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Abstract. Visualization of numerical simulation data has become a cornerstone for many in-
dustries and research areas today. There exists a large amount of software support, which is
usually tied to specific problem domains or simulation platforms. However, numerical simula-
tions have commonalities in the building blocks of their descriptions (e. g., dimensionality, range
constraints, sample frequency). Instead of encoding these descriptions and their meaning into
software architecures we propose to base their interpretation and evaluation on a data-centric
model. This approach draws much inspiration from work of the IEEE Simulation Interoperabil-
ity Standards Group as currently applied in distributed (military) training and simulation sce-
narios and seeks to extend those ideas. By using an extensible self-describing protocol format,
simulation users as well as simulation-code providers would be able to express the meaning of
their data even if no access to the underlying source code was available or if new and unforseen
use cases emerge.

A protocol definition will allow simulation-domain experts to describe constraints that can
be used for automatically creating appropriate visualizations of simulation data and control
interfaces. Potentially, this will enable leveraging innovations on both the simulation and visu-
alization side of the problem continuum.

We envision the design and development of algorithms and software tools for the automatic
visualization of complex data from numerical simulations executed on a wide variety of plat-
forms (e. g., remote HPC systems, local many-core or GPU-based systems). We also envisage
using this automatically gathered information to control (or steer) the simulation while it is
running, as well as providing the ability for fine-tuning representational aspects of the visual-
izations produced.

Authors’ preprint version as submitted to ECCOMAS Congress 2016, Minisymposium
505 - Interactive Simulations in Computational Engineering.
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1 Introduction

Simulation and visualization of phenomena and processes has become an integral part in our
approach to understand and manipulate the world around us. We increasingly rely on computer-
based modelling and simulation in such diverse areas as engineering, fundamental research,
economics, or even politics. For some time such simulations have been augmented by our ability
to provide diverse visual representations based on simulation results improving comprehension
of the underlying model, data, or processes. In some cases visualization is the crucial, enabling
factor for comprehension and decision making. While for many problems simulation and just
visualizing the results works fine, there are also problem domains where it is beneficial to change
aspects of the simulation parameters while the simulation is running, likely based on an expert’s
analysis of visualized simulation results. In essence the unidirectional process of providing
simulation results for visualization ideally should be complemented by the ability to control (or
steer) the simulation, providing a bidirectional (or even multidirectional) flow of data.

The general approach to computational steering provides software infrastructure or an envi-
ronment where simulations can be embedded to run experiments. Usually interfaces are provided
that allow for transporting control or steering information to a simulation as well as returning
results to the visualization component. The visualization component also contains encoded
knowledge of how to represent steering controls. Past as well as current approaches for compu-
tation steering frameworks are based solely on software architectures and often tied to specific
pieces of technology.

We are interested in how the connection between a simulation, its steering mechanism, and
its visualization can be decoupled. We argue that software-interface approaches result in an
unnecessary dependency between the intent of a simulation, its possible visualization(s), and
the actual technology, i. e. the particular software API, used for realizing that coupling. We
aim instead towards a flexible interface that is self-contained, platform-agnostic, and allows for
longevity of simulation codes for future use. This can be seen as a generalized glue between the
simulation and the visualization provider(s).

Our approach is motivated by the Distributed Interactive Simulation (DIS) protocol, devel-
oped since the late 1980s and standardized in IEEE:1278.1:2012 [14], which allows participation
of independently developed software in a running simulation as well as the replay of captured
events from a simulation session. Because DIS provides a well-defined protocol, including
specification of extensions without breaking applications not enabled for specific extensions, it
remains the standard of choice for large-scale training simulation. However, DIS does not allow
to discover extensions without developing software for their appropriate evaluation. We argue
that this difficulty can be circumvented by combining a data-based approach similar to DIS with
a markup-language infrastructure. An approach based on XML Schema definitions [28, 29]
provides for self-describing schemas and auto-generated data binding and in summary it offers
all the advantages of a DIS-like approach with none of its fixed-format disadvantages.

The remainder of this paper is organized as follows. In section 2 we summarize the important
role of software-oriented solutions in computational steering. Section 3 illustrates the idea be-
hind a data-centric approach with an artificial example of a simplistic but generic computational-
fluid dynamics application. In sections 4 and 5 we discuss the merits of our proposal, including
comparing it with other recent work utilising XML, before summarising and offering suggestions
for future work.
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2 Related Work

Computational steering has a long and distinguished record in the wider computational science
literature. Steering a computation interactively necessarily involves visualization, and the focus
of early attempts at computational steering was on how to achieve the interworking of potentially
diverse tools. For example, GRASPARC [4] linked computational and graphical elements via
a data management system based on a tree structure (a history tree) that captured both the
results of the calculation and the progress of the investigation. The user interface reflected this
same structure: branches of the tree recorded snapshots of parameters and data that could be
used to pause, modify, and restart the calculation without having to re-run the simulation from
the beginning. Different visualization components could be connected and demonstrators of
the system utilised both in-house developments and off-the-shelf commercial products in this
regard. In CSE [23], a steering interface was built from 2d and 3d graphics objects whose
properties were used both to control parameters of the simulation and furnish a visualization
of results. Parameters were accessed in the simulation code using a data I/O library designed
to be minimally invasive. As in GRASPARC, a data manager was central to the architecture,
but in CSE it orchestrated steering by issuing event notifications to subscribed visualization,
transformation, and calculation processes. An emerging theme of this and other steering research
was the need to instrument the application source code which led in turn to the development of
a number of steering libraries for this purpose. Notable contributions that particularly addressed
steering in grid-computing environments were the gViz library [5] and the RealityGrid library
[19].

While the aim of the majority of such steering frameworks and libraries was to enable in-
teraction with existing computational codes, in contrast SCIRun [18] provided an environment
to make combined compute-and-visualization ensembles from scratch. The architecture was
based on the dataflow paradigm combined with visual programming, which had hitherto seen
application in modular visualization environments (MVEs) such as AVS [8], IRIS Explorer [24],
and DX (IBM Visualization Data Explorer, later OpenDX) [1]. Such systems allow the user to
build a visualization application, dragging-and-dropping pre-packaged modules to accomplish
the constituent steps of first reading in the data, then mapping to some graphical representation
and finally rendering this to the screen. Whereas these latter supported steering by adding ex-
isting simulation codes into the system as new modules, the SCIRun module set [22] included
algorithmic and mathematical elements as standard. As such it is as much a software workbench
for building integrated computational and visualization applications, as it is a system for simply
visualizing results.

The difficulty that besets all computational steering applications, whether based explicitly on
the dataflow paradigm or not, is how to transmit control information upstream from the display to
the simulation. The user and their interaction tools (e. g., panels hosting sliders, menu selections)
are logically found at the output end of the pipeline, but the recipients of these tools’ outputs (e. g.,
changes to parameters, pause and restart commands) are at the input end, all the while producing
data. This becomes especially problematic when the steering-visualization pipeline is distributed
[31]. The solution adopted depends on the architecture of the steering framework: GRASPARC
[4] evolved a system of control structures, separate from its data pathways; CSE [23] adopted
an event-based model; MVE-based systems generally abandoned strict adherence to dataflow
principles in favour of architectures incorporating feedback mechanisms for implementing loop
constructs, and sometimes caching data to preserve state (q. v. [1]). A novel approach described
in [6], which also targeted an MVE, was to implement an input-oriented pipeline in parallel
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with the more usual results-bearing pipeline. This allowed a description of the simulation’s
exposed parameters to be automatically searched and the correct scalar, vector, or positional
interactor to be placed in the image of the output, with the correct position and appropriate
value constraints already applied. Dubbed multi-purpose image interaction, the idea is closely
allied to that described in the present paper, except the aim now is to capture the essence of both
simulation parameters and results, independently of the software used. Using a self-describing,
data-centric protocol, we assert that essential knowledge about a steering application can be
preserved, for example in the absence of the original source code or, provided its outputs have
been appropriately curated, potentially even after the binary can no longer be run.

3 Example

In the following we develop an artificial example for a simplistic but generic computational-fluid
dynamics (CFD) simulation using XML Schema to define control and result types and derive
possible source code based on those definitions.

3.1 Requirements for a Generic CFD

Computational steering of a generic CFD simulation can be separated into two elements: firstly,
how to control the simulation and, secondly, what kind of results are returned. In the simplest
case we assume that the simulation will be based on computing particles per simulation time
step. Listing 1 shows pseudo code to encode this.

struct particle {
unsigned id;
float3 position;
float3 velocity;

};

struct result {
double timestamp;
list<particle> particles;

};

Listing 1: Result structure for a generic CFD simulation returning a simulation result for a
particular time step and the computed particles placed in a list.

The timestamp attribute in the result structure contains the time in (local) simulation time
for which the particle properties have been computed. The actual particle properties are returned
in the particles attribute of the result structure. The particle structure contains the
position and velocity as 3-component floating-point values and a unique id for each
particle instance. This id maybe used to create traces for particles of interest. To control the
simulation a control structure can be used as shown in listing 2.

struct control {
enum etype { start, stop, update, };

etype type;
float3 gravity;
float3 force;

}

Listing 2: Control structure for a generic CFD simulation allowing for specification of starting,
stopping, or updating the simulation.
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The control structure allows for specifying if the simulation should start, stop, or if the
control structure contains an update to the parameter set. This is encoded by the type
attribute and expressed as an enumeration. In our example the simulation-control parameters are
simply gravity and force expressed as 3-component floating-point values. These parame-
ters can be set for the initial setup of the simulation, i. e. type == start, or when updating
simulation conditions, i. e. type == update. In case the type attribute is set to stop
the simulation should simply shutdown, though for more sophisticated simulations shutdown
parameters might be used as well.

Separating the result description returned by a simulation from its possible control allows
for using these structures for both communication between the simulation and visualization as
well as within the visualization to represent their content. However, this is tightly coupled to
a specific example. Any changes to accommodate different simulations or even just variants
with slightly different control parameters will require some software-development effort for
both the actual simulation as well as the visualization. Additionally, parameter sizes, intended
meaning, or problem-domain-specific constraints are usually hard to express and to document
for automated extraction.

3.2 XML Schema Definitions

An XML Schema definition (XSD) [28, 29] allows to define content structure to be instantiated
in an actual XML document. While this could be any kind of document we will use the notion
of an XML document here as a way of transporting data between interested parties, i. e. the
simulation and visualization provider. XSDs use standard XML notation and can be evaluated
using existing XML support infrastructure. An XSD can be interpreted as a class description
from the view point of an object-oriented software approach. XML documents then play the role
of objects, i. e. actual instances of a class at run time, although this comparison is only partially
correct because XSDs only allow the definition of member attributes but not member functions.

XSDs support a variety of built-in data types, e. g., string, int, float, as well as creat-
ing compound structures, e. g., simpleType, complexType. Within a compound structure
element definitions based on primitive or user-defined types may appear. These elements can
be constrained to restrict their range or to represent a discontinuous range such as an enumer-
ation. XSD also supports extending existing structures as shown in appendix A, listings 3–6.
Listing 3 shows an XSD for n-component floating-point values which can be used to represent
n-dimensional vectors. These n-component floating-point types are used in listing 4 to define
a particle having position and velocity in 3d similar to the pseudo code in listing 1. XSD also
allows including other XSDs, which enables sharing of definitions between separate XSD files.
Listing 4 also provides an example for defining a list of particles. In addition aliases in the form
of root elements to the actual compound definitions are provided, which are necessary to allow
the automatic generation of serialization code. In listing 5 base types for the control and result
structures are defined, which are independent of any specific simulation. The control structure
contains an enumeration to express its three possible states, i. e. start, update, and stop, while
the result structure contains a time stamp. Listing 6 shows the definition of the control and result
structures for the generic CFD example in turn extending the general definition of control and
result structures in listing 5, essentially expressing the same content as in listing 2.

XSDs provide a template for actual instances in the form of XML documents as shown in
appendix B, listings 7–10. Listings 7–9 show sample control-structure instances for controlling
start, update, and stop of the simulation, respectively. In the XSD for the cfd_control
structure, the gravity and force properties are defined withinin an xs:sequence. This
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necessitates that these properties appear in the XML document even if they are not required
(e. g., in case of submitting a cfd_control instance of type stop). To make properties
such as gravity optional the minOccurs attribute can be set to zero, which, for larger
aggregations of properties, allows for reducing the actual size of the XML document. Listing 10
shows a sample cfd_result structure returned by the simulation for each simulation step.
The timestamp property provides the local simulation time at which the result was produced
while the particle_list property contains the list of particles and their state at that time.
The timestamp property is defined as a xs:time, which is expressed in hours, minutes,
and seconds format. Note that the seconds part of xs:time is based on a double-precision
floating-point type and allows for arbitrary precise resolution in the sub-second range.

XSDs as well as XML in general are a complex topic and cannot be treated in full detail in
the context of this paper. We refer the interested reader to one of the many books on this topic
such as [12] or the standard specifications [26, 28, 29].

3.3 Code Generation

XML-based documents provide much flexibility. However, the actual processing of XML doc-
uments requires infrastructure for parsing and validation. Fortunately, there is a plethora of
software available to accomplish this. Any programming language in use today provides XML
processing capabilities either as part of the language (e. g., Groovy [11]) or as a library ser-
vice. XML processing requires the use of a parser, which can be roughly categorized into
stream-oriented (e. g., SAX [21]), tree-traversal or pull-parsing (e. g., DOM [30]), declarative
transformation (e. g., XSLT [25, 27]), and data-binding parsing (e. g., for C++ [32]). The data-
binding parser category is of interest here because it allows to automatically create API bindings
based on XSDs.

Similar to XML document processing, XML data binding using XSDs is also available for
many programming languages and environments. However, we will concentrate on how to
auto-generate C++ source code from XSDs using [32]. A compiler is used to parse an XSD and
produce language-dependent definitions. The structure of XSDs is easily transferable into object-
oriented technology where XSD types, built-in or user-defined, are expressed as classes and XSD
properties or attributes are expressed as class attributes. These auto-generated classes usually
contain class-attribute access functions for getting or setting a specific attribute as well as for
serialization of class instances. The XSD-to-C++ compiler at [32] is also capable of extracting
documentation and annotations as well as transforming this information for processing with
documentation processing software such as doxygen [7]. Listing 11 in appendix C shows test
driver code in C++ for creating the XML documents in listings 7–9 and listing 10, respectively.
Listing 12 in appendix C shows a test driver that reads XML documents created by listing 11 or
manually constructed XML documents adhering to the XSDs in listings 3–6. It is worth noting
that both test drivers are relatively small, support standard C++ idioms for object creation and
manipulation, and show that such auto-generated source code can be integrated into existing
software with relatively little effort.

XML data binding also supports generation of parser mappings. The auto-generated source
code using [32] is usually generated by setting the XSD-to-C++ compiler into a tree mode.
However, it also possible to run the XSD-to-C++ compiler in a parser mode which allows
for creating interfaces that connect to stream-oriented XML parsing infrastructure. The main
difference here is that instead of using class abstractions to handle complex data types the
stream-oriented interfaces allow for reflection on the data types usually by providing callback
mechanisms to client code. This would allow for inspection of unknown entities and potentially
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retrieving their definitions from URIs embedded in the XSDs itself. It could also be used
to interpret the structure of an XSD to derive representational aspects such as building GUI
elements on the fly.

4 Discussion

XSDs allow for describing complex data-structure types. These structure types are built from a
rich set of built-in primitives as well as by introducing user-defined types by extending existing
types. This is very similar to building abstract data types in the object-oriented paradigm. How-
ever, XSDs are independent from specific object-oriented programming languages, development
environments, or execution platforms. Mature tools for many programming languages and envi-
ronments exist to automatically generate source code for processing, serialization, etc. as well as
documentation for a chosen target platform. This allows for using XML documents as instances
of XSDs to exchange data in a truly platform-independent way. The relationship between an
XSD and XML instances is similar to the class-and-its-objects relationship in the object-oriented
paradigm with the restriction that XSDs do not support methods or messages between objects.
However, this restriction is of little consequence because XSDs allow for encoding behavior
using the command software-design pattern [9].

We acknowledge that our example in section 3, including the source code in appendices A–C,
is rather simplistic. However, the example already captures the essence of computational steering
at a high level, at least for particle-based simulations, and was developed in a very short amount
of time. XSDs are already successfully used for defining structure in complex problem domains
such as computer graphics (X3D [16, 17]) or geographic-information processing (GML [15]).
In addition to automatic source-code generation XSDs also allow for interoperability between
different sets of XSDs as well as run-time reflection of XML instances. Using the namespace
feature of XSD it is possible to encapsulate and disambiguate which types are intended for use in
a schema file. The namespace xmlns:xs="http://www.w3.org/2001/XMLSchema"
introduces a short-hand prefix for the XSD namespace itself; in our example this is set to
xs but could be any other unique string. A custom namespace can be built by providing a
targetNamespace attribute. This allows reusing of already existing XSDs without the need
for reinvention. Serialized XML instances from an XSD also provide information about their
original definitions. By using the schemaLocation attribute, run-time parsing of some
unknown element can be resolved by fetching the (missing) schema definition to be used for
interpreting the XSD instance of the formerly unknown element.

We believe that our approach has the potential for resolving problems inherent to traditional
approaches to computational steering, introducing greater flexibility for both the simulation
provider as well as the visualization provider or improving the maintainability of infrastructure.
We are aware that a large amount of computational-steering software is in existence and we do
not propose to replace it by starting from scratch. However, there already seems to be awareness
in the community that a more general and flexible approach to controlling (numerical) simu-
lations in general is desirable. For example Biddiscombe et al. [2, 3] describe an approach
where the virtual-file driver interface in HDF5 [13] was used to exchange information between
a simulation and its desired visual representation. While rather application-specific in its so-
lution Biddiscombe et al. [3] also propose a generic software API, embedded into the HDF5
customization, that would allow to transfer steering-control information from the visual interface
to the simulation. Using our approach a simulation provider could simply add an XSD of the
control elements and the structure of the simulation’s result to existing software. Advertising the
simulation-specific XSD would allow the development of independent visualization software
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even in the event of not being able to recompile the simulation software or if no appropriate exe-
cution platform is available. The same is true for the visualization side. Experiments in finding
new, useful, or problem-domain specific solutions could be carried out by concentrating on the
data descriptions (and their meaning) while at the same time pseudo-simulators could generate
randomized dummy data adhering to the simulation constraints to evaluate such visualization
experiments under a variety of conditions. In addition, because XSD instances are communi-
cated by serialized XML documents a large variety of simulation-visualization connection types
are supported (e. g., within the same process and between processes on the same or separate
machines).

Automatic source-code generation from XSDs provides a tight coupling between a simulation
type and possible visualization and control interfaces. The alternative approach of XML data
binding using parser mapping has the potential to automate this. Because the parser reports
elements back to client code (via callbacks) not only unknown elements can be resolved (by
fetching and evaluating their XSDs) but also automated transformations are possible based on
the element types found. This is probably easiest to see in the case of automatically creating
a GUI layout from some XSD. All built-in XSD types can be directly transferred to standard
GUI elements for display or manipulation. Restricted elements such as enumerations can be
easily expressed as selection elements in a GUI (e. g., pull-down list, list boxes). Compound
structures may trigger grouping mechanisms usually also allowing collapsing or inflating their
content. Assuming that some simulation-specific types are known a priori relevant visualization
elements can be selected. The result structure in our example consists of a continuous value
(timestamp) and a list of particles. This information could be used to provide a two-element
layout containing a continuous slider for selecting a time step and a widget capable of processing
and visualizing 3d data in a (cartesian) coordinate system. Similar approaches have been already
explored in the gViz library [5] and the eViz framework [20] and may serve as a valuable starting
point for experimentation as well as baselines for comparison. Intuitively, it seems that the more
elements relevant to computational steering are known (and/or agreed upon) the more general
such on-the-fly visualization-interface building might become. However, it would be naı̈ve to
suggest we can provide a full solution to this problem without deeper insights into the problem
domain and its requirements. The only definite advantage our approach provides here is the
potential for flexible run-time inspection of complex data types in contrast to traditional software
APIs.

5 Conclusions and Future Work

We have presented a data-centric approach based on extensible self-describing protocols for
communication between simulation and visualization providers in computational steering. Using
XML Schema definitions we developed a protocol for the control and result elements of a simple
generic CFD simulation. Such XSDs allow for automatic source-code generation in many
programming languages and environments as well as the extraction of documentation. This in
turn provides simulation providers with the ability to communicate how a specific simulation can
be controlled as well as how its results should be interpreted. Visualization providers also benefit
by being able to choose the most appropriate visualization and interaction techniques. XSD also
enables decoupling of support infrastructure because only the XSD needs to be transformed into
code for use in software while the XSD itself is completely independent from specific software
APIs, technologies, or execution environments.

Our approach has the potential to describe and use computational steering in a much more
flexible way than hitherto. This flexibility reaches into topics as varied as long-term maintain-
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ability, connectivity, execution-platform improvements, or innovative approaches to simulation
and visualization itself.

Our simple example is exactly that: simplistic. While we believe that the high-level separation
into a control and a result structure is valid for a large number of (numerical) simulations, we
are unable to provide a formalization here. In part this stems from the fact that computational
steering does not have a formalized definition or standards document. We are aware of the efforts
of the working group for a simple API for grid applications (SAGA) to define a core API [10]
for general grid computing. However, while valuable in providing problem-domain analysis and
terminology, SAGA only advocates a software-API approach. We believe that our approach is
more suitable to standardizing communication in computational steering and suggest that the
development of such a consensus includes discussion and experimentation within the whole
community.

The increased use of GPU architectures provides a challenge for our approach. GPU-based
simulations do have a great appeal in that they provide faster evaluation per time step below cer-
tain problem sizes as well as that the simulation results are already available for further graphics
processing on the GPU. Essentially, the simulation provider and visualization component are the
same and the use of a generic data-centric communication approach will require further in-depth
contemplation.

Manual deduction of appropriate visualization techniques from numerical simulations re-
quires a high degree of expert knowledge in both the specific problem domain of a simulation
as well as in the domain of visualization techniques. The ideal solution would be to be able to
automatically deduce the inherent structure of a simulation, for both the set of control parameters
and the result(s), and to select appropriate visualization techniques. Our data-centric protocol
already provides a general approach to the structure-deduction problem for simulation control
and its results and we are interested in further investigating this problem domain with respect to
automatic deduction of appropriate visualizations techniques.

We believe that our data-centric approach using a structured and self-describing format for
communication in computational steering provides a good starting point for further development
that enables true platform independence as well as future-proof reusability.

A Example XML Schemas

In this section we provide the XSD sources for n-component floating-point types (n ∈ {1, 2, 3, 4})
using simple inheritance (listing 3), a generic particle type providing position and velocity in
3d as well as a unique id and a type for a list of such particles (listing 4), base types for control
and result structures suitable in the context of computational steering (listing 5), and specializa-
tions of the control and result types for a generic CFD simulation (listing 6), which extend the
previously defined base types for control and result structures.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="float1">
<xs:sequence>

<xs:element name="x" type="xs:float" />
</xs:sequence>

</xs:complexType>

<xs:complexType name="float2">
<xs:complexContent>
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<xs:extension base="float1">
<xs:sequence>

<xs:element name="y" type="xs:float" />
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="float3">
<xs:complexContent>

<xs:extension base="float2">
<xs:sequence>

<xs:element name="z" type="xs:float" />
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="float4">
<xs:complexContent>

<xs:extension base="float3">
<xs:sequence>

<xs:element name="w" type="xs:float" />
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

</xs:schema>

Listing 3: An XML schema definition for one-, two-, three-, and four-component floating-point
types, which is stored in floats.xsd.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="floats.xsd" />

<xs:complexType name="particle_t">
<xs:sequence>

<xs:element name="position" type="float3" />
<xs:element name="velocity" type="float3" />

</xs:sequence>
<xs:attribute name="id" type="xs:unsignedInt"

use="required" />
</xs:complexType>

<xs:element name="particle" type="particle_t" />

<xs:complexType name="particle_list_t">
<xs:sequence>

<xs:element name="particle" type="particle_t"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

<xs:element name="particle_list" type="particle_list_t" />

</xs:schema>

Listing 4: An XML schema definition for a generic particle and a list of particles, which is
stored in particle.xsd.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

10



J.P. Springer and H. Wright

<xs:complexType name="control_t">
<xs:sequence>

<xs:element name="type">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="start" />
<xs:enumeration value="stop" />
<xs:enumeration value="update" />

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>

<xs:element name="control" type="control_t"/>

<xs:complexType name="result_t">
<xs:sequence>

<xs:element name="time" type="xs:time" />
</xs:sequence>

</xs:complexType>

<xs:element name="result" type="result_t" />

</xs:schema>

Listing 5: An XML schema definition for steering control and result base types, which is
stored in steering.xsd. The base control type always contains an enumeration for starting,
stopping, or updating the simulation. The base result type always includes a time stamp with
respect to the simulation time.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="particle.xsd" />
<xs:include schemaLocation="steering.xsd" />

<xs:complexType name="cfd_control_t">
<xs:complexContent>

<xs:extension base="control_t">
<xs:sequence>
<xs:element name="gravity" type="float3" />
<xs:element name="force" type="float3" />

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:element name="cfd_control" type="cfd_control_t"/>

<xs:complexType name="cfd_result_t">
<xs:complexContent>

<xs:extension base="result_t">
<xs:sequence>
<xs:element name="particle_list"

type="particle_list_t" />
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:element name="cfd_result" type="cfd_result_t"/>

</xs:schema>

Listing 6: An XML schema definition for steering a generic CFD, which is stored in cfd.xsd.
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B Example XML Documents

In this section we provide the XML sources for XSD instances of control structures of type start
(listing 7), update (listing 8), and stop (listing 9), and a result structure (listing 10).

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<cfd_control xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cfd.xsd">
<type>start</type>
<gravity>

<x>0</x>
<y>0</y>
<z>-9.81</z>

</gravity>
<force>

<x>0</x>
<y>0</y>
<z>0</z>

</force>
</cfd_control>

Listing 7: An XML document representing a control structure of type start as defined by the
XSD in listing 6 and produced by the program in listing 11.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<cfd_control xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cfd.xsd">
<type>update</type>
<gravity>

<x>0</x>
<y>0</y>
<z>-9.81</z>

</gravity>
<force>

<x>0</x>
<y>1</y>
<z>0</z>

</force>
</cfd_control>

Listing 8: An XML document representing a control structure of type update as defined by
the XSD in listing 6 and produced by the program in listing 11.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<cfd_control xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cfd.xsd">
<type>stop</type>
<gravity>

<x>0</x>
<y>0</y>
<z>0</z>

</gravity>
<force>

<x>0</x>
<y>0</y>
<z>0</z>

</force>
</cfd_control>

Listing 9: An XML document representing a control structure of type stop as defined by the
XSD in listing 6 and produced by the program in listing 11. Note that the gravity and force
attributes may or may not be used in the shutdown process but the definition of the control
structure in listing 6 requires their appearance in the XML document.
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<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<cfd_result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cfd.xsd">
<time>00:00:00.0005</time>
<particle_list>

<particle id="0">
<position>
<x>0</x>
<y>0</y>
<z>0</z>

</position>
<velocity>
<x>0</x>
<y>0</y>
<z>0</z>

</velocity>
</particle>

...
<particle id="9">

<position>
<x>0</x>
<y>0</y>
<z>0</z>

</position>
<velocity>
<x>0</x>
<y>0</y>
<z>0</z>

</velocity>
</particle>

</particle_list>
</cfd_result>

Listing 10: An XML document representing a result structure as defined by the XSD in
listing 6 and produced by the program in listing 11.

C Example Test Drivers

In this section we provide the C++ source code of simple test drivers (listings 11 and 12) for
creating the XSD instances serialized to XML documents in listings 7–10 and processing XML
documents based on the XSD of generic CFD simulation in listing 6.

#include <cstdlib>
#include <fstream>
#include <iostream>

#include <cfd.hpp>

int main(int, char*[])
{
int result(EXIT_SUCCESS);

try {
// required for de-serialization
xml_schema::namespace_infomap map;

map[""].name = "";
map[""].schema = "cfd.xsd";

float3 const g (0,0,-9.81);
float3 const f0(0,0, 0);
float3 const fy(0,1, 0);

{
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cfd_control_t const ctrl(type::start, g, f0);
std::ofstream ofs ("../cfd_control_start.xml");

cfd_control(ofs, ctrl, map);
}

{
cfd_control_t const ctrl(type::update, g, fy);
std::ofstream ofs ("../cfd_control_update.xml");

cfd_control(ofs, ctrl, map);
}

{
cfd_control_t const ctrl(type::stop, f0, f0);
std::ofstream ofs ("../cfd_control_stop.xml");

cfd_control(ofs, ctrl, map);
}

{
cfd_result_t::particle_list_type particles;

for (unsigned i(0); i < 10; ++i) {
particles.particle().push_back(particle_t(f0, f0, i));

}

using time_type = cfd_result_t::time_type;

cfd_result_t const result(time_type(0,0,0.0005), particles);
std::ofstream ofs ("../cfd_result.xml");

cfd_result(ofs, result, map);
}

}

catch (xml_schema::exception const& e) {
std::cerr << e << std::endl;

result = EXIT_FAILURE;
}

return result;
}

Listing 11: Test driver using auto-generated source code, provided by the include statement
for cfd.hpp, to produce the XML documents in listings 7–10.

#include <cstdlib>
#include <iostream>

#include <cfd.hpp>

int main(int argc, char* argv[])
{
int result(EXIT_SUCCESS);

try {
if (2 <= argc) {

bool processed(false);

try {
if (!processed) {

cfd_control_t const ctrl(*(cfd_control(argv[1]).get()));

std::cout << argv[0] << ": " << ctrl << std::endl;

processed = true;
}
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}

catch (xml_schema::unexpected_element const& e) {
std::cerr << e << std::endl;

}

try {
if (!processed) {

cfd_result_t const result(*(cfd_result(argv[1]).get()));

std::cout << argv[0] << ": " << result << std::endl;

processed = true;
}

}

catch (xml_schema::unexpected_element const& e) {
std::cerr << e << std::endl;

result = EXIT_FAILURE;
}

if (!processed) {
std::cout << argv[0] << ": " << "unable to process ’" << argv[1] << "’" << std::endl;

}
} else {

std::cout << argv[0] << ": " << "no file name supplied" << std::endl;
}

}

catch (xml_schema::exception const& e) {
std::cerr << e << std::endl;

result = EXIT_FAILURE;
}

return result;
}

Listing 12: Test driver using auto-generated source code, provided by the include statement
for cfd.hpp, for reading and displaying the content of XML documents containing control or
result structures as defined in listing 6.
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