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Abstract. We propose a method based on combining a constructive and a bounding
heuristic to solve the vertex clique covering problem (CCP), where the aim is to
partition the vertices of a graph into the smallest number of classes, which induce
cliques. Searching for the solution to CCP is highly motivated by analysis of social
and other real-world networks, applications in graph mining, as well as by the fact
that CCP is one of the classical NP-hard problems. Combining the construction and
the bounding heuristic helped us not only to find high-quality clique coverings but
also to determine that in the domain of real-world networks, many of the obtained
solutions are optimal, while the rest of them are near-optimal. In addition, the
method has a polynomial time complexity and shows much promise for its practical
use. Experimental results are presented for a fairly representative benchmark of
real-world data. Our test graphs include extracts of web-based social networks,
including some very large ones, several well-known graphs from network science,
as well as coappearance networks of literary works’ characters from the DIMACS
graph coloring benchmark. We also present results for synthetic pseudorandom
graphs structured according to the Erdős-Rényi model and Leighton’s model.
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1 INTRODUCTION

Currently, one of the most popular subfields of computer science is the network
analysis. For the purpose of this paper, a network will be formalized simply as an
undirected graph G = [V,E]. Networks with non-trivial structure are often referred
to as complex networks [3, 29]. Complex networks can be found in a diverse spec-
trum of disciplines and include social networks, research citation networks, networks
in bioinformatics or computer networks. Language networks are also of considerable
interest [25]. With the rise of popularity of web-based social networks such as Face-
book, Google+ or LinkedIn, this interdisciplinary topic has gained more attention
also in public. Software tools are designed to support investigation and analysis of
complex networks [10].

In addition to network analysis, graph mining is a very closely related field [1].
Although this field shares many similarities with social network analysis, probably
the most significant difference is in the size of the studied graphs [7]. While social
network analysis is focused on detailed study of small networks, in graph mining
the attention is aimed to very large graphs, including computational efficiency of
the methods, which are used. From this point of view, this paper could probably
be assigned to graph mining, although it shares many features with social network
analysis. However, first and foremost, the research presented here is based on the
principles of heuristic computing since the methods we use are stochastic heuristic
algorithms. We are dealing with a highly multidisciplinary topic.

Many complex networks are studied with regard to their community structure
and clustering properties [17]. This basically means that there are subgraphs of
these networks with relatively many edges, which are referred to as communities
or clusters. Other studied aspects include the process of evolution and the degree
distribution of these networks [30]. Community detection is sometimes also called
graph clustering [31]. State-of-the-art indicates that graph clustering is a set of
similar optimization problems rather than a single concept. Therefore, it is hard to
formalize, what the objective of community detection is. In addition, some measures
of quality in graph clustering are proven to lead to NP-complete problems [33].

One of the ways, how to formalize this concept, is to perceive community as
a clique, i.e. a collection of vertices, where each pair is adjacent. On the surface,
this might seem like a strong restriction, however, in a strict interpretation of the
word, a community can be seen as a group, where all members know each other.
The problem of decomposition of the vertices of a graph into groups, which induces
as few cliques as possible, is called the (vertex) clique covering problem (CCP) [8].
CCP is interesting not only for its relation to community structure but also for
the fact that it belongs to the NP-hard problems, since its decision variant is one
of Karp’s 21 classical NP-complete problems [19]. We note that a related but not
equivalent problem is the edge clique covering problem, for which a similar and
more theoretical study in the domain of complex networks is available [3]. Other
graph covering problems are also studied, e.g. generalizations of the vertex cover
problem [24].
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In this paper, we propose a heuristic method for CCP based on combining a con-
structive and a bounding heuristic. The constructive heuristic is an iterated greedy
(IG) clique covering algorithm. IG does not generally guarantee the quality of the
obtained solution. It is closely related to evolutionary computation methodologies,
which have a large spectrum of interesting applications in data analysis and predic-
tion [15, 34]. Since CCP is NP-hard, even determining whether there is a solution
with k − 1 cliques if we know that there is one with k cliques, is also a computa-
tionally hard problem. Therefore, it is practically interesting to bound the clique
covering number from below. Thus, we designed an approach to find a suitable lower
bound. The theoretical background for the lower bound is developed more broadly,
since two lower bounds can be combined. Consequently, we provide evidence that
only one of these bounds seems to be interesting for real-world networks. This lower
bound is based on the size of the maximum independent set for which a simple
randomized local search (RLS) heuristic is proposed.

The experimental results are presented for a set networks which carry real-world
information. Some of these graphs were introduced in our research and some of them
are taken from other sources. The instances include extracts of web-based social
networks with up to 2×104 vertices, several well-known graphs from network science
and coappearance networks of classical literary works’ characters from the DIMACS
graph coloring benchmark. For these instances, in 13 out of 17 cases, optimality of
the constructed clique covering was proven by the lower bound. Also, in the other
4 cases, the interval for the optimum was significantly reduced, i.e. near-optimal
solutions were found. In addition, the running time of the proposed approach looks
promising for its practical use. In contrast to this result, we determined the lower
and upper bounds for the synthetic pseudorandom graphs following the Erdős-Rényi
model and Leighton’s model which exhibit much larger difference between the lower
and upper bound. As a result of these observations, we conclude that the proposed
method shows much promise in handling clique covering in complex networks and
offers an interesting tool for solving this NP-hard problem in practical circumstances.

Regarding the experimental evaluation, we also note that the standard approach
in the field of heuristics is that results of an algorithm are compared to other results
from the literature. Generally, if the algorithm finds better suboptimal solutions, it
is considered to offer an improvement in the state-of-the-art algorithms. However,
the case of this paper is different, since we aim to provide a direct numerical proof
of optimality. Therefore, in the cases, where we prove optimality, it is not relevant
to compare quality.

Additionally, to the best of our knowledge, we do not know about a research on
standardized heuristics for CCP. Combining other algorithms for the construction
and the lower bound might be relevant, however, our approach provides solid results
in practically interesting conditions. A further improvement seems to be possible,
but mainly for synthetic data as we will give reasons in Section 4. The heuris-
tic might also be compared to an exact algorithm, regarding its runtime, however,
such an algorithm would have an exponential runtime, while our heuristic works
in polynomial time. Thus, the empirical comparison to other methods is absent in
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this paper, since it would probably not provide even slightly more valuable informa-
tion.

The paper is structured as follows. In Section 2, we provide an overview of
the problem and the related work. In Section 3, we specify the basic idea of our
approach and describe both the IG heuristic for CCP which is used to construct the
suboptimal clique covering, and the heuristic for maximum independent set which is
used to find a lower bound. In Section 4, we evaluate the approach on the selected
data sets, including real-world instances and pseudorandom instances, analyze the
obtained results and provide a short discussion. Finally, in Section 5, we present
conclusions and summary of this work.

2 BACKGROUND AND RELATED WORK

Let G = [V,E] be an undirected graph. The density of G is defined as the ratio
of the number of edges of the graph to the number of all pairs of vertices, i.e.
d(G) = 2|E|/(|V |(|V | − 1)). If d(G) = 1, then G is called complete graph or clique
(the term clique is more often used to refer to a subgraph of another graph). If
d(G) = 0, then G is called independent set.

The (vertex) clique covering problem (CCP) is defined as the problem of search-
ing for a partitioning of V into classes V1, V2, . . . , Vk such that:

• each vertex is in exactly one class, i.e. ∪ki=1Vi = V and ∀i, j = 1, 2, . . . , k such
that i 6= j it holds that Vi ∩ Vj = ∅ and

• each class induces a clique, i.e. ∀i = 1, 2, . . . , k, d(G(Vi)) = 1.

Searching for the minimum k, for which this is possible, is an NP-hard prob-
lem [19]. This minimum k will be referred to as the clique covering number and
denoted by ϑ(G). We also note that CCP is in a complementary relationship with
the graph coloring, thus, clique covering of G represents a graph coloring of G and
vice versa. However, the practical requirements on heuristics for these problems are
different, especially due to sparseness and structure of graphs [8]. The minimum
number of colors needed to color a graph is called chromatic number and is denoted
by χ(G).

Similarly, the problems of searching for the maximum independent set and max-
imum clique are also NP-hard [19]. The size of maximum independent set will be
denoted by α(G) and the size of maximum clique will be denoted by ω(G).

At this point, let us briefly review the heuristics, which are currently available
for estimation of ϑ(G) and α(G). For clique covering, classical graph coloring algo-
rithms, such as the Brélaz’s heuristic [5], are relatively successful and scalable. The
greedy coloring can be extended to iterated greedy heuristics [9]. These ideas were
successfully adapted to CCP, showing that iterated greedy (IG) clique covering is
propitious for its scalability and solid quality of results [8]. In this paper, we also ap-
ply IG to construct the clique covering. Other related algorithms include especially
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a very large spectrum of k-fixed local search and evolutionary algorithms, where the
number of colors is set to a constant as a part of the problem instance [14].

For the maximum indepedent set, the most popular heuristics include the classi-
cal GRASP heuristic [12] or local search heuristics based on swaps of single vertices
with pairs or triplets [2].

Last but not least, there is a large spectrum of application areas, for which the
construction of near-optimal clique covering can be helpful. These areas include
clique detection in the social network analysis [29] or protein interaction networks
in bioinformatics [16]. In operations research, the most interesting applications are
tied to the closely related graph coloring problem and include frequency assignment
in mobile radio networks [32]. Another popular and important field of interest is
found in the detection of clusters on the World Wide Web [13, 23].

3 SPECIFICATION OF OUR APPROACH

The basic idea of our heuristic is very simple, but we will shortly demonstrate
that it works well in practically interesting circumstances. We begin with a more
general idea and then simplify it so that it will better fit the practical purposes
of our approach. In Lemma 1, we have first proved bounds on the clique cover-
ing number ϑ(G), in a similar way to the bounds which are used in graph color-
ing.

Lemma 1. Let G be an undirected graph with minimum degree δmin(G), clique
covering number ϑ(G), maximum independent set size α(G) and maximum clique
size ω(G). Then, ϑ(G) is bounded in the following way:

max

{
α(G),

|V |
ω(G)

}
≤ ϑ(G) ≤ |V | − δmin(G). (1)

Proof. We first prove that max
{
α(G), |V |

ω(G)

}
≤ ϑ(G). The property that α(G) ≤

ϑ(G) is implied by the fact that each vertex of an independent set needs its own

clique to be covered. The second inequality that |V |
ω(G)

≤ ϑ(G) can be proven by

an equivalent bound in graph coloring, since ϑ(G) = χ(G). In graph coloring, it is

well-known that |V |
α(G)
≤ χ(G) [4, 21], which yields |V |

ω(G)
≤ ϑ(G). By substituting G

with G, we obtain the desired bound.
The upper bound can be obtained similarly by considering the performance of

greedy graph coloring algorithm [35]. It is known that greedy graph coloring uses at
most ∆(G) + 1 colors, where ∆(G) is the maximum degree of a vertex in G [11, 35].
Therefore, χ(G) ≤ ∆(G) + 1, which implies that ϑ(G) ≤ (|V | − 1− δmin(G)) + 1 =
|V | − δmin(G). By substituting G with G, we prove the upper bound. �

This result has to be slightly refined for practical use, since determining α(G)
and ω(G) are both NP-hard problems. The upper bound of |V | − δmin(G) can be
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useful for graphs with high value of δmin(G). However, δmin(G) can generally be
very low for real-world networks. Thus, we can simply substitute the upper bound
by result of a constructive algorithm.

For the lower bound, we have to consider that in practice, α(G) and ω(G)
should be suitably bounded. The value α(G) requires a lower bound and ω(G)

requires an upper bound so that the estimate will not exceed max
{
α(G), |V |

ω(G)

}
.

While a lower bound αL(G) ≤ α(G) can be estimated constructively, the upper
bound ωU(G) ≥ ω(G) requires a non-constructive approach. Some methods are
known for computing such a bound [6], however, study of their suitability in this
context is outside of the aim of this paper. Nevertheless, we will see that for many
real-world networks, αL(G) is a tighter bound than |V |/ωU(G). Thus, we simplify
Lemma 1 to the following formula:

αL(G) ≤ ϑ(G) ≤ ϑU(G), (2)

where ϑU(G) is the number of cliques used to cover G by a constructive algorithm.
Thus, the basic concept of our heuristic is as follows. First, we find a clique cover-
ing using the iterated greedy (IG) heuristic for CCP, which is further specified in
Section 3.1. The number of cliques, which were used by IG, will be used also as the
upper bound ϑU(G). In the next step, we find a lower bound ϑL(G) = αL(G) for
ϑ(G) using a randomized local search (RLS) algorithm for maximum independent
set, which will be introduced in Section 3.2. The output of the method is the interval
[ϑL(G), ϑU(G)] for the value of ϑ(G) and a suboptimal (or possibly optimal) clique
covering with ϑU(G) cliques.

3.1 Constructing the Suboptimal Clique Covering Using Iterated Greedy

In Algorithm 1, we give a short pseudocode of IG algorithm for CCP. Since this
algorithm is not new, we only shortly summarize, how it works. For more detailed
information on this method, the reader may refer to [8].

The IG Algorithm for CCP

Input: graph G = [V,E]
Output: clique covering S of G

1 P = random permutation(1, 2, . . . , |V |)
2 while stopping criterion is not met
3 [V1, V2, . . . , Vk] = greedy clique covering(G,P )
4 if ϑ∗(G) is known and k = ϑ∗(G)
5 return S = {V1, V2, . . . , Vk}
6 P = [V1, V2, . . . , Vk]
7 P = random permutation(V1, V2, . . . , Vk)
8 return S = {V1, V2, . . . , Vk}

Algorithm 1: The IG Algorithm for CCP [8]
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In IG, greedy clique covering (GCC) is used as a subroutine in the step 3, which
transforms a permutation of vertices to a clique covering. GCC works in the way
that it takes vertices in the order determined by permutation P and labels them so
that the equally labeled vertices form the cliques. During the construction, GCC
always puts the current vertex into the clique with the lowest index (label), for which
it is adjacent to all of the clique’s vertices. If there is no such label, a new one is
used. The complexity of GCC is O(|E|) [8]. After the clique covering is constructed,
the vertices from the same cliques, as identified by GCC, are put together to blocks
in permutation in the step 6. In the step 7, the blocks are rearranged in a random
order and GCC is used again. This is repeated, until a stopping criterion is met. We
note that although IG reminds one of random optimization, the number of cliques is
guaranteed to be non-increasing because of the fact that the blocks of the solution
are preserved. Therefore, this process can possibly decrease the number of cliques,
which are used, and behaves rather like a local search algorithm.

3.2 Estimating the Lower Bound Using Randomized Local Search
for Maximum Independent Set

For the lower bound, we use a similar heuristic approach to estimate the size of
the largest independent set. The pseudocode is given in Algorithm 2. In this
heuristic, we also have a greedy algorithm, which maps a permutation of vertices to
an independent set in the following way. Suppose that we have a Boolean function
a : V → {0, 1}, such that a(v) = 1 if and only if v can be added to the constructed
independent set, i.e. it is not adjacent to any of its vertices. Otherwise, a(v) = 0.

We begin with an empty independent set and we put a(v) = 1 for each v ∈ V .
Then, we process the vertices in order, which is given by the input permutation. If
a(v) = 1, we add v to the independent set. Consequently, we set a(w) = 0 for all
w such that {v, w} ∈ E. We proceed with the next vertex, until all vertices are
processed this way. This greedy procedure is performed in the step 3.

To improve the initial permutation and the independent set, we use a simple
jump operator on a uniformly randomly chosen vertex, putting it to the first position
in the permutation. This is done in the steps 6-7. The other vertices are then shifted
right. The resulting permutation is used again to obtain an independent set. If the
new independent set is at least as large as the current one, we accept the new
permutation. We continue, until no improvement is obtained in a high number of
iterations. The resulting algorithm is called permutation-based randomized local
search with 1-neighborhood (RLS1

p) and is well-studied in evolutionary computation
theory [27]. We will give more detailed remarks on the stopping criteria both for IG
and RLS1

p in the section on the experimental results.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental evaluation of our approach. Firstly, we
introduce the instances, in which we evaluated our heuristic. Secondly, we provide
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RLS1
p Algorithm for the Maximum Independent Set Size

Input: graph G = [V,E]
Output: the size α(G) of the maximum independent set

1 P = random permutation(1, 2, . . . , |V |), P ∗ = P , k∗ = 1
2 while stopping criterion is not met
3 k = |greedy independent set(G,P )|
4 if k ≥ k∗
5 k∗ = k, P ∗ = P
6 j = uniformly random(2, |V |)
7 P = jump(j, 1, P ∗)
8 return α(G) = k∗

Algorithm 2: RLS1
p Algorithm for the Maximum Independent Set Size

detailed computational results of the approach on real-world networks. Last but not
least, we compare the results obtained on real-world networks to those obtained on
synthetic pseudorandom graphs. Probably the most important part is the discussion
on the relation between the structure of the graph and the ability of the heuristic to
obtain the optimal result and prove its optimality, or at least, to provide a narrow
interval for ϑ(G).

4.1 Description of Test Instances

We divided the test instances into two large groups: complex networks, which will
be studied more carefully, and synthetic pseudorandom graphs, which are studied
to confront the results on real-world networks1.

The complex networks are further divided into three categories: extracts of
web-based social networks, several instances used in network science and finally,
coappearance networks of characters from several works of classical literature, which
are a part of DIMACS graph coloring benchmark [18].

The extracts of web-based social networks were obtained using a web crawler
based on breadth-first search in the case of Social network I. These instances have
from 500 up to 20 000 vertices. The extract of Social network II is an immediate
neighborhood of a single user.

The instances from network science were taken from various sources. Network
adjnoun denotes word adjacencies of nouns and adjectives in the novel David Cop-
perfield [28]. Network netscience is a collaboration network for both theoretical
and experimental studies in the field of network science [28]. Instance zachary is
a social network of friendships in a karate club at a university [36]. Network football
describes football games in a season of an American college football league [17].
Network lesmis is a coappearance network for the characters of Les Miserables [20].

1 All these instances are publicly available or a link to their direct source is provided
at: http://www.fiit.stuba.sk/~chalupa/benchmarks/ccp. All of the instances are
available in COL or GML format. In the provided files, the social networks are anonymized.
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Finally, network as − 22july06 is a relatively large Internet snapshot on the level of
autonomous systems, made by M. Newman2.

In addition to network lesmis , the DIMACS graphs of coappearances also come
from the Knuth’s Stanford GraphBase [20]. These include coappearance networks
for classical literary works’ characters, including Anna Karenina, David Copperfield,
Huckleberry Finn, Iliad and Odyssey and Jean Valjean.

The synthetic pseudorandom graphs include uniform random graphs, generated
according to the Erdős-Rényi model, which have from 1 000 up to 20 000 vertices and
density 0.1 or 0.01 (in the case of the largest graph). These graphs are generated
in the way that we begin with a set of isolated vertices and put an edge between
each pair indepedently with probability p, which is equal to the desired density
of the graph. The Leighton graphs, on the other hand, contain embedded cliques
of predefined sizes, which are randomly connected and aim to model typical large
scheduling problems [22]. Leighton graphs are also a standard part of the DIMACS
graph coloring benchmark [18].

4.2 Computational Results of the Approach

At this point, we present the computational results of our approach on the 17 com-
plex network instances, and shortly discuss the optimality and efficiency issue.
All experiments were conducted on a standard machine with Intel Core i5 CPU
@ 3.10 GHz and 4 GB RAM. All experiments were confirmed in 30 independent runs.

In both the IG heuristic for the construction and the RLS1
p heuristic for the

lower bound, we used stopping criteria based on the number of iterations without
improvement.

In the IG for the construction of the clique covering, the previous empirical and
analytical evidence suggests that the successful moves of the heuristic are likely to
occur when a particular block comes first in the permutation [8]. The probability of
putting a particular block first in the random move is 1/k, where k is the current
number of cliques in the solution. With this in mind, we consider the probability
that in ck moves, for some constant c > 1, this particular block was not chosen
to be first. This probability is (1 − 1/k)ck ≈ e−c. For c = 5, this probability
is only approximately 0.7%. Therefore, we stop whenever 5k iterations without
improvement occur.

In the lower bound computation, based on RLS1
p for the maximum independent

set, the stopping criterion is similar. We consider the probability that a particular
vertex will not be put first in the permutation in c|V | steps, where c > 1 is again
a constant. This probability is (1−1/|V |)c|V | ≈ e−c, thus, we stop the process when
c|V | iterations without improvement occur.

We note that nonlinearities in the waiting time for improvement can occur both
in IG and RLS1

p, especially in very hard instances. However, since their source

2 This instance was not previously published in a research paper. The Internet snapshot
is published on this site: http://www-personal.umich.edu/~mejn/netdata/.
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is closely related to specific properties of the instances and we want to keep the
heuristic simple, we rather use the linear stopping criteria.

Source of G File Name ϑ∗ Succ. Iter. CPU

Web-based social network extracts [8]

Social network I. soc500 ϑ ≤ 377 30/30 1 888 < 1 s
|V | = 500, |E| = 924 ϑ ≥ 377 30/30 3 764 < 1 s

Social network I. soc1000 ϑ ≤ 759 30/30 3 801 1 s
|V | = 1 000, |E| = 1 876 ϑ ≥ 759 30/30 7 960 < 1 s

Social network I. soc2000 ϑ ≤ 1 471 30/30 7 372 4 s
|V | = 2 000, |E| = 4 124 ϑ ≥ 1 470 30/30 17 430 < 1 s

Social network I. soc10000 ϑ ≤ 6 618 30/30 33 276 89 s
|V | = 10 000, |E| = 28 675 ϑ ≥ 6 618 17/30 124 120 31 s

Social network I. soc20000 ϑ ≤ 12 764 30/30 64 651 366 s
|V | = 20 000, |E| = 63 245 ϑ ≥ 12 764 25/30 274 529 147 s

Social network II. soc52 ϑ ≤ 15 30/30 78 < 1 s
|V | = 52, |E| = 822 ϑ ≥ 15 30/30 508 < 1 s

Network science instances

Adjective-noun adjacencies [28] adjnoun ϑ ≤ 55 30/30 364 < 1 s
|V | = 112, |E| = 425 ϑ ≥ 53 30/30 1 145 < 1 s

Network science collaborations [28] netscience ϑ ≤ 630 30/30 3 453 1 s
|V | = 1 589, |E| = 2 742 ϑ ≥ 630 30/30 11 874 < 1 s

Les Miserables network [20] lesmis ϑ ≤ 35 30/30 176 < 1 s
|V | = 77, |E| = 254 ϑ ≥ 35 30/30 546 < 1 s

Zachary Karate Club [36] zachary ϑ ≤ 20 30/30 101 < 1 s
|V | = 34, |E| = 78 ϑ ≥ 20 30/30 232 < 1 s

American College Football [17] football ϑ ≤ 22 22/30 118 < 1 s
|V | = 115, |E| = 616 ϑ ≥ 21 30/30 1 215 < 1 s

Snapshot of the Internet as− 22july06 ϑ ≤ 19 661 30/30 98 312 556 s
|V | = 22 963, |E| = 48 436 ϑ ≥ 19 660 26/30 192 136 128 s

Characters’ coappearance networks from DIMACS coloring instances [18]

Anna Karenina anna ϑ ≤ 80 30/30 402 < 1 s
|V | = 138, |E| = 986 ϑ ≥ 80 30/30 1 022 < 1 s

David Copperfield david ϑ ≥ 36 30/30 182 < 1 s
|V | = 87, |E| = 812 ϑ ≤ 36 30/30 715 < 1 s

Huckleberry Finn huck ϑ ≤ 27 30/30 136 < 1 s
|V | = 74, |E| = 602 ϑ ≥ 27 30/30 516 < 1 s

Iliad and Odyssey homer ϑ ≤ 341 30/30 1 711 < 1 s
|V | = 561, |E| = 3 258 ϑ ≥ 341 30/30 4 219 < 1 s

Jean Valjean jean ϑ ≤ 38 30/30 192 < 1 s
|V | = 80, |E| = 508 ϑ ≥ 38 30/30 574 < 1 s

Table 1. Detailed computational results of our approach on 17 complex network instances

In Table 1 we present the results of our approach on the 17 selected complex
network instances. The first two columns contain the source of the graph, its size
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and the file name. The next columns contain the obtained lower/upper bounds, the
success rate, the average number of iterations of IG or RLS1

p and the average CPU
time.

On Social network I, in all cases but soc2000, the heuristic was able to find the
optimal solution to the problem and numerically prove it. The really good news
here is that we do not encounter a change in the optimality issue as |V | grows. It
is intriguing that soc2000 turned out to be the hardest instance (we note that the
smaller graphs here are not necessarily subgraphs of the larger ones, so this might
be possible). The values 1 470 and 1 471 are both achieved with high success rate,
which indicates that this is not due to the randomness of the algorithms and is most
probably related to structural properties of the instance. Additionally, the growth
of the CPU time also indicates that the approach is practically interesting for its
scalability. On Social network II, the result is practically comparable to the results
on Social network I.

The results on the network science data and the DIMACS graphs also illustrate
the qualities of the algorithm. Although most of these graphs are generally smaller
than the social network instances, we use them to test our approach also on data,
which is used in other literature. For all instances, our approach obtains a near-
optimal solution very quickly. The only exception is the large Internet snapshot
as − 22july06 . For netscience, lesmis and zachary , we proved the optimality, while
for the other three instances, we obtained a very narrow interval and a very solid
suboptimal solution. We note that football and adjnoun seem to be intriguing,
regarding their degree distribution.

Nevertheless, even in the 4 cases, where we were not able to prove the optimal-
ity, the interval for the optimum turned out to be quite narrow. In addition, the
heuristic with the stopping criteria, which we suggested above, has a relatively good
computational complexity. Formally, the best obtainable bound is O(|V |2|E|), but
from the number of iterations we can see that it approximately behaves rather like
c|V ||E|, where c is some small constant. We also point out that although both the
greedy algorithms for CCP and the maximum independent set have O(|E|) com-
plexity, the complexity of the greedy algorithm for CCP is influenced by a higher
constant factor. This is why the estimation of the upper bound takes more time,
although the number of iterations is smaller than in the estimation of the lower
bound. Furthermore, the space complexity of the approach is O(|V |). These prop-
erties of the IG and RLS1

p heuristics make our approach very interesting for a good
tradeoff between quality of the results and scalability for very large graphs.

4.3 Summary, Interpretation and Conceptual Comparison of the Results

Table 2 shows a summary of the previously presented results with addition of the
value |V |

ϑU (G)
, which is the average size of a clique in the obtained solution. In Social

network I, this value indicates that there are many vertices, which were isolated,
however, there actually are also relatively large cliques. Interestingly, the average
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size of the clique seems to grow. This suggests that, possibly, when a vertex comes
to a social network, it not only tends to connect to vertices with a higher degree but
also might have a tendency to join larger cliques. For the other instances we have
various average clique sizes ranging from 1.17 to 5.23.

Source of G File Name ϑL(G) ϑU (G) |V |
ϑU (G)

Web-based social network extracts [8]

Social network I. soc500 377 377 1.33

Social network I. soc1000 759 759 1.32

Social network I. soc2000 1 470 1 471 1.36

Social network I. soc10000 6 618 6 618 1.51

Social network I. soc20000 12 764 12 764 1.57

Social network II. soc52 15 15 3.47

Network science instances

Adjective-noun adjacencies [28] adjnoun 53 55 2.04

Network science collaborations [28] netscience 690 690 2.30

Les Miserables network [20] lesmis 35 35 2.20

Zachary Karate Club [36] zachary 20 20 1.70

American College Football [17] football 21 22 5.23

Snapshot of the Internet as − 22july06 19 660 19 661 1.17

Characters’ coappearance networks from DIMACS coloring instances [18]

Anna Karenina anna 80 80 1.73

David Copperfield david 36 36 2.42

Huckleberry Finn huck 27 27 2.74

Iliad and Odyssey homer 341 341 1.65

Jean Valjean jean 38 38 2.11

Table 2. Summary of the upper and lower bounds for ϑ obtained by our approach on
complex network instances

Table 3 shows results of these experiments for the set of Leighton graphs. First
and foremost, we can see the larger difference in the bounds. Except for le450 25a,
no solution was proven to be optimal. The size of the interval [ϑL(G), ϑU(G)] seems
to vary according to the parameters of the Leighton graph. In addition, the average
clique sizes are also much larger than in the real-world networks, ranging from 4.95
to 8.82. We note that most of these values are for suboptimal solutions, further
improvement would make the cliques even larger.

For Erdős-Rényi graphs, we have a different situation regarding the lower bound.
Both real-world networks and Leighton graphs are prone to contain large inde-
pendent sets. In fact, we obtained that max{α(G), |V |/ω(G)} = α(G) for all of
the previous instances. In Erdős-Rényi uniform random graphs, both their max-
imum independent sets and maximum cliques are of size Θ(log |V |) almost surely
[26], i.e. for large values of |V | it holds that max{α(G), |V |/ω(G)} = |V |/ω(G).
There is a closed formula based on this property, which can be applied to find a
lower bound, since the chromatic number of an Erdős-Rényi graph satisifes χ(G) ≥
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Source of G File Name ϑL(G) ϑU (G) |V |
ϑU (G)

Leighton graphs from DIMACS coloring instances [18]

Leighton graph (15-colorable) le450 15a 75 80 5.63

Leighton graph (15-colorable) le450 15b 78 82 5.49

Leighton graph (15-colorable) le450 15c 41 58 7.76

Leighton graph (15-colorable) le450 15d 41 58 7.76

Leighton graph (25-colorable) le450 25a 91 91 4.95

Leighton graph (25-colorable) le450 25b 78 80 5.63

Leighton graph (25-colorable) le450 25c 47 54 8.33

Leighton graph (25-colorable) le450 25d 43 51 8.82

Table 3. Summary of the upper and lower bounds for ϑ obtained by our approach on
synthetic graphs following the Leighton’s model

|V | / d2 logd |V | − logd logd |V |+ 2 logd(e/2) + 1e almost surely, where d = 1/(1− p)
for probability of edge generation p [4]. It is straightforward to adapt this to ϑ(G).
By putting d = 1/p, we will instead calculate a lower bound for χ(G), which is ob-
viously equivalent to ϑ(G). Hence, for Erdős-Rényi graphs, we obtain the following
lower bound:

ϑ(G) ≥ |V |/d2 log1/p |V | − log1/p log1/p |V |+ 2 log1/p(e/2) + 1e. (3)

The obtained values are presented in Table 4, along with the results of the IG
algorithm for the construction. IG was also used with a different stopping criterion,
which was simply that the search was stopped after 104 iterations. This led to better
results than the stopping criterion, which we used for other graphs. Despite this
fact, the interval [ϑL(G), ϑU(G)] here turned out to be quite large. This indicates
that solving CCP in real-world networks is a much easier problem than solving it in
uniform random graphs.

Source of G File Name ϑL(G) ϑU (G) |V |
ϑU (G)

Erdős-Rényi uniform random graphs

Uniform random graph unif1000 0.1 147 243 4.12

Uniform random graph unif5000 0.1 617 1 066 4.69

Uniform random graph unif10000 0.1 1 154 2 025 4.94

Uniform random graph unif20000 0.01 3 796 6 387 3.13

Table 4. Summary of the upper and lower bounds for ϑ obtained by our approach on
synthetic graphs following the Erdős-Rényi model

The previous results encourage us to look at the degree distributions of the
studied graphs and at the distributions of sizes of the obtained cliques, whether there
is a correlation between quality of the solution and statistical properties of the graph.
In Figures 1 and 2, we plot the degree distributions and the distributions of the
clique sizes in the obtained solutions in log log scale. The horizontal axis contains the
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Figure 1. The visualization of degree and clique size distributions for chosen real-world
network test instances and the obtained solutions in log log scale (part I)
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degrees or clique sizes and the vertical axis contains the fractions of vertices or cliques
with a particular degree or size. Social network extracts soc2000 and soc20000 and
the network science instances netscience, football , as − 22july06 and homer were
chosen as probably the most representative instances of their types. For soc2000
and soc20000, we obtain relatively typical degree distributions for social networks,
which seem to be well approximable by power law, which is typical for scale-free
networks. Interestingly, the clique size distributions and the degree distributions
seem to have a very similar profile. For netscience, we also obtain an analogous
result, which supports a hypothesis that our approach works well with this type of
degree distribution. However, it is sad that the distributions of the social network
extracts seem also very similar showing no evidence why we were able to prove
optimality of the result for soc20000 and not for soc2000.

For the Internet snapshot as− 22july06 and the coappearance network homer ,
the distributions both for degrees and clique sizes are also very typical. On the other
hand, the football instance, for which we were not able to prove optimality, has quite
a peculiar degree distribution, which is reflected also in the clique size distribution.
This distribution reminds once more the Erdős-Rényi graphs and Leighton graphs.
We note that also the network adjnoun, for which we were also not able to prove
the optimality, seems to have similar properties.

In Figure 3, we depict degree distributions for one Erdős-Rényi graph and two
Leighton graphs, particularly unif20000 0.01, le450 15c and le450 25b. The Erdős-
Rényi graphs are widely known to have a Poissonian degree distribution [4, 26],
which is well illustrated by the figure. However, the distributions of the Leighton
graphs are also closer to this pattern than to the patterns we discussed above.
This supports our hypothesis that to some extent, the results of our approach are
influenced by the degree distribution of the graph, which is naturally reflected in
the distribution of the clique sizes in the obtained solutions.

Summarizing our investigation, the results suggest that the approach works very
well for distributions, which are well approximable by the power law of scale-free
networks. Even though, in some cases of such distributions, we were not able to prove
optimality, still the obtained results were always very close to the optimum. This
can be explained by the fact that networks with high variance in degree distribution
tend to have high variance also in the distribution of the clique sizes for the obtained
solutions. Such solutions seem to be obtainable by IG more easily than in the cases
of synthetic graphs, where the clique sizes are distributed within a tight interval. In
other words, the real-world graphs naturally tend to have an “asymmetric” structure,
for which our approach seems to be suitable.

5 CONCLUSIONS AND DISCUSSION

We presented a heuristic approach to the (vertex) clique covering problem (CCP),
i.e. covering the vertices of a graph with as few disjoint cliques as possible. In our
approach we used an iterated greedy (IG) heuristic for the construction of a solution
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Figure 2. The visualization of degree and clique size distributions for chosen real-world
network test instances and the obtained solutions in log log scale (part II)
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to CCP and a permutation-based randomized local search algorithm for maximum
independent set (RLS1

p) to estimate a lower bound. The lower bound allowed us
to determine the quality of the obtained solutions. Experimental verification was
presented on a set of 17 complex networks, including web-based social network
extracts and several instances, which are well-known in network science and discrete
applied mathematics literature. In 13 out of the 17 networks we obtained an optimal
clique covering, while in the other 4 instances we obtained a narrow interval for
the optimum. To confront this result we also presented results on synthetic Erdős-
Rényi graphs and Leighton graphs, where the algorithm was less successful. Analysis
of the degree distributions of the studied networks and distributions of the clique
sizes for the obtained solutions also suggests that our approach is well-suited for
typical complex networks with high variance in degree distributions. This includes
especially the distributions, which are well approximable by the power law of scale-
free networks.

An interesting question, which remains open, is whether there is a more exhaus-
tive algorithm, which could be used to further narrow the obtained interval for the
optimum in cases, when our approach is not able to prove the optimality. Search
algorithms, which use a fixed number of cliques, could possibly be used but our
preliminary experiments have not shown much improvement so far. In addition,
the observed efficiency could possibly be studied analytically. However, this would
require investigation of the behavior on a selected model, e.g. on graphs for which
the degree distribution follows the power law. Such results would not be entirely
generalizable for real-world application, but could probably offer some insight into
the behavior of heuristic algorithms on such graphs.
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