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Abstract 26 

The quiet embryo hypothesis postulates that early embryo viability is associated with a relatively 27 

low metabolism (Leese. 2002. BioEssays 24: 845-849). This proposal is re-visited here using 28 

retrospective and prospective data on the metabolic activity and kinetics of preimplantation 29 

development alongside the concept that an optimal range of such indices and of energetic 30 

efficiency influences embryogenesis. It is concluded that these considerations may be 31 

rationalised by proposing the existence of a ‘Goldilocks zone’, or as it is known in Sweden, of 32 

lagom –meaning “just the right amount”– within which embryos with maximum developmental 33 

potential can be categorised. 34 

35 
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INTRODUCTION 36 

Leese (2002) proposed that early embryo viability was best served by a relatively low 37 

metabolism, which later became known as the ‘quiet embryo hypothesis’. The premise was 38 

further developed by Baumann et al. (2007), in terms of potential molecular determinants of 39 

‘quiet’ metabolism; by Leese et al. (2007), who introduced the idea of a ‘quiet range’ of nutrient 40 

turnover; and by Leese et al. (2008), who considered categories of quietness: (i) ‘functional’ 41 

quietness, the contrasting levels of intrinsic metabolic activity in different cell types; (ii) inter-42 

individual embryo/cell differences in metabolism; and (iii) loss of quietness in response to 43 

environmental stress. With hindsight, the original quiet embryo hypothesis was too rigid in its 44 

distinction between ‘quiet’ and ‘active’ metabolism – indeed, metabolism that is too quiet most 45 

likely represents an embryo about to arrest. The aim of this essay is to develop the hypothesis 46 

based on two aspects discussed by Johnson (2013) considered below: the idea of an optimal 47 

range of metabolic activity and the concept of energy efficiency. The concepts inherent in the 48 

hypothesis will also be compared with those in the ‘Goldilocks Principle’. 49 

The ‘Goldilocks principle’ states that “something must fall within certain margins, as opposed 50 

to reaching extremes” (en.wikipedia.org/wiki/Goldilocks_principle), which is derived from 51 

Goldilocks and the Three Bears (en.wikipedia.org/wiki/Goldilocks_and_the_Three_Bears). Within 52 

this fairy tale, largely attributed to the Victorian-era British Romantic author Robert Southey, a 53 

little girl named Goldilocks wanders into a house owned by three bears and discovers three 54 

bowls of porridge, three chairs, and three beds. Each set of objects is characterised by a 55 

distribution of two extremes plus a middle option; thus, the porridge was ‘too hot’, too cold’, or 56 

‘just right’, which is the one Goldilocks chooses. After consuming the porridge, sitting in the ‘just 57 

right’ chair, and sleeping in the ’just right’ bed, Goldilocks manages to escape the bears when 58 

they return to their house. The ‘just right’ concept is found across languages and cultures; for 59 

example, the term lagom is widely used in Sweden, where it means “just enough” or “just the 60 

right amount” as well as “moderation” and “in balance” (en.wikipedia.org/wiki/Lagom). 61 

The Goldilocks principle has been applied to many phenomena in economics, astronomy, 62 

physics, psychology, the social sciences, and biology (e.g. Liu et al., 2012; Drake et al., 2014), 63 



"This is the peer reviewed version of the following article: [FULL CITE], which has been published in final 
form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in 
accordance with Wiley Terms and Conditions for Self-Archiving." 

 

including a few examples in reproductive biology and medicine. Fowler and O’Shaughnessy 64 

(2013), for example, highlighted the way in which fetal androgen production, especially 65 

testosterone, needs to be ‘just right’ to ensure the appropriate developmental trajectory of the 66 

fetus and offspring; conversely, inappropriate fetal androgen or androgen signalling – both too 67 

little and too much – is associated with disorders of male reproductive development, and are 68 

implicated as a cause of polycystic ovarian syndrome in women. In another example, Clancy 69 

(2013) considered what is ‘just right’ in balancing fetal needs versus maternal supply during 70 

pregnancy in great apes and humans in terms of inflammation, determining that this process is 71 

essential during implantation but potentially predisposes the mother to disorders such as 72 

gestational diabetes and choriodecidual inflammatory syndrome.  73 

An overarching question in how the Golidlocks Principle is applied to biological systems is: 74 

What determines ‘just right’ or lagom? Here, we address this at the cellular level in the context of 75 

the developing preimplantation embryo, proposing that ‘just right’ is the capacity to develop 76 

successfully at the highest efficiency – i.e. to carry out faithfully the developmental programme 77 

while expending the minimum amount of energy. Initially, we re-interpret? data on energy 78 

homeostasis/pyruvate consumption in early cattle embryos from Guerif et al (2013). 79 

Considerable use is made of the review by Johnson (2013), entitled Teaching the principle of 80 

biological optimization, which provides a valuable guide to the need for energy efficiency, the 81 

uses to which energy is put, and the factors that drive the optimization of energy use at all levels 82 

– from genes, proteins, and physiological systems, to whole organisms and ecosystems. Before 83 

presenting these analyses, it is necessary to consider briefly the energy metabolism of the early 84 

embryo.  85 

 86 

NUTRITION AND METABOLISM OF THE EARLY MAMMALIAN EMBRYO  87 

The nutritional needs of mammalian embryos through the preimplantation stage are 88 

remarkably simple. Simple physiological salts solutions supplemented with a few nutrients and 89 

serum albumin are the minimum requirements for culture (reviewed by Biggers, 1998). Further, 90 
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energy production throughout preimplantation development is largely aerobic (reviewed by Smith 91 

and Sturmey, 2012): Pyruvate is the preferred energy substrate for the first cleavage (from 1 to 2 92 

cells), and is obligatory for many species. A variety of nutrients – notably, pyruvate, lactate, 93 

amino acids and endogenous fatty acids – can also be utilised as early development progresses. 94 

Cleavages to the morula stage are relatively quiescent in terms of oxygen consumption, which is 95 

widely accepted as the best overall metric of metabolism. As the embryo continues to the 96 

blastocyst stage, glucose consumption rises significantly – a large proportion of this glucose is 97 

converted to lactic acid, at least in vitro – while oxygen consumption also rises. This change in 98 

metabolism during blastocyst formation is largely due to the energy demands of the sodium 99 

pump required to form the blastocoel cavity and of protein synthesis, which is associated with the 100 

first increase in the mass of the embryo that occurs at this stage.  101 

 102 

THE EARLY EMBRYO AS A MODEL SYSTEM  103 

The early embryo, aside from its biological fascination, has a special advantage as a model 104 

system for considering energy homeostasis; namely, its availability as a discrete cellular entity. 105 

The molecular cell biology and biochemistry of early embryos are readily studied at the level of 106 

single cells (unfertilised or fertilised eggs) or small clusters of cells (cleavage stage 107 

preimplantation embryos) through to the blastocyst stage, which comprises about 100 cells. In 108 

marked contrast, most mammalian cells, apart from those in the extracellular compartments in 109 

the body, are rarely found individually, instead being present in highly organised, multicellular 110 

tissues. Such cells are routinely studied in very large numbers (>106), which severely limits the 111 

possibility to examine single-cell biochemistry. Thus, the early embryo is an excellent system for 112 

studying intra- and intercellular differences. Understanding the basis of this variation is essential 113 

to resolving one of the major challenges facing in vitro fertilisation and related technologies: How 114 

to devise a robust, non-invasive test of cellular health with which to select single embryos for 115 

transfer into the uterus. 116 

 117 
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FACTORS INFLUENCING THE EFFICIENCY OF EARLY EMBRYOS AND CELLS  118 

Competition for resources 119 

Early embryos can exist with complete autonomy, as demonstrated by their capacity to 120 

develop in vitro. Their solitary existence obviates the need to compete with other cells for 121 

resources as their nutritional needs are provided, in vivo, by the oviduct and uterus and their own 122 

endogenous reserves, or by the in vitro culture medium – although the notion of autonomous 123 

preimplantation development needs to be revisited based on the increasing awareness of 124 

embryo-maternal interactions, whose roles are only beginning to be clarified (reviewed in Leese 125 

and Brison, 2015). In marked contrast, somatic cellular systems – cells, tissues, and whole 126 

organisms – operate under the limited resources, therefore/such that the most efficient and 127 

successfully competitive survive (Johnson, 2013). Cells in tissues and tissues within the body are 128 

metabolically constrained from becoming autonomous or ‘rogue’ by a variety of mechanisms; for 129 

example, gap junctions between cells in tissues and hormonal and neuronal regulation between 130 

tissues both maintain homeostasis (Brison et al 2014).  131 

Intrinsic factors 132 

Even if the drive to compete is minimised, cells, tissues, and organisms still possess an 133 

intrinsic capacity for survival whereby those that make more efficient use of resources will be at 134 

an advantage (Johnson 2013). ‘Efficiency’, in an energetic sense, implies carrying out a defined 135 

action with the minimum input of energy. Illustration of this concept requires data from a system 136 

in which input and output are well-defined and can be measured quantitatively – e.g. a study by 137 

Guerif et al. (2013) on the relationship between the consumption of the essential nutrient 138 

pyruvate by 2-cell bovine embryos and their capacity to reach a subsequent stage of 139 

development (i.e., the 4-cell stage) or the blastocyst stage. Pyruvate is an appropriate nutrient to 140 

use as a metric of energy input since it is largely oxidised to produce ATP in the embryo. These 141 

data were also chosen because they are quite detailed and include prospective as well as 142 

retrospective studies. Guerif et al. (2013) conducted two types of experiments in which bovine 143 
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embryos were produced in an identical manner, via in vitro fertilisation of in vitro-matured 144 

immature oocytes obtained from abattoir ovaries.  145 

Experiment I. Zygotes (fertilised eggs) were allowed to develop to the 2-cell stage before 146 

being incubated individually in 5 µl of culture medium for 24 hours under an environment of 5% 147 

CO2, 5% O2, 90% N2. The embryos were removed and allocated into two groups: those that had 148 

developed to the 4-cell stage (n=40) and those that showed no development, i.e. remained at the 149 

2-cell stage (n=30). The individual droplets in which the embryos had been incubated were then 150 

analysed retrospectively for their pyruvate content, enabling the relationship between embryo 151 

development and metabolism (the consumption of pyruvate) to be determined. A significant 152 

difference in pyruvate consumption was measured between the groups; those which exhibited 153 

development having higher values on average than those with no development (P=0.016). These 154 

data may be presented in a number of different ways: Traditionally, they would be tabulated as 155 

values of pyruvate consumption (pmol per embryo per hour) (Fig. 1A). A more striking way would 156 

be to illustrate the data and statistics as a plot of mean values with confidence intervals (Fig. 1B). 157 

However, in order to examine individual cellular efficiency and discover whether the Goldilocks 158 

Principle applies, the data should instead be visualised as distributions, i.e. the spread of data for 159 

pyruvate consumption by each embryo (Fig. 1C).  160 

A number of conclusions may be drawn from the pyruvate data, independent of presentation. 161 

(i) A high attrition rate was observed, wherein only 57% (40/70) of the 2-cell embryos developed 162 

to the 4-cell stage. (ii) Considerable variation in pyruvate consumption was measured, whether 163 

or not development occurred. (iii) Considerable overlap exists between the two cohorts, so these 164 

data do not support the Goldilocks Principle – which predicts clustering of the data into defined, 165 

but overlapping, categories (Fig. 2B). (iv) A considerable range of input was present in the 166 

developed group, as the pyruvate values fell between 2 pmol pyruvate (very high efficiency) and 167 

16 pmol pyruvate (low efficiency) consumed per embryo per hour. These differences 168 

nevertheless could lead to the hypothesis that ‘low efficiency’ embryos, which use a large 169 

amount of pyruvate to reach the next stage, might struggle to maintain such high consumption 170 

throughout development compared to the more efficient developing embryos with a lower 171 
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pyruvate consumption. Conversely, highly efficient embryos that developed with very low 172 

pyruvate consumption might struggle to continue to develop through subsequent cleavage 173 

divisions if such a low rate of pyruvate consumption is maintained.  174 

A caveat to these conclusions is the capacity of the embryo to use and to switch among 175 

other metabolic substrates. The obligatory nature of pyruvate as a nutrient was the logical first 176 

metric, and the lack of data on the relative contribution of all other potential nutrients – ideally 177 

determined simultaneously, which is still technically challenging and has yet to be overcome –178 

would have made interpreting such additional data difficult. The best marker of metabolic 179 

capacity would be oxygen consumption (Lopes et al., 2007; Tejera et al., 2011), but this 180 

parameter is difficult to measure in such a small amount of material, and comprises several 181 

components that have yet to be quantified at all the preimplantation stages (Leese 2012). Given 182 

these constraints and the unique data set available, pyruvate consumption presently provides the 183 

best proxy for energy efficiency throughout preimplantation embryo development. 184 

In order to test the proposition that early developing embryos utilising ‘too low’ or ‘too high’ a 185 

rate of metabolism will encounter a crisis phase later in development, a prospective experiment 186 

needed to be devised that longitudinally monitored metabolic profiling from the 2-4 cell stage 187 

through to the blastocyst stage, which takes about 6 cleavage divisions over 6 days in the 188 

bovine. The difficulty underlying this type of experiment is that bovine (as well as ovine and 189 

porcine) embryos are less viable if cultured singly in vitro, especially in extended culture; they 190 

prefer to be grown in groups (Stokes et al., 2005, Gopichandran and Leese, 2006). This problem 191 

was overcome by Guerif et al., (2013).  192 

Experiment II. As in their first experiment, thirty bovine embryos were then incubated singly 193 

from Day 2 to Day 3 in small droplets of medium, and pyruvate uptake was measured. On the 194 

basis of the results, the embryos were allocated into tertiles with 10 embryos per group, 195 

representing ‘high’ (>10pmol/embryo/h [T3]); ‘intermediate’ (4-10pmol/embryo/h [T2]); and ‘low’ 196 

(<4pmol/embryo/h [T1]) pyruvate uptake during the 24 hours of culture (Fig. 2B). The embryos 197 

were then cultured to the blastocyst stage (Day 8) to test the applicability of the Goldilocks 198 

Principle to preimplantation development directly. Such monitoring was repeated six times.  199 
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The relationship between pyruvate uptake and blastocyst formation can be tabulated (Fig. 200 

2A) or plotted by individual embryo, showing the full distribution of pyruvate uptake between 24-201 

48 hours against blastocyst formation (Fig. 2B). The following conclusions may be drawn from 202 

this second data set: (i) In line with the first experiment, there is considerable variability in the 203 

capacity of in vitro-produced bovine 2-cell embryos to develop to the blastocyst stage. This is 204 

well known, and the overall blastocyst rate (~35%) is consistent with the data of others. (ii) The 205 

highest blastocyst rates were obtained with pyruvate consumption in the intermediate range; 206 

embryos in the higher and lower ranges were much less likely to form blastocysts. The data are 207 

therefore consistent with the Goldilocks Principle, in that a lagom range of pyruvate uptakes 208 

predicts a high blastocyst rate. (iii) Pyruvate uptake is not an all-or-nothing metric of bovine 2-cell 209 

embryo developmental capacity; the overlap between the categories was considerable, 210 

especially between the intermediate (T2) and higher (T3) ranges. The value of plotting these 211 

results as distribution of individuals lies in the identification of optimal ranges, and, in this 212 

particular example, of the long time interval between metabolic assessment (Day 2-3) and the 213 

measurement of development outcome (Day 8).  214 

The end point in these bovine studies was blastocyst formation (Guerif et al., 2013), although 215 

determining whether these embryos have the same potential for implantation and the capacity to 216 

give rise to live offspring will be of particular interest. One example for which long-term analysis 217 

was performed is in the study by Turner et al. (2004), for which pyruvate uptake of single human 218 

embryos generated via natural cycle in vitro fertilization was measured. Pyruvate consumption 219 

was quantified over the first 24 hours following fertilisation prior to transfer on Day 2 (40-50 hours 220 

post-insemination). Pyruvate values were then related retrospectively to the pregnancy outcome 221 

(Fig. 3). These longitudinal data also indicate an optimal range of pyruvate uptake (between 222 

about 10 and 30 pmol per embryo per hour) within which a pregnancy can occur; embryos in the 223 

higher and lower ranges are less likely to lead to the establishment of pregnancy.  224 

Gardner et al  (2011) questioned the quiet embryo hypothesis largely on the basis that 225 

blastocyst formation is associated with a dramatic increase in glucose consumption – i.e. a highly 226 

active, as opposed to quiet, metabolism. In response, Leese (2012)  proposed that what was 227 
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required as a test of the quiet embryo hypothesis was not the ‘functional’ demand for high 228 

glucose, but the overall metabolic cost of this process; the challenge was to measure energetic 229 

efficiency alongside nutrient uptake, and to relate the data to developmental competence, as has 230 

been done in this paper. An alternative interpretation of the Gardner and Wale data is to propose 231 

that the minimum threshold for glucose consumption required to make a blastocyst is set at a 232 

high level, but that within the range of values conducive to blastocyst formation exist sub-ranges 233 

of ‘too high’ and ‘just right’ that are consistent with viable pregnancy in the long term. 234 

 235 

KINETICS OF EARLY EMBRYO DEVELOPMENT  236 

The Goldilocks principle could also be applied to the speed of preimplantation development. 237 

In the early days of in vitro fertilization, when embryos were grown under what were likely to 238 

have been severely suboptimal culture conditions, a high speed of development was taken as an 239 

indicator of quality. As culture conditions and success rates improved, however, numerous 240 

studies were conducted, many of them large, correlating cleavage speed to implantation and live 241 

birth rates; more recently, the utilization of the time-lapse techniques allowed these associations 242 

to be investigated in a more precise manner. These compiled data are consistent with the 243 

proposition that the speed of development needs to be ‘just right’, and that both too slow and too 244 

fast development results in lower success rates, presumably indicating a non-optimal metabolic 245 

and/or genetic phenotype. 246 

Early studies also observed that the sooner embryos underwent the first cleavage, the better 247 

their prognosis for blastocyst development, pregnancy, and live birth than for their later-cleaving 248 

counterparts (Lundin et al., 2001; Salumets et al., 2003; Van Montfoort et al., 2004). The time 249 

used for determining the early-versus-late cut-off was 25-27 hours. Implementation of time-lapse 250 

imaging plus the ability to observe embryo development continuously revealed that the optimal 251 

time to first cleavage was indeed intermediate: embryos that cleaved too rapidly (<24.3h) also 252 

showed poor developmental potential (Meseguer et al 2011). Similar conclusions that a tighter 253 

time distribution exists for implanting than for non-implanting embryos have been reached for a 254 
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number of morphokinetic variables, such as number of cells and length of cell cycles (Meseguer 255 

et al 2011, Cruz et al., 2012). These points are best illustrated by plotting the distribution of 256 

biomarkers of embryo health, as performed in the retrospective analysis by Meseguer et al. 257 

(2011), who recorded the time taken for individual human in vitro-fertilized embryos to divide to 5 258 

cells and related this to their subsequent capacity to implant following transfer (Fig. 4): 259 

Consistent with the Goldilocks Principle, embryos more tightly distributed in the lagom 260 

intermediate range are more likely to give a positive outcome.  261 

 262 

CONCLUSION: THE GOLDILOCKS ZONE  263 

In light of the data appraised in this paper and the model of a ‘quiet range’ of metabolic 264 

activity (Leese 2007), we propose that embryos with maximum developmental potential will be 265 

located in a ‘Goldilocks zone’. The lower limits of this zone are determined by the minimum, or 266 

threshold, value that nutrient / metabolic activity has to reach to ensure the fidelity of homeostatic 267 

energy mechanisms while the upper limit is balanced by the physiological capacity to increase 268 

cellular metabolism versus the energy parsimony in almost everything they do (Johnson, 2013). 269 

The existence of ‘ranges’ or ‘zones’ is best revealed by plotting data as distributions of individual 270 

embryos rather than as averages – indeed, we believe that other areas of biology and medicine 271 

could benefit from this approach as it provides critical visualisation of the averages and rough 272 

statistics without collapsing the individual data. The challenge is to discover where the 273 

boundaries lie for other cell types, tissues, and whole organisms under different situations. 274 

  275 
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Figure 1. Pyruvate consumption (pmol per embryo per hour) by 2-cell bovine embryos that 373 

developed to or showed no development to the 4-cell stage. A: Tabulated values, shown as 374 

mean ± standard deviation. B: Plotted values are shown as mean ± 95% confidence intervals. C: 375 

Distribution of individual values. Adapted from Guerif et al (2013). 376 

Figure 2. Rate of blastocyst development according to the level of pyruvate consumption (pmol 377 

per embryo per hour) measured between Days 2 and 3. A: Tabulated values, shown as mean ± 378 

standard error of the mean. B: Individual values for pyruvate consumption by bovine embryos 379 

assigned prospectively to one of 3 categories representing ‘low’ (<4 pmol per embryo per hour 380 

[T1]), ‘intermediate’ (4-10 pmol per embryo per hour [T2]), and ‘high’ (>10 pmol per embryo per 381 

hour [T3]) pyruvate uptake, and then cultured to the blastocyst stage. The terms optimum, pejus, 382 

and pessimism illustrate the hypothetical response of an embryo to stress: When the stress is 383 

mild, embryo metabolism shifts up or down from within the optimum to the pejus range in order to 384 

minimise or rectify the damage. Under modest damage, metabolism can return to the optimum 385 

range when it has been corrected, whereas under severe stress, metabolism shifts irreversibly 386 

into the pessimum range from which it cannot recover. For further discussion, see Guerif et al 387 

(2013).  388 

Figure 3. Pyruvate uptake of single human embryos generated via natural-cycle in vitro 389 

fertilization. Pyruvate consumption was measured over the first 24 hour following fertilisation 390 

prior to transfer on Day 2 (40-50 hours post-insemination). The values for pyruvate were related 391 

retrospectively to the outcome; pregnant or non-pregnant. Adapted from Turner et al (1994). 392 

Figure 4. The time taken for individual human in vitro fertilized embryos to divide to the 5-cell 393 

stage in relation to their subsequent capacity to implant following transfer. Adapted from 394 

Meseguer et al (2011). 395 
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