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Abstract 

Power generation from fossil fuel-fired power plant is the largest single source of CO2 emission. 

CO2 emission contributes to climate change. On the other hand, renewable energy is hindered by 

complex constraints in dealing with large scale application and high price. Power generation 

from fossil fuels with CO2 capture is therefore necessary to meet the increasing energy demand, 

and reduce the emission of CO2. This paper presents a process simulation and economic analysis 

of the chemical looping combustion (CLC) integrated with humid air turbine (HAT) cycle for 

natural gas-fired power plant with CO2 capture. The study shows that the CLC-HAT including 

CO2 capture has a thermal efficiency of 57% at oxidizing temperature of 1200oC and reducer 

inlet temperature of 530oC. The economic evaluation shows that the 50 MWth plant with a 

projected lifetime of 30 years will have a payback period of 7 years and 6 years for conventional 

HAT and CLC-HAT cycles respectively. The analysis indicates that CLC-HAT process has a 

high potential to be commercialised. 
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Nomenclature 

NCV  net calorific value (J/kg) 

P  power output (MW) 

NPV  Net Present Value (£) 

IRR  Internal Rate of Return (%)  

ηref  efficiency of Conventional HAT cycle (%) 

ηccs  efficiency of HAT cycle with Carbon capture (%) 

Wcomp  Compressor Work (MW) 

Q  energy (MW) 

Greek Symbols 

Ɣ  yield 

η  efficiency 

Subscripts 

comp  compressor 

ccs  carbon capture and storage 

ref  reference 

GT  gas turbine 

th  thermal 

 

Acronyms 

ASU  air separation unit 

CFB  circulating fluidized bed 

CLC  chemical looping combustion 

CLC-HAT chemical Looping Combustion with humid air turbine cycle 

HAT  humid air turbine 

PI  profitability index 

   



1 Introduction 

1.1 Background  

Fossil fuels are burned in power plants in a variety of ways. The combustion of fossil fuels 

produces flue gas stream (i.e. NOx, CO2, SOx, CO, CH4, water vapour etc.) with a CO2 content 

of up to 14 vol% [1]. CO2 is the largest and most important anthropogenic greenhouse gas (GHG) 

[2]. However, fossil fuel fired power plants play a key role in meeting energy demands. With 

growing concerns over the increasing atmospheric concentration of anthropogenic greenhouse 

gases, effective CO2 emission abatement strategies are required to combat this trend [3]. In a 

fossil fuel-based power plant, CO2 management is made up of three steps namely CO2 capture 

(including separation and compression); transportation and storage [4].  There are three 

approaches for capturing CO2 from use of fossil fuels and/or biomass for heat and power 

generation: pre-combustion, post-combustion and oxy-fuel process [5]. CLC is a relatively new 

CO2 capture mechanism. The fuel is converted by its reaction with oxygen from an oxygen 

carrier rather than air (as in oxy-fuel and pre-combustion). CLC also enables the production of a 

concentrated CO2 stream without the need for an expensive air separation unit [6]. The inherent 

CO2 separation without severe energy penalties in the CLC process has drawn increased 

attention in light of power plant efficiency improvement and global warming potential due to 

fossil fuel     combustion [4]. 

1.2 Chemical Looping Combustion (CLC) 

1.2.1 CLC Concept 

CLC is a method characterized by indirect fuel combustion because the air and fuel are never in 

direct contact. CLC differs from the oxy-fuel combustion strategy because of the concept of 

oxygen separation from air and the direct contact of pure oxygen & fuel in the latter [4]. In oxy-

fuel combustion, the operation of air separation unit (ASU) accounts for nearly three quarters of 

overall efficiency loss [7]. 

Figure 1 shows a schematic diagram of the CLC concept. The fossil fuel conversion is achieved 

in two sub-reactions (oxidation and reduction) and with oxygen carrier particle as the chemical 

intermediates. In the reduction stage, the oxygen carrier particle is reduced by the fuel, yielding 

CO2 and H2O. This is depicted in reaction (1) for a gaseous fuel [4] 

 

 

Figure 1: Schematic of the CLC Concept [4] 
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(x +y/4) MeO + CxHy→ (x +y/4) Me + xCO2 + y/2H2O        (1) 



This fuel conversion step could either be exothermic or endothermic depending upon the type of 

oxygen carrier and fuel used. The reduced metal is then sent to the oxidizer where combustion 

occurs with air. The reduced metal is regenerated to its initial oxidation state as shown in 

reaction (2) [4]. 

 

The oxidation step being exothermic produces an enormous amount of heat which is used to 

generate electricity; also the fact that both the fuel and the air conversion process occur in 

different reactors leads to the production of a CO2 stream from the reducer that has only H2O as 

the other component, hence it is easily separated from the mixture. CLC can be applied to both 

gaseous (natural gas) and solid fuels (coal) [4].  

1.2.2 Review on CLC Study 

The most common metals used as oxygen carrier include Fe, Ni, and Cu. A number of promising 

oxygen carriers have been found, of which NiO/NiAl2O4 is perhaps the most promising [8] [9]. 

NiO/Ni oxygen carrier particle with NiAl2O4 as inert support material will be used as the oxygen 

carrier particle in this study. A brief outline of some of the published work on oxygen carrier 

development is summarized in Table 1.  

Table 1: Oxygen Carrier Development 

Authors  Carriers/ 

Stabilizers 

Fuel/Reactant    

gases 

Issues/ 

results 

Johansson et al [10] 

 

NiO-Fe2O3 CH4 Using mixed Fe & Ni oxides 

for CH4 combustion. Less bed 

material used with mixed 

oxides as against Fe only. 

Jerndal et al [11] 

 

Metal oxides 

based on Ni, Cu, 

Fe, Mn 

CH4, CO and 

H2 

Thermal analysis of the CLC 

process using different O2 

carrier 

Abad et al [12] 

 

Fe2O3/ 

Al2O3 

CH4/ 

Syngas 

Low attrition, and particles 

have high durability, but 

better suited for syngas than 

CH4 

Zhao et al [13] 

 

NiO/ 

NiAl2O4 

Coal char/H2 NiO/NiAl2O4 reacts rapidly 

with coal char at temperature 

higher than 850oC with NiO 

mass content of 60% and 

sintering temperature of 

1300oC 

Abad et al [14] 

 

FeTiO3/ 

TiO2 

CH4, CO/H2 Kinetics of the REDOX 

reaction were obtained 

Mendiara et al [15] Bauxite Waste 

(BW) 

Coal  Investigates influence of 

temperature on coal 

conversion   

Mattison et al [16] NiO/NiAl2O4 CH4 The particles show high rate 

of reduction with CH4 in the 

temperature range 750-950oC 

 

Me + Air→ MeO   +   Oxygen-depleted Air     +    Heat                 (2)     



Reactor design is another important area in CLC development that has witnessed rapid growth. 

Optimized reactor design is required in order to render the CLC operation economically feasible. 

Two key factors that dictate the selection of gas–solid reactor are the type of metal oxide carriers 

employed for the looping operation and the type of products to be produced [4]. Fluidized beds 

systems have been widely applied for CLC reactor systems modelling, design and 

experimentation. From the pioneering work of Lyngfelt [17], a number of study are available e.g. 

[18], [19], and [20] etc. on the modelling, design and scale-up of fluidized bed reactor system for 

a successful operation of CLC systems.  

1.2.3 CLC Power Cycles 

In order to fully appreciate the gains of a relatively new technology such as CLC, it is imperative 

to carry out detailed study of its power generation potential. The CLC system can be integrated 

into different power cycles, and analysed at different operating conditions. These studies are 

done by modelling and simulation of the power plants with CLC, performing sensitivity analysis 

for various plant configurations in order to estimate the plant efficiency.  

A number of articles have been published on the integration of CLC into power cycles. Different 

approaches have been adopted at different periods by different researchers to evaluate the 

potentials of CLC power generation scheme. Two important aspects, however dominates the 

researches carried out so far, these are;  

 Power cycle analysis which focuses mainly on the comparative studies of 

different power cycles, and 

 Exergy analysis of CLC power cycle and its comparison with that of 

conventional power cycle.   

Articles focusing on the first aspect include [21], [22] and [23] etc. [21], [22] and [23] made use 

of a common fuel (CH4) and similar oxygen carrier with different power cycles for comparison. 

It was found that the cycles integrated with CLC have minute energy losses and CO2 was 

separated at a higher capture level. Articles that focus on the exergy analysis include [24], [9]. It 

was reported that the exergy losses in the CLC power cycle were lower compared to 

conventional cycles.  

Authors of [24] and [9] used the Humid Air Turbine (HAT) power cycle.  The HAT cycle is 

adopted in this research due to its advantages and high thermal efficiency [25]. In this principle, 

a humidifying tower is used to saturate the incoming air, before combustion [9]. 

1.3 Aim of this paper and its Novel Contribution 

In this paper, the CLC system is integrated into a HAT cycle. The paper presents a process 

simulation and economic analysis of CLC in the HAT cycle. The differences between this paper 

and previous CLC with HAT power cycle reports such as [24] and [9] are: (a) this paper uses a 

modular-based simulation tool (Aspen Plus®) with well-defined physical and thermodynamic 

properties of the reacting species and inert in its database; (b) this paper use a promising oxygen 

carrier, NiO and NiAl2O4 as the looping media in modelling and simulation of the CLC process; 

(c) this paper presents the simulation and process analysis of both the conventional HAT power 

cycle and CLC-HAT cycle, (d) this paper carried out economic analysis of the CLC-HAT cycle 

in order to determine its feasibility, and compare it with equivalent conventional HAT cycle. 



2 Simulation of CLC 

This section describes the development of CLC simulation in Aspen Plus®. It requires specific 

skills such as accurate description of property packages of pure components and complex 

mixtures, models for different types of reactors and unit operations etc.  

2.1 Simulation Data for CLC 

There exists no full-scale commercial CLC plant (e.g. above 50 MWth). Hence, it is difficult to 

get a single source with all the necessary information required for the simulation of the CLC 

based HAT power cycle. The simulation data used in this study were obtained from two different 

sources, [24] and [9]. The oxygen carrier used in this study; however is NiO/NiAl2O4 as against 

NiO with yitrium stabilized zirconium (NiO/YSZ) used by both [24] and [9].  

2.2 Simulation of CLC in Aspen Plus® 

The circulating fluidized bed (CFB) reactor is simulated in this paper as a combination of simple 

RGIBBS and RSTOIC reactor models in Aspen Plus® because most commercial tools do not yet 

offer a possibility for treatment of gas-solid reactions as needed for CLC (i.e. CFB). This 

approach is similar to that adopted by [4] for simulating syngas chemical looping process for 

production of electricity, hydrogen and CO2 capture [4]. 

 

2.2.1 Assumptions 

 The simulation considers that the CFB is divided into two regions; 

(a) a dense lower region, and(b) a more dilute upper region (Figure 2(a))  

 

 Equilibrium based thermodynamic reactions are assumed in the dense region. 

Products discharged from the reactors are based on minimization of Gibbs free 

energy principle, hence the use of RGIBBS module in Aspen Plus®. 

 The dilute region is assumed to be in a completely well mixed condition. A 

stoichiometric reactor module RSTOIC is used.  

 The hydrodynamic parameters of the bed and physical properties of the 

components are considered to be constant throughout the bed.  

 The oxidation reaction temperature within the catalytic bed is assumed constant 

by continuously removing heat at a rate proportional to the temperature difference.  

 The reduction (endothermic) depends on the exothermic heat energy from the 

oxidizer to operate. 

There are different types of fuels that can be used as feedstock for the CLC operation. This study 

considers natural gas as feedstock (with 100% CH4 assumption). The CH4 in the reducer was 

converted to CO2 and H2O using NiO as oxygen carrier. The NiO is reduced to Ni. NiAl2O4 

plays the role of keeping the mechanical strength of the particle [26].The reactions considered in 

this simulation are summarized in Table 2. 

 

 



Table 2 Reactions considered in the simulation [27] 

      

 

 

 

 

  

 

2.2.2 Operating Conditions of the CLC Reactors 

The operating parameters and components (mainly reactants) of the CLC reactors are given in Table 3. 

Figure 3 is the flowsheet in Aspen plus® of the dual CFB for the CLC system. When the reducer 

is operated at 700 °C, the CLC simulation results are presented in Table 4. The results show that 

with NiO-based carrier particle, a conversion of CH4 of over 99% can be achieved in the reducer.   

 

 

 

 

 

 

Reaction Reactor 

CH4 + 2NiO           CO2 +  2H2  +  2Ni        (3) Reducer 

CH4 + NiO            CO +  2H2  + Ni             (4) Reducer 

CO + NiO            CO2   + Ni                       (5)           Reducer 

H2  + NiO            H2O  + Ni                         (6) Reducer 

4Ni  +   2O2           4NiO  +    Heat              (7) Oxidizer 

 

 
(a) [28]                                                  (b)[4]  

Figure 2: Typical structure of fluidized bed reactor 



Table 3: Input streams of the CLC Reactors 

Oxidizer Air Oxygen Carrier 

Species O2 N2 Ni NiAl2O4 

Flow Rates (kg/s) 49.8 37.05 

Concentration 21 vol% 79 vol% 40wt% 60wt% 

Temperature (oC) 530 530 

Pressure (bar) 20 20 20 

Reducer Fuel Oxygen Carrier  

Species CH4 NiO NiAl2O4  

Flow Rates (kg/s) 1.0 32.6  

Mass Fraction  100wt% 45.9wt% 54.1wt%  

Temperature (oC) 700 1200  

Pressure (bar) 20 20  

 

 
Figure 3: Simulation of dual CFB for CLC system in Aspen plus® 

 

 

 

 

 

 



Table 4 Simulation Results with the inputs in Table 3 

 Oxidizer (exhaust)  

Components 

Mass flow 

(kg/s) 

vol% (gas) wt.% (solids)   

N2 38.32 99.87 -   

O2 0.023 0.13 -   

Ni 1.49 - 4.58   

NiO 11.33 - 34.81   

NiAl2O4 19.73 - 60.61   

 Reducer (exhaust)  

Components 

Mass flow 

(kg/s) 

vol % (gas) wt.% (solids)   

CH4 0.0004 0.01 -   

CO2  2.0728 90.97 -   

CO 0.0288 2.19 -   

H2 0.0063 6.83 -   

Ni 15.83 - 42.73   

NiO 1.49 - 4.02   

NiAl2O4 19.73 - 53.25   

 

2.3 Validation of the CLC Simulation 

The works of [24] and [9] do not include analysis of the thermodynamic gas yield and 

conversions of the gas and solid species in the CLC reactors. The thermodynamic gas yield and, 

H2 and CO concentrations for the CH4 over the Ni/NiAl2O4 was validated from the experimental 

results of [29]. This is necessary to analyse and mitigate the thermodynamic limitation of NiO to 

convert all the CH4 to CO2 and H2O at different operating temperatures. The CH4 conversion and 

CO2 yield from the reducer are evaluated from the simulation results thus; 

𝛾𝐶𝑂2 =  
𝑥𝐶𝑂2

𝑥𝐶𝐻4+ 𝑥𝐶𝑂2+ 𝑥𝐶𝑂
                    (3) 

(1 − 𝑋𝐶𝐻4 ) =  
𝑥𝐶𝐻4

𝑥𝐶𝐻4+ 𝑥𝐶𝑂2+ 𝑥𝐶𝑂
      (4) 

𝛾𝐶𝑂2 = Yield of CO2,   𝑥𝑖 = volume fraction of species i, and (1 − 𝑋𝐶𝐻4 ) = conversion of CH4. 

The CH4 conversion and CO2 yield from the reducer were estimated from equation (3) and (4) as 

98.93% and 96.23% respectively. The results in Table 5 show reasonable agreement with 

experimental results presented in [29].  A further analysis of the CLC system is explained in 

Section 2.4. 

 

 

 

 

 

 



Table 5: Results to validate CLC simulation in Aspen Plus  

Temperature 

(oC) 

Parameter Experimental [29] Simulation Relative 

Error (%) 

 CO2 yield (%) 97.88 96.23 1.69 

700 CO concentration (vol %) 2.0 2.19 9.5 

 H2 concentration (vol %) 6.2 6.83 10.16 

     

 CO2 yield (vol %) 96.68 94.92 1.82 

800 CO concentration (vol %) 3.1 3.41 10.0 

 H2 concentration (vol %) 6.6 7.22 9.39 

     

 CO2 yield (vol %) 95.16 91.46 3.89 

900 CO concentration (vol %) 4.5 4.87 8.22 

 H2concentration (vol %) 7.0 7.61 8.71 

     

 CO2yield (vol %) 93.43 89.87 3.81 

1000 CO concentration (vol %) 6.1 6.49 6.39 

 H2 concentration (vol %) 7.4 8.12 9.72 

     

 CO2 yield (vol %) 91.46 88.49 3.25 

1100 CO concentration (vol %) 7.9 8.72 10.38 

 H2 concentration (vol %) 7.8 8.51 9.10 

     

 CO2 yield (vol %) 89.40 87.23 2.43 

1200 CO concentration (vol %) 9.7 10.26 5.77 

 H2 concentration (vol %) 8.2 9.03 10.12 

 

2.4 Process Analysis for the CLC System 

2.4.1 Effect of fuel flow on oxidizer and reducer outlet temperature 

Figure 4 shows the effect of fuel flowrate (kg/s) on the outlet temperatures of the oxidizer and 

reducer. Due to the reactions in the reducer being endothermic, increasing the flow rate of the 

fuel (CH4) decreases the reactor temperature (Figure 4). This increase in fuel flow in the reducer 

aids the conversion of NiO to Ni, and increases the availability of Ni for the oxidation reaction in 

the oxidizer. This increases the rate of oxidation (exothermic) reaction and thus the temperature 

in the oxidizer. Increasing the fuel flow rate above the stoichiometric amount has no effect on the 

production of Ni metal. Therefore, after reaching the maximum value (approximately 1200oC), 

further increase in fuel flow has no impact on the oxidation reactor temperature.   



 
Figure 4:  Effect of Fuel flow on Temperature change  

2.4.2 Effect of Humid Air/Fuel Ratio on Gas product yield 

The effect of the humid air/fuel molar ratio on the product distribution in the fuel reactor was 

considered in this case study. Figure 5 shows the gas products CO2, H2 and CO concentrations at 

the reducer outlet. It is observed that increasing the humid air/fuel ratio between 0.8 – 1.2 and 

reactor temperature of 900oC has effect on the amount of CO and H2 that are produced alongside 

the main product, CO2 (obtained after H2O condensation). Increasing the air/fuel ratio leads to an 

increase in CO2 concentration. However, H2 and CO reduces as the air/fuel ratio increases; 

thereby leading to the production of more CO2 and H2O vapour which is condensed to obtain a 

dry gas composition (Figure 5). A humid air/fuel ratio of 1.1 was used in the simulation of the 

CLC-HAT cycle power plant. The trends are consistent with the results reported by Kolbitsch et 

al [18]. 

 

Figure 5: Effect of Humid Air/Fuel Ratio on the Gas Product Distribution 

 

 



2.4.3 Effect of fuel reactor temperature on gas composition 

The temperature is an important parameter in the successful operation of the CLC system. The 

fuel reactor temperature can be varied at a given air/fuel ratio to investigate the response of CH4 

and CO composition in the reactor. The fuel reactor temperature is varied between 800oC and 

1000oC. It was observed that CO concentration decreases rapidly with increasing temperature. 

CH4 concentration also decreases slightly at increasing temperature. However, it is observed 

(Figure 6) that beyond 900oC the change in CH4 concentration is insignificant or fairly constant. 

This is probably due to weakening of the reactivity of the oxygen carrier particle at a higher 

temperature.  

 
Figure 6: Effect of fuel reactor inlet temperature on gas composition 

The results show reasonable accuracy with the results reported by Kolbitsch et al [18]. Hence, operating 

the CLC reactors at appropriate temperature (i.e. 850oC) is essential to improving its rate of reaction and 

also maintains the carrier particle reactivity.  

 

2.4.4 Effect of fuel flow on Ni solid Product 

The effect of the fuel flow rate on the solids product is shown in Figure 7. Increasing the fuel 

flow rate in the reducer, results in a corresponding increase in the flow rate of Ni to be used in 

the oxidation reaction. However, Figure 7 shows that NiO conversion in the fuel reactor is 

limited by the stoichiometric fuel flow (1 kg/s) available for reduction process.  Increasing the 

flow rate of the fuel after this point does not influence the NiO conversion. 

 
Figure 7: Effect of fuel flow rate on Solids Ni Production 



2.4.5 Effect of reducer inlet temperature on gas product yield 

Increasing the reducer inlet temperature leads to an increase in the fraction of the CO and H2, and 

reduction in the yield of CO2 in the fuel reactor outlet. It is clear from Figure 8 that the NiO/Ni 

carrier particle can convert as much as 99% of the available CH4 to CO2 below 900oC.  However, 

less CH4 is converted to CO2 at higher temperatures (e.g. 87.3% at 1200oC).  Hence, the fuel 

reactor temperature is operated at a desirable value within  500oC - 850oC. The simulation results 

agree reasonably well (within 10 % relative error) with the experimental results reported in 

Mattisson et al [29]. 

 

 
Figure 8: Effect of reducer Temperature on product yield (in comparison with experimental study by 

Mattisson et al [29]) 

3 Simulation of the HAT Cycles 

3.1 Simulation of Conventional HAT Cycle in Aspen Plus® 

The conventional HAT cycle is an improvement to the combined cycles for its high thermal 

efficiency. In this cycle, air is compressed in a multistage compressor and intercooled with water, 

it is then admitted into the saturator where hot water is allowed to evaporate and mix with air. 

The humidified air is then pre-heated in the recuperator by the exhaust gas from the turbine 

before it is sent into the combustion unit. The heat recovery is completed with the economizer 

used to heat water, using the hot exhaust gas from the turbine before being purged in the stack 

stream [30].   



 

Figure 9: The Conventional HAT cycle flowsheet (Adapted from [30]) 

The conventional HAT process simulation is largely based on the parameters from the final 

reports on advanced fossil fuel power system comparative study by NETL [31]. The HAT cycle 

power plant used in this study is a simplified model as shown in Figure 9 [30]. The Aspen plus® 

simulation of the plant is shown in Figure 10. Air is compressed in a multistage compressor with 

inbuilt intercooler before it enters into the saturator (SEP) where hot water is allowed to 

evaporate and mix with the air. The humidified air is pre-heated in the recuperator (HEATX) by 

the exhaust gas from the turbine (EXPANDER) before it is sent into the combustor (RGIBBS), 

where the fuel reacts with the humidified air to produce the combustion products (i.e. CO, CO2, 

H2O, NOX, N2 etc.).  The heat recovery is completed with the economizer (HEATX) used to heat 

water, using the hot exhaust gas from the turbine before being purged. This approach results in 

elimination of the HRSG/steam cycle of the NGCC and replaces it with the heat exchangers. 

 

Figure 10: Simulation of conventional HAT Cycle in Aspen Plus® 

3.2 Simulation of CLC-HAT Power Cycle in Aspen Plus® 

The process flow diagram of the CLC-HAT process is shown in Figure 11. In this process, 

methane (CH4) at 25oC and 20 bar is pre-heated by the exhaust gas from gas turbine, GT-2 to 

increase its temperature to 530oC at 19 bar before it is then admitted into the reducer. 

In the reducer, NiO particles are passed by gravity (through the top) into the reducer from the 

oxidizer. NiO is reduced by the endothermic reaction of CH4 and NiO to produce Ni, CO2, and 

H2O vapour. The Ni produced serves as the feed into the oxidizer. The product gas discharged 

from the reducer (stream G-RED) is mainly CO2 and H2O vapour. This exhaust gas is used to 

drive the gas turbine, GT-2 to generate electricity. It is subsequently cooled by releasing heat to 

Conventional  
Combustion 



methane (CH4 stream) and process water. CO2 and water vapour is condensed, CO2 at 70oC and 

1.1 bar is captured, compressed to a pressure of 150 bar for sequestration. 

Furthermore, air at 25oC and 1 bar is compressed in a multistage compressor with intercoolers 

(COMPR-1) to 20 bar. The compressors are cooled by process water, leading to a temperature 

increase of 186oC, required in the saturator. The compressed air is saturated with the heated 

water to produce a humidified air at 142oC and 19 bar (with H2O vapour as a 25 wt. % fraction). 

The humidified air is then further heated to a temperature of 530oC by the exhaust gas from GT-

1 before it enters into the oxidation reactor. 

In the oxidizer, Ni is sent from the reducer to be oxidized by the humidified air to form NiO. The 

oxidation reaction is exothermic, producing an exhaust gas stream (G-OX) at 1200oC which is 

passed into turbine GT-1 to generate electricity, pre-heat the humidified air in the HEX-3, and 

further cooled in HEX-4 and HEX-5 by releasing heat to the process water. The H2O vapour is 

then condensed in condenser (GT1-COND) and recovered for re-use. The exhaust gas stream 

mainly N2 and water vapour is also condensed in GT2-COND. 

 
Figure 11: Simulation of CLC-HAT Power Cycle in Aspen Plus® 

3.3 Comparison of the CLC-HAT Cycle Simulation 

The model for the conventional HAT and the CLC-HAT cycles were compared using the 

simulation results from [9]. The simulation results were compared with this reference case (50 

MWth Plant) as shown in Table 5 based on key process performance variables. An inspection of 

the results presented in Table 5 shows that the model is a good representation of the reference 

case. Thermal Efficiency of the power plant is computed as follows and compared with the 

reference case. 

 

 

 

 



Thermal Efficiency (neglecting pump work) 

𝜂𝑡ℎ =
𝑃𝐺𝑇 − 𝑊𝑐𝑜𝑚𝑝

𝑄𝑓𝑢𝑒𝑙

                       (5) 

𝑄𝑓𝑢𝑒𝑙 = 𝑓𝑢𝑒𝑙 𝑏𝑢𝑟𝑛 𝑟𝑎𝑡𝑒 (
kg

s
)     × 𝑁𝐶𝑉 (

MJ

kg
)                          (6) 

Where  𝑃𝐺𝑇  = Gas turbine power output from GT-1 and GT-2 

 𝑄𝑓𝑢𝑒𝑙  = Chemical energy of fuel (CH4) = 50 MWth (LHV) 

 𝑊𝑐𝑜𝑚𝑝 = compressor work  

𝑁𝐶𝑉 = net calorific value 

The Energy penalty (fractional reduction in power output per unit of fuel), expressed in fractions 

or percentage  and Efficiency penalty ( absolute difference between the two process, expressed 

in % point) as a result of the CO2 capture and compression is evaluated as shown in equations (7) 

and (8) [32] and compared with the reference case. In general, the validation results (Table 5) 

show that the simulation gives a good prediction of the performance of the CLC-HAT cycle 

when compared to that obtained by [9].  

Efficiency Penalty = ηconv – ηccs (% point) … (7) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =  
𝜂𝑐𝑜𝑛𝑣 −𝜂𝑐𝑐𝑠

𝜂𝑐𝑜𝑛𝑣
   ………….. (8)   

ηconv = efficiency of the HAT cycle, ηccs = efficiency of the CLC-HAT cycle  

The results in Table 6 show that the energy penalty and the efficiency penalty of incorporating a 

CLC CO2 capture into the system only led to a small parasitic loss of about 3% and 2% 

respectively. This is a very low penalty level compared to other CO2 capture approaches. 

Table 6 Comparison of Simulation Results of HAT cycle and the CLC-HAT cycle 

Parameters Reference Case [9] Conventional HAT CLC-HAT 

Gas Turbine (MWth) 50.0 43.64 49.02 

Compressor Work (MWth) 22.0 14.14 20.47 

Net Power (MWth) 28.0 29.50 28.55 

Net Plant Efficiency (%LHV)  55.9 59.0 57.1 

Energy penalty  3.62 - 3.39 

Efficiency penalty (%) 2.1 - 1.9 

 

3.4 Process Analysis of the CLC-HAT cycle 

The Aspen plus model was employed to investigate the effect of some key process parameters on 

the power produced and overall thermal efficiency. The parameters include oxidation (air reactor) 

and reduction (fuel reactor) inlet and outlet temperatures, mass ratio of humid air to the oxygen 

carrier (Air/Ni-NiAl2O4 in kg/kg) in the oxidizer, and turbines GT-1 and GT-2 inlet temperatures.     

Four different cases were considered at varying conditions for the identified process parameters. 

  



3.4.1 Effects of Fuel Inlet Temperature on Thermal Efficiency  

At the given fuel flow and outlet conditions, reducing the fuel inlet temperature means more of 

the heat from the fuel pre-heat exchanger (HEX-1 in Figure 11) can be available to the air pre-

heat exchanger, thereby increasing the inlet temperature of the oxidizer. In terms of mass flows, 

the amount of fuel intake in the process is much lower than the air flow requirement in the 

system. Consequently, little effect is observed on the overall plant efficiency, for example in 

Figure 12, an efficiency increase of 0.2% is observed over a temperature range of (250-600oC). 

Hence, maximum temperature allowable by ΔTmin required in the heat exchanger HEX-1 was 

used in the simulation to avoid temperature crossing (which indicates a negative driving force for 

heat transfer between the hot and cold fluids) due to the hot stream outlet temperature lower than 

the desired cold stream outlet temperature in a counter-current flow arrangement. The trends are 

consistent with the results reported by Brandvoll and Bolland [9]. 

 
Figure 12: Effect of Fuel Inlet Temperature 

 

3.4.2 Effects of Inlet & Outlet Temperature of Oxidizer on Efficiency 

Assuming constant fuel input, increasing the humid-air temperature at oxidizer inlet influences 

the power output of the gas turbine GT-1. An increase in the overall efficiency is observed due to 

a relatively larger increment in the gas turbine output as the oxidizer inlet temperature is 

increased. The impact of the oxidizer inlet temperature on efficiency is more significant than the 

fuel reactor inlet temperature – about 7% over the temperature range 400oC – 600oC. The 

temperature is set as high as possible limited by the (ΔTmin) minimum temperature difference 

required in the preheat exchanger HEX-3.  

 
Figure 13:  Effect of (a) oxidizer inlet temperature   (b) oxidizer outlet temperature on efficiency 



From Figure 13 (b), increasing the oxidizer outlet temperature, instantly results in a proportional 

increase in the power output from GT-1 and the thermal efficiency. The turbine GT-1 outlet 

temperature also increases and more energy is available for air preheating in HEX-3. These 

results are consistent with the results reported by Brandvoll and Bolland [9] as shown in Figure 

13(a) and Figure 13(b).    

 

3.4.3 Effect of Humid Air and Ni Flow rate on Overall Thermal Efficiency 

Figure 14 (a) shows the effect of humid air mass flow rate on the thermal efficiency of the CLC-

HAT cycle. In this present study, 35.6 kg/s of incoming Ni are completely oxidized by 49.8 kg/s 

of the air. Based on the stoichiometry of the reaction (reaction 7 in Table 2), the air to incoming 

Ni mass ratio is 1.4. At this point, the oxidation reaction temperature is at maximum value (about 

1200oC, Figure 15). The thermal efficiency of the plant increases with an increase in the air flow 

rate due to increase in high temperature working fluid (mainly N2) at the exit of the oxidation 

reactor for the gas turbine GT-1. Further increase in air flow rate beyond the stoichiometric 

amount, the thermal efficiency begins to decrease (Figure 14(a)). This is due to significant drop 

in the turbine GT-1 inlet temperature at higher air flow rate. 

 
Figure 14: Effect of (a) Humid air flow rate                  (b) oxygen carrier on Efficiency 

Figure 14(b) shows the effect of oxygen carrier (Ni) mass flow rate on the thermal efficiency of 

the plant. The result shows that the thermal efficiency of the CLC-HAT cycle increases with an 

increase in the oxygen carrier mass flow rate due to the increase rate of reactions in the reactor 

and exothermic heat. However, the increase is only up to the stoichiometric amount of Ni 

required in the reactor. Further increase in the Ni mass flow has no significant impact on the 

efficiency (Figure 14(b)). Though, more Ni can still be oxidized by the presence of excess air, 

this reaction is however limited by the reduction process and its ability to reduce the NiO to Ni. 

 

3.4.4 Effect of Air/Oxygen Carrier Ratio on Efficiency and Oxidizer outlet Temperature 

The ratio of air to Ni in the oxidizer affects the oxidizer outlet temperature and the overall 

thermal efficiency of the plant. As described separately in cases 3(a) and 3(b), increasing the air 

flow and the oxygen carrier flow rate independently influences the efficiency of the plant (Figure 

3). Increase in the air/Ni mass ratio results in corresponding increase in the thermal efficiency 

and the oxidizer outlet temperature (Figure 15), up until the stoichiometric amount. Further 

increase beyond this point results in no significant change in the temperature and the overall 

thermal efficiency of the plant.      



 

Figure 15: Effect of Air/Ni ratio on Temperature and Efficiency 

 

4 Economic analysis of Conventional and CLC-HAT Cycles 

The main aim of embarking on the CLC-HAT Power generation system is to comply with 

growing demands for CO2 emission reduction to safeguard the environment from the threat of 

greenhouse gases and climate change; as well as generate electricity at a high efficiency, as well 

as reasonably low cost. This section presents economic analysis of CLC power generation 

system, with CO2 capture and compression. 

It is not intended to obtain absolute power generation costs from this evaluation as the results of 

this work may not accurately reflect the final cost of constructing the plants, but it is a useful 

method for establishing economic viability of a process and comparing competing processes and 

for identifying possible bottlenecks.  

The following assumptions were used to develop the economic model in the Aspen Economic 

Analyser®: 

 The proposed plant location for both cases is the United Kingdom (UK) 

 The plant is designed to have the capacity to process 1.0 kg/s (50MWth ) of fuel. 

 8000 working hours per year was used. 

 All the cost estimations are carried out in British pounds (£). 

 The lifetime of the power plants were set at 30 years. 

Table 7 shows the costs of the raw materials and utilities associated with the power cycles. The 

raw material prices are the general market prices as at June 2011. The amounts of oxygen 

carriers used were not calculated based on an hourly basis since they are either fixed in the 

reactors or recycled, and hence it is assumed that the catalysts are changed based on their 

average lifetimes [4]. Equipment sizes are estimated based on the Aspen Plus® simulations. 

 

 



Table 7: Basic Parameters for economic analysis [33] 

Item                                 Specification                                        Price/unit 

Raw materials 

Methane  2p/kWh 

11.01 (£/kg) 

£0.37/m. tonne 

- 

£0.0012/L 

£0.0775/kWh 

Nickel oxide  

Process water  

Utilities  

Cooling water 1 bar, 25oC 

Electricity  

 

Plant type  Grass roots/clear field   

Depreciation model 5% per period    

Taxes  20% per period    

Rate of return 15% per period    

General & Administrative (G&A) expenses 8% per period    

 

Table 8:  Aspen Icarus® Estimate of Process Equipment Cost 

ITEM HAT CLC-HAT 

 (£) (£) 

Plant capacity                 (MWth) 50 50 

Heaters/Heat HEXs          (total) 141,200 152,500 

Pumps                             (total) 30,700 85,100 

Reactor 1                  (Oxidizer) - 142,700 

Reactor 2                  (Reducer) - 142,700 

Saturator (sep) 59,600 59,600 

Compressors 2,332,000 11,467,300 

Gas Turbines          (total) 8,724,800 12,312,000 

Combustor 191,100              - 

Total equipment cost  11,479,400 24,361,900 

Total direct cost  12,687,300 26,785,600 

Fixed capital cost  25,377,700 45,211,800 

Working capital  1,332,330 2,260,590 

Start up and validation cost 2,537,770 4,521,180 

Total capital investment 29,271,400 51,999,270 

 

The two HAT power cycles were evaluated based on the total capital investment, total 

manufacturing costs, pay-out period, profitability, internal rate of return and the net present value. 

A breakdown of the cost of the process equipment for the two options and their associated costs 

is presented in Table 8. The total operating costs for the conventional and CLC-HAT cycles are 

presented in Table 10.  

 



The profitability index (PI) shows the relative profitability of any project. For each period, this 

number is computed by dividing the Present Value of the Cumulative Cash Inflows by the 

Present Value of the Cumulative Cash Outflows. If the profitability index is greater than one, 

then the project appears to be profitable. If this index is less than one, then the project appears 

not to be profitable. If this number equals zero then the project incurs no losses or gains (break-

even point) [33]. It shows the present value of the benefits relative to the present value of the 

costs. Table 8 shows the PI of the conventional HAT and CLC-HAT power plant. It can be seen 

that for every £1 invested in this technology, the total value created by the CLC-HAT cycle is 

£1.6 as against £1.42 for the conventional cycle. 

Mathematically,  

𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐼)  =  
𝑁𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉)𝑜𝑓 𝑓𝑢𝑡𝑢𝑟𝑒 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
 

 

4.1 Economic Indicators for the Conventional and CLC-HAT cycles 

Table 10 is a summary of the important economic indicators showing the feasibility of the CLC-

HAT technology in comparison to the conventional HAT approach. From the table, it can be 

seen that the two HAT cycle processes have total capital requirement of power generation of 

£584/kWth and £1040/kWth with the conventional HAT cycle having the lower value. 

Nevertheless, the CO2 emitted in the conventional cycle when quantified and charged at 

appropriate tax rate (£30 /t CO2 as presented in Table 9) makes the CLC-HAT cycle a more 

viable option over the life cycle of the plants. The uncertainties in the tax rate due to government 

policies [34] also means that the cost of operating the conventional plant will increase if the 

government implements its plan to increase the carbon tax in order to meet the carbon emission 

reduction target (CERT) of reducing emission to 80% below the 1990 level by 2050 [35]. In the 

present analysis, an average value of £30/t CO2 emitted (which covers the rate between Jan 2006 

to Jan 2013 [34]) was used to estimate the annual CO2 emission tax for the conventional HAT 

cycle.  

Table 9: Estimation of CO2 emission Tax for the Conventional HAT Cycle 

Parameters Conventional HAT Cycle 

Plant generation capacity  (MWth) 29.50 

Carbon Price                      (£/tCO2) 30.00 

CO2 emission                    (kg/MW-hr) 394.77 

CO2 Emission cost           (£/yr.) 3,018,569.33 

Plant Operating Cost        (£/yr.) 4,915,990.00 

Total Operating Cost (£/yr.)* 7,934,559.33 

  

*including annual cost of CO2 emission tax 

 

 



Table 10 Economic indicators for the Conventional HAT and CLC-HAT cycles 

 HAT CLC-HAT 

Plant generation capacity           (MWth) 29.50 28.55 

Total capital investment           (£) 29,271,400 51,999,270 

Raw material cost                     (£/yr.) 8,000,000 11,062,634 

Total operating cost                  (£/yr.) 7,934,559.33 9,104,170.00 

Payback period  (years) 7.03 6.14 

Profitability Index (PI) 1.42 1.60 

Net Present Value  (NPV) (£) 94,162,100 104,240,000 

Internal Rate of Return (IRR) (%) 26.83 37.87 

Capital Requirement(£/kW) 584.43 1039.99 

   

5 Conclusions 

The CLC system with HAT principle shows an efficiency of 57% at oxidizing temperature of 

1200oC and reducer inlet temperature of 530oC, and a very low penalty point when compared 

with other CCS options integrated into the power cycles. The sensitivity analysis showed that the 

overall efficiency of the plant is greatly influenced by the air inlet temperature to the oxidation 

reactor and its exhaust temperature. The thermal efficiency penalty and thermal energy penalty 

were found to be very low at a value of 2.0% point and 3.4 % point respectively.  

The economic evaluation performed shows that the 50 MWth plant with a projected lifetime of 30 

years will have a payback period of 7 and 6 years, a net present value of £94.2 million and 

£104.2 million, and a total capital investment of £29.2 million and £52 million for conventional 

HAT and CLC-HAT cycles respectively. The profitability index of 1.6 for the CLC as against 

1.3 for conventional HAT also affirms the long term superiority of the CLC-HAT cycle in 

combating CO2 emission over conventional combustion. 
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