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Abstract—This paper proposes a novel active fault tolerant
control (FTC) scheme for a 3-degree-of-freedom (3-DOF) heli-
copter with sensor faults. As a challenge, only attitude angles
are considered available, so that when the sensors measuring the
elevation/travel angles are faulty, the system with respect to the
remaining healthy outputs is not detectable. To circumvent this
issue, a new interval observer (IO) with adaptive parameters is
formulated, providing good estimates of both disturbances and
unmeasurable states. This IO acts not only as a state estimator
for nominal controller but also as a fault detection and isolation
(FDI) observer for the fault occurrence and location. After the
fault location is determined, two different fault estimation (FE)
schemes are developed according to whether or not the system is
detectable. Using the fault estimates, a fault tolerant controller
is constructed to ensure the acceptable performance of the faulty
system. Finally, experiments on the 3-DOF helicopter platform
are conducted to verify the effectiveness of the proposed scheme.

Index Terms—Fault tolerant control, fault detection and isola-
tion, fault estimation, 3-DOF helicopter.

I. I NTRODUCTION

Helicopters have a wide range of applications in military
and civil fields due to their distinctive advantages in hovering,
vertical take-off and landing [1]. However, as a helicopter is an
unstable and nonlinear system that does not have actuator and
sensor redundancy [1], any fault or failure in the helicopter
system may result in catastrophic damage. Fault tolerant
control (FTC), which is aimed to make the system tolerant
to faults, is a good alternative. Two ways of FTC are distin-
guished, termed passive and active FTC [2]. In the passive
FTC, a baseline controller is designed to ensure acceptable
system performance for several possible fault scenarios; this
may produce a conservative and over-designed controller as
all possible fault scenarios rarely occur at the same time,
and the occurrence of a fault that is not in the considered
scenarios may cause instability. On the other hand, active FTC
consists of a fault detection and isolation (FDI) unit for fault
occurrence and location, and a fault estimation (FE) unit for
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fault magnitude and shape. All these fault information is used
to reconfigure the parameters and/or structure of the controller.
In this paper, an active FTC scheme will be developed for a
3-DOF helicopter.

FTC design for helicopter systems has been a hot research
topic in recent years. The 3-DOF helicopter under consider-
ation is a laboratory experiment that is often used in control
research and education for the design and implementation of
(non)linear control concepts [3]. Although some studies of
FTC applied to the 3-DOF laboratory helicopter are available,
most only consider actuator faults [4, 5]. In actual flight,
sensor faults happen more frequently than actuator faults [6].
When sensor faults occur, the inaccurate output information is
fed back into the controller, which then generates the wrong
command, resulting in compromised stability [7]. In this case,
the helicopter may oscillate violently, and fail to complete the
task, or even crash.

There are few studies on sensor FTC of the 3-DOF lab-
oratory helicopter. In [3], a robust controller for a 3-DOF
helicopter was proposed in presence of actuator and sensor
faults, whereas not only attitude angle but also angular velocity
were assumed to be measurable. It should be noted that
the three attitude angles are measured by different encoders
mounted on the instrumented joints in the 3-DOF laboratory
helicopter; whereas there are no sensors directly measuring
angular velocity information [8]. A hierarchical structure-
based sensor fault-tolerant consensus protocol was proposed
for multiple 3-DOF helicopters using only attitude angle
measurement in [9] and [10], where there was no FDI unit for
the fault location, and instead an FE unit was utilized. Since
the fault location is unknown, it is conservatively assumed
that faults could happen in all components and the FE unit
which is activated at the beginning of system operation needs
to estimate all these faults. Thus, the schemes in [9, 10]
are largely conservative and moreover, need more available
information for the estimation of all faults. Therefore, it
is challenging to develop sensor active FTC for a 3-DOF
laboratory helicopter when only attitude angles can be directly
measured.

FDI/FE units are typically observer-based [11, 12], and
the interval observer (IO), consisting of a pair of Luenberger
observers that give the upper/lower bounds of the state [13],
is a popular choice. Current works on IOs [13, 14] use
the constant disturbance bounds as observer parameters, and
when the disturbance bounds are conservative, a large interval
length defined as the difference between the upper and lower
bounds will be resulted in. Therefore, when applied to the
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fault detection [15], it will generate large fault missing/false
alarm rates. In addition, for the IO to estimate unknown inputs,
it needs high-order derivatives of outputs [16], which in turn
requires the outputs to be sufficiently smooth with bounded
derivatives; however, in real systems such as the helicopter,
this condition might not be satisfied.

In this paper, an active FTC for a 3-DOF laboratory he-
licopter with sensor faults is investigated when only attitude
angles are measurable. Firstly, a novel IO is designed for the
fault occurrence and location. According to the fault location,
the system detectability with respect to the remaining healthy
outputs will be determined, from which two different FE
schemes are developed. Using the fault estimate, fault tolerant
controller is established to ensure the acceptable performance
of the faulty system. The novelties and contributions compared
to the existing works can be summarized as:

• Unlike the existing IO where the bounds of disturbances
are used as observer parameters [17], the proposed adap-
tive IO utilizes adaptive parameters instead. Hence tighter
bounds of states and disturbances are yielded.

• Different from established FDI schemes which require
either a set of dissimilar observers or dissimilar residual
signals [18], the fault occurrence and location are simul-
taneously obtained by only one proposed adaptive IO, not
only reducing the computational cost but also shortening
the fault diagnosis time.

• When the system detectability with respect to the remain-
ing healthy outputs is lost due to a fault occurring in
some sensor, the existing FE methods [9] and [10] are not
applicable, and a novel FE scheme based on sliding mode
equivalent output injection and Volterra integral equation
(VIE) is proposed to obtain the fault estimate.

This paper is organized as follows. In Section II, helicopter
dynamics, problem formulation and preliminaries are present-
ed. In Section III, nominal controller and FDI based on a
novel IO are designed. FE and FTC schemes are developed
in Section IV. Experiments are given in Section V and
conclusions are drawn in Section VI.

Notations: in this paper,I r is an identity matrix of dimension
r, 1r is a column vector of sizer and all its entries are 1.0
is a matrix or vector with appropriate dimension and its all
entries are 0. For a real matrixX ∈ R

n×m, row(X)i is the
ith row of X , X(i, j) is the element ofX in the ith row and

jth column,Xr =

[
I i−1 0 0
0 0 In−i

]

X , namely the remaining

part ofX with its ith row removed,X+(i, j) = max{0,X(i, j)}
and X− = X+ − X , |X | = X+ + X−. A real matrix X is
known as Metzler if all its off-diagonal entries are nonnegative
(X(i, j) ≥ 0, i 6= j) [17]. For a symmetric positive definite
(s.p.d.) matrixP, the minimum and maximum eigenvalues ofP
are denoted respectively asλmin(P) andλmax(P). For a vector
x, ‖x‖=

√
xT x; the upper and lower bounds ofx are denoted

as x and x respectively, namelyx � x � x. For vectorsa and
b, a � (�)b means∀i : ai ≤ (≥)bi; definecmax = max{a,b},
col[max{ai,bi}] andcmin =min{a,b}, col[min{ai,bi}] where
col[xi] is a column vetor whoseith component isxi, then
cmax � a, cmax � b, cmin � a andcmin � b.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, the dynamics of a 3-DOF laboratory heli-
copter is first presented, and then problem formulation and
some Lemmas needed to derive the main results are given.

A. Helicopter dynamics

The free-body diagram of a 3-DOF helicopter is shown in
Fig. 1. Let ε, ρ , λ be the elevation, pitch and travel angles
(in degrees), respectively, andεd ,ρd,λd be the corresponding
desired constant values.V f andVb are control voltages of the
front and back motors (in volts), which generate the thrustFf

andFb.
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Fig. 1: Free-body diagram of a 3-DOF helicopter.

Using the Euler-Lagrange formula, the nonlinear equations
of motion of the 3-DOF helicopter system are derived as [19]

Jeε̈ = K f (V f +Vb)La cos(ρ)−Tg cos(ε)
Jt λ̈ = −Tg sin(ρ)
Jρ ρ̈ = K f (V f −Vb)Lh

(1)

whereJe = 2m f L2
a +mwL2

w, Je = 2m f (L2
a +L2

h)+mwL2
w, Jρ =

2m f L2
h, Tg = g(mwLw − 2m f La). Considering the effect of

counterweight, quiescent voltage of both front and back motor
is used to balance the equivalent weight of the helicopter plat-
form asVop = Tg/(2LaK f ). Define the state, input and output
vectors asxT = [ε − εd,ρ −ρd,λ −λd, ε̇ − ε̇d , ρ̇ − ρ̇d, λ̇ − λ̇d],
uT = [V f −Vop,Vb −Vop] and yT = [ε − εd ,ρ − ρd ,λ − λd].
Linearize the nonlinear model (1) about zero and approximate
sin(ρ)≈ ρ , cos(ρ)≈ 1 and cos(ε)≈ 1. Thus, the linear state-
space model of a 3-DOF helicopter can be described as

ẋ = Ax+Bu+Dd, y =Cx (2)

where the state-space matrices areC = [I3 0],

A =

[
0 I3

A0 0

]

,A0 =





0 0 0
0 0 0
0 a32 0



 ,

B =

[
0

B0

]

,B0 =





b11 b11

b22 −b22

0 0





(3)
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where a32 = − (Lwmw−2Lam f )g
Jt

, b11 =
LaK f

Je
, b22 =

K f Lh
Jρ

. The
values of model parameters in (3) are given in Table I.d is
the external disturbance which can be generated by an active
disturbance system (ADS) equipped on the arm of the lab
helicopter [8]. Actually, the ADS exerts extra moments acting
in the angular velocity channels as disturbances, hence the
disturbance distribution matrixD is given byD = [0 I3]

T . It
should be noted that the 3-DOF laboratory helicopter does not
equip the individual sensors to measure the angular velocities
[8]. In the following, we denote the size ofx, u, d and y as
n, m, q and p, respectively.

Suppose theith sensor is experiencing an additive fault, then
the output equation is noty =Cx but

y =Cx+Ei fs,i (4)

whereEi ∈ R
p×1 with its ith entry being 1 and others being

0. Similar to [20], the faultfs,i has the form of

fs,i = βi(t) f ∗s,i(t) (5)

where f ∗s,i(t) and ḟ ∗s,i(t) are assumed to be bounded, and

βi(t) =

{
0, 0≤ t < TF

1− e−α(t−TF), t ≥ TF
, (6)

where the scalarα denotes the unknown fault-evolution rate.
TF > 0 denotes the unknown fault-occurrence time.

Remark 1: Differentiateβi(t) in (6) once to get

β̇i(t) =







0, 0≤ t < TF

∞, t = TF

0< αe−α(t−TF ) < α, t > TF

(7)

From ḟs,i = β̇i f ∗s,i +βi ḟ ∗s,i, it is obvious that ḟs,i(TF) = ∞ and
ḟs,i(t)< ∞ for t > TF , namely ḟs,i is not continuous att = TF

and has a pulse change.
Remark 2: When the ith sensor is experiencing a multi-

plicative fault. the output equation can also be written as (4)
and (5) wheref ∗s,i = −ρirow(C)ix with 0< ρi < 1 being the
efficiency loss coefficient.

Divide y in (4) into y 7→
[

yT
f yT

r
]T

where

y f = row(C)ix+ fs,i,yr =Crx (8)

where row(C)i andCr are defined in Notations. Observing (3)
and (8), it can be found that

(a) C has full row rank,B andD have full column rank;
(b) A is not Hurwitz;
(c) (A,B) is controllable, and(A,C) is observable;
(d) rank(CD) 6= rank(D);
(e) the triple(A,D,C) is minimum phase;
(f) the couple(A,Cr) is not detectable when the 1st or

3rd sensor measuring the elevation/travel angle has
a fault;

(g) There does not exist a matrixN such thatD = BN,
namely the disturbanced is unmatched.

Remark 3: From the discussion above, it is known that for
the 3-DOF helicopter system (2),A is not Hurwitz and(A,Cr)
is not detectable when the 1st or 3rd sensor measuring the
elevation/travel angle is faulty, which brings difficulties in the
design of observer-based FDI and FE.

TABLE I: Model parameters [19]

Parameter Value Unit Description

K f 0.1188 N/V Propeller force-thrust constant
m f 0.575 kg Mass of the front- and

back-propeller assembly
mh 1.15 kg Mass of the helicopter
mw 1.87 kg Mass of the counterweight
La 0.6604 m Distance between the travel

axis and the helicopter
Lh 0.1778 m Distance between the pitch

axis and each motor
Lw 0.4600 m Distance between the travel

axis and the counter-weight
g 9.8 m · s2 Gravity constant

B. Problem Formulation

Assumption 1: The disturbanced is constant and unknown,
but its upper/lower boundsd

c
/dc are known and conservative,

which is a general situation since it is difficult to get accurate
bounds.

Assumption 2: The initial statex(0) is unknown but bound-
ed by xc

0 � x(0) � xc
0, where xc

0 and xc
0 are available and

conservative.
Assumption 3: Only one fault might occur at any one time,

which is reasonable since in practice, it is highly unlikelythat
two or more sensor faults occur simultaneously.

Remark 4: Since wind can affect position and trajectory
tracking, it is the main external disturbance for a 3-DOF
helicopter and can be regarded as a hybrid model of a static
dominant constant and a wind gust which is a periodic signal
[21]. In this work, only the static dominant constant of wind
is considered, hence in Assumption 1, the disturbanced is
assumed to be constant and bounded.

The goal is to design an output feedback based active FTC
scheme, as shown in Fig.2, such that

‖x‖ ≤ γs‖d‖ (9)

can be ensured when some sensor is faulty, whereγs > 0
denotes the acceptable level of system performance.

Fig. 2: The block diagram of the proposed active FTC scheme.

C. Preliminaries

Here we present Lemmas needed to derive the main results.
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Lemma 1: [17] For a matrixA and a vectorx with x� x� x
, it follows that A+x−A−x � Ax � A+x−A−x.

Lemma 2: [22] For a non-autonomous system ˙x(t) =
Ax(t) + g(t), where A is Metzler andg(t) � 0,∀t ≥ 0. If
x(0)� 0, then it follows thatx(t)� 0 for all t ≥ 0.

Proposition 1: For a system ˙e = Aee+Dede where Ae is
Hurwitz and hence there exist s.p.d. matricesPe and Qe

such thatAT
e Pe +PeAe = −Qe, de is a bounded disturbance,

then for t ≥ 0, min

{
2‖PeDe‖‖de‖

√
λmax(Pe)√

λmin(Pe)λmin(Qe)
,‖e(0)‖

}

≤ ‖e(t)‖ ≤

max

{
2‖PeDe‖‖de‖

√
λmax(Pe)√

λmin(Pe)λmin(Qe)
,‖e(0)‖

}

and ast → ∞, ‖e(t)‖ →
2‖PeDe‖‖de‖

√
λmax(Pe)√

λmin(Pe)λmin(Qe)
with e(0) being the initial state.

Proof: Define the Lyapunov functionVe = 0.5eT Pee and
differentiateVe once to get

V̇e = −0.5eT Qee+ eT PeDede

≤ −0.5λmin(Qe)‖e‖2+ ‖e‖‖PeDe‖‖de‖ (10)

Using 0.5λmin(Pe)‖e‖2 ≤Ve ≤ 0.5λmax(Pe)‖e‖2, it further fol-
lows that

V̇e ≤−λmin(Qe)

λmax(Pe)
Ve +

√
2‖PeDe‖‖de‖
√

λmin(Pe)

√
Ve (11)

DenoteWe =
√

Ve and kw = λmin(Qe)/(2λmax(Pe)), and from
(11) it follows

Ẇe ≤−kwWe +

√
2‖PeDe‖‖de‖
2
√

λmin(Pe)
(12)

which is solved to get

We(t)≤
(

We(0)−
√

2‖PeDe‖‖de‖
2kw
√

λmin(Pe)

)

e−kwt +

√
2‖PeDe‖‖de‖

2kw
√

λmin(Pe)

It follows that for t ≥ 0,

min

{√
2‖PeDe‖‖de‖

2kw
√

λmin(Pe)
,We(0)

}

≤We(t)

≤ max

{√
2‖PeDe‖‖de‖

2kw
√

λmin(Pe)
,We(0)

} (13)

and ast → ∞, We(t)→
√

2‖PeDe‖‖de‖
2kw

√
λmin(Pe)

. Hence

min

{
2‖PeDe‖‖de‖

√
λmax(Pe)√

λmin(Pe)λmin(Qe)
,‖e(0)‖

}

≤ ‖e(t)‖

≤ max

{
2‖PeDe‖‖de‖

√
λmax(Pe)√

λmin(Pe)λmin(Qe)
,‖e(0)‖

} (14)

and ast → ∞, ‖e(t)‖→ 2‖PeDe‖‖de‖
√

λmax(Pe)√
λmin(Pe)λmin(Qe)

.

III. FAULT DETECTION AND ISOLATION

In this section, a novel interval observer (IO) is first
proposed to obtain the estimates of both disturbance and
unmeasurable states. A nominal controller and a fault detection
and isolation (FDI) unit based on the novel IO are then
developed.

A. Novel interval observer

For the 3-DOF helicopter model (3), there exists a state

transformationx 7→ T0x with T0 =

[
0 I3

I3 0

]

such that

T0AT−1
0 7→

[
A∗∗

1 A∗∗
2

A∗∗
3 A∗∗

4

]

,T0D 7→
[

D∗∗
1

D∗∗
2

]

,

CT−1
0 7→

[
0 C∗∗ ]

(15)

whereC∗∗ ∈ R
p×p is an invertible matrix. From the fact that

the pair (A,C) is observable and the structures in (15), it is
apparent that the couple(A∗∗

1 ,A∗∗
3 ) is observable. Hence there

exists a matrixL∗ ∈ R
(n−p)×p such that the eigenvalues of

A∗
1 = A∗∗

1 +L∗A∗∗
3 denoted asλ1, · · · ,λn−p satisfy

λi ≈ λ andλi 6= λ j(i 6= j) (16)

whereλ < 0 is a design scalar given later in Remark 6 and
Remark 15. Establish another transformationx 7→ T1T0x where

T1 =

[
In−p L∗

0 C∗∗

]

, thenCT−1
0 T−1

1 7→
[

0 I p
]
,

T1T0AT−1
0 T−1

1 7→
[

A∗
1 A∗

2
A∗

3 A∗
4

]

,T1T0D 7→
[

D∗
1

D∗
2

]

(17)

From (16), it is known that there exists a nonsingular matrix
S such thatSA∗

1S−1 = A1 where

A1 = diag{λ1, · · · ,λn−p} ≈ Λ = diag{λ}. (18)

Introduce a nonsingular transformationx 7→ T2T1T0
︸ ︷︷ ︸

T

x with T2 =

[
S 0
0 I p

]

, thenCT−1 7→
[

0 I p
]
, T B 7→

[
B1

B2

]

,

TAT−1 7→
[

A1 A2

A3 A4

]

,T D 7→
[

D̄1

D̄2

]

(19)

Therefore, the system (2) is transformed and partitioned into

ẋ1 = A1x1+A2x2+B1u+ D̄1d, (20a)

ẋ2 = A3x1+A4x2+B2u+ D̄2d (20b)

when all sensors are healthyy = x2, A1 is from (18) and
Hurwitz and Metzler.

Remark 5: From Assumption 2 and the transformationx 7→
Tx, the bounds ofx1(0) are xc

10 � x1(0) � xc
10, wherexc

10 =
[In−p 0](T+xc

0−T−xc
0), xc

10 = [In−p 0](T+xc
0−T−xc

0).
We propose the following observers for the system (20)

˙̂x1 = A1x̂1+A2y+B1u, (21)

ẋ2 = Γey +A3x̂1+A4y+B2u+ δ
ẋ2 = −Γey +A3x̂1+A4y+B2u+ δ (22)

where ey = y − y, ey = y − y, y = x2, y = x2. And δ =

[δ 1, · · · ,δ p], δ = [δ 1, · · · ,δ p], δ i, δ i, i = 1, · · · , p are deter-
mined by the following adaptive laws:

δ̇ i =−kδ (sgn(ey,i − εδ ,1)+ sgn(ey,i − εδ ,2))

δ̇ i = kδ (sgn(ey,i − εδ ,1)+ sgn(ey,i − εδ ,2))
(23)

where ey,i and ey,i are the i-th component ofey and ey
respectively, andεδ ,1 > εδ ,2 > 0 are user-defined constants
which determine the width ofey,i and ey,i, and kδ > 0 is a
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user-defined constant which determines the changing rates of
δ i andδ i. The choice ofkδ will be given in (64). ˆx1(0) is the
initial value of x̂1 and can be arbitrary value.δ i(0) andδ i(0)
are the initial values ofδ i and δ i respectively, and also the
i-th component ofδ (0) andδ (0) respectively, chosen as

δ (0) = min{δ c,A+
3 xc

10−A−
3 xc

10−A3x̂1(0)+ D̄+
2 dc − D̄−

2 d
c}

δ (0) = max{δ
c
,A+

3 xc
10−A−

3 xc
10−A3x̂1(0)+ D̄+

2 d
c − D̄−

2 dc}
(24)

where δ c, δ c
are given later in (29).y(0)(x2(0)) and

y(0)(x2(0)) are the initial values ofy(t)(x2(t)) andy(t)(x2(t))
respectively, chosen to satisfyey(0) ≻ εδ ,11p and ey(0) ≻
εδ ,11p. Γ = diag{γ} andγ < 0 is a scalar whose choice makes

δ (0)−A+
3 xc

10+A−
3 xc

10+A3x̂1(0)− D̄+
2 dc + D̄−

2 d
c ≺−γεδ ,11p

D̄+
2 d

c − D̄−
2 dc − δ(0)+A+

3 xc
10−A−

3 xc
10−A3x̂1(0)≺−γεδ ,11p

(25)
with xc

10 and xc
10 from Remark 5, andd

c
and dc from

Assumption 1.
Denote ˜x1 = x1 − x̂1, and subtract (21) from (20a) to get

˙̃x1 = A1x̃1+ D̄1d, which is solved to obtain

x̃1(t) = eA1t x̃1(0)+ eA1t
∫ t

0
e−A1τ dτ D̄1d (26)

From (18), (26) can be approximated as

x̃1(t) ≈ eΛt x̃1(0)+ eΛt ∫ t
0 e−Λτ dτ D̄1d

= eΛt(x̃1(0)+Λ−1D̄1d)
︸ ︷︷ ︸

h1

−Λ−1D̄1d (27)

Fromλ < 0 and Assumption 1, it follows thath1 → 0 ast →∞.
Combine (20b) with (27) to get

ẋ2 = A3x̃1+A3x̂1+A4x2+B2u+ D̄2d
= A3x̂1+A4x2+B2u+A3h1+ δ (28)

whereδ = D2d, D2 = D̄2−A3Λ−1D̄1.
Remark 6: The choice ofλ (the diagonal element ofΛ)

should makeD2 full of column rank.
Remark 7: From Assumption 1 and Lemma 1, the conser-

vative bounds forδ are

δ c � δ � δ c
,δ c = D+

2 dc −D−
2 d

c
,δ c

= D+
2 d

c −D−
2 dc (29)

Proposition 2: For the system (28), the proposed IO (22)-
(23) can achievex2−x2 � εδ ,11p andx2−x2 � εδ ,11p for 0≤
t ≤ Ts; εδ ,21p ≺ x2−x2 ≺ εδ ,11p andεδ ,21p ≺ x2−x2 ≺ εδ ,11p

for t > Ts, whereTs is a finite time.
Proof: When there are no sensor faults,y = x2 and

subtract (22) from (28) to get

ėy = Γey + δ − δ −A3h1, ėy = Γey + δ − δ +A3h1 (30)

where

δ (0)− δ (0)−A3h1(0)
= δ (0)−D2d(0)−A3(x1(0)− x̂1(0)+Λ−1D̄1d(0))
= δ (0)−A3x1(0)+A3x̂1(0)− D̄2d(0)

(31)
From Lemma 1, Assumption 1 and Remark 5, (31) can be
further written as

l1 � δ (0)− δ (0)−A3h1(0)� u1 (32)

where l1 = δ (0)−A+
3 xc

10+A−
3 xc

10+A3x̂1(0)− D̄+
2 d

c
+ D̄−

2 dc,
u1 = δ (0)−A+

3 xc
10+A−

3 xc
10+A3x̂1(0)− D̄+

2 dc + D̄−
2 d

c
. Using

(24) and (25), (32) becomes

0� l1 � δ (0)− δ (0)−A3h1(0)� u1 �−γεδ ,11p (33)

Similarly, it follows 0 � δ (0)− δ (0) +A3h1(0) � −γεδ ,11p.
Moreover, fromey(0)≻ εδ ,11p and (33), it follows that

ėy(0) = Γey(0)+ δ(0)− δ (0)−A3h1(0)
≺ γεδ ,11p − γεδ ,11p

= 0
(34)

Similarly, ėy(0)≺ 0 can be obtained. Fromey(0)≻ εδ ,11p ≻ 0,
ėy(0) ≺ 0, δ (0)− δ (0)−A3h1(0) � 0, and the continuity of
ey(t) with respect tot, it follows that there exists a period of
time [0,Ta) wheney(t)≻ 0, ėy(t)≺ 0, and ėy(Ta) = 0.

From (30), the dynamics ofey,i andey,i are written as

ėy,i = γey,i + δ i − δi− row(A3)ih1 (35)

ėy,i = γey,i + δi− δ i + row(A3)ih1 (36)

DefineVi =
1
2e2

y,i which is differentiated once using (35) to get

V̇i = γe2
y,i + ey,i(δ i − δi − row(A3)ih1) (37)

It is clear from (37) that when ey,i >

−
(

δ i − δi − row(A3)ih1

)

/γ, V̇i < 0. Hence the set

Ψ =
{

ey,i(t)≤−(δ i(t)− δi(t)− row(A3)ih1(t))/γ
}

is an

invariant set. Sincėey,i(Ta) = 0, from (35), it follows that

ey,i(Ta) =−(δ i(Ta)− δi(Ta)− row(A3)ih1(Ta))/γ (38)

hence the trajectory of (35) arrives in the boundary of the
invariant setΨ at t = Ta. According to the La Salle’s Local
Invariant Set Theorem [23], fort ≥ Ta, ey,i(t) ∈ Ψ, namely
ey,i(t) ≤ ey,i(Ta). In the following, we will showey,i(Ta) ∈
(εδ ,2,εδ ,1) by contradiction.

Supposeey,i(Ta) ≥ εδ ,1. Then from the adaptive law (23),

it follows δ̇ i(Ta) = kδ > 0. Hence att = Ta +∆t where∆t is
the sampling time,δ i(Ta + ∆t) > δ i(Ta). Since ėy,i(Ta) = 0,
ey,i(Ta +∆t) = ey,i(Ta). Consideringh1 → 0 exponentially, it
follows from (35) that

ėy,i(Ta +∆t)
= γey,i(Ta +∆t)+ δ i(Ta +∆t)− δi(Ta +∆t)

−row(A3)ih1(Ta +∆t)
> γey,i(Ta)+ δ i(Ta)− δi(Ta)− row(A3)ih1(Ta)
= ėy,i(Ta) = 0

It implies ey,i(Ta +2∆t)> ey,i(Ta +∆t) = ey,i(Ta), which is in
contradiction with the statement “fort ≥ Ta, ey,i(t)≤ ey,i(Ta)”.
Therefore,ey,i(Ta)≥ εδ ,1 does not hold and theney,i(Ta)< εδ ,1.
Similarly, we can getey,i(Ta)> εδ ,2. Theney,i(Ta)∈ (εδ ,2,εδ ,1)
is proved.

From (34) and the discussion below, it is known thatey,i(t)
will decrease fromey,i(0) to ey,i(Ta) and then converge to the
invariant setΨ, as shown in Fig. 3. From Fig. 3, it is clear
that there exists a finite timeTs such that for 0≤ t ≤ Ts,
ey,i(0) ≤ ey,i(t) ≤ εδ ,1; for t > Ts, εδ ,2 < ey,i(t) < εδ ,1. The
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Fig. 3: The illustration ofTs.

similar conclusion oney,i(t) can be obtained. Therefore, Propo-
sition 2 is proved.

Remark 8: By choosingγ andkδ appropriately, it is possi-
ble to make 0< Ts < TF , namely before the occurrence of the
fault, εδ ,21p ≺ x2− x2 ≺ εδ ,11p andεδ ,21p ≺ x2− x2 ≺ εδ ,11p

can be achieved.
In the following, an estimate of the disturbanced will be

obtained.
Proposition 3: Denote

d̂ = 0.5(d+ d),
d = (D†

2)
+δ − (D†

2)
−δ ,

d = (D†
2)

+δ − (D†
2)

−δ
(39)

whereD†
2 is the pseudo-inverse ofD2, then for Ts < t < TF ,

the disturbance estimation errord̃ = d− d̂ is bounded by

‖d̃‖< δd , 0.5γ(εδ ,2− εδ ,1)‖|D†
2|‖ (40)

where|D†
2| is defined in Notation.

Proof: From Proposition 2 and Fig. 3, it follows that the
trajectory of (35) enters the set

{
εδ ,2 < ey,i < εδ ,1

}
for t > Ts.

Apply the Proposition 1 to (35), and it follows ast → ∞,
ey,i(t)→ (δ i − δi − row(A3)ih1)/(−γ). Hence fort > Ts,

−γεδ ,2 < δ i − δi − row(A3)ih1 <−γεδ ,1 (41)

Similarly, we can get fort > Ts

−γεδ ,2 < δi − δ i + row(A3)ih1 <−γεδ ,1 (42)

Sinceh1 → 0 exponentially, it follows that ast → ∞, (41) and
(42) become

−γεδ ,2 < δ i − δi <−γεδ ,1,−γεδ ,2 < δi − δ i <−γεδ ,1

whose compact form fori = 1, · · · , p is

−γεδ ,21p ≺ δ − δ ≺−γεδ ,11p,−γεδ ,21p ≺ δ − δ ≺−γεδ ,11p
(43)

From Lemma 1 and (43), it follows that

(D†
2)

+(−γεδ ,21p)≺ (D†
2)

+(δ − δ )≺ (D†
2)

+(−γεδ ,11p)

(D†
2)

−(−γεδ ,21p)≺ (D†
2)

−(δ − δ )≺ (D†
2)

−(−γεδ ,11p)

(D†
2)

+(−γεδ ,21p)≺ (D†
2)

+(δ − δ )≺ (D†
2)

+(−γεδ ,11p)

(D†
2)

−(−γεδ ,21p)≺ (D†
2)

−(δ − δ )≺ (D†
2)

−(−γεδ ,11p)
(44)

Consideringd = D†
2δ = (D†

2)
+δ − (D†

2)
−δ , it follows that

d− d = (D†
2)

+δ − (D†
2)

−δ − ((D†
2)

+δ − (D†
2)

−δ )
= (D†

2)
+(δ − δ )+ (D†

2)
−(δ − δ)

(45)

and

d− d = (D†
2)

+δ − (D†
2)

−δ − (D†
2)

+δ +(D†
2)

−δ
= (D†

2)
+(δ − δ)+ (D†

2)
−(δ − δ )

(46)

Combine (44), (45) with (46) to get

|D†
2|(−γεδ ,21p)≺ d − d ≺ |D†

2|(−γεδ ,11p)

|D†
2|(−γεδ ,21p)≺ d − d ≺ |D†

2|(−γεδ ,11p)
(47)

Sinced̃ = 0.5(d−d)−0.5(d−d) which when combined with
(47), it follows that

|D†
2|0.5γ(εδ ,1− εδ ,2)1p ≺ d̃ ≺ |D†

2|0.5γ(εδ ,2− εδ ,1)1p (48)

and then (40) holds.
Remark 9: It is clear from Proposition 2 and Proposition

3 that when choosingεδ ,1 and εδ ,2 small enough,x2 and x2
are tight bounds ofx2; d and d are tight bounds ofd. The
conventional IO for (28) is given by [17]

ẋ2 = Γey +A3x̂1+A4y+B2u+ δ
c

ẋ2 = −Γey +A3x̂1+A4y+B2u+ δc (49)

The conventional IO (49) has the similar structure as the
proposed IO (22), whereas uses the conservative bounds of
δ namelyδ c

andδ c from (29). Sinceδ c ≻ δ andδ c ≺ δ for
t > 0, the bounds of states provided by the conventional IO
(49) are loose. When using the conventional IO (49) for fault
detection, a large fault missing alarm rate may be led.

B. Nominal controller

The nominal controller is designed as

u = Knxes (50)

where

xes = T−1[xT
1,es yT ]T ,x1,es = x̂1−Λ−1D̄1d̂, (51)

x̂1 and d̂ are from (21) and (39) respectively,Kn is a design
parameter given in the following.

Theorem 1: By choosingKn appropriately such that there
exist a s.p.d. matrixPn, 0< εn < 1 and 0< γn ≤ γs making
Ωn < 0, where

Ωn =

[
(A+BKn)

T Pn +Pn(A+BKn)+ (ε2
n +1)In PnD

DT Pn −γ2
n Iq

]

(52)
then the closed-loop system with (50) satisfies‖x‖ ≤ γs‖d‖.

Proof: Substitute (50) into (2) to get the closed-loop
system

ẋ = (A+BKn)x−BKn(x− xes)+Dd (53)

where when there are no sensor faults,y = x2 and then

x− xes = T−1
([

x1

x2

]

−
[

x1,es

y

])

= T−1
[

x̃1

0

]

(54)

where ˜x1 = x1− x1,es. From (27),

x1 = x̂1+ h1−Λ−1D̄1d (55)
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Subtract (51) from (55) to get

x̃1 = h1−Λ−1D̄1d̃ (56)

From h1 → 0 exponentially, it follows

‖x̃1‖ ≤ ‖Λ−1D̄1‖δd (57)

whereδd is from (40).
Substitute (54) and (56) into (53), and it follows

ẋ = (A+BKn)x−BKn1x̃1+Dd (58)

where Kn1 = KnT−1
[

In−p 0
]T

. Take Vn = xT Pnx and its
derivative is

V̇n = xT ((A+BKn)
T Pn +Pn(A+BKn))x−2xT PnBKn1x̃1

+2xT PnDd
≤ xT ((A+BKn)

T Pn +Pn(A+BKn))x+ ε2
n xT x

+2xT PnDd+ x̃T
1 KT

n1BT PnPnBKn1x̃1/ε2
n

where 0 < εn < 1 is a constant. Define Wn =
V̇n + xT x − γ2

n dT d − x̃T
1 KT

n1BT PnPnBKn1x̃1/ε2
n , then

Wn ≤
[

xT dT
]

Ωn
[

xT dT
]T

, where Ωn is from
(52). Since Kn is chosen to make Ωn < 0, then
Wn = V̇n + xT x − γ2

n dT d − x̃T
1 KT

n1BT PnPnBKn1x̃1/ε2
n < 0.

There are two cases:
Case 1 if V̇n ≥ 0, then xT x − γ2

n dT d −
x̃T

1 KT
n1BT PnPnBKn1x̃1/ε2

n < 0, namely xT x < γ2
n dT d +

x̃T
1 KT

n1BT PnPnBKn1x̃1/ε2
n ;

Case 2 if xT x ≥ γ2
n dT d + x̃T

1 KT
n1BT PnPnBKn1x̃1/ε2

n ,
then V̇n < 0, which means ‖x(t)‖ ≤ ‖x(0)‖ and
Ψn =

{
x|xT x < γ2

n dT d+ x̃T
1 KT

n1BT PnPnBKn1x̃1/ε2
n

}
is an

invariant set. And whent → ∞, x(t)→ Ψn.
In summary, fort ≥ 0,

xT x ≤ max
{

x(0)T x(0),γ2
n dT d + x̃T

1 KT
n1BT PnPnBKn1x̃1/ε2

n

}

and whent → ∞, from (57)

xT x < γ2
n dT d+ 1

ε2
n

x̃T
1 KT

n1BT PnPnBKn1x̃1

< γ2
n dT d+

λmax(KT
n1BT PnPnBKn1)

ε2
n

‖x̃1‖2

< γ2
n dT d+

λmax(KT
n1BT PnPnBKn1)

ε2
n

‖Λ−1D̄1‖2δ 2
d

(59)

From (40) and Remark 9, by choosingεδ ,1 and εδ ,2 ap-
propriately, it is possible that there exists aγm such that
λmax(KT

n1BT PnPnBKn1)‖Λ−1D̄1‖2δ 2
d /ε2

n ≤ γ2
mdT d where γ2

n +
γ2

m ≤ γ2
s . Hence‖x‖ ≤ γs‖d‖ is ensured.

Remark 10: Multiply the matrix diag{P−1
n , Iq} to both sides

of Ωn in (52), and define new variableŝPn =P−1
n , K̂n =KnP−1

n ,
then it follows
[

P̂nAT + K̂T
n BT +AP̂n +BK̂n +(ε2

n +1)P̂2
n D

DT −γ2
n Iq

]

< 0

Using the Schur complement [26], it further follows that




P̂nAT + K̂T
n BT +AP̂n +BK̂n D

√

ε2
n +1P̂n

DT −γ2
n Iq 0

√

ε2
n +1P̂n 0 −In



< 0

(60)
Thus, the inequality (52) is transformed into the LMI (60).

Remark 11: The LMI (60) only contains two variables
P̂n and K̂n, which when compared with the LMIs needed

in [9, 10, 25], the computational cost is largely reduced.
Moreover, the feasible condition for the LMI (60) is the
controllability of the pair(A,B). However, when the sensors
measuring the elevation/travel angles are faulty, the couple
(A,Cr) is not detectable, and the LMIs needed in [9, 10, 25]
are infeasible.

C. Fault Detection and Isolation

In this work, the proposed observer (22)-(23) acts not only
as a state estimator for the nominal controller (50) but alsoas
an FDI observer.

From (4), we havex2 = y−Ei fs,i and (20) becomes

ẋ1 = A1x1+A2y+Fi1 fs,i +B1u+ D̄1d (61a)

ẋ2 = A3x̃1+A3x̂1+A4y+Fi2 fs,i +B2u+ D̄2d (61b)

ẏ = A3x̃1+A3x̂1+A4y+Fi2 fs,i +B2u+ D̄2d+Ei ḟs,i

(61c)
whereFi1 =−A2Ei, Fi2 =−A4Ei.
Subtract (21) from (61a) and (22) from (61c) to get

˙̃x1 = A1x̃1+ D̄1d+Fi1 fs,i (62a)

ėy = Γey + δ −∆−Ei ḟs,i

ėy = Γey +∆− δ +Ei ḟs,i
(62b)

where∆ = A3x̃1+ D̄2d+Fi2 fs,i. From the structure ofEi, the
component form of (62b) can be divided into two cases

• Case 1:for j = 1, · · · , p and j 6= i,

ėy, j = γey, j + δ j −∆ j, ėy, j = γey, j +∆ j − δ j (63)

From Proposition 2 and Remark 8, it is known that for
t ∈ (Ts,TF), εδ ,2 < ey, j < εδ ,1 and δ̇ j = 0. For t ≥ TF ,
two scenarios should be considered. In the first scenario,
ėy, j(TF) > 0, as shown in Fig. 4,ey, j(t) will increase; if

ey, j(t)≥ εδ ,1, the adaptive law (23) becomesδ̇ j <0 which
implies thatδ j decreases and so doesėy, j until εδ ,2 <
ey, j < εδ ,1 again. Hence for this scenario,y j ∈ [y

j
,y j]

holds. In the other scenario,ėy, j(TF) < 0, as shown in
Fig. 5, ey, j(t) will decrease; ifey, j(t)≤ εδ ,2, the adaptive

law (23) becomeṡδ j > 0 which implies thatδ j increases
and so doeṡey, j until εδ ,2 < ey, j < εδ ,1 again. Note that
kδ should be chosen appropriately such that

when ėy, j(Tc) = 0,ey, j(Tc)≥ 0 (64)

Hence for this scenario,y j ∈ [y
j
,y j] still holds. In sum-

mary, for Case 1,y j ∈ [y
j
,y j] for t ≥ 0.

• Case 2:for j = i, ėy,i = γey,i + δ i − ∆i − ḟs,i and ėy,i =

γey,i +∆i − δ i + ḟs,i. It is clear that the dynamics oḟey,i

and ėy,i contain ḟs,i. From Remark 1,ḟs,i(TF) = ∞ which
may makeey,i change abruptly and thenyi /∈ [y

i
,yi]. In

this case, althoughδ i and δ i change according to (23),
it still needs a period of time such thatδ i > ∆i + ḟs,i and
δ i < ∆i + ḟs,i to ensureyi ∈ [y

i
,yi].

In summary, the FDI mechanism is

• if for t ≥ 0, yi ∈ [y
i
,yi] for all i = 1, · · · , p, then all sensors

are healthy;
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• if there exists a period of timet ∈ [T d ,T s] whereT s >
T d ≥ TF such thatyi /∈ [y

i
,yi] andy j ∈ [y

j
,y j] for all j =

1, · · · , p and j 6= i, then theith sensor is faulty, and the
fault detection and isolation time isT d .
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Fig. 4: The illustration of Scenario 1 in Case 1.
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Fig. 5: The illustration of Scenario 2 in Case 1.

Remark 12: Different from the existing FDI schemes which
require a set of observers [18], this work utilizes only one
adaptive IO (22) to acquire the occurrence and location of
fault simultaneously, not only reducing the computation cost
but also shortening the fault diagnosis time.

Remark 13: For t ≥ TF , from (63) and the discussion in
Case 1, it is known that whenεδ ,2 < ey, j < εδ ,1 holds again,
δ j andδ j are no longer the tight bounds ofδ j but ∆ j. Hence
the estimate ofd in (39) for should be changed into

d̂ = 0.5(d+ d),

d =

{
(D†

2)
+δ (t)− (D†

2)
−δ (t), 0≤ t < T d

(D†
2)

+δ (Ts)− (D†
2)

−δ (Ts), t ≥ T d ,

d =

{
(D†

2)
+δ (Ts)− (D†

2)
−δ (Ts), 0≤ t < T d

(D†
2)

+δ (Ts)− (D†
2)

−δ (Ts), t ≥ T d

(65)

IV. FAULT TOLERANT CONTROL

From the proposed FDI mechanism, we can determine
the location of sensor fault. In this section, fault tolerant
control (FTC) scheme based on two different fault estimation
(FE) units is constructed to ensure the acceptable system
performance (9).

Introduce the following auxiliary dynamics from (8)

ẋ f = A f x f + y f = A f x f + row(C)ix+ fs,i (66)

Combine (2) with (66) and defineynew = [yT
r xT

f ]
T to get the

following augmented system

ξ̇ = Aaξ +Bau+Fa fs,i +Dad,ynew =Caξ (67)

whereξ =

[
x
x f

]

, Aa =

[
A 0

row(C)i A f

]

, Ba =

[
B
0

]

, Fa =
[

0
1

]

, Da =

[
D
0

]

, Ca =

[
Cr 0
0 1

]

.

Remark 14: For the augmented system (67), it is clear that
rank(CaFa)= rank(Fa) and the pair(Aa,Ca) is observable; only
when the pair(A,Cr) is detectable, the triple(Aa,Fa,Ca) is
minimum phase.

From Remark 14, the judgement condition is proposed:
Condition 1: The couple(A,Cr) is detectable.

According to the condition 1, the FE schemes will be de-
signed respectively for the following cases: Case 1(A,Cr) is
detectable, Case 2(A,Cr) is not detectable.

A. Fault estimation for Case 1

Since rank(CaFa) = rank(Fa) and(Aa,Ca) is observable, the
state transformation similar to those in Section III-A willbe
introduced for the system (67), making

ξ →
[

ξ1

ξ2

]

,Aa →
[

A1 A2

A3 A4

]

,Ba →
[

B1

B2

]

,

Fa →
[

0
F2

]

,Da →
[

D1

D2

]

,Ca → [0 I p] ,
(68)

whereF2 is full of column rank,F2 fs,i , f , A1 ≈ Λ with Λ
from (18).

The observers with the similar structure as (21), (22) and
(23) are proposed

˙̂ξ1 = A1ξ̂1+A2ynew +B1u+D1d̂ (69a)

ξ̇ 2 = ΓaeY +A3ξ̂1+A4ynew +B2u+ f +D2d̂
ξ̇

2
= −ΓaeY +A3ξ̂1+A4ynew +B2u+ f +D2d̂

(69b)

where d̂ is from (65). Γa = diag{γa} and γa < 0 is a user-
defined scalar.eY = ynew − ynew, eY = ynew − y

new
, y

new
= ξ

2
,

ynew = ξ 2. And f = [ f 1, · · · , f p], f = [ f
1
, · · · , f

p
], f

i
, f i, i =

1, · · · , p are determined by the following adaptive laws:

ḟ i =−k f (sgn(eY,i − ε f ,1)+ sgn(eY,i − ε f ,2))
ḟ

i
= k f (sgn(eY,i − ε f ,1)+ sgn(eY,i − ε f ,2))

(70)

where eY,i and eY,i are the i-th component ofeY and eY
respectively, andε f ,1 > ε f ,2 > 0 are user-defined constants
which determine the width ofeY,i and eY,i, and k f > 0 is a
user-defined constant which determines the changing rates of
f i and f

i
. The initial valueξ̂1(0) is arbitrary. Chooseξ 2(0)

and ξ
2
(0) arbitrarily. f

i
(0) = 0 and f i(0) = 0 are the initial

values of f
i

and f i respectively.
Theorem 2: When Condition 1 holds, the FE scheme (69)-

(70) can achievêfs,i ≈ fs,i with f̂s,i = 0.5F
†
2 ( f + f ), F

†
2 is the

pseudo-inverse ofF2. If ε f ,1, ε f ,2 and εδ ,1, εδ ,2 are chosen
small enough, then the fault estimation error is small.

Proof: Define ξ̃1 = ξ1− ξ̂1, then subtract (69a) from (68)
to get

˙̃ξ1 = A1ξ̃1+D1d̃ ≈ Λξ̃1+D1d̃ (71)
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From Proposition 1 (setPe = I ), we have

‖ξ̃1‖ ≤
‖D1‖‖d̃‖

−λ
(72)

By subtracting (69b) from (68), the dynamics ofeY and eY
are obtained as

ėY = ΓaeY + f − f −D2d̃ −A3ξ̃1

ėY = ΓaeY + f − f +D2d̃ +A3ξ̃1
(73)

Similar to the proof of Proposition 3, it follows that

−γaε f ,21p +D2d̃+A3ξ̃1 < f − f <−γaε f ,11p +D2d̃ +A3ξ̃1

−γaε f ,21p −D2d̃−A3ξ̃1 < f − f <−γaε f ,11p −D2d̃ −A3ξ̃1

which imply

γa(ε f ,1− ε f ,2)1p −2D2d̃−2A3ξ̃1 < f − f + f − f
< γa(ε f ,2− ε f ,1)1p −2D2d̃−2A3ξ̃1

(74)

Combine (74) with (40) and (72) to get

‖ f − f + f − f‖
≤ γa

√
p(ε f ,2− ε f ,1)+2‖D2‖‖d̃‖+2‖A3‖‖ξ̃1‖

≤ γa
√

p(ε f ,2− ε f ,1)+2
(

‖D2‖+ ‖A3‖‖D1‖
−λ

)

‖d̃‖
≤ γa

√
p(ε f ,2− ε f ,1)+2

(

‖D2‖+ ‖A3‖‖D1‖
−λ

)

δd

(75)

Define f̃s,i = fs,i − f̂s,i, then from (75)

| f̃s,i| = | fs,i − f̂s,i|
= |0.5F

†
2 ( f + f )−0.5F

†
2 ( f + f )|

= |0.5F
†
2 ( f − f + f − f )|

≤ 0.5‖F †
2‖‖ f − f + f − f‖

≤ 0.5‖F †
2‖γa

√
p(ε f ,2− ε f ,1)

+‖F †
2‖
(

‖D2‖+ ‖A3‖‖D1‖
−λ

)

δd , δ 1
f

(76)

From Remark 9, whenε f ,1, ε f ,2 andεδ ,2, εδ ,1 are chosen small
enough,f̂s,i is a good estimation offs,i.

B. Fault estimation for Case 2

When(A,Cr) is not detectable, the triple(Aa,Fa,Ca) is non-
minimum phase. Hence the FE scheme (69)-(70) cannot be
adopted.

The dynamics of ˜x1 when theith sensor is faulty can be
obtained by subtracting (21) from (61a) as

˙̃x1 = A1x̃1+Fi1 fs,i + D̄1d (77)

which is solved to get

x̃1(t) = h1−Λ−1D̄1d+
∫ t

0 eΛ(t−τ)Fi1 fs,i(τ)dτ (78)

Define x2r, A3r, A4r, B2r, Cr and D̄2r according to Notations,
then from (61b) and (78) we have

ẋ2r = A4ry+B2ru+A3rh1+A3r
∫ t

0 eΛ(t−τ)Fi1 fs,i(τ)dτ
+A3rx̂1+(−A4rEi)

︸ ︷︷ ︸

F2r

fs,i +(D̄2r −A3rΛ−1D̄1)
︸ ︷︷ ︸

D2r

d,

yr = x2r =Crx
(79)

For Case 2, the sensor faultfs,i is estimated as

˙̂fs,i + cs, j f̂s,i = 1
row(F2r) j

(

−λ (νr, j)eq + ˙(νr, j)eq

)

+
λrow(D2r) j
row(F2r) j

d̂
(80)

whereλ and d̂ are from (18) and (65) respectively.

cs, j =−λ +
row(A3r) jFi1

row(F2r) j
(81)

˙(νr, j)eq is the derivative of(νr, j)eq with respect to time,
(νr, j)eq is the equivalent output injection ofνr, j [24]. νr, j =
ρ jsgn(x̃2r, j), ρ j > 0 is a design constant, ˜x2r, j is the jth
component of ˜x2r. x̃2r = x2r − x̂2r with x̂2r from the following
sliding mode observer (SMO)

˙̂x2r = −Γmx̃2r +A3rx̂1+A4ry+B2ru+νr (82)

whereΓm = diag{γm} with γm < 0. νr = [νr,1, · · · ,νr,p−1]
T .

Theorem 3: When Condition 1 does not hold, ifcs, j > 0 for
j = 1,or, · · · ,or, p−1 andεδ ,1, εδ ,2 are chosen small enough,
then the FE scheme (82)-(80) ensuresf̂s,i ≈ fs,i.

Proof: Subtract (82) from (79) to get

˙̃x2r = Γmx̃2r +∆2r −νr (83)

where∆2r = A3rh1+A3r
∫ t

0 eΛ(t−τ)Fi1 fs,i(τ)dτ +F2r fs,i +D2rd.
From the structure ofΓm, the component form of (83) is given
by

˙̃x2r, j = γmx̃2r, j +∆2r, j −νr, j

By choosingρ j appropriately, ˜x2r, j → 0 and ˙̃x2r, j → 0 in finite
time. When ˜x2r, j = 0 and ˙̃x2r, j = 0, from the equivalent output
injection technique [24], it follows that forj = 1, · · · , p− 1,
∆2r, j = (νr, j)eq, which can be further written as

row(A3r) jh1+ row(A3r) j
∫ t

0 eλ (t−τ)Fi1 fs,i(τ)dτ + row(F2r) j fs,i

+row(D2r) jd = (νr, j)eq
(84)

which is a Volterra integral equation (VIE) aboutfs,i.
Multiply e−λ t to both sides of (84) to get

e−λ trow(A3r) jh1+ row(A3r) j
∫ t

0 e−λ τ Fi1 fs,i(τ)dτ
+e−λ trow(F2r) j fs,i + e−λ trow(D2r) jd = e−λ t(νr, j)eq

(85)

which is differentiated once and rearranged to get

row(F2r) j ḟs,i +(row(A3r) jFi1−λ row(F2r) j) fs,i+
row(A3r) jḣ1−λ row(A3r) jh1−λ row(D2r) jd
= ˙(νr, j)eq −λ (νr, j)eq

(86)

From (86), it further follows that forj = 1, · · · , p−1

ḟs,i + cs, j fs,i =
1

row(F2r) j

(

−λ (νr, j)eq + ˙(νr, j)eq

)

+ 1
row(F2r) j

(−row(A3r) jḣ1+λ row(A3r) jh1+λ row(D2r) jd)
(87)

Define f̃s,i = fs,i − f̂s,i and subtract (80) from (87) to get

˙̃fs,i =−cs, j f̃s,i +
1

row(F2r) j
(−row(A3r) j ḣ1+λ row(A3r) jh1

+λ row(D2r) jd̃)
(88)

Sinceh1 → 0 andḣ1 → 0 exponentially, whent → ∞,

˙̃fs,i =−cs, j f̃s,i +
λrow(D2r) j
row(F2r) j

d̃ (89)
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If cs, j > 0 for j = 1,or, · · · ,or, p−1, then according to Propo-
sition 1 and (40),

| f̃s,i| ≤
∣
∣
∣
∣

λ row(D2r) j

cs, jrow(F2r) j

∣
∣
∣
∣
‖d̃‖ ≤

∣
∣
∣
∣

λ row(D2r) j

cs, jrow(F2r) j

∣
∣
∣
∣
δd , δ 2

f (90)

From Remark 9, whenεδ ,1 andεδ ,2 are chosen small enough,
f̂s,i is a good estimate offs,i.

Remark 15: From the proof of Theorem 3, it is known that
cs, j > 0 is important for the convergence of the fault estimation
error. Since(A,C) is observable, from the discussion in Section
III-A, the eigenvaluesλ1 ≈ · · · ≈ λn−p ≈ λ can be arbitrarily
assigned. Hence there must be an appropriateλ such that
cs, j > 0 in (81).

Remark 16: Summarize Theorem 2 with Theorem 3, and it
follows that | f̃s,i| ≤ δ f = max{δ 1

f ,δ 2
f }. If ε f ,1, ε f ,2 and εδ ,1,

εδ ,2 are chosen small enough, then the fault estimation error
is small.

Remark 17: When the sensors measuring elevation and
travel angles are faulty, the detectability with respect tothe
remaining healthy outputs is lost, resulting in established FE-
based sensor FTC methods [9, 10] are not applicable. To
circumvent this problem, a novel FE scheme based on sliding
mode equivalent output injection and VIE is proposed to obtain
the fault estimate.

C. Fault tolerant controller

From Theorem 2 and Theorem 3, the sensor fault estimate
f̂s,i is obtained and then used to develop the fault tolerant
controller as

u = Knx f (91)

where

x f = T−1[xT
1, f ŷ]T , ŷ = y− f̂s, f̂s = Ei f̂s,i,

x1, f = x̂1−Λ−1D̄1d̂+
∫ t
0 eΛ(t−τ)Fi1 f̂s,i(τ)dτ

(92)

Kn is from (52), ˆx1 and d̂ are from (21) and (65) respectively,
f̂s,i is from Theorem 2 when Condition 1 holds, otherwise,
from Theorem 3.

Theorem 4: The proposed fault tolerant controller (91) can
ensure the acceptable performance (9) of the faulty system.

Proof: Denote ˜x1, f = x1−x1, f , and then subtract (92) from
(78) to get

x̃1, f = h1−Λ−1D̄1d̃+
∫ t
0 eΛ(t−τ)Fi1 f̃s,i(τ)dτ (93)

and then from (40)

‖x̃1, f‖ ≤ ‖h1‖+ ‖Λ−1D̄1‖‖d̃‖+
∫ t
0 eλ (t−τ)‖Fi1‖‖ f̃s,i(τ)‖dτ

≤ ‖h1‖+ ‖Λ−1D̄1‖δd +
‖Fi1‖δ f
−λ (1− eλ t)

(94)
Sinceh1 → 0 andeλ t → 0 ast → ∞, (94) becomes

‖x̃1, f ‖ ≤ ‖Λ−1D̄1‖δd +
‖Fi1‖δ f
−λ (95)

Substitute (91) into (2) to get the closed-loop system

ẋ = (A+BKn)x−BKn(x− x f )+Dd (96)

where

x− x f = T−1
([

x1

x2

]

−
[

x1, f

ŷ

])

= T−1
[

x̃1, f

−Ei f̃s,i

]

(97)

Similar to the proof of Theorem 1, it follows that whent → ∞,

xT x < γ2
n dT d+(x− x f )

T KT
n BT PnPnBKn(x− x f )/ε2

n
< γ2

n dT d+λmax(KT
n BT PnPnBKn)‖x− x f‖2/ε2

n
< γ2

n dT d+λmax(KT
n BT PnPnBKn)λmax(T−T T−1)

(‖x̃1, f ‖2+ ‖ f̃s,i‖2)/ε2
n

If ε f ,1, ε f ,2 and εδ ,1, εδ ,2 are chosen small enough,
it is possible that there exists aγm such that
λmax(KT

n BT PnPnBKn)λmax(T−T T−1)(‖x̃1, f ‖2 + ‖ f̃s,i‖2)/ε2
n ≤

γ2
mdT d whereγ2

n + γ2
m ≤ γ2

s . Hence whent → ∞, ‖x‖ ≤ γs‖d‖
holds.

Remark 18: The proposed FTC scheme includes one Con-
dition 1 and two FE units (Theorem 2 and Theorem 3), and
moreover only uses the attitude angles. To the best knowledge
of authors, most works on FTC of 3-DOF helicopter assumed
that both attitude and velocity are available [3, 5].

V. SIMULATIONS AND EXPERIMENTS

Here, we verify the proposed scheme on the 3-DOF lab-
oratory helicopter by both simulations and experiments. The
helicopter setup is manufactured by Quanser Consulting Inc.
[19]. We consider the following two cases: Case 1, the 2nd
sensor has a faultfs,2; Case 2, the 3rd sensor has a faultfs,3.
The sensor faultfs,i, i= 2,3 has the structure of (5) withα = 1,
TF = 20 sec,f ∗s,i = 0.05.

A. Results of fault diagnosis

Fault diagnosis results for Case 1 and Case 2 with the
proposed scheme in Section III-C are shown in Fig. 6 and
Fig. 7, respectively. From Fig. 6, it can be seen thaty1 andy3

are always within their upper and lower bounds (moreover, the
bounds are very tight), and however,y2 is beyond its bounds
at t ∈ [20,20.19]sec. Hence it is concluded that the sensor
measuringy2 has a fault at about 20sec for Case 1. From
Fig. 7, it can be seen thaty1 and y2 are always within their
upper and lower bounds, and however,y3 is beyond its bounds
at t ∈ [20,20.18]sec. Hence, it is concluded that the sensor
measuringy3 has a fault about 20sec for Case 2.

To better show the fault diagnosis performances of the
proposed IO (22), a comparison with the conventional IO (49)
is conducted here. The outputs (y) and their bounds (y = x2

andy = x2) from the conventional IO (49) are shown in Fig. 8
and Fig. 9 for Case 1 and Case 2 respectively. It is clear that
for two cases the outputs are always within their bounds, and
moreover, the distances between the outputs and their bounds
are large, resulting in the fault not being detected.

B. Results of fault estimation and fault tolerant control

It is noted that Case 1 satisfies the proposed judgement
condition 1, hence the FE scheme (69)-(70) in Theorem 2 will
be utilized; however, Case 2 does not satisfy the proposed
judgement condition 1, therefore the FE scheme (82)-(80)
in Theorem 3 will be adopted. The fault and its estimate
are shown in Fig. 10 and Fig. 11 for Case 1 and Case 2
respectively. It is clear that the proposed two FE schemes can
both achieve good estimation performance. It is noted that for
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Fig. 9: Outputsyi, i = 1,2,3 and their upper and lower bounds for Case 2 with the conventional IO.

Case 2, the existing FE methods [9, 10] cannot be applicable
since the matrix equalities/inequalities are not feasible.

Using the fault estimate, the fault tolerant controller (91) is
constructed and applied. The control voltagesV f andVb, and
desired and actual attitude angles for two cases are presented
in Fig. 10 and Fig. 11 respectively. Apparently, the proposed
FTC scheme (91) can ensure good attitude angle tracking
performance.

VI. CONCLUSION

In this paper, an output feedback active FTC for a 3-DOF
helicopter with sensor faults has been developed. We have
designed an adaptive IO, which acts not only as state and
disturbance estimator but also as FDI observer for the fault
location. Next, according to the fault location, a judgment
condition is proposed and then FTC based on two different
FE schemes is established to ensure the acceptable tracking
performance. The proposed disturbance estimation scheme is
only suitable for the constant disturbance, and in the future,
studies on the estimation of varying disturbance will be
conducted.
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