaged in code checking. Wilson, Nosek, Hoskin 

and Liou (1992) found improved problem-solving for teams o f programmers; the 

principle demonstrated was that if one individual ‘fails’ in some aspect o f a task, then a 

co-worker may be able to detect the mistake. However, as demonstrated in the work- 

sample task from the error analysis (§ 3.1.2.2), different individuals can be susceptible 

to common-mode error.
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Although human components will not be identical in the same way that redundant 

mechanical components can be, they may share similar performance capacities, 

knowledge and strategies that result in common-mode error. For instance, uniform 

selection and training practices within an organisation will serve to reduce the variety 

o f approaches to a task. As asserted by Senders and Moray (1991), “The use of 

multiple humans in the way multiple inaccurate components are used is not a reliable 

way to enhance human-machine system reliability”.

One way to combat this problem is to increase the diversity between human 

components in the system. Fagan (1986) found that if  software inspection team 

members are diverse in terms of task perspective, software quality can be improved. A 

more general approach to diversity can be taken from a model o f human-dependent 

failure (HDF) put forward by Hollywell (1993). Here, HDFs arise when H oot Causes’ 

(e.g. distraction, working memory limitations), impact on human actions through 

‘Coupling Mechanisms’ (e.g. task environment, training). In effect, the coupling 

mechanism “creates the conditions for multiple human actions to be affected by the 

same root cause”. Defences against HDF can be directed at the root cause and/or the 

coupling mechanism. Addressing the root causes, through the application o f Human 

Factors knowledge, will serve to increase the overall ‘quality’ o f the system. However, 

complete eradication o f error is not likely to be possible (e.g. Frese and Zapf, 1991). 

Another approach would involve increasing the diversity o f coupling mechanisms so 

that human performance is not so narrowly and directly related to root causes. This 

approach underlies the use of task and cognitive diversity to reduce system 

vulnerability to common-mode error.

6.1 Task and Cognitive diversity applied

In plain terms, the use of diversity does not seek to reduce the number o f  errors 

committed by personnel. Rather, it seeks to ensure that, by the use o f varied coupling 

mechanisms, the root causes of error are manifest in different ways, or types o f error. 

The reciprocal o f this error-focused description is that correct performance will differ 

in its characteristics across different coupling mechanisms.
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The following sections o f the thesis will be concerned with fault finding performance 

between the checking and testing stages o f the SSI DPP. Checking and testing 

represent diverse coupling between human capabilities and task performance by the 

way the tasks are represented. Task diversity and the related concept o f ‘cognitive 

diversity* that it engenders are discussed by Westerman, Shryane, Crawshaw, Hockey 

and Wyatt-Millington (1995) and Westerman, Shryane, Crawshaw and Hockey (1997).

Figure 6 represents diversity by use o f a Venn diagram. The outer rectangle represents 

the set o f all faults in an SSI geographic data programme (A). The shaded ellipse (Q  

represents a subset of A containing the set of faults that could possibly be detected 

during checking (C C  A). The dotted ellipse (I), also a subset of A, contains the set of 

faults detectable during testing (T C  A).

SSI D PP.

The area in the middle, where C and T  overlap, contains the set of faults detectable 

during both checking and testing (C n  T). This middle portion represents redundancy
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The area in the middle, where C and T  overlap, contains the set o f faults detectable 

during both checking and testing (C n  1). This middle portion represents redundancy 

in the system, where, if  a check failed to detect the fault, it would still be potentially 

detectable in testing. The area o f C that is not also in C n  T  represents those faults 

detectable only during checking, and so represents diversity in the system. Similarly, the 

area o f T  not also i n C n T  represents those errors detectable only during testing 

another instance o f diversity in detection. In total, diversity can be represented as (C O 

T ) u ( c m ) .

For simplicity, in the example above faults were considered to be detectable or not by 

either task. This is gives conveniendy defined boundaries to the various ellipses, 

because a procedure is considered to be able to detect a fault in principle, or n o t 

However, in the real world o f the SSI DPP very few types o f faults are entirely 

undetectable in one o f the two tasks. For most real faults there will be some non-2ero 

probability that it will be detected by a ‘typical’ engineer working on a ‘typical’ job. 

Faults are then characterised as being more or less ‘eas / or hard’ (Visible?), depending 

on whether the probability associated with their detection is high or low. However, for 

the purposes o f the explanatory model, the case as described conveys the main thrust

There are at least two factors that must hold to be true before the use o f diversity, as 

shown in Figure 6, can be of benefit.

First, there must be some constancy to error detection; there should be a somewhat 

consistent relationship between error detection and task type. More formally, we 

should expect that the distribution of detected errors is not random across task type. 

That is, the circumstances that promote error must be related to the nature o f that 

error. This assertion is well supported in the literature (e.g. Reason, 1990).

Second, neither of the fault detection methods should be a subset o f the other. I f  it 

were possible for checking or testing to consistently locate all o f the faults that were 

detected by the other method, again there would be no requirement for diversity (in 

Figure 6, C (£ T  and T  <X Q  -  use of the subordinate method would be futile. (There is
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a special instance of this requirement, where one detection method is perfect and 

always detects all o f the faults. In this case there would be no need for a second 

method as it would just be a subset o f the perfect method).

Finally, it is worth pointing out that diversity as conceptualised here does not depend 

on quantitative differences between fault detection strategies, but rather on qualitative 

differences; that is, it’s not the number o f errors detected by each method that is o f 

prime importance, but whether or not they are of a variety o f fault detected well or 

poorly by the other method.

For example, in Figure 6 the ellipses representing checking and testing are drawn of 

equal size, suggested that C and T  are equally effective at fault detection when applied 

singly. However, even if C was half the area o f T, that is, able to detect only half the 

number o f  faults, it could still be highly worthwhile applying both C and T  as long as C 

detected faults that T  missed.

6.2 D im ensions o f diversity

Figure 6 illustrates the use o f diversity with reference to variety in task environment 

This is only one o f the many dimensions that could be exploited in the drive to reduce 

common-mode error.

6.2.1 Task environment

In the case o f the SSI DPP, checking and testing represent diverse task environments. 

As discussed previously, checking can be characterised as a textually-based, abstract 

task. Testing can be characterised as a spatial, concrete task. These and other 

differences are likely to lead to differences in performance characteristics, as different 

methods and modalities o f information presentation have been shown to lead to 

different perceptual and cognitive biases (e.g. Baddeley, 1986; see Wickens & Hollands, 

1999, for a review). The saliency of information presented to the operator may also be 

very different in various task environments (Rasmussen and Lind, 1981). This will 

impact on the types o f errors committed directly, but also indirectly by the 

encouragement and support o f different mental models and performance strategies.
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6.2.2 Domain Knowledge

Domain knowledge is likely to be an important factor in cognitive diversity, but one 

that will have benefits and drawbacks depending on the extent o f the difference. I f  two 

methods /  individuals share identical domain knowledge, then they will be highly 

susceptible to common-mode error. On the other hand, if the two share no domain 

knowledge then this can be seen as specialisation, with no overlap in their combined 

performance. Domain knowledge will be closely related to, but not necessarily defined 

by, task environment

6.2.3 Performance strategy

The nature o f the checking task means that engineers deal with the ‘nuts and bolts’ of 

the SSI data language, from which they construct the railway signalling functionality. 

This is likely to encourage ‘bottom-up’ performance strategies. Testing is the reverse, 

as engineers deal directly with the high level functioning (e.g. setting a route), and then 

deconstruct this into its constituent parts (e.g. point movement, signal colour change). 

This is likely to encourage ‘top-down’ performance strategies. Research has shown that 

there are quantitative differences in fault-finding performance associated with different 

performance strategies. Morrison and Duncan (1988) found that ‘top-down’ strategies 

are more cognitively demanding than ‘bottom-up’ ones, but potentially more effective. 

In the context of diversity, it may be that the various strategies differ in the 

characteristics o f their performance (e.g. fault types detected) as well as their 

effectiveness (e.g. number of faults detected).

6.2.4 Individual characteristics

There are a number of dimensions of individual difference that might be useful in 

terms of cognitive diversity, e.g. personality, cognitive ability, cognitive style. Cognitive 

ability in particular has been found to be associated with programming skill (e.g. Egan, 

1988), and in the work sample test (§ 3.1) spatial ability was associated with better . 

performance. Studies addressing this issue have been concerned with predicting 

absolute levels o f performance. However, when considering diverse systems of 

verification and validation what is also of interest is the association between diversity of 

ability and diversity in the characteristics o f fault-finding performance.

100



For instance, it has been proposed that a distinction exists between the mental 

representations adopted by individuals while performing problem solving tasks (see 

MacLeod, Hunt & Matthews, 1978). Participants high in spatial ability will tend to use 

mental representations that are essentially spatial, while others, high in verbal ability, 

will tend to use verbally-based representations. I f  different faults are more differentially 

conspicuous with different representations, diversity in fault finding should be 

apparent

Another area of promise for diversity is that o f cognitive style. While measures o f 

cognitive ability are normally concerned with maximum performance, cognitive style 

“...implies the measurement of propensities in terms of typical performance with the 

emphasis on a predominant or customary processing mode” (Tiedeman, 1989, p.263). 

Previous research in fault finding performance (Morris and Rouse, 1985; Morrison and 

Duncan, 1988) has found benefits associated with a reflective rather than impulsive 

style, and with analytic as opposed to global styles.

The concept o f cognitive style has been criticised by some researchers (e.g. McKenna, 

1984), who suggest that styles are strongly related to aspects o f cognitive ability, and so 

not really universally available ‘styles’ of processing at all. However, in the context of 

diversity, any dimension that leads to predictable variation in an individual’s 

performance characteristics across tasks will be o f interest As long as the two factors 

underlying the benefits o f diversity are met (§ 6.1), differences in terms of absolute 

performance are not as important as the characteristics o f that performance.

6.2.5 ';; Mental models

A mental model has been defined as “...a rich and elaborated structure, reflecting the 

user’s understanding o f what the system contains, how it works, and why it works that 

way” (Carroll and Olson, 1988, p. 51). An individual’s mental model o f a system will 

depend somewhat on the extent and accuracy o f their domain knowledge, and also the 

task representation. However, the concept of a mental model also includes the 

structure and inter-relationships o f the information it contains, and so even if two 

individuals could be found with identical ‘knowledge’ of a system there could still exist



extensive variation between their mental models. For these reasons differences in 

mental model could be a valuable source o f cognitive diversity.

A programme of three experiments investigating cognitive diversity was therefore 

enacted. These experiments, described next, will be used to study the use o f cognitive 

diversity as a method for improving fault detection performance.
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7 Cognitive Diversity Experiment I

The first experiment investigating cognitive diversity in the SSI DPP was designed to 

confirm (or otherwise) the findings o f the previous task- and error-analyses, and to 

investigate factors o f diversity associated with fault detection performance as outlined 

in the previous chapter.

As was done for the fault log audit, the differences in between the checking and testing 

stages o f the DPP would be examined. Specifically, it was hypothesised that the two 

stages would differ in their effectiveness in detecting different types o f fault, thus 

demonstrating diversity through task environment For this experiment, however, 

some o f the major confounding variables present in the work-based data collection 

would be controlled.

It was also hypothesised that differences in people’s relative spatial and verbal abilities 

may lead them to adopt a predominantly spatial or verbal style o f processing. It was 

hypothesised that a spatial processing style would be most advantageous in the testing 

task, and a verbal style most advantageous in the checking task This would lead to 

greater fault detection performance if the individual’s style o f processing matched their 

task environment. Differences in style would also be expected to lead to diversity in the 

type of faults detected by each processing style, which would be manifest as an 

interaction between style and task environment

7.1 Method

7.1.1 'Participants

It became apparent after the error analysis work-sample task that it would not be 

possible to obtain sufficient numbers o f trained SSI engineers to participate in 

experiments. Fifteen engineers took part in the work-sample test, and while this was 

low for statistical purposes, it represented a significant proportion o f all o f the suitably 

qualified candidates in the U K  While this was sufficient for exploratory work, 

numbers per cell would drop too low if the sample was divided into treatment groups, 

as would be the case with the laboratory studies.
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As for the sub-route experiment (see § 5) naïve participants would be used. This would 

not have the external validity of using SSI engineers, but naïve participants would not 

be biased by conventions in task performance (e.g. methods, strategies, expectations) 

as the experienced engineers would, and their level o f experience would not be 

confounded with the type o f task that they were most experienced in (testers tend to 

be more experienced than checkers in the SSI DPP). The naive participants would all 

be matched in terms o f SSI experience, i.e. ah initio, but to allow for this lack o f 

expertise, simplified versions of real SSI tasks were developed.

Therefore, 27 participants with an engineering or computer science background were 

recruited from the student population at a UK University. Engineering and Computer 

Science students were chosen as a more homogeneous sub-set o f participants in terms 

o f their experience o f de-bugging software compared to the general student 

population. Additionally, less training would need to be given in the basic features of 

fault-detection tasks, so more time could be spent on SSI-specific training.

The participants were randomly allocated to one of two conditions. In  one condition 

the participants were to perform the task of SSI checking (n =  13; mean age =  24 yrs). 

In the other condition the participants would perform the task o f SSI testing (n =  14; 

mean age = 23 yrs). All o f the participants were male.

7.1.2 SSI simulation

To enable the aims of the experimental programme to be fulfilled, simulations o f the 

DPP checking and testing tasks were developed. Because the participants for the 

experiments would have no SSI experience the tasks chosen for simulation were only a 

sub-set of the full range o f work that would normally be carried out in designing an 

SSI. Specifically, only the functioning associated with the setting o f routes across the 

railway network would be simulated. Faults would then be seeded into the simulations, 

and the detection performance of checkers and testers could be compared.

Although checking is predominantly paper-based and testing computer-based, it was 

decided to build a common computer interface for simulations o f  both tasks. This 

would allow the differences in interaction methods for the two tasks to be controlled
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and assure that task-related information presentation was consistent across checking 

and testing tasks.

The SSI simulator was programmed in Borland C++, and runs on IBM-compatible 

PCs under MS-DOS. Control of the simulator is via mouse for screen elements and 

keyboard to type in details of faults found.

The simulator computer-screen was divided in half horizontally. For both tasks, 

signalling layout diagrams were shown in the upper half o f the screen. These included 

the tracks, points and signals and also a list o f the possible routes in the layout For the 

checkers, the lower half of the screen showed print-out o f the SSI Geographic Data 

files; the testers instead had an array o f controls (e.g. for points) and indications (e.g. of 

signals) to enable the testing of the behaviour o f the system. There were three track 

layouts programmed into the simulator, one for training and two for actual 

performance: the simple layout used in training contained only four routes; die two 

layouts for data collection contained seven and nine routes, respectively. The screens 

for checking and testing tasks, showing the seven- and nine-route layouts, are shown in 

Figure 7 and Figure 8, respectively.
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Figure 7: SSI simulator checking screen

DEMONSTRATION
SI S2

Route List: Rl=fS2toS<ll: R2=fS2toS81: R3=fS3to S41: R4=fS3toS8* R5=fS6to S31: RS=fS7toSl): R7°(S7toSS1
/  P R R  D a t a  fo x »  L a y o u t  1  
« Q R 1  i f

t h e n

«Q R 2 i f

t h e n

R 1  a
P I  o x > f, P 2  c n f
U 3 -C B  1 ,  U 6-C A  1 ,  U 7-C A  1 ,  U 8 -B A  1 
P I  c p ,  P 2  c n  
S 2  c l e a r  b p u l l

P i  e r f ,  P 2  e r f  
U 1 4 -A B  f » U 3 -A C  f  
R 2R2 s
U 3 -C B  1 ,  116—CA I ,  117—CB 
1113—CA 1 ,  1114—BA I ,  1115- BA

Note: The upper part o f the screen shows the signalling plan for the simulated SSI 

scheme, including a list o f routes. The scheme shown here is the simpler o f the two 

used in experiments I, II and HI, with seven possible routes (only four o f which were 

to be checked). The lower part o f the screen displays the SSI ‘geographic data’ code to 

be checked. Navigation between and within the different SSI ‘files’ is achieved by use 

of the buttons on the right hand side.
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Figure 8: SSI simulator testing screen

DEMONSTRATION

TI T3_ T3 T4 TS T6 T7 T8 T9 T10 TU T12 T13 TM T1S T16 Tl? T18

Note: The upper part o f the screen shows the signalling plan for the simulated SSI 

scheme, including a list o f routes. The scheme shown here is the more complex o f the 

two used in experiments I, II and III, with nine possible routes (only four o f which 

were to be checked). The lower part o f the screen displays the controls and indicators 

that are used to test the functionality of the SSI ‘geographic data’ code. Route controls 

are labelled ‘R’, track sections are labelled T ,  points T ’ and signals ‘S’.
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7.1.2.1 Checking task

The simulator requires the participants to search for faults in SSI programme code 

concerned with setting routes across the railway network Checkers do this by 

browsing through three ‘files’: PRR, PFM and OPT, each accessed by clicking on the 

respective button. The TRR’ file (Panel Route Request) contains the SSI data 

specifying the conditions that must be fulfilled before a route can be set, eg. points in 

their correct positions, no opposing routes already set The PFM (Points Free to 

Move) specifies when it is safe to move the points from one position to the other (eg. 

no train travelling over them). The OPT (OutPuT) file ensures that only one train is 

allowed into a route at a time, by controlling when a signal is sent (output) to change 

the route’s entrance signal to green.

The checkers search for faults by reading through the SSI code, ensuring that it 

complies with the signalling rules that apply to the particular SSI signalling layout 

shown in the diagram in the upper part of the screen.

7.1.2.2 Testing task

Testers search for faults by making sure that safe actions can be carried out but unsafe 

ones are not allowed. The lower part o f the simulator screen contains buttons 

corresponding to each o f the screen elements, eg. points, signals and track sections. 

Each one o f these can be toggled to different states, eg. points can be in one o f two 

positions, and can be free to move or locked; track sections can be empty or have 

trains situated in them. For example, a prime safely concern is that points should not 

move from one position to the other while a train is crossing over them as the train 

would be de-railed. This is tested by taking a section o f track containing a set o f 

points, and then setting the state o f the track section to represent a train situated within 

the track section. The points should be fixed in position, unable to be moved until the 

track section has its state changed to represent no train in the section.
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7.1.2.3 Faults to be detected

The faults to be detected by the participants were seeded into the simulators. To 

ensure that performance by checkers and testers was comparable exactly the same set 

o f faults was used for both simulators. In the real SSI checking and testing tasks, some 

fault types exist that would not be detectable by both methods. For instance, 

duplicated code may be visible in checking, but would not necessarily affect specific 

functionality o f the railway during testing, and so be invisible. Only when the data were 

installed on-site could the extra processing demands o f the superfluous code lead to 

system failure. Other problems, such as timing constraints, may be input-dependent 

and so not detectable by checking the SSI code alone. To avoid these problems only 

faults that would in practice be detectable by both checking and testing were included.

Faults from four signalling categories were chosen to be seeded into the simulations, 

based upon common fault types found in the error analysis:

1) ASPect control (ASP). Faults in this category affect whether a green fight, or 

aspect, is shown appropriately by a signal

2) Opposing Route, Same points position (ORS). The SSI system should not 

allow a route to be set if  another route which uses similar parts o f the track 

network (an opposing route) has already been set Some opposing routes 

require the points to be in the same position for both routes; other opposing 

routes require points in different positions. The SSI system deals with these

; two classes o f opposing routes in different parts o f the SSI code. This category 

deals with faults affecting opposing routes over the same points’ position.

3) Opposing Route, Different points position (ORD). This category deals with 

the second class o f opposing routes, those set over different points positions. 

Both o f these opposing route categories were used because it was thought that 

the different methods o f coding may lead to performance differences between 

categories for checkers.
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4) ROUte setting (ROU). This category deals with faults affecting whether a 

route can be set appropriately, e.g. ensuring that the sets o f points required by 

the route are moved to the correct position.

These fault categories were chosen from those recorded in the fault log audit section of 

the error analysis chapter (§ 3.2), because o f either their high frequency o f occurrence 

or because o f large differences between the performance o f checkers and testers. These 

fault categories thus represent an attempt at a robust manipulation o f the fault-type 

variable, so increasing the statistical power o f an otherwise “small” experiment.

7.1.3 Procedure

Data collection took place in groups of up to 10 participants at a time. Each participant 

worked individually, seated at a PC workstation running the SSI simulator.

All participants initially completed tests of verbal and spatial ability taken from the 

General Aptitude Test Battery (US Dept, of Labor Employment and Training 

Administration, 1982). This was followed by two periods of training lasting 

approximately 45 minutes each.

In order to standardise the training for the tasks between checkers and testers as far as 

possible all participants first completed a ‘core’ component which related to the general 

working o f SSI and railway signalling rules. This was followed by specific training in 

which each experimental group was taught how to use the particular interface 

associated with their task to find faults in the simulated SSL Between training sessions, 

and between training and testing, participants were given 5-minute refreshment breaks.

During training the SSI simulator was running a simplified, practice SSI track layout 

For the core training participants were presented with an information sheet, and this 

was read through by an experimenter who explained the various concepts to the 

participants and answered any questions that they had. The participants also had a crib 

sheet to use while performing the training and actual task. The training and crib sheets 

can be found in appendix B.
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The specific training included a practice session, where participants searched for two 

faults in a demonstration layout o f the experimental task presented on the SSI 

simulator. At the end of the specific training session the practice faults were shown to 

the participants, along with the reasoning and actions that should have been followed 

to find them. Questions about the training, e.g. the signalling rules, were fielded from 

the participants at this point; the participants were told that questions could not be 

answered once the task proper had begun.

For the actual task participants were required to complete two signalling layouts, 

presented one after the other. One layout consisted o f seven train routes; the other, 

nine. Presentation order o f the two layouts was counterbalanced within conditions. For 

each layout participants were instructed to check or test the code /  behaviour o f four 

o f the routes (specified on the crib sheet) and to search for any faults that might be 

present Just four routes were specified for the task because as the number o f  active 

routes increases linearly the interactions between routes increase exponentially. 

Thoroughly testing more than four routes would have made the data collection 

sessions too long. Although only actually looking for faults in four o f the routes, the 

extra routes present in each layout would represent additional information and clutter, 

thus making the task more demanding and avoiding ceiling effects.

Each layout contained eight faults, but the participants were not informed as to how 

many faults there were to find. There were four fault types (ASP, ORD, ORS and 

ROU, as described earlier), two o f each type per layout Further, for each fault type, 

one of the faults per layout was an error o f commission, i.e. incorrect SSI code, and 

one was an error o f omission, i.e. missing code.

If  the participant found a fault they were instructed to log it by clicking a button on the 

display and inputting a description allowing the fault to be identified. The task was self- 

paced. Participants were instructed to continue searching for faults until they were 

satisfied that they could find no more. When they had finished inspecting a layout they 

clicked on another button on the display, which either took them to the next layout, or 

terminated the simulator programme. Participants were paid £15 for completing the 

experiment
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7.2 Results

The data from one of the participants in the checking condition was excluded from the 

analysis because of misinterpretation of experimental instructions.

There was no significant difference between checking and testing groups in spatial 

ability. However, the testing group scored significantly higher (t [24] = 2.24, p < .05) in 

verbal ability. Correlations between the measures o f cognitive ability and fault detection 

performance were examined separately for each group. No significant associations 

were found.

To test whether differences in spatial and verbal ability were related to error detection 

performance, a measure o f relative spatial /  verbal ability was constructed. Each 

participant’s standardised verbal ability score was subtracted from their standardised 

spatial ability score, to give a measure (S-V) that was at a maximum for those relatively 

high in spatial ability and at a minimum for those relatively high in verbal ability (after 

Cronbach and Snow, 1977). The difference between S-V scores for all possible 

“virtual” checker /  tester pairs was computed, and correlated with the number o f faults 

detected by either one or both members o f the virtual pair ( C u l ) . A  big difference 

between S-V scores would indicate a diverse pair in terms of their relative spatial/ 

verbal abilities. However, no significant association was found between this measure 

and fault detection performance o f the pair.

The mean proportion o f faults detected in each o f the experimental cells is shown in 

Table 13.

Error detection performance was analysed using a 2 (task type - checking, testing) x 4 

(fault type - ASP, ORD, ORS, ROU) x 2 (CO - commission, omission) ANOVA. Task 

type was a between participants measure, the fault type and CO factors were within 

participants measures.

1 1 2



Table 13: Proportion o f faults detected by task  type, fault type and 

om ission /  com m ission

Fault type Checking (n = 12) Testing (n =  14)

Omission Commission Omission Comm ission

M (SD ) M (S B ) M (SD ) M (SD )

ASP .96 (.14) .92 (.29) .83 (.39) .42 (.51)

ORD .67 (.49) .71 (.37) 1.00 (.00) 1.00 (.00)

ORS .92 (.29) .75 (.45) .92 (.29) .88(31)

ROU .96 (.14) .83 (.39) .38 (.31) 1.00 (.00)

There was no significant main effect o f task type (F [1,24] <  1) or fault type (F [3,72] 

= 2.08, p > .05). Errors o f commission were detected significandy less well than errors 

o f omission (F [1,24] = 10.01, p < .01). There was a highly significant interaction 

between task type and fault type (F [3,72] = 10.58, p <  .001). This interaction seems 

attributable to poor performance o f checkers in detecting ORD faults, and poor 

performance o f testers in finding ASP faults. This effect was clarified by a significant 

third order interaction between task type, fault type and CO (F [3, 72] =  5.59, p < 

.005). This was attributable to the low number of ASP faults o f commission detected 

by testers. This result also probably accounted for the significant second order 

interaction found between fault type and CO (F(3,72) =  4.32, p < .01), where ASP 

faults o f commission were detected poorly compared to faults o f omission.

7.3 D iscussion

The results must first be considered in relation to the conditions that must be met 

before diversity could play a beneficial role in fault detection (see § 6.1. for details).
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First, there was consistency to error, as evidenced by variation in performance being 

associated with different fault types across task conditions. Second, neither o f the task 

conditiona was a subset o f the other in terms o f fault detection performance. Also, the 

task was sufficiently complex that perfect performance was not achieved, as evidenced 

by the lack o f 100% fault detection. In fact, the two conditions were not even found to 

differ significantly from each other in terms o f overall faults detected.

The first o f  the above points highlights the main finding; that there was diversity o f 

fault detection across task environments. Checkers detected fewer ORD (Opposing 

Route - Different points position) faults than testers. Testers were comparatively poor 

at detecting ASP (ASPect control) faults, and this was particularly the case for faults o f 

commission. These differences in performance can be understood if considered in the 

context o f the mechanics o f the actual fault finding process that checkers and testers 

must go through.

To detect ORD faults, the checker must first work out which routes are opposing to 

each other from the signalling diagram. Then, the points positions for each o f these 

opposing routes must be established. When this is done, the direction that trains would 

travel as they cross the points, for those routes that must not be set together, must be 

worked out and translated into a machine readable SSI sub-route label (see § 5). This 

sub-route labelling has been found to be a comparatively error-prone procedure, as it 

does not consistently produce the same label for the same spatial direction o f route for 

different track layouts. Only when these activities have been carried out can the 

checker assess whether the code shown on screen is correct or not.

On the other hand, the tester has a much more straightforward task to find the same 

fault They must also first work out which routes are opposing to each other, but then 

they merely have to attempt to set the two opposing routes at the same time by 

clicking on the two route buttons. I f  they can be set together, as shown by an 

indication on the screen turning from red to green, there is a fault This result 

replicated a finding from the error analysis o f the DPP (detailed in § 3.2.2), where 

checkers were again poorer than testers at detecting opposing locking faults.
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In contrast to the above, checkers are superior in detecting ASP faults o f  commission. 

To the checker these faults would be reasonably obvious. In the SSI code for a 

particular route, there would appear a reference to a section o f track that was irrelevant 

to the route in question. For the tester to discover this fault; however, would involve 

them repetitively searching through all the track sections in die layout, whether part o f 

the route under test or not, to see if any affected the functioning o f the route under 

test This finding is contrary to that found in the field studies. In the fault log audit, 

testers were found to be superior to checkers for ASP faults. This difference could be 

because o f the nature o f the simulation. For instance, because o f the restricted 

functionality o f  the SSI simulator, it was not possible to include more than eight faults 

per layout Any more and it would have become impossible to test due to the lack of 

working functions. This meant that the individual faults seeded into the simulation 

were necessarily only a fraction o f the variety that can occur in the actual DPP. It was 

possible that those particular faults chosen for inclusion, while taken from examples in 

the fault log audit, were not entirely representative.

Cognitive abilities do not appear to have been related to fault finding in this 

experiment There were no significant associations found between measures o f spatial 

or verbal ability and the type of faults found. However, there were not even any 

significant correlations found between ability and overall fault detection performance. 

Spatial and verbal ability have been shown in the past to be strongly related to 

performance in computer-based tasks. It was possible that a number o f factors to do 

with the sample may have been having an effect First, the experiment was somewhat 

exploratory, and so the sample size was small. Second, the sample had a significantly 

higher mean and lower standard deviation for cognitive ability than that found in a 

reference sample of the general population. This was equivalent to a mean IQ  of 120 

(SD = 15) for the participants in this study compared to an IQ  o f 100 (a = 20) for a 

normative sample o f the U.S. adult population. However, it could also be argued that 

people employed in the ‘real world’ task o f safety-critical software validation would 

also be highly selected engineers.
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Overall, the data tentatively support the findings from the field studies. They indicate 

that the use o f diversity in terms o f task environment is an achievable method of 

promoting diversity in fault detection performance in the SSI design task. However, it 

is not dear how the various factors that go together to make up task diversity 

contributed to the results. As discussed earlier, factors such as differences in 

information saliency, modality of presentation o f information etc., are the most 

obvious dimensions o f contrast between checking and testing. However, other, less 

directly related factors necessarily go hand-in-hand with task diversity. For instance, the 

domain knowledge presented to checkers and testers was somewhat different This was 

unavoidable because o f their different tasks, and the differences were controlled where 

possible with common training. However, the variation that remained may have led to 

systematic differences between checkers and testers in terms o f their mental model of 

even the higher-level SSI system. Also, the natural variation between individuals’ 

mental models within tasks may be found to be a useful source o f diversity.

This factor, in particular, will be investigated further in the next chapter.
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8 Cognitive Diversity Experim ent II

Experiment II was planned to investigate the role that differences in participants’ 

mental models played in diversity o f fault detection. In experiment I it was found that 

task environment was strongly associated with the types, but not numbers, o f faults 

found by participants in the simulated SSI task The second experiment would probe 

the role that variations in participants’ mental models played upon diversity in fault 

detection.

Differences in mental models have been studied in computer programming 

environments, usually in relation to the differences between novice and expert 

programmers. Adelson (1981) found differences in the recall o f previously presented 

programme code by groups o f programmers with different levels o f  experience. Expert 

programmers’ recollections tended to be organised semantically, novice programmers’ 

syntactically. Cooke and Schvaneveldt (1988) also found differences between expert 

and novice programmers in terms of relatedness-ratings o f programming concepts, 

with experts tending to mis-define concepts less often than novices. Although these 

differences between expert and novice mental models have been used to account for 

the usually superior programming and debugging performance o f experts, this has not 

always been shown to be the case. For instance, Adelson (1984) found that experts 

performed better when presented with materials encouraging an abstract 

representation o f a programming task. However, when materials encouraging a 

concrete representation were presented the performance o f novices was better.

These studies show that although differences in mental models can lead to differences 

in performance the reasons for this are not only because some mental representations 

are better or worse than others, but also because in different contexts some are more 

or less appropriate than others. The differences between models can thus be exploited 

as a dimension o f cognitive diversity.

The difficulty with this approach lies in achieving a quantitative assessment o f a mental 

model. One possible method is to use psychometric measures o f conceptual distance 

with respect to concepts within the task environment (see Cook, 1994 for a review).
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Although little work has been done in this area, there are some encouraging indications 

of the validity of this method (Coury, Weiland and Cuqlock-Knopp, 1992; Pallant, 

Timmer and McRae, 1996).

8.1 Method

Twenty four participants (four female) were recruited from the student population at 

the same UK University that hosted experiment one. All participants were enrolled on 

science-based courses. Mean age was 25 yrs (SD = 3 yrs). Participants were assigned 

randomly to either the checking condition or the testing condition, with the constraint 

that each condition should have 12 participants.

Experiment II was conducted in essentially the same manner as experiment I, but with 

the following difference. Instead of completing measures of spatial and verbal ability, 

after the period of ‘core’ training (but before task-specific training) participants 

completed psychometric measures designed to evaluate their mental models o f the task 

environment Eight constructs were chosen to represent the task environment These 

comprised the four components o f the railway, combined with the binary states that 

each could assume, as shown in Table 14.

Table 14: Railway signalling constructs used in psychom etric mental 

m odel assessm ent

Construct Component Possible states

1. Points a. Free to move

2. b. Locked

3. Route a. Not set

4. '. . b. Set

5. Signal a. Green

6. b. Red

7. Track section a. Clear

8. b. Occupied
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Three questionnaires were administered in total. The first was an assessment o f die 

conceptual distance between all possible pairings o f constructs. For each pairing, 

participants were asked to mark on a 0 - 100 scale the ‘distance’ they perceived 

between the constructs, zero being lowest possible distance, 100 the highest

The second questionnaire required participants to rate the relative contribution that the 

constructs made to tbe safe running o f the railway. For each possible pairing o f 

constructs a 100 - 0 - 100 scale was shown, with the members o f the pair as scale 

anchors. Participants were asked to rate which o f the two constructs contributed most 

to the safety o f the railway, or to give a rating towards the middle (0) o f the scale if  they 

adjudged the two constructs to be equally important for safety.

The third questionnaire was identical to the second, except that it required participants 

to evaluate the constructs in relation to the concept o f “functionality”; the efficient 

running or ‘liveness’ o f the railway. All mental model questionnaires are shown in 

appendix C.

8.2 Results

The mean proportion o f faults detected in each o f the experimental cells is shown in 

Table 15.

Fault detection performance was again analysed using a 2 (task type - checking, testing) 

x 4 (fault type - ASP, ORD, ORS, ROU) x 2 (CO - commission, omission) ANOVA, 

the latter two factors being within-participants measures.

There was found to be no main effect o f task type, or o f CO. There was a significant 

main effect o f fault type, however (F [3,66] =  8.37, p <  .001), with both ORD and 

ORS opposing route faults being detected poorly and ROU faults detected best This 

difference in fault detection performance was highlighted by a significant second order 

interaction between task type and fault type (F [3,66] =  4.94, p < .005). This effect 

seemed due to testers being less effective in detecting ASP faults, and checkers less 

effective in detecting ORS faults.
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T able 15: P roportion o f faults detected  by ta sk  type, fau lt type and  om ission 

/  com m ission.

F ault type Checking (n = 12) T esting  (n = 12)

O m ission Com m ission O m ission Com m ission

M (S D ) M (SD ) M (SU ) M {SD )

ASP .75 (.45) .75 (.45) .71 (.43) .25 (.45)

ORD .42 (.51) .58 (.51) .58 (.51) .38 (.48)

ORS .33 (.49) .25 (.45) .46 (.50) .58 (.51)

ROU .88 (.31) .75 (.45) .67 (.49) .67 (.49)

These effects were further clarified by a significant third-order interaction between task 

type, fault type and CO (F [3, 66] = 4.62, p < .01). This is attributable to testers 

showing a great disparity between errors o f omission and commission in ASP faults, 

with errors o f commission detected particularly poorly.

8.2.1 Analysis of mental model data

The distance between constructs from the three mental model questionnaires were 

analysed separately using the INDSCAL Multi-Dimensional Scaling (MDS) procedure 

(as described in Young and Harris, 1992). Each participant’s responses to each 

questionnaire were assumed to represent ordinal rather than interval- or ratio-level 

data, therefore requiring non-metric MDS. Participants’ responses were made to all 

possible pairs o f constructs; therefore the data were represented as square, symmetrical 

matrices. For each questionnaire the matrices from all participants were aggregated to 

produce one overall model based on weighted Euclidean distances.

A scree-plot o f S-stress against dimensionality suggested a two-dimensional solution 

for each questionnaire. Inspection o f the weirdness index for each participant showed
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no values greater than .8. Particularly high or low weirdness values were not found 

predominantly from either the checkers or testers, indicating that the MDS solution 

was acceptable for both groups. Overall RSQ values for each questionnaire were not 

high (all between .50 and .60), but S-stress values were acceptable (< .3), and lower 

than for 1 -or 3-dimensional solutions.

With a two dimensional model, one flattened weight was produced per participant for 

each o f the conceptual distance, safety, and functionality questionnaires. The flattened 

weights provided an index o f an individual’s deviation from the mean solution for the 

entire sample, and therefore an index o f how similar or different the participants’ 

mental models were from the average.

The flattened weight from each questionnaire was correlated with the number o f faults 

detected. N o significant associations were found, showing no straightforward 

association between individual performance and mental model “deviation”.

To gauge the effects o f diversity o f mental models on error detection, Virtual’ pairs o f 

participants were constructed. All possible different combinations o f participants were 

first listed; this is equal to ¡N * N — 1] /  2, or 276 virtual pairs in this case. For each 

virtual pair the difference between flattened weights was computed for each o f the 

questionnaires.

A number o f different measures o f fault detection performance could have been taken 

for these pairs. The mean o f two participant’s individual fault detection scores gives an 

indication o f the overall merit o f the pair, but does not include any information as to 

the levels o f diversity or redundancy in the pair. A better indication o f the practical 

benefit o f task diversity is to look at the total number o f faults detected by pairs 

corresponding to C U T  in Figure 6. This corresponds to the total number o f faults 

detected by both members of the pair, and so to their overall effectiveness.'

This “effectiveness” fault detection variable was then correlated with each o f the 

mental model difference variables. Only the difference in the ‘functionality’ mental
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model scores was found to be significandy related to fault detection performance (r 

[276] = .24, p c.001).

8.3 D iscussion

Overall, the pattern o f performance found in this experiment was similar to that found 

in experiment I. Testers were again found to be relatively poor at detecting ASP faults 

o f commission, and checkers were again found to be poor in detecting opposing 

locking faults, but this time for routes set over the same points position rather than 

different points position. While this finding is slightly different from that found in 

experiment I, it replicates the pattern found in the field studies, and relates once again 

to the use o f sub-routes.

In general error detection was poorer in experiment II than experiment I. This could 

be attributable to the less stringent sampling criterion. Although the participants came 

from a similar population in terms o f educational level, pragmatic considerations meant 

that sampling could not be constrained to only engineers and computer scientists. The 

resulting participants would therefore not necessarily have had experience o f code 

inspection and functional testing before the experiment

Considering the analysis o f mental model data, the results showed no relationship 

between mental model measures and absolute performance. This suggests that the 

participants’ mental models were not significandy ‘better’ or V orse’ but merely 

different

The diversity measure between Virtual’ pairs o f participants showed only one 

significant relationship, between diversity with respect to concepts o f functionality and 

overall fault detection effectiveness o f the pair. There are a number o f speculations 

that can be made about this finding.

O n the one hand, what constitutes the functionality or liveness o f a system may be a 

more fluid notion than that o f safety, and therefore admit more variation in its 

conception. Safety and liveness are concepts central to the operation o f systems that 

have similar properties to the railway considered here. For instance, distributed
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computer systems have to move multiple packets o f data (analogous to trains) across 

fixed wiring networks (analogous to rail networks) as efficiently as possible without 

losing data. It has been demonstrated in this domain that proving the existence o f 

safety properties o f networks is an easier job than doing the same for liveness (Alpem 

and Schneider, 1987), in part because o f the greater ease with which safety can be 

defined.

To illustrate this point, think about trying to evaluate the state o f a railway for its safety 

and liveness. For the purposes o f this example I will define ‘railway’ quite simply; just 

two railway lines (A and B) that cross each other, with two sets o f signals (A and B, 

one on each line protecting the junction) and two trains (A and B), one on each line. If  

train A is travelling along its line towards the crossing point, then signal B (on the other 

line) should be red. If  train B were obeying signal B, and had stopped before it, then 

the railway would certainly seem to be within its envelope o f safe operation. However, 

is the system within its liveness envelope? On the one hand, train B is stationary and 

that doesn’t seem very ‘live’. However, this delay is surely a necessary part o f a safe 

system, and will only conflict with liveness goals if signal B continues to show a red 

light long after train A is clear of danger. Therefore, a red signal is always good from a 

safety point o f view, but sometimes acceptable and sometimes not from a liveness 

point o f view.

However, if the degree o f variation possible within a concept is the im portant factor, 

then ‘conceptual distance’ should have also been related to error detection. Unlike the 

safety and functionality/liveness questionnaires, the participants were not given any 

guidance as to the goal that any similarity or difference between railway elements 

should serve with the conceptual distance questionnaire. Thus, conceptual distance 

should perhaps have accommodated even more variation between participants’ mental 

models than did functionality.

It could be argued, however, that it was precisely the focus on task relevant factors 

given by the safety and functionality questionnaires that was im portant Participants 

might have used many task-irrelevant factors to decide their answers on the conceptual 

distance questionnaire, e.g. how big the railway elements are.
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This point is unlikely to be resolved here by debate based on such limited data. 

Experiment HI would provide a further test o f the exploitability o f mental models in 

the service o f diverse task performance.
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9 Cognitive diversity experiment III

O f the mental model measures, only differences relating to the functionality o f the 

railway were found to be associated with improved fault-finding performance in 

Experiment II. This indicated that if  people have different models o f what constitutes 

efficient working o f the railway, they will tend to find different faults. Functionality 

corresponds to flexibility or ‘liveness’ o f the network, where points are flee to be 

moved and routes can be set without undue restriction. This perhaps allowed more 

diversity between people’s mental models than the more constrained and perhaps 

easier to define concept o f safely. However, the conceptual distance measure should be 

the most freely definable o f them all, supporting large differences in mental models. 

Perhaps in the case o f conceptual distance, the range in mental models was too diverse, 

leading to no predictable association with performance. ‘Conceptual distance’ alone 

may be too sprawling a notion to have any useful im pact

In  experiment II the psychometric mental model measures were administered after the 

core training in railway principles, but before the specific training for checking or 

testing. This meant that the variation found between participants’ mental models 

would have represented natural variations between their understanding and 

conceptualisation o f the training, without any systematic effect o f the different tasks 

they were to perform (i.e. checking vs. testing) or die variations in domain knowledge 

that the specific training would bring. The large and consistent interaction between 

fault- and task-type found in experiments I and II may also have been due in  part to 

the influence o f ‘environment-sponsored’ differences in the range o f mental models 

that each task supported, or that fit ‘best’. Any environment-sponsored differences in 

mental model would play a mediating role in the type o f faults found by participants in 

each condition.

The dimension o f safety vs. functionality showed some promise in experiment II.

Safety and functionality were used in this experiment to investigate the effects that task 

environment perse, and the influence o f task environment upon participants’ mental 

models, has upon fault detection performance. Therefore, the faults seeded into 

experiment III differed in terms o f whether a fault affected the safety or functionality
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o f the railway network. It would then be possible to investigate whether the task 

environment is associated with the numbers o f safety and functionality faults detected. 

Participants would also be asked to search specifically for either faults o f safety or 

faults o f functionality. I f  their mental model o f the safety or functionality o f the railway 

is psychologically meaningful, over and above the effect o f the environment itself, then 

this should be evident in their ability to find their assigned faults.

9.1 Method

9.1.1 'Participants

Eighty-eight participants (9 female) with a science background were recruited from the 

student populations at four UK universities and two sixth-form colleges. Mean age was 

20 years, (SD =  3 yrs). Participants were randomly assigned to conditions; thirty nine 

participants were assigned to the checking condition, 49 to the testing condition. 

(Numbers are unequal because of the unforeseen cancellation o f an experimental 

session.)

Experiment III was then conducted in a similar manner as experiments one and two, 

but with the following differences.

9.1.2 Fault categories

In  the previous experiments the sixteen faults seeded into the SSI simulator were made 

up o f two each from four signalling categories: ASP, ORD, ORS and ROU. Each 

category contained one error o f omission and one o f commission. In this experiment it 

was still necessary to have the four signalling categories, but this time a completely new 

set o f sixteen faults was chosen so that each o f the categories contained one fault 

affecting the safety o f the railway and one affecting the functionality. To subdivide the 

categories any further would not be possible with only sixteen faults, so the 

commission/omission dimension was controlled for by having only faults o f 

commission. (Having more than sixteen faults would have made the testers’ task 

unworkable, as different faults would start to hide’ each other). Training was slightly 

altered to emphasise the distinction between the safety and functionality o f the railway, 

and the practice session included faults o f both types. The new within-partidpants 

factor o f safety vs. functionality was named S_F.
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9.1.3 Procedure

The experiment was initially conducted as per experiment I. All participants completed 

tests o f verbal and spatial ability taken from the General Aptitude Test Battery (US 

D ep t o f Labor, 1982). This was followed by both core and specific training sessions. 

Participants then completed the three psychometric mental model measures used in 

experiment II. Note, in this experiment, as opposed to experiment II, the psychometric 

mental model measures were presented to participants after they had completed both 

their core (general) and specific (checking or testing) training. This was to emphasise 

the potential task environment-mediated differences between the mental models o f 

checkers vs. testers.

Before the participants proceeded with the fault finding task they were allocated 

randomly into another two groups. Approximately half in each condition were 

instructed to concentrate 80% of their effort on finding faults o f functionality (and 

20% on safety), the other half were told to concentrate 80% o f their effort on finding 

faults o f safety (and 20% on functionality). This factor was referred to as INST 

(ENSTructions).

A time limit was this time imposed on task performance, amounting to approximately 

75% o f the mean time that participants in the previous experiments took before 

finding their final error. For layout one (with seven routes) this corresponded to 30 

minutes; for layout two (with nine routes) this was 40 minutes. (Participants were free 

to finish their task before the time limit.) I t was felt that if  the task was self-paced, as in 

previous experiments, participants might be able to detect too high a proportion o f the 

errors. This ceiling effect would mask distinctions between their efforts to find errors 

o f safety vs. functionality and vice versa.

Participants then proceeded to complete the task. After they had finished both layouts 

the mental model questionnaires were completed for a second time. Three additional 

questionnaires were then administered. The Error Orientation Questionnaire (EOQ; 

Rybowiak, Frese, Garst & Batinik, 1999); eight scales designed to elicit participants’ 

self-rated attitudes to their own errors. The Cognitive Style Index (CSI; Allinson and 

Hayes, 1996) contains one bipolar scale o f self-rated cognitive style. A low
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score indicates a global, holistic problem-solving approach; a high score indicates an 

analytic approach. Finally a personality assessment questionnaire was completed. 

Prevue ICES (Bartram, 1994) contains four scales; Independence, Conscientiousness, 

Extroversion and Stability, each made up from two minor scales.

9.2 Results

Three participant’s data were removed from the analysis: two testers detected no faults 

at all, and there was some doubt as to whether they had fully understood the final task 

instructions; one checker detected all o f the faults in both layouts (which, for this 

individual, meant that perfect performance seemed to be reliably obtainable, obviating 

the need for diversity [see § 6.1]). Thus, 85 participants’ data were retained for analysis.

9.2.1 Individual differences

There were no significant differences between groups in terms o f spatial or verbal 

ability. Both spatial ability (r [85] =  .35, p < .005) and verbal ability (r [85] =  .51, p <  

.001) were found to  have significant positive correlations with the overall number o f 

faults detected. There were found to be no significant correlations between fault 

detection performance and analytic/global cognitive style, or any o f the personality 

scales. There was a marginally non-significant negative trend between fault detection 

and the EO Q  scale of covering-up errors (r [85] = -.21, p = .053), so that poorer fault 

detection performance was associated with individuals who report that they tend to 

hide their errors. No other EOQ scales were significantly associated with performance.

There was a significant correlation between the number o f faults detected and whether 

English was the participant’s first language or not (rpb [85]= .27, p  <  .05), such that 

those with English as their first language tended to find more faults. This language 

variable is also confounded with checking and testing groups, such that the testing 

group contained more participants whose first language was not English than did the 

checking group (t [68] =  3.87, p <  .01, with Welch's correction because o f unequal 

variances between groups). To control for this potentially biasing factor, whether the 

participant’s first language was English or not was used as a covariate in subsequent 

analyses.
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9.2.2 Fault detection performance by treatment group

The data were analysed using a 4 (fault type) x 2 (S_F) x 2 (task type) x 2 (INST: 

instructions to search for either safety or functionality faults) ANOVA, with ‘English is 

First Language’ (EFL) as a covariate. The first two factors were within participants, the 

latter ones between participants.

There were found to be no significant effect o f INST (F[l,80] <  1), so the analysis was 

repeated without i t  Table 16 shows the proportions o f faults detected by task type, 

fault type and S_F.

Table 16: Proportion o f faults detected by task type, fault type and safety 

vs. functionality

F ault type Checking (n = 47) Testing (n = 38)

Safety Functionality Safety Functionality

M (SD ) M (SD ) M (SD ) M (S D )

ASP .58 (.32) .70 (.36) .67 (.38) .22(37)

ORD .44 (.39) .79 (.30) .72 (.37) .26 (.31)

ORS .27 (.33) .54 (.39) .62 (.37) .49 (.45)

ROU .86 (.29) .69 (.38) .85 (.26) .26(38)

In  this analysis the overall effect o f EFL was marginally non-significant (F [1, 82] = 

3.84, p =  .052), but it was decided to retain it as a covariate as it was found to be 

significantly associated with poorer performance on ASP and ROU safety faults.

There were no main effects of task type (F[l, 82] =  1.37, p > .05), fault type (F[3,246] 

= 2.44, p = .065), or S_F (F[l, 82] < 1). As found previously there was a significant
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two-way interaction between task type and fault type (F [3,246] =10.22, p  <  .001), 

most notably because o f the checkers’ somewhat superior performance in detecting 

ASP and ROU faults, and their poorer performance in the detection o f ORS faults.

There was a significant interaction between task type and S_F (F [1, 82] =  163.25, p < 

.001), with checkers detecting more functionality faults compared to safety faults, and 

vice versa for testers.

Finally, there was a significant three-way interaction between task type, fault type and 

S_F (F [3,246] =  3.23, p <  .05). For ASP, ORD and ORS fault types, checkers 

detected more faults o f functionality, testers more faults o f safety. But for ROU faults, 

checkers detected more faults o f safety than o f functionality.

9.2.3 Analysis of diversity in performance

To investigate diversity in fault detection, as before all possible virtual combinations of 

pairs o f participants were constructed. Previously, the total number o f faults detected 

by the pairs, corresponding to C U  T  in Figure 6, was used as the measure o f fault­

finding effectiveness. However, this measure does not give an indication o f the amount 

o f diversity in fault detection for the pair, and so their resistance to common mode 

error. A measure o f diversity is given by the number o f faults detected by only one or 

other member o f the pair, but not both, and corresponds to the area o f diversity, (C O 

T ) U  (C  n  T) in Figure 6. The data were also broken down by pair type; the virtual 

pairs o f participants consisted o f checkers with checkers (n = 703), testers with testers 

(n =  1081), or checkers with testers (n = 1786). The mean proportion o f faults 

detected, for each fault measure and by pair type, is shown in Table 17.

For the mean faults measure there was a significant difference between pair types (F [3, 

3567] = 86.26, p < .001). Post-hoc Bonferroni multiple comparison tests showed that 

each group was significandy different to the others with pairs o f checkers having the 

highest mean score and pairs of testers the lowest

Table 17: Proportion o f faults detected by measure of fault detection and 

‘virtual’ pair type
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M easure o f fault 

detection

‘V irtual’ pair type

Checker and 
Checker

T ester and 
T ester

Checker 
and T ester

M (SD ) M (SD ) M (S 1 7)

M ean o f pair .61 (.15) .51 (.15) .56 (.16)

R edundancy 
and diversity 
C U T

.80 (.14) .71 (.17) .82 (.16)

D iversity
( C n T ’) u ( C ’ n T )

.40 (.15) .40 (.14) .52 (.14)

Note: n(checker and checker) = 703; n(tester and tester) = 1081; n(checker and tester) = 1786

When considering the C U  T  measure, there was again found to be a significant 

difference between pair types (F [3,3567] = 117.13, p  <  .001). Post-hoc tests showed 

that pairs o f testers were detecting significantly fewer faults than the other two pair 

types, but checker with checker pairs were not significantly worse than checker with 

tester pairs.

The difference between groups for the diversity measure [ (C f iT )U  (C’ n  T)] was 

highly significant (F [3,3567] =  349.56, p < .001). Post hoc analysis showed pairs 

containing a checker and a tester detected significandy more diverse faults than the 

pairs containing either only checkers or only testers.

9.2.4 Diversity of Individual differences

It was hypothesised that differences in cognitive style, cognitive ability and personality 

would lead to differences in the types o f faults detected, rather than merely the 

number. To investigate this all the possible unique pairings o f participants were 

constructed as before. The absolute difference between the two members o f the pair
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was then taken for the above mentioned variables. Correlations between the difference 

measures and the measure o f absolute fault detection performance o f the pair (C U T ) 

and diversity performance [(C n  T ) U (C’ n  T)] were then calculated. Because o f the 

large number o f pairs in this analysis (N =  3570) a correlation o f only slighdy more 

, than .03 would be significant at the .05 level. Because o f this and the large number o f 

correlations being performed, only correlations with an absolute value above .10 are 

reported to avoid too many seemingly significant but spurious relationships.

None o f the differences for the cognitive ability variables, personality variables or the 

cognitive style index were found to have correlations o f greater than .10 with fault 

detection. Regarding the EO Q  scale, differences in ‘error risk taking’ (r[3570] =  .12, p 

< .001) and ‘thinking about errors’ (r[3570] = .13, p <  .001) were found to correlate 

with overall fault finding performance ( C u l ) .

9.2.5 /Mental models

As for experiment II, the distance between constructs from the three mental model 

questionnaires were analysed separately using the INDSCAL multidimensional analysis 

procedure. Parsimonious solutions for each questionnaire were derived, again seeking 

to minimise S-stress while maximising the proportion o f variance accounted for by the 

solution. For the conceptual distance measure this was a three dimensional model 

accounting for 49% of the variance in the original distance matrix. A four dimensional 

solution accounting for 56% of the variance was selected for die Functionality 

measure. Finally, a two dimensional solution (43% o f the variance) was chosen for the 

safety questionnaire.

For each questionnaire a number o f flattened weights were derived, equal to the 

number o f dimensions in the solution minus one. These weights gave an index o f the 

difference between each participant and the mean for the entire sample. For each o f 

the possible pairs o f participants, the absolute difference between each o f the 

participant’s flattened weights was taken as a measure o f dissimilarity o f the pair. These 

difference measures where then used in a regression analysis to predict the C U T  fault 

detection performance measure for the pair (Table 18).



Table 18: Results o f regression analysis o f mental model differences on 

fault detection performance
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Predictor R R2 F
[2,3567]

P <

ß t
[3567]

P <

Conceptual .06 .00 6.38 .005
distance

Wl .03 1.96 .051
W2 ' -.06 3.42 .001

Functionality .16 .03 30.47 .001

Wl .14 8.03 .001
W2 -.09 5.56 .001
W3 -.07 4.31 .001

Safety .08 .01 22.94 .001

W l -.08 4.79 .001

Note: W l, W2, etc. = Multidimensional scaling flattened weight

All three sets o f flattened weights were significantly associated with fault detection 

performance, as shown in Table 18 . For all o f the mental model difference measures 

the association with fault detection performance was lower than that found for 

experiment U; only the functionality measure had a multiple correlation coefficient o f 

greater than .10. O f the individual P weights for the functionality measure only the 

most important contributor, weight 1, is positively associated with fault detection; the 

others are associated negatively with performance.

The relationship between individual weights and fault detection was further 

investigated by dividing the sample into three equal groups for each o f the three 

functionality weights. Each pair o f participants was thus a member o f one o f three 

groups for each o f the weight measures: low diversity, medium diversity and high 

diversity. Mean fault detection performance was then analysed by diversity group using 

one-way ANOVAs with post hoc Bonferroni multiple comparisons. For weight one, 

the high diversity group detected significantly more faults than either the middle or low 

diversity groups (F [2,3567] =  17.20, p <  .001). For weight 2, the high diversity group

133



Chapter 9 : Cognitive D iversity E xperim ent III

this time detected significantly fewer faults than either o f the other two groups (F [2, 

3567] =  10.20, p <  .001). Weight three showed evidence o f a quadratic relationship 

between diversity and fault detection. The middle diversity group this time detected 

significantly more faults than the either the low or high diversity groups (F [2,3567] = 

20.52, p < .001).

9.3 Discussion

Although experiment HI used a different set o f faults to that used in the experiments I 

and II, there were similar patterns found in fault finding performance across tasks. 

Again, the worst fault detection performance for testers was for ASP faults, and for 

checkers it was ORS faults (involving sub-routes).

There was a significant relationship between task-type and whether the faults found 

were predominately ones o f safety or o f fiinctionality/liveness. Checkers tended to be 

better at detecting faults affecting safety rules whereas testers tended to be better at 

finding faults that affected only functionality.

The reason why testing should be better for safety faults and checking better for 

functionality faults is not wholly apparent It does not seem to be due in any great part 

to matters o f individual effort or goal preference, as the manipulation o f task 

INSTructions (where one half of participants were asked to predominandy search for 

safety faults and vice versa) was not found to have any significant effect This is so 

despite the experiment having adequate statistical power to detect ‘moderate’ effects. 

(Experiment III had a power o f .78 to detect ‘moderate’ differences [e.g. Cohen’s f  >

.3] between INST groups [with CL = .05, two-tailed]).

The relation o f safety vs. functionality efficacy between checking and testing is in 

agreement with findings from the error analysis (§ 3.5.1), however. There, it was argued 

that being able to see the all o f the component parts o f the code allowed checkers to 

notice additions what were clearly not part o f the route being evaluated, and which 

usually specified additional restrictions on the liveness o f the railway. To find the same 

fault testers would have to laboriously evaluate all o f the elements o f the railway that 

were not part o f the route under te st
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The only individual difference measures found to have substantial relationships with 

individual fault-detection performance were spatial and verbal ability. This is in 

agreement with previous literature on programming skill (see van der Veer, 1989, for a 

review), although in this experiment verbal ability was found to have a stronger 

relationship with fault-finding performance than did spatial ability, whereas the reverse 

has been found to be more often the case.

The effect o f spatial and verbal ability on fault finding did not emerge in the first 

experiment, however, probably because o f the more highly selected nature o f the 

sample in that case. In  the first experiment participants were aged around 24 years, a 

mix o f post- and undergraduate students, and all had backgrounds in engineering or 

computer science. Participants in the third experiment were younger, around 20 years 

on average, and were predominately undergraduates or final-year sixth-form students 

with ‘only* a science background.

None o f the Cognitive Style, Personality, or Error Orientation measures was found to 

be significantly related to individual fault detection performance.

9.3.1 Diversity

Differences between virtual pairs o f participants in terms o f their individual difference 

measures scores were not found to be substantially related to any measure o f fault 

detection. The only measures that did correlate above a level o f .10 were the EOQ 

scales o f ‘error risk taking* (r = .12) and ‘thinking about errors’ (r = .13). Another 

EO Q  scale, ‘covering-up errors’ was found to be marginally non-significandy related to 

individual fault detection (r = -.21). While these results seem connected by virtue o f 

their parent questionnaire (the EOQ), they are all separate scales, and show, at best, 

weak relationships with fault detection performance. For example, the differences in 

EO Q  scales accounted for little more than 1% o f the variation in virtual pair fault 

detection performance.

Regarding the psychometric mental model measures, a very mixed pattern o f results 

was obtained. O n the one hand, very different Multi-Dimensional Scaling solutions 

were found between experiments II and HI. In  experiment n , two-dimensional
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solutions were arrived at for conceptual distance, safety and functionality. In 

experiment HI, three-, four- and two-dimensional models were found, respectively. 

This could indicate that the changes made to the administration o f the mental model 

scales between experiments II and II had some effect. The extra, task-relevant training 

that the participants completed in experiment III compared to experiment II could 

have resulted in more complex mental models in experiment III, as demonstrated by 

the more complex MDS solutions. However, the solutions for experiment HI 

accounted for slightly ¿ess o f the variance in the raw responses than did the more 

‘complex’ experiment HI solutions.

On the other hand, it was found consistently in experiments H and H that variation in 

conceptions o f the functionality or liveness o f the railway was m ost importantly related 

to fault-finding performance, and not variations in the concept o f safety (or o f 

conceptual distance).

However, in both experiments the amount o f variation in fault detection scores 

accounted for by the functionality measure was very small; 6% and 3% respectively. 

Further, o f the three functionality-related flattened MDS weights used in the regression 

analysis in experiment HI, only one was actually related positively with error detection 

performance. This is particularly problematic because the ‘meaning’ o f the various 

dimensions in the MDS solutions is difficult to determine (unlike factor analysis 

methods, where the meaning o f the individual items can be abstracted to latent 

variables).

In summary, it seems that there is perhaps some promise in using individual 

differences as a domain for cognitive diversity. However, the data presented suggest 

that it is individual’s conceptions o f the task, rather than their abilities or styles, which 

may be most im portant A first step in investigating this issue further might be to use a 

more established technique in eliciting mental models, e.g. Repertory Grids (Kelly, 

1955). This technique in particular would allow the participant to produce their own 

conceptions o f the important elements in the task space, as well as the relationships 

between elements, in an interpretable manner.
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The only factor that was strongly related to diversity in fault detection performance 

was the task-type: checking or testing. This is a confirmation o f the findings from the 

first two diversity experiments. However, is this diversity a useful factor in promoting 

more robust fault detection?

Inspection o f Table 17 shows that, when considering the mean fault detection 

performance o f pairs o f checkers (CC), testers (TT), and checker/tester pairs (CT), CC 

pairs were the most effective, finding 61% of faults on average. CC pairs were 

significantly better than CT pairs (56%), who were also better than TT pairs (51%).

The mean fault detection figures for CC and TT pairs are merely the mean number o f 

faults found by individual checkers and testers, respectively. (This can be confirmed by 

taking the mean o f the checkers’ and testers’ scores from Table 16 and comparing 

them with the mean detection performance figures in Table 17. The figure for CT pairs 

is just the mean o f the individual checkers’ and testers’ performances [CT =  56% =

(61% + 51%) /  2]. The mean detection performance o f virtual pairs is thus just the 

mean o f individual performances. When taken as N  = 85 individuals this difference 

[61% for checkers, 51% for testers] was not significant. However, the same difference 

was launched into statistical significance when considered as N  =  3570 pairs; however, 

this is not valid statistically, as the 3570 pairs are not independent)

I f  there existed no other information about fault detection performance across 

checking and testing, the superiority o f checking would point to abandoning the testing 

task and merely having two checking phases. Any use o f the ‘weaker’ testing task 

would seem to just be diluting the performance o f the checkers. However, this position 

ignores the influence o f common-mode error, as will be shown below, r

Checking was found, on average, to detect 61 % o f faults, and therefore leave 39% 

undetected. Therefore, we might assume that a second check o f the same code would, 

on average, detect 61% o f the remaining 39% o f faults, giving a grand total o f 85% o f 

errors detected after two checks (39% x .61 = 23.79%. 61% +  23.79% =  84.79%, 

rounded to 85%. An easier way to compute the same thing would be to consider the 

proportion o f faults missed: checkers found .39 on average, so a second application

Chapter 9 : Cognitive D iversity E xperim ent III

137



Chapter 9 : Cognitive D iversity Experim ent IE

would miss .39 o f the original .39, i.e. .392 = .15.1 - .15 =  .85 o f faults found). 

However, if we look at the total number o f faults detected by one or both members o f 

the pair (i.e. C U  T  in Table 17), the measured figure is only 80% detection on average, 

5% less than the 85% figure that might have been expected.

The same pattern is found for TT pairs. Mean fault detection performance o f 

individual testers (and TT pairs) is 51%, so the proportion o f faults missed was .49. A 

second application o f testing would therefore be expected to miss the proportion.492 = 

.24. This is .76 or 76% of faults detected. However, the C U T  measure o f pair 

performance was only 71%, again 5% less than might have been expected.

There seems to be a pattern whereby paired performance o f checkers with checkers 

and testers with testers is less effective than might be anticipated when considering 

individual performance. This pattern is reversed when considering CT pairs. .

The average error detection performance o f CT pairs, from Table 17, was 56%. 

(Remember that this is inferior to the mean performance o f CC pairs, who managed 

61 %.) As was pointed out earlier, this figure o f 56% is just the mean o f the average 

error detection performance o f checkers and testers, who missed 39% and 49% o f 

faults, respectively. Therefore, we might then expect a CT pair to miss on average .39 x 

.49 =  .19, or 19% o f faults, finding the other 81%. However, C U T  performance for 

CT pairs is actually slightly better than might have been anticipated, at 82% detection. 

In  fact, CT pair performance (82% detection) is superior to CC pair performance 

(80%), even though individually checkers outperform testers, on average.

The reason why ‘diverse’ performance is better is although testers don’t find so many 

faults on average as checkers they do tend to find somewhat different faults to checkers. 

This can be seen by inspecting the measure o f diversity in performance in Table 17 ((C 

n T ) U ( C ’ n  T)). For both CC and TT pairs, only about 40% o f the faults detected 

are unique to either member o f the pair. For CT pairs, on average 52% o f faults 

detected by the pair a re ‘diverse’.
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The above findings informally demonstrate the benefit o f diversity in fault detection 

processes. A  double application o f the same fault detection method, i.e. redundancy, is 

not likely to be as effective on the second application as it was on the first, over and 

above the normal law o f diminishing returns. This is because, on average, die faults 

missed by the first application will be ‘harder’ ones. A second application o f the same 

method will find these faults no less difficult, indeed probably more so because they 

will be more thinly spread. I f  die second application is with a diverse fault detection 

method, however, then some o f the faults remaining from the first method might be 

quite ‘easy* ones as far as the second method is concerned, and so be more easily 

detected.

These conclusions need to be tempered somewhat The data on which they are based 

were obtained from a ‘toy* programming task, with naïve participants, which only 

looked at code checking and functional testing tasks. This begs the question as to what 

are the general properties o f task diversity in fault detection, and how can these be 

reliably measured and used.

9.3.2 Modelling diversity in fault detection

In software design, diversity has been proposed as means o f achieving highly reliable 

systems. Using the metaphor of hardware redundancy (i.e. by arranging components in 

parallel; § 1.1.2), the practice of N-version computer programming has become 

widespread in industrial and military safety-critical applications (e.g. Leveson, 1995; 

Rouquet and Traverse, 1986). N-version programming involves developing two or 

more separate programmes designed to do the same job. By making the development 

processes o f the different software versions independent it was hoped that the same 

mistakes would not be made in identical fashion by the different development teams, 

and therefore the N  different versions o f software would fail independently o f each 

other. So, although different versions o f the software might vary in their individual 

reliabilities, when used in the same system they should be unlikely to fail upon the 

same control input or demand, and so together would be likely to ensure greater 

reliability than any single version.

139



Chapter 9 : Cognitive D iversity E xperim ent III
I

However, hopes that this initial promise o f N-version software could be fulfilled were 

dashed by a number o f experiments which showed that independently-developed 

software versions tended to fail in correlated fashion, i.e. an input or demand that 

caused one version to fail was likely to make the other versions fail, too (e.g. Eckhardt 

et al, 1991; Knight & Leveson, 1986). (Note that it is not implied that a failure in one 

version would cause another version to fail on the same input, merely that there would 

be a correlation bew een failures o f the different versions.)

The reasons why this should be so were outlined in a model by Eckhardt and Lee 

(1985). Although different teams developing different software versions could be 

notionally independent, the difficulty o f the real-world problem solved by the software 

would be the same for all. This notion o f ‘difficulty’ can be used to classify system 

demands: some operations that the software must manage could be labelled as ‘easy*, 

such as the requirement for a signal to turn red when passed by a train. O ther 

operations would be hard’, such as working out the multiple constraints presented by 

multiple trains approaching the same track junction. Although independently 

developed, the N-versions o f software would thus be more likely to fail when required 

to perform a hard’ operation than when doing an ‘easy* one, and they would therefore 

show correlated (dependent) failure, rather than independent failure.

The Eckhardt and Lee (1985) model o f dependent failures was generalised by 

Iittlew ood and Miller (1989). They showed that if the different development teams o f 

the N-versions o f software were to use processes that differed in how ‘easy* or hard’ 

different aspects o f the programme seemed to them, then the different versions o f 

software produced might even fail in negatively correlated ways. That means that on an 

input or demand on which version A might be very likely to fail, version B might be 

very unlikely to fail.

Negatively correlated failure is a better scenario than even independent failure between 

versions. It is akin to the following example for the cautious investor. Imagine that two 

companies are competing for a large government contract The stock price o f the 

winner is likely to rise, whereas the price o f the loser will probably fall, all other factors 

being equal. However, you don’t  know which will win or which will lose, so how do

140



Chapter 9 : Cognitive D iversity E xperim ent III

you invest your money? To be guaranteed o f not losing money, you should spread 

your investment across both companies; if you have ¿20 to spend then invest ¿10 in 

each. If  company A wins and their stock doubles, you will have turned ¿10 into ¿20. 

However, company B’s stock may have fallen by half, too, reducing your investment 

there to ¿5. However, your final sum is still better than you started with, ¿25 vs. ¿20, 

and would be the same if  company B won instead o f company A.

The im portant factor in the example above is the negative correlation between the 

stock prices. As long as one goes up when the other goes down (and by the same ratio) 

then the initial investment is safe. Similarly, as long as a software design manager can 

be reasonably sure that they have negatively correlated versions then the pair will 

always be more reliable than either individual programme.

There are two big problems with the apparent panacea o f negatively correlated In­

version software, however.

First is the matter o f cost By definition N-version programming is likely to at least 

duplicate the costs o f a single version. However, even though in theory two perfectly 

negatively correlated software versions may together always be likely to produce the 

correct output given an arbitrary input, it is not an easy matter to decide which version 

is actually telling the ‘truth’. When hardware fails it is usually fairly obvious, as the 

component in question often stops working. Failed software may also stop working, 

but more often it tends to keep working but in a ‘faulty* fashion; in effect, it lies’. 

Guaranteeing the detection and correction o f “Byzantine Failure” as it has been called, 

relies upon at least four versions o f the software (Shasha & Lazere, 1998). This means 

that to fully reap the benefits of N-version software at least four completely 

independent versions o f the software have to be produced. Safety-critical software is 

inherently expensive to develop, but multiplying these costs by at least four is often 

seen as prohibitively expensive, especially in light o f the following, second, pit-fall o f 

N-version programming.

Second, it is not at all clear how to construct the N-different versions o f the software 

so that they will fail in independent or negatively correlated ways; indeed, it is not an
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easy task even to evaluate the independence o f a specific set o f diversely developed 

programmes (Popov & Strigini, 1998). This is because the models o f Eckhardt and Lee 

(1985) and Litdewood and Miller (1989) are purely conceptual models o f software 

diversity, and relate to how versions will fail ‘on average’ rather than in any specific 

case. Knowledge o f specific cases is precisely what is needed in practice, however. For 

instance, the experiments conducted by Knight and Leveson (1986) found that, 

although multiple-version software was on average very much more reliable than any 

individual version, they also found that some o f the best single programmes were more 

reliable than the worst o f the multiple-versions.

So, to use the Eckhardt and Lee (1985) and Littlewood and Miller (1989) models in a 

practical fashion means being able to estimate the key ‘difficulty’ distribution 

parameters for an actual set o f programmes. However, that would mean having access 

to data from a large sample o f faults from a large sample o f programmes to  estimate 

the distribution o f ‘difficulty* for each programme. Although this has been done in 

experiments, where many different versions o f software were developed (e.g. Nicola 

and Goyal, 1990), it is not a feasible solution for real safety-critical programming 

applications.

Further, as the desired reliability o f the software becomes greater and greater, as for 

safety-critical applications, then fault-detection processes become less and less useful 

for estimating their reliability. This is because as faults become rarer there is 

correspondingly less and less evidence upon which to make a judgement o f reliability.

In effect, as the desired reliability o f a system increases, the sample size o f faults or 

failures decreases and the confidence limits on those estimates widen.

A way round these problems was put forward by Littlewood, Popov, Strigini and 

Shryane (2000). They found that if  the dependencies between different fault-finding 

strategies for a single software version are modelled, instead o f the dependencies 

between N-different versions, then the task of estimating the required parameters for a 

given piece o f software is tractable.
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As in the Eckhardt and Lee (1985) and Littlewood and Miller (1989) models, the 

Litdewood et al (2000) model assumes that different fault-finding tasks vary in how 

‘difficult’ particular faults are to find. This ‘difficulty* function is likely to vary across 

faults in relation to fault finding strategy; some faults being easier to detect with one 

method, others being easier for the other method. The difficulty o f a particular fault 

for a particular fault-finding method is represented in the model as the probability that 

a randomly-chosen application o f the fault finding method will fail to detect the fault. 

The mean o f these individual probabilities can then be thought o f as the 

ineffectiveness o f the fault-finding method as a whole. Finally, the covariance between 

the ineffectiveness measures o f the fault-finding methods is taken as the measure o f 

diversity. The expected fault-finding performance o f an application o f two fault-finding 

methods will then be the product o f the average ineffectiveness measures plus their 

covariance, as shown below:

Overall ineffectiveness — (ineffectiveness of method A  * ineffectiveness ofmethod B) + covariance AB.

Positive correlation between measures will thus add to the ineffectiveness o f the 

overall performance, negative correlation will reduce ineffectiveness, i.e. improve fault- 

detection.

In the case o f experiment III, the proportion o f participants not finding a particular 

fault was taken as the ineffectiveness measure for that fault Averaging over all 16 

faults the overall ineffectiveness o f checking was .3947 and testing was .4920, i.e. just 

the average proportions o f faults missed. The covariance between checkers and testers 

for the 16 individual faults was -.0127. Therefore, the ineffectiveness o f a checker- 

tester (C l) pair would be expected to be:

CT ineff. = (C ineff. x T ineff.) + covCT 

CT ineff. = (.3947 x .4920) + -.0127 = (.1942) + -.0127 =  .1815
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An ineffectiveness o f .1815 corresponds to an effectiveness o f .8185 (= 1 - .1815), 

which is the measured C U T  overall fault-detection performance reported in Table 17 

(.82 rounded to two decimals).

The above figures are based upon the full set o f 16 faults in Experiment III. In this 

case the identity and location of each fault were known beforehand, and using this full 

fault data allowed the performance between checking and testing to be exactly matched 

and the precise covariance computed. However, this information will never be 

normally available in practice (as it is the identity and location o f the faults that is being 

sought!).

Treating each fault as an individual entity means that any fault-detection data collected 

from actual testers and checkers will m ost probably not be exactly matched in this way, 

i.e. they will not discover exactly the same faults. (Indeed, that checkers and testers 

discover different faults is precisely what is hoped for with diverse methods.)

To circumvent this problem, individual faults can be categorised and grouped into 

fault-classes. Although individual faults will tend to be ‘sparse’, by aggregating them 

into classes enough data can more easily be obtained to allow estimation o f the 

required probabilities and covariances.

For example, in Table 17, rather than present data on all 16 faults from experiment EH, 

the probabilities o f detection are aggregated by signalling principle violated and 

whether the faults were ones o f safety or o f functionality. In Table 19 and Table 20 the 

data from experiment HI is presented again, this time as ineffectiveness figures (1 - 

effectiveness) broken down by one fault class per table; signalling principle in Table 19 

and safety/functionality in Table 20, respectively.
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T able 19: P roportion o f faults m issed (ineffectiveness) in  

E xperim ent I I I  by task  type and signalling princip le violated.

C T CxT

ASP .3618 .5585 .2021

ORD .3882 .5160 .2003

ORS .5987 .4468 .2675

ROU .2303 .4468 .1029

M ean .3947 .4920 .1932

Mean o f C x Mean o f T  = .1942

Covariance CT = -.0010

Note: C — mean proportion o f faults missed by checkers; T  = mean proportion o f faults 
missed by testers.

T able 20: P roportion o f faults m issed (ineffectiveness) in  

E xperim ent I I I  by task  type and w hether the fault affected system  

safety or functionality

C T CxT

Safety .4671 .2872 .1342

Functionality .3224 .6968 .2246

M ean •: .3947 .4920 .1794

Mean o f C x Mean o f T  = .1942

Covariance CT = -.0148
Note: C = mean proportion of faults missed by checkers; T  = mean proportion o f faults 
missed by testers.
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Notice that in both Table 19 and Table 20 the mean figures for C and T  

ineffectiveness are the same (and the same as was found from the full set o f 16 faults). 

Therefore, the ‘naive’ figure for CT ineffectiveness, i.e. the ‘mean o f C x mean o f T’ is 

.1942 in both tables, because it is simply the product o f the average ineffectiveness 

figures for checking and testing.

The degree to which this ‘naive’ figure is an over- or under-estimate o f the ‘true’ figure 

(.1815) is dependent upon the covariance between the checking and testing processes, 

i.e. the extent to which they are diverse. However, by grouping the raw fault data in 

different ways, the measured covariance between checking and testing will differ, as 

shown below.

As we know from the full data for all 16 faults, the ‘true’ covariance is -.0127. Based 

upon the data in Table 19, aggregated by signalling category, the figure is estimated to 

be -.0010. While this is still in the same direction as the true figure, i.e. negative 

covariance, it is an order o f magnitude too small Therefore, the best estimate that we 

can make of the ineffectiveness o f an application o f CT fault-finding based upon these 

data is .1932 (.1942 + -.0010), which overestimates the true ineffectiveness o f .1815.

The situation is reversed when the data are presented broken-down by safety 

/functionality (Table 20). Here, the covariance between C and T is -0.0148, and the 

estimate o f CT ineffectiveness is therefore .1794 (.1942 +  -.0148). Compared to the 

true figure o f .1815 the covariance was overestimated and so the ineffectiveness 

underestimated, i.e. the benefits o f diversity have been overstated.

Categorising faults in different ways leads to different estimates o f the covariance 

between checking and testing because the categorised data ‘package’ the variation o f 

fault ‘difficulty’ within fault-class differently. The difficulty o f each fault or fault class is 

shown in Table 19 and Table 20 as the product o f the C and T  ineffectiveness values, 

CxT. The CxT index is therefore a measure o f the extent to which a fault or fault class 

is difficult. For example, in Table 19 fault class ASP has a CxT value o f .2021, and fault 

class ROU has a value o f .1029. Therefore, overall we could consider ASP faults to be 

nearly twice as difficult as ROU faults.

Chapter 9 : Cognitive D iversity E xperim ent H I
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Taking the mean of all o f the CxT values gives an estimate o f the overall difficulty o f 

the programme being checked. Notice that it is the same estimate as was arrived at 

earlier by taking the product o f the overall checking and testing ineffectiveness 

measures and adding the covariance. For example, Table 20 categorises faults by 

whether they affected the safety or functionality o f the SSI system. Taking the product 

o f the mean fault detection performances for checking and testing gives, as always, 

.3947 x .4920 =  .1942. Adding the covariance produces the predicted ineffectiveness o f 

an application o f checking and testing: -.0148 + .1942 =  .1794. This is the same figure 

as is obtained by taking the average o f the difficulty values (CxT) for safety faults and 

functionality faults: (.1342 +  .2246) /  2 = .1794.

The overestimate o f the magnitude o f the covariance between fault classes is identical 

to the average covariance within fault classes. Within safety and functionality classes 

the mean covariance =  [.0128 (safety) +  -.0086 (functionality)] /  2 — .0021. Adding 

the average covariance within classes to the overall ineffectiveness estimate gives .0021 

+  .1794 =  .1815, the true measure o f CT ineffectiveness.

This problem o f covariance within classes does not arise when using the raw fault data. 

In effect, each fault is a ‘class’ all o f its own. In  this case the covariance o f fault 

difficulty within classes is automatically zero, and therefore none o f the covariance 

between checking and testing is hidden’ from the attempt to characterise i t  Therefore, 

when using aggregated fault-class data to estimate the true effectiveness o f a set o f 

diverse fault-detection procedures, the lower the covariance within fault classes is, the 

more accurate the estimate o f the benefits o f diversity will be. As the covariance within 

classes approaches zero then the estimates produced for diverse performance will 

approach the exact, true figure.

Further exposition and a formal proof o f the details behind this approach to measuring 

diversity in software are given in Iitdewood et al (2000). The methods used for 

characterising diversity, illustrated above, allow proof o f the general assertion that, 

broadly speaking, diversity between methods is beneficial for fault-detection, and more 

diversity is better than less. The results are also shown to generalise to situations with
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any number o f fault detection methods, not necessarily just two as was considered 

here.

How does the above analysis work to benefit software safety in practical terms? 

Considering just checking and testing for now, each fault-finding process would be 

applied to a given programme independently and in roughly equal ‘amount*. (Quite 

what is meant here by ‘amount* is discussed in Litdewood et al, 2000. For now suffice 

to say that the methods could be applied until they had detected roughly equal 

numbers o f faults.) The faults detected by each method would then be categorised in 

some way, and data on the difficulty o f each fault category could then be computed. 

The estimated effectiveness/ineffectiveness o f the combined CT process could then be 

computed. ‘Confidence limits’ could then be applied to this estimate based upon our 

beliefs about the covariance between methods within fault class. I f  we believed that the 

within-class covariance was zero then the effectiveness prediction would be exact, and 

as covariance increased then the prediction would deviate accordingly. Data from 

previous studies and software projects could be used to estimate the extent o f intra­

class covariance, and ideally classes with close to zero within-class covariance between 

methods could be selected.
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10 General Discussion

This thesis set out to investigate some o f the factors that influence the extent to which 

it is possible to build a reliable human-machine system with unreliable (human) 

components.

The approach taken was initially context-bound: the system in question was an existing 

safety-critical software development process. Two phases o f research were undertaken: 

an exploration phase, which sought to describe the system and generate hypotheses, 

and; an evaluation phase, which sought to test these hypotheses and generalise them. 

This final chapter o f the thesis represents a third phase, where the questions that have 

arisen due to the work must be addressed.

10.1 Summary of empirical findings

The exploration phase collected ecologically valid but uncontrolled data regarding the 

SSI DPP. A range o f DPP tasks were described, concerned with creating and then 

assuring the quality o f safety-critical computer software. Although the various tasks 

were found to be error-prone, the system as a whole seemed robust in detecting and 

eradicating faults from the code. It was suggested that at least part o f the reason behind 

this was the diversity inherent in the fault-finding tasks employed, which may protect 

the system against the type o f common-mode errors observed in the work sample.

Following a conceptual description o f diversity a series o f controlled experiments 

investigated possible dimensions that may have been able to contribute to diverse task 

performance, e.g. spatial and verbal abilities, task instructions, mental models.

The strongest case for the demonstration o f cognitive diversity came from the 

characteristics o f the two tasks compared: checking and testing. One o f the most 

consistent findings was that the different fault-finding tasks, which had different 

representations o f the ‘problem’ (i.e. checking and testing), led to qualitatively different 

performances in finding faults. A general model o f the effects o f diversity in fault­

finding task performance was presented. This model shows the benefits o f diversity as 

the interplay between intra- and inter-category covariance between fault finding
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strategies. I t represents an advance over previous models in that the estimation o f 

model parameters should be possible in a practical fashion, based on existing data on 

fault finding categories.

Among a few other candidate explanations it was suggested that the task 

representations (checking and testing) might differ in their suitability for spatial vs. 

verbal processing, and that this might be the source o f cognitive diversity. However, 

some o f the empirical findings do not support this view. I f  it is assumed that, say, 

checking was more suitable for verbal-linguistic processing, then those high in verbal 

ability would have been expected to perform relatively better at checking compared to 

testing. Those higher in spatial ability would be expected to show die opposite 

association. However, there were no such interactions found between spatial/verbal 

abilities and task type (checking or testing). This could be because o f a restriction in 

range in participants’ verbal and spatial ability scores — all were from educational or 

occupational populations that are selected on these traits. In addition, the levels o f 

verbal and spatial abilities are not independent, and will tend to be highly correlated.

A more substantial objection to the condusion that verbal vs. spatial processing was 

the heart o f the observed diversity is found when considering the equivalence o f the 

checking and testing tasks, particularly in terms o f their ‘size’ and ‘difficulty5. These 

topics will be addressed in the remainder o f this chapter, where a paradigm for 

investigating diversity in problem-solving on a surer footing will be outlined.

10.2 Problem  size and difficulty

It has been assumed until now that because the checking and testing tasks are different 

manifestations o f the same problem, they must also be comparable in terms o f their 

difficulty (or size, or complexity, etc.). This assumption recdved support in the 

laboratory simulation tasks, where ndther checkers nor testers were found to 

outperform the others in overall fault-finding. However, in a seminal paper, N ewd and 

Simon (1972) proposed an analysis o f problem-solving tasks that highlighted the role 

o f at least two independent factors that contribute to task difficulty; the size o f the 

problem space and the characteristics o f the ‘move5 operators. It will be argued below

150

J



Chapter 10: G eneral Discussion

that the SSI tasks cannot be considered to be equivalent in terms of either the size of 

the problem space or the difficulty o f the move operators. Nevertheless, a task 

paradigm that does have such equivalence will be presented as a format for further 

investigation o f the characteristics o f cognitive diversity.

As mentioned above, Newel and Simon (1972) highlighted the problem space and 

move operators as crucial factors in task difficulty. Problem space is the term given to 

all possible states o f a problem that could be encountered by a problem solver. Move 

operators are the methods by which the problem solver can transform one problem 

state into another, i.e. the way in which they can ‘move’ within the problem space. The 

problem is then solved by searching through (or constructing an internal 

representation of) the problem space. Good performance is that which transforms 

initial to goal state in the smallest number o f moves, i.e. with fewest steps in between, 

or in the shortest time, say.

It was initially thought that the crucial factor affecting performance was the size o f the 

problem space. For instance, chess is considered to  be a more difficult game than 

draughts, and fittingly chess has a problem space which is almost unimaginably large 

compared to that for draughts. (Chess is estimated to have around 1040 different 

possible games compared to around 1020 for draughts; Chellapilla & Fogel, 2001. By 

way o f comparison, the difference between chess and draughts in terms o f problem 

space size is approximately the same (log) ratio as the difference between the possible 

games o f chess and the number o f atoms in the observable universe, about 1078.)

Newell and Simon’s (1972) theory describes the difficulty o f solving the problem as the 

difficulty in acquiring an effective internal representation o f the problem space. Ideally, 

such a representation should support algorithmic solutions to the problem, where a 

particular strategy is guaranteed to arrive at the solution. In  practice, however, the 

problem solver cannot represent even a very large portion o f the entire problem space 

internally, and so cannot determine that any particular strategy will definitely lead to the 

goal state. What the problem solver must instead do is adopt heuristics (e.g. means-end 

analysis); strategies that move the game into states that seem nearer to the goal state
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(but with no guarantee that the goal will be reached). The larger the problem space, it 

was reasoned, the more extensive the search through the space would have to be, and 

the more information would have to be stored to build an effective internal 

representation o f the problem space.

Estimates o f problem space size can be computed for the checking and testing tasks. 

The testing task is discrete, meaning it can only adopt a limited number o f possible 

states. Even for the simplified SSI simulator task this number is large. For instance, in 

the training layout there are 12 track sections, and each one can be either occupied or 

unoccupied. This gives 212 = 4,096 different arrangements o f just the tracks. Including 

points (42 states) and routes (24 states) brings the total to  1,048,576 different possible 

states that the simulator could be in, any o f which could potentially reveal an error. 

This space o f over a million different states could be taken to represent the problem 

space in which the 4 errors are hidden*.

Computing the size o f the problem space is less easy when considering the checking 

task. Using the same criteria as for the testing task would not provide a sensible 

estimate, as we would count only one state (the fixed code). A better measure would be 

to take the amount o f code present as an estimate o f the total size o f the problem 

space. Even this presents problems, however, as was found when scoring the 

performance o f checkers throughout the data collection. The code could be measured 

character by character, for instance. The industry-standard convention, though, is to 

measure the number o f lines o f code. The training layout contains 7 lines o f code for 

each o f the four routes in the PRR file, and one line per route in the OPT file. The 

PFM file contains 2 lines for each o f the 2 sets o f points. There are then 36 lines to 

inspect for the checkers.

At face value there seems to be a very large difference between the sizes o f the 

checking and testing task’s problem states; 36 lines vs. over a million separate states, 

respectively (for the training layout). The methods for establishing problem space size 

given above are not very satisfactory, however. For instance, the checkers cannot 

assume that the code is complete, and so the ‘correct5 code could be arbitrarily larger
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than that they are presented with initially. This may seem a trivial problem in the SSI 

simulator, where there seems only limited opportunity for extra code (e.g. there are 

only so many routes, and each route has only a limited number o f functions that 

needed to be coded for). However, quite what would constitute this extra code could 

be drawn from the entire lexicon o f SSI code language.

To illustrate with a natural language example, imagine what might be missing in the

following sentence: “Call m e____ ”. It is a very small sentence and so, to use the same

metric as was used above for the checking task, we would conclude that it has a very 

small problem space. W ithout any knowledge o f what the sentence is supposed to be 

representing, however, there are a very large number o f nouns, adjectives, pronouns 

etc. that would fit into the sentence. Therefore, the mental search space is actually very 

large. O f course, the SSI checker has some idea what the code is supposed to  represent 

and this reduces the problem space size considerably. However, what remains is still 

likely to be very large. To illustrate, if I tell you that the sentence above is the first 

sentence in Herman Melville’s “Moby Dick’ (first published under the tide T he Whale’ 

in 1851), does that help? 1

These issues will be revisited later. For now, it is enough to say that the methods 

adopted above for measuring problem space size in the SSI task are likely to  be more 

convenient than precise. More damningly, because different methods were used to 

measure the problem spaces o f checking and testing it is difficult to demonstrate their 

comparability. W hat is needed is a way to understand the effects o f problem-space size 

on problem-solving in a more rigorous fashion.

Hayes and Simon (1977) provided just such a paradigm. They looked at problem 

solving behaviour when presented with isomorphic problems — problems with the 

same problem space size and structure. They found that problem-solving performance 

differed greatly depending on how the isomorphs were presented to  the participants, 

i.e. what ‘cover-story* was given to explain the problem. Similar findings were 

produced in studies o f logic-problem solving. The well-known Wason card-selection

1 Moby Dick begins “Call me IshmaeL”

153



Chapter 10: G eneral Discussion

task (e.g. W ason & Johnson-Laird, 1972) is notoriously difficult to solve optimally, 

with around 90% of participants failing to do so on their first attem pt However, if  the 

abstract card-selection task, which just involves arbitrary relations between letters o f 

the alphabet, is recast in more familiar terms, then the problem becomes very much 

easier. Griggs and Cox (1982) found that an isomorph o f the card-selection task that 

involved the relation between age and permission to drink alcohol allowed participants 

to solve the problem optimally on their first attempt more than 75% o f the time. This 

showed the large effect that the participant’s prior knowledge o f a problem has on 

their ability to solve that problem, as long as the problem is represented in a way that 

allows the problem-solver to recognise the relevance o f this knowledge.

So, problem space size alone is not responsible for the ease or difficulty with which 

problems can be solved. Rather, more recent attention has focused on differences in 

how move operators are perceived and used by problem-solvers.

Move operators are the methods by which the problem is changed from one state to 

another, i.e. the methods by which the problem space can be traversed. Kotovsky, 

Hayes and Simon (1985) showed that it was the memory load imposed by the move 

making process that accounted for differences in problem solving performance among 

isomorphic problems with different representations. The higher the memory load the 

more difficult it was for the participants to “become expert at utilizing the problem 

rules to make moves...” (p.290). They found that learning (i.e. automation) o f move 

operator information, and thus reduction in working memory load, was necessary 

before participants were able to start planning ahead and using strategies for solving 

the problem.

Zhang (1997) extended this work by demonstrating how dissimilar representations o f 

isomorphic problems differ in the amount o f move-operator information they provide 

explicitly and externally (and therefore not imposing working memory load). Difficult 

representations required the problem-solvers to hold all o f the move operator 

information internally, i.e. in working memory; easier versions represent much o f this
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information externally, i.e. perceptually, therefore relieving working memory o f this 

requirement

The previously discussed findings were all conducted using well-defined, or well- 

formed, problems. Well-formed problems have well-defined problem states, with 

clearly defined start and goal states, and the operators are also clearly defined. Ill- 

formed problems do not have such clearly defined parameters; “develop a cure for 

cancer” would be such a problem.

Kotovsky and Simon (1990) used problem isomorphs that varied in the well-formed 

nature o f their move operators. They used a task called the ‘Chinese-ring5 puzzle, 

which involves removing five metal rings from a bar to which they are interlinked with 

cord. They compared the actual, physical, problem with computer-based ‘digital’ 

version that represented the states o f the problem explicitly, as balls being moved into 

and out o f boxes (i.e. rings being moved on and off the bar). In one digital version 

there was no external information about the move operators, in the other the way in 

which moves could be made was represented explicitly, by showing the lids o f the 

boxes as open when the ball could be moved into or out from the box.

Kotovsky and Simon (1990) found that in the physical (‘analogue5) version o f the task, 

almost no participants could solve the problem within two hours. Solving the digital 

versions was completed on average in less than half an hour. The authors found that 

when attempting the analogue version o f the task most participants could not discover 

what constituted a move, let alone use this information to explore the problem space 

in search o f the goal state. They argued that the three problems were not actually 

; isomorphs until the participants had discovered the move operators. Performances on 

; the two digital versions o f the task were found to be very similar once the participants 

: could identify and make legal moves with equivalent efficiency; the version without 

explicit move information was found to be easier because move-operator information 

was provided, thus reducing memory load and steepening die learning curve.
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Recently, Anderson and Douglass (2002) have also shown that the memory load o f 

different problem-solving strategies affects performance, in addition to the load 

engendered by the problem representations perse. They found that memory for these 

strategies, involving creating and using sub-goals, is just like any other information in 

working-memory such as memory for problem states.

Applying work on problem-spaces to the checking and testing tasks we can see that 

there are marked differences between checking and testing (Table 21).

Table 21. Difference between SSI checking and testing tasks in  terms o f 

problem space size, move operator information, and the extent to w hich both 

are w ell- or ill-formed.

Checking Testing

Problem space 
size

Although the code is finite in 
size, it is not necessarily 
complete, so in principle the 
‘correct’ version could be 
arbitrarily large

Finite but large

Move operator 
information

To make ‘moves’, the checker 
must imagine how the code will 
behave based upon remembered 
signalling rules. The checker 
must also be able to envisage 
how alterations to the code 
would affect functioning. 
Memory load is therefore likely 
to be high.

The move operators are 
discrete and represented 
explicitly by the toggle 
switches on the simulator.

Well formed? No. The problem space is not 
defined, and move operators are 
unlikely to all be available from 
memory at any one time.

Yes. The problem space is 
finite and move operators 
are all defined
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So, it cannot be assumed that the checking and testing tasks are isomorphic in terms o f 

either problem space or move operators. Therefore, there is no guarantee that the 

observed diversity was not because o f the action and /  or interaction o f these factors. 

To investigate further diversity between spatial and verbal processes, what is needed is 

a well-formed problem-solving paradigm that has problem representations isomorphic 

in terms o f their problem spaces and the explicit information they provide about move 

operators, but that are presented in primarily spatial vs. verbal formats.

The remainder o f this chapter will present a description and discussion o f the “Towers 

o f Hanoi” (TOH) puzzle, and how it could be used to investigate diversity between 

different representations o f problems. This discussion will continue to some length, 

but will finish having specified particular isomorphic representations o f the TOH that 

will be suitable for studying isomorphic representation o f problems, without so many 

confounding factors as present in the SSI case study.

10.3 Description o f the Towers o f Hanoi

The TOH was chosen as it is has been well studied by mathematicians and cognitive 

psychologists, and is well known and understood compared to other, similar problems.

Figure 9: Illustration o f the Towers o f Hanoi puzzle.

Pegs are labelled Left; Middle & Right; disks are labelled 1 ,2  & 3 (3 being the largest).

Left peg 
0)

Middle peg
(2)

Right peg
(3)

Disk 1 
Disk 2 
Disk 3
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TOH is played on a board with three vertical pegs, over which fit a number o f circular 

disks o f different sizes. Figure 9 shows a three-disk TOH, with all o f the disks stacked 

on the left-hand peg.

The aim o f the game is to move the disks from one arrangement to another. This is 

most often from the starting point where all o f the disks are on the left-hand peg, to a 

finish point where all o f the disks are stacked on the right-hand peg. There are a 

number o f constraints on how this can be achieved, however. The disks must be 

moved only one at a time, and each “move” must transport a disk from one peg to 

another peg. Also, bigger disks cannot be placed on smaller disks. Finally, only the 

smallest disk in a pile can be moved on any particular move. These rules can be stated 

as follows:

TOH Rule 1\ One, and only one, disk must be moved on each turn from one 
peg to another peg.

TOH Rule 2: I f  a peg contains more than one disk, only the uppermost disk can 
be moved.

TOH Rule 3: A disk can only be placed on a peg with no smaller disks below i t

Perfect performance is achieved when the disks are moved from the start to  the finish 

points in the fewest possible moves. In  its three-peg, three-disk incarnation, as shown 

in Figure 9, a sequence o f seven moves is the shortest that can be achieved. With more 

disks and /or more pegs the finish point becomes more ‘distant* from the start point 

and a greater number o f moves is required to finish the puzzle. For example, with four 

disks instead o f three, 15 moves are required; with five disks, a minimum.of 31 moves 

is necessary.
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The reason why these exact numbers o f moves are required to complete games with 

different numbers o f elements (i.e. disk and pegs) can be seen by mapping out the 

problem space o f the TOH in graphical form.

10.4 The TO H  problem space

A problem state in TOH is a particular legal arrangement o f the disks on the pegs. So, 

the state o f the TOH game shown in Figure 9, with each o f the disks on the left-hand 

peg, represents just one problem state. From this position, moving the smallest disk 

from the left-hand to the middle peg moves to a new problem state. Because there is a 

finite number o f both disks and pegs (and rules for moving the disks on the pegs) it 

can be seen that the number of different problem states that are possible in the TOH 

is also finite -  there are only so many different ways o f arranging the disks on the pegs. 

In the case o f the three-disk TOH the total number o f problem states is 27. This 

collection o f problem states is what was referred to earlier as the problem space. The 

problem space can be thought o f as defining an abstract space in which the different 

possibilities o f the game are bound.

This problem space can be represented by drawing it out in the form o f a graph. A 

graph is a diagram consisting only o f points, or vertices, and lines connecting the 

points, called edges. The TOH state-space will thus consist o f 27 vertices, or points, 

because it has 27 different states that the disks and pegs can be in. The vertices will be 

joined by edges (lines), each edge showing where one problem state can be reached 

from another by making a legal move. The most efficient way o f drawing out these 27 

vertices and associated edges is shown in Figure 10.



Chapter 10: G eneral Discussion

A

Figure 10: Graph o f the Towers o f H anoi problem space
Boxes A, B and C show the arrangement of disks represented by the associated vertices. For example, 

Box A is associated with the uppermost vertex, signifying that this vertex represents the state o f a TOH 

game where all of the disks are on the left-hand peg. Vertices A, B, and C can all be reached from one 

another by making a legal move, therefore they are interconnected by edges

10.5 Sierpinski’s Gasket

The triangular shape in Figure 10 has been called Sierpinski’s Gasket, after a 

mathematician o f the same name who did extensive work on its properties in the early 

part o f the 20* century. (As well as being useful in understanding the TOH, 

Sierpinski’s gasket is fundamentally related to the binomial distribution and the 

distinctive, serrated shape o f the B-2 Stealth Bomber, amongst other things.) The 

relationship between the Sierpinsld gasket and the TOH problem space will be easier 

to visualise if  each of the twenty seven possible states o f the game is properly labelled.
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However, to do this in the space allowed means adopting a more space-efficient 

method o f labelling than that used in Figure 10.
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Cl .1.1)

Figure 11: Sierpinski’s gasket labelled with TO H  problem states.

Each vertex has a three digit label; the first num ber denotes the peg that the smallest ring is on, 

1 being the left-hand peg, 2 being the middle and 3 being the right-hand peg. The second digit 

denotes the peg position o f the next biggest disk, and the final digit the position o f the largest 

disk. The top vertex (1,1,1) represents all the disks on peg 1 (the left-hand peg).

In  Figure 11, each vertex has a label denoting the state o f the TOH game that it 

represents. The state with all disks on the left-hand peg, labelled A in Figure 10, is here 

labelled (1,1,1). The first number denotes the peg that the smallest ring is on (the left- 

hand peg is 1, the middle peg is 2 and the right-hand peg is 3). The second digit 

denotes the peg position o f the medium-sized disk, and the final digit indicates the 

position o f the largest disk. So, (1,1,1) means that the smallest, medium and largest 

disks are all on peg 1. The goal state, where all o f the disks are stacked on the right- 

hand peg (peg 3), is labelled (3,3,3) at the bottom right-hand comer.

The edges connecting the vertices represent all o f the allowable moves by which the 

various problem states can be transformed from one to another. So, Figure 11 shows 

that the starting state, (1,1,1) is connected to (3,1,1) and (2,1,1). This means that the
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smallest disk can legally be moved to either the 2nd or 3rd pegs. N o other connections 

are shown; the connections represent the sum total o f allowable moves, which in this 

case are the options available when starting the game with all o f the disks on the I s* peg 

(1 ,1 ,1).

A game analogous to the Towers o f Hanoi could be played on the Sierpinski gasket 

Imagine that a counter, representing the current game state, is placed on the (1,1,1) 

vertex at the top o f a drawing of the gasket such as in Figure 11. The goal is then to 

move the counter to the (3,3,3) gasket at the lower right-hand side, one vertex at a 

time, in the smallest number of moves possible. A move is made by moving the 

counter from the current vertex to an adjacent one, i.e. one connected by an edge to 

the current vertex.

To complete the game in the fewest moves the player has to able to discern the 

shortest path, in terms o f connected vertices, which links the start point with the goal 

po in t From Figure 11 it can be seen that in this case the game is trivially easy to 

complete. A straight line o f links making up the right-hand edge of the gasket connects 

the start and finish points in seven moves. Seven moves is exactly the same as needed 

for TOH because the two games are isomorphic, they have the same-sized problem 

spaces. Even though the Sierpinski game is isomorphic with the Towers o f Hanoi 

game in terms o f problem space size, it is much easier to succeed at because the games 

differ in how they represent that problem space and their representations o f move 

operators.

10.5.1 D istinctions between the Sierpinsldgam e and TO H

Although the Towers o f Hanoi and the Sierpinski games are isomorphic in terms o f 

their problem spaces, the move operator information is very different

For instance, the Sierpinski game shows the problems states in parallel, i.e. all at the 

same time, whereas the TO H  game shows them sequentially, one at a time. When 

viewing the Sierpinski gasket we are essentially seeing all the possibilities o f the game 

laid out in a naturalistic, spatial metaphor: a map; where all o f the points in the
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problem space are presented from the perspective o f an observer situated outside o f 

the space itself — a so-called allocentric or ‘God’s eye view*. This makes the task akin to 

navigating a 2-dimensional space viewed from a point in 3-dimensional space. A similar 

scenario is produced when, say, navigating across an essentially flat landscape from an 

aircraft. All o f the points o f the problem space are laid out in a 2-D plane ‘below’ the 

player. Perceptual processes expert in dealing with such spatially-mapped visual 

information can then decode the scene into an internal model o f the 2-D problem 

space quickly and without memory load. This model can then be used as input to goal- 

orientated processing that maps the desires o f the player (e.g. to make a ‘good’ move) 

onto cognitions and ultimately actions, to reduce the distance between current and goal 

states. To refer back to Kotovsky, Hayes and Simon’s work (1985), when playing the 

Sietpinski game almost any player with adequate vision will be an expert in terms o f the 

move operators before they have even played the game. In  addition, total information 

about the problem space is available externally and so does not need to be maintained 

in working memory.

The TOH game, on the other hand, can only represent states discretely; one at a time, 

through a ‘temporal window’. To work out the correct path in the TOH game the 

passage o f sequences o f states must be remembered, and future states imagined. When 

playing the TOH game the Viewpoint’ o f the player is situated within the problem 

space itself, located at the current problem state. This means that the game, while still 

involving the navigation o f a flat landscape (the problem space map, in effect), is 

instead done from the point o f view o f a hiker walking across the problem state-plane. 

This hiker will not have access to the same amount and quality o f problem state 

information as would the ‘airborne’ Sierpinski game-player.

In both games there is a representation o f the distance between different problem 

states, i.e. the extent to which states o f the game are ‘near’ or far from one another. In 

the Sierpinski game knowledge about the distance between states is derived from the 

God’s-eye view perspective. Here the states are projected onto a 2-D plane which has 

all points essentially equidistant from the observer (player). The observer potentially 

has knowledge o f each o f the states in equal measure, and as stated above the
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information about relations between states (which ones are nearer the goal, say) will be 

provided by effortless perceptual processes.

In  the TOH game, on the other hand, the perspective point o f die observer (i.e. where 

the player sees the game from) is egocentric, situated within the problem space. We can 

imagine what the TO H  hiker* navigating across the problem state-landscape would be 

able to see. They would be able to see their current location, i.e. problem state, direcdy 

represented around them. This could perhaps take the form o f a place-name. Knowing 

how place-names work (i.e. knowing the rules o f TOH) would give the hiker some 

clues as to the destinations that could be reached by taking one o f the ‘paths’ leading 

away from their current location. These paths would represent legal moves, and would 

lead to different locations on the Sierpinski game-landscape. However, knowledge 

about the states outside of the current location would depend upon the hiker being 

able to infer or remember them. It would be fairly easy to find out what adjacent 

locations looked like, because a path could be selected (even at random) and it would 

definitely lead to a new location (state) somewhere in the landscape. (Contrast this with 

the Chinese ring puzzle [Kotovsky and Simon, 1990]. In  the analogue version o f the 

game it was not obvious what even constituted a move; to our hiker this is equivalent 

to not having any paths marked out) Although knowing the whereabouts o f paths, the 

hiker would have no map, however, and so planning a route would involve having to 

remember or discover which paths lead to where via which other locations. Distance 

on this TOH landscape would have a more direct meaning; rather than the observer 

being located equidistantiy from all problem states — as with the Sierpinski game’s 

allocentric view — the hiker is actually nearer to some states and further away from 

others. Distance here really means the number o f locations between the current and 

goal states, or the time it takes to make all the intervening state-transformations, or 

some other appropriate sequential (ordinal) relation.

Combining these factors it can be seen that the TOH and Sierpinski games are far 

from being isomorphic as they stand. The spatial map o f problem states in the 

Sierpinski game represents an external (Le. not memory dependent) source from which 

the distance and orientation between the present and goal state can be obtained by
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automatic perceptual processes. This then makes the task o f selecting the appropriate 

move no more demanding than finding a route on a fairly simple map.

The TO H  game, on the other hand, is sequential and memory dependent. Rather than 

showing all o f the game states at one time, each state can only be inspected while the 

others are hidden. To obtain strategic information the player must hold internally the 

relation o f their current state with past and future states. For die TO H  this means 

representing the locations and relative positions o f the disks on each peg, or at least the 

differences between their relative positions from state to state (Le. ‘move’ information). 

For novices at the game the amount o f information needed to represent the full 

problem space is likely to overburden conscious short term memory capacity. Only the 

current problem state will be memory independent; because it is the only one on 

display at any given time. Knowledge about the other possible game states will thus 

tend to decrease as their ‘distance’ from the current state increases. Knowledge about 

which possible future states are nearer to the goal state than the current state (i.e. 

planning information) will also vary with the level o f knowledge o f the local ‘territory’ 

o f the TOH ‘landscape’, i.e. problem space .

10.6 A revised version o f the Sierpinski gam e

The differences between the Sierpinski and TOH games, discussed in the previous 

section, can be removed by representing the Sierpinski game in a different fashion. 

Instead o f the Sierpinski game showing all o f the problem space at one time, we can 

imagine playing it in a dark room with a weak flashlight, so that only a very small 

proportion o f the game map could be illuminated at any one time. I f  only one vertex 

label could be seen (and no edges), this situation would be equivalent to the TOH 

game. In  both cases, the only thing that would be visible at any one time would be the 

current problem state. All other information, such as previous and possible future 

states, would have to be internally modelled or remembered.

To put the ‘restricted view’ Sierpinski game described above into a more playable form 

(without needing dark rooms and flashlights), another game type can be invoked. A 

suitable choice is the game where words are transformed from one to another by
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constructing intermediate words that differ only by one letter from the preceding and 

succeeding words. For instance, to transform the word D O G  into CAT, the sequence 

shown in Table 22 achieves this in the fewest possible steps (3):

Table 22. A sequence o f transformations to turn DOG into CAT.

M ove D escrip tio n W ord

0 Start Starting w ord D O G

1 Change D  to  C C O G

2 Change G  to  T C O T

3 Finish Change O  to  A CAT

O f course, as in the TOH, there are rules governing the moves that can be made. A 

sequence o f three symbols has to be manipulated, one symbol at a time, to produce a 

goal sequence in the smallest number o f ‘moves’. Rules governing moves are 

concerned with which symbols can be manipulated and how: Only one symbol (letter) 

can be changed at a time; only symbols from the English alphabet are allowed (no “£ \  

“>K” or “Ç”, for instance); each intermediate word must be a correctly-spelled English 

word (no XOG), and; importantly, symbols are substituted for others based upon their 

position in the sequence, like for like. Therefore, this format can be labelled a 

“symbolic positional” format. Table 23 shows the “restricted view” Sierpinski game in 

this symbolic positional format.

In Table 23, instead of the frill map o f the problem states given by the Sierpinski gasket 

in Figure 11, there is now just a sequence of adjacent states that represents the shortest 

possible sequence o f moves from starting to goal state. The information from the 

gasket showing the relationship between the current state and all other possible states,
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as well as the paths between them, is now hidden. In  this format only the particular 

arrangements o f game elements (here, the number symbols) are visible, just as in the 

TOHgam e.

Looking just at the right-hand column in Table 23 (labelled “vertex”) the symbolic 

positional Sierpinski game is represented only as a sequence o f symbols arranged into 

columns. The rules for transforming one problem state into other are based upon the 

rules outlined earlier in the chapter for the TOH game, but in this new context (i.e. the 

symbolic positional Sierpinski game) the disks and pegs seem to hold little relevance 

any more. Surely there must be a set o f rules that is mapped onto the purely symbolic 

and positional world o f the vertex labels, without reference to the world o f disks and 

pegs?

Table 23. A winning Sierpinski gam e sequence in  symbolic positional format

M ove D escription Vertex

0 Start A ll disks on peg 1 1,1 ,1

.1 D isk 1 to peg 3 3 ,1 ,1

2 D isk 2 to peg 2 3,2 ,1

3 D isk 1 to peg 2 2 ,2 ,1

4 D isk 3 to peg 3 2 , 2 ,3

5 D isk 1 to peg 1 1,2 ,3

6 D isk 2 to peg 3 1 ,3 ,3

7 Finish D isk 1 to peg 3 3 , 3 ,3

NOTE: “Vertex” refers to the labels given to denote TOH disk positions, as in Figure 3. Each vertex has 

a three digit label; the first number denotes the peg that the smallest ring is on, 1 being the left-hand peg, 

2 being the middle and 3 being the right-hand peg. The second digit denotes the peg position o f the 

medium-sized disk, and the final digit the position o f the largest disk. The first vertex (1,1,1) therefore 

represents the TOH state where all o f the disks are on peg 1 (the left-hand peg).
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10.6.1 A bstract rules for the sym bolic positional Sierpinski gam e

Inspection o f the TOH rules should reveal the basic functions that they perform  and 

the operators on which they act A set o f rules describing the conduct o f the familiar 

TOH game rules is shown below.

10.6.1.1 Rules for TOH

Synopsis. The game is played with three disks (small, medium and large) arranged on 

three pegs (left, middle, right). Any peg can contain any disk The goal o f the game is 

to move a starting stack o f disks onto another peg (the goal state) using only the rules 

below for moving disks. «*■

TOH rule 1\ One, and only one, disk must be moved to another peg each turn. 
(There are three pegs: left, middle and right)

TOH rule 2. If  there is more than one disk on a peg, only the topm ost disk can 
be moved.

TOH rule 3. A disk can be moved to any peg not containing a smaller disk.

Each rule is concerned in essence only with the relationship between disks and pegs. 

Rule 1 deals with the basic fact o f translation o f disks among pegs; rule 2 is concerned 

with the preference o f disks within pegs, and; rule 3 deals with the preference o f disks 

among pegs.

By mapping the above relations onto the symbolic and positional elements o f the 

Sierpinski game, it can be seen that the symbols used in the Sierpinski game (1,2, and 

3) encode the peg ‘information’ in the TOH. The positions o f the symbols in the 

vertex label (first character, second character, third character) represent the identities o f 

the disks in the TOH (column 1 =  small disk, column 2 = medium disk, column 3 =  

large disk).

By substitution, the rules for the symbolic positional Sierpinski game are as follows:

10.6.1.2 Rules for symbolic positional Sierpinski game

Synopsis. The game is played with three symbols (1, 2 and3) arranged in three columns 

(left, middle, right). Any column can contain any symbol. The goal o f the game is to
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transform a starting set o f symbols into a goal set using only the rules below for 

changing symbols. .

Sierpinski 'Rule /: One, and only one, symbol must be changed each turn into 
another symbol. (There are three symbols: 1 ,2  or 3.)

Sierpinski Rule 2: I f  more than one column contains the same symbol, only the 
leftmost o f those can be changed.

Sierpinski Rule 3\ A symbol can be changed into any symbol that does N O T 
appear to its left

The similarity between the TOH and Sierpinski game rules is evident, even if  some o f 

the operators are differently labelled (e.g. ‘peg' instead o f ‘symbol’). For instance, the 

information contained in TOH rule three just states that a bigger disk can’t  be placed 

on a smaller one.2 In terms o f the Sierpinski rules, rule three states that a symbol can 

only change into one that’s not found on its left. “Left” in the Sierpinski game is 

equivalent to “smaller” in the TOH. The concepts o f “disk” or “peg” are no longer 

necessary to play the Sierpinski game. Even the term “move”, meaning changing the 

game from one state to another, has its genesis in actually moving the game pieces, 

which no longer is taking place. Instead, the player is “changing” or “switching” 

symbols, or whatever appropriate term is preferred (cf. Hayes and Simon, 1977; some 

isomorphs o f the TOH were ‘move’ problems involving moving game elements, other 

isomorphs were ‘change’ games).

So, we now have a version o f the symbolic positional Sierpinski game in which the 

representation and rules are fully isomorphic with the TO H  game. Well, no t quite.

There is one major distinction between the TOH game and the symbolic positional 

Sierpinski game as described above. Above, the history o f previously used /  visited 

symbols is visible. This is, in effect, a view o f the ‘path’ from the initial state to the 

current state. This is information equivalent to our Sierpinski hiker keeping a diary o f 

place-names visited, and doesn’t direcdy provide information about the path to the

2 The actual TOH rule 3 is stated as a negation: “A disk can be moved to  any peg not containing a smaller disk”, but 
only to efficiently accommodate the situation where there are no disks on the destination peg. I f  the rule were 
stated only as relation between two disks (e.g. “you can’t put a larger disk on a smaller one”), the relationship
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goal state. It could be considered irrelevant to problem resolution, therefore. However, 

there is no such equivalent in the TOH game, and so the history information should be 

removed to preserve equivalence between the symbolic positional Sierpinski game and 

the TOH. In  practice this would mean being able to view only the last row o f symbols 

at any one time in the symbolic positional Sierpinski game.

With this fully isomorphic version o f the TOH, the only differences that remain 

between the Symbolic Positional Sierpinski (SPS) and TO H  games are in terms o f the 

stimuli used to represent the games states, for both input modality and output 

modality, and the associated learning that these stimuli invoke.

10.6.2 Stim uli in  the TO H  and SPS

The stimuli in TOH games were traditionally physical in nature, i.e. actual pegs and 

disks. These days research into the TOH is often conducted with computer based 

visual /  spatial simulations o f the ‘physical’ TOH (primarily because it allows greater 

ease o f data collection). The required behaviours in the physical game involve using, 

say, a hand, for direct, physical manipulation o f the game pieces. In the simulated 

TOH the required behaviours are very similar, but in most cases involve indirect 

manipulation o f the pieces using a mouse or similar pointing-device. (Manipulation o f 

the game is indirect in the sense that there is an additional layer o f stimulus-response 

mapping required — hand to mouse to visual feedback, vs. hand to visual feedback in 

the physical TOH game.)

The visual stimuli available to the player o f a simulated TOH game can be made 

arbitrarily similar to the stimuli in the physical game, but usually the representation is 

fairly low fidelity. Analogous schematic representations, such as that used in Figure 9, 

usually suffice. In  terms o f transitions between game states, a low fidelity simulation 

could omit these and merely show the various states as snapshots that could be cycled- 

through akin to a slide-show (but here with access to the states being governed by the 

rules o f the game). Higher fidelity simulations could be used, perhaps to represent the

would be undefined when there were no disks on the destination peg. Alas this is the way that null hypothesis
significance testing works, too
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transitions between problem states by, say, allowing mouse-mediated ‘direct’ 

manipulation o f the pieces on-screen, i.e. using the mouse to ‘move’ the disks.

It is easy to imagine how the SPS game could be similarly implemented. A computer 

would show the current state of the game on a screen, consisting o f the three symbols. 

The state that the player would like to move to could be input via the keyboard (if 

numeric symbols were used, as they are in Table 2). Alternatively, the options for 

selecting or changing symbols could be made part o f a graphical user interface that 

could be manipulated with the mouse, akin to the TOH simulations discussed in the 

previous paragraph. When the player had selected a move the screen could merely 

change to the new representation (if a legal move was specified), which would make 

the SPS game equivalent to the low-fidelity TOH simulation.

In low-fidelity simulations, where transitions between states is not represented, for 

both the TOH and SPS cases there would be 27 different screens that could be 

displayed, i.e. the 27 states o f the problem space. Each screen would show the 

representation o f that state in the format appropriate to the game (SPS or TOH). 

Movement between states (screens) could be controlled in both cases by identical 

behaviours using a mouse controller. In this case the two games, TOH and SPS would 

be fully isomorphic, identical in all but the stimuli used to represent the different 

problem states.

10.6.3 Representation o f problem  states

It is argued informally above that low-fidelity simulations o f both the TO H  and SPS 

games, as described, represent isomorphic problems that differ only in the particular 

representations o f their problem states (and therefore also the different associations 

that these will bring to mind).

The visual stimuli used on the computer-based TOH are designed to evoke a spatial 

metaphor based upon the physical presence and properties o f real disks and pegs (e.g. 

movement: pegs are fixed; disks can be moved). The metaphor is useful because it 

seamlessly encodes much o f the move operator information that is usually taken for
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granted. For instance, we fully expect that the disks won’t  start moving around on their 

own, because our expectations of disks and pegs probably precludes movements o f 

any kind without the actions of some external force (e.g. us, the wind, an earthquake). 

More fundamentally, we probably don’t expect the disks to be able to be placed into 

the same physical space on the peg; only on-top o f or underneath one another, for 

example.

The TO H  simulation physical metaphor also provides useful information about the 

actual game rules. For instance, as well as encoding disk identity, the physical size of 

the disks is used by the third TOH rule (no bigger disks on smaller ones), and so the 

very appearance o f the disks provides a memorial hook for the rule. This information 

is always available externally, too, because there are always three different sized disks to 

look at, whatever the game state. It still must be remembered by the player that larger 

disks don’t go on smaller ones instead o f the converse (i.e. smaller disks don’t  go on 

larger ones), but stacking things into piles with the biggest things at the bottom, not the 

top, is probably a well-learned association before the TOH game is ever encountered. 

There are versions o f the TOH where this rule is even more deeply embedded in the 

game metaphor; instead o f disks there are cups o f different sizes (or Russian dolls) that 

must be fitted inside one another, and so the converse to the rule cannot physically be 

made to occur.

A well as encoding useful information, the physical metaphor o f the TOH is also 

responsible for mistakes that commonly occur when first playing the game. For 

instance, distance between the physical elements o f the game does not correspond to 

distance in the problem space. Therefore, moving a disk physically nearer to the goal 

peg does not always, move the game nearer to conclusion (this is how a strategy based 

upon a means-end heuristic could fail, for instance). In contrast, in the game played 

with a counter on the Sierpinski gasket map, moving the counter nearer to the goal 

always shortens the path to the goal (if played from the 1,1,1 starting position).

The SPS game does not have such reliance on a physical /  spatial metaphor. Disk 

information is represented spatially, or at least sequentially, as disk size increases from
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left to right in the vertex label. However, peg information is encoded by the identity o f 

the visual symbols. It is identical in this respect to written alphabetic language, where 

both the identity and position information o f a symbol within a word are necessary to 

identify the word. (For example, the words “dog” and “god” are not synonymous, 

despite being composed o f identical symbols.) Using the same analogy, words in an 

alphabetic language are equivalent to problem state labels (vertex labels) in the SPS 

game. For this reason it is quite likely that some or all o f the very well learned skills that 

we acquire for dealing with words, or numbers, will be used when playing the SPS 

game. Metaphors based upon linguistic or mathematical knowledge are likely to 

dominate.
■■mm-

This linguistic metaphor will also provide some o f the taken-for-granted move 

operator information. As is found with alphabetic writing, the SPS labels are symbolic 

and positional. Therefore, general information, such as the fact that symbols can be 

substituted for others and that they have different meanings in different positions, can 

be inferred by a player that can recognise the problem format (Le. a player that can 

read; notice, however, that it will be the problem format; not the problem space, which 

must be recognised.)

In  contrast to general game information, the specific game information, i.e. the specific 

rules for manipulating symbols, is less easy to map on to a widely known metaphor for 

the SPS game. Such a metaphor would allow us to effortlessly ‘see’ why the sequence 

o f SPS labels (1,1,1) (3,1,1) (3,2,1) (2,2,1) is better than, say (1,1,1) (3,1,1) (3,2,1) (1,2,1), 

in the same way that the Sierpinski gasket allows us to see the straight vs. the crooked 

path to the goal.

In the same way as for the TOH spatial metaphor, there are some properties that we 

can attribute to the SPS symbols that could provide heuristic information. The spatial 

metaphor can lead to the erroneous expectation in TOH that moving a disk nearer to 

the goal peg is always equivalent to moving nearer to the goal state. I f  the symbols used 

in the SPS vertex labels are given numerical status (Le. at least ordinal, as opposed to
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categorical scale properties) then changing a symbol for a ‘higher’ one (‘nearer* to the 

‘goal’ symbol, 3) would manifest itself as a similarly flawed heuristic in the SPS game.

Given these differences, the TOH and SPS games could be expected to provide a 

useful paradigm for comparing spatially-based vs. verbal/numerically-based problem 

solving. The reasoning outlined above suggests that these tasks, if  implemented as 

described, would be identical in virtually all respects except the processing ‘codes’ used, 

symbolic/spatial (SPS) vs. spatial (TOH). Performances on the TOH and SPS games 

would then be expected to vary, for instance, with the spatial and verbal abilities o f the 

players.

To put the TOH and SPS games into a form more relevant to the programme­

debugging tasks o f the SSI DPP, they could instead be set as fault-finding tasks. The 

rules o f the games could be cast as the rules o f operation o f the game simulation.

Faults could be seeded into the simulations o f the games that allowed, say, illegal 

moves between certain problem states. The relative efficacies o f the two games in 

fostering detection o f errors o f various types could then be judged.

If  the spatial (TOH) and verbal (SPS) versions o f the game support processing 

metaphors that detect non-overlapping sets o f errors, then cognitive diversity will have 

been demonstrated. If, after accounting for speed-accuracy trade-offs, the error sets do 

not show diversity then it can be argued that the representations are functionally 

equivalent In  such a case it would be interesting to speculate on whether an intrinsic 

feature o f the information processing system had been encountered, one based upon 

the information as opposed to the modality that delivers (and pre-processes) that 

information. Just such speculation will be indulged in the next section.

10.6.4 Information structure of the Sierpinski gasket

What, then, might be the fundamental properties o f the ‘information’ contained within 

the TO H  and SPS games? A reasonable starting point to answer this question is to 

look at the elements o f the games themselves. Each game consists o f two sets o f three 

elements: One series encodes disk/column information (three disks, three columns);
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the other encodes peg/symbol information (three pegs, three symbols). However the 

sum o f problem states that could be encoded with such a scheme is only 32, or nine 

states. This is not enough to code the 27 possible states o f the games.

A clue to the location o f the extra information is contained in the rules, o f which there 

are three. As well as specifying relations between disks (3) and pegs (3), they also specify 

the rules for disks within pegs. There are also three ways in which disks can be arranged 

on a peg. The position o f the largest disk is entirely redundant — if on a peg it always 

occupies the bottom  position — and so it carries no informational load*. We need one 

piece o f information to decide where the medium disk is located; if  it*s not on the 

bottom  itself it must be one up from the bottom, on the largest disk. We need to ask 

two questions (two bits o f information) to find out where the smallest disk is, however. 

First, is it on the bottom? Second, is it one up from the bottom? I f  the answers are 

both ‘no’, then it’s on the top o f the pile. A fyes’ at any point obviously locates the disk. 

So, an additional dimension o f information is required to code these three possibilities. 

This gives a total o f three sets comprising three states each that have to be encoded; 33 

= 27, the number o f problem-states in the TOH and SPS games.

In the TO H  game the problem-state identity information is carried by the 27 possible, 

legal, arrangements o f the game pieces. In the SPS game the information is carried by 

the 27 possible arrangements o f the three symbols in their three-column labels. Either 

game can then be said to have embedded the problem-states into a three-dimensional 

space, each dimension having three points. (The use o f the term ‘three-dimensional’ is 

not meant here as the familiar, Cartesian, spatial, physical world which we inhabit, but 

rather an abstract problem-space with three independent parameters.) We could map 

the problem space into differently dimensional spaces, however.

Instead o f labelling the Sierpinski gasket as we have done up to now, we could instead 

simply label the vertices sequentially from top to bottom  and left to right with the 

letters o f the English alphabet plus another symbol, the Greek symbol omega, ‘Q ’

(say), giving the required 27 symbols. This would translate (1,1,1) into [A], (2,1,1) into 

[B], (3,1,1) into [C] and so-on until (2,3,3) into [Z] and finally (3,3,3) into [Q]. The SPS
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game with such coding would mean that each game state would be represented by a 

single symbol. Instead o f a symbolic positional coding scheme, a purely symbolic 

coding based on one dimension with 27 states (symbols) would remain. This would 

embed the TOH problem space in an abstract one-dimensional space with 271 points, 

i.e. 27. (Having two symbols instead o f one would give a possible 272, or 729 states for 

a hypothetical TOH-272 game) The game player would then be tasked with changing A 

to Q in the fewest legal steps. (Defining what constitutes a legal’ step, i.e. the rules o f 

the game, I ’ll leave to the interested reader. The winning sequence would be: [A] (start), 

[q , PE], H , pq, [O], [S] [Q](finish).)

So, if the problem space can be mapped onto any number o f abstract informational 

dimensions, is it important which particular scheme is adopted when considering how 

easy it would be for humans to navigate the space? The answer is perhaps to be found 

in the manner in which the problem is (quite literally) addressed.

10.6.5 Hierarchical addressing o f the TO H problem  space

So far, the addressing systems used to label the TOH/SPS problem states have all had 

their semantic roots in the physical manifestation o f the TO H  game (i.e. disks and 

pegs). This allows the isomorphic nature o f the problem spaces to be clearly seen. 

However, as was demonstrated with die alphabetical labelling, this is not the only way. 

Any scheme that had enough information-carrying ability (i.e. to represent 27 separate 

states) would be equally valid.

A brief inspection o f Figure 10 shows that the entire Sierpinski gasket is shaped like a 

triangle. However, the relation to a triangle does not stop there. The big triangle is 

composed o f three smaller triangles, and each o f these is composed o f triangular 

triplets o f vertices. The Sierpinski gasket is self-similar — small bits o f it are identical in 

structure to larger bits. I f  we were to add another disk to the three-disk TOH problem, 

we wouldn’t need to redraw the problem-space map (i.e. Sierpinski’s gasket), we could 

just take Figure 10 and photocopy it to produce three copies o f equal size, which could 

be arranged into bigger triangle with 81 (27 x 3) vertices — the problem space o f the 

four-disk TOH.
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This recursive self-similarity could be used to label the vertices o f Figure 10 with an 

addressing system that would make this structure obvious. Again, three symbols in 

positional format could be used to label the vertices, say A, B and C. However, the 

symbols would not represent disk on peg position, but rather the address o f the vertex 

within the problem space. So, reading the symbols in conventional fashion from left to 

right, the first symbol would show the location o f the vertex in the smallest triangle. 

The second symbol would show which o f the three medium sized triangles the vertex 

was in, and the final symbol would show in which o f the three largest triangles the 

vertex was located.

To borrow Luger’s (1976) terminology, each triplet o f three vertices represents the 

problem-space o f a one-disk TOH, i.e. the one-disk subspace. This means that it 

represents the three choices that we have when ‘arranging’ one disk on the three pegs. 

Similarly, each group o f three triplets represents a two-disk subspace, and the entire 

problem space is a three-disk subspace, because it represents the three-disk TOH.

To put this into practice, within triangles o f the same sub-space ‘scale’, the top-m ost 

comer could be labelled “A”. Moving clockwise, the bottom-right comer would be 

labelled “B”, and the bottom-left, “C”. Figure 12 shows how such a hierarchical 

addressing system would appear.
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Figure 12. The three-disk TO H  problem space labelled hierarchically
The problem space should be conceived as consisting o f three big, linked triangles, each made up of 

three smaller linked triangles (one set of these is labelled ‘two-disk subspace^, each o f which is made up 

of three linked vertices (‘one-disk subspace’). In each ‘subspace’ the uppermost comer is labelled A, and 

then on in alphabetical order clockwise; B for the bottom-right comer, C for the bottom left comer. For 

clarity only the vertices in the top triplet are shown labelled with ‘one-disk subspace’ labels. The full, 

three symbol ‘address’ is shown for two of the vertices (boxes).

In effect Figure 12, uses the same labelling system that is used for postal addresses. For 

a postal address, we give a separate piece o f information corresponding to the location 

o f our target address, on a number o f different ‘scales’. Later lines o f the address refer 

to larger-scale constructs, earlier lines refer to smaller-scale constructs. For instance, 

the first line o f a postal address usually locates a building in a street The pext line 

locates, perhaps, the street within a town, and the next a town within a country (and so 

on, to an old school-favourite conclusion: “...Earth, solar system, Milky W ay...”).
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Similarly, the first symbol in a hierarchical TOH vertex address locates the vertex 

within a one-disk subspace; the next symbol locates the triplet within the two-disk 

subspace, and; the final symbol locates the vertex within the entire, three-disk problem 

space. So, the vertex (B, B, A) is the bottom-right vertex in the bottom -right comer o f 

the two-disk subspace, located in the uppermost comer o f the full three-disk problem 

space. The shortest winning path using these labels is shown in Table 24.

Table 24. A winning TO H  game using hierarchical labelling

Move Vertex

0 Start a , a , a

1 B . A . A

2 A B , A

3 B ,B ,A

4 A A B

5 b , a b

6 A B , B

7 Finish b , b , b

NOTE: ‘'Vertex” refers to the symbolic positional hierarchical labels given to denote TOH disk 

positions. Each vertex has a three-letter label; the first letter denotes location o f the vertex in the smallest 

problem space division (A for the top, and B and C for bottom-right and bottom-left; respectively). The 

second letter refers to the location of the vertex in the next largest region o f the problem space, and the 

final one the location of the vertex in the hugest division. The first vertex (A, A, A) therefore represents 

the TOH state where all of the disks are on peg 1 (the ‘start’ position). The final vertex (B, B, B) denotes 

the goal state, located at die bottom right-hand comer o f the problem space.

It is immediately obvious that at no point does the winning sequence require that the C 

symbol is ever used. This gives a key insight into die dimensional structure o f the 

information represented. Previously, the TOH task was likened to a hiker navigating a
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2-dimensional plane (the problem space). However, what the previous TOH labelling 

schemes didn’t  make obvious is that the shortest-sequence o f moves is in fact just a 

straight line drawn through this space. A plane has two dimensions, but a line has only 

one. By using a labelling scheme that represents the self similarity inherent in the 

problem space, a whole dimension o f the space is now redundant.

So, the hierarchical labelling o f the Sierpinski gasket seems to have revealed the simple 

structure o f the problem space. Before going on to show how all o f this gaming and 

labelling can be used to understand human problem solving, it is worth showing just a 

couple more hierarchical labelling systems for the Sierpinski gasket The first is shown 

in Figure 13.

Figure 13. Hierarchical numerical labelling o f the Sierpinski gasket. 
As in Figure 12, the space should be conceived as consisting o f three linked triangles, each made up of 

three smaller linked triangles, each made up o f three linked vertices. In each triangle the uppermost 

comer is labelled 0, and then on in numerical order clockwise; 1 for the bottom-right comer, 2 for die 

bottom left comer. For clarity only die vertices in the top triplet are shown labelled with ‘one-disk 

subspace’ labels. The full, three symbol ‘address’ is shown for two o f the vertices (boxes).
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In  Figure 13 only two changes are made to the scheme outlined in Figure 12. Instead 

o f the letters A, B and C, the figure is labelled with the numbers 0,1 and 2, 

respectively. Then instead o f the first symbol from the left representing the smallest 

‘scale’ (triangle), the first digit on the right will show this information. The left-m ost 

digit then gives information about the vertex location in the largest triangle (the largest 

scale). This just means that where previously the labels were read from left to right 

(meaning small-scale to large-scale information), the labels are now read from tight to 

left to give the same meaning. The shortest sequence o f moves to transform 0 ,0 ,0  

into 1 ,1 ,1  is shown in Table 25.

Table 25. A winning SPS game in  numerical hierarchical format

Move Vertex

0 Start 0 ,0 ,0

1 0 ,0 ,1

2 0 ,1 ,0

3 0 ,1 ,1

4 1 ,0 ,0

5 1,0,1

6 1 ,1 ,0

7 Finish 1,1 ,1

NOTE: “Vertex” refers to die symbolic positional hierarchical labels given to denote TOH disk 

positions. Each vertex has a three-letter label; the right-hand digit denotes location o f the vertex in the 

smallest problem space division (A for the top, and B and C for bottom-right and bottom-left; 

respectively). The middle digit refers to die location o f the vertex in the next largest region o f die 

problem space, and the left-hand digit the location of the vertex in die hugest division. The first vertex 

(0, 0, 0) therefore represents the TOH state where all o f the disks are on peg 1 (the left-hand peg). The 

final vertex (1,1,1) denotes the goal state, located at the bottom right-hand comer o f the problem space.
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In  contrast to the labelling schemes used before, it is now quite possible that you can 

actually ‘see* which the good moves are (depending on your familiarity with binary 

numbers). This is because the winning sequence is now mapped perfecdy onto the task 

o f counting in base 2. The labels map perfecdy because in effect they specify the same 

thing. On the one hand the labelling is designed to show the coordinates o f the vertices 

in a 2-dimensional space. However, the winning sequence can be represented as a 1 

dimensional line; the line across the full problem space from start point to goal point 

This can in effect be seen as the distance from the start point (0, 0, 0, or just 000) to 

the goal point (111) in terms of how many moves along it is. To decode this 

information in more familiar decimal format, we just convert the label from binary to 

decimal as though it were a number. Therefore, the start point, 000, is zero distance 

from the start The next move, 001, is one move away from the start The label 010 is 

binary for 2, and the similarly-labelled vertex is indeed two moves from the start. The 

goal state, 111, is just seven in decimal notation. So, this number just represents 

distance in a one dimensional space, where you can go just forward or backward, 

towards the goal or away from i t

O n the other hand, if the labels can be seen to represent distance from the goal state, 

they can also be seen as purely specifying some quantity (not necessarily ‘distance* in 

any Euclidian sense) that is an index o f how complete the game is. I f  this quantity is 

represented as a natural number (albeit in binary notation), then we can count upwards 

(towards the goal) or downwards (away from the goal). Again, only one dimension o f 

information is invoked; the information given by the vertex label regarding the quantity 

o f ‘game completeness’..

In  the binary counting version o f the SPS game we can use our pre-leamed knowledge 

o f the familiar symbolic, positional number system that we use to represent everyday 

numbers. This will give us implicit knowledge o f how we can manipulate the symbols 

to achieve the operators o f ‘add one’ or ‘subtract one’, in the same way that implicit 

knowledge o f physical objects gives relevant information in the physical TO H  game.
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The above is actually a simplification o f any plausible use o f a counting paradigm to 

encode the rules for playing the hierarchical SPS game. For completeness, we must 

consider that the actual problem space is not just the 1-dimensional shortest-path line 

(represented in binary). Therefore, move operators must allow movement across the 2- 

dimensional space (which would require the use o f all three symbols; base 3). For 

example, any move from one vertex to the adjacent one to its bottom-right would be a 

move towards the (1,1,1) goal, and would in effect be a binary addition. Similarly, any 

move that took the player off the winning path by moving to the bottom -left (e.g. O il - 

012) would again be the addition o f 1, but this time in base 3, as the extra dimension o f 

the problem space is called into play. Moving down the path from the top (0 ,0 ,0) to 

the bottom-left vertex (2,2,2) is a one-dimensional path just like the winning path. 

However, it would involve more complex addition in base 3 than just adding one to 

account for the following sequence o f four moves that starts the path: (000) (002) (020) 

(022). This seems to consist o f adding two, then four, then two again. (Actually, this is 

just binary addition using the symbols 0 and 2 instead o f the more conventional 0 and 

1). ‘Horizontal’ moves between states (e.g. 012 - 021) are even more difficult to 

accommodate within a simple addition-based cover story for the game rules.

In  the above case o f the numerical hierarchical labelling, as in the other cases 

discussed, the metaphor brought to mind (counting) is not mapped perfectly onto the 

problem space. As well as the difficulties raised above, the counting paradigm might 

lead a player to believe that, if  their job is to change 000 into 111, and they are allowed 

to add one or two or four (in base 2 or 3) each go, then they might get to the goal in 

only three moves by adding four then two then one (equalling seven [binary]; the goal 

state). This is not the case.

In  effect, by telling participants to transform 000 to 111 by adding one in binary each 

‘move’ is to give explicit instructions to the problem solver as to the correct direction 

to take across the problem space, and the operators to use to get there, to solve the 

problem.
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A set o f operators can quite easily be constructed however, that would allow the 

effective manipulation o f the abstract symbols that are used to give address-labels to 

the vertices in game-legal ways. A set o f rules that works generally is described below.

10.6.5.1 Abstract rules for a hierarchically labelled SPS game

Synopsis: The game is played with three symbols (0,1 and2) arranged in three columns 

(left, middle, right). Any column can contain any symbol. The goal o f the game is to 

transform a starting set o f symbols (0, 0, 0) into a goal set (1 ,1 ,1 ) using only the rules 

below for changing symbols.

Hierarchical Rule 1: The right-most symbol can be exchanged for any other 
symbol.

; Hierarchical Rule 2: The middle symbol and the symbol to its right can be 
exchanged.

Hierarchical Rule 3: The left-hand symbol can be exchanged (identity for 
identity) with the two symbols to its right, if  they are both the same.

These then, are general rules for manipulating arbitrary symbols that represent 

information in a recursively-addressed problem space. However, the symbols used so 

far (letters and numbers) will cloud our ability to make inferences about the effects o f 

the informational structure on task difficulty in any experiments that are conducted 

using these tasks. This is because o f the pernicious effects o f prior learning — any 

experience that participants may have with alphabetic or numerical symbol systems is 

likely to drive their internal problem representation, and thus bring with it knowledge, 

assumptions, and skill in using move operators that will be hard to control-for and may 

not be valid for the problem context Rather than try and seek out adult participants 

who have had no experience with any symbolic positional information system (i.e. no 

written language or number system!) it would probably be easier to use symbols or 

analogies that do not carry such ‘baggage’. The use o f coloured patches as stimuli has a 

long and distinguished history (e.g. Stroop, 1935), and would seem a good choice in 

this case. Instead o f the symbols A, B C, or 1 ,2 ,3 , patches o f three different colours 

could be used.

184



Chapter 10: General Discussion

Using colour patches would allow comparison o f reconcilable symbolic positional 

systems. It would still fail to capture the spatial move operator information inherent in 

the original TOH game, though. This would make inference difficult when trying to 

separate the effects o f the new perceptual formats from the effects o f the 

informational manipulations given by the hierarchical labelling. However, as always, a 

new representation can be derived; Figure 14 shows such as a system. It is based on the 

hierarchical labelling o f the Sierpinski gasket, but represents move operators as 

mechanical, spatial actions, much like in the original TOH.

O' -----► 1 "2ai,: -1 ► 2b — ► 3 • — ► 4a ------ ►

Figure 14. The first four states in  the shortest sequence to transform the 

colum n from ’red' to ’blue' (light grey), using the hierarchical TO H  rules.
Tbe three hierarchical rules are represented by the black dots (which are grey when in operation). Step 

one uses the first rule to transform the upper block to the goal state (blue [light grey]). Step two uses 

the middle rule to swap the upper and middle blocks (two pictures, 2a and 2b are shown, to show the 

operation o f the rule). Step three uses the first rule again. Finally, step four shows the initiation o f the 

use o f rule 3, which swaps the upper two blocks for the lower one. Numbers with arrows show the 

step, numbers in brackets show the hierarchical numerical label from Table 25.
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The representation shown in Figure 14 merely implements the hierarchical rules shown 

in this section, and is so is isomorphic with the original TO H  problem. Each problem 

state is represented by a column divided into three blocks. The colour o f the block (in 

this case red [dark grey], green [not shown] and blue [light grey]) denotes identity o f the 

symbols used to label the problem space. The top block shows the address o f the 

problem state within the one-disk subspace (i.e. the right-hand symbol o f the 

hierarchical label). The middle block shows the location within the 2-disk subspace 

(middle symbol), and the bottom block shows the location o f the state in the three-disk 

subspace. Like in the TOH, the rules are represented physically in the game; the rules 

consist o f axes, around which the rule operates to rotate the symbols to their 

appropriate locations.

As shown, Figure 14 actually has a combination in the way that rules are represented. 

Rule 1 ‘changes’ the colour o f the top block; rules 2 and 3 ‘move’ the blocks to 

different locations. As such it is an admixture o f Kotovsky, Hayes and Simon’s (1985) 

‘move’ and ‘change’ TOH isomorphs. Kotovsky etal found change problems to be 

roughly twice as difficult as move problems. They interpreted this as evidence for the 

preference for spatial coding of information, which allows information encoded in 

different locations to be kept relatively interference-free from information associated 

with other spatial locations. Change problems were thought to require the storage of 

volatile (i.e. subject to change) information at each spatial location, which would be 

more prone to decay and interference. It is possible, however, that the participants 

were just much more practiced at encoding the movement o f objects in our spatial 

world than we are at encoding any wholesale transformations that they may undergo 

(depending on our expectations for that object; I  don’t  expect wooden blocks [or 

crystal globes] to be able to mutate in size, but I do expect a balloon to be able to, for 

instance).

Altering the isomorph in Figure 14 so that rule one operated by actually ‘swapping’ the 

top block for one o f a different colour would implement an entirely ‘move’-based 

problem representation. By not animating the block transitions, and instead just 

showing them changing colour, would implement a completely ‘change’-based
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isomorph. This would allow a more abstract and perhaps more robust test o f the 

‘move’ vs. ‘change’ issue highlighted by Kotovsky, Hayes and Simon (1985).

Returning finally to the justification for this detour into problem solving lore, the 

problem representation shown in Figure 14 should be directly comparable with the 

representation shown in Table 24 and Table 25. All have identical problem spaces and 

move operators, the only differences to be found are in the fundamental skills that 

encode much o f the procedural knowledge for using the move operators. In  the 

example in Figure 14 these are the skills involved in dealing with spatial relations o f 

solid objects. In Table 24 the skills for dealing with discrete symbol systems are 

invoked; in this case an alphabetic one. The format shown in Table 25 again rests upon 

skill in dealing with a discrete symbol system, but this time one designed to represent 

magnitude, i.e. number.

Embedding these representations in a computer programme would allow ‘bugs’ to be 

introduced that would affect the outcome of the operations o f move operators. These 

‘bugs’ would then be the target for fault-finding efforts which could be compared 

across tasks. The interdependence between fundamental spatial and verbal /  numerical 

skills in aiding fault-finding and diversity in fault-finding could then be ascertained.

Additionally, the representations discussed above, all using hierarchical addressing o f 

the problem space, could be compared with ‘traditionally’ addressed representations 

that separate global vs. local knowledge, eg. as described in §10.6.1.2. I t is likely that 

the difference in structure o f the apparent problem space would lead to different 

mental models o f the problem, which could then facilitate the use o f diverse strategies 

for task performance.

This discussion could continue on, recursively and without end. However, better it is 

left here, after specifying in detail a ‘purer’ task environment for the study o f diverse 

problem representation.
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A p p e n d ix  B : D ive rs ity  e x p e rim e n ts  L-IH tra in ing  m a te ria ls  

G e n e ra l, ‘c o m ’ tra in in g  m aterials

1. F a u lt d ia g n o s is  in ra ilw a y s ig n a llin g s o ftw a re

Th& experim entaLtaskyou. w illb a  perfaBTiing.is based around the job of people w ho se a rch  for 
faults in the software that controls railway signalling com puter system s. Called 'Solid-State 
Interlocking’ (S S I), these system s are Installed in Britain's.railways and around the w orld . T h e y  
are used to ensure the safe and efficient operation of the railway, by m anaging the points, signals 
and so o n , in the railway. W h e n  the signalm en and w om en operating the rail network w ant to 
allow train m ovem ents, they do  so  via the S S I com puter, w hich, based on the software it 
contains^should notallow  unsafe m ovem ents to take place. O bviously, a n y faults in the S S I 
software could affect the safe and efficient running of the. railway,

Y oiiLta sk w ilLh e  to  search for fauttaiii a  P C -b a s e d  simulation, of the S S I com puter. T o  enable you 
to do this, the following is intended as a guide, to teach you the basic elements of the railway and 
the signallingprinciples that are followed in its operation.

2. Elements of the Railway

Appendix B

S4 S6

fig u re  1. Exam ple railway networks

fig u re  1 shows, an. exam ple railway ne tw o rk-Th e  different-elements that go to m ake up the railway 
network will now  be described.

2.1. T ra c k s .
Railw ay tracks are represented on the diagram  as horizontal or diagonal lines. Each line 
represents one railway track ( le . the tw o rails that the train travels o n ). Figure 1 consists o f two 
main tracks, running horizontally, with two short diagonal sections connecting them . W here the 
horizontal and diagonal tracks converge or diverge there is a gap , representing a set of points 
(described later).

2 .2 . T ra c k  c ircu its .
Ea ch track is divided into sections called track-circuits, labelled T 1 , T 2  etc. in figure 1 (a bit like 
the w a y  the track of a model railway com es in sections). T h e  track circuits are divided on the 
diagram  by the short vertical lines, each one m arkingone of the ‘ends’ of the track circuit Most 
track circuits are straight, with just two ends (T 7 , T 4  etc.). A  track circuit with a set of points in it 
(T 3 , T 5  etc.) has three ends.

Efig&JBl
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T1

T7

T2

TS

T4

TW-

T5 T6

T il T12

figure 2: Track circuits in figure 1.

T h e  track sections are called ‘circuits’ because each one has an electrical potential between, the 
rails, and w hen a train is on a particular track it com pletes the circuit between them . Using this 
information th e  signalling com puter can detect whether there is a train in a n y  particular track 
circuit. T h e  track circuit is referred to as either ‘occupied’ w hen there is a train on it, o r ‘clear1 
w h en  there is n o t  (T h e  reason British Rail u se d  their notorious.‘leaves on the line’ excuse tor 
delayed trains w a s because the leaves acted as an insulator belween the track and the train, and 
the  signalling com puter could  n o tb a  sure w h e re  th e  trains w e re!)

2.3. Signals.
Signals (labelled S 1 ^ S 2 e tn .in  figure 1 )operate in the sa m e  w a y  as traffic lig h ts jn  th a ta ^ re e n  
light allows the train to pass and a red light m eans the train m ust stop. T h e  signal points to either 
the left o r  the right o n  the diagram* and this show s in which direction routes (discussed next) are 
set from that signal.

2A. Routes.
Routes are the paths across the railway network that trains travel along. Routes run between 
adjacent signals; the route starts from a n  ‘enhance’ signal and finishes at an ‘exit s ig n a l A s  
mentioned earlier, the direction that the signal is pointing gives the direction of routes that are set 
from that signal. Fo r instance, S I  ispointin g  to  the right,and m u te  1 (R 1 ) goe s to th e rig h t 
Routes only ran between signals pointing in the sam e direction,, for instance, there is no  route 
from S 5  to S4. A  route is ‘set’ if it has been selected by the signalm an, or ‘not set*, if it has n o t 
Th e re  are tour routes that can be set in the demonstration network, shown in the table below. 
(Notice that all possible routes are not listed, e.g. there is no route defined between S 6  and S 4 )

T a b le  1: R o u te s  in fig u re  1
Route N am e Entrance Signal Exit signal
R1 " ■ S1 S 3 .
R 2 "S1 S 7
R 3 S 5 S7
R T S6~ S Z

A  route can.be considered to be  m a d e  up o tth a  track circuito (and suh-routes, described later) 
that lie between the entrance and exit signals. Th e s e  are taken from the first track circuit in line of 
route after fee one that the entrance signal is on_untilthe cine that the exit signal is on. F o r 
exam ple, R 2  runs from S1 to S 7 , and is m ade up of T 3 , T 9 , T 1 0 , T 1 1 and T 1 2  (shown below).

SI
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H ow ever, as well as R2, T 3  is a part of R1 (from S1 to S 3 ) and also R 4, (from  S 6  to S 2 ). T o  
enable u s ta  tell th e  com puter e x a c flyw h ic h m u te is  se t over a  particular track circuit_we can 
describe the direction of the route over the  track circuit in term s of sub-routes.

2AjL Sub-routes.
S u b  routes correspond to track circuitsubut in addition to defining a section of track, they also 
give the direction of the route that they are part of. F o r  exam ple, figure 4 below  is intended to 
represent the two track circuits to the right of S2  in figure 1,* T 3  e n d  T 4 .

12 o’ clock 12 0  clock

fig u re  4 : S u b -ro u te  d ire ctio ns

If R1 (S1 to S3Xis s e t  then the route is m ade up of T 3  and T 4 . Considering just T 4  firsLw e  have 
to denote that the route is going from left to right across T 4 ,  rather than right to left T o  d o  this, 
each end of the track circuit is g ive n  a  label, and then the direction of the sub-route is given by 
specifying the labels corresponding to the ends of the track circuit that the train enters and leaves 
by.

T h e  labels for the ends of the sub-route are derived by imagining a clock face laid o ve rth e  track 
circuit (see figure 4 ). T h e  im aginary clock  face should be centred on the track circuit if  there are 
no sets of points in the track circuit Q.e. T 4 ) .  If there is a set of points in the track circuit, the clock 
face should be centred on them  (e.g. T 3 ).  Starting at the im aginary 12 O ’clock point and m oving 
clockwise, each successive end of the track circuit is  labelled A ,  C  etc.

S o , T 4 , above, has two ends. Clockw ise from  the 12 O 'clock point th e  first end is th e  right-m ost 
one and this is labelled A . T h e  next end is the left-most one and this is labelled B. T h u s , the 
direction of the R1 sub-route over T 4  is B to A , or just B A .

T 3  has three ends. Th e s e  are labelled using exactly the sam e method as before. Clockwise from 
the 12 O'clock point the first end is the right-m ost one and this is  again labelled A . T h e  next end is 
the bottom one (adjoining T 9  in figure 1 )a n d  this is labelled B. T h e  leftm ost end is again the last 
and is labelled C . S o , the R1 subm ute corresponding to T 3  is labelled C A . Th e re  are two other 
routes that run over T 3 , and their corresponding sub-routes are: R 2  (S1 to S 7 ) = C B ; R 4  (S 6  to 
S 2 ) = B C .

W hen a route is set, all of the sub-routes that make up the route are said to be ‘locked’. If a su b ­
route is not in a route that has been set it is said to be ‘free’.

2.5. P o in t s ." .
W here tw o railway lines meet, that is, w here two tracks diverge or converge, there has to be a 
method of safely guiding the train down one track or the other. Th is  is accomplished by a set of 
pointst wbich physically m oves the end of the track so it com pletes the required path.

in figure 1, points are shown as a small gap  between the two adjoining lines. Th e re  are two sets 
of points in  figure 1, labelled P1 and P 2 , each, of w hich has two ‘ends’. T h e  two ends o f P1 are in

P a g e JB S -
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T 3  and T 9  (both labelled P 1); the two ends of P2 are in T 5  and T 1 1 (both labelled P 2 ). Ea ch  point 
end  c a a  be in oae of two positions, called ‘normal’ or ‘reverse’.  N orm al is the position that allows 
a train to travel on the m ain, horizontal path across the points. Reverse is the position that guides 
the train d o w n  the diagonal path.

T h e  two ends of a set of points always work together, i.e. they are always either both normal or 
both reverse. Th is  allows trains to travel either straight along the main horizontal line, or to cross 
over from one main line to the  other. Because they are always at the sam e position (norm al or 
reverse)-, the  railway signalling software nam es and treats the two ends of a set of points as 
though they are a single entity,

Inaddition to their position, the points c a a  also be in o n e  of two. states. T h e y  can be “free’ to m ove 
from one lie to the other, or they c a a  be ‘locked.’ ia  a  particular position.

T h e s e ,th e n , are the elements that make up a railway, N e x t jh e  rules that are applied in the 
running of the railway are explained,

3 . R a ilw a y  S ig n a llin g  P rin cip le s

S o m e  rules m ust be applied in the working of the railway, to ensure that trains are allowed to 
travel across the network w hen it is  safe to do  so, .but stopped w hen it is not. Th e s e  are called 
‘Railway Signalling Principles!’, and the experiment deals with those to do with point locking and 
route setting.

3.2. P o in t lo ck in g

T o  allow flexibility of route s e ttin g jh e  points in the network should be free to m ove from  one lie to 
the other w henever possible. Th e re  a re  two. exceptions to this, h o w e ve r

T ra c k .c irc u it  lo ck in g
T h e  points should be locked if there is a train travelling over them , a s m oving them would de-rail 
the train. S S I controls this by checking the track circuits with points in them . If they a re  occupied, 
the relevant points should be locked, and not allowed to m ove. O n ly  the track circuits with points 
in them  should do this, how ever. T h e  occupation of any other track circuits should not affect the 
functionality of the points.

Route locking
In addition to not m oving the points when a train is actually travelling over them , the high speed 
and m om entum  of trains m eans that the points should n o t b e  allowed to m ove in front of a  train 
w hen it is about to cross the points. Th is  is accomplished by the locking of all relevant sub-routes 
w hen a route is set. Th is  has th e effect o f locking all the points within a route w hen th at route is 
set. O n ly  the points within a route should be locked by its setting, F o r instance, R1 should lock 
P 1 , but not P2.

3.1. Route Setting.

T h e  signalling principles for route setting are based on the philosophy of allow ingonly one train at 
a time into any particular area of the nelwork. W hen a signalman o r wom an presses a button to 
request a_route_tQ be s e t  th e .S S I m u st evaluate whether this will be the case by using the 
principles relating to opposing routes and signal control.

Opposing, routes.
O p p osing routes are those that use one or more similar track circuits, i.e. two o r more routes that 
travel, at som e point, over the sa m e  bit of track. F o r instance, R 2  and R 3 are opposing, a s they 
both travel over T 9 ,  T 1 0 , T11  and T 1 2 . T h e y  sh o u ld  not, therefore, be allowed to be set at the 
sa m e  time. N ot all routes are opposing; R1 and R 3 travel on parallel tracks, and at n o  point do 
they use the sam e track circuit. T o  allow the greatest functionality of the railway (i.e. the m ost 
trains running at the sam e tim e) they s h o u ld  be allowed to be set together.
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S S I controls the setting of opposing routes by checking the status of the points within a route, to 
se e  if they_are already in, o r  free to m ove t o jh e  correct position for the route to be set (either 
normal o r reverse); o r if they a rotocke d-inthe  w ro n g  position for th e  route. ’

If two routes require the s a m e  sets of points in exac% _the sa m e  positions then inspecting the 
points will not show  them  to be o p p o s in g  F o r  these ‘directly’ opposing routes (e .g .R 2 a n d R 4 )  
som e of the sub-routes that are set b yth e  op posingjoute  are also checked to m ake sure they are 
fre e .

Signal control
After a route is set, steps m ust be taken to ensure that only one train is allowed into the route at a 
time. Th is  is accomplished by controlling the colour of the  route’s entrance signaL T h é  signal, 
normally at red, m ust be changed to green to allow the train into the route. T h is  is only allowed if 
there are no trains already in the route. S S I controls this h y  inspecting the state of the track 
circuits in the route, which should all be clear. If any of the track circuits are occupied, the 
entrance signal should stay red, Conversely, on ly  the track circuits that m ake up a route should 
control the route’s signal colour. If other track circuits, outside of the route, are occupied this 
should not stop the signal from turning green.
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fig u re  1. Exam ple railway network.

T l T2

T7 T8

T5 T6

~ 7 ------------ -

T il T Î2

fig u re  2; T ra c k  c ircu its  ip fig u re  1.

T a b le  1: R outes in figu re  1
Route Nam e Entrance Signal Exit signal S .

R t s i - S 3 - .
R 2 S t s ? -
R 3 -S 5 - -S 7 -
R 4 - -S 6 - S 2 -

fig u re  3: R oute  2

fig u re  4 : S u b -ro u te  d irections
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Checkers specific training materials

Checking.

The signallingrules (described earlier) that the SSI computer operates to must first be programmed into the 
computer by signalling engineers. The programme must allow the maximum functionality from the rail 
network whilst ensuring its safety. The programme is therefore extensively checked and tested before 
installation.

Your task will be a simplified version o f the checking procedure. You will be presented with a display 
showing a diagram o f a section o f railway. A t the bottom o f the diagram is a  list o f all the routes that are in 
the network. Below the diagram is a dialogue window which will display the code that will enable the 
signalling computer to safely operate the railway. You will be checking this code for mistakes. The code is 
arranged into three areas, ‘PRR’,  ‘PEM ’and ‘OPT!, each accessed by their associatedbuttons.

PRR stands for ‘Panel Route Request’. This means the code associated with a signalman or woman’s 
request to set a route. When the button on the signalling panel is pressed to set a route, the computer 
evaluates the PRR file to check that the conditions for the setting o f die particular route are met. The PRR 
file* in effect, contains the signalling principles fbrsettingtheroutes in the layout.

PFM  stands for ‘Points Free to Move’. This code contains the conditions that must be met before each set 
of points can be moved from one position to the other.

When the PRR and PFM process a route request, the outcome is either ‘true’ (set the route requested) or 
‘false’ (do not set the route). If ‘true!, thepoints are instructed to  move to th e  position required.

OPT is short for ‘Output Telegram’. If a ‘true’ value is returned by the PRR and PFM, the request is passed 
to the OPT file, which evaluates whether the conditions to give a green light on die entrance signal o f the 
route are m et If this test is passed then a message is sent to the signal to change to green.

Route
requested — [—

ifn q n n ^  ^
^ T ~  ■ ~ t  -  *  * ~ .

t i I» ' ■ »«route, •
PFftf j -  tafcpcinte-‘

Figure 1: Schematic showing the relationship between files when processing a route request.

Your task today will be to check the data In the three ‘files’ to see if  i t  conforms to the signalling principles 
outlined earlier. The following isintended as a guide to enable you to do this. The type o f data in each file 
will be explained and examples used frem  die Demonstration layout-(which is NOT the same as the layout 
in the previous handout) to illustrate what you should be checkingfor, when you come to perform the task 
for ‘real’. ■

■ 1. PRR. i  ;

Clicking on the PRRbutton.bringsup thePRRdata into the text window. The data within this is diyided up 
into routes, with the data for the first route in the layout, then the second, and so on. Each set o f route data 
contains the conditions required. befors_the.mute can b ese t, and the. actions that must be carried out to then 
set die route. The code can be scrolled through by clicking on the ‘up’ and ‘down’ buttons (one click per 
line). Alternatively,, the data can be scrolled by the route byclicking, the *route+’ button

For an example, we will work through the data for R2. This can be accessed by scrolling through the data 
for RLuntiL all o fth e data for R2 ( starting_‘*QR2 if  R2 a’ ) is  visible.

BageJ32



Appendix B

The PRR route data is laid out thus:

1. Route label and availability *QR2
2. Points test
3. Directly opposingroute(s) test
4. Route setting
5. Sub-route locking

if  R2 a
P I c rf,P 2  cnf 
U10-AB f , U3-BC f

6. Points controlling
7. Signal clearing.

then R2 s
U3-CB1, U9-CA 1, U10-BA1, U11-BA1 
U12-BA1 
PI c r,P 2 c n  
S2_ clear bpull

The code is divided into a set o f conditions following the ‘i f  ( lines 1 to 3) and a set o f actions following 
the ‘then! (line 4 to 7), If the ‘i f  conditions are passed, the ‘then’ actions are applied.

1.1. R oute label and availability»

*QR2_ islhe laheLfbr the R2 route data.. All routes have *Q.at thestart^w hichstands for ‘route reQuest’. 
This should then be followed by the route name, R2 in this case. After the if  conies the set o f conditions 
that must be satisfied for the route to be set. The first o f these» R2 a , checks that the route beingrequested 
is available (i.e. has not been barred because of engineering work, or ‘leaves on the line’).

13^ Points test.

Next, all the points in the route are tested. For R2 there are two sets of points P 1 and P2. These must be 
reverse and normal respectively. So P I are checked to  ensure that they are Controlled Reverse or Free to be 
controlled reverse (erf). If the points are already at their reverse position then this test is passed. If  not, then 
the computer inspects the PFM file {described later) to discover i f  they are free to be moved reverse. P2 are 
similarly tested, this time to see if they are ControllecLNormal or Free (cnf). Only the points that are 
required by the route need to be tested For instance, R1 (S2 to S3) does not travel over P2, so the PRR 
code for R1 w ill not include ateslforPJL.

13 . Directly opposing routes te s t

This part o f the code is testing to see if  any routes that are directly opposing to our route (R2 in this case) 
are set, (i.e. those routes that, between the two respective entrance signals, require die same position o f 1he 
sets of points as the route we are requesting). Only the directly opposing routes need be tested for here, as 
other opposing routes (requiring different points positions) have already beendealt with by testing the 
points themselves (described earlier and in die PFM section). If there were no direedy opposing routes then 
there would be no data here.

For R2, the only directly opposingroute is R4. The other opposing routes, R1 and R3, need P 1 normal. To 
ensure that R4 is not set we test the sub-routes that would have to be locked if  R4 was set. Two sub-routes 
are tested for each opposing; route:.

1 J .a . The first corresponds to the track circuit that the opposingroute’s entrance signal is situated on 
13 .b . The second corresponds to the first track circuit in the route we are requesting.

Tn both cases we test fo r the suh-route direction that corresponds to the opposmgroute. So the data means:

U is the label used for sub-routes, the number corresponds to the trade circuit (U10 is a sub-route across 
T10). The first subroute number is the same as the track circuit corresponding to the opposing route’s 
entrance signal (T10), and the direction o f the sub-route (the direction of the opposing route) is given by the 
letters AB (right to left). The second subroute corresponds to the first track circuit in. the route we are 
requesting (T3), again in the direction of the opposing route, BC (bottom-right to top-left). In both cases the 
f  denotes that we are testing the sub-route to ensure that it is free.
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If there are no directly opposing routes, there is no data required here and line 3 should be blank. If there is 
a directly opposing route orroutes_ then for each one the two sub-routes detailed in 1.3.a+b should be 
included.

L4. Route setting
If all the conditions are met then the route can be set. The first part o f this is to register the route as set, 
shown by the route name followed by an ‘ s ‘ for set. by the route name, then an ‘s’.

1.5. Sub-route locking
Next the route must be locked. This is achieved by_individually lockingjeach sub-route o f the route we are 
setting. So, each sub-route o f the m ule is  listed^followed-by an I for locked.

1.1.6. Points controlling
Here, the points are controlled to the position required by the route, in this case, controlled reverse (cr) for 
P I, controlled normal (cn) for P2,

1.7. Signal clearing
The entrance signal for the route is cleared J jy  writing_‘clear bpull’ after the entrance signal .label. This 
requests the OPT file to check the data to clear this signal to green. *

2.PFM

This is the Points Free to Move data As stated before, if  the points are in the wrongposition when a route 
is requested, the PFM data is consult«! by IheJPRR to see i f  it is  safe to move them to the required position. 
For each set o f points in a network there will be data to check if  the points can be moved normal and data to 
check if  the points can be moved reverse. The data for P I is as follows:

1. *P1N T 3 c ,T 9 c ,V 3 -B C f ,U 9 -C A f
2. *P1R T 3 c ,T 9 c ,U 3 -C A f ,U 9 -B A f

2.1. P IN  , :

*PL specifies that this is the PFM  datafor Points 1, showingthe conditions required to move the points 
Normal (PIN ). The asterisk is  thelabel usecLfor points in the PFM data

T i c ,T9 c
First the track circuit(s) that the points are in are tested to make sure they are clear, ft is obviously not very 
safe to move the points with a train moving over them.

U3 B-C f , U9 C-A f
The programme then, looks to see if  any routes have been set over the points which would require them in  . 
the opposing direction to the way that we wish to  move them, in this case normal. This has the effect o f 
testing for sub-routes from opposingroutes that require die points to be at Ihe opposite position as die way 
we want to move them.

For P IN , two routes require that the points be Reverse: R2 (from S2 to S6Xand R4 (from S5 to SIX Rather 
than test for all o f the sub-routes in those routes, the code just tests the last sub-route in line o f route over 
the points.

The sub-routes set by R2 across the points are U3-CB and U9-CA. Only the last sub-route, in the direction 
the train would be travelling, is needed. As R2 goes from S2 to S6, a train on this route crosses U9-CA last, 
so only this needs inclusion.

The other route that requires P 1 reverse is R3,from  S5 to SI. The two sub-routes in this case are die ones 
describing the reverse directions to the above, namely U9-AC and then U3-BC. Again, only the last one is 
required^U3-BC. BodLsub-routes are followed by an ‘ f? \  as they are tested to see if  they are ‘free*.

2.2 P1R

Appendix B
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For P1R, the same track circuits are checked as for PIN . This time, though, we must test the sub-routes 
over the points o f those mutes that need PI to he normal Those mutes areR l and R3 R1 sets IT3 -CA and 
R3 sets U9-BA, so these are the sub-routes that are tested.

3. OPT data.

3 .1  *S2 R2 T 3 c ,T 9 * T 1 0 c ,T llc . ,T 1 2 c

The PRR and PFM data check whether it is safe to set a route. If it is then the request is passed to Ihe OPT 
which checks that there are no trains in the route before sending the OutPut Telegram to the signal for the 
route, telling it to turn green. The first part o f ihe OPT data will be a ‘*s followed by the entrance signal 
for the route. Next, because there can be more than one route set from a signal, will be the route name. 
Following this, all Ihe track circuits in the route are listed, each with a ‘c’ after it, signifying we are testing 
it to see if  it is clear. Each route should have  a  separate line r>f OPT data

4. Fault reporting.

The purpose o f this exercise is to find any errors that may be present in the code that you will check. If  you 
do find an error then report it in the following manner:
Click on the button marked ‘log error’ in the bottom right-hand comer o f the screen. A cursor will now 
appear in the box at the bottom o f the screen. You can type in up to two lines o f text to specify the error that 
you found, pressingretum at the end o f the first line to  gel onto the second.

For each error you find, include the following information:

The file you are in (PRR, PFM or OPT)
The part o f the file (Route name forPRR and OPT, Point name and direction fa r the PFM)
The specifics o f the error, i.e. w hat is w rong and why it is wrong.
Whether the error is one o f safety or o f functionality

For example:

PRR, R4, ‘R4 s’ is missing after the ‘then’. Safety 
or
PFM, P2R, subroute ‘U5-BC’ is wrong,should serTC-BA^insTead. Safety 
or
GPTJRT,.n2"included unecessarify. Function

When you have finished typing, just click on the ‘log error’ button again. This saves your text, and you can 
continue checkingfor more errors-. If  you start typing and then realise that you have made a mistake (i.e. 
there is no error where you thought there was), just press the ‘Esc’ key. This w ill return you to checking, 
but not save thecoatents o f  theerror window.
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Reference Guide

S I  S2 S i

Entrance Signal Exit signal Route Name
S2 S3 R1
S2 ■ S6 R2
S4 "SB- RT"
S5 ~Sl RA

1. Conditions to set a route:

A) The points must be set to the correct position, or free to be set.
B) No opposing routes must be set.
C) No trains must already be in theroute.

1.1. Actions when the conditions have been passed:

D) All the sub-routes are locked
E) The points are. controlled to the required position

2. The signalling code specify ing the ahove for R IB  looks like: 

R IB

if  E l erf
U3 B-C f
T3 c ,T 9  ,T10 c , T il c sT 12c 

then set RIB
U3 C-B 1,U 9 C-A1, U1.0 B.-A1,U11 B-A 1,1112 B -A 1 
PI cr

Points Free to Move

P IN  T3 c ,T 9 c ,U 3  B -C £,U 9 C -A f
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T rack circuits T [x], T£y], T[z]
Sub-routes V\x-AB\ , U[y-A E \, \5\z-AB\
Points P [x ],P [y ],P [z]
Signals S[x], S[y], S[z]
Routes R [x], R [y], R[z]

Sub route direction given by:

120 clock 120 clock 120 clock

PRR (Panel Route Request)
One block such, as this per route

1. Route label and availability *Q[route number1 if  R froute number1 a
2. Points test
3. Directly opposing route(s) test Of required)
4. Route setting
5. Sub-route locking (all sub-routes in the route)
6. Points controlling
7. Signal clearing^

PFM  ‘Points Free to Move’
One block such as this per set o f points

P[x7 {cnf (normal) or erf (reverse)}, P{y]... 
U[x-AB] f, \5\p-AB] f 

then R  [route number] s
H[x-AB] l  \5\y-AB] X, U...
V[x] {cn (normal) or cr (reverse)} ,P [y ]...
S[entrance signal] clear bpull

*P[x]N T[x]_c»_. ..(track circuits for£[x]}U[x-AS]_f,....(last sub-route over the points for each route
that requires the points reverse)

*P[y]R T[x] c ...( track circuits for P[y]) U[x-AB] f, ...(last sub-route over the points for each route
that requires the points normal)

O P T ‘Output Telegram’
One block such as this per route

*S[x] R[x] T[z] c, T[y] c, T[z] c, ....(all the track circuits in the route)
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Testers specific training material 

Testing.

The signalling rules (described earlier) that die SSI computer operates to must first be programmed into die 
computer by signalling engineers. The programme must allow die maximum functionality from the rail 
network whilst ensuring its safety. The programme is therefore extensively checked and tested before 
installation.

Your task will be a simplified version o f die testing procedure. This testing is carried out on a simulator o f 
the SSI computer. The code that the signalling engineers have written for die rail netw orkis used by the 
simulator, which mimics the behaviour o f the real railway. Conditions can be set up and tested on it to 
ensure that the railway is conforming to the signalling principles discussed earlier.

1. Testing simulator.

The simulator consists o f a diagram o f the. railway network in the upper half of the screen^and a collection 
of buttons and indications in the lower half of the screen (please note that the example layout shown is 
NOT the same as the layout in  the previous handout). The routes in the network are defined in a route list 
under the diagram.

1.1. Track circuits.
The row of buttons at the bottom,.labelled T1 ,T 2 etc. are the buttons for the track circuits,. which are 
similarly labelled on the diagram. When the track circuit is clear, ie . there is no train on it, the buttaa is 
green. The button can be clicked on to simulate a train occupying the track circuit In this situation the 
button turns red.

1.2. Signals.
The red circles represent the signals in the layout They cannot be clicked nnJ but instead they show the 
colour that their associated signal is showing, either green or red.

: 1J. Points.
Each set o f points on the diagram has two blue buttons associated with i t  The left-most button controls the 
position o f the points, and shows an N  when the points are normal, R  when they are reverse. The right-hand 
button shows whether the points have been ‘keyed’ by the signalman (  K ) or are free ( F ). If the points 
have bear keyed, then their position, either normal or reversejs locked, and they cannot be moved until 
they are un-keyed, or made free. If they are free then they can be moved between normal and reverse by 
clicking on the position button.

The points position can be changed by the simulator. For instance, if  a route button is pressed and all the 
conditions are met for the route to set, then the points w ill be moved to their correct position for that route. 
Only the tester can key (lock) the points, however.

;; 1.4. Routes. "i/
The buttons at the top left are for settingthe routes in the network. The entrance and exit signals for each 
route are given in a list just below .the diagram. When a route button is clicked on the simulator evaluates 
the signalling principles programmed into it, and if they are met then the route is set If a route is set, then 
the route button should change from red to green. Additionally, the entrance signal o f the route should also 
change to green (unless one o f the track circuits in the route is occupied, in which case the sigial should 
stay red). .

2. Testing procedure.

Your taric.wilLbe.ta test the network, ensuring that points are.locked.Qr freehand routes.wilLset_only when 
the signalling principles outlined earlier are met. The tests that need to be carried out will be described 
below. While testing, however, it is WQrth.bearmgin.mind the followingthree areas, which are what the 
tests ultimately boil down to:
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Points. To set a route the points must either be already at the correct lie, or be free to move to the correct 
he; when the route sets only the points required-by the route should.be altereduand when set in  a.route or 
with their track circuits occupied they shouldn’t be moveable until the route is un-set or the track circuit is 
no longer occupied. However, thepoints should be free to move at all other times

Routes. To set a route, no opposing routes must already be set. If two routes are not opposing they should 
be settable aLthe same time.

Trains. Before the signal for a route will change to green, there must be no occupied track circuits in the 
route. If a route is set with any o f its track circuits occupied, the signal should stay red. Track circuits 
should only influence the route that they are part of, and if occupied, they should not stop the signals o f any 
other routes from turning green

To ensure that the above holds true for the network, die following tests should be performed:
2.1. Prelim inary tests.
Are all the buttons present and correctly labelled? Each button must initially be operated to ensure that it is 
working properly.

2.2. T rack circuit locking.

when the trade circuit button corresponding to the track circuit over a set o f points is pushed, simulating a 
train  occupying the track circuit^the points should not be moveable from norm al to reverse or vice versa, 
regardless o f the ‘keyed’ button position.

2.3. Point moving and locking. These tests ensure that thepoints are moved correctly byroutes^and are  
then locked.
23.1 . Individually, each set o f points inarou te should be moved^and keyed^to conflict w ith that route. For 
example, R2 needs P2 to be normal, then P2 moved reverse and keyed. R2 should not be settable. This test

23.2. Conversely, each route should be set, and each set o f points within the route individually tested to 
ensure they are locked (cannot be moved).
2 3 3 .  With no routes set, move all points to normal.. Set a route. Only the points required reverse by Ihe 
route should move to reverse. Repeat with points initially set to reverse.

2.4.1. To ensure that each track circuit in.aixmte.will stop the entrance signal from changingto gjeen if  it is 
occupied, occupy a track circuit in that route and then set the route. The route should set, but the signal 
should stay at red.
2.4.2. Conversely, each track circuit not in a particular route should have no affect on the entrance signal to 
the route from changing to green.

2.5. Opposing locking.
23.1,W iih a route set, ensure that allopposingroutes cannot be set.
2 3 3 . With a route set, ensure that all routes that are not opposing routes can be set

3. E rro r reporting.

The purpose o f this exercise is to find any errors that may be present in the behaviour of the network that 
you will subsequently test If you do find an error then report it in the following manner:

Click on the button marked ‘log error’ in the bottom right-hand comer o f the screen. A cursor will now 
appear in the box at the bottom of the screen. You can type in up to two lines o f text to specify die error that 
you found, pressingretum  at the end o f the first line to get onto the second.

For each error you find, include the following information:

2.4. T rain in route locking.
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The elements of the railway under test, and their state (e.g. P I locked, T3 dear, R4 set)
The specific functionality that is not correct, i.e. w hat is wrong, and why it is wrong.
Whether the error is one of safety or of functionality [e.g. for experim ent IH]

For example:

T3 occupied, R4 set, S4 does not change to gneenwhen it should.Function 

R4 set, can also set opposing R6. Safety 

PI keyed N„R4 will set when it shouldn’t  Safety

When you have finished typing, just click on the Tog error’ button again. This saves your text, and you can 
continue checking tor more errors. Ifiyou.start.typingjmd thenrealise thatyou have made a mistake (i.e. 
there is no error where you thought there was), just press Ihe ‘Esc’ key. This will jetum  you to checking, 
butnot save the contents of the error window.
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Appendix C

Appendix C : Mental model questionnaires

Conceptual distance questionnaire

This questionnaire is intended to gauge how similar or different you perceive the various 
elements and states of the railway to be.

Each item contains a pair of constructs on the left hand side. Each construct consists of an 
element of the railway, e.g. points, track circuits, and one of the two possible ‘states’ it could be 
in, i.e. points can be ‘free’ or ‘locked’,  track circuits can b e  ‘clear’ o r  ‘occupied’.

Specifically, w e ’d like to find o u t in your opinion, w hat the ‘conceptual distance’ between the two 
constructs is.

For instance, th e  first item pairs ‘pointsfree’ and ‘points locked’ together. Y a irm a y  believe that, 
because both constructs are dealing with points, the conceptual distance between them  is very 
low (Le_they.are both ve ry sim ilar). ln th a lc a s e _yo u ’d mark th e  scale line n e a rte tb e  left hand, 
zero, end of the scale.

o
Points Ires [
Points locked [____ 1 I L I t I-4.

100

Altem atively^you m a y think that because the constructs refer to veryjdifferent states of the joints, 
‘free’ and ‘locked’, that they are ve ry conceptually distant (i.e. dissimilar). In that case, y o u ’d m a rk  
the scale line tow ards the right-hand ,_1 OO^end of the scale.

Points free ~  
Points locked L I r i

100

Fo r each item, please m ake one m ark on the scale indicating how  conceptually distant o r similar 
you think each pair of constructs are. The re  are no ‘right* o r ‘w rong’ answers, ifs yo u r opinion that 
w e ’re after. D o n ’t think too long about each answer, it’s  your first impression that is often the best.

Th e  results of this questionnaire will be kept confidential, so please rem em ber to write dow n only 
your participant num ber in the space provided over the page.
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‘Safety' questionnaire

T h is  questionnaire is. fete ndacLto. gauge relatively h o w  m uch you  perceiyethe various elem ents 
and states of the railway contribute to its safe operation.

Each, item contains a  pair of constructs below th e  scale_one on the left one on the rig h t Each 
construct consists of an elem ent of the railway, e.g. points, track circuits, and one of the two 
possible ‘states’ it could be in J .e .  points can bis fre e ’ or ‘locked’, track circuits can be ‘clear* or 
‘occupied’.

Specifically, w e ’d like to find o u t jn  your opinion jv h ic h  one of the two constructs contributes 
m ost to the safe running of the railway. Note that w e ’d like to know for each item, th e  re lative  
c o n trib u tio n  to  safety of the  on e  c o n s tru c t c o m p a re d  to  th e  o th e r , not the overall am ount of 
safety that the constructs contribute to  the safety of the railway.

F o r  instance_one of the items pairs ‘points locked’ and tracks clear’ together. Y o u  may_believe 
that ‘points locked’ contributes m ore to the safety of the railway than tracks clear*. In that case, 
yo u ’d m ark the scale line towards the left hand e n d,sh o w in g Jh a t ‘points locked’ is m ost important 
in term s of safety.

Modlmpcrtart.

i f y  i- h i .

eqgaT

n
........... M ost important

h  >  f  r .
Points locked Track clear

Alternatively, you  m ay believe that tracks clear’ contributes more to the safety of the railway than 
‘points locked’. In that case, yo u ’d m aik the scale line towards the right hand end, showing that 
tracks clear’ is m ost important in terms of safety.

Most im portait

,J _ 1 __ t — 1.

equal

i .... t  • \ j .

Most im partait

1 h i i K- h K H k
Points locked Track clear

Y o u  might instead think that both constructs contribute approximately equally to the safety of the 
railway. In that case, yo u ’d mark.the.scale towards, the centre.

Most im portait

\ f \ I

equal

h l~ h h n  f f

Most important

h t  h  k
Points locked Track clear

Fo r each item, please make o n ly  o n e  m ark  on the scale indicating which construct of the two 
y o u  feel contributes m ost to the.safety of th a  ta ilw ayJTh eta  are no ‘right’ o r ‘wrong! answers, it’s 
yo u r opinion that w e ’re after. D on't think too long about each answer, it’s yo u r first impression that 
is often the best.

T h e  results of this questionnaire will be kept confidential, so please rem em ber to write dow n only 
yo u r participant num ber in the space provided over the page.
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*Functionality' questionnaire

Th is  questionnaire is intended to gauge relatively how  m uch you perceive the various elem ents 
and states of the railway contribute to its functionality.

Each item contains a pair of constructs below the scale, one on the left one on the righ t Each 
construct consists of an elem ent of the railway, e.g. points, track circuits, and one of the two 
possible ‘states’ it could be in, i.e. points can be ‘free’ or ‘locked’, track circuits can be ‘clear’ or 
‘occupied’.

Specifically, w e ’d like to find out, in your opinion, which one of the two constructs contributes 
m ost to the functionality of the railway. M ote that w e ’d  like to know  for each item, th e  relative 
co n trib u tio n  to  fu n ctio n a lity  o f the  one c o n s tru c t c o m p a re d  to  the other, not the overall 
am ount of functionality that the constructs contribute to the functioning of the railway,

Fo r instance, one of the items pairs ‘points locked’ and ‘tracks clear’ together. Y o u  m a y believe 
that ‘points locked’ contributes more to the functionality of the railway than tracks clear*. In that 
case, yo u ’d mark the scale line towards the left hand end, showing_that ‘points locked’ is m ost 
important in terms of functionality.

Most impartait

r  i \-

equal

h...±  I- h I- h h h h 1

Most im parfa it

h -  h — L
Poirtis locked Track clear

Alternatively, you m ay believe that tracks clear’ contributes more to the functionality of the 
railway than ‘points locked’J n  that case, y o u ’d  m ark the scale line towards the right hand end, 
showing that tracks clear’ is m ost important in terms of functionality.

Most importait.

■I - . . L - L  1

equal.

J _ ± I- H I- I" K H 1

MortJroporfarf

h  h >  V
Points locked Track d e a r

Y o u  might instead think that both constructs contribute approximately equally to the functionality 
of the railway. In that case, y o u ’d mark the scale towards the centre.

Most impartart equal

\ \ \ i Y i- h y [ h -1 h  I-

Most im portait

h K  f~ i
Points locked Track clear

F o r each item, please make o n ly  o n e  m a rk  on the scale indicating which construct of the two 
you feel contributes m ost to the functionality of the railway. Th e re  are no ‘right’ or W o n g ’ 
answers, it’s your opinion that w e ’re after. D o n ’t think too long about each answer, it’s  yo u r first 
impression that is often the b e st

T h e  results of this questionnaire wilLbe kept confidential, so please rem em ber to write dow n only 
your participant num ber in the space provided over the page.
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