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Scope of the thesis 

Climate change and plastic pollution are both pressing environmental issues. Little is 

known, however, about the combined effect of climate change conditions (such as global 

warming and ocean acidification) and plastic contaminants (such as the additive di-2-

ethylhexyl phthalate DEHP), and whether this effect differs by sex. In fact, sex and 

gametogenesis status of individuals can influence a vast array of biological responses of 

several species, including the commercially important blue mussel Mytilus spp. 

This thesis investigates the consequences of DEHP exposure at environmentally relevant 

concentrations, alone or in combination with end-of-the-century simulated climate 

change conditions. A general effect of DEHP on mussel reproductive traits was observed, 

which confirmed the endocrine disruptive nature of this plasticiser. Specifically, fertility 

outcomes and estrogen receptor-related pathways were affected by the exposure, 

especially in female individuals. Overall, when combined with increased temperature or 

lowered pH, DEHP affected histological, molecular, transcriptomic, metabolic and 

behavioural systems at various degrees. Furthermore, as it was previously noted for other 

endocrine disruptive chemicals, the additive DEHP seemed to display a non-monotonic 

dose-response curve, provoking a stronger effect at low concentrations than at higher 

levels. Climate change stressors were also noticed to elicit a response in exposed 

individuals, especially increased temperature on spawning events and lowered pH on 

valve behaviours. Finally, when analysing the gene expression outcomes, sex and 

gametogenesis stage were considered useful predictive factors for interpreting the 

molecular datasets.
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Chapter 1 

Introduction and Literature Review  

1.1 Mussels as bioindicator species  

Bioindicators are useful sentinel species for the estimation of ecosystem quality, as they 

can evaluate contaminant presence and monitor environmental pollution in their habitats 

(Broeg and Lehtonen, 2006; Li et al., 2019a; Nigro et al., 2006; Rainbow and Phillips, 

1993). More specifically, responses of bioindicators provide an accurate image of the 

ecosystem health at biomolecular, biochemical or community levels (Adams and Greeley, 

2000; Burger, 2006). Essential characteristics of a valuable bioindicator can be summed 

as follows (Burger and Gochfeld, 2001; Gerhardt, 2002): 

● Easy taxonomy. 

● Large distribution and representativeness of the area. 

● Sedentary status.  

● Clear positions in the trophic web and definite feeding strategy.  

● Sufficient long life and medium-long generation time. 

● Cost-effective.  

● Easiness to collect, handle and culture. 

● Testable under natural and laboratory conditions.  

● Unambiguous responses that can be measured and attributed to a cause.  

● Reactiveness to anthropogenic action on the environment.   

● Social relevance. 

For these reasons, molluscs such as mussels are considered non-controversial biomonitors 

and key species for their habitats, as they are capable of high bioaccumulation and 

bioconcentration of toxicants (Markert et al., 2003). They are also common species for 

ecotoxicological experimental exposures to pollutants such as metals or anthropogenic 

chemicals (Burger, 2006; Pruell et al., 1986).  

Mytilus is a complex and cosmopolitan genus of mussels (Koehn, 1991). In the temperate 

regions of the Northern Hemisphere, the most predominant Mytilus species are Mytilus 

edulis (Linnaeus, 1758), Mytilus galloprovincialis (Lamarck, 1819) and Mytilus trossulus 

(Gould, 1850). They often interbreed throughout their distribution area, due to incomplete 

reproductive isolation (Simon et al., 2019; Toro et al., 2002). Genomic overlaps and 

natural selection are the major drivers of hybrid zones in terms of their presence and 
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structure (Hilbish et al., 2002; Simon et al., 2019). In Great Britain, hybrids between M. 

edulis and M. galloprovincialis are found distributed in Scotland (Dias et al., 2009a; Dias 

et al., 2009b), southwest (Hilbish et al., 2002; Secor et al., 2001) and northeast England 

(Chapter 2, Mincarelli et al., 2021) at different proportions between the two main 

genotypes. Hybrids between M. edulis and M. trossulus are less frequent in nature, mostly 

due to the asynchronous reproductive cycles of the two species (Toro et al., 2002). 

Nonetheless, there are reports of their presence in Scotland (Dias et al., 2009a; Dias et al., 

2009b). 

 

1.2 Plastic pollution  

Due to its characteristic of cheapness and durability, plastic has been considered in the 

past decades as a primary commodity for the manufacture of several everyday products 

(Andrady, 2011; Thompson et al., 2009). World plastic production reached almost 370 

million tonnes in 2019 (including thermoplastics, polyurethanes, thermosets, elastomers, 

adhesives, coating, sealants and polypropylene fibres), and Europe is the third-largest 

producer of plastics in the world (PlasticsEurope, 2020). Present-day marine plastic waste 

is often associated with aquaculture and fishing practices, or improper disposal (Galgani 

et al., 2015; Schmaltz et al., 2020). Due to their resilient nature, plastic products can 

endure in different environments and through time (Thompson et al., 2009). Moreover, 

plastic can act as a carrier of additional chemicals, such as toxic plastic additives, 

contaminants or pathogens that the matrix has absorbed from the environment (Katsumiti 

et al., 2021; von Hellfeld et al., 2022; Rodrigues et al., 2022).  

In the Northern Hemisphere, densities of plastic items from micro (<5 mm diameter) to 

macroparticles (>20 mm) are detected even in remote areas such as polar regions and the 

deep sea, where they are coupled with longer time for complete degradation (Barnes et 

al., 2009). The resulting environmental contamination of terrestrial (de Souza Machado 

et al., 2018) and aquatic organisms is widely recognised, affecting marine trophic levels 

from zooplankton (Heindler et al., 2017) to cetaceans (De Stephanis et al., 2013). In 

humans, plastic traces were recently found in faeces (Schwabl et al., 2019), lungs (Jenner 

et al., 2022) and in the placenta of pregnant women (Ragusa et al., 2021). In aquatic 

environments, small plastic parts or micro fractions may at ease be taken up and filtered 

by filter-feeding organisms (Browne, 2008) and be transferred via the food chain to higher 
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trophic levels such as crabs (Farrell and Nelson, 2013). Plastic traces are found in mussels 

from various sources, such as coastal waters, farms and supermarkets (Birnstiel et al., 

2019; Li et al., 2018; Rochman et al., 2015). Fibres are detected as well in organs such as 

mantle and foot or fused with the byssus, suggesting an uptake and accumulation of 

plastics by adherence and not only by ingestion (Kolandhasamy et al., 2018; Li et al., 

2019b). Exposure of bivalves to plastic particles has repercussions on their general health, 

from physical tissue abrasion (Hariharan et al., 2021; Masiá et al., 2021; Vasanthi et al., 

2021) or reproductive disruption (Choi et al., 2022; Sussarellu et al., 2016) to metabolic, 

immune and genotoxic response (Bringer et al., 2022; Capolupo et al., 2021; Chelomin 

et al., 2022; Choi et al., 2021; Détrée and Gallardo-Escárate, 2018).  

 

1.3 Endocrine disruptors and di-2-ethyl hexyl phthalate (DEHP) 

Endocrine disrupting chemicals (EDCs) are exogenous substances or mixtures with 

effects on the general health of an organism or population (Rotchell and Ostrander, 2003; 

Soto et al., 2004). EDCs usually disrupt the production or the function of hormones and 

receptors or behave on the receptors with agonist or antagonist effects by hormone-

mimicking (Goksøyr, 2007). Generally, endocrine disruptive substances can be of both 

natural and anthropogenic nature. Examples include estrogens, phytoestrogens, 

plasticisers, pesticides or herbicides (Aarab et al., 2006; Bila et al., 2007; Canesi et al., 

2004). In the past, they were widely used in the industrial and agriculture sectors, while 

nowadays the use of most EDCs is restricted and limited to the pharmaceutical industry 

(Ciocan et al., 2010b; Porte et al., 2006). Despite the controlled use, EDCs can still enter 

the aquatic environment via effluent from industry or urban areas, where they can persist, 

accumulate and magnify in biological matrices due to their lipophilic nature (Arukwe et 

al., 1997; Langston et al., 2005; Matthiessen, 2003). Furthermore, numerous endocrine 

disrupting additives are still commonly used also to provide distinguishing characteristics 

to plastic products (Hermabessiere et al., 2017). Among plastic additives, phthalates have 

been widely used as emollients and plasticisers in polyvinyl chloride (PVC) products 

(Erythropel et al., 2014; Net et al., 2015; Parkerton and Konkel, 2000), with annual 

worldwide use of 8.4 million tonnes (ECPI, 2020). Phthalates could represent up to 50% 

of the total weight of certain plastic products (Earls et al., 2003; Van Wezel et al., 2000) 

and are typically found in the environment affecting habitats and organisms (Table 1.2; 
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Supplementary Tables 1.1 – 1.3; Lithner et al., 2011; Oehlmann et al., 2008). These 

additives leach from the plastic matrix as they are not chemically bonded to it, resulting 

in a consequent ubiquitous presence in the environment (Engler, 2012; Erythropel et al., 

2014; Wittassek et al., 2011). For example, phthalate presence at various concentrations 

was detected in dust samples from Chinese houses and dormitories (Xu and Li, 2020). In 

aqueous environments, the migration of plastic chemical additives from everyday 

products was highlighted by Zimmerman et al. (2021), who identified in the sampled 

water several leachates able to cause oxidative response, antiandrogenic and estrogenic 

effects.  

For humans, skin route and inhalation are possible ways of phthalate absorption, but the 

food chain remains the most probable, in particular for phthalates with a long molecular 

chain such as di-2-ethylhexyl phthalate (DEHP, Fig. 1.1, Schettler et al., 2006; Wittassek 

et al., 2011). Despite the restricted use in the European Union, especially in toys and 

childcare articles (EU Regulation 2018/2005) and the evidence of its toxicity in aquatic 

(Carnevali et al., 2010; Kim et al., 2002; Lu et al., 2013b; Zanotelli et al., 2010; Table 

1.3 and 1.4) and terrestrial (Kalo et al., 2015; Mu et al., 2015) species, DEHP represents 

40% of the global plastic softener market (ECPI, 2020). Natural production of DEHP by 

red algae (e.g., Bangia atropurpurea) was reported by Chen (2004) but the levels related 

to natural sources are considered negligible compared to the massive anthropogenic 

production (Net et al., 2015). Traces of DEHP have also been detected in the past in 

cosmetics and personal care products, such as nail polishes, sanitary pads, fragrances and 

baby lotions (Koniecki et al., 2011; Park et al., 2019). Even though phthalates were not 

classified as highly persistent compounds in many environments (Staples et al., 1997), 

DEHP levels were commonly measured in freshwater (Fatoki and Vernon, 1990) and 

marine systems (Hermabessiere et al., 2017, Table 1.2). Environmental persistence 

values for DEHP are approximately 1 day for atmospheric half-life, and 0.35 – 3.5 days 

for surface water and sediment half-life in aerobic conditions (Peterson and Staples, 

2003). Nonetheless, DEHP was quantified at variable concentrations in marine 

environments up to 0.6 µg/L in coastal Mediterranean waters (Sánchez-Avila et al., 2012) 

and 71.6 µg/L in Tunisian marine waters (Jebara et al., 2021), with presence in open 

remote environments up to 0.005 µg/L in Arctic waters (Xie et al., 2007).  

DEHP effects on Mytilus spp. range from alterations in antioxidant and peroxisomal 

enzyme activities at high levels of 100 - 500 µg/L (Cancio et al., 1998; Orbea et al., 2002) 

to hormetic effects on the expression of estrogen receptor-like (Mincarelli et al., 2021, 
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Chapter 2) and stress-related genes (Xu et al., 2021a) when environmentally relevant 

concentrations are dosed (Table 1.4). The hormetic effect is defined as a non-monotonic 

dose-response action of some endocrine-active chemicals such as DEHP. It can provoke 

a stronger effect at low concentrations and inhibition at higher levels (Conolly and Lutz, 

2004; Do et al., 2012; Li et al., 2007, Fig. 1.2). The non-linear dose responses of EDCs 

such as DEHP is one of the main challenges for regulatory agencies in the course of risk 

assessment. In fact, a linear extrapolation of the compound toxicity from high-dosed 

experiments is not valid in most cases, as the occupancy of receptor-mediated pathways 

can saturate already at low doses. Furthermore, xenoestrogens such as EDCs modulate a 

physiologically active system, which in most cases already acts above the threshold 

(Welshons et al., 2003, Fig. 1.2). 

 

 

Fig. 1.1 DEHP structure. Chemical formula C24H38O4. CAS Registry Number 117-81-7 
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Fig. 1.2 Examples of dose-response curves from Vandenberg et al. (2012). A) Linear response. 

The predictions of the effects at variable concentrations are accurate as there is either a positive 

or an inverse linear association between dose and response. B) monotonic, non-linear response. 

In this case the slope changes in value but not in sign. The prediction of the effect at moderate 

doses cannot be extrapolated by the very low or very high doses. C) Non-monotonic dose-

response curves (NMDRCs), including an inverted U-shaped curve (C1), a U-shaped curve (C2) 

and a multiphasic curve (C3). In this case, the sign of the slope can change one or more times and 

knowing one or more data points does not allow for projections or calculations about the effect of 

variable doses. D) Binary response. High doses have the same effect passing a threshold, while 

below the threshold low doses have no effect 

 

1.4 Climate change and multiple stressors  

Anthropogenic activities such as deforestation and the burning of fossil fuels have been 

causing an increase in levels of atmospheric greenhouse gases (GHG) such as methane 

(CH4), nitrous oxide (N2O) and carbon dioxide (CO2) since the Industrial Revolution. It 

has been reported that CO2 levels increased from ~280 parts per million (ppm) in the pre-

industrial era to ~410 ppm today (IPCC, 2021). In 2014, the fifth assessment report (AR5) 

from the Intergovernmental Panel on Climate Change (IPCC) communicated a linear 

increase of CO2 emissions in the past decades and a consequent rise of average 

temperatures around the globe, with the ocean temperature increasing on average a little 

more than 0.1°C per decade in the last 30 years (Lima and Wethey, 2012, Fig. 1.3). 

Additionally, around 30% of the CO2 produced by anthropogenic activities is reported 

being absorbed by the ocean (IPCC, 2014). CO2 that enters the ocean system reacts with 
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H2O to form carbonic acid (H2CO3), which dissociates in protons (H+) and bicarbonate 

(HCO3
-). The latter dissociates in carbonate (CO3

=) and protons (Dickson et al., 2007; 

Gattuso et al., 2010). Thus, the additional CO2 added to the water system shifts the 

carbonate balance between CO2, HCO3
- and CO3

=, increasing the free protons and 

therefore decreasing the oceanic pH. The increase in atmospheric CO2 levels has already 

led to a reduction of 0.1 pH units in surface oceanic layers with respect to pre-industrial 

levels (IPCC 2021, Fig. 1.4).  

The sixth report (AR6) from the IPCC assessed the climate responses for the end of the 

century under five different scenarios (shared socio-economic pathways SSPs), calculated 

by considering climate mitigation, air pollution and socio-economic assumptions. SSPs 

vary accordingly to GHG emission projections for the middle and the end of the century, 

as follows:  

I. Very low SSP (1 - 1.9) and low SSP (1 - 2.6), where the emissions of CO2 decline 

to zero around or after the middle of the century. 

II. Intermediate SSP (2 - 4.5) where CO2 emissions remain around the current level 

until the year 2050. 

III. High (SSP 3 - 7) and very high (SSP 5 - 8.5) scenarios, where CO2 emissions 

double from current levels by 2100 and 2050, respectively. 

The projected conditions of global warming and ocean acidification are also leading to 

additional processes such as enhanced ocean stratification, increased vertical density 

gradients, changes in oceanic currents, modification in the seawater chemistry and 

alteration of nutrient input, primary production, tropospheric ozone and oxygen 

concentration (Bijma, 2013; Kwiatkowski et al., 2020; Noyes et al., 2009). Interestingly, 

a recent study reported that M. edulis adults exposed to moderate environmental 

acidification are metabolically more tolerant to this stressor compared to increased 

temperature exposures (Matoo et al., 2021). Similarly, in Gazeau et al. (2014), Wang et 

al. (2015) and Newcomb et al. (2019), future thermal conditions were hypothesised to be 

a major threat to M. galloprovincialis, M. coruscus and M. trossulus rather than ocean 

acidification. This could be related to the fact that species inhabiting coastal areas are 

already adapted to natural pH fluctuations of the intertidal zone (Pansch et al., 2014). 
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Fig. 1.3 Current and projected values for global surface temperature under five different simulated 

scenarios (shared socio-economic pathways, SSP 1 - 8.5), where shades represent very likely 

ranges for SSPs 1 - 2.6 and SSP 3 - 7. Data were obtained by combining model simulations 

(CMIP6) and observational constraints based on past warming simulations and updated 

assessments of equilibrium climate sensitivity. From Climate Change 2021: The Physical Science 

Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC, 2021) 

 

 

Fig. 1.4 Current and projected values for oceanic surface pH based on model simulations (CMIP6) 

under five different simulated scenarios (Shared socio-economic pathways, SSP 1 - 8.5), with 

shades representing very likely ranges for SSPs 1 - 2.6 and SSP 3 - 7. From Climate Change 2021: 

The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of 

the Intergovernmental Panel on Climate Change (IPCC, 2021) 

 

In addition, pollutants frequently alter their toxicity in such environmental-changing 

conditions, and chemicals often impact the adaptation ability of organisms to 

environmental fluctuations (Bijma et al., 2013; Han et al., 2014; Kibria et al., 2021; 
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Landis et al., 2014; Nikinmaa, 2013; Noyes et al., 2009; Patra et al., 2007; Schiedek et 

al., 2007). Contaminants and environmental factors can act synergistically and weaken 

the defence systems and regulation mechanisms as well (Bodin et al., 2004, Table 1.5). 

In this climate-changing era, it becomes clear that it is extremely important to investigate 

the repercussions of exposure to certain chemicals when global warming and ocean 

acidification conditions are considered.  

 

1.5 Sex- and season- associated alterations in Mytilus spp. 

The reproductive cycle of molluscs is dissimilar between males and females, in terms of 

timing for reaching ripe and resting stages (Mladineo et al., 2007; Sunila, 1981), number 

of gametes released at different time points of the spawning season (Anantharaman and 

Craft, 2012), and estrogen and androgen content (Smolarz et al., 2018). Sex may affect 

both contaminant uptake and elimination, and biomarker levels and activities (Blanco-

Rayón et al., 2020; Burger, 2007; Damiens et al., 2004; Jiang et al., 2021; Matozzo and 

Marin, 2010; McClellan-Green et al., 2007; Wilhelm Filho et al., 2001) and natural 

differences in basal antioxidant levels between males and females could favour one sex 

over the other when coping with stressful environments (Gismondi et al., 2012; Grilo et 

al., 2018; Sroda and Cossu-Leguille, 2011). Sex-specific differences were noted in 

exposure studies, such as M. galloprovincialis exposed to tetrabromobisphenol A 

(TBBPA) or 17β-estradiol (E2, Ciocan et al., 2010a; Ji et al., 2016) or D. polymorpha 

exposed to benzo(a)pyrene (Riva et al., 2011). With regard to plastic exposure 

experiments, the literature about sex-specific differences in aquatic organisms is still 

scarce, but it seems that exposure to environmentally relevant levels of polystyrene 

microplastic for two months has sex-specific endocrine disruptive ability in fish Oryzias 

melastigma sexes. In fact, females displayed downregulation of genes involved in the 

hypothalamus-pituitary-gonadal axis and steroidogenesis, with consequent decreased E2 

and testosterone levels in plasma, with opposite results in males (Wang et al., 2019).  

Furthermore, as for many aquatic species, the basal levels of cellular biomarkers in 

mussels vary naturally through the seasons, which also influence the gametogenesis cycle. 

As examples for M. edulis, seasonal changes within sexes were observed for clock-

associated genes involved with endogenous biological rhythms (Chapman et al., 2017) 

and innate immune functionalities were noted to be temperature- and season- sensitive 
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(Wu and Sokolova, 2021). The environmental changes associated with seasons play also 

a decisive role in antioxidant activities, which display low values in winter, due to the 

reallocation of energies for reproduction (Angilletta and Sears, 2000; Power and Sheehan, 

1996), with a consequent increase in reactive oxygen species (ROS) production due to 

the increase in the intracellular respiration (Béguel et al., 2013). Conversely, antioxidant 

levels are usually found high in spring and summer (Agnaou et al., 2014; Dellali et al., 

2001; Elazzaoui et al., 2019), often associated with increased metabolic rate (Orbea et al., 

1999; Viarengo et al., 1991). In exposure experiments, season-related responses were also 

noticed on the hazard quotient of cadmium in M. galloprovincialis exposed to 

combinations of low pH and high temperature in different seasons (Nardi et al., 2017, 

2018).  

Abiotic factors such as temperature and contaminant presence can also have contrasting 

effects when the exposed organisms are in a particular stage of their reproductive cycle. 

The different sensitivity of aquatic species to xenobiotic exposure during the reproductive 

phases has been investigated over the years (Ciocan et al., 2010a; Cubero-Leon et al., 

2010; González-Fernández et al., 2016; Louis et al., 2021; McCahon and Pascoe, 1988). 

For example, in M. galloprovincialis, gonadal bioaccumulation of elements such as 

manganese (Mn), zinc (Zn), arsenic (As) or phosphorus (P) was noted to be sex- and 

maturation- driven (Kapranov et al., 2021). Additionally, the gonadal initial development 

period seemed to be the most sensitive stage to endocrine disruption for mussels (Ciocan 

et al., 2010a). Considering this, assessing sex and gametogenesis stage could be a valuable 

asset in contextualising molecular datasets and interpreting toxicology results, especially 

the ones involving sex-related or reproduction-depended genes. 

 

1.6 Biological responses investigated in this thesis 

This thesis investigated the biological responses of blue mussels, an economically 

relevant species, when exposed to the endocrine disrupting additive DEHP under different 

environmental scenarios. The experimental conditions were chosen considering the 

current state of marine environmental plastic pollution and the expected average climate 

change conditions for the year 2100. Moreover, the choice of combined exposure was 

rationalised considering that exposure experiments involving multiple stressors 
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frequently present a complex array of responses that differ from the ones observed from 

the exposure to the single stress sources (Nowicki and Kashian, 2018). 

In this thesis, Chapters 2 and 3 investigate the effect of different concentrations of the 

endocrine disruptor DEHP in combination with a global warming scenario. Chapter 2 

considers the gonadal alterations at the histological and molecular levels, investigating 

gametogenesis-, stress- and reprotoxicity- related biological responses (Table 1.1). Using 

RNA-sequencing analysis, Chapter 3 focuses on the overall gene expression in male 

gonads. Chapter 4 and 5 analyse mussel responses to DEHP under an ocean acidification 

scenario. Similar to Chapter 2, Chapter 4 analyses mussel responses from histological 

and molecular datasets (Table 1.1), while Chapter 5 analyses behaviours and metabolic 

changes. For the final Chapter 6, the effect of DEHP on female reproductive capacity 

and fertility is examined. The biological responses investigated in this thesis are described 

in detail in the following paragraphs.  

 

Table 1.1 Molecular biomarkers of general stress, reproductive toxicity and pH homeostasis with 

correspondent genes and GenBank accession numbers investigated in this thesis. Biomarkers are 

defined as any measurement at molecular, biochemical, cellular or physiological levels that reflect 

any interaction between a biological system and a potential hazard (WHO, 2001) 

BIOMARKER GENE GENBANK 

ACCESS NO. 

SIZE REFERENCE AUTHOR  

Superoxide 

dismutase 

 

sod 
 

AJ581746 

 

765 bp 

 

Molecular cloning of the Cu/Zn 

superoxide dismutase in the blue mussel 

Mytilus edulis, Manduzio et al., 

unpublished 

Catalase cat AY580271 813 bp, 

partial code 

Peterson et al., (2004) 

Estrogen related 

receptor 

MeER1 AB257132 

 

2036 bp 

 

Puinean et al., (2006) 

Estrogen 

receptor 

MeER2 AB257133 

 

1744 bp 

 

Puinean et al., (2006) 

Heat shock 

protein 70 

hsp70 AF172607 

 

570 bp, 

partial code 

Differential expression of MXR related 

genes in blue mussel (Mytilus edulis), 

Luedeking et al., unpublished 

Carbonic 

anhydrase 

CA2 LK934681.1 1531 bp, 

partial code 

Pratt et al., (2015) 

  



12   

1.6.1 Gametogenesis stage and histological changes  

The reproductive cycle of British mussels has been extensively examined in the past 

decades (Chapman et al., 2017; Lowe et al., 1982; Secor et al., 2001; Seed, 1969). The 

dependency of mollusc gametogenesis on geographic distribution (Virgin and Barbeau, 

2017), endocrine disruptor presence (Siah et al., 2003), environmental conditions 

(Fearman and Moltschaniwskyj, 2010; Numata and Udaka, 2010; Subramaniam et al., 

2021; Tessmar-Raible et al., 2011), nutrient availability and energy reserves (Fearman et 

al., 2009; Hilbish and Zimmerman, 1988; Kang et al., 2006; Newell et al., 1982: Roden 

and Burnell, 1984) is likewise well-known. Considering the sensitivity of Mytilus spp. 

reproductive stages to external stimuli, it is worth noting that their gametogenesis cycle 

cannot be universalised, as it differs between regions or through different years in terms 

of development time or number and duration of the spawning events (Ciocan et al., 2010a; 

Duinker et al., 2021; Lowe, 1982; Secor et al., 2001; Seed, 1969).  

Variations of temperature can also influence the reproductive cycle in molluscs (Fabioux 

et al., 2005; Zapata-Restrepo et al., 2019), similar to other species such as gastropods 

(Sternberg et al., 2010) and fish (Anguis and Cañavate, 2005). Together with other 

environmental stress cues, temperature could induce attenuated seasonality in bivalve 

gametogenesis cycle and increased or advanced spawning activity (Bayne 1976; Petes et 

al., 2008; Philippart et al., 2003; Sreedevi et al., 2014), especially if the gametes are 

mature (Seed, 1976). In male molluscs, thermal stress was previously reported to affect 

M. galloprovincialis sperm quality (Boni et al., 2016) and Crassostrea virginica testicular 

functions (Nash and Rahman, 2019).  

Regarding the acidification effect on mollusc gametogenesis, there is still scarce 

knowledge about the effect of low pH conditions on the reproductive cycle, especially 

considering that coastal species could be highly tolerant to local pH variability due to 

tides, currents or the proximity to river and estuary ecosystems. Recently, Zhao and 

colleagues (2019) found that 40-day exposure to 7.7 pH decreased the percentage of M. 

senhousia spawning gonads, suggesting susceptibility to prolonged acidified conditions 

in the final gametogenesis stages. Reed et al. (2021) also observed unaltered responses in 

terms of size-frequency of oocytes in the benthic bivalves Astarte crenata and Bathyarca 

glacialis under the combination of acidification and warming, suggesting some sort of 

resiliency of Arctic mollusc gametogenesis to climate-changing conditions. However, the 

authors still doubted a successful fertilisation or viable development of eggs in natural 

https://www.sciencedirect.com/science/article/pii/S0025326X21006585?dgcid=rss_sd_all#bb0485
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mollusc
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conditions. In fact, some associated factors such as food availability could still be 

compromised in future climate scenarios, also considering that an abnormal 

gametogenesis cycle could not provide the time necessary for energy storage during the 

resting period, causing consequences such as impairment of the offspring quality or 

alteration in the reproductive capacity (Fearman et al., 2009). 

Considering the effect of EDCs, exposure to these xenoestrogens can cause a wide set of 

histological reactions in molluscs. Exposure to E2 was observed to induce alteration in 

oocyte diameter and vitellin protein content in Crassostrea gigas (Li et al., 1998) and 

increase the gamete release by serotonin in scallops Patinopecten yessoensis and P. 

magellanicus (Osada et al., 1992, 1998). However, little is still known about the effect of 

plasticisers on gametogenesis traits of mussels. 

 

 

1.6.2 Antioxidant system 

Changes in antioxidant levels are biomarkers of contamination and stress for a wide 

variety of marine organisms, including mussels (Regoli et al., 2004; Regoli and 

Principato, 1995). In fact, the incomplete reduction of oxygen (O2) during the respiration 

process is a source of ROS production, which are potent oxidants (Morel and Barouki, 

1999). In normal conditions, the adverse effects of radical species are blocked by a wide 

range of cellular scavengers and antioxidant enzymes (Fig. 1.5, Halliwell and Gutteridge, 

2015; Regoli and Giuliani, 2014). Imbalanced redox homeostasis causes oxidative stress 

in the cell and it can occur after a ROS overproduction or antioxidant defence 

perturbation, leading to DNA damage, lipid peroxidation and enzyme inhibition (Winston 

and Di Giulio, 1991). This can be the effect of exogenous stress such as contaminant and 

xenobiotic presence, hyperoxia or UV irradiation (Morel and Barouki, 1999). 

Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) are 

considered first-line defence antioxidants (Ighodaro and Akinloye, 2018). SOD (EC 

1.15.1.1) enhances the dismutation of two molecules of the reactive superoxide anion (O2
-

) into oxygen and hydrogen peroxide (H2O2), whereas CAT and GPx decompose the 

H2O2. H2O2 is known to be toxic if accumulated at high levels, while at low amounts is 

involved in some cellular functions such as cell proliferation or apoptosis (Ighodaro and 

Akinloye, 2018). SOD is a metalloenzyme that requires a metal as cofactor such as iron 

(Fe), zinc (Zn), copper (Cu) or manganese (Mn) for its activity. Fe-SOD is distributed in 
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prokaryotes and chloroplasts, Mn-SOD is found in eukaryotic mitochondria and in 

prokaryotes, and Cu/Zn-SOD is commonly observed in the cytosol of eukaryotes, 

peroxisomes and chloroplasts (Gill and Tuteja, 2010; Ighodaro and Akinloye, 2018; 

Karuppanapandian et al., 2011). CAT (EC 1.11.1.6) is a 240 kilodalton (kDa) tetrameric 

protein with four similar subunits, each weighing 60 kDa containing one 

ferriprotoporphyrin. It is usually found in the peroxisomes and uses iron or manganese as 

cofactor, reducing hydrogen peroxide (H2O2) to water and oxygen. At low concentrations, 

CAT modules the detoxification of phenols and alcohols in conjunction with the H2O2 

reduction (Regoli and Giuliani, 2014).  

 

Fig. 1.5 Cellular antioxidant defences and pathways in marine organisms from Regoli and 

Giuliani (2014)  

 

1.6.3 Heat shock protein 70 

Heat shock proteins (HSPs) are molecular chaperones involved in cellular protection 

against stressors such as heat, UV light and xenobiotic exposure (Sanders, 1993). HSPs 
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are usually synthesised during normal conditions, highly conserved between bacteria and 

eukaryotes and essential for cell functionality (Wu, 1995). They are found in several cell 

compartments such as cytosol, mitochondria or endoplasmic reticulum (Tutar and Tutar, 

2010). HSPs’ primary function is the prevention of protein aggregation, achieved by the 

interaction of several HSP isoforms and regulatory cofactors that ensure the correct 

spatial arrangement and folding of cellular proteins (Franzellitti and Fabbri, 2005; Kabani 

et al., 2002; Shorter and Lindquist, 2008, Fig. 1.6). 

The HSP isoform 70 (70 kDa) is a highly conserved and versatile member of the HSP 

family that conserves 50% of its sequence between E. coli and humans (Schlesinger, 

1990). HSP70 is linked with protein metabolism under stress conditions, membrane 

translocation, regulatory processes and misfolded protein sequestration (Feder and 

Hofmann, 1999; Fink, 1999; Franzellitti and Fabbri, 2005; Hartl, 1996). For these 

reasons, it is used as a biomarker of stress response to environmental perturbation 

(Encomio and Chu, 2005; Lewis et al., 1999) or xenobiotic exposure (Del Rey, 2011; 

Franzellitti and Fabbri, 2005; Geraci et al., 2004; Koagouw et al., 2021a, b; Liu et al., 

2014). HSP70 consists of a calmodulin-binding site connected to a C-terminal substrate-

binding domain (SBD, ~25 kDa) and an N-terminal nucleotide-binding and highly 

conserved domain (NBD, ~45 kDa) containing an ATP binding site (Mayer, 2010; 

Schlesinger, 1990). The NBD has a horse-shoe structure and it is divided into four sub-

domains (IA, IB, IIA, IIB), while the SBD is divided into a β-sheet base and an α-helical 

lid (Kumar and Mapa, 2018; Tutar and Tutar, 2010).  

In several organisms including mussels, HSP70 is present in a constitutive (HSC70) and 

an inducible (HSP70) form (Franzellitti and Fabbri, 2005; Tutar and Tutar, 2010). The 

constitutive form HSC70 was previously described solely as a molecular chaperon in 

unstressed conditions. In fact, several in vitro experiments reported HSC70 not to be 

stress-dependent in frog kidney epithelial cell lines (Ali et al., 1996) or trout hepatocytes 

(Boone and Vijayan, 2002). However, recent studies observed that prolonged or chronic 

stressors can induce its expression in some animals such as fish exposed to salinity and 

temperature alterations (Deane and Woo, 2004, 2005). Exposure time and different heavy 

metal exposures were as well noted to alter both the constitutive and inducible forms of 

sea urchin Paracentrotus lividus HSP70 (Geraci et al., 2004). Similarly, M. 

galloprovincialis exposed for one week to thermal stress and heavy metals (mercury Hg2+ 

or chromium Cr6+) exhibited distinct temporal-related expressions of the two forms in the 
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digestive glands, constituted by an HSP70 short-term induction and higher levels of 

HSC70 after prolonged exposure (Franzellitti and Fabbri, 2005).  

 

 

Fig. 1.6 Overview of the mammal’s major HSP cellular pathways activated by heat, metabolic 

state, hypoxia and hyperoxia, oxidative stress and pathologies from Fittipaldi et al., (2013) 

 

1.6.4 Carbonic anhydrase 2  

Carbonic anhydrase enzymes (CAs, EC 4.2.1.1) are a group of zinc metalloenzymes 

present in both prokaryotes and eukaryotes that control the intra- and extracellular pH 

homeostasis, catalysing the reversible hydration from carbonic dioxide to bicarbonate 

CO2 + H2O ⇆ HCO3
- + H+ (Richier et al., 2011). They are found in animals, 

photosynthesising organisms and in some non-photosynthetic bacteria (Lindskog, 1997). 

CA isoforms are involved in controlling calcium reserves, ionic transportation, electrolyte 

balance, biocalcification, carboxylation or decarboxylation reactions (Bertucci et al., 

2013; Henry and Swenson, 2000; Lionetto et al., 2006; Sharker et al., 2021; Voigt et al., 

2021; Zoccola et al., 2016, Fig. 1.7). Additionally, some CA isoforms are involved in 

gluconeogenesis and ureagenesis in mammals and photosynthesis in photosynthetic 

organisms (Badger and Price, 1994; Davis et al., 2010).  
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The biomineralization-related α CA family catalyses carboxylation and decarboxylation 

(Sharker et al., 2021). The α type is a family majorly found in the animal kingdom that 

includes different vertebrate isozymes, classified accordingly to their localisation in the 

cell: cytosolic (which includes CAII form), membrane-bound, transmembrane, 

mitochondrial and extracellular (Cardoso et al., 2019; Picaud et al., 2009). They present 

an amino-terminal region, a central antiparallel and twisted β-sheet that surrounds the 

Zn2+ ion with short helices on the molecule surface. The zinc ion is located at the bottom 

of a cone-shaped cavity of the CA active site and interacts with three conserved residues 

of histidine (Lindskog, 1997). So far, there are 16 known isoforms from the α family in 

mammals and numerous novel isozymes in other vertebrates, with distinct biophysical 

properties and localisation in the cells (Esbaugh and Tufts, 2006; Hassan et al., 2012). 

CAII is one of the most studied forms of the α family, as it is well-distributed in animal 

tissues and expressed in almost all cells with a high hydration turnover rate for CO2 

(Lindskog, 1997; Sterling et al., 2001). In mammals, it was observed that I, II and III 

isoforms shared a high similarity of the secondary structures and CAII is involved in nasal 

CO2 chemosensitivity, bone resorption, urine acidification and gas exchange and it could 

be a target in the drug treatment of glaucoma, obesity or cancer (Hassan et al., 2012; 

Lindskog, 1997). In molluscs such as oysters and mussels, it appears that many members 

of the αCA family evolved from different lineage pressures and species-specific gene 

duplication events, which occurred before the divergence between protostome and 

deuterostome (Cardoso et al., 2019).  

A drop in pH is known to induce down-regulation of carbonic anhydrase gene 

transcription in several calcifying species (Zebral et al., 2019), including 

coccolithophores (Richier et al., 2011), corals (Zoccola et al., 2016) and molluscs 

(Dickinson et al., 2012; Ren et al., 2014). A related consequence is the loss of shell 

structural integrity, due to alteration in the capacity to deposit the aragonite and calcite 

(calcium carbonate forms, Fitzer et al, 2014). This makes CA a useful biomarker for pH-

induced responses. Additionally, the measurement of CA activity is a useful tool for 

assessing organism sensitivity to chemical pollutant toxicity (Lionetto et al., 1998). 

Metalloid elements are known to induce alteration in CAs for molluscs and crustaceans 

(Lionetto et al., 2006; Skaggs and Henry, 2002). This could be related to the metal-

binding affinities of CAs and to the effective osmo-, iono- regulatory and acid-base 

disruption ability of certain metals with respect to other chemicals (Bianchini, 2005; 
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Bianchini and Carvalho De Castilho, 1999; Lionetto et al., 1998; Skaggs and Henry, 

2002).  

 

Fig. 1.7 Molecular mechanisms of ion transporters for biomineralisation and calcification in 

marine invertebrates from Clark, (2020). Calcium ions enter the calcification site via calcium 

ATPase and Na+/Ca2+ exchangers. To regulate the balance between internal pH and water, 

carbonic anhydrase produces the by-products bicarbonate ions, which are secreted in the extra 

pallial space and form calcium carbonate with calcium ions  

 

 

1.6.5 Estrogen receptor-like genes  

In most invertebrates, the functions and regulation of endogenous sex steroid hormones 

remain partially understood or unclear in many cases with a consequent lack of 

knowledge about their biomarkers (Puinean and Rotchell, 2006). The presence of sex 

steroids and their related receptor has been studied in several projects involving 

invertebrate species (Bannister et al., 2007; Kajiwara et al., 2006; Köhler et al., 2007; Ni 

et al., 2013; Reis-Henriques et al., 1990; Stefano et al., 2003), highlighting the possibility 

for molluscs to share an archaic estrogen-related signalling mechanism with vertebrates 

(Eick and Thornton, 2011; Thornton et al., 2003). It is worth noting that the presence of 

putative endogenous sex steroids (e.g., progesterone, androstenedione, testosterone, 5α‐

dihydrotestosterone, 17β-estradiol, estrone, androsterone or 3α‐androstanediol) in 

molluscs and their role in the reproductive system has been investigated for over three 

decades and testosterone, estradiol and estrone were as well detected in mussel tissues 
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(Lafont and Mathieu, 2007; Reis-Henriques et al., 1990; Stefano et al., 2003; Zhu et al., 

2003). Some studies still doubt that the presence of steroid hormones in mussels is due to 

an endogenous origin but related to the animals’ filtration and concentration of hormones 

released from other organisms in the water environment (Scott, 2012, 2013). However, 

tissue-specificity and alterations of the receptors involved in the endocrine pathway were 

found after exposure to synthetic estrogens in several publications. As an example, 

estrogen receptor (ER) gene expression was confirmed to occur in the female oocytes and 

follicles but not in the vesicular tubular clusters of M. galloprovincialis (Agnese et al., 

2019; Nagasawa et al., 2015). Furthermore, diverse levels of steroids such as progesterone 

or E2 were found in the two sexes (Reis‐Henriques and Coimbra 1990) or in different 

seasons of the year (Kaloyianni et al. 2005). 

In vertebrates, estrogen receptors (ERs) are a group of nuclear receptors belonging to a 

superfamily of steroid hormones that mediate the signalling involved in the estrogen 

pathway, including the interaction with agonist and antagonist disruptors. They are the 

first regulators within a complex web of signals which regulate reproduction and 

behaviours of vertebrates (Keay and Thornton, 2009). ER consists of an N-terminal 

domain that modulates the transcription, a conserved C-terminal domain that interacts 

with the DNA helix and a ligand-binding domain (Klinge, 2001). When estrogen crosses 

the cell membrane, it binds the estrogen receptor that dimerises in order to bind target 

estrogen-responsive elements (EREs) located in the promoters of target genes and induces 

specific gene transcriptions (Rotchell and Ostrander, 2003). ERs can also regulate the 

target gene expression without binding EREs, for example via protein-protein interaction 

or non-genomic mediation by membrane-associated ERs and signal cascade pathways 

(Björnström and Sjöberg, 2005). ER in mammals is encoded by two subtypes α and β and 

it is activated in response to the binding to the ligand, changing its conformation in 

addition to the dissociation of proteins such as HSPs. Similarly, in fish, receptors for 

androgen and estrogen are located in a nucleus complex with different HSPs that act as 

stabilisers of the dissociation of the receptors during inactivity periods (Rotchell and 

Oestander, 2003).  

Estrogen-related receptors (ERRs) are orphan nuclear receptors that share a similar 

structure and sequence with ERs, being however not activated by estrogens and binding 

their own response elements (Nagasawa et al., 2015). In humans, some ERR isoforms 

were proposed to be prognostic breast tumour markers and it appears that an in vitro 

protein-protein interaction is present between ERR type α and ER type α. Like many 
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nuclear receptors, ERR presents a DNA-binding domain and a C-terminal ligand-binding 

domain. Binding to ligands results in conformational change and cofactor recruitment that 

modify the chromatin and cause expression of the target genes (Horard and Vanacker, 

2003). In invertebrates, the ERRs are not very well understood.  

 

 

Fig. 1.8 ER hypothetical activation process in invertebrates from Rotchell and Ostrader (2003), 

after the estradiol cross of the membrane and the bind within the nucleus and the subsequent bind 

of the estrogen-responsive elements (ERE) and the possible involvement of coactivators and 

corepressors 

 

Regarding Mytilus spp., the pattern of expression of estrogen receptor-like genes seems 

to follow the natural reproductive cycle of mussel gonads. A recent study by Agnese et 

al. (2019) observed the M. galloprovincialis estrogen-related receptor MgER1 highest 

levels in full‐grown oocytes, while estrogen receptor MgER2 had the highest level during 

the vitellogenesis stage, when follicles are ripe. This highlights the possibility of a 

different involvement of the two receptors in the gametogenesis, considering that ER1 is 

activated via a feedback mechanism by downstream factors (Horard and Vanacker, 2003; 

Nagasawa et al., 2015) and ER2 is responsive to estrogen-like factors (Fig. 1.8). Bivalves 

are as well sensitive to endocrine disruptive compounds (Puinean et al., 2006) and 

xenobiotics may interfere in the signalling cascades involved in the endocrine pathways 

and induce abnormalities in invertebrates (Aarab et al., 2006; Janer and Porte, 2007). 
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1.6.6 Respiration and valve behaviours  

For freshwater and marine mussels, behavioural analysis is a non-lethal technique that 

usually observes the movement of valves and feet and quantifies the filtration of water 

through the mantle (Chmist et al., 2019; Curley et al., 2021; Marshall and McQuaid, 2020; 

Naddafi and Rudstam, 2013; Nicastro et al., 2007; Rovero et al., 1999; Shen and 

Nugegoda, 2022). Valve activity can reflect the behavioural reactions of the animal to 

external factors is a well-established analysis for assessing the bivalve stress status (Shen 

and Nugegoda, 2022). Valve gaping activities are known to follow circadian and 

circalunar rhythms (García-March et al., 2008) but can display unique defence 

mechanisms when exposed to different concentrations of contaminants or mechanical 

stressors such as conspecific alarm cues, predator infochemicals, or predator presence 

(Dzierżyńska-Białończyk et al., 2019; Tran et al., 2003).  Chemical cues from predators 

cause behavioural reactions of prey such as bivalves (Nicastro et al., 2007; Rovero et al., 

1999) and observed mussel responses to risk cues include increasing aggregation, 

attachment strength, decreasing the clearance and feeding rate or burial behaviours 

(Hutchison et al., 2016; Naddafi et al., 2007; Naddafi and Rudstam, 2013). Investing 

energy in closing the shells is a first-line defence and an effective anti-predator behaviour, 

as the chances of survival increase if the valves remain shut and predators cannot breach 

the valve gap (Kobak and Kakareko, 2011; Robson et al., 2010).  

Behavioural changes would usually require at least an additional metabolic estimator for 

monitoring the physiological status (Rovero et al., 1999) and respirometry assays are 

often used in combination with animal behaviours (Anacleto et al., 2014; Curley et al., 

2021; Greenshield et al., 2021). Respiration rate is a useful tool for measuring 

physiological state of mussels, considering that environmental stressors can force mussels 

to alter the filtration rate, switch to catabolic process and increase oxygen consumption 

and ammonium excretion rate (Ganser et al., 2015; Spooner and Vaughn, 2008). In 

control conditions, it was evaluated that blue mussels M. edulis of 5.65 cm length had a 

filtration rate of 2800 - 4800 mL of water per hour (Winter, 1973). In mussels such as 

Dreissena polymorpha, it also appears that the clearance rate of cyanobacteria and 

diatoms is impacted differently during predation risk than the clearance of cryptophytes 

and chrysophytes microalgae (Naddafi et al., 2007), suggesting that filtration mechanisms 

are affected by different stressors.  
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Table 1.2 DEHP concentrations found in natural environments. Levels for other phthalates can 

be found in the Supplementary Table 1.1 

COMPOUND TOXICITY SITE CONCENTRATION REFERENCES 

DEHP 

di (2- ethylhexyl) 

phthalate 

C24H38O4 

CAS Number 117-81-7 

 

Reproductive 

toxicity 

 

 

Rivers in the 

Manchester 

area (UK) 

 

0.4 to 1.9 μg/L 

 

Fatoki and 

Vernon, 1990 

  Seawater 

from Tees 

Bay (UK) 

 

0.98 to 2.2 μg/L 

 

Law et al., 1991 

 

  Klang River 

estuary 

(Australia) 

 

3.10 to 64.3 μg/L 

 

Tan, 1995 

 

  Rivers, lakes 

and channels, 

sewage 

effluents, 

sewage 

sludges  

 (Germany) 

0.33 to 97.8 μg/L (surface 

water) 

1.74 to 182 μg/L (sewage 

effluents) 

27.9 to 154 mg/kg dw 

(sewage sludge)  

 0.21 to 8.44 mg/kg 

(sediment) 

 

Fromme et al., 

2002 

  Surface 

seawater 

(Netherlands) 

 

0.9 to 5 μg/L 

Vethaak et al., 

2005 

 

  Seawater and 

sediment 

from False 

Creek 

Harbour 

(Canada) 

 

0.275 μg/L in seawater 

2.1 μg/g dw in sediment  

 

Mackintosh et 

al., 2006 

  Freshwater, 

sediment 

(Netherlands) 

Medial levels 0.33 μg/L 

(freshwater) 

67.4 μg/kg (sediments) 

Peijnenburg and 

Struijs, 2006 

 

  Rainwater 

depositions 

from Paris 

urban area 

(France) 

 

 

0.423 μg/L 

 

 

Teil et al., 2006 

  Seawater 

from Bay of 

Biscay 

(Spain) 

 

(64 + 4) x 10-3 μg/L 

 

Prieto et al., 

2007 

  Seawater and 

atmosphere 

in the North 

Sea 

0.00052 to 0.0053 μg/L in 

seawater (dissolved) 

0.00016 to 0.0058 μg/L in 

the total suspended matter 

0.22 to 0.36 ng/m in 

atmosphere vapour 

 

 

 

Xie et al., 2007 
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0.95 to 1.1 in the particle 

(air) 

  Arctic 448 x 10-6 μg/L Xie et al., 2007 

  Atlantic 

coastal 

marine 

sediments 

(Spain) 

 

0.19 to 2.6 μg/g1 in 

sediments 

 

Antizar-Ladislao, 

2009 

  Barkley 

Sound 

(Canada) 

 

0.01 to 0.95 μg/L 

  

Keil et al., 2011 

  Puget Sound 

(USA) 

0.06 to 0.64 μg/L  Keil et al., 2011 

  Coastal 

seawater, 

Mediterranea

n Sea (Spain) 

 

0.03 to 0.62 μg/L 

 

Sánchez-Avila et 

al., 2012 

  Seawater, 

Pelagos 

Sanctuary 

(Italy) 

0.05 to 0.172 μg/g in the 

Ligurian Sea 

0.05 to 0.084 μg/g in the 

Sardinian Sea 

 

Fossi et al., 2012 

  Marseille 

Bay (French) 

0.0158 to 0.9238 μg/L Paluselli et al., 

2018 

  Bohai Sea 

and Yellow 

Sea (China) 

 

0.0616 to 4.352 μg/L 

Zhang et al., 

2018b 

  Coastal 

waters (South 

Korea) 

 

0.03–0.30 μg/L 

 

Heo et al., 2020 

  Cochin 

estuary 

(India) 

 

ND – 3.861 μg/L 

Ramzi et al., 

2020 

  House dust  23.5 to 2838.5 µg/g Xu and Li, 2020 

  Microplastics 

and 

wastewater in 

the 

wastewater 

treatment 

plant (Iran) 

Averages between 17.49 

and 83.3 μg/g for 

microplastics 

Averages between 8.13 

and 30.8 μg/L for 

wastewater 

Takdastan et al., 

2021 

  Marine water 

(Tunisia) 

Average 71.7 μg/L Jebara et al., 

2021 
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Table 1.3 Selected exposure experiments with aquatic species exposed to DEHP concentrations. 

Levels for other phthalates can be found in the Supplementary Table 1.2 

COMPOUND LEVEL TIME SPECIES REFERENCES 

DEHP 

 

 

0, 500, 1000, and 

5000 µg/L 

 

 

1 – 90 dph 

O. latipes 

(Japanese medaka, 

embryo-larval stage) 

 

Metcalfe et al., 

2001 

 

 

 

1, 5 and 10 

µg/L 

 

1 - 3 months 

O. latipes 

(Japanese medaka) 

(Embryo-larval stage) 

 

Kim et al., 2002 

 400, 800, and 1500 

mg/kg 

4 weeks Salmo salar (Atlantic 

salmon early stages) 

Norman et al., 2007 

 0.1-10 μg/L  91 days Poecilia reticulata 

(guppy fish) 

Zanotelli et al., 

2010 

 0.5, 50 and 5000 

mg/kg 

10 days Danio rerio  

(males) 

Uren-Webster et al., 

2010 

 

 

0.02, 0.2, 2, 20, 40 

μg/L 

 

21 days 

D. rerio 

(Adult females) 

Carnevali et al., 

2010 

 0.05, 0.1, 1, 10 and 

100 nM 

 

4 days 

D. rerio 

(Primary hepatocyte 

cultures) 

Maradonna et al., 

2013 

 0.4 mg/L 

and 

4.0 mg/L 

0, 12, 36, 60, 

96 hours 

Venerupis philippinarum 

(clam) 

 

Lu et al., 2013b 

  

0.1 and 0.5 mg/L 

 

6 months 

O. melastigma 

(From hatching to 

adulthood) 

 

Ye et al., 2014 

 1, 10, and 100μg/L 30 days Carassius auratus 

(fish) 

Golshan et al., 2015 

 up to 2 mg/L 96 h Brachionus calyciflorus 

(rotifer) 

Cruciani et al., 2016 

 up to 5120 µg /L 

(adults) 

Up to 

1.95 µg /L 

(nauplii) 

 

 

48 hours 

 

Parvocalanus 

crassirostris 

(calanoid) 

 

 

Heindler et al., 

2017 

 10 μM, 100 μM 

and 500 μM 

2.5 days of 

incubation at 

room 

temperature  

 

Caenorhabditis elegans  

(germline) 

 

Cuenca et al., 2020 

 10, 1, and 0.1 

mg/L 

72 hours C. elegans  

 

Li et al., 2021b 

DEHP, 

DMP 

(dimethyl 

phthalate) 

and 

DBP 

 

100 µg/L 

and 

500 μg/L 

 

 

24 hours 

 

 

Crassostrea virginica 

 

(oyster) 

 

 

 

Wofford et al., 1981 
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(dibutyl 

phthalate) 

 100 μg/L 

and 

500 μg/L 

24 hours Penaeus 

aztecus 

(Brown shrimp) 

Wofford et al., 1981 

 

 

Table 1.4 Selected exposure experiments with mussels exposed to DEHP. Levels for other 

phthalates or endocrine disruptive chemicals can be found in the Supplementary Table 1.3 

PHTHALATE LEVEL TIME SPECIES REFERENCES 

Plasticiser 

 

DEHP 

 

100 μL injected 

through the 

adductor muscle 

100 μg/L 

for water 

exposure 

Injection through the 

adductor muscle for 

7 days 

or 

Water 

exposure for 21 days 

 

 

M. 

galloprovincialis 

 

 

Cancio et al., 1998 

 

 

 500 μg/L 

every day 

 

 

21 days 

M. 

galloprovincialis 

 

Orbea, et al, 2002 

 

 

 

 

 

 

 

100 μL injected 

through the 

adductor muscle 

 

100 μg/L 

for water 

exposure 

Injection through the 

adductor muscle for 

7 days 

or 

Water 

exposure for 21 days 

 

 

M.  

galloprovincialis 

 

 

Marigómez and 

Baybay-Villacorta, 

2003 

Plasticisers  

DEHP 

and 

DIDP 

5 μg/L 

and 

50 μg/L 

 

28 days 

+ 

14 days of 

depuration 

 

M. 

edulis 

 

Brown and 

Thompson, 1982 
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Table 1.5 Selected experiments with bivalve molluscs exposed to multiple stressors 

COMPOUND STRESS CONDITIONS TIME SPECIES REFERENCES 

Heavy metal 

Cadmium 

50 mg/L 

in combination with 

thermal stress (12, 20 and 

28०C) 

 

45 days 

 

C. virginica 

 

Cherkasov et al., 

2007 

Heavy metal 

Mercury 

45μg/L in combination with 

thermal stress 

72h or 14 

days 

P. viridis Verlecar et al., 

2007 

   Heavy metals 

Cadmium, 

Lead, Copper 

30mg/L at at two pH levels 

(7.7 and 6.2) 

 

35 days 

 

M. edulis 

 

Han et al., 2014 

Heavy metal 

Cadmium  

50 μg/L in combination 

with +8 °C thermal stress  

 

24 hours 

M. 

galloprovincialis 

Izagirre et al., 

2014 

Polycyclic 

aromatic 

hydrocarbon  

Fluoranthene  

 

30 μg/L in combination 

with nano- and micro- 

plastic particles (mix of 2 

and 6 μm for a final 

concentration of 32 μg/L) 

7 days 

exposure  

+ 

7 days 

depuration 

 

Mytilus spp. 

 

Paul-Pont et al., 

2016 

Heavy metal 

Arsenic 

4 mg/L under - 0.5 pH 

reduction 

28 days Crassostrea 

angulata and 

C.gigas 

Moreira et al., 

2016 

Pharmaceutical 

Diclofenac  

0.00, 0.05 and 0.50 μg/L 

under pH −0.4 units and pH 

−0.7 units  

7, 14 and 21 

days 

M. 

galloprovincialis 

and 

R. philippinarum 

Munari et al., 

2018 

Paralytic 

shellfish toxins 

(PSTs) mix 

Gymnodinium catenatum 

diet for 5 days and non-

toxic diet for 10 days in 

combination with  

+5 °C elevated temperature 

and -0.4 units pH 

 

5 days 

 +  

10 days 

 

M. 

galloprovincialis  

 

Braga et al., 

2018 

Pharmaceutical 

 

Carbamazepine  

6.3 μg/L in combination 

with 0.05- 50 mg/L nano- 

and micro- plastic particles 

 

96 hours 

M. 

galloprovincialis 

Brandts et al., 

2018 

Heavy metal 

Cadmium   

20 μg/L in combination 

with +5 °C elevated 

temperature and -0.6 units 

pH 

 

28 days 

 

M. 

galloprovincialis 

 

Nardi et al., 

2017, 2018 

Polycyclic 

aromatic 

hydrocarbon 

Phenanthrene  

100 μg/L in combination 

with pH changes (6.5, 7.0 

and 8.2) 

 

24 and 96 h 

 

Crassostrea 

gasar 

 

Lima et al., 2019 

Antibacterial 

Pharmaceutical 

drugs 

Triclosan     

Diclofenac   

1 μg/L in combination with 

30 (control), 25 and 35 psu 

salinity  

28 days M. 

galloprovincialis 

Freitas et al., 

2019 
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Heavy metal 

Copper  

25 μg/L 

at three pH levels (8.1, 7.8 

and 7.6)  

14 and 28 

days 

 

C. gigas 

 

Cao et al., 2019 

Heavy metal 

Mercury  

10 μg L and 25 μg L red 

fluorescent PE microbeads 

(144 ± 27 particles per mL) 

 

96 h 

 

R. philippinarum 

 

Sıkdokur et al., 

2020 

Pharmaceutical 

drug 

Diclofenac 

0.05 and 0.5 µg/L under 

−0.4 units and pH −0.7 

units 

14 and 21 

days 

M. 

galloprovincialis 

Munari et al., 

2020 

Heavy metal 

Cadmium 

10 μg/L  

and + 5 °C 

 

7 days 

 

D. polymorpha 

 

Louis et al., 2021 

Food 

Caffeine  

0.05 and 0.5 µg/L under pH 

−0.4 units and pH −0.7 

units 

14 and 21 

days 

M. 

galloprovincialis 

Munari et al., 

2020 

Plastic additive 

Antibacterial 

Triclosan  

1 μg/L 

After 30 days of 

acclimation at climate 

change conditions to +3 °C 

elevated temperature and -

0.4 units pH 

 

 

7 days 

 

 

Ruditapes 

philippinarum 

and R. 

decussatus 

 

 

Costa et al., 2020 

Irregular 

polystyrene 

microplastics 

6.4, 160, 4000, 100,000 

p/mL 

at either 14, 23 or 27 °C 

 

14 days 

 

D.  polymorpha 

Weber et al., 

2020 

Pharmaceutical 

drug 

Carbamazepine  

3.00 μg/L in combination 

with 7.1 pH 

 

28 days  

Scrobicularia 

plana 

Freitas et al., 

2020 

Polystyrene 

Microspheres 

2 mm, 0, 10, 104 and 106 

particles/L under two pH 

levels (7.7 and 8.1) 

14 days +  

7-day 

recovery  

 

M. coruscus 

Wang et al., 

2020 

Plastic additive 

DEHP  

0.5 and 50 μg/L in 

combination with +3 °C 

elevated temperature 

 

7 days 

 

Mytilus spp. 

Mincarelli et al., 

2021 

Plastic additive 

DEHP  

0.5 and 50 μg/L in 

combination with -0.4 units 

pH  

 

7 days 

 

M. edulis 

Mincarelli et al., 

2022 

Illicit drug 

Cocaine  

0.5, 5.0, and 50 μg/L in 

combination with different 

pH values (8.3, 8.0, 7.5, 

7.0, 6.5, and 6.0) 

96 h P. perna  da Silva Souza et 

al., 2021 

Pharmaceutical 

drug 

Carbamazepine  

1 µg/L under 7.6 pH 28 days + 10 

days of 

depuration 

M. 

galloprovincialis 

Mezzelani et al., 

2021 

Zinc oxide 

nanoparticles 

(0, 10, 100 μg/L and 

warming (+5 °C) 

21 days M. edulis Wu and 

Sokolova, 2021 

Pharmaceutical 

drug 

Carbamazepine  

Cetirizine 

CBZ, 1 μg/L + CTZ, 0.6 

μg/L under +4 °C 

thermal stress 

28 days R. philippinarum Almeida et al., 

2021 

Personal care 4 mg/L in combination with    
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product additive 

Sodium lauryl 

sulfate   

30 (control), 25 and 35 psu 

salinity  

28 days M. 

galloprovincialis 

Freitas et al., 

2021 

Pharmaceutical 

drug 

Carbamazepine  

Cetirizine  

CBZ, 1 μg/L + CTZ, 0.6 

μg/L and salinity changes 

(15, 25 and 35 psu) 

 

28 days 

 

R. philippinarum 

 

Almeida et al., 

2022a 

Pharmaceutical 

drug 

Carbamazepine  

Cetirizine  

CBZ, 1 μg/L + CTZ, 0.6 

μg/L and pH changes (8.0 

and 7.6) 

 

28 days 

 

R. philippinarum 

 

Almeida et al., 

2022b 

 

1.7 Thesis aim and hypothesis  

The present project aims to investigate the relationship between single and combined 

short-term responses of blue mussels to contaminants and environmental factors ( i.e., 

DEHP exposure, increased temperature and low pH). This work is relevant for 

understanding the effect of plastic additives on sentinel species, alone or against the 

climate-changing backdrop of global warming and ocean acidification.  

This thesis hypothesises that:  

 The endocrine disruptive chemical DEHP will have an effect on reproductive 

traits of mussels.  

 The combined effect of climate change conditions with plasticiser exposure will 

be able to stimulate a stronger effect in comparison with the responses to the single 

stressors. 

Assuming that future climate conditions (i.e., global warming and ocean acidification) 

will increase the leakage of dangerous additives from plastic items into the environment, 

marine species will be exposed to significant concentrations of these toxic compounds.  

Considering this, the combination of altered climate conditions and DEHP presence could 

possibly result in more pronounced consequences in terms of general stress responses and 

variations in the reproduction cycle. Direct exposure to endocrine disruptors such as 

DEHP could lead to alterations of males and females’ endocrine systems, such as the 

expression of reproductive pathway-related genes (i.e., MeER1, MeER2), possibly at 

different stages of the gametogenesis cycle. In addition, the altered climate conditions 

will induce an additional imbalance in the cellular system involved in the stress response, 

intended as the expression of genes involved in the antioxidant pathway, general stress or 

pH homeostasis (sod, cat, hsp70, CA2), metabolic alterations (i.e., respiration and valve 
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behaviours) and histological abnormalities, such as spawning events out of the spawning 

season. 
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Chapter 2 

The effects of thermal stress and DEHP exposure on histological and 

molecular outcomes  
 

2.1 Introduction  

This chapter aims to investigate the effect of plastic pollution in the context of global 

warming on sentinel species. Specifically, blue mussels Mytilus spp. were exposed to 

DEHP and increased temperature, separately and in combination through a factorial  

design. Two temperatures and two concentrations of DEHP were chosen following the 

IPCC scenarios for the end of the century and the current phthalate levels found in marine 

environments. Biomarkers for cellular stress and alterations of the reproductive cycle 

were investigated and the changes in the gametogenesis status of male and female mussels 

were observed as a biomarker of reproductive alterations. Genes coding for the heat shock 

protein 70 and the antioxidant enzymes superoxide dismutase and catalase (hsp70, sod 

and cat) were studied as representatives of the mussel cellular response to stress. Genes 

sod and cat were chosen as they can counteract the damaging effect of oxyradicals (Regoli 

and Giuliani, 2014), while hsp70 is linked not only to changes in temperature, but also 

with protein metabolism under stress conditions, such as environmental perturbation and 

xenobiotic exposure (Encomio and Chu 2005; Franzellitti and Fabbri, 2005; Koagouw et 

al. 2021a, b; Lewis et al. 1999). Genes for estrogen-related receptor (MeER1) and 

estrogen receptor (MeER2) were chosen as reprotoxicity parameters because of their 

possible involvement in estrogen signalling and the reproductive cycle in Mytilus species 

(Ciocan et al., 2011; Nagasawa et al., 2015). Their expression is also reported to be 

different during the reproductive stages of mussel gonadal maturation and exposure to 

estrogens (Agnese et al., 2019; Ciocan et al., 2010b). 

From the second half of the 20th century, greenhouse gases (GHG) and aerosols have 

been considered the most-likely major climate drivers (responsible for >50% of the global 

change) of the tropospheric warming and the increase of their levels is unequivocally 

caused by human activities (IPCC, 2021). Increasing GHG levels contribute to the forcing 

imbalance between the radiation from the Sun and the energy lost to space as reflected 

sunlight and thermal emissions from Earth. This positive net radiation has been causing 

an over-accumulation of energies that transmuted into heat, which is only partly reduced 

by the increased loss of energy to space in response to surface warming (Hansen and Sato, 

https://link.springer.com/article/10.1007/s11356-022-23801-3#ref-CR23
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2004; Hughes, 2000; IPCC, 2021; Mitchell et al., 1989; Solomon, 2009). In the period 

2011 - 2019, CO2 atmospheric levels reached 410 ppm, while other GHGs such as CH4 

and N2O reached 1866 ppb and 332 ppb, respectively. These concentrations were reported 

with high confidence to be the highest in at least 2 million years for CO2 and 800,000 

years for CH4 and N2O. Between 2001 and 2020, the global surface temperature increase 

by anthropogenic cause was estimated to be almost 1 degree (0.84 - 1.10 °C) higher than 

the temperature in the 1850 - 1900 time period, which represents the earliest complete 

observations for the estimation of the global surface temperature (IPCC, 2021). Likewise, 

the ocean temperature has been increasing on average by a little more than 0.1 °C per 

decade in the last 30 years (Lima and Wethey, 2012). According to the different emission 

scenarios (SSPs), the most recent report from IPCC (AR6, 2021) assessed the current and 

projected values for global surface temperature (Fig. 1.3 and 2.1).  

 

 
Fig. 2.1 Contributions to the increase of global surface temperature according to the different 

SSPs and projected emissions. From Climate Change 2021: The Physical Science Basis. 

Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 

on Climate Change (IPCC, 2021) 

 

The number of publications on the effect of temperature on plastic products has grown 

exponentially in the past decades, whether taking fragments (Bertucci and Bellas, 2021; 

Weber et al., 2020) or additives (Ho et al., 1999; Rose et al., 2012; Wu et al., 2022) into 

observation. Considering Mytilus spp. experiments, the exposure to plastic additives 

alone can have negative effects on lipid homeostasis (Balbi et al., 2017), shell formation 

(Balbi et al., 2016), antioxidant and peroxisomal enzyme activities (Cancio et al., 1998; 
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Orbea et al., 2002; Xu et al., 2021a), lysosomal enlargement and membrane stability 

(Marigómez and Baybay-Villacorta, 2003) at levels of 1 –500 μg/L.  

Temperature is one of the factors that promote migrations of chemicals from the plastic 

matrix into the environment (Teuten et al., 2009). Increasing temperature and relative 

humidity enhanced the degradation of polylactic acid plastic films of high molecular 

weight (Ho et al., 1999) and can accelerate the leaching of DEHP from medical PVC 

infusion equipment both in dynamic systems and after static contact in lipid infusates 

(Rose et al., 2012). Zimmermann et al. (2021) recorded the leaching process from eight 

common polymer types with everyday use and available from the market (high-density 

and low-density polyethylene; polystyrene; polypropylene; polyethylene terephthalate; 

polyvinyl chloride; polyurethane; and polylactic acid) into a water environment at 40 °C. 

After 10 days, between 1 and 88% of additives migrated into the water medium, some of 

them related to oxidative, anti-androgen and estrogen effects. Leachates from plastic 

items are known to induce alteration in general stress parameters of M. galloprovincialis 

(Capolupo et al., 2021) and affect the early stages of bivalve molluscs, such as in the 

development of the commercial clam Meretrix meretrix D-veliger larvae (Ke et al., 2019) 

or in the survival and morphology of Perna perna embryos (Gandara e Silva et al., 2016). 

In this chapter, the responses of blue mussels Mytilus spp. to DEHP exposure and 

increased temperature were investigated, separately and in combination, through a 

factorial design. The following outcomes were analysed: histological changes at the level 

of gonadal maturation and gene expression of genes involved in the stress response (sod, 

cat and hsp70) and biomarkers of reprotoxicity (MeER1 and MeER2). The following 

hypotheses were tested: I) the endocrine disruptive additive DEHP will have an effect on 

reproductive features (i.e., histological changes of the gonads and expression of 

biomarkers of reprotoxicity) and II) the combined effect of high temperature and DEHP 

exposure will have a stronger effect in comparison with the responses to the single 

stressors. 

 

2.2 Materials and Methods: Experimental design  

Adult blue mussels (n = 180) were collected at low tide from the intertidal zone at Filey 

Bay, North Yorkshire, UK (54° 13´ longitude; 0° 16´ latitude, Twater = 11 °C; pH = 8.07, 

Fig. 2.2), in November 2018 and transported to the aquarium facilities of the University 
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of Hull. Mussels were not cleaned from sand and mud nor scrubbed from seaweed and 

barnacles to avoid additional physical stress. Mussel lengths were measured to be 5.4 cm 

± 0.6 cm (length mean ± standard deviation). Mussels were randomly divided into the 

treatment tanks, independently from their different size, to keep the experiment unbiased 

and as possible comparable to the natural conditions of a mussel population. This 

condition was chosen also considering that animals from the same locality are usually 

found to be at the same sexual maturation state independently by their size (Seed, 1969). 

Mussels were randomly divided into six different 4-litre continuously aerated glass tanks 

for each treatment (5 mussels for each tank at a density of 1 mussel per 0.8 litre) and kept 

for acclimation for 12 days in artificial saltwater (Premium REEF-Salt, Tropical Marine 

Centre©, Chorleywood, UK) at laboratory conditions. These were a salinity of 35‰ and 

a pH of 8.1 units, a photoperiod of light: dark = 10h:14h and water temperature of 11°C 

(temperature control treatments CTRL) and 14°C (high temperature treatments HIGH T). 

The control temperature was chosen in line with the average temperature of Filey Bay 

recorded in the days preceding the collection. The acclimation of 12 days was chosen as 

the optimal period for temperate marine bivalves in laboratory-based experiments to 

ensure the reach of a new physiological steady state after an environmental shift (8-12 

days, Khlebovich, 2017; Thompson et al., 2012; Wu and Sokolova, 2021). A total 

increase of 3°C for the high-temperature treatment (T = 14°C, HIGH T) was chosen 

considering the SSP 3 - 7 mean temperature range of the global warming scenarios 

projected for the end of the century, assuming the CO2 emissions remain high and double 

from current levels by 2100 (IPCC, 2021). Animals in Filey are subjected to similar 

temperatures during spring-summer months, but 14°C in wintertime is still considered an 

out-of-the-season alarming thermal event.  
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Fig. 2.2 Filey Brigg, Filey Bay, North Yorkshire, UK (54° 13´ longitude; 0° 16  ́ latitude), the 

collection site adjacent to the Holderness marine conservation zone 

 

Mussels were not fed during the exposure, as the interpretation and comparison of 

laboratory findings in short-term exposure experiments is often biased and modulated by 

administered food type and feeding regime (Kloukinioti et al., 2020). Artificial saltwater 

was prepared the day before each water change, in order to allow the water to adjust to 

the temperature-controlled rooms. In the high temperature treatment, temperature was 

progressively raised by 1°C during the first three days of acclimation by adjusting ambient 

air temperature in a climate-controlled room, in order to avoid an immediate temperature-

induced shock. After the acclimation period, mussels from normal and higher temperature 

treatments were exposed for seven days to two different concentrations of DEHP (0.5 and 

50 µg/L). Water was changed every second day and DEHP was dosed right after ( i.e., 

days 1, 3 and 5). Temperatures were kept at 11 °C or 14 °C, respectively, which yielded 

a total of six treatments (Fig. 2.3 - 2.7). Salinity remained constant at 35 ± 1 psu over the 

course of the experiment in all conditions. Temperature, pH and salinity were measured 

daily (Table 2.1) with a digital thermometer (model ama-digit ad 15 th, Amarell 

Thermometer, Kreuzwertheim, Germany), an Accumet® portable pH-metre (Thermo 

Fisher Scientific, Loughborough, UK) and a digital seawater refractometer (Hanna 

Instruments, Woonsocket, USA). 

DEHP (≥ 99.5% purity) was obtained by Sigma Aldrich®, Gillingham (UK). Due to its 

low solubility in water, DEHP was dissolved in ethanol, in order to prepare a stock 

solution of 1 mg/mL. Ethanol was chosen as a suitable solvent already used in 

experimental exposure to DEHP (Carnevali et al., 2010; Heindler et al., 2017; Lu et al., 
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2013b; Maradonna et al., 2013). DEHP was dosed every other day and the two DEHP 

concentrations of 0.5 μg/L and 50 μg/L were chosen from the literature, aligned to the 

DEHP levels detected in natural environments, where the minimum and maximum 

average levels for marine environments were found to be 0.145 μg/L (Sánchez-Avila et 

al., 2012) and 71.7 μg/L (Jebara et al., 2021). After seven days of exposure, mussels were 

sampled (Unlicensed animal ethics approval reference no #U080/FEC_2021_11, 

University of Hull) and tissues from gonads were collected for molecular and histological 

analyses. For the molecular analysis, ca. 1.0 cm2 of gonad tissue was dissected and 

immersed in 1 mL RNAlater® Stabilisation Solution (Thermo Fisher Scientific, 

Loughborough, UK) and stored at -80 °C until the analysis. Approximately the same 

quantity of tissues was stored in 1 mL neutral-buffered 10% formalin solution (Sigma 

Aldrich, Gillingham, UK) at room temperature for histological analysis.  

 

 

 
Fig. 2.3 Experimental design for the 7-day exposure with the chosen parameters for temperature 

(11 and 14°C) and DEHP (nominal concentrations 0, 0.5 and 50 μg/L) 
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Fig. 2.4 Picture from exposure room 1 (control temperature room) - experimental tanks with 

mussels at 11°C, covered in non-PVC cling film 

 

 

Fig. 2.5 Picture from exposure room 2 (high temperature room) - experimental tanks with mussels 

at 14°C, covered in non-PVC cling film 
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Fig. 2.6 and 2.7 Details of mussels (5 individuals for 4 litres) in the exposure tanks, covered in 

non-PVC cling film 

Table 2.1 Experimental treatments, and measurements of temperature, pH, and salinity values. 

All parameters are expressed as mean ± standard deviation 

Name of treatment Description Temperature 

(°C) 

pH 

(Units) 

CTRL Control temperature, no DEHP  11.16 ± 0.22 8.16 ± 0.09 

LOW DEHP Low DEHP concentration  11.22 ± 0.23 8.09 ± 0.07 

HIGH DEHP High DEHP concentration 11.31 ± 0.23 8.06 ± 0.07 

HIGH T Future temperature, no DEHP  13.92 ± 0.48 8.19 ± 0.09 

LOW DEHP HIGH T Future temperature and low DEHP 

concentration 

13.95 ± 0.55 8.16 ± 0.09 

HIGH DEHP HIGH T Future temperature and high DEHP 

concentration  

14.06 ± 0.55 8.06 ± 0.10 

 

2.3 Materials and Methods: Wax infiltration and H/E staining  

Samples fixed in 10% buffered formalin (Sigma-Aldrich, Gillingham, UK) were initially 

washed with 0.01 M phosphate-buffered saline (PBS, Sigma Aldrich, Irvine, UK) for 15 
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minutes. After that, samples were dehydrated with increasing ethanol (EtOH, Fisher 

Scientific, Loughborough, UK) concentrations as follows: 70% for 15 min, 90% for 15 

min, 100% for 15 min, a second 100% EtOH step for 15 min step and a final 100% step 

for 30 min. Finally, samples were cleared with Histoclear II (National Diagnostics, 

Atlanta, USA) for an initial 20 min and again left overnight, to allow the removal of 

alcohol from the tissues. The day after, the samples were embedded in paraffin wax 

(VWR, Poole, UK) in an EG 1160 Paraffin Wax Embedding Centre (Leica Microsystems, 

Milton Keynes, UK). The wax was left to infiltrate the tissues at high temperature (~65°C) 

in a first step for 30 min and a second step for 45 min. In the final step, tissues were 

allowed to set on the chilled surface (~ -5°C) on PrintMate™ Slotted Cassettes (Fisher 

Scientific, Loughborough, UK). Tissue sections (10 µm) of wax-embedded gonads were 

cut on a Shandon Finesse® Manual Rotary Microtome 325 (Thermo Fisher Scientific, 

Loughborough, UK) and placed briefly in a heated warm bath (~50°C) to warm the wax 

before positioning the sample on a SuperFrost™ Ground 90° Microscope Slide (Fisher 

Scientific, Loughborough, UK). The slides were dried overnight and the next day they 

were briefly passed through a Bunsen burner flame to melt the wax. Slides were placed 

in Histoclear II for 10 min and rehydrated following the steps: 3 min in EtOH 100%, 3 

min in EtOH 95%, 3 min in EtOH 75%, 3 min in EtOH 45% and 3 min in EtOH 25%. In 

order to stain the basophil structures, samples were placed in the red stainer Mayer’s 

haematoxylin solution (Sigma-Aldrich, Schnelldorf, Germany) for 5 min and then rinsed 

in running tap water for 10 min. Tap water was used as the contained minerals cause the 

pH to be basic enough to change the colour contrast to purple/blue. Samples were then 

dehydrated following the steps: 2 min in EtOH 25%, 2 min in EtOH 45%, 2 min in EtOH 

75%, 2 min in EtOH 95% and counterstained with the pink acidic dye eosin Y alcoholic 

solution (Sigma-Aldrich, Schnelldorf, Germany) for 1 min, which allowed to counterstain 

acidophilic structures such as the cytoplasm in pink. Slides were then washed in 95% and 

100% ethanol and finally cleared in Histoclear II for 5 min. Samples were left overnight 

to dry and then mounted with non-aqueous DPX (Sigma-Aldrich, Gillingham, UK) and 

borosilicate glass rectangular coverslips (Fisher Scientific, Loughborough, UK). Prior to 

microscopic analysis, microscope slides were coded, in order to conduct a blind 

observation. Males and females were identified under a light microscope, and the 

following stages were assessed, as described by Seed (1969): 
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I. Resting or spent gonad: no evident presence of sexuality (Fig. 2.8 A). This 

includes virgin juveniles with immature reproductive systems and spawned 

animals in a spent state. 

II. Development stage 1: small follicles in males (Fig. 2.8 B), and irregular follicles 

and small oocytes in females (Fig. 2.9 A). The sex of very early stages is often 

difficult to recognise, as the connective tissue appears as a dense matrix with 

islands of germinal tissue. 

III. Development stage 3: larger follicles half occupied by early gametogenesis stages 

and mature and ripe gametes (Fig. 2.8 C and 2.9 B). The stored food in the 

connective tissue participates in the increase of the gonadal mass. 

IV. Development stage 5: mature stage (Fig. 2.8 D and 2.9 C). The transition from 

morphological to physiological ripeness could last for weeks or a few months, 

and in this stage, females exhibit a few small oocytes, with compacted and 

polygonal-shaped ova. In males, there are distended follicles with ripe 

spermatozoa. 

V. Spawning stage 3: follicles display empty spaces, with some ripe spermatozoa 

(Fig. 2.8 E) or mature rounded eggs still present (Fig. 2.9 D). Very few early 

stages are observable and the mantle is not fully covered by the reproductive 

tissues. 

VI. Spawning stage 1: this stage is characterised by the presence of residual 

spermatozoa and ova in the follicles (Fig. 2.8 F). They might undergo cytolysis 

by ameboid phagocytes whose nuclei usually are darkly stained with 

haematoxylin.  
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Fig. 2.8 Gametogenesis stages of 10 μm gonadal tissue sections stained with haematoxylin and 

eosin of males. Resting stage (undetermined sex, A, at 10× magnification), follicles at 

development 1 (B, 10×), development 3 with different follicle sizes (i and ii, C, 10×), mature 

stage (D, 10×), empty follicles at spawning 3 (E, 10×) and spawning 1 (F, 10×). Scale bars 

represent 200 μm. Images were modified for brightness and contrast 

 

Each stage was categorised by a maturity factor (MF):  

I. MF = 1 for resting or spent gonad.  

II. MF = 2, developing gonads (stage 1 and 3).  

III. MF = 3, mature gonads.  

IV. MF = 4, spawning gonads (stage 1 and 3). 

Then, the sexual maturity index (SMI) was calculated according to the equation 

established by Siah et al., (2003): SMI = Σ (proportion of each stage * maturity factor).  
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Fig. 2.9 Gametogenesis stages of 10 μm gonadal tissue sections stained with haematoxylin and 

eosin of females. Irregular follicles and small oocytes in development 1 (A, 10×), early (i) and 

mature (ii) gametes in development 3 (B, 10×), mature stage (C, 10×) and empty follicles in 

spawning 3 (D, 10×). Scale bars represent 200 μm. Images were modified for brightness and 

contrast 

 

2.4 Materials and Methods: Total RNA isolation  

Gonad tissues were preserved in RNAlater® Stabilisation Solution (Thermo Fisher 

Scientific, Loughborough, UK) and stored at -80°C until molecular analysis. Random 

samples (approx. 10 mg of gonad tissue, n = 96) were selected and blindly coded for the 

analysis. In detail, 8 female gonads and 8 male gonads for each treatment were processed 

for the total RNA extraction. Before every RNA extraction, all the equipment and work 

surfaces were cleaned with RNAse Away (Fisher Scientific, Loughborough, UK), to 

eliminate RNase and DNA contamination. The High Pure RNA Isolation Kit (Roche 

Applied Science, Burgess Hill, UK) was used for the purification of the intact total RNA 

from tissue samples, with an additional DNase I digestion step, in order to remove 

contaminating DNA. Approximately 10 mg of gonadal tissue was weighed on an 

analytical table scale PS-100 (Fisherbrand, Loughborough, UK) and homogenised in 400 

μL of Lysis Binding Buffer (4.5 M guanidine-HCl, 100 mM sodium phosphate pH 6.6 at 

25°C) using a rotor-stator homogeniser (IKA, Staufen, Germany) in a nuclease-free 2 mL 
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microcentrifuge tube (Fisher Scientific, Loughborough, UK). The homogenisation step is 

considered essential for an efficient disruption of the cell walls and plasma membranes 

for the release of the sample RNA. Moreover, the homogenisation step reduces the 

viscosity of the lysates produced by the disruption and shears the high-molecular weight 

cellular components, such as genomic DNA. All the steps (unless stated otherwise in the 

manufacturer’s protocol) were conducted on ice. The lysate was centrifuged for 2 minutes 

at 13.000 x g in a centrifuge 5424 (Eppendorf®, Hamburg, Germany) which eventually 

formed a pellet of insoluble cell debris. After the centrifugation, the supernatant was 

transferred into a clean nuclease-free 1.5 mL “Crystal Clear” microcentrifuge tube and 

half of its volumes of EtOH 100% (Fisher Scientific, Loughboroug, UK) was added and 

mixed well. The mix was then transferred into a High Pure filter tube (polypropylene 

tubes with two layers of glass fibre fleece, Roche Applied Science, Burgess Hill, UK) 

combined with a collection tube. Then, the tubes were centrifuged for 30 seconds at 

13,000 × g in a standard tabletop microcentrifuge miniSpin plus (Eppendorf®, Hamburg, 

Germany). After inspection of the dryness of the glass fleece, the flow-through liquid was 

discarded. In the event of the glass fleece still appearing wet, another centrifuge step (30 

seconds at 13,000 × g) was added. Then, a solution made of 10 μL DNase I working 

solution (0.18 kU) and 90 μL DNase incubation buffer (1 M NaCl, 20 mM Tris-HCl, 10 

mM MnCl2, pH 7.0) was added to the upper reservoir of each tube and incubated for 15 

min at room temperature (+15 to +25°C) in order to remove residual genomic DNA. 500 

μL of wash buffer I (5 M guanidine-HCl, 20 mM Tris-HCl, pH 6.6, final concentration 

after the addition of absolute EtOH) was then added to remove inhibitors and the samples 

were centrifuged 15 s at 8,000 × g. The flow-through liquid was discarded, and 500 μL 

of wash buffer II (20 mM NaCl, 2 mM Tris-HCl, pH 7.5, final concentration after the 

addition of absolute EtOH) was added for a final purification from residual impurities 

followed by another centrifugation step at 8,000 × g for 15 s. The final washing step 

consisted of the addition of 300 μL of wash buffer II and a centrifugation at 13,000 x g 

for 2 min. Finally, 50 μL of elution buffer (sterile nuclease-free double distilled water 

PCR grade, Roche Applied Science, Burgess Hill, UK) was added and the assembly tubes 

were centrifuged for 1 min at 8,000 × g two times. Samples were then stored at -80 °C.  
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2.5 Materials and Methods: RNA quantification and integrity  

The total RNA in the samples was quantified with a Qubit 1.0 Fluorometer (Life 

Technologies, Paisley, UK) and Quant-iT™ Qubit RNA BR assay kit and Qubit assay 

tubes (Life Technologies, Paisley, UK). The working solution was made with 200 μL 

Qubit RNA buffer and 1 μL Qubit RNA reagent (concentration 200X in DMSO) for each 

assay. Two standard solutions were used for calibration from 190 μL of the working 

solution mixed with i) 10 μL of Qubit RNA Standard no. 1 (0 ng/μL in TE buffer) and ii) 

10 μL of Qubit RNA Standard no. 2 (10 ng/μL in TE Buffer) to a final volume of 200 μL. 

For the sample assay, 199 μL of the working solution was mixed with 1 μL RNA and 

incubated at room temperature for 2 min. For each batch of assays on different days or 

times of the same day, new standard curves were calibrated, as fluorometer assays are 

affected by environmental factors such as room temperature and humidity. Only RNA 

concentrations higher than 20 ng/μL were accepted for the consecutive analysis (Fig. 

2.10).  

The integrity and size distribution of the total RNA were then checked by denaturing 

agarose gel electrophoresis and GelRed™ Nucleic Acid Gel Stain staining (10,000X in 

DMSO, Cambridge Bioscience, Cambridge, UK). The 1% agarose gel was prepared by 

mixing agarose powder (Fisher Scientific, Loughborough, UK) and 1x TBE (0.089 M 

Tris, 0.089 M boric acid and 0.002 M EDTA, Fisher Scientific, Loughborough, UK) and 

heated in the microwave at 450 watts until the dissolution of the agarose powder. After 

cooling, GelRed™ was added and the mixture was then transferred to a gel tray and left 

to set for approximately 1-1.5 hours. 5 μL of RNA samples were then loaded with 1 μL 

6X DNA Loading Dye (2.5% Ficoll-400, 10 mM EDTA, 3.3 mM Tris-HCl (pH 8.0 25°C), 

0.02% Dye 1 and 0.0008% Dye 2, New England Biolabs, Knowl Piece, UK) and 

separated by electrophoresis for ca. one hour at 70 v and viewed using a UV 

transilluminator (Gel Doc™ EZ System, BioRad, Watford, UK). Particular attention was 

made to degradation in the low-molecular range. Furthermore, the characteristic bands 

for mollusc’s 28S and 18S RNA fractions were taken into consideration, as in 

electrophoresis the 28S ribosomal RNA migrates differently than mammal cells, breaking 

into two fractions during the agarose run and appearing less bright than the 18S band (Fig. 

2.10, Barcia et al., 1997).  

 



44   

 

Fig. 2.10 RNA samples in 1% agarose-TBE gel stained with GelRed™. From left to right: 100 

bp DNA ladder, RNA samples at 45.3 ng/µL, 24 ng/µL (below quality standard of integrity 

(smeared appearance in the low molecular weight) - not accepted), 16 ng/µL (below quantity 

standard of 20 ng/ µL - not accepted), 13 ng/µL (below quantity and quality standards - not 

accepted), 98.1 ng/µL, 348 ng/µL, 82.1 ng/µL 

 

2.6 Materials and Methods: cDNA synthesis  

Complementary DNA (cDNA) was synthesised from the RNA samples using the 

SuperScript™ II Reverse Transcriptase, with reduced RNase H activity and thermal 

stability, used for synthesising first-strand high-yield cDNA at high temperature and 

specificity. To standardise the samples as recommended by Bustin et al. (2009), the same 

RNA concentration (228 ng) was used for all cDNA synthesis. Specifically, 228 ng of 

total RNA was added to 1 μL of random primers and 1 μL of dNTP Mix (PrimerDesign 

Ltd, Camberley, UK) and sterile PCR-grade water. The mixture was heated at 65°C for 5 

min in a Techne TC-4000 Thermal Cycler (Bibby Scientific, Stone, UK) and quickly 

chilled on ice. Then, 4 μL of 5X First-Strand Buffer, 2 μL of 0.1 M DTT and 1 μL of 

water were added and incubated at 25°C for 2 min. Finally, 200 units of SuperScript™ II 

RT were added. The mixture was then incubated at 25°C for 10 min, 42°C for 50 min and 

at 70°C for 15 min. cDNA was stored at -20°C until further analysis.  
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2.7 Materials and Methods: PCR species identification  

As they often hybridise without any phenotypic differences between hybrids, Mytilus 

species were identified by PCR of the non-repetitive region Mytilus foot protein 1 mfp-1 

in a final volume of 25 μL, using the sense primer Me15 5’-

CCAGTATACAAACCTGTGAAGA-3’ and anti-sense primer Me16 5’-

TGTTGTCTTAATAGGTTTGTAAGA-3’ from Inoue et al.  (1995). Protocols for primer 

concentration and thermal conditions from Bignell et al. (2008), Brooks and Farmen 

(2013), Inoue et al. (1995) and Lynch et al. (2014) were tested to find the optimal one. 

Finally, thermal conditions from Bignell et al. (2008) were slightly modified according 

to the Taq polymerase guidelines. Primer concentration of 300 nM for each primer was 

used in combination with 12.5 µL of PCRBIO Taq Mix Red (containing 6mM MgCl2, 

2mM dNTPs, PCR BioSystems, London, UK), 1.25 µL of cDNA and the following 

thermal conditions: pre-heating to 95°C for 5 min, followed by 40 cycles of: 1 min at 

95°C, 1 min at 60.5°C and 1 min at 72°C followed by a final extension step of 10 min at 

72°C. PCR and agarose gel techniques were chosen as a routine method for species 

identification, as Me15 and Me16 are genetic markers located in the nuclear gene and 

encode for the polyphenolic adhesive foot protein involved in the byssus thread 

formation. M. edulis individuals show an amplified fragment size of 180 bp, while M. 

galloprovincialis have 126 bp smaller sizes of mfp-1. PCR products were separated by 

electrophoresis in a 2% TBE-agarose gel stained with GelRed™ and the band sizes were 

assessed by comparison to the 100bp DNA ladder (New England Biolabs Ltd, Knowl 

Piece, UK). 

 

2.8 Materials and Methods: Primer optimisation via PCR and qPCR 

amplifications  

Primers for reference genes (18S ribosomal RNA Me18S, 28S ribosomal RNA Me28S 

and elongation factor-1 alpha EF1α) and genes of interest (superoxide dismutase sod, 

catalase cat, heat shock protein 70 hsp70, estrogen related receptor MeER1 and estrogen 

receptor MeER2) were chosen accordingly to the current literature and state of the art. 

Specifically, primers for cat, sod and hsp70 were chosen as representatives of the stress 

response, specifically the antioxidant enzyme (sod and cat) and cellular protection 

(hsp70) pathways. MeER1 and MeER2 were chosen because of their possible involvement 
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in estrogen signalling and the reproductive cycle. Me18S, Me28S and EF1α were chosen 

as they represent suitable reference genes during mussel gametogenesis and exogenous 

estrogen exposures, contrary to other common reference genes such as β-actin (Cubero-

Leon et al., 2012; Jarque et al., 2014).  

Three or four sets of primers (i.e., forward and reverse) for each gene were chosen from 

the literature or designed online using Primer3 (http://primer3.ut.ee/) from published 

sequences (Table 2.2) for the optimisation step, in order to increase the likelihood to find 

any absence of secondary product formations and acceptable efficiencies between 90 and 

110% during the qPCR analysis (Fig. 2.11 - 2.20 and Table 2.3). The lyophilised primers 

(Integrated DNA Technology, Leuven, Belgium) were resuspended in molecular grade 

water to a final concentration of 100 μM, aliquoted and stored at -20 °C until the analysis. 

For each set, primer specificity was firstly assessed by Polymerase Chain Reaction (PCR) 

amplification and 2% agarose-TBE gel electrophoresis. PCR products were prepared 

using the Q5 High-Fidelity Polymerase (NewEngland BioLabs, Knowl Piece, UK) and 

PCR reactions were performed on a Techne TC-4000 Thermal Cycler (Bibby Scientific, 

Stone, UK). Specifically, 0.5 - 1 μL of template cDNA was mixed with 5 μL of 5x Q5 

Reaction Buffer, 10 mM of dNTPs, 0.25 - 1.25 μL of forward and reverse primers, 0.25 

μL of Q5 high-fidelity DNA Polymerase and PCR grade water. Specificity of the primer 

sets was performed at different thermal cycling programs run as follows: pre-heating to 

94°C for 2 min, followed by 35 cycles of: 30 sec at 94°C, 30 sec at 55-62°C and 30 sec 

at 72°C followed by a final extension step of 2 min at 72°C. Then, 10 μL PCR products 

were loaded with 2 μL of 6X gel DNA Loading Dye (New England Biolabs Ltd, Knowl 

Piece, UK) in a 2% agarose-TBE gel and run at 80V. Band sizes were assessed by 

comparison to the 100bp DNA ladder, loaded into the gel for reference.  

 

 

 

http://primer3.ut.ee/
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Table 2.2 List of primers tested via PCR and 2% agarose gel, with associated reference gene 

(RF), gene of interest (GoI), GenBank access number, melting temperature (Tm), guanine-

cytosine content (% GC) (5'-3') sequences for forward (F) and reverse (R) primers. Primer sets in 

grey are the ones chosen for the final qPCR analysis 

Reference 

Gene/ 

Gene of 

Interest 

GenBank 

Access. 

No. 

 

Primer 

name 

 

 

(5'-3') sequence 

 

 

 

Tm 

(°C) 

 

 

% 

GC 

 

 

Reference 

  

 

 

GoI: 

Superoxide 

Dismutase 

AJ581746 

 

 

SOD_F1 

SOD_R1 

 

TTTCTCGCAGTTTACGGTCA 

AACTCGTGAACGTGGAAACC 

 

54.2 

55.5 

 

45.0 

50.0 

 

Barrick et 

al., (2018) 

 

  

SOD_F2 

SOD_R2 

TCTCGCAGTTTACGGTCACT 

GTGGAAACCGTGTTCTCCTG 

56.0 

55.9 

50.0 

55.0 

Designed 

online 

  

SOD_F3 

SOD_R3 

TCTCGCAGTTTACGGTCACT 

CTGAAAGCGACTGTTCCTGT 

56.0 

55.1 

50.0 

50.0 

Designed 

online 

GoI: 

Catalase 

AY580271 

 

CAT_F1 

CAT_R1 

TGGGATCTGGTGGGAAATAA 

ATCAGGAGTTCCACGGTCAG 

53.3 

56.5 

45.0 

55.0 

Barrick et 

al., (2018) 

  

CAT_F2 

CAT_R2 

ACTTCGACCAGAGACAACCC 

GCCTGTCCATCCTTGTTGAC 

56.7 

56.1 

55.0 

55.0 

Designed 

online 

  

CAT_F3 

CAT_R3 

CACCAGGTGTCCTTCCTGTT 

CTTCCGAGATGGCGTTGTAT 

57.1 

54.8 

55.0 

50.0 

Lacroix et 

al., (2014) 

GoI: Heat 

Shock 

Protein 70 

 

AF172607 

 

 

 

HSP70_

F1 

HSP70_

R1 

GGGTGGTGGAACTTTTGATG 

 

CTCTTTGCCCTTTCACAAGC 

 

54.1 

 

54.5 

 

50.0 

 

50.0 

 

Barrick et 

al., (2018) 

 

 

  

HSP70_

F2 

HSP70_

R2 

ACAAGAGCCAGGTTTGAGGA 

 

CAGCAGCCTTGTCTAGTTTGG 

 

56.3 

 

56.0 

 

50.0 

 

52.4 

 

Designed 

online 

 

 

  

HSP70_

F3 

HSP70_

R3 

ACAAGAGCCAGGTTTGAGGA 

 

GTTTGGCATCACGTAGAGCT 

 

56.3 

 

55.2 

 

50.0 

 

50.0 

 

Designed 

online 

 

 

  

HSP_F4 

HSP_R4 

GGGTGGTGAAGACTTTGACA 

TGCCCTTTCACAAGCAGTTC 

54.9 

56.0 

50.0 

50.0 

Designed 

online 

GoI: 

Estrogen 

related 

receptor 

AB257132 

 

 

 

MeER1_

F1 

MeER1_

R1 

TTACGAGAAGGTGTGCGTTT 

 

TTTTTCACCATAGGAAGGATA

TGT 

54.5 

 

52.0 

 

45.0 

 

33.3 

 

Puinean et 

al., (2006) 
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MeER1_

F2 

MeER1_

R2 

ATACTCTTGCCCTGCCAACT 

 

CGGTCTAAACGCACACCTTC 

 

56.4 

 

56.1 

 

50.0 

 

55.0 

 

Designed 

online 

 

 

  

MeER1_

F3 

MeER1_

R3 

CCAGATCTTCAGGGTGACGA 

 

CTTGTTTGGCCCAGCTGATT 

 

56.2 

 

56.2 

 

55.0 

 

50.0 

 

Designed 

online 

 

 

GoI: 

Estrogen 

Receptor 

 

AB257133 

 

 

 

MeER2_

F1 

MeER2_

R1 

GGAACACAAAGAAAAGAAA

GGAAG 

ACAAATGTGTTCTGGATGGT

G 

52.7 

 

53.4 

 

37.5 

 

42.9 

 

Puinean et 

al., (2006) 

 

 

  

MeER2_

F2 

MeER2_

R2 

CAGGTCTGCAGTGATAACGC 

 

TGCAGGCCTGACAACTTTTC 

 

56.0 

 

56.0 

 

55.0 

 

50.0 

 

Designed 

online 

 

 

  

MeER2_

F3 

MeER2_

R3 

CAGGTCTGCAGTGATAACGC 

 

AGGTCCCTGAATACTGCGTT 

 

56.0 

 

56.0 

 

55.0 

 

50.0 

 

Designed 

online 

 

 

RG: 18s 

ribosomal 

RNA 

L33448 

 

 

18S_f1 

 

18S_r1 

CATTAGTCAAGAACGAAAGT

CAGAG 

GCCTGCCGAGTCATTGAAG 

53.6 

 

56.4 

40.0 

 

57.9 

Cubero-

Leon et al., 

(2012) 

  

18S_f2 

 

18S_r2 

 

GTGCTCTTGACTGAGTGTCTC

G 

CGAGGTCCTATTCCATTATTC

C 

57.4 

 

52.5 

54.5 

 

45.5 

Ciocan et 

al., (2011) 

 

  

18S_f3 

18S_r3 

CGTTCTTAGTTGGTGGAGCG 

CTCTAAGAAGTTGCGCCGAC 

55.9 

55.9 

55.0 

55.0 

Designed 

online 

 

AY527062

.1 

 

 

18S_f4 

 

18S_r4 

 

CGCGTTTATTAGATCAAAACC

AG 

AGTTTACAGACGGGATAGTT

GAA 

55.1 

 

55.8 

 

52.6 

 

45.4 

 

Designed 

online 

 

 

  

18S_f5 

18S_r5 

 

CCGGCGACGTATCTTTCAA 

AGGCATATCACGTACCATCG

AA 

52.4 

53.5 

 

39.1 

39.1 

 

Hüning et 

al., (2013) 

 

RG: 28s 

ribosomal 

RNA 

Z29550 

 

 

28S_f1 

28S_r1 

 

AGCCACTGCTTGCAGTTCTC 

ACTCGCGCACATGTTAGACTC 

 

58.1 

57.3 

 

55.0 

52.4 

 

Ciocan et 

al., (2011) 

 

  

28S_f3 

28S_r3 

CCTTGGAGTCGGGTTGTTTG 

ACTCGTGCCGGTATTTAGCT 

56.3 

56.2 

55.0 

50.0 

Designed 

online 
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AF339512 

 

 

 

28S_f2 

 

28S_r2 

 

CTGGCCTTCACTTTCATTGTG

CC 

GACCCGTCTTGAAACACGGA

CCA 

59.0 

 

61.4 

 

52.2 

 

56.5 

 

Zanette et 

al., (2013) 

 

 

RG: 

Elongation 

Factor 1-α 

AY580270 

 

 

Ef1_F1 

Ef1_R1 

 

CACCACGAGTCTCTCCCAGA 

GCTGTCACCACAGACCATTCC 

 

58.2 

58.2 

 

60.0 

57.1 

 

Ciocan et 

al., (2011) 

 

  

Ef1_F2 

Ef1_R2 

GCCTGGGTTTTGGACAAACT 

ATAGGGCGTGTTCTCTGGTC 

56.1 

56.6 

50.0 

55.0 

Designed 

online 

 

AF063420 

 

Ef1_F3 

Ef1_R3 

ACCCAAGGGAGCCAAAAGTT 

TGTCAACGATACCAGCATCC 

57.2 

54.8 

50.0 

50.0 
Lacroix et 

al., (2014) 

 

For each set of reference genes and genes of interest, primer efficiency was assessed by 

qPCR reactions in accordance with the MIQE guidelines (Bustin et al. 2009) on a CFX96 

Real-Time PCR Detection System (Bio-Rad, Hemel Hempstead, UK) using 0.2 mL 8-

tube PCR strips and Optical Flat 8-cap strips (BioRad, Watford, UK). At the end of each 

qPCR reaction, an amplification plot was generated showing the Cq value for each qPCR 

product. The Cq is a value showing the cycle number at which the fluorescent signal from 

the sample is detected from the background and it is considered acceptable when it occurs 

before the 40th cycle (Bustin et al., 2009). The reactions were performed using 10 µL of 

PrecisionPlus qPCR Master Mix premixed with SYBR Green (PrimerDesign, Eastleigh, 

UK), 7.5 µL molecular-grade water, 1 µL of each primer, and 0.5 µL cDNA at different 

dilutions. Primer specificity was tested at final concentrations of 100, 300 and 500 nM 

for each set, through any absence of secondary product formations by the melt peaks at 

the conclusion of the reactions (Fig. 2.12 - 2.19). Cq values, amplification plots and melt 

curve peaks were generated by the BioRad CFX Manager software (V1.6.541.1028). 

Primer efficiency was tested over a range of cDNA dilutions (10X or 5X). The standard 

curve was built in Microsoft Office 365 Excel from Cq values against log cDNA dilutions, 

displaying lines of best fit, slope and R2 value. The R2 value represents the pipetting 

accuracy and should therefore be as close to 1 as possible. The efficiency slope was 

produced by at least a minimum of 4 acceptable dilution points to % efficiency (Efficiency 

= -1+10(-1/slope)). The slope value was input in the qPCR Standard Curve Slope to 

Efficiency Calculator website 

(http://www.genomics.agilent.com/biocalculators/calcSlopeEfficiency.jsp?_requestid=8

51955) and only slopes between -3.1 and -3.6 with resulting efficiencies between 90 and 

http://www.genomics.agilent.com/biocalculators/calcSlopeEfficiency.jsp?_requestid=851955
http://www.genomics.agilent.com/biocalculators/calcSlopeEfficiency.jsp?_requestid=851955
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110% were accepted (Table 2.3 and Fig. 2.12 - 2.19, Taylor et al., 2010). qPCR products 

were ultimately checked using 2% agarose-TBE gel (80V) stained with GelRed™ 

Nucleic Acid Gel Stain (Fig. 2.20). 

 

 

Fig. 2.11 Example of a melt peak at the end of qPCR cycles for sod primers for sets 1, 2 and 3 at 

the same melting temperatures with different sample dilutions during the optimisation steps 

 

 
Fig. 2.12 Optimisation for sod primer set no. 2 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 
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Fig. 2.13 Optimisation for cat primer set no. 3 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 
Fig. 2.14 Optimisation for hsp70 primer set no. 4 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 



52   

 
Fig. 2.15 Optimisation for MeER1 primer set no. 3 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 
Fig. 2.16 Optimisation for MeER2 primer set no. 1 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (5X dilutions) 

with R2 values displayed 
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Fig. 2.17 Optimisation for Me18s primer set no. 2 at 50 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 
Fig. 2.18 Optimisation for Me28s primer set no. 1 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 
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Fig. 2.19 Optimisation for EF1α primer set no. 1 at 100 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

Final primer sequences were: elongation factor-1 alpha (EF1α) set no. 1 (GenBank 

accession no. AY580270), 18S ribosomal RNA (Me18S) set no. 2 (GenBank accession 

no. L33448) and 28S ribosomal RNA (Me28S) set no. 1 (GenBank accession no. Z29550) 

from Ciocan et al. (2011); catalase (cat) set no. 3 (GenBank accession no. AY580271) 

from Lacroix et al. (2014); estrogen receptor 2 (MeER2) set no. 1 (GenBank accession 

no. AB257133) from Puinean et al. (2006). Additionally, new primers were designed 

using Primer3 (http://primer3.ut.ee/) from published sequences (superoxide dismutase 

(sod) set no. 2 (GenBank accession no. AJ581746); heat shock protein 70 (hsp70) set no. 

4 (GenBank accession no. AF172607); estrogen receptor 1 (MeER1) set no. 3 (GenBank 

accession no. AB257132). For each chosen set, primers’ specie identification was 

additionally confirmed by identification using BLAST searches (blastn) to compare the 

gene sequences against the NCBI nucleotide collection (nr/nt) database optimised for 

highly similar sequences (megablast). Primer details are provided in Table 2.2 for the 

optimisation steps and Table 2.3 and Fig. 2.12 - 2.20 for the final chosen sets.  

In order to determine the most suitable combination of reference genes for data 

normalisation, the stability of Me18S, Me28S, and EF1α was tested over 25% of the total 

samples (n = 30) using Kruskal-Wallis test (Rstudio 3.6.2) and RefFinder software 

(https://www.heartcure.com.au/reffinder/). Kruskal-Wallis test revealed no significant 

effects among treatments for the three reference genes (Me18S KW-H= 4.96, p = 0.42; 

Me28S KW-H = 5.46, p = 0.36; EF1α KW-H = 4.45, p = 0.49) and the combination of 

http://primer3.ut.ee/
https://www.heartcure.com.au/reffinder/
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Me18S and Me28S genes was the recommended most stable one for this dataset by the 

RefFinder software. Consequently, Me18S and Me28S genes were chosen for 

normalisation of the final dataset using the 2 -ΔCt and 2-ΔΔCt methods (Schmittgen and 

Livak, 2008). Final primer concentrations are given in Table 2.3. Sample dilutions (1:10) 

were used in the final reactions for Me18S and EF1α. Thermal cycling was as follows: 

95°C for 2 min, 40 cycles of 95°C for 10 sec, 60°C for 1 min and 72° C for 1 min. 

Template-negative reactions were included alongside samples. Eventually, qPCR 

duplicate reactions were performed for 8 female and 8 male cDNA samples for each 

treatment using Hard-Shell® Low-Profile Thin-Wall 96-Well Skirted PCR plates and 

Microseal® 'B' adhesive seals (BioRad, Watford, UK) in duplicates to standardise 

fluorescence reflection across the samples. For each sample, the GOI Cts were normalised 

with the RG Cts, calculating the ΔCt value as ΔCt = Ct (Gene of Interest) - geometric 

mean Ct (Reference Genes). Additionally, for each treatment condition, the ΔCt values 

were normalised with the ΔCt values of the control condition, calculating the ΔΔCt value 

as ΔΔCt = ΔCt (Treatment) - ΔCt (Control). Then, 2-ΔCt and 2-ΔΔCt values were calculated 

(Livak and Schmittgen, 2001; Schmittgen and Livak, 2008). Calculations were performed 

in Microsoft 365 Excel.  

 

Table 2.3 Final primers used for qPCR amplification of reference genes and genes of interest 

Gene 

name 

GenBank 

accession 

no. 

Primer Sequence (5’-3’) Amplicon 

length (bp) 

Amplif. 

efficiency 

% 

R2 Final 

conc. 

(nM) 

sod AJ581746 For 

Rev 

TCTCGCAGTTTACGGTCACT 

GTGGAAACCGTGTTCTCCTG 

208 91.1 0.999 100 

cat AY580271 For 

Rev 

CACCAGGTGTCCTTCCTGTT 

CTTCCGAGATGGCGTTGTAT 

235 108.6 0.999 100 

hsp 

70 

AF172607 For 

Rev 

GGGTGGTGAAGACTTTGACA 

TGCCCTTTCACAAGCAGTTC 

127 98.2 0.997 100 

Me 

ER1 

AB257132 For 

Rev 

CCAGATCTTCAGGGTGACGA 

CTTGTTTGGCCCAGCTGATT 

94 108.9 0.992 100 

Me 

ER2 

AB257133 For 

 

Rev 

GGAACACAAAGAAAAGAAAG

GAAG 

ACAAATGTGTTCTGGATGGTG 

232 99.6 0.910 100 

EF1⍺ AY580270 For 

Rev 

CACCACGAGTCTCTCCCAGA 

GCTGTCACCACAGACCATTCC 

105 100.2 0.999 100 

Me 

18S 

L33448 For 

Rev 

GTGCTCTTGACTGAGTGTCTCG 

CGAGGTCCTATTCCATTATTCC 

116 103.9 0.995 50 

Me 

28S 

Z29550 For 

Rev 

AGCCACTGCTTGCAGTTCTC 

ACTCGCGCACATGTTAGACTC 

143 90.6 0.991 100 
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Fig. 2.20 Agarose gel 2% (2%, GelRed, run at 80V) after a qPCR run, showing the final chosen 

primer sets. From left to right: 100bp DNA ladder, sod (208 bp), cat (235 bp), hsp70 (127 bp), 

MeER1 (94 bp), MeER2 (232 bp), Me28S (143 bp), Me18S (116 bp), EF1α (105 bp) 

 

2.9 Materials and Methods: Statistical analysis  

Ordinal logistic regression was used to predict the ordinal dependent variables 

“Gametogenesis stage”, assuming “DEHP”, “Temperature” and “Sex” as independent 

variables. The dependent variable “Gametogenesis stage” was measured at the ordinal 

level (i.e., a 3-point scale ranging from “development” to “mature” to “spawning”). 

Independent variables “DEHP”, “Temperature” and “Sex” were considered categorical 

variables. Ordinal logistic regression was applied considering males and females as two 

conditions of the variable “Sex”, having previously verified that the model including both 

sexes (males and females, n = 154) was a better fit to the data than two separate models 

for males (n = 82) and females (n = 72), respectively. Model uncertainty was assessed by 

comparing ΔAICc values and Akaike weights in which the lowest values for ΔAICc 

indicate second best to last parsimonious models of the set (Table 2.4). Model selection 

was carried out in Rstudio with the AICcmodavg package (Mazerolle, 2013) in R 3.6.2 

(CRAN). Models with ΔAIC > 10 were omitted from considerations since they have 

considerably less support compared to the best-fitting model (Burnham and Anderson, 

2002). Ordinal logistic regression was carried out using the polr function (MASS package, 

Venables and Ripley, 2002), calculating the p value by comparing the t-value against the 
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standard normal distribution (Table 2.5). The proportional odds assumption (test of 

Parallel Lines) was tested using the ordinal package (Christensen, 2019).  

Permutation multivariate analysis of variance (PERMANOVA, Anderson, 2014) with 

Bray-Curtis distance and 9999 permutations was used in Rstudio (vegan package, 

Oksanen et al., 2013) to test the effects of the exposure conditions on the 2−ΔΔCt values of 

the stress-related mRNA expression (sod, cat and hsp70) and estrogen receptor-like 

mRNA expression (MeER1 and MeER2) introducing “Sex” (males or females) and 

“Stages” (developing, mature, spawning) to underline sex-driven differences between the 

treatments. Pairwise multilevel comparison with Benjamini & Hochberg p-adjustment 

was used to compare different groups. Statistical significance was set to p < 0.05. All 

graphs were created using MATLAB R2021a. A focus on the 2−ΔΔCt values analysed for 

each sex separately is available in the Supplementary Appendix to Chapter 2 (S2.1 and 

S2.3).  

Regarding the effect of different treatments on the mRNA expressions of each gene, the 

non-parametric Scheirer-Ray-Hare (rcompanion package, Mangiafico, 2017) test was 

additionally used on the 2−ΔCt values, after verifying non-normal distribution (Shapiro-

Wilk test) and homogeneity of variances (Levene’s test). Dunn’s multiple comparison 

test with Benjamini & Hochberg p-adjustment was used for comparisons between groups 

(Benjamini and Hochberg, 1995). Possible outliers were identified by Grubb’s test 

(Grubbs, 1969) and outlier values beyond the significance level of α = 0.05 were rejected 

(Burns et al., 2005). A focus on the 2−ΔCt values in each sex analysed for each gene 

separately is available in the Supplementary Appendix to Chapter 2 (S2.2 and S2.4). 

 

2.10 Results and Discussion: Histology to determine sex and gametogenesis 

stages  

For the histology analysis, control individuals exhibited gametogenesis stages in line with 

values previously reported from the Filey Beach area during wintertime (Chapman et al., 

2017; Seed, 1969), with some individuals having spawning gonads alongside a higher 

percentage of still-developing mussels. The most parsimonious ordered logistic 

regression model (TEMP*SEX) showed that there was a significant difference between 

sexes (p SEX = 0.046, t value = -1.99) and the difference in temperature had a significant 

effect on the transition from development to spawning stage alone (p TEMP = 0.005, t 
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value = 2.84) on in combination with the sex variable (p TEMP*SEX = 0.007, t value = 

-2.69 Table 2.5). This does not come as an unexpected result, as increased temperature 

is commonly used in fertility experiments to accelerate the formation of mature gametes 

in bivalve gonadal follicles and induce spawning within just a few hours (Gazeau et al., 

2010; Rayssac et al., 2010), as well as a regulator for broodstock conditioning in intensive 

bivalve cultures (Fearman and Moltschaniwskyj, 2010; Utting and Millican, 1997).  

The normal gametogenesis cycle of North Yorkshire mussels starts in late autumn with 

declining temperatures, until maturation and spawning in spring and summer (Bayne, 

1976). However, high temperature and other environmental stress cues are shown to 

induce attenuated seasonality in bivalve gametogenesis cycle and increased or advanced 

spawning activity instead of only one peak per season (Bayne, 1976; Petes et al., 2008; 

Philippart et al., 2003; Sreedevi et al., 2014). Here, control male groups displayed 

percentages of developing and spawning stages in line with the natural cycle of M. edulis 

during the winter season (Fig. 2.8, 2.9 and 2.21). A similar trend is noticeable in the 

treatments exposed to DEHP (LOW DEHP and HIGH DEHP) at control temperature. On 

the contrary, all the high-temperature treatments (HIGH T, LOW DEHP HIGH T and 

HIGH DEHP HIGH T) exhibited higher percentages of spawning gonads, with a 

consequent increase of the SMIs (Fig. 2.21). An accelerated gametogenesis cycle might 

not provide the time necessary to store energy (e.g., glycogen) during resting periods, 

causing deleterious consequences in offspring quality and impairment of reproductive 

capacity (Fearman et al., 2009). For example, in the Mediterranean mussel M. 

galloprovincialis, chronic exposure to thermal stress had noticeable effects on males in 

terms of sperm concentration, motility and morphology (Boni et al., 2016), questioning 

the fertilisation ability of males in a global warming condition. 

Males and females presented an inverted SMI trend in the high temperature treatments, 

showing advanced state in males, but a delay in females. In fact, female mussels displayed 

similar gametogenesis stages and SMIs for all the treatments (Fig. 2.8, 2.9 and 2.21). 

Females can naturally present a slight asynchrony with males with no repercussions on 

reproductive success (Azpeitia et al., 2017). This could also be related to the scheme of 

classification of the different stages of the gonadal cycle, for which female sex often 

appear to be slightly behind males. However, it is also possible that the production of 

spermatozoa is faster than the ova, due to the large yolk reserves of the latter (Seed, 1969). 

Nonetheless, if periods of thermal stress accelerate only the male cycle, this asynchrony 

would get further pronounced. Both an increase in the release of gametes through 
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continuous spawning, and a reduction of fertilisation events through increased 

asynchrony in gametogenesis are possible outcomes. Both mechanisms, however, could 

alter the temporal pattern of juvenile densities, which might impact coastal population 

dynamics of mussels. Considering as well that mussels in their mature state appear to be 

more sensitive to exposure to stressors (Ciocan et al., 2010a), it is a hypothesis that future 

global warming conditions may increase the sensitivity of mussels to pollutants while 

accelerating their reproductive cycle. Nevertheless, this experiment reinforced the belief 

that variation of temperature influences the reproductive system and gametogenesis cycle 

of mussels, as already seen in oysters (Fabioux et al., 2005; Zapata-Restrepo et al., 2019).  

 

 

Fig. 2.21 Effects of temperature and DEHP on gametogenesis stages. Percentage of each stage 

and sexual maturity index (SMI) of males (A, left) and females (B, right) in CTRL (n = 13 (A), 

15 (B)), HIGH T (n = 17 (A), 11 (B)), LOW DEHP (n = 17 (A), 10 (B)), LOW DEHP HIGH T(n 

= 14 (A), 8 (B)), HIGH DEHP (n = 9 (A), 14 (B)) and HIGH DEHP HIGH T (n = 12 (A), 14 (B)) 

 

Conversely to other studies that reported an effect of common contaminants such as 

antifoulants (Iyapparaj et al., 2013), insecticides (Bacchetta and Mantecca, 2009), metals 

(Zorita et al., 2006), tar mixture (Alonso et al., 2019), synthetic estrogens (Canesi et al., 

2007a) on mussel gametogenesis, DEHP treatments did not significantly affect either 

males or females in this exposure. Plastic exposure was recently observed to skew the 

ratio of females oysters in a first-year population (Sorini et al., 2021) but to the best of 
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our knowledge, no published material reported an effect of DEHP exposure on gonadal 

maturation and spawning.  

 

Table 2.4 Model classification, number of estimated parameters (K) for each model, Akaike 

Information Criterion (AICc), delta AIC (ΔAIC), Akaike weights (AICcWT), cumulative Akaike 

weights (CumWT), log-likelihood of each model (LL) for the three independent variables (+) 

temperature (TEMP), DEHP concentration (DEHP) and sex (SEX) and their interactions (*) on 

gametogenesis stages 

model K AICc Δ AIC AICcWT Cum 

WT 

LL 

TEMP*SEX 5 251.13 0.00 0.82 0.82 -120.50 

TEMP+SEX 4 256.71 5.58 0.05 0.87 -124.31 

SEX 3 257.04 5.91 0.04 0.91 -125.50 

TEMP+DEHP+SEX 5 357.79 6.66 0.03 0.94 -123.83 

TEMP*DEHP*SEX 9 258.02 6.89 0.03 0.97 -119.81 

DEHP+SEX 4 258.09 6.96 0.03 0.99 -125.00 

DEHP*SEX 5 260.04 8.94 0.01 1 -124.97 

 

Table 2.5 Results of ordinal logistic regression for the best model of treatments (TEMP*SEX). 

Estimated value, standard error, t-value and p for the independent variables temperature (TEMP, 

11 and 14 °C), and sex (SEX, males and females) and their interactions 

Variable Value Std. Error t-value p 

TEMP 1.27 0.45 2.84 0.005 

SEX -0.93 0.47 -1.99 0.046 

TEMP: SEX -2.01 0.75 -2.69 0.007 

 

 

2.11 Results and Discussion: PCR species identification  

As already mentioned, Mytilus species and putative hybrids are challenging to identify 

without histological or genetic analysis, considering the hybridisation between species 
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and environmental pressure that could affect the somatic characteristics of the shells, 

especially in wave-exposed habitats (Kijewski et al., 2011). In the present study, cDNA 

samples were identified as a blue mussel complex, due to the natural admixture and 

genomic overlaps between Mytilus spp. species that commonly occur in the Northern 

Hemisphere caused by incomplete reproductive isolation (Simon et al., 2020). Samples 

were identified as mostly pure M. edulis (91.7%), with a minor percentage (8.3%) of 

hybrids between M. edulis and M. galloprovincialis (amplified double band of 180 

bp/126bp, Fig. 2.22).  

 

 
Fig. 2.22 Agarose gel (2%, GelRed™, run at 80V) for PCR species identification showing from 

left to right: NeB DNA ladder, 100 bp; 180 bp fingerprints of the mfp-1 region (M. edulis), and 

two hybrid samples showing a double band of 180 bp (M. edulis) and 126 bp (M. 

galloprovincialis). No pure M. galloprovincialis or other Mytilus species were found 

 

To the best of our knowledge, this could also well be the first study that reports a small 

percentage of mussel hybrids on the northeastern coast of England. Hybrids and pure 

specimens were considered as a homogeneous group and referred to as Mytilus spp., as 

no differences in amplicon sizes (similar melting temperatures during qPCR reactions) 

were observed between genotypes following Lacroix et al., (2014). Recently, Boutet et 

al. (2021) hypothesised that the proportion and distribution of hybrids in a population are 

subjected to the environmental status of the origin site, as the highest number of M. 

galloprovincialis in their published experiment was detected coming from a polluted area.  
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2.12 Results and Discussion: influence of sex and gametogenesis status on the 

stress-related response 

When adding sex (SEX) and gametogenesis status (STAGE) as predictors of the stress-

related response alongside temperature (TEMP) and DEHP exposure (DEHP), an overall 

difference between sexes is noticeable (p SEX < 0.001, F = 9.64), as well as an effect of 

all the factors together (TEMP*DEHP*SEX*STAGE p = 0.03, F = 2.88) and, similarly 

to the histological results, we observed a small effect of TEMP*SEX, although being not 

significant at the molecular level (p = 0.06, F = 2.97, Fig. 2.23 and Fig. 2.24).  

The general cellular stress response is influenced by environmental parameters, such as 

temperature, salinity, food availability and light exposure (Khessiba et al., 2005; Leiniö 

and Lehtonen, 2005; Sroda and Cossu-Leguille, 2011; Wilhelm Filho et al., 2001), with 

observed effects documented also in molluscs (Heise et al., 2003; Wang et al., 2018). 

Interestingly, the environmental history of the organism plays an important role in 

adaptation to stressors (Buckley et al., 2001). For example, gastropod populations from 

the same Xeropicta derbentina species but from different habitats were found to exhibit 

distinct strategies to cope with thermal stress (Troschinski et al., 2014). Native clams 

Ruditapes decussatus presented stronger responses to thermal stress compared to the 

alien-invasive Ruditapes philippinarum, in terms of activities of antioxidant enzymes and 

HSP70/HSC70, probably due to their less energy-demanding strategy as a response to 

high temperature (Anacleto et al., 2014). Furthermore, a M. galloprovincialis population 

coming from a chronically polluted environment showed attenuated effects when exposed 

to gradual warming at laboratory conditions over the different seasons, while a healthy 

population was noted to present alterations not correlated to the usual seasonal changes 

(Marigómez et al., 2017).  

Similarly, sex and sexual stage are known to influence physiological and morphological 

traits differently, including the stress response, and lead to a disparate uptake and effects 

of contaminants (Blanco-Rayón et al., 2020; Burger, 2007; Jarque et al., 2014; Louis et 

al., 2021). Sex-associated differences in energy allocation and metabolic status could also 

influence the vulnerability of either sex to thermal stress, which could alter the 

composition or abundance of populations (Bedulina et al., 2017). In M. edulis, differences 

between sexes were already noted in regard to gonadal seasonal expression of clock-

associated genes in response to environmental cues (Chapman et al., 2017; Chapman et 
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al., 2020), and polar mantle metabolite concentrations after spawning (Hines et al., 2007). 

When considering other tissues, sex dissimilarities in protein profiles of the zebra mussel 

D. polymorpha gills were noticed after exposure to different concentrations of the 

polycyclic aromatic hydrocarbon (PAH) benzo(α)pyrene (Riva et al., 2011). 

 

Fig. 2.23 Boxplots showing stress-related (sod, cat, hsp70) gene expression in males and females, 

n = 6 to 8. Excluded outliers are not shown, while the furthest accepted values are identified by 

black crosses. Different gene expressions are displayed in red (sod), blue (cat) and green (hsp70).  

Abbreviations are control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW 

DEHP), low DEHP at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH 

DEHP) and high DEHP at high temperature (HIGH DEHP HIGH T).  PERMANOVA error 

probabilities are SEX p < 0.001, TEMP*SEX p = 0.06 and TEMP*DEHP*SEX*STAGE p < 0.05 
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Fig. 2.24 Boxplots showing stress-related (sod, cat, hsp70) gene expression in males and females, 

n = 6 to 8. 8 considering sex and gametogenesis stage (developing. mature, spawning) of the 

gonads. Excluded outliers are not shown, while the furthest accepted values are identified by black 

crosses. Different gene expressions are displayed in in red (developing gonads), blue (mature 

gonads) and green (spawning gonads). Abbreviations are control (CTRL), high temperature 

(HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high temperature (LOW DEHP 

HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP at high temperature (HIGH 

DEHP HIGH T).  PERMANOVA error probabilities are SEX p < 0.001, TEMP*SEX p = 0.06 

and TEMP*DEHP*SEX*STAGE p < 0.05 

 

Here, females showed higher stress-related gene expression than males in all treatments 

(Fig. 2.23 and Fig. 2.24) but the statistical analysis on females only and on each of their 

gene separately found no particular influence by temperature and DEHP treatments 

(Supplementary Fig. 2.1 and Supplementary Fig 2.5 – 2.7). On the other hand, males 

were noticed significantly affected by the exposure to thermal stress (Supplementary 

Fig. 2.1), especially regarding the antioxidant cat individual gene expression 

(Supplementary Fig. 2.3). The different stress response between sexes to the treatments 

(and in particular to the DEHP exposure) was also underlined by the pairwise multilevel 

comparison, which reported significant differences in both LOW DEHP and HIGH DEHP 

treatments (Table 2.6). Overall, these results show a higher sensitivity of males under 

environmental stressors, which in turn could suggest a more resilient status of females 

under prolonged stress conditions. In support of this, it is common in the animal kingdom 

that females have stronger immunocompetence defences, possibly related to sex-related 
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steroid hormone synthesis and presence (Kelly et al., 2018). A focus on the stress response 

in each sex and each gene analysed separately is available in the Supplementary 

Appendix to Chapter 2 (S2.1 and S2.2). 

 

Table 2.6 Pairwise multilevel comparisons of the stress response (sod, cat, hsp70) between males 

and females in the same treatments 

Treatment males Treatment females p 

CTRL CTRL 0.138 

HIGH T HIGH T 0.131 

LOW DEHP LOW DEHP 0.046 

LOW DEHP HIGH T LOW DEHP HIGH T 0.108 

HIGH DEHP HIGH DEHP 0.001 

HIGH DEHP HIGH T HIGH DEHP HIGH T 0.454 

 

2.13 Results and Discussion: influence of sex and gametogenesis status on the 

estrogen receptor-like response 

When adding sex (SEX), and gametogenesis status (STAGE) as predictors alongside 

temperature (TEMP) and DEHP exposure (DEHP) for estrogen receptor-related gene 

expression, the PERMANOVA analysis showed an effect of DEHP on the estrogen 

receptor-related responses (p DEHP = 0.03, F = 3.01) and a slight difference between 

sexes (p SEX = 0.06, F = 2.94, Fig. 2.25 and 2.26). Males were again observed to be 

highly affected by the thermal stress (Supplementary Fig. 2.8), especially on the 

individual gene expression of MeER2 (Supplementary Fig. 2.10). On the other hand, a 

significant effect of DEHP was noted on estrogen receptor-like responses of females 

(Supplementary Fig. 2.8), particularly on MeER1 expression (Supplementary Fig. 

2.11). A focus on the estrogen receptor-related response in each sex and each gene 

analysed separately is available in the Supplementary Appendix to Chapter 2 (S2.3 and 

S2.4). 
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Fig. 2.25 Boxplots showing estrogen receptor-like (MeER1, MeER2) gene expression in males 

and females, n = 6 to. Excluded outliers are not shown, while the furthest accepted values are 

identified by black crosses. Means and standard deviations for each gametogenesis stage are 

displayed in red (MeER1) and blue (MeER2). Abbreviations are control (CTRL), high temperature 

(HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high temperature (LOW DEHP 

HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP at high temperature (HIGH 

DEHP HIGH T).  PERMANOVA error probabilities are DEHP p < 0.05 and SEX p = 0.06 



67   

Fig. 2.26 Boxplots showing estrogen receptor-like (MeER1, MeER2) gene expression in males 

and females, n = 6 to 8 considering the gametogenesis stage (developing, mature, spawning) of 

the gonads. Excluded outliers are not shown, while the furthest accepted values are identified by 

black crosses. Means and standard deviations for each gametogenesis stage are displayed in red 

(developing gonads), blue (mature gonads) and green (spawning gonads). Abbreviations are 

control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP 

at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high 

DEHP at high temperature (HIGH DEHP HIGH T).  PERMANOVA error probabilities are DEHP 

p < 0.05 and SEX p = 0.06 

 

Estrogen receptor ER and estrogen-related receptor ERR were recently found expressed 

in ovaries and testes of M edulis and M. galloprovincialis by Nagasawa et al. (2015) 

suggesting their involvement in reproduction (Croll and Wang, 2007). Both transcripts 

were detected in the gonads, but also ER1 was identified distributed in gills and digestive 

glands and ER2 in the ovary and pedal ganglion (Cocci et al., 2017; Nagasawa et al., 

2015). Their expression was also recently found to differ between maturation stages 

during the ovarian cycle of M. galloprovincialis (Agnese et al., 2019), but the exact nature 

of their involvement in the estrogen signalling and the reproductive cycle, alongside their 

function and regulation in Mytilus spp., is still unknown. 

Here, the LOW DEHP treatment caused a decrease in gene expression, which however 

was not mirrored by the HIGH DEHP treatment (Fig 2.25 and 2.26), even though the 

expression in the HIGH DEHP treatment was significantly different between sexes and 

higher in females (Table 2.7). Interestingly, a wide variation in estrogen receptor-like 
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expression was noted in mature males from the CTRL treatment. This could be related to 

the high variability in these genes in mature gonads that was already observed for mature 

animals from the same area in different years (Ciocan et al., 2010b). Some plastic 

additives have the ability to interfere with the vertebrate immune and endocrine systems 

following transcriptional and non-transcriptional pathways (Burgos-Aceves et al., 2021 

a, b; Combarnous, 2017; Ghisari and Bonefeld-Jorgensen, 2009; Nowak et al., 2019). As 

part of the transcriptional ways, EDCs such as bisphenol-A (BPA) and polychlorinated 

biphenyls (PCBs) activate the signalling pathway by binding the hormone receptors 

(Bruno et al., 2019; Boas et al., 2012). Considering the non-transcriptional pathways, 

there are several ways of action of EDCs such as phthalate and polybrominated diphenyl 

ethers (Combarnous and Nguyen, 2019), including interference with the synthesis and 

degradation of hormones and hormone-binding proteins (Boas et a., 2012; Ptak and 

Gregoraszczuk, 2012; Qiu et al., 2013; Rebuli et al., 2014; Schöpel et al., 2018; Sheikh 

et al., 2016). In invertebrates, high concentrations of BPA were observed to upregulate 

estrogen-receptor levels in the New Zealand mud snail Potamopyrgus antipodarum 

(Stange et al., 2012) and estrogen-related receptor in Marisa cornuarietis (Bannister 

2013) after a chronic exposure. However, there is still uncertainty on the exact purpose 

and way of action of these two receptors in mussels, with a consequent lack of knowledge 

about their disruption mechanisms.  

 

Table 2.7 Pairwise multilevel comparisons of the estrogen receptor-like response (MeER1, 

MeER2) between males and females in the same treatments 

Treatment males Treatment females p 

CTRL CTRL 0.056 

HIGH T HIGH T 0.543 

LOW DEHP LOW DEHP 0.525 

LOW DEHP HIGH T LOW DEHP HIGH T 0.618 

HIGH DEHP HIGH DEHP 0.020 

HIGH DEHP HIGH T HIGH DEHP HIGH T 0.438 
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2.14 Conclusions  

In conclusion, a sex-dependent response is observable after the exposure to high 

temperature (+3°C) and two environmentally relevant concentrations of the plasticiser 

DEHP (0.5 μg/L and 50 μg/L), highlighting, as other studies (Banni et al., 2011; Chapman 

et al., 2017; Dos Reis et al., 2023; Koagouw and Ciocan, 2018; Liu et al., 2017; Matozzo 

and Marin, 2010), the importance for sex identification in bivalve experiments. 

Significant dissimilarities between males and females were in fact found when 

considering histological changes of the gonads (more advanced in males) and the stress 

response (higher in females). Furthermore, the two sexes were noted to be differently 

affected by the exposure to either one of the two stressors. Male mussels were observed 

to be more sensitive to thermal stress, demonstrated by advanced gametogenesis and by 

the alteration of the stress response (particularly the antioxidant cat) and the estrogen 

receptor-related system (especially MeER2). Conversely, females were influenced by the 

presence of the plastic additive, which affected the estrogen receptor-related response and 

in particular MeER1, a gene putatively involved in the endocrine pathway. In both sexes, 

reproduction-related outcomes seemed to be overall affected by the experimental 

conditions of increased temperature and DEHP exposure, demonstrated by the significant 

effect of DEHP on the reprotoxicity biomarkers MeER1 and MeER2, and of temperature 

on the gonadal maturation. Considering this, further studies are needed to better 

understand the consequences of environmental stress on reproductive pathways in aquatic 

species, as the effects of external stressors such as plastic additive exposure or increased 

water temperature are still not fully comprehended. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/plasticizer
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Chapter 3 

 

The effects of thermal stress, DEHP exposure and their combination 

on M. edulis gene expression 

 

3.1 Introduction  

This chapter aims to investigate the effect of plastic pollution in the context of global 

warming, analysing data generated by RNA-seq analysis of gonadal samples from M. 

edulis males. Specifically, RNA was extracted from male blue mussels M. edulis exposed 

to DEHP and increased temperature, separately and in combination (i.e., HIGH T, LOW 

DEHP, LOW DEHP HIGH T, as described in Chapter 2). This design was chosen 

because, as seen in Chapter 2, male mussels responded most to treatments of high 

temperature and low DEHP concentration.  

In the special report of 2018, the scientific committee of the United Nations from the 

IPCC expressed its concern regarding the rising global temperature if no policies for 

reducing CO2 emissions are promptly undertaken (IPCC, 2018). The warming climate 

has already caused an increase in the sea level, due to land ice loss and thermal expansion, 

with stronger projections in Arctic regions (i.e., polar amplification, Sampaio and Rosa, 

2020). The average sea level has rapidly increased by 0.20 m between 1901 and 2018 and 

the annual average ice level of the Arctic Sea was observed to have reached its lowest in 

the decade 2011-2020 since 1850. Other consequences of global warming are heat waves 

and heavy precipitation, which have become more frequent and intense since 1950. 

Anthropogenic sources are considered also the likely main cause of “compound extreme 

events”, defined as the combination of multiple drivers or hazards that can contribute to 

societal and environmental risks (IPCC, 2021). According to the SSP projections for the 

end of the century (described in detail in Chapter 1.4), temperatures will rise without 

reasonable doubt in the Northern Hemisphere, especially in the Arctic Ocean and North 

Pacific, reaching +2॰C for the SSP 1 - 2.6 scenario and +5॰C for the SSP 5 - 8.5 scenario 

(Kwiatkowski et al., 2020). These changing environmental conditions could enhance 

degradation, release, transport and biotransformation of a wide set of hydrophobic and 

hydrophilic pollutants such as persistent organic pollutants or pesticides. Temperature 

changes could furthermore increase the toxicity of heavy metals, carbamates, flame 
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retardants, fungicides, or oil compounds, causing them to partition into more bioactive 

and toxic metabolites and to eventually accumulate in organisms intended for human 

consumption such as shellfish (Kibria et al., 2021; Noyes et al., 2009). This could either 

happen as a direct consequence of global warming, which will increase the processes of 

hydrolysis, leaching and volatilisation (Bloomfield et al., 2006; Lamon et al., 2009), or 

indirectly via additional phenomena associated with increasing temperature such as sea 

level rise (Kallenborn et al., 2012) or ice melts (Ma et al., 2011; Todd et al., 2012).  

Due to their resilient properties, plastic items are ubiquitously present in the Northern 

Hemisphere, where they endure through time even in remote areas such as the deep-sea 

(Barnes et al., 2009; Thompson et al., 2009). In aquatic environments, plastic fragments 

may at ease be absorbed by filter-feeding organisms such as bivalves (Browne, 2008) and 

provoke reproductive, immune and genotoxic consequences (Detree et al., 2017; 

Sussarellu et al., 2016). Plastic fragments are considered a long-term source of toxic 

additives such as phthalates, which may leach from the plastic surface into the 

environment (Engler, 2012). As an example, concentrations of the endocrine disruptive 

additive DEHP up to 83.3 μg/g were recently found in microplastic fragments during 

wastewater treatment processes (Takdastan et al., 2021). As already remarked, its toxic 

effects on the endocrine system at levels as low as 0.02 μg/L were reported in several 

aquatic species such as fish and crustaceans (Carnevali et al., 2010; Heindler et al., 2017; 

Ye et al., 2014).  

Even though mussels are commonly used for scientific purposes in several fields, we are 

yet to fully comprehend their specialised and unique biology that differs from model 

animals whose genome is completely mapped (Armengaud et al., 2014). As an example, 

it was recently discovered that M. galloprovincialis is the first species in the animal 

kingdom possessing a pan-genomic architecture with 25% of genes subject to 

presence/absence variation, most of them possibly involved in stress response and 

survival systems (Gerdol et al., 2020). As biomonitors with high tolerance and potential 

for adaptation to stressors, invertebrates such as Mytilus should be considered potential 

key species for de novo discovery (Leoni et al., 2017). However, specific methodologies 

and protocol adaptations are usually required for these non-model organisms (Armengaud 

et al., 2014). In fact, Mytilus lineage-specific duplications after the divergence of the 

Mytilida order generated the large gene repertoire recently discovered in Gerdol et al. 

(2020). The same authors published a reference M. galloprovincialis digestive gland 

transcriptome using Illumina-based sequencing and de novo assembly (Gerdol et al., 
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(2014). Later, Moreira et al. (2015) compared RNA-seq assembled reads from different 

M. galloprovincialis tissues, observing that only 55% of transcripts were present 

concurrently in haemocytes, mantle, muscle and gills, with mantle and muscle tissues 

sharing a high percentage (77%) of transcripts. In ecotoxicology experiments, RNA 

sequencing methods were recently used for analysing the transcriptomic responses to the 

polycyclic aromatic hydrocarbon benzo(a)pyrene in embryos of the green mussel Perna 

viridis (Jiang et al., 2016). Similarly, Philipp et al. (2012) sequenced a transcriptome from 

several tissues of Baltic Sea M. edulis exposed to stress sources such as lowered pH or 

dextran sodium sulfate (DSS) chemical.   

Transcriptomics aims to catalogue and quantify the expression of transcripts, provide 

information about the transcriptional activity and structure of genes, and characterise 

splicing and post-transcriptional modifications (Mathew et al., 2015; Wang et al., 2009b). 

RNA-seq is a precise and refined approach for accurate transcriptome profiling, 

measurement and mapping of not only transcript levels, but also the related isoforms of 

mRNA, as well as non-coding RNA and small RNAs (Marguerat and Bähler, 2010; Wang 

et al., 2009b). It is considered the first sequencing-based method able to detect low-

expressed genes and therefore survey the entire transcriptome in a high-rate resolution 

(Denoeud et al., 2008; Wang et al., 2009b). The first advantage of using RNA-seq 

technology is that it reconstructs overlapping reads into transcripts by using the 

redundancy of sequencing reads (Lu et al., 2013). Secondly, RNA-seq can uncover 

splicing patterns, which gives information about how exons are connected in the mature 

transcripts. Moreover, RNA-seq covers a large range of expression levels, which can be 

mapped to unique genomic regions (Lu et al., 2013a; Wang et al., 2009b). However, there 

is no assembly method universally suitable for the evaluation of all RNA-seq data sets, 

depending on species, protocols and parameter settings (Escudero, 2021; Hölzer and 

Marz, 2019). In the case of no reference genome being completely sequenced or available 

(as for non-model organisms), the Trinity assembly pipeline is a unified and sensitive 

approach for the de novo reconstruction of transcriptomes that can efficiently recover and 

reconstruct high-quality transcript fractions, including spliced isoforms and duplicated 

gene transcripts, resolving ~99% of the initial sequencing errors (Grabherr et al., 2011b). 

In general, Trinity pools together sets of unique sequences that overlap, then creates an 

independent De Bruijn graph for each group and assembles isoforms within the group 

(Martin and Wang, 2011). It also generates statistics for assessing the quality of the 

assembly, wraps external tools and conducts downstream analysis (Freedman et al., 
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2020). Trinity was developed by the Broad Institute and Hebrew University of Jerusalem 

and it combines the use of three different software: Inchworm, Chrysalis and Butterfly, 

which are applied in sequence in order to process the large number of reads. The software 

workflow follows the steps (Grabherr et al., 2011a, Fig. 3.1): 

I. Inchworm: assembles the reads into a k-mer (a fixed-length sequence of k 

nucleotides) graph consisting of unique sequences, then generates full-length 

transcripts for the most frequent isoforms and reports the unique portions of 

alternatively spliced transcripts.  

II. Chrysalis: clusters minimally overlapping Inchworm contigs together, 

partitioning de Bujin graphs for each of them. Each cluster reflects the complexity 

of the transcripts from each gene. 

III. Butterfly: reconciles and processes in parallel the single de Bruijn graphs from 

Chrysalis and reconstructs distinct full-length transcripts that are plausible. 
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Fig. 3.1 Trinity overview, comprising the workflow for software Inchworm, Chrysalis and 

Butterfly. From Grabherr et al. (2011a) 

 

In this chapter, an RNA-seq dataset was generated and analysed from gonadal tissues 

from males exposed to either a +3℃ condition (TEMP), 0.5 μg DEHP /L (DEHP) or the 

combination of the two (COMB). In Chapter 2, male mussels were observed to be 

sensitive to thermal stress, demonstrated by an increase in both the expression of estrogen 

receptor- and stress response- related genes. A small effect of DEHP was also noted on 
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male stress response (Supplementary Fig. 2.1). It is hypothesised that these outcomes 

will find confirmation in the furthered RNA-seq analysis, and several genes involved in 

the stress response and reprotoxicity will be found significantly upregulated. 

 

3.2 Materials and Methods: Experimental design 

Adult blue mussels (length mean ± standard deviation = 5.4 cm ± 0.6 cm) were collected 

at low tide from the intertidal zone at Filey Bay, North Yorkshire, UK (54° 13´ longitude; 

0° 16´ latitude) in November 2018 and transported to the aquarium facilities of the 

University of Hull for 12 days of acclimation in artificial saltwater (Premium REEF-Salt, 

Tropical Marine Centre, Chorleywood, UK) under laboratory conditions. Details of the 

exposure experimental design were provided in Chapter 2.2: Experimental design, as the 

individuals treated for this experiment were part of the same population exposed to the 

experiment described in Chapter 2. 

 

3.3 Materials and Methods: Illumina library preparation 

Approximately 1.0 cm2 of left gonadal tissue from 3 male samples for the treatments 

HIGH T, LOW DEHP and LOW DEHP HIGH T (approx. 10 mg of gonad tissue, n = 9 

in total) was immersed in 1 mL neutral-buffered 10% formalin solution (Sigma Aldrich, 

Gillingham, U.K.) at room temperature for histological observations. The same gonadal 

amount was dissected and preserved in 1 mL RNAlater® stabilisation solution for gene 

expression analysis (Thermo Fisher Scientific, Loughborough, U.K.) and stored at -80°C. 

Male samples were chosen considering that stress and estrogen-related responses were 

more affected by high temperature and low DEHP exposures, as previously observed by 

qPCR analysis on genes superoxide dismutase (sod), catalase (cat), heat shock protein 70 

(hsp70), estrogen-related receptor (MeER1) and estrogen receptor (MeER2) on the same 

sample population in Mincarelli et al., (2021) and described in Chapter 2.  

Samples for the RNA-seq analysis were randomly chosen from the exposed population 

(Chapter 2) and coded as TEMP_08, TEMP_13, TEMP_18 for the samples belonging to 

the HIGH T treatment, DEHP_12, DEHP_13_DEHP_17 for the samples belonging to the 

LOW DEHP treatment and COMB_07, COMB_10, COMB_26 for the samples belonging 

to the LOW DEHP HIGH T treatment. Gonadal samples for histological observation were 
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fixed in 10% buffered formalin (Sigma-Aldrich, Gillingham, UK) and washed with 0.01 

M PBS (Sigma Aldrich, Irvine, UK), dehydrated with increasing ethanol (Fisher 

Scientific, Loughborough, UK) concentrations (70%, 90%, 100%), and cleared with 

Histoclear II (National Diagnostics, Atlanta, USA). The day after, the samples were 

embedded in paraffin wax (VWR, Poole, UK) in an EG 1160 Paraffin Wax Embedding 

Centre (Leica Microsystems, Milton Keynes, UK) and tissue sections (10 µm) of wax-

embedded gonads were cut on a Shandon Finesse® Manual Rotary Microtome 325 

(Thermo Fisher Scientific, Loughborough, UK). Slides were stained with Mayer’s 

haematoxylin solution (Sigma-Aldrich, Schnelldorf, Germany) and eosin Y alcoholic 

solution (Sigma-Aldrich, Schnelldorf, Germany). Prior to microscopic analysis, 

microscope slides were coded, in order to conduct a blind observation. Sex and 

gametogenesis stage were assessed based on Seed (1969). A detailed protocol was 

provided in Chapter 2.3: Wax infiltration and H/E staining.  

Gonadal samples for molecular analysis (approx. 10 mg of gonad tissue, n = 9) were 

selected and blindly coded for the analysis. Gonad tissues were preserved in RNAlater® 

Stabilisation Solution (Thermo Fisher Scientific, Loughborough, UK) and stored at -80°C 

for total RNA extraction. The High Pure RNA Isolation Kit (Roche Applied Science, 

Burgess Hill, UK) was used for the purification of the intact total RNA from 

approximately 10 mg of gonadal tissue, with an additional Dnase I digestion step, in order 

to remove contaminating DNA. After the extraction samples were then stored at -80 °C. 

A detailed protocol was provided in Chapter 2.4: total RNA isolation. 
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Fig. 3.2 Agarose gel (2%, GelRed™, run at 80V) showing from left to right:  100 bp NeB DNA 

ladder and 180 bp fingerprints of the mfp-1 region (M. edulis) for the 9 male samples 

 

Mytilus species were identified through PCR of the non-repetitive region Mytilus foot 

protein 1 mfp-1 in a final volume of 25 μL, using the sense primer Me15 5’-

CCAGTATACAAACCTGTGAAGA-3’ and anti-sense primer Me16 5’-

TGTTGTCTTAATAGGTTTGTAAGA-3’ from Inoue et al. (1995). Thermal conditions 

from Bignell et al. (2008) were slightly modified according to the Taq polymerase 

guidelines. Primer concentration of 300 nM for each primer was used in combination with 

12.5 µL of PCRBIO Taq Mix Red (containing 6mM MgCl2, 2mM dnNTPs, PCR 

BioSystems, London, UK), 1.25 µL of cDNA and the following thermal conditions: pre-

heating to 95°C for 5 min, followed by 40 cycles of: 1 min at 95°C, 1 min at 60.5°C and 

1 min at 72°C followed by a final extension step of 10 min at 72°C. PCR products were 

separated by electrophoresis in a 2% TBE-agarose gel stained with GelRed™ and the 

band sizes were assessed by comparison to the 100bp DNA ladder (Fig. 3.2). Detailed 

protocol was provided in Chapter 2.7: PCR species identification. 

RNA concentrations were quantified using a Qubit 1.0 Fluorometer (Life Technologies, 

UK) and the integrity was checked by 1% agarose gel electrophoresis (Fig. 3.3 and 3.4). 

As already described in Chapter 2.5: RNA quantification and integrity, the characteristic 

bands for mollusc 28S and 18S RNA fractions were taken into consideration (Barcia et 
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al., 1997). Samples were then shipped to Novogene Company Ltd. (Cambridgeshire, UK) 

for sequencing. On site, following the total RNA quality control pipeline, samples were 

then tested for purity (Nanodrop), degradation or contamination (agarose gel 

electrophoresis) and integrity (Agilent 2100 Bioanalyzer).  

 

 

Fig. 3.3 Chosen RNA samples run in 1% agarose-TBE gel stained with GelRed™. From left to 

right: 100 bp DNA ladder, RNA samples no. 208) TEMP_08 170 ng/µL; 213) TEMP_13 184 

ng/µL; 218) TEMP_18 290 ng/µL; 317) DEHP_17 379 ng/µL; 407) COMB_07 440 ng/µL;  410) 

COMB_10 315 ng/µL. Sample code refers to the exposure treatment (2 for HIGH T, 3 for LOW 

DEHP, 4 for HIGH TEMP LOW DEHP) and the name of the individual (i.e., sample 213 belongs 

to the 13th individual from the HIGH TEMP treatment) 
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Fig. 3.4 Chosen RNA samples run in 1% agarose-TBE gel stained with GelRed™. From left to 

right: 100 bp DNA ladder, RNA samples no. 312) DEHP_12 208 ng/µL; 313) DEHP_13 395 

ng/µL; 426) COMB_26 367 ng/µL. Sample code refers to the exposure treatment (2 for HIGH 

TEMP, 3 for LOW DEHP, 4 for HIGH TEMP LOW DEHP) and the name of the individual (i.e., 

sample 426 belongs to the 26th individual from the HIGH TEMP LOW DEHP treatment)  

 

After the quality control procedure, the mRNA was then enriched using oligo(dT) beads. 

The mRNA was fragmented randomly in fragmentation buffer, followed by cDNA 

synthesis using random hexamers and Reverse Transcriptase. After first-strand synthesis, 

the complete cDNA was then synthesised using Illumina second-strand synthesis buffer, 

dNTPs, RnaseH and E. coli Polymerase I to generate the second strand by nick-

translation. The cDNA sequencing library was finally built after purification, terminal 

repair, A-tailing, ligation of sequencing adapters, size selection and PCR enrichment. 

TruSeqTM RNA and DNA- sample prep kits were used. Library quality control was 

carried out using a Qubit 2.0 fluorometer (Life Technologies), an Agilent 2100 

Bioanalyzer and quantitative PCR (Fig. 3.5).  
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Fig. 3.5 Graphical description for the Novogene mRNA enrichment, cDNA synthesis and 

sequencing library preparation. From Novogene Ltd. (2020) 

 

The original raw data from the Illumina run were then transformed into sequenced reads 

(called raw data or raw reads) by CASAVA base recognition (base calling). Raw data were 

then stored in FASTQ (.fq) format files, which contained sequences of reads and 

corresponding base quality information (Table 3.1).  

 

Table 3.1 Example of a FASTQ (fq) format file identification. From Novogene Ltd. (2020) 

HWI-ST1276 Instrument – unique identifier of the sequencer 

71 Run number – run number on instrument 

C1162ACXX FlowCell ID – ID of flowcell 

1 LaneNumber – positive integer 

1101 TileNumber – positive integer 

1208 X – x coordinate of the spot. Integer which can be negative 

2458 Y – y coordinate of the spot. Integer which can be negative 

1 ReadNumber – 1 for single reads; 1 or 2 for paired end 

N Whether it is filtered – NB: Y if the read is filtered out, not in the 

delivered fastq file, N otherwise 
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0 Control number – 0 when none of the control bits are on, otherwiseit is 

an even number 

CGATGT Illumina index sequences 

 

 

The Illumina paired-end technology generated two .fq-format files for each sample (e.g., 

COMB_10_1.fq and COMB_10_2.fq for the sample COMB_10), each containing one 

direction of the read. The FASTQ Sequence Reads (raw reads) were then downloaded 

into University of Hull’s Viper High-Performance Computer student database. An in-

house de novo transcriptome assembly from the Illumina paired-end FASTQ files was 

then carried out using the University of Hull’s Viper High-Performance Computer and 

the Trinity pipeline.  

 

3.4 Materials and Methods: FastQC quality control  

As recommended by Freedman et al. (2021), before any analysis, quality control on the 

raw reads was carried out using FastQC module (v 0.11.9). FastQC is considered a 

fundamental tool that is able to provide quality control checks, which are essential to 

ensure that the raw sequences coming from high-throughput sequencers are not biased 

and of good quality for the subsequent pipeline analysis. Most sequencers already 

generate quality control within their reports as part of their analysis pipeline, but these are 

mostly focused on problems generated by the sequencer itself, but FastQC is used to 

check both sequencer- and library- related quality. The quality control job was submitted 

to the HPC Viper as a SLURM submission batch script that can be referred to in the 

Supplementary Appendix to Chapter 3 (S3.1). The output files generated as HTML 

file reports presented the following modules (from 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/):  

● Basic statistics (Chapter 3.4.1). 

● Per base sequence quality (Chapter 3.4.2). 

● Per tile sequence quality (Chapter 3.4.3). 

● Per sequence quality score (Chapter 3.4.4). 

● Per base sequence content (Chapter 3.4.5). 

● Per sequence GC content (Chapter 3.4.6). 

● Per base N content (Chapter 3.4.7). 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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● Sequence length distribution (Chapter 3.4.8). 

● Duplicate sequences (Chapter 3.4.9). 

● Overrepresented sequences (Chapter 3.4.10). 

● Adapter content (Chapter 3.4.11). 

 

3.4.1 Basic statistics 

Basic statistics presented an overview of the main characteristics of each file as shown in 

Fig. 3.6 as an example for sample COMB_07.fq: 

 

 

Fig. 3.6 Example of a basic statistics report for the file COMB 07.fq (treatment LOW DEHP HIGH TEMP 

sample no. 7) 

 

The resulting total number of sequences, poor quality sequence, sequence length and 

%GC for each sample are shown in Table 3.2. 

 

Table 3.2 Basic Statistics from FastQC Report on the raw data before trimming (Conventional 

base calls and Sanger / Illumina 1.9) 

Treatment Filename Total 

Sequences 

Sequences flagged 

as poor quality 

Sequence 

length 

%GC 

Future average 

temperature, no DEHP   

TEMP_08 26474425 0 150 36 

TEMP_13 28575793 0 150 36 

TEMP_18 26186404 0 150 37 

Low temperature and 

low DEHP 

concentration 

DEHP_12 26404546 0 150 36 

DEHP_13 25253601 0 150 37 

DEHP_17 24060842 0 150 37 
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Future average 

temperature and low 

DEHP concentration  

COMB_07 25792440 0 150 37 

COMB_10 25878970 0 150 37 

COMB_26 30190045 0 150 37 

 

 

3.4.2 Per base sequence quality  

The Per base sequence quality shows an overview of the quality range across the bases, 

with the quality score on the y-axis. The mean read quality is shown as a blue line. Very 

good calls are shown in the green range, while calls of reasonable and poor quality are 

shown in orange and red, respectively. Here, all submitted files for this experiment 

reported a satisfactory Per base sequence quality score, as shown in the example Fig. 3.7.  

 

 
Fig. 3.7 Example of a per base sequence quality report for the file DEHP_12.fq (treatment LOW 

DEHP sample no. 12) with the mean quality (blue line) in the range of very good quality (in green) 

 

3.4.3 Per tile sequence quality  

This report appears when Illumina libraries are used. It shows the quality score for each 

tile across all the bases, in order to see if there is a quality loss in some parts of the flow 

cell. The colours are in a cold-to-hot scale, where cold colours represent above-the-

average quality positions and hot colours represent below-quality tiles. In our case, for 

each sample, the module raised a yellow warning for one of the two .fq-format files 

containing a direction of the read, possibly related to a loss of quality of the sequencer 

flow cell (Fig. 3.8).  
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Fig. 3.8 Examples of a per tile sequence quality report for the files DEHP_12_1.fq (LOW DEHP 

no. 12) with a warning (flagged in yellow in the graph) and DEHP_12_2.fq without warnings 

3.4.4 Per sequence quality score 

Per sequence quality score is meant to report universally low-quality values of the subset 

of sequences. Generally, the quality score plot should not present bumps in the lower 

quality range. Here, all submitted files presented satisfactory Per sequence quality scores 

(Fig. 3.9).  

 
Fig. 3.9 Examples of a per sequence quality score report for the files TEMP_18.fq (HIGH T no. 

18) 

 

3.4.5 Per base sequence content 

Per base sequence content shows the proportion of each base position. Usually, a random 

library should show little or no imbalance between the different bases as in theory, the G 

content should be equal to the C content, and for all As there should be an equal amount 
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of Ts. Some types of libraries, however, will produce intrinsic biases at the start of the 

read, often associated with using random hexamers or transposases. Per base sequence 

content raises a warning if there is a difference greater than 10% between A, T, G, and C 

and a failure is issued if this difference is greater than 20% in any position. Flags are 

raised in case of i) overrepresented sequences such as adapter dimers or rRNA; ii) biased 

fragmentation around the first 12bp of each run due to the use of random hexamers; ii) 

biased composition libraries (for example, library treated with sodium bisulphite will 

have their cytosines converted to thymines); iv) aggressive trimming. It is reported that 

nearly all RNA-seq libraries will fail this module, due to the fact that the first 10-12 bases 

are the results of random hexamer priming used during the library preparation. Similarly, 

our results showed red flags for all submitted files, as shown in the example in Fig. 3.10.  

 

 

Fig. 3.10 Example of a per base sequence content (red flagged) for the files TEMP_8.fq (HIGH 

TEMP no. 8). Reports for all submitted samples (i.e., TEMP_08, TEMP_13, TEMP_18, 

DEHP_12, DEHP_13_DEHP_17, COMB_07, COMB_10, COMB_26) showed red flags for the 

first 11 reads 

 

3.4.6 Per sequence GC content 

This module measures the GC content of each sequence and compares it to a normal 

distribution. In a normal-distributed library, the central peak shows the overall GC 

content. A non-normal shape could be related to a contaminated or biased library. In our 

case, a yellow warning was raised for all submitted samples, as the sum of deviations 

from the normal distribution was more than 15% of the total reads (Fig. 3.11).  
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Fig. 3.11 Example of a per sequence GC content (yellow flagged) for the files TEMP_18.fq 

(HIGH TEMP no. 18). Reports for all submitted samples (i.e., TEMP_08, TEMP_13, TEMP_18, 

DEHP_12, DEHP_13_DEHP_17, COMB_07, COMB_10, COMB_26) showed yellow flags 

 

3.4.7 Per base N content 

This module measures the N content percentage that the sequencer had used as substitutes 

when unable to make a confident base call. Here, all submitted files met the satisfactory 

requirements (Fig. 3.12).  

 
Fig. 3.12 Example of a per base N content report for the file DEHP_17.fq (LOW DEHP no. 17) 
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3.4.8 Sequence length distribution 

This module highlights the distribution of fragmented sequences of varying lengths 

generated by the sequencer. In most cases, the graph plots the distribution with a single 

peak at one size, as shown in Fig. 3.13. Here, all submitted files presented satisfactory 

Sequence length distribution results.   

 

 
Fig. 3.13 Example of a sequence length distribution report for the file COMB_7.fq (LOW DEHP 

HIGH T no. 7) 

 

3.4.9 Sequence duplication levels  

This module plots the degree of duplication for each sequence. Low duplication levels 

could mean a high level of library coverage for the target sequence, while high duplication 

levels could be related to the use of an enrichment bias. Library duplicates are usually 

divided into technical duplicates (made from PCR artifacts) or biological replicates, such 

as different copies of the same sequence. In the graph, the blue line shows the full 

sequence set and how the duplications are distributed, while the red line plots the de-

duplicated sequences.  

In our dataset, all submitted files reported red flags for this module (Fig. 3.14), presenting 

spikes of the blue plot at the right end of the graph. However, it is quite normal that flags 

are raised for RNA-seq outcomes, because usually these libraries are made of 

significantly different sequence levels. Therefore, highly expressed transcripts are often 
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over-sequenced and possibly create duplicates but the warning does not need to be fixed 

(Fig. 3.14).  

 

Fig. 3.14 Example of a duplicate sequences report (red flagged) for the file TEMP_18.fq (HIGH 

T no. 18). Reports for all submitted files showed red flags  

 

3.4.10 Overrepresented sequences  

The module flags overrepresented sequences if they are highly biologically significant 

(more than 0.1% of the total). In our case, three yellow flags were raised for files 

DEHP_13, DEHP_17 and TEMP_08 (Fig. 3.15). A Blast search was carried out to 

recognise the overrepresented sequences found with this module, revealing the first 

sequence belonging to M. edulis meb55a mitochondrial gene, while it was inconclusive 

for the second sequence. They were not removed, as natural overrepresentation could 

occur for RNA-seq data.   

 

 
Fig. 3.15 Overrepresented sequences report flagged for files DEHP_13.fq and TEMP_08.fq (first 

sequence), and DEHP_17.fq (second sequence)  
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3.4.11 Adapter content 

Adapters are known sequences of artificial oligonucleotides that are added during the 

library preparation to ensure a correct clustering during the sequencing (Fig. 3.5). This 

module searches for read-through adapter sequences, helping to decide if adapter 

trimming is needed or not. The graph will plot the cumulative percentage count of adapter 

sequences for each position. All submitted files presented satisfactory outcomes (Fig. 

3.16, Table 3.3).   

 

 
Fig. 3.16 Example of adapter content report for COMB_10.fq (LOW DEHP HIGH TEMP no. 10) 

 

Table 3.3 RNA-seq adapter sequences used in this experiment (oligonucleotide sequences of 

adapters from TruSeqTM RNA and DNA sample prep kits) 

P5 Adaptor Sequence P5-AATGATACGGCGACCACCGAGA (5’-3’) 

P5’-TTACTATGCCGCTGGTGGCTCT (3’-5’) 

P7 Adaptor Sequence CGTATGCCGTCTTCTGCTTG-P7’ (5’-3’) 

GCATACGGCAGAAGACGAAC-P7 (3’-5’) 

 

3.5 Materials and Methods: Read trimming  

Trimming is a method for removing low-quality bases from a read and it could improve 

the general quality of the assembly. On the other hand, the filtering process discards the 

entire read, leading to a loss of data. Standard filtering could i) remove sequences with a 

median score of < 20 or < 25; ii) remove sequences with a high N score (high number of 

unknown nucleotide proportion); iii) remove small reads (<25 bp). 
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Data trimming was carried through the Trimmomatic module (v 0.38), which is a module 

used to trim, filter or crop Illumina sequences and remove adapters. Trimmomatic allows 

one to choose between i) LEADING, which cuts bases off the start of the read if below a 

certain chosen point; ii) TRAILING, which cuts bases off the end of the read if below a 

certain chosen point; iii) MINLEN, which drops the read if below a certain chosen length 

value; iv) AVQUAL, which drops the read if average quality is below a certain chosen 

point; v) HEADCROP, which cuts the specified chosen number of bases from the start of 

the read. Furthermore, ILLUMINACLIP command cuts adapters and other illumina-

specific sequences from the read. A focus on the Trimmomatic code command is available 

in the Supplementary Appendix to Chapter 3 (S3.2). The resulting outputs 

Paired_sample and Unpaired_sample were generated from the two fq-format files of 

each sample. Paired_sample refers to reads that have passed the quality control in both 

sample_1.fq and sample_2.fq. Unpaired_sample refers to reads that have not passed 

the quality control in both files. After the trimming and filtering steps, the quality control 

was repeated on the trimmed Paired_sample files.  

 

3.6 Materials and Methods: Trinity de novo assembly 

All Trinity steps were carried out in Viper in a singularity container image (v 3.5.3), that 

can operate like a lightweight virtual machine (Freedman et al., 2020). A focus on the 

Trinity code command is available in the Supplementary Appendix to Chapter 3 (S3.3). 

The quality of the assembly was checked by the TrinityStats.pl script, used to generate 

N50 statistics and count the number of Trinity contigs: 

$TRINITY_HOME/util/TrinityStats.pl 

/home/userID/Trinity.output.fastafile 

The N50 statistics gives a measure of the completeness and continuity of the genome by 

assessing the distribution of contig (i.e., a contiguous set of overlapping segments of DNA 

that together represent a consensus region) lengths (Gregory, 2005). In detail, if all the 

longest contigs in a set were arranged to cover 50% of the assembly with their length, the 

contig N50 is defined as the length of the shortest contig of the set (Miller et al., 2010). 
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3.7 Materials and Methods: Transcriptome assembly evaluation 

After completion of the transcriptome assembly, it is a good practice to assess its quality 

by some general modules. The modules used in this experiment were: 

 Bowtie to assess the read content (Chapter 3.7.1). 

 BUSCO to explore the read completeness (Chapter 3.7.2). 

 Trinity to compute the ExN50-length statistics (Chapter 3.7.3). 

 

3.7.1 Assessing the read content of the transcriptome assembly 

This module used the function bowtie to align short and fragmented reads to the 

transcriptome assembly and then counted the number of pairs and single alignments. The 

assembled transcripts do not always have properly represented paired-end reads, because 

of fragmentation of transcripts and in the case of a short transcript, only one read of a pair 

might align. Typically, 70-80% of the RNA-seq reads are represented by the assembly 

and found mapped as proper pairs. The unassembled ones remaining are usually related 

to low-expressed transcripts or low-quality reads. From 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/RNA-Seq-Read-Representation-by-

Trinity-Assembly. Details of the used code are available in the Supplementary 

Appendix to Chapter 3 (3.4). 

 

3.7.2 Explore completeness with BUSCO 

Benchmarking Universal Single-Copy Orthologs (BUSCO) is a software based on 

evolutionary-informed expectations of the gene content of near-universal single-copy 

orthologs across higher taxonomic groupings (Simão et al., 2015). In Viper, a miniconda 

environment (environment1) was first built and then the BUSCO command was launched, 

as shown in Supplementary Appendix to Chapter 3 (S3.5). 

 

3.7.3 Trinity transcriptome ExN50 statistics 

This module computed the ExN50-length statistics, defined as the percentages of the 

nucleotides in the transcriptome assembly that are found in contigs of N50-length. Before 

carrying on the transcript analysis on the gene expression and length, the transcript 

abundance estimation was performed, using salmon as a fast alignment-free method, 

which examined k-mer abundances and in the assemblies 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/RNA-Seq-Read-Representation-by-Trinity-Assembly
https://github.com/trinityrnaseq/trinityrnaseq/wiki/RNA-Seq-Read-Representation-by-Trinity-Assembly
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(https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-Transcript-Quantification). 

The following matrices were generated: 

 Trinity.isoform.counts.matrix  : the estimated RNA-seq fragment counts 

(raw reads). 

 Trinity.isoform.TPM.not_cross_norm: a matrix of TPM (transcript per 

million) expression values (not cross-sample normalized). 

 Trinity.isoform.TMM.EXPR.matrix : a matrix of TMM-normalized (trimmed 

mean of M values) expression values. 

This also provided the abundance estimation at the transcript level of the RNA-seq 

fragment counts deriving from each transcript and a normalised expression by the 

transcript length. Code details are available in Supplementary Appendix to Chapter 3 

(S3.6). 

 

3.8 Materials and Methods: Identification and filtering of non-target data 

A standard nucleotide-type BlastN search for transcripts’ species and taxon ID was 

performed using the megablast algorithm (highly similar sequences) against the nt 

(nucleotide) database (Supplementary Appendix to Chapter 3, S3.7). 

The assembly was further analysed with Blobtools (Fig. 3.17) by parsing the BlastN 

output hitfile against the sorted bowtie.bam file and the Trinity assembly output datafile. 

For each entry of the hit file, the taxonomy identification was also generated. 

 

 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-Transcript-Quantification
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Fig. 3.17 BlobTools pipeline for taxonomic analysis. Workflow A is used for de novo genome 

assembly targets when no reference genome is available while Workflow B is used for genome 

re-sequencing with a reference genome. In this study Workflow A was used. From 

https://blobtools.readme.io/docs  

 

3.9 Materials and Methods: Differential expression using DESeq2 

Deseq2 is an accurate tool part of the Bioconductor package I that can easily be used in 

the Trinity package to identify RNAseq-based differentially expressed transcripts. 

Beforehand, low-expressed genes were removed by taking out the rows where only a few 

reads were counted (< 10), to increase robustness of the analysis and improve 

visualisation across treatments. Then, the DESeq2 analysis was launched inside the 

Trinity singularity container, using as input the matrix files 

Trinity.isoform.counts.matrix and Trinity.isoform.TMM.EXPR.matrix created 

beforehand and described in Chapter 3.7.3. 

The DeSeq2 analysis performed three pairwise comparisons (DEHP vs TEMP, DEHP vs 

COMB, COMB vs TEMP). Transcripts differentially expressed at significance of <= 

0.001 were also extracted from all treatments and three reports containing the transcript 

upregulation in each experimental condition were generated. Details on the used script 

are available in Supplementary Appendix to Chapter 3 (S3.8).  

 

https://blobtools.readme.io/docs
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3.10 Materials and Methods: Assembly annotation 

The assembly annotation was then carried out on the upregulated entries. The following 

modules were used for post-transcriptome analysis: 

 TransDecoder to extract and identify coding sequences (Chapter 3.10.1). 

 Trinotate to annotate the transcripts (using modules SQlite and Blast+, Chapter 

3.10.2 – 3.10.5). 

 

3.10.1 TransDecoder 

TransDecoder (v. 5.5.0) was used to extract coding regions within the transcript 

sequences generated by Trinity assembly, identifying likely coding sequences. Firstly, the 

long open reading frames (ORFs) were extracted and the ones at least 100 amino acids 

long were identified in Viper using a miniconda environment (environment1) using 

TransDecoder.LongOrfs command:  

TransDecoder.LongOrfs -t home/userID/Trinity.output.fastafile 

Then, ORFs with homology to known proteins were identified using Blast searches using 

TransDecoder.Predict command:  

TransDecoder.Predict -t /home/userID/Trinity.output.fastafile 

 

3.10.2 Preparing the Trinotate annotation report 

Trinotate (v. 3.2.2) functionally annotated the transcripts. For a correct usage of the 

Trinotate module, several tools needed to be present and installed into Viper, along with 

the required software: 

● Trinity (v. 2.13.1, Chapter 3.6). 

● TransDecoder (v. 5.5.0) to predict coding regions in transcripts (Chapter 3.10.1). 

● SQlite (v. 3.39.0) a Trinotate boilerplate sqlite database for database integration 

that comes pre-populated with Swissprot records and Pfam domains. 

● NCBI Blast+ database for homology search: searches for Trinity transcripts 

(blastx.outfmt6) and Transdecoder predicted proteins (blastp.outfmt6), as 

described in Chapter 3.10.3. 

The following required databases were installed as well: 

● Uniprot 
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● SwissProt 

And the following files were used: 

● Trinity.output.fastafile, final file produced by Trinity containing all the 

assembled transcript (see Chapter 3.6: Trinity de novo assembly). 

● Trinity.output.fastafile.transdecoder.pep, the most likely longest ORFs 

generated (see previous Chapter 3.10.1) containing the transcript protein 

sequences corresponding to the predicted coding regions. 

  

3.10.3 Sequence homology searches 

The module Blast+ evaluated the quality of the assembly, examining the number of 

assembled transcripts that appeared completely or nearly full-length. Usually, with model 

organisms, this module aligns the assembled transcripts to the reference ones, in order to 

examine the length coverage. For non-model organisms with no reference genome, 

different solutions are available. If there is a present annotation of high quality of a closely 

related species, the module might compare it to the assembled transcript 

(https://github.com/trinityrnaseq/trinityrnaseq/wiki/Counting-Full-Length-Trinity-

Transcripts). Otherwise, a general analysis is performed to align the assembled transcript 

to known protein databases, such as SwissProt, which was downloaded in Viper. The 

cutoff e-value was set at 25 to conclude that genes in the analysed species were equivalent 

to a known gene. Additionally, a scan for sequence homologies with the command blastp 

in Transdecoder-predicted protein sequences was run to maximise the sensitivity for 

functionally significant ORFs. The used script is available in the Supplementary 

Appendix to Chapter 3 (S3.9).  

 

 

3.10.4 Loading the generated results into a Trinotate SQLite Database  

The SQlite database was populated by adding the following: 

● Transcript sequence (from Trinity de novo assembly, Chapter 3.6). 

● Protein sequences (from TransDecoder definition, Chapter 3.10.1). 

● Blast homologies (blastx.outfmt6 and blastp.outfmt6, Chapter 3.10.3). 

● Pfam domain (database for protein families, Supplementary Appendix to 

Chapter 3, S3.9). 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Counting-Full-Length-Trinity-Transcripts
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Counting-Full-Length-Trinity-Transcripts
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3.10.5 Output annotation report 

The report annotation file was generated with: 

./Trinotate-Trinotate-v3.2.2/Trinotate ./sqlite/Trinotate.sqlite report 

> trinotate_annotation_report.xls 

 

And transcript names were imported: 

./Trinotate-Trinotate-

v3.2.2/util/annotation_importer/import_transcript_names.pl 

./sqlite/Trinotate.sqlite trinotate_annotation_report.xls 

 

3.11 Materials and Methods: Gene Ontology enrichment using GOseq 

For all the transcripts in each treatment that were identified as upregulated in Chapter 

3.9, the Gene Ontology (GO) assignments for each gene feature were extracted and the 

Bioconductor packaI(R) Goseq was used to perform functional enrichment tests 

(Supplementary Appendix to Chapter 3, S3.11). The resulting GO matrix was 

visualised in Revigo with Simrel semantic similarity measure and Uniprot database 

research (http://revigo.irb.hr/). The GO term IDs for all the experimental treatments were 

plotted together in a scatter plot (Fig. 3.28, 3.29 and 3.30) for enriched transcripts. 

Additionally, scatter plots and tree maps were chosen to visualise the results for each 

individual treatment (Supplementary Fig. 3.1 – 3.18). For enriched features, scatterplot 

used the overrepresented p value given by the GoSeq and displayed the entries by 

semantic similarities (with similar categories shown close together). Treemaps displayed 

the GO terms from the cluster representatives into groups based on their interaction 

(Supek et al., 2011). The Gene Ontology analysis usually divides each GO category into 

three hierarchies of the biological domain: Biological Process (BP), Cellular Component 

(CC) and Molecular Function (MF). Biological Process represents the main biological 

activities, which comprehend multiple molecular pathways. Cellular Component is an 

anatomical description of the cellular structures and compartments where the categories 

belong. Molecular Function describes the activities of the GO category at the molecular 

level (e.g., transcription, catalysis). Category definitions were then examined on 

http://geneontology.org/. 

 

http://www.bioconductor.org/packages/release/bioc/html/goseq.html
http://revigo.irb.hr/
http://geneontology.org/
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3.12 Results and Discussion: Quality control on trimmed data 

The Illumina paired-end technology generated two fq-format files for each sample (e.g. 

COMB_10_1.fq and COMB_10_2.fq for the sample COMB_10), each containing one 

direction of the read. After cutting the first 11 specified bases from the start of the read, 

most likely associated with random hexamer priming, the quality control was repeated on 

the Paired_samples using FastQC in Viper. Trimming and filtering resolved the flags 

for Per tile sequence quality (Chapter 3.4.3) and Per base sequence content (Chapter 

3.4.5). The flags that remained unresolved after the trimming were for the modules Per 

sequence GC content (Chapter 3.4.6), Sequence duplication levels (Chapter 3.4.9) and 

Overrepresented sequences (Chapter 3.4.10). As reported by McManes et al., (2014), 

setting a high-base quality threshold could lead to excessive trimming and filtering and a 

consequent negatively impacted assembly, thus no additional filtering or trimming was 

performed (Fig. 3.18).  

 
Fig. 3.18 Example for per base sequence content after base trimming 

 

3.13 Results and Discussion: Trinity de novo assembly 

Transcripts from Trinity analysis were grouped in clusters with shared sequence content. 

An example of the Fasta entry formatting is: 

 
TRINITY_DN283248_c0_g1_i1 len=371 path=[0:0-370] 

GTTTATTTCAGATTTGAAAAAATATTGTAAGACCCACAATTTCGACTAAAATTATCTGCT 

TGTATGATATATAATGAATTGCTTTGAACAATACGAGTATGAAGAATGTTCAAGCAGGTA 

TATATTGTCCACTTAAACGTTCATAAAAACAGACATTACATTTAACTAACCACTGGTTAT 

ATTTTACGAACACATTGCAACGTCATTCAAAATCAACATCAAAACTTACAGGTCATGGAG 

AACTATAACTAATTTTAAAATAATAATACTGACGCTTTTTAACATTTCATATTTGGTAAC 

ATATACGGAATTAGTTTATTTCATGCAACATATAGGTTGAGTATTGCAATCATTATCTGT 

TGTTTTCAATT 
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The example above TRINITY_DN283248_c0_g1_i1 len=371 path=[0:0-370] indicates 

the cluster TRINITY_DN283248_c0, gene 1 (g1) and isoform 1 (i1) with length (len) 371  

bp. The path information indicates the path for the de Bruijn graph to construct that 

transcript by traversing nodes.  

The N50 statistics was also generated and the number of Trinity contigs was counted 

(Chapter 3.6). For the counts of transcripts, the TrinityStats.pl gave the following N50 

results: 430015 total Trinity genes and 785867 total Trinity transcripts with a percent GC 

of 33.25%. The total assembled bases were 579369677, with a median contig length of 

403 bases and average contig of 737.24 bases. The count for contig N was as follows: 

4882 bases (N10), 3171 bases (N20), 2256 bases (N30), 1635 bases (N40) and 1172 bases 

(N50). The stats based on only the longest isoform per gene reported a total assembled 

bases count of 240581164, with median contig length of 332 bases and average contig of 

559.47 bases. Count for contig N was as follows: 4099 bases (N10), 2420 bases (N20), 

1569 bases (N30), 1022 bases (N40) and 696 bases (N50). These results were in line with 

similar statistics obtained from RNA-seq analysis in other bivalves (Moreira et al., 2012, 

2015).  

 

3.14 Results and Discussion: Transcriptome assembly evaluation 

3.14.1 Assessing the read content of the transcriptome assembly 

A typical Trinity transcriptome assembly will have the vast majority of all reads mapping 

back to the assembly, and ~70-80% of the fragments found mapped as proper pairs 

(yielding concordant alignments 1 or more times to the reconstructed transcriptome). In 

this case, 100% of the total reads (238817066 reads) were paired. Of these, 20850471 

reads (8.73%) were aligned concordantly 0 times (of these, 3.21% were aligned 

discordantly 1 time), 13758203 (5.76%) aligned concordantly exactly 1 time, and 85.51% 

(204208329 reads) aligned concordantly more than one time. 20181567 pairs were 

aligned 0 times concordantly or discordantly and of those that made up the pairs, 

14255128 reads (35.32%) were aligned 0 times, 1856388 reads (4.60%) were aligned 

exactly 1 time and 60.08% were aligned more than one time. Ultimately a 97.02% overall 

alignment rate was reached, a satisfactory result. 
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3.14.2 Explore completeness with BUSCO 

BUSCO analysis (https://busco.ezlab.org/) provided quantitative measures for the 

assessment of genome assembly, gene set and transcriptome completeness, as some genes 

are found in a genome only in single copy (Simão et al., 2015). In our case, BUSCO 

analysis calculated a value of 99.2% completeness from a final number of 255 searched 

groups. This value was determined for the assembled transcriptome (C), made of 11.4% 

of complete and single-copy genes (n = 29 BUSCOs) and 97.8% complete and duplicated 

(n = 224 BUSCOs) genes, with 0.8% fragmented (n = 2) and 0.0% missing (M), with 

“fragmented” representing the percentage of genes only partially recovered and “missing” 

representing the not recovered ones (Simão et al., 2015).  

 

3.14.3 Trinity transcriptome ExN50 statistics 

The salmon software was used for each of the sample files to estimate transcript 

expression values (i.e., the percentages of the nucleotides in the transcriptome assembly 

that are found in contigs of N50-length). Different outputs were generated for each 

replicate and between them, the quant.sf file reported the transcript identifier (name), 

the number of RNA-seq fragments predicted to derive from the specific transcript 

(NumReads), and the normalized expression values of that transcript (Transcripts per 

million, TPM, Table 3.4). 

Table 3.4 Example of the first 10 entries for the example file TEMP_13 

Name Length Effective 

Length 

TPM Num 

Reads 

TRINITY_DN346232_c0_g1_i1 301 78.5 0.00 0.00 

TRINITY_DN346292_c0_g1_i1 249 43.2 0.00 0.00 

TRINITY_DN346287_c0_g1_i1 332 105.2 0.33 2.00 

TRINITY_DN346218_c0_g1_i1 208 25.5 0.00 0.00 

TRINITY_DN346271_c0_g1_i1 206 24.9 1.38 2.00 

TRINITY_DN346224_c0_g1_i1 252 44.8 0.00 0.00 

TRINITY_DN346290_c0_g1_i1 240 38.9 0.00 0.00 

TRINITY_DN346244_c0_g1_i1 452 221.7 0.15 2.00 

TRINITY_DN346227_c0_g1_i1 325 98.9 0.17 1.00 

https://busco.ezlab.org/
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Given the estimated expressions for each transcript, the values were pulled in one matrix 

for the estimated counts Trinity.isoform.counts.matrix for all treatments (Table 

3.5).  

 

Table 3.5 Example of the first 10 entries for the Trinity.isoform.counts.matrix 

 COMB

_07 

COMB

_10 

COMB

_26 

DEHP

_12 

DEHP

_13 

DEHP

_17 

TEMP

_08 

TEMP

_13 

TEMP

_18 

TRINITY_
DN132347_

c0_g1_i1 

0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 

TRINITY_
DN5289_ 

c3_g1_i1 

4.8 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 

TRINITY_

DN100861_

c0_g1_i3 

0.0 0.0 17.8 0.0 0.0 0.0 0.0 0.0 8.0 

TRINITY_

DN194097_

c0_g1_i1  

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TRINITY_

DN112049_
c0_g1_i4 

0.0 13.5 0.0 0.0 1.6 0.0 1.9 7.3 0.0 

TRINITY_
DN125251_

c1_g1_i1 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 8.0 

TRINITY_
DN29077_ 

c1_g1_i2 

0.0 0.0 3.4 1.0 1.0 1.0 3.3 0.0 4.0 

TRINITY_

DN207333_

c0_g1_i1 

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 

TRINITY_

DN334941_

c0_g1_i1 

0.0 4.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 

TRINITY_

DN27016_ 
c6_g1_i1 

1.0 1.0 0.0 3.0 11.0 4.0 0.0 7.4 0.0 

 

The expression matrix was further normalised using TMM normalisation by linearly 

scaling the expression values of the investigated entries to generate the 

Trinity.isoform.TMM.EXPR.matrix (Table 3.6). 
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Table 3.6 Example of the first 10 entries for the Trinity.isoform.TMM.EXPR.matrix 

 COMB

_07 

COMB

_10 

COMB

_26 

DEHP

_12 

DEHP

_13 

DEHP

_17 

TEMP

_08 

TEMP

_13 

TEMP

_18 

TRINITY_

DN132347_

c0_g1_i1 

0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.4 0.0 

TRINITY_

DN5289_ 
c3_g1_i1 

0.7 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 

TRINITY_
DN100861_

c0_g1_i3 

0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.8 

TRINITY_
DN194097_

c0_g1_i1  

0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TRINITY_

DN112049_

c0_g1_i4 

0.0 0.9 0.0 0.0 0.1 0.0 0.1 0.4 0.0 

TRINITY_

DN125251_

c1_g1_i1 

0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 2.0 

TRINITY_

DN29077_ 
c1_g1_i2 

0.0 0.0 0.3 0.1 0.1 0.1 0.3 0.0 0.3 

TRINITY_
DN207333_

c0_g1_i1 

0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.6 

TRINITY_
DN334941_

c0_g1_i1 

0.0 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

TRINITY_

DN27016_ 

c6_g1_i1 

0.3 0.3 0.0 0.9 3.4 1.3 0.0 2.0 0.0 

 

3.15 Results and Discussion: Identification and filtering of non-target data 

Blobtools is a useful module to identify and isolate reads from a target genus (in our case, 

Mytilus) from other sources that could have contributed to the assembled transcriptome 

(for example, parasites or symbionts naturally living in association with the analysed 

species, Kumar and Blaxter, 2012). Blobtools identifies different taxa by their GC 

proportions, which for example have ranges from 44 - 58% in mammals and 16 - 75% in 

bacteria (Lightfield et al., 2011; Romiguier et al., 2010). Here, the initial taxonomic 

assessment of the assembly via blobtools and BlastN reported 87.61% of unmapped 
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versus 12.4% of mapped assembly (Fig. 3.19 and 3.20). These values were related to the 

nature of the transcripts from non-model organisms that do not yet correspond to 

discovered and registered genomic sequences. 

 

 

Fig. 3.19 Percentages of unmapped and mapped assembly entries with taxa characterisation 

 

 
Fig. 3.20 kB span, coverage and GC proportion of the assembly taxa characterisation 
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Of the mapped entries, 65.1 Mb belonged to the Mollusca phylum (5.98%), followed by 

Proteobacteria (4.4 Mb), Arthropoda (2.89 Mb), Chordata (2.47 Mb), Echinodermata 

(0.36 Mb), Brachiopoda (0.36 Mb), Cnidaria (0.35 Mb) and others (0.74 Mb).  

The output file was therefore filtered with the grep function to isolate only Mollusca 

entries and the sister phylum of Brachiopods and Annelids and blobtools functions were 

run again. In fact, Mollusca, Brachiopoda and Annelida are part of the Lophotrochozoa 

taxon, and are hypothesised to have articulated halkieriids as stem ancestors (Conway 

Morris and Peel, 1995). The final taxonomic assessment filtered out the additional species 

(Fig. 3.21 and 3.22). The filtered matrix was then used for downstream analysis.  

 

 

Fig. 3.21 Percentages of unmapped and mapped assembly entries with taxa characterisation in the 

filtered dataset  
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Fig. 3.22 kB span, coverage and GC proportion of the assembly taxa characterisation in the 

filtered dataset 

 

3.16 Results and Discussion: Annotation report and differential expression 

using DESeq2  

The DeSeq2 analysis generated the output folder DESeq2_trans directory containing a 

DE analysis matrix for each pairwise sample comparison (i.e., DEHP vs TEMP, DEHP 

vs COMB, COMB vs TEMP), which included log2FC and p adjusted value associated 

with each Trinity transcript. As an example, in Table 3.7 there are reported the first 10 

entries for the DESeq2 result matrix COMB_vs_DEHP. 
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Table 3.7 First 10 entries for the DESeq2 result matrix COMB_vs_DEHP, displaying the 

transcript IDs, baseMean (the average values of the normalised count divided by size factors), 

log2FC (measurement of the change of transcript’s expression), p value and adjusted p value 

 

 sampleA sampleB Base 

Mean 

log2FC pvalue padj 

TRINITY_DN1544_c1_g1_i1 COMB DEHP 173.5 -3.4 3.4e-19 5.6e-15 

TRINITY_DN4117_c0_g1_i9 COMB DEHP 169.9 -5.1 3.5e-18 2.9e-14 

TRINITY_DN5254_c0_g1_i4 COMB DEHP 122.1 3.8 8.3e-16 1.8e-12 

TRINITY_DN1824_c0_g1_i10 COMB DEHP 157.2 10.8 6.1e-16 2.5e-12 

TRINITY_DN4774_c0_g1_i17 COMB DEHP 161.4 10.8 8.1e-16 2.2e-19 

TRINITY_DN3442_c0_g1_i11 COMB DEHP 129.5 10.5 4.2e-14 1.2e-10 

TRINITY_DN1094_c0_g1_i18 COMB DEHP 212.3 -11.3 5.1e-11 1.2e-10 

TRINITY_DN2364_c0_g1_i10 COMB DEHP 850.6 -4.4 6.7e-14 1.4e-10 

TRINITY_DN3411_c0_g1_i1  COMB DEHP 125.0 10.4 1.0e-13 1.8e-10 

TRINITY_DN958_c0_g1_i23  COMB DEHP 212.1 11.2 2.1e-13 3.4e-10 

 

 

DeSeq2 also generated three reports showing upregulated transcripts in each experimental 

comparison. These results were combined with the annotations from BlastX, Blastp, 

BlastN from the Trinotate report. Shown below is an example table from the first 20 

entries of the Trinity gene and transcript IDs followed by annotation from BlastN search 

(nt database), BlastX and BlastP top hits from genome-sequenced organisms. Significant 

comparisons, base means for each treatment (average of the normalized count values, 

divided by size factors, taken over all samples), log2FC (effect size estimate in 

logarithmic scale to base 2) and the p value were added from the DeSeq2 analysis (Table 

3.8). As expected, entries were found particularly conserved between the BlastN entries 

for Mollusca and the top hits from model organisms. Missing results for BlastX/BlastP 

protein entries (for example TRINITY_DN339_c1_g1 in Table 3.8) originated from 

absent hits from model organism databases. 
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Table 3.8 First 20 entries for the upregulated DESeq2 result matrix for all treatments. Gene ID, 

transcript ID, BlastN top hits, BlastX/BlastP top hits from model organisms, significant 

comparisons, basemeans, log2 fold change (log2 FC) and p-adjusted values between treatments 

are shown 

#Gene 

ID 

#Transcrip

t 

ID 

BlastN 

Nucleotide 

sequence top 

hits 

BlastX/BlastP 

protein top hits 

(from model 

organisms) 

Comparison Base 

Means 

log2 

FC 

p adj 

value 

TRINITY_

DN12801_ 

c0_g1 

TRINITY_

DN12801_ 

c0_g1_i5 

Limnoperna 

fortunei 

genome 

assembly, 

chromosome: 

9 

Mediator of RNA 

polymerase II 

transcription subunit 

1  

(Homo sapiens) 

COMB_vs_TEMP COMB: 0 

TEMP: 130.9 

-9.5 5.07e-7 

TRINITY_

DN12785_ 

c1_g1 

TRINITY_

DN12785_ 

c1_g1_i3 

Mytilus 

coruscus 

CYP3A-like 

isoform 2 

mRNA, 

complete cds 

Cytochrome P450 

3A41 

(Ovis aries) 

DEHP_vs_TEMP DEHP: 36.4 

TEMP:0 

7.8 1.39e-5 

TRINITY_

DN12741_ 

c0_g1 

TRINITY_

DN12741_ 

c0_g1_i1 

PREDICTED

: Ostrea 

edulis 

arginine 

kinase-like 

(LOC125677

116), mRNA 

Arginine kinase 

(Liolophura 

japonica) 

DEHP_vs_TEMP DEHP: 51529.3 

TEMP:10250.2 

2.3 0.0003 

TRINITY_

DN12741_ 

c0_g1 

TRINITY_

DN12741_ 

c0_g1_i13 

PREDICTED

: Ostrea 

edulis 

arginine 

kinase-like 

(LOC125677

116), mRNA 

Arginine kinase 

(Liolophura 

japonica) 

 

COMB_vs_TEMP 

 

 

DEHP_vs_TEMP 

 

COMB: 867.5 

TEMP: 114.7 

 

DEHP: 1126.1 

TEMP:111.2 

2.9 

 

 

3.3 

7.88e-10 

 

 

1.57e-27 

TRINITY_

DN12781_ 

c0_g1 

TRINITY_

DN12781_ 

c0_g1_i10 

PREDICTED

: Ostrea 

edulis dnaJ 

homolog 

subfamily C 

member 13-

like 

(LOC125682

299), 

transcript 

variant X3, 

mRNA 

DnaJ homolog 

subfamily C member 

13  

(Homo sapiens) 

COMB_vs_DEHP 

 

COMB: 56.7 

DEHP: 0 

8.3 0.0006 

TRINITY_

DN348_ 

c8_g1 

TRINITY_

DN348_ 

c8_g1_i8 

Patella 

vulgata 

genome 

assembly, 

chromosome: 

6 

Lipoyl synthase, 

mitochondrial  

(Bos taurus) 

DEHP_vs_TEMP DEHP: 141.3 

TEMP: 0 

9.7 

 

2.03e-2 
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TRINITY_

DN339_ 

c1_g1 

TRINITY_

DN339_ 

c1_g1_i10 

Limnoperna fortunei 

ii genome  

assembly, chromosome: 14 

COMB_vs_TEMP COMB: 0 

TEMP: 43.4 

-7.9 1.35e-5 

TRINITY_

DN339_ 

c1_g1 

TRINITY_

DN339_ 

c1_g1_i2 

Limnoperna fortunei 

i genome  

assembly, chromosome: 14 

DEHP_vs_TEMP DEHP: 0 

TEMP: 62.8 

-8.4 

 

4.06e-7 

TRINITY_

DN328_ 

c0_g1 

TRINITY_

DN328_ 

c0_g1_i13 

PREDICTED

:Patellea 

vulgata 

replication 

factor C 

subunit 5-like 

(LOC126823

407), mRNA 

Replication factor C 

subunit 5  

(Homo sapiens) 

COMB_vs_DEHP 

 

COMB: 0 

DEHP: 263.2 

-10.6 4.06e-8 

TRINITY_

DN318_ 

c2_g1 

TRINITY_

DN318_ 

c2_g1_i13 

PREDICTED

: Ostrea 

edulis 

mothers 

against 

decapentaple

gic homolog 

3-like 

(LOC125662

011), 

transcript 

variant X2, 

mRNA 

Mothers against 

decapentaplegic 

homolog 3  

(Rattus norvegicus) 

COMB_vs_DEHP 

 

COMB: 195.9 

DEHP: 0 

10.1 1.63e-5 

TRINITY_

DN20005_ 

c0_g1 

TRINITY_

DN20005_ 

c0_g1_i23 

Mytilus 

galloprovinci

alis 

glutathione S-

transferase 

kappa 

mRNA, 

complete cds 

Glutathione S-

transferase kappa 1 

(Rattus norvegicus) 

DEHP_vs_TEMP DEHP: 0 

TEMP: 24.0 

-7.0 

 

0.0004 

TRINITY_

DN19938_ 

c0_g1 

TRINITY_

DN19938_ 

c0_g1_i19 

PREDICTED

: Haliotis 

rufescens 

atrial 

natriuretic 

peptide 

receptor 1-

like 

(LOC124145

742), mRNA 

Atrial natriuretic 

peptide receptor 1 

(Mus musculus) 

DEHP_vs_TEMP DEHP: 0 

TEMP: 28.6 

-7.3 

 

0.0001 

TRINITY_

DN19938_ 

c0_g1 

TRINITY_

DN19938_ 

c0_g1_i5 

PREDICTED

: Haliotis 

rufescens 

atrial 

natriuretic 

peptide 

receptor 1-

like 

(LOC124145

742), mRNA 

Atrial natriuretic 

peptide receptor 1 

(Mus musculus) 

DEHP_vs_TEMP DEHP: 0 

TEMP: 22.1 

-6.9 

 

0.0003 
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TRINITY_

DN13493_ 

c0_g1 

TRINITY_

DN13493_ 

c0_g1_i20 

Mytilus galloprovincialis  

hsp70-1 gene for heat shock 

 protein 70, 

 clone lambdaMg70_II_4 

DEHP_vs_TEMP DEHP: 0 

TEMP: 47.3 

-8.0 

 

4.69e-5 

TRINITY_

DN3973_ 

c0_g1 

TRINITY_

DN3973_ 

c0_g1_i9 

PREDICTED

:Patella 

vulgata ADP-

ribosylation 

factor-like 

protein 1 

(LOC126824

784), mRNA 

ADP-ribosylation 

factor-like protein 1 

(Caenorhabditis 

elegans) 

DEHP_vs_TEMP DEHP: 86.6 

TEMP: 0 

9.0 

 

0.0003 

TRINITY_

DN3929_ 

c0_g1 

TRINITY_

DN3929_ 

c0_g1_i12 

Limnoperna fortunei  

genome assembly,  

chromosome: 15 

COMB_vs_DEHP 

 

COMB: 0 

DEHP: 38.0 

-7.7 9.41e-6 

TRINITY_

DN3977_ 

c1_g1 

TRINITY_

DN3977_ 

c1_g1_i4 

Mytilus edulis 

eg gene for 

endo-1,4-

beta-D-

glucanase, 

exons 1-3 

RING finger protein 

150  

(Homo sapiens) 

COMB_vs_DEHP 

 

COMB: 0 

DEHP: 101.7 

-9.2 1.74e-5 

TRINITY_

DN8493_ 

c0_g1 

TRINITY_

DN8493_ 

c0_g1_i5 

PREDICTED

: Crassostrea 

gigas cilia- 

and flagella-

associated 

protein 251 

(LOC105334

009), mRNA 

Cilia- and flagella-

associated protein 

251  

(Homo sapiens) 

COMB_vs_TEMP COMB: 0 

TEMP: 105.4 

-9.2 1.37e-7 

TRINITY_

DN8471_ 

c0_g1 

TRINITY_

DN8471_ 

c0_g1_i3 

Limnoperna 

fortunei 

genome 

assembly, 

chromosome: 

11 

Telomerase-binding 

protein EST1A  

(Mus musculus) 

DEHP_vs_TEMP DEHP: 131.1 

TEMP: 0 

9.6 

 

4.42e-6 

TRINITY_

DN8434_ 

c1_g1 

TRINITY_

DN8434_ 

c1_g1_i4 

Limnoperna 

fortunei 

genome 

assembly, 

chromosome: 

10 

Homeodomain-

interacting protein 

kinase 2  

(Homo sapiens) 

COMB_vs_TEMP COMB: 1166.0 

TEMP: 0 

12.7 1.87e-14 

TRINITY_

DN10910_ 

c0_g1 

TRINITY_

DN10910_ 

c0_g1_i11 

PREDICTED

: Pecten 

maximus 

nucleolar 

protein 4-like 

(LOC117325

233), 

transcript 

variant X4, 

mRNA 

Nucleolar protein 4 

(Mus musculus) 

COMB_vs_DEHP 

 

 

 

COMB_vs_TEMP 

 

COMB: 0 

DEHP: 77.1 

 

 

COMB: 0 

TEMP: 50.6 

-8.8 

 

 

 

-8.1 

7.04e-8 

 

 

 

1.48e-5 
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TRINITY_

DN10910_ 

c0_g1 

TRINITY_

DN10910_ 

c0_g1_i8 

PREDICTED

: Pecten 

maximus 

nucleolar 

protein 4-like 

(LOC117325

233), 

transcript 

variant X4, 

mRNA 

Nucleolar protein 4 

(Mus musculus) 

COMB_vs_DEHP 

 

 

 

DEHP_vs_TEMP 

 

COMB: 49.8 

DEHP: 0 

 

 

DEHP: 0 

TEMP: 54.8 

8.1 

 

 

 

-8.2 

4.15e-6 

 

 

 

1.26e-5 

TRINITY_

DN69899_ 

c0_g1 

TRINITY_

DN69899_ 

c0_g1_i1 

PREDICTED

: Ostrea 

edulis 

transformatio

n/transcriptio

n domain-

associated 

protein-like 

(LOC125661

219), mRNA 

Transformation/tran

scription domain-

associated protein 

(Mus musculus) 

DEHP_vs_TEMP DEHP: 19.2 

TEMP: 0 

6.9 

 

0.0004 

TRINITY_

DN5053_ 

c0_g1 

TRINITY_

DN5053_ 

c0_g1_i15 

Lottia 

gigantea 

hypothetical 

protein 

mRNA 

Probable N-

acetylgalactosaminy

ltransferase 9 

(Caenorhabditis 

elegans) 

COMB_vs_DEHP 

 

COMB: 89.9 

DEHP: 0 

9.0 1.49e-8 

TRINITY_

DN5025_ 

c10_g1 

TRINITY_

DN5025_ 

c10_g1_i12 

PREDICTED

: Ostrea 

edulis protein 

FAM135A-

like 

(LOC125671

383), 

transcript 

variant X6, 

mRNA 

Protein FAM135A 

(Mus musculus) 

COMB_vs_DEHP 

 

COMB: 74.9 

DEHP: 0 

8.7 1.52e-6 

TRINITY_

DN5025_ 

c10_g1 

TRINITY_

DN5025_ 

c10_g1_i17 

PREDICTED

: Ostrea 

edulis protein 

FAM135A-

like 

(LOC125671

383), 

transcript 

variant X6, 

mRNA 

Protein FAM135A 

(Mus musculus) 

COMB_vs_DEHP 

 

COMB: 0 

DEHP: 70.1 

-8.7 1.13e-6 

TRINITY_

DN5023_ 

c5_g1 

TRINITY_

DN5023_ 

c5_g1_i1 

Mytilus galloprovincialis  

hsc71 gene for  

heat shock cognate 71,  

exons 1-6 

COMB_vs_DEHP 

 

COMB: 0 

DEHP: 49.0 

-8.2 4.85e-5 

TRINITY_

DN5219_ 

c0_g1 

TRINITY_

DN5219_ 

c0_g1_i3 

Mytilus 

coruscus 

beta-alanine 

transaminase-

1 mRNA, 

complete cds 

Alanine 

aminotransferase 2 

(Homo sapiens) 

DEHP_vs_TEMP DEHP: 0 

TEMP: 145.9 

-9.6 

 

1.78e-5 
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TRINITY_

DN5204_ 

c0_g1 

TRINITY_

DN5204_ 

c0_g1_i9 

PREDICTED

: Ostrea 

edulis 

serine/threoni

ne-protein 

kinase NLK-

like 

(LOC125677

980), 

transcript 

variant X1, 

mRNA 

Serine/threonine-

protein kinase NLK 

(Homo sapiens) 

COMB_vs_DEHP 

 

COMB: 30.3 

DEHP: 0 

7.4 0.0002 

 

 

Consequently, MA and Volcano plots were generated for each pairwise comparison as 

follows, where the red points correspond to false discovery rate (FDR) corrected p values 

≤ 0.05 (Fig. 3.23 - 3.25). 

 

 
Fig. 3.23 MA and volcano plot for the pairwise comparison of COMB against DEHP for the 

filtered assembly, with annotations and features found differentially expressed at FDR <0.05 in 

red. In the Volcano plot, upregulated transcripts for DEHP are shown on the left arm of the “V”, 

compared to upregulated COMB transcripts that are on the right arm of the “V” 
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Fig. 3.24 MA and volcano plot for the pairwise comparison of COMB against TEMP for the 

filtered assembly, with annotations and features found differentially expressed at FDR <0.05 in 

red. In the Volcano plot, upregulated transcripts for TEMP are shown on the left arm of the “V”, 

compared to upregulated COMB transcripts that are on the right arm of the “V” 

 
Fig. 3.25 MA and volcano plot for the pairwise comparison of TEMP against DEHP for the 

filtered assembly, with annotations and features found differentially expressed at FDR <0.05 in 

red. In the Volcano plot, upregulated transcripts for TEMP are shown on the left arm of the “V”, 

compared to upregulated DEHP transcripts that are on the right arm of the “V” 

 



112   

The De2Seq analysis also generated a Pearson correlation for pairwise sample comparison 

(Fig. 3.26) and a clustered heatmap (Fig. 3.27) from a threshold p value of 1e-3 and 22 

fold differentially expression (Supplementary Appendix to Chapter 3, S3.8). 

 

 

Fig. 3.26 Pearson correlation between individuals for pairwise sample comparison 
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Fig. 3.27 Heatmap with upregulated expression in yellow and downregulated expression in 

purple. Expression values are plotted in log2 space and mean-centered (mean expression value for 

each feature is subtracted from each of its expression values in that row) 

 

A general upregulation of gene expression (in yellow) is visible for the TEMP treatment 

(Fig. 3.27), which also shared a higher similarity to the COMB samples with respect to 

the DEHP treatment (Fig. 3.26). The resulting DE matrix counted 405 transcripts 

significantly expressed, of which 172 between COMB against DEHP (of which 84 

upregulated for COMB and 88 upregulated for DEHP, Table 3.9), 90 significantly 

expressed between COMB against TEMP (of which 31 upregulated for COMB and 59 

upregulated for TEMP, Table 3.10), and 198 between DEHP against TEMP (79 

upregulated for DEHP and 119 upregulated for TEMP, Table 3.11). When available in 

the literature, the characteristics of the associated mollusc proteins were annotated. 

Otherwise, the functions of these transcripts were checked in https://www.uniprot.org/ 

https://www.uniprot.org/


114   

from the database of the main model organisms. Shown in the tables are the first 10 most 

upregulated transcripts for treatment in each pairwise comparison (Table 3.9 - 3.11). 

Considering the TEMP treatment, the following example transcripts resulted upregulated 

in comparison with the other two treatments (DEHP or COMB Table 3.10 and 3.11): 

 Pre-mRNA-splicing factor RBM22 (RBM22): it monitors the first part of the 

splicing of pre-mRNA in humans and it is reported to be translocated into the 

nucleus during heat stress in yeast cells (Janowicz et al., 2011). 

 Non-muscle myosin (zip): it is involved in cellularisation, morphogenesis and 

cytokinesis in Drosophila melanogaster (Sechi et al., 2014). 

 Cathepsin B (Ctsb): it was identified in M. galloprovincialis, by Romero et al., 

(2022) with a presence in all analysed tissues (mantle, foot, muscle, gills, gland, 

haemocytes and gonads), possibly involved in the development of early stages 

and immune response to virus infection.  

 PDZ domain-containing protein-1 (PDZD1): it arranges membrane proteins in the 

correct spatial position in humans (Ferreira et al., 2018).   

 Rabankyrin-5 (Ankfy1): in mice, it is involved in the transport and localisation of 

endosomes and lysosomes (Schnatwinkel et al., 2004). 

 ADP-ribosylation factor-like protein 5B (ARL5B): it is involved in the 

development of male reproductive germ cells (Schürmann et al., 2002). 

 Kinesin-like protein KIF21A (Kif21a): it is a microtubule-binding protein that in 

mice possibly controls motor activity (Marszalek et al., 1999). 

 F-BAR domain only protein 2 (FCHO2): it is a protein that in humans serves as a 

co-factor in the early steps of clathrin-mediated endocytosis (Henne et al., 2010). 

 T-complex protein 1 subunit theta (CCT8): it is a chaperon that plays a role in 

assembling the protein folding in humans (Freund et al., 2014). 

 40S ribosomal protein S4 (Rps4): commonly used as a reference gene in M. 

galloprovincialis gills, digestive glands and mantle (Salatiello et al., 2022). 

 Eukaryotic peptide chain release factor subunit 1 (ETF1): it is involved in 

terminating the synthesis of peptides after the termination codon signal in humans 

(Frolova et al., 1994). 

 Chitinase (CHI3L2): this is a biomineralization protein, and the associated 

TroV_158 contig was identified in the mantle transcript of Mytilus spp. by 

Malachowicz and Wenne (2019). 
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 Caspase 2 (CASP12): this is a protein involved in the apoptotic process. In M. 

galloprovincialis, the sequence for caspase-2 was identified by Romero et al., 

(2011), and it seems to be regulated by external stressors such as UV treatment, 

but not by the exposure to pathogens or environmental pollutants such as 

polychlorinated biphenyls, phenanthrene and benzopyrene. 

 Ubiquitin carboxyl-terminal hydrolase FAF-X (Usp9x): it might regulate and 

prevent protein degradation (Zhang et al., 2018a). 

 

Considering the DEHP treatment, the following example transcripts resulted upregulated 

in comparison with the other two treatments (TEMP or COMB Table 3.9 and 3.11): 

 GTP-binding protein Sar1b (SAR1B): in humans, it transports and delivers 

lipoproteins from the endoplasmic reticulum to the Golgi apparatus (thereby 

involved in the maintenance of lipid homeostasis, Wang et al., 2021). 

 Unc-13 homolog B (UNC13B, unc-13): in humans, it monitors the second 

messenger pathway for vesicle maturation. In nematode C. elegans, it is also 

possibly involved in the release of neurotransmitters from neurons (Maruyama 

and Brenner, 1991).  

 hsp90 co-chaperone Cdc37 (CDC37): this is a chaperone that generally assists 

HSP90 in several activities, such as signalling pathways and in the cell cycle 

progression (Stepanova et al., 1996). 

 Serine/threonine-protein kinase B-raf (Braf): this is a protein involved in fertility 

and progression of oocyte maturation in nematodes (Schouest et al., 2009). 

 Structural maintenance of chromosomes protein 3 (smc-3): in nematodes, it is 

involved in DNA repair and chromosome cohesion during meiosis (Baudrimont 

et al., 2011). 

 Translin-associated factor X-interacting protein 1 (Tsnaxip1): in mice, it has a 

possible role in spermatogenesis (Bray et al., 2002). 

 Tuberin (TSC2): it controls the cell cycle progression, as a loss of it shortens the 

G1 phase (Liang and Slingerland, 2003).  

 

For COMB treatment, the following example transcripts were upregulated in comparison 

to the other two treatments (DEHP or TEMP, Table 3.9 and 3.10): 
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 DROSHA (DROSHA): it is a double-stranded RNA-specific ribonuclease III 

generally involved in the processing of miRNA transcripts (pri-miRNAs) in the 

nucleus (Denli et al., 2004). 

 Liprin-alpha-1 (PPFIA1, syd-2): in humans, it is allegedly involved in the 

regulation of receptor-like tyrosine phosphatases type 2A (Serra-Pagès, 1995). On 

the contrary, in C. elegans, liprin-alpha does not seem to bind these receptors, but 

it is involved in the regulation of synaptic functions and neuronal region structure 

(Wang and Wang, 2009). 

 Prolyl 4-hydroxylase subunit alpha-1 (P4HA1): it is involved in the synthesis of 

components of collagen synthesis in organisms such as humans or nematodes 

(Annunen, 1997; Friedman et al., 2000). 

 Ethanolamine-phosphate cytidylyltransferase (PCYT2): it is an enzyme involved 

in stabilising membrane-anchored protein, apoptosis, cell division and fusion 

(Nakashima et al., 1997).   

 ATP-dependent RNA helicase (DHX9): it is involved in post transcriptional gene 

expression and possibly in pre-mRNA splicing. In mussel M. galloprovincialis, it 

was recently sequenced by Gerdol and Venier (2015) with a putative function of 

double-stranded DNA sensing in the cytoplasm. This was found upregulated also 

in DEHP-treated samples (Table 3.9). 

 Serine/threonine-protein kinase N2 (PKN2): in humans, it is possibly involved in 

the regulation of cell cycle progression, actin cytoskeleton assembly, cell 

migration, cell adhesion and transcription activation signalling processes (Guen 

et al., 2016).  

 E3 ubiquitin-protein ligase HERC2 (HERC2): in humans, it is involved in the 

response to DNA damage (Osorio et al., 2016). 

 Arginine kinase (mcsB): a transferase that generally synthetise phospho-arginine 

by catalysing the chemical reaction from ATP γ-phosphate group to L-arginine 

(Lopez-Zavala et a., 2016). This was found upregulated also in DEHP-treated 

samples (Table 3.11). 

 Myotubularin-related protein 9 (Mtmr9): in mice, it regulates myotubularin-

related phosphatases, and it seems to be involved also in the apoptotic process 

(Mochizuki and Majerus, 2003). 
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 THY domain-containing protein-1 (Ppp2r2b): In M. galloprovincialis it is a 

protein that contains a beta actin-binding motif that was isolated in the 

myostracum, which is a part of the shell where soft tissues are attached (Gao et 

al., 2015).  

 Ryanodine receptor (RYR3): it is involved (in humans) in muscle contraction by 

controlling the release of Ca2+ into the cytoplasm from the sarcoplasmic reticulum 

(Schwarzmann et al., 2002).  

 

Table 3.9 List of the most 10 significant upregulated COMB and DEHP transcripts in the 

COMB_vs_DEHP comparison (also observable in Fig. 3.23). In grey are shown the transcripts 

with aspecific or hypothetical mollusc equivalents in the BlastN database, followed by the 

corresponding BlastX and BlastP top hits from the model organism database 

COMB DEHP 

Mytilus galloprovincialis DROSHA mRNA, complete 

cds 

Limnoperna fortunei genome assembly, 

chromosome: 7 

Limnoperna fortunei genome assembly, chromosome: 

7 

transmembrane channel-like protein 5 (Homo sapiens) 

PREDICTED:Patella vulgata GTP-binding 

protein SAR1b-like (LOC126810142), 

transcript variant X1, mRNA 

PREDICTED:Patella vulgata liprin-alpha-1-like 

(LOC126825605), transcript variant X3, mRNA 

PREDICTED: Crassostrea gigas protein unc-

13 homolog B (LOC105330539), transcript 

variant X17, mRNA 

PREDICTED: Crassostrea virginica prolyl 4-

hydroxylase subunit alpha-1-like (LOC111127387), 

mRNA 

PREDICTED: Crassostrea gigas hsp90 co-

chaperone Cdc37 (LOC105317959), transcript 

variant X2, mRNA 

PREDICTED: Octopus sinensis ethanolamine-

phosphate cytidylyltransferase (LOC115210933), 

transcript variant X1, mRNA 

Limnoperna fortunei genome assembly, 

chromosome: 7  

integrator complex subunit 1 (Mus musculus) 

Mytilus galloprovincialis ATP-dependent RNA 

helicase DDX41 mRNA, complete cds 

Lottia gigantea hypothetical protein partial 

mRNA 

Tripeptidyl-peptidase 2 (Homo sapiens)  

PREDICTED: Mercenaria mercenaria 

serine/threonine-protein kinase N2-like 

(LOC123556614), transcript variant X3, mRNA 

Pinctada imbricata serine/threonine-protein 

kinase B-raf-like protein (raf) mRNA, complete 

cds 
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PREDICTED: Crassostrea virginica E3 ubiquitin-

protein ligase HERC2-like (LOC111127369), 

transcript variant X3, mRNA 

PREDICTED: Crassostrea virginica structural 

maintenance of chromosomes protein 3-like 

(LOC111134732), mRNA 

Limnoperna fortunei genome assembly, chromosome: 

8  

Anoctamin-1 (Mus musculus) 

Mytilus galloprovincialis ATP-dependent RNA 

helicase DDX41 mRNA, complete cds 

Mytilus coruscus clone MC047 microsatellite 

sequence 

endoplasmic reticulum-Golgi intermediate 

compartment protein 3 (Danio rerio) 

PREDICTED: Mizuhopecten yessoensis 

protein unc-13 homolog B-like 

(LOC110456312), transcript variant X13, 

mRNA 

 

 

Table 3.10 List of the most 10 significant upregulated COMB and TEMP transcripts in the 

COMB_vs_TEMP comparison (also observable in Fig. 3.24). In grey are shown the transcripts 

with aspecific or hypothetical mollusc equivalents in the BlastN database, followed by the 

corresponding BlastX and BlastP top hits from the model organism database 

COMB TEMP 

Limnoperna fortunei genome assembly, chromosome: 

10 

Homeodomain-interacting protein kinase 2 (Homo 

sapiens) 

PREDICTED:Patella vulgata pre-mRNA-

splicing factor RBM22-like (LOC126810789), 

mRNA 

PREDICTED:Patella vulgata liprin-alpha-1-like 

(LOC126825605), transcript variant X3, mRNA 

PREDICTED: Crassostrea gigas myosin heavy 

chain, non-muscle (LOC105332339), transcript 

variant X12, mRNA 

Limnoperna fortunei genome assembly, chromosome: 

9 

pericentrin (Homo sapiens) 

Limnoperna fortunei genome assembly, 

chromosome: 6 

Sorting nexin-2 (Homo sapiens) 

PREDICTED: Ostrea edulis arginine kinase-like 

(LOC125677116), mRNA 

Mytilus galloprovincialis cathepsin B (ctsb) 

mRNA, complete cds 

PREDICTED: Crassostrea virginica E3 ubiquitin-

protein ligase MARCH6-like (LOC111134723), 

mRNA 

Mytilus coruscus PDZ domain-containing 

protein-1 mRNA, complete cds 

Limnoperna fortunei genome assembly, chromosome: 

9 

dynein-1-beta heavy chain (Chlamydomonas 

reinhardtii) 

PREDICTED: Mizuhopecten yessoensis 

rabankyrin-5-like (LOC110460738), transcript 

variant X2, mRNA 
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PREDICTED: Pecten maximus myotubularin-related 

protein 9-like (LOC117316531), mRNA 

PREDICTED: Mizuhopecten yessoensis ADP-

ribosylation factor-like protein 5B 

(LOC110459636), mRNA 

Limnoperna fortunei genome assembly, chromosome: 

8 

PREDICTED: Gigantopelta aegis kinesin-like 

protein KIF21A (LOC121381972), transcript 

variant X3, mRNA 

Mytilus galloprovincialis THY domain-containing 

protein-1 mRNA, partial cds 

PREDICTED: Mercenaria mercenaria F-BAR 

domain only protein 2-like (LOC123525878), 

mRNA 

PREDICTED: Ostrea edulis ryanodine receptor-like 

(LOC125648892), transcript variant X9, mRNA 

PREDICTED: Mercenaria mercenaria T-

complex protein 1 subunit theta-like 

(LOC123551855), transcript variant X2, 

mRNA 

 

 

Table 3.11 List of the most 10 significant upregulated DEHP and TEMP transcripts in the 

DEHP_vs_TEMP comparison (also observable in Fig. 3.25). In grey are shown the transcripts 

with aspecific or hypothetical mollusc equivalents in the BlastN database, followed by the 

corresponding BlastX and BlastP top hits from the model organism database 

DEHP TEMP 

PREDICTED: Ostrea edulis arginine kinase-like 

(LOC125677116), mRNA 

Mytilus edulis 40S ribosomal protein S4 

mRNA, partial cds 

PREDICTED: Crassostrea gigas protein unc-13 

homolog B (LOC105330539), transcript variant X17, 

mRNA 

PREDICTED: Crassostrea gigas eukaryotic 

peptide chain release factor subunit 1 

(LOC105325000), mRNA 

Limnoperna fortunei genome assembly, chromosome: 

7 

Telomere attrition and p53 response 1 protein 

(Xenopus tropicalis) 

Limnoperna fortunei genome assembly, 

chromosome: 12  

SPRY domain-containing SOCS box protein 1 

(Bos taurus) 

PREDICTED: Crassostrea virginica translin-

associated factor X-interacting protein 1-like 

(LOC111138192), mRNA 

Limnoperna fortunei genome assembly, 

chromosome: 6) 

Sorting nexin-2 (Homo sapiens) 

Limnoperna fortunei genome assembly, chromosome: 

7  

DnaJ homolog subfamily B member 12 (Homo 

sapiens) 

Mytilus trossulus isolate TroV_158 chitinase-

like protein mRNA, complete cds 



120   

Pinctada imbricata serine/threonine-protein kinase B-

raf-like protein (raf) mRNA, complete cds 

Mytilus galloprovincialis caspase 2 mRNA, 

complete cds 

REDICTED: Mizuhopecten yessoensis protein unc-13 

homolog B-like (LOC110456312), transcript variant 

X13, mRNA 

Mytilus edulis 40S ribosomal protein S4 

mRNA, partial cds 

Limnoperna fortunei genome assembly, chromosome: 

8  

Dynein axonemal heavy chain 5 (Homo sapiens) 

PREDICTED: Ostrea edulis probable ubiquitin 

carboxyl-terminal hydrolase FAF-X 

(LOC125659115), transcript variant X3, 

mRNA 

Lottia gigantea hypothetical protein partial mRNA 

Cilia- and flagella-associated protein 65 (Gallus 

gallus) 

Limnoperna fortunei genome assembly, 

chromosome: 8 

 

Anoctamin-1 (Mus musculus) 

PREDICTED:Lingula anatina tuberin 

(LOC106155018), mRNA 

Limnoperna fortunei genome assembly, 

chromosome: 11 

 

Furthermore, several transcripts were recognised by the BlastN search as belonging 

aspecifically to Limnoperna fortunei genome assembly or hypothetical mollusc proteins 

(in grey in Table 3.9 – 3.11). This is due to the lack of a complete genome mapping of 

non-model organisms such as mussels. In this case, the BlastX and BlastP top hits from 

the model organism database were taken into consideration.  

Specifically, for TEMP treatment, the following example transcripts were analysed from 

model organisms: 

 TRINITY_DN14995_c0_g1_i12 (Limnoperna fortunei genome assembly, 

chromosome: 6): Sorting nexin-2 (Snx2), involved in intracellular trafficking (Van 

Weering et al., 2012). 

 TRINITY_DN5174_c0_g1_i11 (Limnoperna fortunei genome assembly, 

chromosome: 12): SPRY domain-containing SOCS box protein 1 (SPSB1), which 

binds E3 ubiquitin-protein ligase complex and monitor the ubiquitination and 

degradation of target proteins (Nishiya et al., 2011). 

 TRINITY_DN5409_c0_g1_i7 (Limnoperna fortunei genome assembly, 

chromosome: 8): Anoctamin-1 (Ano1): it is a chloride channel activated by 

calcium, involved in muscle contraction, intestinal mucus secretion, vomeronasal 

sensory neurons, non-histaminergic response and radial glial cell extension 

(Benedetto et al., 2019; Hong et al., 2019; Paulino et al., 2017). 

 TRINITY_DN1026_c0_g1_i1 (Limnoperna fortunei genome assembly, 
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chromosome: 11): no results 

For the DEHP treatment: 

 TRINITY_DN1544_c1_g1_i1 (Limnoperna fortunei genome assembly, 

chromosome: 7): no results 

 TRINITY_DN8301_c0_g1_i42 (Limnoperna fortunei genome assembly, 

chromosome: 7): integrator complex subunit 1 (INTS7), a part of a complex that 

monitors the transcriptions of small nuclear RNAs, U1 and U2 (Cotta-Ramusino 

et al., 2011). 

 TRINITY_DN2375_c7_g1_i3 (Lottia gigantea hypothetical protein partial 

mRNA): Tripeptidyl-peptidase 2 (TPP2), which monitors the intracellular amino 

acid homeostasis (Lu et al., 2014). 

 TRINITY_DN4891_c0_g1_i15 (Limnoperna fortunei genome assembly, 

chromosome: 7): Telomere attrition and p53 response 1 protein (TAPR1), which 

protects the cell against telomerase shortening and apoptosis (Santos et al., 2021). 

 TRINITY_DN8645_c1_g1_i10 (Limnoperna fortunei genome assembly, 

chromosome: 7): DnaJ homolog subfamily B member 12 (DNAJB12), co-

chaperon with HSPA8/Hsc70, involved in protein folding, aggregation and 

trafficking (Grove et al., 2011; Yamamoto et al., 2010). 

 TRINITY_DN63_c1_g1_i6 (Limnoperna fortunei genome assembly, 

chromosome: 8): Dynein axonemal heavy chain 5 (Dnah5), which generates 

respiratory ciliary proteins (Dougherty et al., 2016).   

 TRINITY_DN2788_c0_g1_i15 (Lottia gigantea hypothetical protein partial 

mRNA): Cilia- and flagella-associated protein 65 (CFAP65), which monitors the 

formation of flagella and sperm motility (Liu et al., 2021). 

And for COMB treatment: 

 TRINITY_DN1824_c0_g1_i10 (Limnoperna fortunei genome assembly, 

chromosome: 7): transmembrane channel-like protein 5 (TMC1), in humans and 

mice it is an ion channel allegedly involved in cochlear hair cells (Kurima et al., 

2002). 

 TRINITY_DN5409_c0_g1_i7 (Limnoperna fortunei genome assembly, 

chromosome: 8): Anoctamin-1 (Ano1). 
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 TRINITY_DN10102_c0_g1_i23 (M. coruscus clone MC047 microsatellite 

sequence): endoplasmic reticulum-Golgi intermediate compartment protein 3 

(ERGIC1), possibly involved in the endoplasmic reticulum - Golgi transport 

(Breuza et al., 2004).   

 TRINITY_DN8434_c1_g1_i4 (Limnoperna fortunei genome assembly, 

chromosome: 10): Homeodomain-interacting protein kinase 2 (HIPK2), it is a 

serine/threonine-protein kinase that is involved in transcription regulation, 

apoptosis and cell cycle (Liebl et al., 2021). 

 TRINITY_DN1901_c0_g1_i16 (Limnoperna fortunei genome assembly, 

chromosome: 9): pericentrin (PCNT), which organises microtubules in mitosis 

and meiosis (Flory et al., 2000). 

 TRINITY_DN11332_c0_g1_i17 (Limnoperna fortunei genome assembly, 

chromosome: 9): dynein-1-beta heavy chain, flagellar inner arm I1 complex 

(DHC10), which monitors cilia and flagella formation (Perrone et al., 2000).  

 TRINITY_DN33020_c0_g1_i32 (Limnoperna fortunei genome assembly, 

chromosome: 8): no results 

 

3.17 Results and Discussion: Gene Ontology enrichment using GOseq 

The DE_results (Chapter 3.9) for upregulated transcripts in each treatment were used to 

generate GO assignments for each gene feature. Specifically, a matrix of enriched (over-

represented) and depleted (under-represented) transcripts among the set of significantly 

upregulated genes for each treatment was generated. The resulting Gene Ontology matrix 

was visualised in Revigo with Simrel semantic similarity measure and Uniprot database 

research (http://revigo.irb.hr/). The GO term IDs for all the experimental treatments were 

plotted together in a scatter plot (Fig. 3.28 - 3.30) for enriched transcripts. Additionally, 

scatter plots and treemaps were chosen to visualize the results for each individual 

treatment (Supplementary Fig. 3.1 – 3.18).  

For the TEMP treatment, 58 GO categories were found significantly over-represented 

(enriched). Of these, 31 categories for Biological Process were found and grouped based 

on their interactions (Fig. 3.28, Supplementary Fig. 3.1 and 3.2):  

 Dephosphorylation: involved in the removal of phosphoric residues (ester or 

anhydride) from molecules.      

http://revigo.irb.hr/
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 Cell differentiation and post-embryonic animal morphogenesis: processes 

involved in characterisation of unspecialised cells by structures and functional 

features during the development to the mature state. 

 Homeostatic process: process involved in the maintenance of stable internal 

physical and chemical conditions. 

 Cellular nitrogen compound biosynthetic process and peptide metabolic process: 

comprehend all the reactions involved in the synthesis of nitrogenous compounds, 

both organic and inorganic and pathways that comprehend peptides. 

 Positive regulation of nucleobase-containing compound metabolic process, 

regulation of macroautophagy, negative regulation of phosphate metabolic 

process, negative regulation of cell population proliferation, negative regulation 

of phosphorus metabolic process, regulation of reproductive process, positive 

regulation of reproductive process and positive regulation of chromosome 

organisation: involved in chemical reactions, processes and pathways that 

comprehend nucleobase-containing compounds (such as DNA, RNA), 

phosphorus compounds, phosphate compounds and also include cell proliferation, 

macroautophagy, reproduction. 

 Organelle fusion, membrane organisation, plasma membrane organisation and 

membrane fusion: involved in the assembly/disassembly and arrangement of 

plasma membrane constituents, including organelle generation and membrane 

fusion.  

 Protein localisation to membrane, protein targeting, endocytosis, cellular 

localisation, cellular macromolecule localisation, protein localisation to plasma 

membrane and establishment of protein localisation to organelle: involved in 

transportation and maintenance of proteins and macromolecules in a specific 

membrane location or particular cell regions, such as organelles. 

For the DEHP treatment, 41 GO categories were found significantly over-represented 

(enriched). Of these, 10 categories for Biological Process were found and grouped based 

on their interactions (Fig. 3.28, Supplementary Fig. 3.7 and 3.8):  

 Cellular component disassembly. 

 Cell cycle G2/M phase transition and mitotic cell cycle process. 
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 Response to stimulus, which comprehends the detection of a stimulus and the 

corresponding resulting state/activity change (e.g., movement, secretion, gene 

expression).  

 Localisation. 

 Anion transmembrane transport. 

 Positive regulation of transferase activity, negative regulation of DNA metabolic 

process, regulation of transferase activity: involved in the donor-acceptor transfer 

of a group (e.g., methyl, glycosyl, acyl, phosphorus-containing groups) and down-

regulation of DNA metabolic process.  

For COMB treatment, 27 GO terms were found significantly overrepresented. Of these, 

15 categories for Biological Process were found and grouped based on their interactions 

in one group (Fig. 3.28, Supplementary Fig. 3.13 and 3.14):  

 Negative regulation of protein catabolic process, regulation of catabolic process, 

negative regulation of catabolic process, regulation of transforming growth factor 

beta receptor signalling pathway, transmembrane receptor protein 

serine/threonine kinase signalling pathway, negative regulation of proteolysis, 

negative regulation of proteolysis involved in protein catabolic process, 

smoothened signalling pathway, regulation of transmembrane receptor protein 

serine/threonine kinase signalling pathway: involved in the regulation of 

signalling pathway and protein catabolic process, with or without the hydrolysis 

of peptide bonds.  
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Fig. 3.28 Enriched Biological Process for TEMP (red), DEHP (green) and COMB (blue) with 95 

% confidence ellipse. Data points are plotted by semantic similarities. Different sizes of the data 

points represent their over-represented p value 

 

For Cellular Component, 13 TEMP GO categories were found and grouped as follows 

(Fig. 3.29, Supplementary Fig. 3.3 and 3.4):  

 Endoplasmic reticulum and endosome. 

 Cell projection: the prolongation or a process that extends from a cell (e.g., 

flagellum or axon). 

 Dendrite and cell projection membrane. 

 Site of polarised growth: defined as the part of a cell involved in non-isotropic 

growth. 

 Cell body: defined as the cell bearing surface projections (e.g., axons, dendrites, 

cilia, or flagella), including the nucleus and excluding all cell projections. 

 Plasma membrane region. 

 Membrane parts.  

For Cellular Component, 3 DEHP GO categories were found and grouped as follows (Fig. 

3.29, Supplementary Fig. 3.9 and 3.10): 

 Secretory granule. 

 Presynapse and hippocampal mossy fibre to CA3 synapse. 

For Cellular Component, 5 COMB GO categories were found and grouped as follows 

(Fig. 3.29, Supplementary Fig. 3.15 and 3.16): 
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 Endoplasmatic reticulum membrane, nuclear membrane, perinuclear region of 

cytoplasm. 

 Endoplasmic reticulum part. 

 

 

Fig. 3.29 Enriched Cellular Component for TEMP (red), DEHP (green) and COMB (blue) with 

95 % confidence ellipse. Datapoints are plotted by semantic similarities. Different sizes of the 

data points represent their over-represented p value 

 

For Metabolic Function, 11 TEMP GO categories were found and grouped as follows 

(Fig. 3.30, Supplementary Fig. 3.5 and 3.6): 

 Transcription regulatory region nucleic acid binding. 

 Structural constituent of ribosome. 

 Phosphatidylinositol-4,5-bisphosphate binding. 

 Protein domain specific binding, histone binding and signalling receptor binding. 

 Enzyme regulatory activity. 

 Protein-containing complex binding.  

For Metabolic Function, 26 DEHP GO categories were found and grouped as follows 

(Fig. 3.30, Supplementary Fig. 3.11 and 3.12):  

 Catalytic activity. 

 Hydrolase activity: involved in the hydrolysis of several bonds (e.g., C-O, C-N, 

C-C).  
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 Ribonucleoside triphosphate phosphatase activity and hydrolase activity acting on 

acid anhydrides: involved in NTPase activity and subcellular movements.  

 Purine ribonucleotide binding, small molecule binding, ion binding, anion 

binding, carbohydrate derivative binding, organic cyclic compound binding, 

nucleoside phosphate binding, heterocyclic compound binding. 

 Xenobiotic transport activity: it enables the directed movement across a 

membrane of a xenobiotic.  

For Metabolic Function, 2 GO categories for COMB were found and grouped as follows 

(Fig. 3.30, Supplementary Fig. 3.17 and 3.18):  

 Protein dimerization activity and protein homodimeric activity: the formation and 

binding of dimers and homodimers (two non-covalently associated identical or 

non-identical proteins).  

 

 
Fig. 3.30 Enriched Molecular Function for TEMP (red), DEHP (green) and COMB (blue) with 

95 % confidence ellipse. Data Points are plotted by semantic similarities. Different sizes of the 

data points represent their over-represented p value 

 

Overall, the TEMP samples showed the most varying GO features for the assembly 

(especially for Biological Process), due to the higher number of enriched categories 

observed with respect to the other two treatments DEHP and COMB. Several pathways 

seemed to be influenced by TEMP treatment, most of them associated with protein 

arrangement, transport, maintenance and regulation (e.g., PDZD1, CCT8, Usp9x, putative 

SPSB1) and metabolic processes. Metabolic process is one of the most dominant BP GO 
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categories in mussels and includes for example DNA transcription or protein degradation 

(Venier et al., 2009). Muscle and motor activity (e.g., Kif21a, putative Ano1) were also 

found here being enriched. Similarly, Moreira et al. (2015) underlined the similarity of 

M. galloprovincialis gonads to the muscle, finding in fact GO categories related to muscle 

activity and contraction in both examined tissues. This could also be related to gonadal 

contractions during the spawning event, suggesting an additional effect of DEHP on 

reproductive success, considering as well that liver, kidney and testis are critical target 

organs for DEHP toxicity (Sanco, 2002). Other influenced systems in TEMP were 

homeostatic processes, cell differentiation and development of early stages (e.g., zip, 

Ctsb), with some proteins also involved with reproduction (e.g., ARL5B), apoptosis (e.g., 

CASP12), biomineralisation (e.g., CHI3L2) or associated with stress response (e.g., 

RBM22, Ctsb). 

Regarding DEHP samples, the most populated GO hierarchy was the Molecular Function 

one (26 GO categories in contrast to 11 in TEMP and 2 in COMB). We can as well 

conclude that the most relevant pathways affected by the exposure to the plasticiser were 

the response to stimuli, cell cycle and reproduction. As remarked by Venier et al. (2009), 

the GO class “response to stimulus” includes genes involved in the stress response, for 

example HSPs, metallothioneins, ferritin, cytochrome P450 or GST. Here, alongside the 

upregulated pathways associated with xenobiotic transport (MF), the response to stimuli 

(BP) was represented by two chaperones to HSP (e.g., CDC37 and putative INTS7). 

Transcripts associated with the HSP pathway and immune system were also found 

upregulated in P. viridis embryos exposed to the contaminant benzo(a)pyrene (Jiang et 

al., 2016). The DEHP-treated cell cycle seemed to be affected as well, for example with 

proteins smc-3 and TSC2. It is also interesting to notice that reproduction-related proteins 

involved in fertility (e.g., Braf), spermiogenesis (e.g., Tsnaxip1) and sperm motility (e.g., 

putative CFAP65) resulted significantly enriched. 

With respect to the single treatments TEMP and DEHP, COMB samples presented a 

higher number of BP related to signalling, possibly activated by the combination of the 

stressors. As with TEMP, the protein regulation process seemed to be most represented 

in the GO terms, as well as motor activity (e.g., RYR3, putative Ano1) and apoptosis (e.g., 

Mtmr9, PCYT2, putative HIPK2), remarking the complex mollusc apoptotic pathways as 

already observed by Philipp et al. (2012). Similar to the DEHP treatment, PKN2 and 

putatives PCNT and HIPK2 were associated with cell cycle progression. Response to 
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DNA damage (e.g., HERC2) was also noted enriched, as well as processes associated 

with pre-mRNA, miRNA and post-transcription (e.g., DROSHA and DHX9).  

In M. galloprovincialis, when considering other tissues such as haemocytes and gills, 

Moreira et al. (2015) noted a high number of GO annotations related to the immune 

system and the response to infections. These outcomes were not noticed in this 

experiment, where transcripts for the immune biological processes were found in fact 

under-represented in DEHP and COMB treatments (Supplementary Table 3.1 - 3.3). 

This is probably related to the nature of the investigated gonadal tissues, more involved 

in processes such as the reproduction cycle instead of the immune defences.  

It can be concluded that, as shown in Chapter 2, male mussels are affected by 

temperature and DEHP stressors in various forms. As remarked, increased temperature 

affected the stress response, but also the metabolic processes, the motor activity, and 

mostly protein-associated functions. Likewise, DEHP elicited a general response to 

external stimuli, but the effect on the reproductive traits was prevailing, more pronounced 

than the one seen in the candidate gene qPCR results of the previous Chapter. The 

combined effect of the two conditions (COMB) supported the hypothesis that a 

combination of the two stressors could be deleterious for marine organisms, considering 

the significant presence of apoptosis-, post-transcriptional and DNA damage- related 

processes. 

 

3.18 Conclusions 

This chapter analysed the data generated by RNA-seq analysis of gonadal samples from 

M. edulis males exposed to the plastic additive DEHP (0.5 µg/L), increased temperature 

(+3°C) and the combination of the two. This experiment generated a transcriptome dataset 

that provided additional information on the transcript activity and characteristics in M. 

edulis, a non-model organism. Firstly, Trinity was chosen as an assembly method for the 

de novo transcript reconstruction. The assembly was filtered to exclude transcripts 

belonging to other species (e.g., parasites and symbionts of mussels). Several different 

transcripts were observed to be upregulated in one group compared to the others. 

Specifically, in the TEMP treatment, features for stress response, cell differentiation, 

motor activity, early development, homeostasis, apoptosis, biomineralization and protein 

maintenance were found significantly expressed and over-represented. In the DEHP 

treatment, features for reproductive traits, cell cycle and response to stimuli were 
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significantly expressed and over-represented. For the combination of the two stressors, 

DNA damage response, post-transcriptional gene expression and cell cycle (also 

upregulated in the DEHP treatment), apoptosis and muscle activity (also upregulated in 

the TEMP treatment) were found upregulated and over-represented.  

Overall, RNA-seq technology and Trinity assembly pipeline proved to be useful 

approaches for transcriptome profiling of non-model organisms that lack complete 

referenced genomic sequences. This experiment contributed to the growing literature 

regarding the mapping and characterisation of molluscs’ genome, to better comprehend 

the unique biology that identifies the sentinel species M. edulis. Furthermore, this study 

offered a rare perspective to analyse transcriptomic data of aquatic organisms exposed to 

external stressors, eventually revealing the majority and the complexity of biological 

pathways most likely to be affected in future climate scenarios of global warming and 

plastic pollution. 
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Chapter 4 

 

The effects of low pH and DEHP exposure on histological and 

molecular outcomes 

 

4.1 Introduction 

This chapter aims to investigate the multi-factor responses of blue mussels M. edulis 

under an ocean acidification scenario combined with DEHP exposure. Similar to Chapter 

2, sex-based and reproductive differences were taken into consideration. Investigations 

were conducted at two pH conditions (8.1 and 7.7) and three different concentrations of 

DEHP (0, 0.5 and 50 μg/L), following the IPCC scenarios projected for the end of the 

century and the current phthalate concentrations found in marine environments. The 

changes in the gametogenesis status of male and female mussels were investigated as a 

biomarker of reproductive alterations. Genes for superoxide dismutase (sod) and catalase 

(cat) were chosen as part of the antioxidant enzyme system due to their roles in reducing 

superoxide anion O2
-, a reactive oxygen species (ROS, Regoli and Giuliani, 2014). Heat 

shock protein 70 (hsp70) was selected as a biomarker of stress responsive to 

environmental perturbation (Encomio and Chu, 2005; Lewis et al., 1999) and xenobiotic 

exposure (Franzellitti and Fabbri, 2005; Koagouw et al., 2021a, b). Genes coding for 

carbonic anhydrase 2 (CA2), estrogen-related receptor (ERR, MeER1), and estrogen 

receptor (ER, MeER2) were chosen as they are associated with biomineralization, pH 

homeostasis and reproductive cycle, whose expression can be affected by estrogenic 

compounds (Balbi et al., 2016; Ciocan et al., 2010a, 2011; Nagasawa et al., 2015). 

As the seawater pH is equal to the -log of the proton concentration ([H+]), the acidification 

process is mainly defined by the amount of CO2 absorbed by the ocean environment and 

its consequent dissociation in seawater (Bindoff et al., 2019; Feely et al., 2009; Orr et al., 

2005). Furthermore, the oceanic pH is strongly influenced by environmental conditions 

such as changes in temperature and pressure, gas exchange, water layer mixing, biological 

production, organic matter, mineral and carbon cycles (Lauvset et al., 2020). Ocean 

acidification, intended as the global decrease in oceanic pH, is virtually certain to be 

caused by the aquatic uptake of CO2 emissions originating from anthropogenic activities 

such as land use, cement production or fossil fuel burning (IPCC, 2021, Lauvset et al., 
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2020). It is quantified that the ocean environment has absorbed approximately 30% of the 

carbon emission since the pre-industrial era (Khatiwala et al., 2009, 2013; Gruber et al., 

2019), with oceanic areas showing uneven distributions of the absorbed CO2. For 

instance, higher values of absorption are reported in the North Atlantic basin and in the 

near-surface layers (Sabine et al., 2004). Over the last 40 years, oceanic pH has been 

declining by 0.003-0.026 units per decade and has decreased by approximately 0.1 units 

since the Industrial Revolution with a consequent increase in water acidity (IPCC, 2014). 

Paleo-evidence indicates a long-term increase in oceanic surface pH over the past 50 

million years and the current records of low values are with high confidence unusual and 

unprecedented (IPCC, 2021, Lauvset et al., 2020).  

As already anticipated in Chapter 1.4, under very low (SSP 1 - 1.9) and low (SSP 1 - 

2.6) emission scenarios, ocean surface pH values will decrease around the year 2070 and 

then increase slightly to the end of the century. Nonetheless, for the other scenarios, the 

pH values are projected to decrease monotonically until 2100. The SSP 3 - 7 (high 

emission scenario) and SSP 5 - 8.5 (very high emission scenario), predict a reduction in 

pH of around 0.3 (SSP 3 - 7) and 0.44 (SSP 5 - 8.5) for ocean layers at a depth of a few 

hundred metres, with stronger values projected for high-latitude oceans (Kwiatkowski et 

al., 2020; Terhaar et al., 2020, Fig. 1.4 and 4.1). The model confidence for oceanic pH 

future projections is high for all the scenarios for surface values, high latitude and 

upwelling zones. Uncertainty is attributed to the simulations for oceanic deep layers, as 

they are affected by water circulation and currents (Cheng et al., 2013; Feely et al., 2018; 

Franco et al., 2018; Hauri et al., 2013; Kwiatkowski et al., 2020; Negrete-García et al., 

2019). 
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Fig. 4.1 Maximum pH and [H+] changes under the projected scenarios SSP 5 - 8. From 

Kwiatkowski et al. (2020) 

 

For surface water, dissolved inorganic carbon (DIC) percentages are typically constituted 

by 90% of bicarbonate ions, about 9% as carbonate ions and the remaining 1% as 

dissolved CO2(aq) and H2CO3 (Feely et al., 2009). As the oceanic pH and the concentration 

of carbonate ions are declining, the level of calcium carbonate saturation decreases 

accordingly (Orr et al., 2005). Besides the well-studied outcomes and possible economic 

repercussions of decreased oceanic pH on calcifying organisms such as mussels 

(Callaway et al., 2012; Hofmann et al., 2010; Kroeker et al., 2011; Mangi et al., 2018), 

short-to-medium term pH drop can also have a range of other negative consequences on 

aquatic species. In fact, marine biota is differently and interactively affected by the 

changes in the carbon cycle constituents, such as absorbed CO2, proton concentration and 

bicarbonate, carbonate, calcite and aragonite levels (Hurd et al., 2018; Kroeker et al., 

2010; Orr et al., 2005). The reduction in the saturation of the shell- and skeleton- 

constituent CaCO3 is already noticeable in marine invertebrates such as cnidarians, 

bryozoans, molluscs and echinoderms, regardless of the different calcification strategies 

(Kroeker et al., 2010; Kwiatkowski et al., 2016; Maas et al., 2018; Orr et al., 2005). In 

addition, the high variability of coastal organisms to ocean acidification is well-known, 

with distinct effects on the species inhabiting the areas potentially related to biochemical 

adaptivity and phenotypic plasticity (Lardies et al., 2014; Stillman and Paganini, 2015; 

Vargas et al., 2017). Recently, it was observed that 10-week acidification exposure did 
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not impact the ability of M. edulis and M. trossulus mussels to repair drill holes in their 

valves but affected the inorganic content and the force required to dislodge the repaired 

shells (George and Carrington, 2022).  

Pollutants frequently alter their toxicity in climate-changing conditions, and chemicals 

often impact the adaptation ability of organisms to environmental fluctuations (Landis et 

al., 2014; Nikinmaa, 2013; Noyes et al., 2009; Schiedek et al., 2007). Exposure to climate 

change scenarios could also enhance the bivalve uptake of several toxic compounds and 

modulate the related enzyme activity (Belivermiş et al., 2020; Braga et al., 2018; Britto 

et al., 2020; Coppola et al., 2018; Ivanina et al., 2013; Mubiana and Blust, 2007). For 

example, very low pH (6.5 - 6.2) is known to enhance the accumulation of heavy metals 

such as copper, zinc, lead, arsenic, nickel, chromium and mercury in clams R. 

philippinarum (Han et al., 2014). In addition, various biological responses under low pH 

were observed in bivalves such as Crassostrea spp. co-exposed to heavy metals arsenic 

(Moreira et al., 2016), copper (Cao et al., 2019) or the polycyclic aromatic hydrocarbon 

phenanthrene (Lima et al., 2019) and Mytilus spp. co-exposed to pharmaceutical products 

(Mezzelani et al., 2021; Munari et al., 2018, 2020) or illicit drugs (da Silva Souza et al., 

2021). Likewise, the actions of plasticisers on mussels could be exacerbated by the 

concomitant changes in ocean chemistry with respect to CO2-induced ocean acidification, 

but the existing knowledge about the combination of plastic pollutants and climate change 

conditions on marine invertebrates is still incomplete. 

The picture is further complicated by additional factors such as sex and reproductive 

status. In Mytilus spp. basal conditions, levels of cellular biomarkers for biological 

mechanisms vary naturally through the seasons and can be biologically distinct between 

males and females (Chapman et al., 2017, 2020). Moreover, carbonic anhydrase (CA) 

activity was found at different levels during the life cycle of M. edulis, being maximal at 

the end of the developing stages (Medaković, 2000). As already demonstrated in Chapter 

2, their identification can be advantageous in analysing exposure experiment results 

(Ekelund Ugge et al., 2020; Koagouw and Ciocan, 2020; Louis et al., 2021; Mincarelli et 

al., 2021). In this scenario, this chapter’s experiment focuses on the effect on sentinel 

species of toxic plastic additives in the context of ocean acidification, taking the sex and 

gametogenesis status of organisms into consideration. The following hypothesis were 

tested: I) the endocrine disruptive additive DEHP will have an effect on reproductive 

features (i.e., histological changes of the gonads and expression of biomakers of 

reprotoxicity), II) the combined effect of low pH and DEHP exposure will have a stronger 
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effect in comparison with the responses to the single stressors and III) responses of 

mussels to pH variations will be subjected to the climate history of the habitat they were 

harvested from.  

 

4.2 Materials and Methods: Experimental design  

Adult blue mussels (n = 180; length mean ± standard deviation = 4.9 cm ± 0.5 cm) were 

collected from the suspended ropes farm of Cromarty Mussels, Ltd. in Cromarty Firth, 

Scotland, U.K. (57.40.741 N 4.06.062 W, Fig. 4.2 - 4.6) in January 2020 and transported 

to the aquarium facilities of the University of Hull. Mussels were not cleaned from sand 

and mud nor scrubbed from seaweed and barnacles, to avoid additional physical stress. 

Thirty mussels for each of the six treatments were randomly divided into six 4-L 

continuously aerated glass tanks, for a total number of 5 mussels for each replicate tank 

at a density of 1 mussel per 0.8 L. They were kept for acclimation for 12 days in artificial 

saltwater (Premium REEF-Salt, Tropical Marine Centre, Chorleywood, UK) in a climate-

controlled room at photoperiod 10:14 light: dark, salinity of 35 psu, pH of 8.1 units and 

temperature of 9 °C, in line with the natural environmental conditions in Cromarty Firth 

at the time of collection. The number of 30 individuals was chosen for each exposure 

treatment to ensure an adequate number of animals for each sex. After the acclimation 

period, mussels were exposed for seven days to two different pH levels (8.1 and 7.7) and 

three concentrations of DEHP (0, 0.5 and 50 µg/L), for a final yield of six experimental 

treatments (CTRL, LOW pH, LOW DEHP, LOW DEHP LOW pH, HIGH DEHP, HIGH 

DEHP LOW pH, Fig. 4.7 - 4.11). For the pH exposure, a total decrease of 0.4 units for 

the 7.7 low pH treatment was chosen considering the SSP 3 - 7 projected ranges for ocean 

acidification conditions for the year 2100, assuming the CO2 emissions remain high and 

double from current levels by the end of the century (IPCC, 2021). Exposures of 0.5 and 

50 µg DEHP/L were chosen from the literature, considering the levels found in coastal 

waters (Jebara et al., 2021; Sánchez-Avila et al., 2012). The seven-day DEHP exposure 

was chosen accounting for the non-persistency of DEHP in the environment (Staples et 

al., 1997), with a half-life of approximately 0.35–3.5 days for surface water and sediments 

in aerobic conditions (Peterson and Staples, 2003). Mussels were not fed during the 

exposure and artificial saltwater was prepared the day before each water change, to allow 

the water temperature to adjust to the controlled room. Water was changed every second 
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day and DEHP was dosed right after (i.e., days 1, 3 and 5) from a stock solution of 1 

mg/mL DEHP (≥ 99.5% purity, Sigma Aldrich®, Gillingham, U.K.) in ethanol. The 7.7 

pH values were adjusted by mixing seawater with small amounts of CO2-saturated water 

(Nardi et al., 2017; Schulz et al., 2013). Temperature, pH and salinity were measured 

daily (Table 4.1) with a digital thermometer (Amarell Thermometer, Kreuzwertheim, 

Germany), a pH-metre (Jenway, Bibby Scientific Limited, Stone, UK) and a digital 

seawater refractometer (Hanna Instruments, Woonsocket, USA). Alkalinity was 

measured twice a week with a HI 84531 mini titrator (Hanna Instruments, Woonsocket, 

USA). After seven days of exposure, tissues from gonads were collected for molecular 

and histological analyses (Unlicensed animal ethics approval; reference no 

#U080/FEC_2021_11, University of Hull). Approximately 1.0 cm2 of left gonad tissue 

was immersed in 1 mL neutral-buffered 10% formalin solution (Sigma Aldrich, 

Gillingham, U.K.) at room temperature for histological observations. The same gonadal 

amount was dissected and preserved in 1 mL RNAlater® stabilisation solution for gene 

expression analysis (Thermo Fisher Scientific, Loughborough, U.K.) and stored at -80 

°C. 

 

 

Fig. 4.2 Cromarty Firth, Scotland, U.K. (57.40.741 N 4.06.062 W), the collection site (in red) 
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Fig. 4.3 and 4.4 Details of the suspended ropes  

 

 

Fig. 4.5 and 4.6 Details of the M. edulis blue mussel populations from the suspended ropes 
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Fig. 4.7 Experimental design for the 7-day exposure with the chosen parameters for pH (8.1 and 

7.7 units) and DEHP (0, 0.5 and 50 μg/L) 

 

 

Fig. 4.8 and 4.9 Pictures from the exposure room - M. edulis blue mussels at 9°C in the exposure 

tanks, covered in non-PVC cling film 
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Fig. 4.10 and 4.11 Details of mussels (5 individuals for 4 litres) in the exposure tanks, covered in 

non-PVC cling film 

Table 4.1 Experimental treatments and measurement of temperature, pH and alkalinity values at 

35 ± 1 psu salinity. All parameters are expressed as mean ± standard deviation 

Name of 

treatment 

Description Temperature 

(°C) 

pH 

(Units) 

Alkalinity 

(mg/L) 

CTRL Control pH, no DEHP 9.03 ± 0.34 8.06 ± 0.06 141.92 ± 9.35 

LOW DEHP Low DEHP concentration 8.76 ± 0.32 8.12 ± 0.09 136.63 ± 7.64 

HIGH DEHP High DEHP concentration 8.72 ± 0.44 8.12 ± 0.11 147.68 ± 13.59 

LOW pH Future pH, no DEHP 8.74 ± 0.36 7.72 ± 0.08 134.95 ± 9.21 

LOW DEHP 

LOW pH 

Future pH and low DEHP 

concentration 

8.75 ± 0.34 7.74 ± 0.06 134.65 ± 14.83 

HIGH DEHP 

LOW pH 

Future pH and high DEHP 

concentration 

8.65 ± 0.53 7.74 ± 0.06 128.48 ± 15.93 
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4.3 Materials and Methods: Wax infiltration and H/E staining   

Samples fixed in 10% buffered formalin (Sigma-Aldrich, Gillingham, UK) were washed 

with 0.01 M PBS (Sigma Aldrich, Irvine, UK), dehydrated with increasing ethanol (Fisher 

Scientific, Loughboroug, UK) concentrations (70%, 90%, 100%) and cleared with 

Histoclear II (National Diagnostics, Atlanta, USA). The day after, the samples were 

embedded in paraffin wax (VWR, Poole, UK) in an EG 1160 Paraffin Wax Embedding 

Centre (Leica Microsystems, Milton Keynes, UK) and tissue sections (10 µm) of wax-

embedded gonads were cut on a Shandon Finesse® Manual Rotary Microtome 325 

(Thermo Fisher Scientific, Loughborough, UK). Slides were stained with Mayer’s 

haematoxylin solution (Sigma-Aldrich, Schnelldorf, Germany) and eosin Y alcoholic 

solution (Sigma-Aldrich, Schnelldorf, Germany). Prior to microscopic analysis, 

microscope slides were coded, in order to conduct a blind observation. Males and females 

were identified, and the following stages were blindly assessed, following the stage 

descriptions reported by Seed (1969) and each stage was categorised by a maturity factor 

(MF):  

I. Resting or spent gonad (MF = 1): no evident presence of sexuality. This includes 

virgin juveniles with immature reproductive systems and spawned animals in a 

spent state. 

II. Development, stage 1 and 3 (MF = 2): small follicles in males and irregular 

oocytes in females that progressively mature and occupy half of the follicles (Fig. 

4.12 A and B).  

III. Development stage 5 (MF = 3): mature stage. Distended follicles in males and 

compacted and polygonal-shape ova in females with a few small oocytes still 

present (Fig. 4.12 C and D). 

IV. Spawning stage 3 and 1 (MF = 4): follicles display empty spaces, with ripe 

spermatozoa and mature rounded eggs or residuals of the gametes undergoing 

cytolysis (Fig. 4.12 E and F). 

Then, the sexual maturity index (SMI) was calculated according to the equation 

established by Siah et al. (2003): SMI = Σ (proportion of each stage * maturity factor). 

A detailed protocol is provided in Chapter 2.3: Wax infiltration and H/E staining.  
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Fig. 4.12 Gametogenesis stages of 10 μm gonadal tissue sections stained with haematoxylin and 

eosin in males and females. Developing status in males (A) and females (B), mature gonads in 

males (C) and females (D), spawning stage in males (E) and females (F). Scale bars represent 200 

μm. Images were modified for brightness and contrast 

 

4.4 Materials and Methods: total RNA isolation  

Gonad tissues were preserved in RNAlater® Stabilisation Solution (Thermo Fisher 

Scientific, Loughborough, UK) and stored at -80°C until molecular analysis. Random 

samples (approx. 10 mg of gonad tissue, n = 96) were selected and blindly coded for the 

analysis. In detail, 8 female gonads and 8 male gonads for each treatment were processed 

for total RNA extraction. The High Pure RNA Isolation Kit (Roche Applied Science, 

Burgess Hill, UK) was used for the purification of the intact total RNA from 

approximately 10 mg of gonadal tissue, with an additional DNase I digestion step, in order 

to remove contaminating DNA. After the extraction, samples were then stored at -80 ̊C. 

A detailed protocol was provided in Chapter 2.4: total RNA isolation. 
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4.5 Materials and Methods: RNA quantification and integrity  

The total RNA in the samples was quantified with a Qubit 1.0 Fluorometer, Quant-iT™ 

Qubit RNA BR assay kit and Qubit assay tubes (Life Technologies, Paisley, UK). The 

integrity and size distribution of the total RNA were then checked by denaturing agarose 

gel electrophoresis and GelRed™ Nucleic Acid Gel Stain staining (10,000X in DMSO, 

Cambridge Bioscience, Cambridge, UK). A detailed protocol was provided in Chapter 

2.5: RNA quantification and integrity.  

 

4.6 Materials and Methods: cDNA synthesis  

Complementary DNA (cDNA) was synthesised from the RNA samples using the 

SuperScript™ II Reverse Transcriptase. To standardise the samples as recommended by 

Bustin et al. (2009), the same RNA concentration (500 ng) was used for all cDNA 

synthesis and sample were stored at -20 ̊C. Detailed protocol was provided in Chapter 

2.6: cDNA synthesis.  

 

4.7 Materials and Methods: PCR species identification  

Mytilus species were identified by PCR of the non-repetitive region Mytilus foot protein 

1 mfp-1 in a final volume of 25 μL, using the sense primer Me15 5’-

CCAGTATACAAACCTGTGAAGA-3’ and anti-sense primer Me16 5’-

TGTTGTCTTAATAGGTTTGTAAGA-3’ from Inoue et al. (1995). Thermal conditions 

from Bignell et al. (2008) were slightly modified according to the Taq polymerase 

guidelines. Primer concentrations of 300 nM for each primer were used in combination 

with 12.5 µL of PCRBIO Taq Mix Red (containing 6mM MgCl2, 2mM dnNTPs, PCR 

BioSystems, London, UK), 1.25 µL of cDNA and the following thermal conditions: pre-

heating to 95°C for 5 min, followed by 40 cycles of: 1 min at 95°C, 1 min at 60.5°C and 

1 min at 72°C followed by a final extension step of 10 min at 72°C. PCR products were 

separated by electrophoresis in a 2% TBE-agarose gel stained with GelRed™ and the 

band sizes were assessed by comparison to the 100bp DNA ladder (New England Biolabs 
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Ltd, Knowl Piece, UK). A detailed protocol was provided in Chapter 2.7: PCR species 

identification.  

 

4.8 Materials and Methods: Primer optimisations via PCR and qPCR 

amplifications   

Primers for reference genes (18S ribosomal RNA Me18S, 28S ribosomal RNA Me28S 

and elongation factor-1 alpha EF1α) and genes of interest (superoxide dismutase sod, 

catalase cat, heat shock protein 70 hsp70, carbonic anhydrase CA2, estrogen receptor 1 

MeER1 and estrogen receptor 2 MeER2) were chosen accordingly to the current literature 

and state of the art. Details for the primer choice were provided in Chapter 2.8: Primer 

optimisations via PCR and qPCR amplifications. Additionally, primer sets for CA2 were 

added in this pH-exposure experiment as the carbonic anhydrase is involved in cellular 

pH homeostasis. Me18S, Me28S and EF1α were chosen as they represent suitable 

reference genes during mussel gametogenesis and exogenous estrogen exposures, 

contrary to other common reference genes such as β-actin (Cubero-Leon et al., 2012; 

Jarque et al., 2014). Two or three sets of primers (i.e., forward and reverse) for each gene 

were chosen from the literature or designed online using Primer3 (http://primer3.ut.ee/) 

from published sequences (Table 4.2), for increasing the possibility of optimisation to 

find absence of secondary product formations and acceptable efficiencies (Fig. 4.13 - 4.21 

and Table 4.3). The lyophilised primers (Integrated DNA Technology, Leuven, Belgium) 

were resuspended in molecular grade water to a final concentration of 100 μM, aliquoted 

and stored at -20 °C until the analysis. For each set, primer specificity was assessed by 

Polymerase Chain Reaction (PCR) amplifications and 2% agarose-TBE gel 

electrophoresis. PCR products were prepared using the PCRBIO Taq Mix Red (PCR 

BioSystems, London, UK) and PCR reactions were performed on a Techne TC-4000 

Thermal Cycler (Bibby Scientific, Stone, UK). Specifically, 0.5 - 1 μL of template cDNA 

was mixed with 12.5 µL of PCRBIO Taq Mix Red (containing 6mM MgCl2, 2mM 

dnNTPs) and 0.25 - 1.25 μL of forward and reverse primers and PCR grade water. 

Specificity of the primer sets was performed at different thermal cycling programs run as 

follows: pre-heating to 94°C for 2 min, followed by 35 cycles of: 30 sec at 94°C, 30 sec 

at 55-62°C and 30 sec at 72°C followed by a final extension step of 2 min at 72°C.  10 

μL PCR products were then loaded with 2 μL of 6X gel DNA Loading Dye (New England 

http://primer3.ut.ee/


144   

Biolabs Ltd, Knowl Piece, UK) in a 2% agarose-TBE gel and run at 80V. Band sizes were 

assessed by comparison to the 100bp DNA ladder, loaded onto each gel for reference.  

 

Table 4.2 List of primers tested via PCR and 2% agarose gel, with associated reference gene 

(RG), gene of interest (GoI), GenBank access number and 5'-3' sequences for forward and reverse 

primers, melting temperature (Tm °C) and guanine cytosine content (%). Primer sets in grey are 

the ones chosen for the final qPCR analysis 

Reference 

Gene/ 

Gene of 

Interest 

GenBank 

Access. 

No. 

 

Primer 

name 

 

 

(5'-3') sequence 

 

 

 

 Tm 

(°C) 

 

 

GC  

(%) 

 

 

Reference 

 

 

 

GoI: 

Superoxide 

Dismutase 

AJ581746 

 

 

SOD_1F 

 

SOD_1R 

TCTCGCAGTTTACGGTCACT 

 

GTGGAAACCGTGTTCTCCTG 

56.0 

 

55.9 

50.0 

 

55.0 

Mincarelli 

et al., 

(2021) 

  

SOD_2F 

 

SOD_2R 

TTTCTCGCAGTTTACGGTCA 

 

AACTCGTGAACGTGGAAACC 

54.2 

 

55.5 

45.0 

 

50.0 

Barrick et 

al., (2018) 

 

  

SOD_3F 

 

SOD_3R 

TCTCGCAGTTTACGGTCACT 

 

CTGAAAGCGACTGTTCCTGT 

56.0 

 

55.1 

50.0 

 

50.0 

Designed 

online 

 

GoI: 

Catalase 

 

AY580271 

 

 

CAT_1F 

 

CAT_1R 

CACCAGGTGTCCTTCCTGTT 

 

CTTCCGAGATGGCGTTGTAT 

57.1 

 

54.8 

55.0 

 

50.0 

Lacroix et 

al., (2014) 

 

  

CAT_2F 

 

CAT_2R 

ACTTCGACCAGAGACAACCC 

 

GCCTGTCCATCCTTGTTGAC 

56.7 

 

56.1 

55.0 

 

55.0 

Designed 

online 

 

  

CAT_3F 

 

CAT_3R 

TGGGATCTGGTGGGAAATAA 

 

ATCAGGAGTTCCACGGTCAG 

53.3 

 

56.5 

45.0 

 

55.0 

Barrick et 

al., (2018) 

 

GoI: Heat 

Shock 

Protein 70 

AF172607 

 

 

HSP_1F 

 

HSP_1R 

GGGTGGTGAAGACTTTGACA 

 

TGCCCTTTCACAAGCAGTTC 

54.9 

 

56.0 

50.0 

 

50.0 

Mincarelli 

et al., 

(2021) 

  

HSP70_ 

2F 

HSP70_ 

2R 

GGGTGGTGGAACTTTTGATG 

 

CTCTTTGCCCTTTCACAAGC 

 

54.1 

 

54.5 

 

50.0 

 

50.0 

 

Barrick et 

al., (2018) 

 

 

  

HSP70_ 

3F 

HSP70_ 

ACAAGAGCCAGGTTTGAGG

A 

CAGCAGCCTTGTCTAGTTTG

56.3 

 

56.0 

50.0 

 

52.4 

Designed 

online 
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3R G    

GoI: 

Carbonic 

Anhydrase 

2 

LK934681

.1 

CA_F1 

 

CA_R1 

ACCAGATGGTCTTGCAGTTT 

 

TCATCTCTGACTGCTGCTAA

TG 

54.5 

 

54.5 

45.0 

 

45.5 

Balbi et al., 

(2016) 

 

 

  

CA_F2 

 

CA_R2 

AGCAGTCAGAGATGAAGGC

A 

AACTATAGGCCACCCGTTCC 

56.0 

 

56.7 

50.0 

 

55.0 

 

Designed 

online 

 

 

GoI: 

Estrogen 

related 

receptor 

AB257132 

 

 

 

MeER1_

F1 

MeER1_

R1 

CCAGATCTTCAGGGTGACGA 

 

CTTGTTTGGCCCAGCTGATT 

 

56.2 

 

56.2 

55.0 

 

50.0 

Mincarelli 

et al., 

(2021) 

 

  

MeER1_

F2 

MeER1_

R2 

ATACTCTTGCCCTGCCAACT 

 

CGGTCTAAACGCACACCTTC 

 

56.4 

 

56.1 

 

50.0 

 

55.0 

 

Designed 

online 

 

 

  

MeER1_

F3 

MeER1_

R3 

TTACGAGAAGGTGTGCGTTT 

 

TTTTTCACCATAGGAAGGAT

ATGT 

54.5 

 

52.0 

 

45.0 

 

33.3 

 

Puinean et 

al., (2006) 

 

 

GoI: 

Estrogen 

Receptor 

 

AB257133 

 

 

 

MeER2_

F1 

MeER2_

R1 

GGAACACAAAGAAAAGAAA

GGAAG 

ACAAATGTGTTCTGGATGGT

G 

52.7 

 

53.4 

 

37.5 

 

42.9 

 

Puinean et 

al., (2006) 

 

 

  

MeER2_

F2 

MeER2_

R2 

CAGGTCTGCAGTGATAACGC 

 

TGCAGGCCTGACAACTTTTC 

 

56.0 

 

56.0 

 

55.0 

 

50.0 

 

Designed 

online 

 

 

  

MeER2_

F3 

MeER2_

R3 

CAGGTCTGCAGTGATAACGC 

 

AGGTCCCTGAATACTGCGTT 

 

56.0 

 

56.0 

 

55.0 

 

50.0 

 

Designed 

online 

 

 

RG: 

Elongation 

Factor 1-α 

 

AY580270 

 

 

 

Ef1_1F 

 

Ef1_1R 

 

CACCACGAGTCTCTCCCAGA 

 

GCTGTCACCACAGACCATTC

C 

58.2 

 

58.3 

 

60.0 

 

57.2 

 

Ciocan et 

al., (2011) 

 

 

 

AF063420 

 

 

Ef1_2F 

 

Ef1_2R 

ACCCAAGGGAGCCAAAAGT

T 

TGTCAACGATACCAGCATCC 

57.2 

 

54.8 

50.0 

 

50.0 

Lacroix et 

al., (2014) 

 

RG: 18s 

ribosomal 

L33448 

 

18S_F1 

 

GTGCTCTTGACTGAGTGTCT

CG 

57.4 

 

54.5 

 

Ciocan et 

al., (2011) 
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RNA 

 

 18S_R1 

 

CGAGGTCCTATTCCATTATT

CC 

52.5 45.5  

 

  

18S_F2 

 

18S_R2 

CATTAGTCAAGAACGAAAGT

CAGAG 

GCCTGCCGAGTCATTGAAG 

53.6 

 

56.4 

40.0 

 

57.9 

Cubero-

Leon et al., 

(2012) 

RG: 28s 

ribosomal 

RNA 

 

Z29550 

 

 

 

28S_F1 

 

28S_R1 

 

AGCCACTGCTTGCAGTTCTC 

 

ACTCGCGCACATGTTAGACT

C 

58.1 

 

57.3 

 

55.0 

 

52.4 

 

Ciocan et 

al., (2011) 

 

 

 

AF339512 

 

 

 

28S_2F 

 

28S_2R 

 

CTGGCCTTCACTTTCATTGTG

CC 

GACCCGTCTTGAAACACGGA

CCA 

59.0 

 

61.4 

 

52.2 

 

56.5 

 

Zanette et 

al., (2013) 

 

 

 

For each set of reference genes and genes of interest, primer efficiency was assessed by 

qPCR reactions in accordance with the MIQE guidelines (Bustin et al. 2009). qPCR 

reactions were performed on a CFX96 Real Time PCR Detection System (Bio- Rad, 

Hemel Hempstead, U.K.) using 10 µL of qPCRBIO SyGreen Mix Lo-ROX 

(PCRBioSystem, London, U.K.), 7.5 µL molecular-grade water, 1 µL of each primer, and 

0.5 µL cDNA at different dilutions. Primer sets were first tested at final concentrations of 

100, 300 and 500 nM. For each primer set, the efficiency slope was produced by at least 

a minimum of 4 acceptable dilution points to % efficiency (Efficiency = -1+10(-1/slope)). 

and only slopes between -3.1 and -3.6 with resulting efficiencies between 90 and 110% 

were accepted (Table 4.3 and Fig. 4.13 - 4.21, Taylor et al., 2010). qPCR products were 

checked using 2% agarose - TBE gel (80V) stained with GelRed™ Nucleic Acid Gel 

Stain. A detailed protocol was provided in Chapter 2.8 Primer optimisation via PCR and 

qPCR amplification.  
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Fig. 4.13 Optimisation for sod primer set no. 1 at 200 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 

 

Fig. 4.14 Optimisation for cat primer set no. 2 at 200 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 
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Fig. 4.15 Optimisation for hsp70 primer set no. 1 at 500 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 

 

Fig. 4.16 Optimisation for CA2 primer set no. 1 at 200 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (5X dilutions) 

with R2 values displayed 
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Fig. 4.17 Optimisation for MeER1 primer set no. 1 at 500 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 

 

Fig. 4.18 Optimisation for MeER2 primer set no. 1 at 300 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 
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Fig. 4.19 Optimisation for EF1 primer set no. 1 at 300 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

 

 
Fig. 4.20 Optimisation for Me18S primer set no. 1 at 300 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 
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Fig. 4.21 Optimisation for Me28S primer set no. 1 at 300 nm. Amplification plots (log scale, in 

Relative Fluorescence Units), melt temperature peak plot and standard curve plot (10X dilutions) 

with R2 values displayed 

 

Final primer sequences for qPCR were: elongation factor-1 alpha (EF1α, GenBank 

accession no. AF063420), 18SrRNA (Me18S, L33448) and 28SrRNA (Me28S, Z29550) 

from Ciocan et al. (2011); superoxide dismutase (sod, AJ581746), heat shock protein 70 

(hsp70, AF172607) and estrogen receptor 1 (MeER1, AB257132) from Mincarelli et al. 

(2021); carbonic anhydrase 2 (CA2, LK934681.1) from Balbi et al. (2016) and estrogen 

receptor 2 (MeER2, AB257133) from Puinean et al. (2006). Additionally, new primers 

were designed using Primer3 (http://primer3.ut.ee/) from the published sequence for 

catalase (cat, AY580271). Only primer efficiencies between 90 and 110% were accepted, 

in accordance with the MIQE guidelines (Bustin et al., 2009). For each chosen set, 

primers specificity was additionally confirmed by identification using BLAST searches 

(blastn) to compare the gene sequences against the NCBI nucleotide collection (nr/nt) 

database optimised for highly similar sequences (megablast). Primer details are provided 

in Table 4.2 for the optimisation steps and Table 4.3 and Fig. 4.13 - 4.22 for the final 

chosen sets.  

 

http://primer3.ut.ee/
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Fig. 4.22 Agarose gel 2% (2%, GelRed, run at 80V) after a qPCR run, showing the final sets 

chosen. From left to right: 100 bp NeB DNA ladder, sod (208 bp), MeER1 (94 bp), MeER2 (232 

bp), Me28S (143 bp), Me18S (116 bp), cat (126 bp), CA2 (102 bp), EF1α (105 bp), hsp70 (127 

bp) 

  

EF1α and Me28S genes were furthermore chosen for normalisation of the final dataset, 

being considered the most stable combination by RefFinder 

(https://www.heartcure.com.au/reffinder/) software and Kruskal-Wallis test (Rstudio 

3.6.2) over 25% of the total samples (n = 30). Kruskal-Wallis test revealed no significant 

effects among treatments for the three reference genes (Me18S KW-H =2.19, p = 0.82; 

Me28S KW-H = 3.05, p = 0.69; EF1α KW-H = 7.70, p = 0.17) and the combination of 

EF1α and Me28S genes was the recommended most stable one by RefFinder software. 

Consequently, the final dataset was normalised using the 2−ΔCt and 2−ΔΔCt methods 

(Schmittgen and Livak, 2008). Calculation details for 2−ΔCt and 2−ΔΔCt methods are 

provided in Chapter 2.8: Primer optimisation via PCR and qPCR amplifications. Final 

primer concentrations are given in Table 4.3. Sample dilutions were used in the final 

reactions as follows: cat and CA2 (1:10), hsp70 (1:100), EF1α (1:1000) and Me18S 

(1:10000). Thermal cycling was as follows: 95°C for 2 min, 40 cycles of 95°C for 5 sec, 

60°C for 30 sec and 72° C for 1 min. Template-negative reactions were included alongside 

samples. Primer specificity and absence of secondary product formations were 

demonstrated by the melt peaks at the conclusion of the reactions. Eventually, qPCR 

duplicate reactions were performed for 8 female and 8 male cDNA samples for each 

https://www.heartcure.com.au/reffinder/
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treatment using Hard-Shell® Low-Profile Thin-Wall 96-Well Skirted PCR plates and 

Microseal® 'B' adhesive seals (BioRad, Watford, UK) for standardising fluorescence 

reflection across the samples.  

 

Table 4.3 Final primers used for qPCR amplification of reference genes and genes of interest 

Gene 

name 

GenBank 

accession 

no. 

Primer Sequence (5’-3’) Amplicon 

length (Bp) 

Amplif. 

efficiency 

% 

R2 Final 

conc. 

(nM) 

sod AJ581746 For 

Rev 

TCTCGCAGTTTACGGTCACT 

GTGGAAACCGTGTTCTCCTG 

208 92.3 0.999 200 

cat AY580271 For 

Rev 

ACTTCGACCAGAGACAACCC 

GCCTGTCCATCCTTGTTGAC 

126 102.8 0.991 200 

CA2 LK934681.

1 

For 

Rev 

ACCAGATGGTCTTGCAGTTT 

TCATCTCTGACTGCTGCTAATG 

102 90.2 0.999 200 

hsp70 AF172607 For 

Rev 

GGGTGGTGAAGACTTTGACA 

TGCCCTTTCACAAGCAGTTC 

127 98.2 0.997 500 

Me 

ER1 

AB257132 For 

Rev 

CCAGATCTTCAGGGTGACGA 

CTTGTTTGGCCCAGCTGATT 

94 95.8 0.987 500 

Me 

ER2 

AB257133 For 

 

Rev 

GGAACACAAAGAAAAGAAAGG

AAG 

ACAAATGTGTTCTGGATGGTG 

232 97.8 0.997 300 

Me 

28S 

Z29550 For 

Rev 

AGCCACTGCTTGCAGTTCTC 

ACTCGCGCACATGTTAGACTC 

143 91.4 0.994 300 

EF1 AF063420 For 

Rev 

CACCACGAGTCTCTCCCAGA 

GCTGTCACCACAGACCATTCC 

105 100.2 0.999 300 

Me 

18S 

L33448 For 

Rev 

GTGCTCTTGACTGAGTGTCTCG 

CGAGGTCCTATTCCATTATTCC 

116 96.9 0.999 300 

 

4.9 Materials and Methods: Statistical analysis  

The histology dataset was analysed with general ordered logit with partial proportional 

odds model, to predict the dependent variable “Gametogenesis stage” assuming “DEHP”, 

“pH” and “Sex” as independent variables, after verifying the rejection of the proportional 

odds assumption (test of Parallel Lines, ordinal package, Christensen, 2019). Model 

uncertainty was assessed by comparing ΔAICc values and Akaike weights. Model 

selection was carried out in RStudio with the AICcmodavg package (Mazerolle, 2020) in 

R 4.0.3 (CRAN). The model was estimated using the vglm function (VGAM package, Yee 

et al., 2015), calculating the p error probability by comparing the z-value against the 

standard normal distribution. 
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Permutation multivariate analysis of variance (PERMANOVA, Anderson, 2014) with 

Bray-Curtis distance and 9999 permutations was used in Rstudio (vegan package, 

Oksanen et al., 2013) to test the effects of the exposure conditions on the 2−ΔΔCt values of 

the stress-related mRNA expression (sod, cat and hsp70), biomineralization and 

homeostasis (CA2) and estrogen receptor-like mRNA expression (MeER1 and MeER2) 

introducing “Sex” (males or females) and “Stages” (developing, mature, spawning) to 

underline sex-driven differences between the treatments. Pairwise multilevel comparison 

with Benjamini & Hochberg p-adjustment was used to compare different groups. 

Statistical significance was set to p < 0.05. All graphs were created using MATLAB 

R2021a. A focus on the 2−ΔΔCt values analysed for each sex separately is available in the 

Supplementary Appendix to Chapter 4 (S4.1 and S4.4).  

Regarding the effect of the exposure treatments on the mRNA expressions of each gene, 

the non-parametric Scheirer-Ray-Hare (rcompanion package, Mangiafico, 2017) test was 

additionally used on the 2−ΔCt values, after verifying non-normal distribution (Shapiro-

Wilk test) and homogeneity of variances (Levene’s test). Dunn’s multiple comparison 

test with Benjamini & Hochberg p-adjustment was used for comparisons between groups 

(Benjamini and Hochberg, 1995). Possible outliers were identified by Grubb’s test 

(Grubbs, 1969) and outlier values beyond the significance level of α = 0.05 were rejected 

(Burns et al., 2005). A focus on the 2−ΔCt values in each sex analysed for each gene 

separately is available in the Supplementary Appendix to Chapter 4 (S4.2 – S4.4). 

 

4.10 Results and Discussion: Histology results to determine sex and 

gametogenesis stages   

The most parsimonious model (using only “Sex” as predictor variable) showed a 

predictably significant difference between males and females in the transition from 

developing to the more advanced states (mature and spawning stages, p = 0.01), with male 

SMI being overall higher than that of females (Fig. 4.23, Table 4.4 and 4.5). In line with 

winter observations, males and females were found to be in later stages of the 

gametogenesis cycle, with the majority of females late developing or mature and the 

majority of males ripening or spawning. Overall, there was ca. a difference of one point 

between sexual maturity indices, in line with previous late-winter observations in North 

England and Scotland (Dias et al., 2009b; Seed, 1969). Such an asynchrony between sexes 
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in ripeness proportions was already shown in M. barbatus (Mladineo et al., 2007), as well 

as different timing of spawning events for M. galloprovincialis, which nonetheless should 

not preclude successful fertilisation (Azpeitia et al., 2017; Seed, 1969).  

 

 

Fig. 4.23 Effects of pH and DEHP on gametogenesis stages. Percentage of each stage and sexual 

maturity index (SMI) of males (A, left) and females (B, right) in CTRL (n = 14 (A), 15 (B)), LOW 

pH (n = 14 (A), 16 (B)), LOW DEHP (n = 13 (A), 17 (B)), LOW DEHP LOW pH (n = 19 (A), 9 

(B)), HIGH DEHP (n = 18 (A), 11 (B)) and HIGH DEHP LOW pH (n = 17 (A), 13 (B)) 

 

The effect of the predictors “pH” and “DEHP” was also tested, confirming no significant 

effect for either of them (p > 0.05). By itself, DEHP was observed not to induce any 

modification in the gametogenesis cycle, as we have previously found in blue mussels 

from Filey, North Yorkshire (Mincarelli et al., 2021). Similarly, no alterations of the 

gametogenesis cycle seemed to be present after seven days of exposure to low pH in either 

sex. This could mean that the maturation induction might be more responsive to alkaline 

pH, as shown for sea snails’ oocytes (Aquino De Souza et al., 2009; Gould et al., 2001).  

On the other hand, mussels inhabit naturally pH-variable coastal environments and could 

be tolerant to local pH fluctuations, possibly resulting in no immediate repercussions for 

the reproductive cycle. However, according to other spawning-induction experiments (Xu 

et al., 2016; Zhao et al., 2019), exposure to 7.7 pH for 40 days decreased the percentage 

of bivalves M. senhousia and R. philippinarum spawning gonads, suggesting that a higher 
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susceptibility to prolonged acidified conditions in the final gametogenesis stages is 

possible. 

 

Table 4.4 Model classification, number of estimated parameters (K) for each model, Akaike 

Information Criterion (AICc), delta AIC (ΔAIC), Akaike weights (AICcWT), cumulative Akaike 

weights (CumWT), log-likelihood of each model (LL) for the three independent variables (+) pH 

(pH), DEHP concentration (DEHP) and sex (SEX) and their interactions (*) on gametogenesis 

stages 

model K AICc Δ AIC AICcWT Cum WT LL 

SEX 4 358.08 0.00 0.82 0.82 -174.92 

SEX+pH 6 361.75 3.66 0.13 0.95 -174.62 

SEX*pH 8 364.84 6.76 0.028 0.98 -173.98 

SEX+DEHP 8 365.79 7.72 0.017 1.00 -174.46 

SEX+DEHP+pH 10 369.67 11.60 0.0025 1.00 -174.17 

 

Table 4.5 Results of general ordered logit with partial proportional odds for the best model of 

treatments (SEX). Estimated value, standard error, z-value and p for the independent variables 

“Sex” (SEX, males and females), in the transition from developing to the more advanced stages 

(mature and spawning) 

Variable Estimate Std. Error z value p value 

SEX 0.80 0.32 2.49 0.013 

 

4.11 Results and Discussion: PCR species identification  

Molecular species identification confirmed that the sampled population from the 

suspended ropes farm of Cromarty Mussels, Ltd. in Cromarty Firth, Scotland, U.K. 

(57.40.741 N 4.06.062 W) consisted of M. edulis (amplified segments at 180 bp) and 

neither hybrids with M. galloprovincialis (amplified segments at 126 bp) nor other 

Mytilus species were present (Fig. 4.24).  
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Fig. 4.24 Example of an agarose gel run (2%, GelRed™, run at 80V) for PCR species 

identification showing from left to right: NeB DNA ladder, 100 bp; 235 bp positive control; 180 

bp fingerprints of the mfp-1 region (M. edulis); negative control (water) 

 

4.12 Results and Discussion: Influence of sex and gametogenesis status on the 

stress-related response 

When using pH, DEHP, sex (SEX), and gametogenesis stage (STAGE) as predictors for 

stress-related gene expression in PERMANOVA analysis, we observed significant 

differences between sexes (p SEX = 0.001, F = 6.97, Fig. 4.25, Fig. 4.26 and Table 4.6) 

and an effect of DEHP exposure in interaction with gametogenesis stage (p 

DEHP*STAGE = 0.005, F = 2.79, Fig. 4.25 and  Fig. 4.26). Overall, stress-related gene 

expression was higher in females than in males (as already noticed in Chapter 2). In 

males, the response was higher in mature gonads than in developing ones exposed to the 

high DEHP treatments. In females, an opposite trend was observed in the groups co-

exposed to the two stressors, with a downregulation in the LOW DEHP LOW pH group 

and an upregulation in the HIGH DEHP LOW pH treatment following the progression of 

gonadal maturation. Ji et al. (2016) noted that male M. galloprovincialis displayed a 

higher concentration of proteins associated with defence mechanisms and energy 

metabolism, possibly indicating an enhanced ability of males to react to stress with 

respect to females. In our study, females were equipped with the ability for higher 

expression of stress-related genes. Similar to our findings, dissimilar levels between sexes 
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of stress-related heat shock proteins were previously noticed in crustaceans Pachygrapsus 

marmoratus and Daphnia magna with higher levels in females (Madeira et al. 2012; 

Mikulski et al. 2011), reinforcing the belief of a different adaptive control of the HSP 

system in females that could possibly allow them to be more resilient to stressed 

conditions than males (Gismondi et al. 2012). Additionally, Yu et al. (2021) observed that 

the expression of HSP90 isoforms was significantly higher in gonads of the scallop 

Chlamys farreri compared to non-reproductive tissues, suggesting an involvement of 

these proteins in the gametogenesis process. Moreover, levels and activities of oxidative 

stress biomarkers are known to vary during the annual reproductive cycle of bivalves 

(Blanco-Rayón et al., 2020; Jarque et al., 2014; Wilhelm Filho et al., 2001). Therefore, 

the gametogenesis state could have contributed to the basal antioxidant levels and their 

reaction to contaminants, as reported in González-Fernández and colleagues (2016), 

where activities of CAT and glutathione peroxidase (GPx) were noticed to be affected by 

the chemical fluoranthene only during the gonadal resting period. It was also recently 

published that the DNA methylation (also involved in the gene regulation of several 

biological processes) in the gonads of scallops Patinopecten yessoensis fluctuates during 

the gametogenesis cycle and peaks during the mature stage for females and developing 

for males (Li et al., 2019b). 

A slight but non-significant trend was observed for the combination of pH, DEHP and 

stage (p pH*DEHP*STAGE = 0.09, F = 1.76, Fig. 4.25 and Fig. 4.26) and DEHP, sex 

and stage (p DEHP*SEX*STAGE = 0.09, F = 1.82, Fig. 4.25 and Fig. 4.26). Other studies 

before ours investigated the altered effect on marine invertebrates of high-CO2 exposure 

conditions in combination with xenobiotics such as heavy metals (Cao et al., 2019; Han 

et al., 2014; Ivanina et al., 2013) or pharmaceuticals (Freitas et al., 2016; Munari et al., 

2019) at different exposure durations. Our findings seem to contribute to the hypothesis 

that when environmentally relevant stressors are used in combination, a different 

magnitude of responses is noticed on some of the biomarkers analysed. 

The mild results in the stress response to the low pH exposure seem to be in line with the 

hypothesis that organisms from habitats characterised by fluctuating conditions could be 

less sensitive and more tolerant to stressors. In detail, Cromarty Firth is fed at the western 

end by the River Conon which collects rain and snowmelt from the mountains in 

Sutherland and mussels harvested there could be more tolerant to the alteration of 

parameters such as water pH, temperature or salinity. Additionally, areas influenced by 

river contribution or freshwater inputs can be characterised by changes in the biological 
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activities also due to organic matter and nutrient supply (Cai et al. 2011; Pérez et al. 2016; 

Vargas et al. 2016) and mussels are also reported to be able to cope with decreased surface 

water pH if the food supply is sufficient (Thomsen et al., 2013; Thomsen and Melzner, 

2010). It is already known that the magnitude of responses to environmental changes 

varies accordingly to life history (Parisi et al., 2021) and animals are more sensitive to 

small changes if they are adapted to a limited range of environmental variations (Kleypas, 

2019; Sokolova et al., 2011). In support of this theory, considering other invertebrates, 

early stages of Strongylocentrotus purpuratus purple sea urchins from naturally low and 

variable pH habitats showed adaptive calcification strategies and the absence of a 

generalised stress response when exposed to high pCO2 (Evans et al., 2013). Similarly, 

Saccostrea glomerata oysters farmed in estuaries characterised by different pH regimes 

(pH 7.5 – 8.2) showed resilience to ocean acidification conditions by altering the 

biomineralization pathways (Fitzer et al., 2019). In laboratory conditions, the pre-

exposure of Panopea generosa clams to moderate (~3000 μatm) or severe (~5000 μatm) 

pCO2 conditions during the post-larval period resulted in the enhancement of gene ability 

to adapt and cope with subsequent hypercapnic stress (Gurr et al., 2022). 

Regan et al., (2021) recently found that the high tolerance of bivalves to external stressors 

lays in their evolutionary history, which is shaped mostly by their expansion into niches 

exposed to environmental stressors and specific pathogens. In fact, being sessile and filter 

feeders mean for bivalves a quick adaptation to stressors (such as air exposure, 

temperature, pH, salinity variations) and robust tolerance to water chemicals and 

pathogens (Burge et al. 2016). Climate history is known to also affect genome variability 

and population structure, while the genetic expansion could improve the plasticity of 

bivalve phenotypes to changing habitats (Li et al., 2021a). However, other alterations 

from ocean acidification in the medium-long term on vital responses of marine molluscs 

such as the immune system (Beesley et al., 2008; Bibby et al., 2008), calcification (Ries 

et al., 2009; Rodolfo-Metalpa et al., 2011) and other metabolic processes such as 

respiration or feeding (Fernández-Reiriz et al., 2011; Navarro et al., 2013) cannot be ruled 

out, as the reaction to stress is an integrated response involving molecular, cellular and 

physiological systems within the organisms (Sokolova et al., 2011). A focus on the stress 

response in each sex and each gene analysed separately is available in the Supplementary 

Appendix to Chapter 4 (S4.1 and S4.2). 
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Fig. 4.25 Boxplots showing stress-related (sod, cat, hsp70) gene expression in males and females, 

n = 6 to 8. Excluded outliers are not shown, while the furthest accepted values are identified by 

black crosses. Different gene expressions are displayed in red (sod), blue (cat) and green (hsp70). 

Abbreviations are control (CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), 

low DEHP at low pH (LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and 

high DEHP at low pH (HIGH DEHP LOW pH). Significant factors in PERMANOVA are SEX 

p < 0.01, DEHP*STAGE p < 0.01, pH*DEHP*STAGE p = 0.09 and DEHP*SEX*STAGE p = 

0.09 
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Fig. 4.26 Boxplots showing stress-related (sod, cat, hsp70) gene expression in males and females, 

n = 6 to 8 considering sex and gametogenesis stage (developing. mature, spawning) of the gonads. 

Excluded outliers are not shown, while the furthest accepted values are identified by black crosses. 

Different gene expressions are displayed in in red (developing gonads), blue (mature gonads) and 

green (spawning gonads). Abbreviations are control (CTRL), low pH (LOW pH), low DEHP 

concentration (LOW DEHP), low DEHP at low pH (LOW DEHP LOW pH), high DEHP 

concentration (HIGH DEHP) and high DEHP at low pH (HIGH DEHP LOW pH). Significant 

factors in PERMANOVA are SEX p < 0.01, DEHP*STAGE p < 0.01, pH*DEHP*STAGE p = 

0.09 and DEHP*SEX*STAGE p = 0.09 

 

Table 4.6 Pairwise multilevel comparisons of the stress response (sod, cat, hsp70) between males 

and females in the same treatments 

Treatment males Treatment females p 

CTRL CTRL 0.77 

LOW pH LOW pH 0.12 

LOW DEHP LOW DEHP 0.05 

LOW DEHP LOW pH LOW DEHP LOW pH 0.37 

HIGH DEHP HIGH DEHP 0.09 

HIGH DEHP LOW pH HIGH DEHP LOW pH 0.29 
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4.13 Results and Discussion: Influence of sex and gametogenesis status on CA2 

gene expression 

When adding sex and gametogenesis status as predictors of the stress-related response 

alongside pH and DEHP, we found a significant sex-driven difference in basal expression 

for CA2, independent of treatments, with a higher expression level of CA2 in males with 

respect to females (p SEX < 0.001 Fig. 4.27 and Fig. 4.28, Table 4.7) and possibly 

associated with metabolic profiles, hormonal state, or fitness strategies (Ji et al., 2013; 

Mikulski et al., 2011; Wong et al., 2014). The interaction term of sex and gametogenesis 

status also resulted significant (p SEX*STAGE = 0.02 Fig. 4.27 and Fig. 4.28). With the 

exception of the LOW DEHP LOW pH treatment, males and females in the groups 

exposed to 7.7 pH (LOW pH and HIGH DEHP LOW pH) statistically differ in their CA2 

expression (Table 4.7). Interestingly, in Wang et al. (2017), expression of the CAII-1 

gene in C. gigas exposed to low pH was downregulated only in male gonads, in contrast 

with a significant upregulation in other non-reproductive tissue samples. Despite the fact 

that CA2 in our experiment was upregulated in male gonads, not downregulated, together 

these findings suggest again a tissue-specific regulation of this metalloenzyme and a 

potential link to the reproductive system status which could explain the differences we 

observed between sexes.  

Expression of CA2 was also slightly modulated by low pH (p pH = 0.06), with a general 

downregulation of the enzyme in both sexes in the 7.7 pH treated groups. This contrasted 

with Wäge et al., (2016), where a short exposure to low pH induced an upregulation of 

CA in polychaete worms Platynereis dumerilii. Carbonic anhydrases (CAs) are known to 

control the intra- and extracellular pH homeostasis, catalysing the reversible carbonic 

hydration from CO2 in HCO3
- (Richier et al., 2011). Their expression could be influenced 

by the surrounding environment, such as water pH values (Li et al., 2016) or physical 

conditions such as tides (Connor and Gracey, 2011). For example, organisms from 

hydrothermal vents are equipped with high CA activities with respect to species 

inhabiting surface zones (Kleypas, 2019). In agreement with our results, a pH drop is 

known to induce down-regulation of this enzyme and loss of shell structural integrity in 

several calcifying species including molluscs (Fitzer et al, 2014; Zebral et al., 2019). This 

might be caused by a compensatory strategy in response to the alteration of the acid-base 

balance in the body fluid from hypercapnic conditions. Ventura et al., (2016) suggested a 

shift in the main carbon source from an HCO3
− to a CO2 -based use of the DIC to explain 
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the reduction in CA activity of the non-calcifying photosynthetic sea anemones Anemonia 

viridis short-term exposed to high pCO2. Downregulation of CA in clam Panopea globosa 

larvae was explained as a feedback response to its decreased activity at low pH (López-

Landavery et al., 2021), probably caused by enzyme denaturation or lowered efficiency 

(Sun et al., 2016).  Interestingly, Beniash and colleagues (2010), found a marginal change 

in expression of CA in C. virginica oysters (p = 0.06 - 0.07) exposed to hypercapnic 

conditions, with an upregulated trend in mantle and the opposite tendency in gills, 

proposing a CA tissue-specific regulation.  

DEHP chemical exposure did not induce consequences on CA2, as opposed to other 

compounds such as metalloid elements in molluscs and crustaceans (Lionetto et al., 2006; 

Skaggs and Henry, 2002). This could be related to the metal-binding affinities of CAs 

and to the more effective osmo-, ionoregulatory and acid-base disruption ability of certain 

metals with respect to other chemicals (Bianchini et al., 2005; Bianchini and Carvalho De 

Castilho, 1999; Lionetto et al., 1998; Skaggs and Henry, 2002), also considering that 

metals such as Zn are co-factors of carbonic anhydrases. However, Balbi and colleagues, 

(2016) found an effect on carbonic anhydrases in M. galloprovincialis larvae exposed for 

a short term (24 – 48 h post fertilisation) to the estrogenic chemical BPA (1-10 mg/L), 

used as an additive in polycarbonate plastic production. This could suggest a greater effect 

of chemicals in the vulnerable first phases of the bivalve larval development, when the 

biomineralization process is still at early stages and thus more sensitive. A focus on the 

stress response in each gene analysed separately is available in the Supplementary 

Appendix to Chapter 4 (S4.3). 
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Fig. 4.27 Boxplots showing CA2 gene expression in males and females, n = 8 The furthest 

accepted values are identified by black crosses. Abbreviations are control (CTRL), low pH (LOW 

pH), low DEHP concentration (LOW DEHP), low DEHP at low pH (LOW DEHP LOW pH), 

high DEHP concentration (HIGH DEHP) and high DEHP at low pH (HIGH DEHP LOW pH).  

PERMANOVA error probabilities are SEX p < 0.001, SEX*STAGE p = 0.02 and pH p = 0.06 
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Fig. 4.28 Boxplots showing CA2 gene expression in males and females, n = 8 considering sex and 

gametogenesis stage (developing. mature, spawning) of the gonads. Different gene expressions 

are displayed in red (developing gonads), blue (mature gonads) and green (spawning gonads). 

Abbreviations are control (CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), 

low DEHP at low pH (LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and 

high DEHP at low pH (HIGH DEHP LOW pH).  PERMANOVA error probabilities are SEX p < 

0.001 (***), SEX*STAGE p = 0.02 (**) and pH p = 0.06 

Table 4.7 Pairwise multilevel comparisons of the CA2 response between males and females in 

the same treatments 

Treatment males Treatment females p 

CTRL CTRL 0.98 

LOW pH LOW pH 0.02 

LOW DEHP LOW DEHP 0.18 

LOW DEHP LOW pH LOW DEHP LOW pH 0.65 

HIGH DEHP HIGH DEHP 0.04 

HIGH DEHP LOW pH HIGH DEHP LOW pH 0.04 
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4.14 Results and Discussion: Influence of sex and gametogenesis status on the 

estrogen receptor-related response 

Regarding reprotoxicity biomarkers, as already noted with respect to the gametogenesis 

status, a drop to 7.7 pH did not induce any consequences on MeER1 and MeER2 (Fig. 

4.29 and Fig. 4.30, Table 4.8). Contrasting responses of the reproductive cycle to low 

water pH in invertebrates was already reported, from unaffected (Byrne et al., 2010) to 

reduced fertilisation success (Havenhand et al., 2008) in invertebrates such as C. gigas 

and Heliocidaris erythrogramma sea urchin.  

Interestingly, DEHP did not elicit a response on estrogen receptor-like gene expression 

in either sex. This contrasts with the previous findings of our team in Mincarelli et al. 

(2021) and in Chapter 2, where a one-week exposure to DEHP significantly affected the 

estrogen receptor-like pathway, especially in developing females’ MeER1. Some factors 

which may account for these differences between the two experiments are that mussels 

originated from two different populations (North Yorkshire in contrast to Cromarty Firth), 

years (2018 and 2020) and seasons (early in contrast to late winter), and the related 

gonadal reproductive status. Natural variation in the estrogen receptor-like physiological 

conditions could be based on annual and seasonal contexts, as already noted for M. edulis 

MeER2 expression (Ciocan et al., 2010b). Similarly, variable expression of estrogen 

receptor-like genes was found during M. galloprovincialis ovarian cycle (Agnese et al., 

2019) and throughout larval development (Balbi et al., 2016). On the other hand, in 

Puinean et al., (2006), the unchanged expression of blue mussel’s MeER1 and MeER2 

after exposure to estradiol was explained by either a regulatory mechanism of estradiol 

transformation or the receptor independence to estrogen in molluscs. In this case, the 

initial hypothesis that the action of certain stressors such as low pH and DEHP additive 

could be more robust when organisms are in a particular stage of the gametogenesis cycle 

did not find confirmation in this experiment, as the PERMANOVA analysis that 

considered the effect of the gametogenesis showed no particular influence on the gene 

expression of estrogen receptor-like response. A focus on the stress response in each sex 

analysed separately is available in the Supplementary Appendix to Chapter 4. 
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Fig. 4.29 Boxplots showing estrogen receptor- like (MeER1, MeER2) gene expression in males 

and females, n = 5 to 8. Excluded outliers are not shown, while the furthest accepted values are 

identified by black crosses. Means and standard deviations for each gametogenesis stage are 

displayed in red (MeER1) and blue (MeER2) and green (spawning gonads). Abbreviations are 

control (CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low 

pH (LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH).  No significant PERMANOVA differences were found 
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Fig. 4.30 Boxplots showing estrogen receptor- like (MeER1, MeER2) gene expression in males 

and females, n = 5 to 8, considering sex and the gametogenesis stage (developing. mature, 

spawning) of the gonads. Excluded outliers are not shown, while the furthest accepted values are 

identified by black crosses. Different gene expressions are displayed in red (developing gonads), 

blue (mature gonads) and green (spawning gonads). Abbreviations are control (CTRL), low pH 

(LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH (LOW DEHP LOW 

pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH (HIGH DEHP LOW 

pH).  No significant PERMANOVA differences were found 

 

Table 4.8 Pairwise multilevel comparisons of the estrogen receptor-like response (MeER1, 

MeER2) between males and females in the same treatments 

Treatment males Treatment females p 

CTRL CTRL 0.41 

LOW pH LOW pH 0.54 

LOW DEHP LOW DEHP 0.66 

LOW DEHP LOW pH LOW DEHP LOW pH 0.05 

HIGH DEHP HIGH DEHP 0.16 

HIGH DEHP LOW pH HIGH DEHP LOW pH 0.71 
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4.15 Conclusions  

In conclusion, we found mainly sex- and gametogenesis- based responses to lowered pH 

and DEHP exposure, in terms of expression of genes involved in the antioxidant system, 

general stress response, biomineralization/pH homeostasis and reproduction. As shown 

before, sex differences were observed for genes involved in the basal cellular 

mechanisms, underlying the possibility of a better adaption of either sex in future climate 

conditions. Interestingly, the maturation state of the gonads and the gametogenesis cycle 

seem to influence the gene expression of various genes involved in the stress response 

and pH homeostasis (sod, cat, hsp70, CA2) but did not seem to affect the estrogen 

receptor-like system (MeER1, MeER2). However, further investigations are needed for a 

better understanding of this pattern of response, as our study provided a small set of 

observations for each gametogenesis state. Likewise, the consequences of ocean 

acidification in marine mussels inhabiting naturally pH-variable coastal environments 

and therefore tolerant to local pH fluctuations should be deeply investigated through a 

wider set of endpoints involved in the pH response other than CAs. Nevertheless, this 

experiment contributes to the understanding of histological and molecular endpoints in 

mussels exposed to combinations of multiple stressors, which is necessary for a scenario 

of plastic-polluted and climate-changing conditions.
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Chapter 5 

The effects of low pH and DEHP exposure on valve behaviour and 

metabolic rate 

5.1 Introduction  

This chapter aims to investigate the effect on M. edulis respiration and valve behaviours 

of lowered pH alone and in combination with two concentrations of DEHP at 

environmentally relevant levels. Mussels were first exposed for one week to either a 

control pH (pH 8.1) or low pH (pH 7.7; -0.4 units) condition. After the pH exposure, 

oxygen consumption and valve behaviours were tested in a series of respirometer and 

behavioural tests. The results for day one were then compared (control against low pH), 

in order to analyse the effect of the seven-day exposure to low pH alone. The day after, 

the same mussels were exposed to either a low (0.5 μg/L), or high dose (50 μg/L) of di-

2-ethylhexyl phthalate (DEHP) and the respirometer and behavioural assays were 

immediately repeated. Outcomes from day two were plotted against day one results to 

analyse the effect of the single-dose exposure to various levels of DEHP on mussels pre-

exposed to either control or low pH. 

As already highlighted in Chapter 4, pH is known to fluctuate in coastal areas (Yu et al., 

2011) and in zones like intertidal rock pools where photosynthesis and tides control the 

CO2 levels and consequently the pH (Pörtner et al., 2008). It is well-known that global 

oceanic pH has unprecedentedly decreased over the past four decades as a consequence 

of taking CO2 up from anthropogenic emissions, with a 30% increase in water acidity 

since the beginning of the Industrial era (IPCC, 2021). Under all most likely projected 

scenarios from the IPCC (SSPs, Chapter 1.4), surface pH is predicted to decrease by 

2100. These conditions are hypothesised to a larger extent in high-latitude oceans, 

especially the Arctic Sea, which will also be undersaturated in calcite and aragonite by 

2100 (Feely et al., 2009, Fig. 1.4 and Fig. 5.1). This may also exacerbate naturally 

occurring pH fluctuations in coastal and near-shore habitats, to which intertidal species 

are adapted (Baumann and Smith 2018; Wolfe et al. 2020). 
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Fig. 5.1 Historical climatologies (1995 - 2014), SSP 1 - 2.6 and SSP 5 - 8.5 projections for 2080 

- 2099 for a-c) sea surface temperature, d-f) surface oceanic pH, sub-surface (100-600 m), g-i) 

dissolved oxygen concentration, j-l) euphotic-zone (0-100 m) NO3
- and m-o) depth-integrated net 

primary production from Kwiatkowski et al. (2020) 

 

In plankton communities, future acidification conditions could lead to considerable 

consequences at the levels of pelagic ecosystems and biogeochemical cycling (Riebesell 

et al., 2013, 2018). For example, phytoplankton can often grow more rapidly in acidified 

conditions, as the carbon availability increases with CO2 levels and this could result in 

optimal conditions for the growth and bloom of harmful algae such as the genus 

Alexandrium (Lian et al., 2022), increasing the toxic forms of paralytic neurotoxins 

associated with harmful algal blooms (HAB, Roggatz et al., 2019). Various consequences 

on aquaculture species are hypothesised according to different climate change scenarios 
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(Fuentes-Santos et al., 2021). In bivalves, some studies reported an unlikely adaptivity of 

mussels to future water pH conditions (Guo et al., 2021). A decrease in pH can alter 

immune and anti-predator responses (Bibby et al., 2008; Jahnsen-Guzmán et al., 2022), 

affect calcification and energy metabolism-related gene expression (Hüning et al., 2013), 

and impact growth performances in larvae (Gazeau et al., 2010). On the other hand, 

contrasting effects of low pH exposure on mussels were noticed on byssus thread 

properties (Dickey et al., 2018; O’Donnell et al., 2013; Zhao et al., 2017) and valve 

behaviours (Clements et al., 2020; Lassoued et al., 2019, 2021), probably due to local 

adaptation (Kong et al., 2019), environmental history (Clements et al., 2020), post-

spawning status (Clements et al., 2018) or eutrophication and food availability 

(Jakubowska and Normant, 2015; Lassoued et al., 2019).  

Increased stratification and weakened water circulation will also influence the metabolic 

physiology of aquatic organisms, increasing the oxygen consumption rate via the 

respiration process (Breitburg et al., 2018; Thyrring et al., 2015). During the respiration 

mechanism, aerobic organisms convert organic matter to carbon dioxide, producing the 

by-product CO2 while consuming oxygen and releasing energy. Without sufficient 

ventilation, the accumulation of inorganic carbon derived from respiration will contribute 

to ocean acidification as well (Fennel and Testa, 2019; Lowe et al., 2019; Wallace et al., 

2014). Conversely, pH could affect respiration rate and the associated metabolic 

processes in marine organisms at individual and population levels. As an example, CO 2 

could limit the oxygen affinity of proteins involved in Dosidicus gigas squid respiration 

(Seibel, 2013), decreasing hypoxia tolerance in sculpins Clinocottus analis (Hancock and 

Place, 2016), and silversides Menidia menidia and M. beryllina, thus increasing their 

mortality rate (Miller et al., 2016). On the other hand, when exposed to hypercapnic 

conditions (7.6 pH) for five days, sea limpet Patella vulgata showed no changes in 

metabolism defined as O2 uptake or feeding rate (Marchant et al., 2010). 

Oxygen consumption is a common estimator for the basal metabolic rate in invertebrates 

(Greenshield et al., 2021; López-Landavery et al., 2021) and valve behaviour 

observations are as well used as a biomonitoring analysis in response to pollutant 

exposure (Liao et al., 2009). Due to their feeding and respiratory behaviours, mussels can 

pump large water volumes and thus filtrate and accumulate contaminants, toxins, bacteria 

and viruses, as their gills have both a respiratory and a feeding role (Gosling, 2021). As 

remarked by Zeng et al. (2015), pollutants found in marine environments can increase 

eutrophication and lead to an increase in respiration rate, as seen after the Deep Water 
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Horizon oil spill disaster (Bælum et al., 2012), eventually being a major driver for ocean 

acidification. Pollutants such as heavy metals or polyaromatic hydrocarbons are known 

to affect and lower the respiration rate (Halldórsson et al. 2005; Jorge et al., 2007), but 

sulphide, microplastics or nanoparticles were noticed to increase the respiration rate as 

consequence of physiological stress (Lee et al., 1996; Van Cauwenberg et al., 2015; 

Saggese et al., 2016). External chemical administration could also affect the avoidance 

behaviours and consequently increase the predation risk, as demonstrated by the reduction 

in burying ability of polychaete worms  Nereis diversicolor and bivalve molluscs 

Scrobicularia plana and Macomona liliana exposed to copper (Bonnard et al., 2009; 

Roper and Hickey, 1994) and slowed valve closure in Argopecten ventricosus scallops or 

M. galloprovincialis exposed to heavy metals (Shen and Nugegoda, 2022; Sobrino-

Figueroa and Cáceres-Martínez, 2009). Considering this, this chapter’s experiment 

explores the consequences on behavioural and metabolic traits of blue mussels (i.e., 

respiration and valve movement) after a single-dose exposure to the plastic additive 

DEHP alone and in combination with an ocean acidification scenario, with the hypothesis 

that low pH will affect mussel respirations, while the valve behaviours will be responsive 

to the injection of either concentration of DEHP. 

 

5.2 Materials and Methods: Experimental design 

Adult blue mussels (n = 72; mean length 5.5 cm ± 0.45 cm) were collected from Cromarty 

Mussels, Ltd. (Cromarty Firth) in January 2021 for behavioural and physiological 

analysis (Fig. 5.2). Details about the collection site were provided in Chapter 4.2: 

Experimental design. Mussels were transported to the aquarium facilities of the 

University of Hull, and subsequently randomly divided into two 30-litre continuously 

aerated glass tanks and left to acclimate for 12 days in artificial saltwater. Mussels were 

not cleaned from sand or mud nor scrubbed from seaweed or barnacles, to avoid 

additional physical stress. Measured parameters for the control and low pH treatments are 

shown in Table 5.1. Water was partially (approx. 15-20 litre) changed every second day. 

The pH was constantly monitored with a pHControl system (JBL ProFlora pH Control) 

connected to a CO2 cylinder for the LOW pH treatment (Fig. 5.3). Mussels were not fed 

during the experiment. Temperature and salinity were measured daily with a digital 

thermometer (Amarell Thermometer, Kreuzwertheim, Germany) and a digital seawater 
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refractometer (Hanna Instruments, Woonsocket, USA). Alkalinity was measured twice a 

week with a HI 84531 mini titrator (Hanna Instruments, Woonsocket, USA).  

 

Table 5.1 Experimental treatments and measurement of temperature, pH and alkalinity values at 

35 ± 1 psu salinity. All parameters are expressed as mean ± standard deviation 

Name of 

treatment 

Description Temperature 

(°C) 

pH 

(Units) 

Alkalinity 

(mg/L) 

CTRL Control pH conditions 8.62 ± 0.28 8.86 ± 0.03 104.23 ± 6.03 

LOW pH Future pH conditions 8.68 ± 0.28 7.69 ± 0.03 121.30 ± 7.89 

 

 

 

Fig. 5.2 Cromarty Firth, Scotland, U.K. (57.40.741 N 4.06.062 W), the collection site. Details of 

the suspended ropes on the water surface 
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Fig. 5.3 Pictures from the exposure tank - M. edulis blue mussels at 7.7 pH 

 

For the respirometer and behavioural assays, the 2 exposed groups were tested on day 1 

(CTRL pH and LOW pH, n = 35 - 36). The following day (day 2), the same groups were 

exposed to a single dose of either 0.5 μg/L or 50 μg/L of DEHP for a total yield of 4 

treatments groups: CTRL pH LOW DEHP, CTRL pH HIGH DEHP, LOW pH LOW 

DEHP, LOW pH HIGH DEHP each with n = 17 - 18. A graphic summary of the 

experimental design for day 1 and 2 assays and the respective exposures is available in 

Fig. 5.4. Each mussel was tested once per day and at the same time over the two days, in 

order to minimise animal stress and the possible effects of circadian rhythm on valve 

movements (Englund and Heino, 1994; García-March et al., 2008; Ortmann and 

Grieshaber, 2003).  
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Fig. 5.4 Summary of mussel treatment groups after the 7-day exposure to either control or low 

pH on day 1 (CTRL pH and LOW pH, n = 35 – 36 divided into two groups for each pH-treatment) 

and after a single dose of either 0.5 or 50 µg/L of DEHP (LOW DEHP, HIGH DEHP, LOW 

DEHP LOW pH, HIGH DEHP LOW pH, n = 17 - 18) on day 2 

 

5.3 Materials and Methods: Oxygen meter settings 

Oxygen consumption was measured with a USB-powered fibre optic meter FireStingO2 

with fibre optical oxygen sensor. The compact USB-powered fibre-optic meter 

FireStingO2 is a multi-functional oxygen meter used for oxygen measurements in water 

that utilises a measuring principle based on red light excitation and detection in the near-

infrared using luminescent oxygen indicators (REDFLASH technology) with integrated 

atmospheric pressure and humidity sensors. Sensor spots carrying an optical isolation on 

the sensing surface were then placed in contact with the aqueous samples (Fig. 5.5). Every 

optical sensor was calibrated by selecting a 1-point in water/humid air option, where the 

0% calibration value was given by the sensor code and the second point was taken from 

seawater saturated air (100% RH) obtained by bubbling pure oxygen into a closed 200-

mL jar filled with seawater for no less than 10 minutes, as recommended by the 

manufacturer for precise measurement around 100% calibration.  

 

5.4 Materials and Methods: Respirometer assay 

Animal respiration is used to estimate the overall energy metabolism (Lannig et al., 2010). 

For this assay, closed respirometry assays were conducted under unlicensed animal ethics 

approval University of Hull # FEC_2021_11 as follows:  
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I. Mussels were individually placed into 200-mL jars and acclimated for 5 minutes.  

II. After acclimation, 10 µL of either control seawater (on day 1) or DEHP (0.5 or 50 

µg/L on day 2) were injected in the proximity of the gills.  

III. After lid closure, the valve behaviour was recorded on video and oxygen 

consumption was measured with the USB-powered fiber optic meter FireStingO2 

for a 5-minute assay. 

As an estimator for the basal metabolic rate, oxygen consumption (mg/L) was recorded 

by the respirometer every 30 seconds to yield a total of 10 data points over the 5 -minute 

assay for each individual. The 5-minute interval was chosen considering the filtration rate 

of 46 - 80 mL/min (230 - 400 mL in 5 minutes) for M. edulis individuals of 5.65 cm in 

length (Winter, 1973). The partial oxygen consumption Δmg/L for each time point t was 

calculated as follows: oxygen concentration (mg/L) at time point t - oxygen concentration 

(mg/L) at time point t-1. Before the experiment, 15 blank tests were conducted in the same 

200-mL jars, in order to assess the background microbial water consumption from the 

experimental water tanks and a final average value of 0.067 was subtracted from the final 

oxygen concentration from all individuals during the respirometer tests.  

 

 

Fig. 5.5 Details of the respirometer assay (before the lid closure) with the sensor spot highlighted 

by the red circle 

 

5.5 Materials and Methods: Valve behavioural assay 

During the same 5-minute interval of the respirometer assay, behaviours of the valves 

were recorded on video. Behavioural changes are usually recorded at the same time as 
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physiological assays, as respiration is closely related to activity and movements of the 

valves (Widdows, 1985). Videos were then coded and behaviours were scored blindly in 

order to remove possible observer bias. The following valve behaviours were assessed 

for the same data points as the respirometer test over the 5-minute assay (10 data points 

of 30 seconds each):  

● Valve status: valves were either closed (Fig. 5.6) or open (Fig. 5.7). 

● Valve changes: number of changes between opening and closure or vice versa 

(none, one, more than one). 

● Valve openings: number of only opening events (from closed to open, measure as 

none, one, more than one). 

 

 
Fig. 5.6 and 5.7 Frames from the recorded videos showing the respirometer assays for mussels 

with closed (left) and open (right) valves (highlighted in red) and the recorded time   

 

5.6 Materials and Methods: Statistical analysis 

For the analysis of respiration and valve behaviours, the data was divided as follows (Fig. 

5.4): 

I.  “Day 1” for testing the effect of  

 low pH  

against  
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 control pH  

 

II. “Day 2” for testing  

 low DEHP (0.5 μg/L) in combination with either 8.1 or 7.7 pH  

and 

 high DEHP (0.5 μg/L) in combination with either 8.1 or 7.7 pH  

For the respirometry assay, no significant relationship was found between mussel length 

and oxygen consumption (Pearson's correlation p > 0.05).  

For each dataset, the partial oxygen consumption measurements over the 30-second data 

points were analysed by ANOVA for Randomised Block Design after data normalisation 

(bestNormalize package, Peterson, 2021), to determine the impact of treatments while 

correcting for time points as a blocking factor. For valve behaviours, one-way 

PERMANOVA (Anderson, 2014) using Jaccard dissimilarity matrix and 9999 

permutations (vegan package, Oksanen, 2018) were applied to the valve status (either 

“closed” or “open”), valve changes (number of changes between open and closed valves 

and vice versa) and valve openings (number of valve opening events) to test the effect of 

pH (day 1) and DEHP (day 2) exposures. All graphs were created using MATLAB 

R2021a. 

 

5.7 Results and Discussion: Respirometer assay 

No differences were found in the partial oxygen consumption over the ten 30-second time 

points between mussels at control pH against low pH for day one (p > 0.05, Fig. 5.8). On 

the other hand, considering the DEHP exposure on day two, the low DEHP exposure 

influenced the respiration of mussels at low pH (p = 0.03, F value = 4.94, Fig. 5.9 C), 

while high DEHP dose significantly affected mussels at control pH (p < 0.001, F value = 

13.53, Fig. 5.9 B). Adding “time points” as a blocking factor resulted in a p = 0.04 (F 

value = 4.31) of the factor time on mussels at low pH and high DEHP (Fig. 5.9 D) on day 

two. It was already observed that respiration and oxyregulation capacities are affected by 

high temperature in molluscs such as M. galloprovincialis (Barbariol and Razouls, 2000), 

Pecten maximus (Artigaud et al., 2014) or Cyclonaias spp. (Haney et al., 2020), which 

eventually impacted the energetic metabolism. Decreased oceanic pH might affect 

respiratory performances of marine invertebrates as well, alongside other biological 
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consequences (Pörtner, 2008). In fact, in order to buffer the internal fluid acidosis in 

hypercapnic conditions, calcifying organisms are also known to use the CaCO3 from the 

shell to increase the HCO3
- in the haemolymph or manipulate the excretion of H+ ions in 

the Na+-H+ exchangers and reduce the oxygen consumption rate (Byrne and Dietz, 1997; 

Hannan et al., 2016; Michaelidis et al., 2005; Pörtner, 2008) with in most cases long-term 

repercussions on growth or reproductive functions, along with metabolic suppression 

(Pörtner et al., 2004). Reduced shell length and mass development in M. edulis was noted 

by Thomsen and Melzner (2010) under increasing hypercapnic conditions (from control 

pH 8.0 to pH values of 7.7, 7.4 and 7.1), who suggested increased cellular energy demand 

and nitrogen loss as synergistic cause for the absence of growth. Melzner et al. (2011) 

hypothesised that in response to strong pCO2 and under food limitation, the metabolic 

energy in M. edulis is reallocated to vital biological process such as the maintenance of 

somatic mass, at the expense of processes such as shell growth and conservation.  

 

 

Fig. 5.8 Low pH effect on oxygen consumption throughout the 30 seconds time on day 1, n = 35 

- 36. Abbreviations are pH 8.1 (CTRL pH, in green) and pH 7.7 (LOW pH, in yellow). Datapoints 

are expressed as mean ± standard error of the mean (SEM). No ANOVA significant effect was 

observed 

 

The results from the respirometer assay seem to indicate that the low pH short-term 

exposure for one week did not affect M. edulis respiration. Conversely, decreased 

respiration was observed for R. decussatus after 87 days of exposure to –0.4 and –0.7 pH 

units (Fernández-Reiriz et al., 2011), suggesting that an effect of water acidification on 

mussel responses for a long period is possible. Saavedra et al. (2018) noticed a reduction 

of oxygen consumption for intertidal mussel Perumytilus purpuratus exposed to 750 (7.6 
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pH) and 1200 (7.5 pH) μatm pCO2 levels, but not at 380 μatm (7.8 pH) and the same 

species from another region showed no significant difference when exposed to the same 

conditions. This might suggest again, as shown in Chapter 4, that the adaptive strategies 

to coastal habitat fluctuations could lead to organisms being more tolerant and resilient to 

environmental stressors. There are no available data on the fluctuations of water pH in 

Cromarty Firth in the literature and due to restricted access to the area, operators were 

unable to frequently register the pH fluctuations. However, it is known that the area is fed 

at the western end by the River Conon, which collects rain and snowmelt from the 

mountains in Sutherland, so mussels harvested there could be more tolerant to the 

alteration of parameters such as water pH, temperature or salinity. 

The oxygen consumption of various bivalves could also be affected by external chemical 

exposure, for example metals and hydrocarbons (Jorge et al., 2007). As an example, when 

exposed to xenobiotics such as metals, mussels decreased the oxygen consumption as a 

result of decreased ventilation, impaired cellular respiration or inhibited gas exchange and 

transport (Spicer and Weber, 1991). Recently, in Tallec et al. (2022), juvenile oysters 

were gradually exposed to leachates from tires (0, 1, 10, and 100 μg tire / mL) for 40.5 

hours for each concentration, in order to analyse the ability to modify the organism 

responses to the increasing doses. From 1 μg tire / mL, leachates reduced oyster clearance 

and respiration in a significant way, confirming that the xenobiotic exposure affected the 

gills. Many studies that investigated the actions and effects of chemicals in a low pH 

environment reported altered cue perception of the compound due to changes in the 

protonation state of cues and/or receptors, as shown for fish at lowered pH in Porteus et 

al. (2018) and Velez et al. (2019).  
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Fig. 5.9 DEHP effect on the mg/L water oxygen concentration (consumed oxygen estimation) 

throughout the 30-second time points on day 2. Abbreviations are pH 8.1 (CTRL pH, in green), 

pH 7.7 (LOW pH, in yellow), low DEHP dose at pH 8.1 (CTRL pH LOW DEHP, in red), high 

DEHP at pH 8.1 (CTRL pH HIGH DEHP, in blue), low DEHP at pH 7.7 (LOW pH LOW DEHP, 

in red), high DEHP at pH 7.7 (LOW pH HIGH DEHP, in blue), n = 17 - 18. Datapoints are 

expressed as mean ± standard error of the mean (SEM). ANOVA significant p values are 

annotated on the graphs 

 

The seven-day DEHP exposure was chosen accounting for the non-persistency of DEHP 

in the environment (Staples et al., 1997), with a half-life of approximately 0.35–3.5 days 

for surface water and sediments in aerobic conditions (Peterson and Staples, 2003). Here, 

for mussels pre-exposed to low pH for a week, the single low DEHP dose (0.5 μg/L) 

resulted in a significant increased oxygen consumption especially in the last 3 minutes 

(Fig. 5.9 C), but this was not reflected in the high DEHP dose (50 μg/L) assay, where the 

oxygen consumptions of treatments LOW pH and LOW pH HIGH DEHP were similar 

(Fig. 5.9 D). The difference in the reaction to DEHP at the two concentrations in lowered 

pH could once again suggest a hormetic effect of this chemical. In fact, the effect here of 

only the low dose of DEHP on respiration could in part be explained by the non-linear 

effect of some endocrine disrupting chemicals on bivalves (Xu et al., 2021) and already 

noted in Chapter 2. This outcome is most likely to be related to receptor actions, or the 

presence of antagonists, regulators, and co-activators (Conolly and Lutz, 2014: Li, 2007; 

Vandenberg et al., 2012).  
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However, in this experiment, the high DEHP dose was found to be significantly effective 

in increasing the oxygen consumption of mussels at control pH, especially in the first 180 

seconds after the injection (Fig. 5.9 B), but no significance was shown for the low dose 

at the same pH (Fig. 5.9 A). A hypothesis reported by Neuberger-Cywiak (2005) 

suggested that animals could protect themselves from pollutant exposure by either 

evading the area or excreting the toxicant. The latter necessitates energetic processes that 

would require an increase in the oxygen supplied. Even though not significant, a lowered 

oxygen consumption is observable in the CTRL pH LOW DEHP mussels with respect to 

the CTRL pH group, especially in the first 180 seconds (Fig. 5.9 A), highlighting an 

inverted trend of the two concentrations on mussel oxygen consumption.  

 

5.8 Results and Discussion: Valve behavioural assay  

Mussel gills are usually protruded in the outside environment following the shell margin, 

richly supplied with haemolymph and with a large area exposed to the water flow for gas 

exchange when the valves are open (Gosling, 2021). In this experiment, modal valve 

status (predominantly open, closed or equally split) was significantly affected by low pH 

exposure (p = 0.04, F = 4.55), with valves being more open in the 7.7 pH condition than 

in control pH (Fig. 5.10 A). Interestingly, as already remarked in the previous Result and 

Discussion section in Chapter 5.8, it was not mirrored by an increase in respiration in 

this treatment (Fig. 5.8). This could suggest that valve opening could be an adaptive 

strategy of mussels to circumvent the metabolic distress of high-CO2 water, increasing 

the time spent with valves open for maintaining a balanced respiration rate similar to 

control conditions. Acidic pH is known to affect the valve behaviours of bivalves, for 

example an increased valve activity in the bivalve Arctica islandica was observed in 

Bamber and Westerlund (2016), even though the response was recorded only after a drop 

of 1.9 pH units. Moreover, in Hasler et al., (2017) specie-specific valve status alterations 

were noticed in freshwater mussels when exposed to high pCO2. In fact, Unionidae 

Lampsilis cardium and L. siliquoidea valves were noted to remain open for long periods 

during the entire exposure, in contrast to the closed valves of giant floater Pyganodon 

grandis. Spending time with open valves could be a coping behaviour for mediating the 

acid/base disturbance (Hannan et al., 2016) and preventing respiratory acidosis and 

accumulation of anaerobic end products, which can be harmful (Hasler et a., 2017). 
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Avoidance behaviours in a low pH environment, such as burrowing in the sediment, were 

also noticed for the bivalve Mya arenaria and attributed to the activation of gamma-

aminobutyric acid (GABA) -like receptors in response to increasing pCO2 (Clements et 

al., 2017). Another hypothesis from Salánki, (1963) suggested that acidic conditions 

could cause anaesthesia in the posterior adductor muscle, and its consequent inability to 

contract and close the shells. 

No significant effects were observed for the low DEHP dose on control or low pH and 

for the high DEHP dose on control or low pH (p > 0.05, Fig. 5.10 B, C, D, E). A trend in 

valves being more often closed was noted for the low DEHP-treated mussels at CTRL pH 

(Fig. 5.10 B) and high DEHP-treated mussels at low pH (Fig. 5.10 E), both however not 

statistically significant. Valve closure is a common avoidance and escape response to 

unfavourable conditions for marine molluscs and it could also contribute to the tolerance 

to stress (Ivanina and Sokolova, 2015). It could be possible that different concentrations 

of the plasticiser DEHP are sensed as a stimulus by the animals at different pH, which 

leads to shell movements and closure as a defence reaction (Dzierżyńska-Białończyk et 

a., 2019; Nagai et al., 2006). Neuberger-Cywiak et al. (2005) reported that exposure to 

pollutants might force mussels to reduce feeding and to close valves in order to reduce 

the contaminant uptake and a resulting decrease in respiration. In fact, even though not 

significant, a decreased oxygen consumption was noticed at control pH in the first 180 

seconds after the low DEHP dose (Fig. 5.9 A). 
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Fig. 5.10 Percentages of individuals with open (green) or closed (purple) valves (modal values). 

“Split” (blue) values indicate mussels that have spent an equal time in open and closed states 

exposed to A) low pH (day 1) and B, C, D, E) each two DEHP concentrations at the two pH 

regimes (day two), n = 35 - 36 (A); n = 17 - 18 (B, C, D, E). Abbreviations are pH 8.1 (CTRL 

pH), pH 7.7 (LOW pH), low DEHP at pH 8.1 (CTRL pH LOW DEHP), high DEHP at pH 8.1 

(CTRL pH HIGH DEHP), low DEHP at pH 7.7 (LOW pH LOW DEHP), high DEHP at pH 7.7 

(LOW pH HIGH DEHP). Significant effect of pH (p = 0.04) is denoted by * 
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Fig. 5.11 Percentages of individuals with more than one change from open to closed valves or 

vice versa (green), one change (blue) or no changes from the initial status (purple) exposed to A) 

low pH and B, C, D, E) two DEHP concentrations at the two pH regimes, n = 35 - 36 (A); n = 17 

- 18 (B, C, D, E). Abbreviations are pH 8.1 (CTRL pH), pH 7.7 (LOW pH), low DEHP at pH 8.1 

(CTRL pH LOW DEHP), high DEHP at pH 8.1 (CTRL pH HIGH DEHP), low DEHP at pH 7.7 

(LOW pH LOW DEHP), high DEHP at pH 7.7 (LOW pH HIGH DEHP). A small effect of high 

DEHP on low pH (p = 0.07) was observed 

 

Even though we noted an increase of oxygen consumption in the treatments where the 

DEHP injection was significant, no particular effects on valve activity were observed, 

except for a small but non-significant effect of high DEHP on low pH treated mussels. In 

fact, high DEHP exposure resulted in an increased valve changes and opening events at 

low pH (p = 0.07 Fig. 5.11 E and 5.12 E). When considering valve changes (number of 

changes between open and close and vice versa) and opening events in the other 

treatments, no significant impact of either pH or DEHP was otherwise found (p > 0.05, 

Fig. 5.11 and 5.12).  
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Fig. 5.12 Percentages of individuals with more than opening events (from closed to open, measure 

as none (purple), one (blue), more than one(green)). exposed to A) low pH and B, C, D, E) two 

DEHP concentrations at the two pH regimes, n = 35 - 36 (A); n = 17 - 18 (B, C, D, E). 

Abbreviations are pH 8.1 (CTRL pH), pH 7.7 (LOW pH), low DEHP at pH 8.1 (CTRL pH LOW 

DEHP), high DEHP at pH 8.1 (CTRL pH HIGH DEHP), low DEHP at pH 7.7 (LOW pH LOW 

DEHP), high DEHP at pH 7.7 (LOW pH HIGH DEHP). A small effect of high DEHP on low pH 

(p = 0.07) was observed 

 

5.9 Conclusions 

Mussels exposed to decreased pH (7.7 units) for one week and subsequently exposed to 

a single dose of either low (0.5 μg/L) or high (50 μg/L) concentration of the plasticiser 

DEHP presented varying responses regarding the metabolic system (i.e., oxygen 

consumption) and the behavioural system (i.e., the valve activity) observed in the same 

5-min interval. The pH manipulation for a week led to an increase of mussels with 

predominantly open valves, which however was not mirrored by alterations in the oxygen 

consumption. This is possibly related to an adaptive strategy to maintain the same 

metabolism as the control conditions by increasing the time of valves spent open. The 

same mussels were then exposed to one of the two DEHP levels and tested in the time 

immediately after the injection. The high DEHP dose was able to increase the respiration 

of mussels at control pH (8.1), but this effect was not noticed for the low DEHP 

concentration at the same pH condition. On the contrary, the low DEHP had an effect on 

mussels at low pH (7.7), not mirrored in the high DEHP treatment under the same lowered 
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pH condition (which in turn presented increased valve activity). The discrepancy in the 

effect of either dose at different pH could be attributable to a series of hypotheses, 

including altered cue perception at lowered pH, adaptive strategies or hormetic effect of 

EDCs. The non-monotonic hormesis of EDCs such as DEHP will be discussed in 

Chapter 6. This experiment underlines again the unique endocrine disruptor pathways, 

whose way of action could be altered in an end-of-the-century acidified scenario.  
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Chapter 6 

 

The effects of DEHP exposure on fertility and reproductive outcomes 

                                                                                                                                                                                                                                                                                                        

6.1 Introduction 

This chapter aims to analyse the effect of a short-term exposure to two environmentally 

relevant concentrations of the endocrine disruptive chemical DEHP on the number and 

size of eggs spawned during a synchronised reproductive event. Over the past years, the 

effect of plastic contamination on molluscs has been investigated for particles of all sizes 

(Bringer et al., 2022; Franzellitti et al., 2019b; Haegerbaeumer et al., 2019), and 

experiments involving mussel exposure are also well-represented (Avio et al., 2015; Bråte 

et al., 2018; Cappello et al., 2021; Gonçalves et al., 2022; Green et al., 2019; Khalid et 

al., 2021; Paul-Pont et al., 2016; Pittura et al., 2018; Vasanthi et al., 2021). As an example, 

styrene particles at concentrations of 0.01 - 1000 µg/L impaired the normal embryo 

development of M. galloprovincialis after a 48h exposure (Wathsala et al., 2018). 

Genotoxic effects of polystyrene microspheres at a concentration of 106 particles /L were 

observed in digestive glands and gills of M. trossulus after 5 days of exposure (Chelomin 

et al., 2022). Furthermore, endocrine disruptor plasticiser BPA was noted to affect the full 

development of M. galloprovincialis larvae when the fertilised eggs were exposed to 

concentrations of 0.01 - 1000 μg/L (Balbi et al., 2016; Fabbri et al., 2014).  

Plastic additives are often known to induce disruptive effects on organisms, especially 

targeting the endocrine system. Effects of ECDs are diverse, from altered fertility and 

fecundity to masculinization and feminisation of females and males, respectively (Jobling 

et al., 2004). In vertebrates, there are documented effects of DEHP on the reproductive 

cycle. In fish, DEHP exposures (0.1 and 0.5 mg/L) for 6 months from hatching to 

adulthood of the marine medaka O. melastigma affected reproduction, accelerating 

spawning and decreasing egg production in females (Ye et al., 2014). DEHP exposures 

at 3.9 - 39 μg/L were also noticed to increase the vitellogenin levels in primary hepatocyte 

cultures of zebrafish sexes (Maradonna et al., 2013). In humans, it was measured that the 

daily intake of DEHP is in the range of 0.004 − 70 μg/kg/day (Das et al., 2014), with 

detectable levels found in blood, breast milk, umbilical cord and urine (Net et al., 2015).  
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These are relevant results, considering that it was recently reported that plasticisers such 

as phthalates appear to shorten gestational duration and sperm quality (Wormuth et al., 

2006) and promote adipogenic activity and ultimately favour obesity (Völker et al., 2022) 

in mammals. 

Documented effects of DEHP on aquatic species include reproductive dysfunction and 

endocrine disorders in crustaceans (Heindler et al., 2017), reptiles (De Solla et al., 1998) 

and fish (Carnevali et al., 2010; Ye et al., 2014). However, the exact effect of DEHP and 

other EDCs on molluscs is still not entirely established. This is due to the limited number 

of studies available on the characteristic irregular dose-response disruptive actions of 

these chemicals (Chapter 1. 3, Vandenberg et al., 2012). In fact, as other EDCs 

investigated in the literature, DEHP is observed to be more active and promote stronger 

responses at low doses (that usually are the levels found in nature) rather than high levels.  

This scenario is further complicated by the still not fully uncovered endocrine physiology 

of several invertebrate species. In this chapter, we investigate the effect of this plastic 

contaminant on reproductive outcomes, hypothesising an effect in lowering the number 

and the size of eggs spawned by mature females during the fertilisation event. 

 

6.2 Materials and Methods: Experimental design 

Adult blue mussels (n = 90; length mean ± standard deviation = 5.7 cm ± 0.6 cm) were 

collected from the suspended ropes farm of Cromarty Mussels, Ltd. in Cromarty Firth, 

Scotland, U.K. (57.40.741 N 4.06.062 W Fig. 4.2 - 4.6) in April 2021 and transported to 

the aquarium facilities of the University of Hull. Mussels were not cleaned from sand and 

mud nor scrubbed from seaweed and barnacles, to avoid additional physical stress. A 

detailed description of the collection site is available in Chapter 4.1: Experimental 

design. Spring months were chosen as this is the period with the highest likelihood to find 

ripe gonads in mature to spawning stages. Thirty mussels for each of the three treatments 

were randomly divided into six 4-L continuously aerated glass tanks, for a total number 

of 5 mussels for each replicate tank at a density of 1 mussel per 0.8 L. Prior to the 

exposure, mussels were kept at laboratory conditions for 19 days in artificial saltwater 

(Premium REEF-Salt, Tropical Marine Centre©, Chorleywood, U.K.) in a final number 

of 18 continuously aerated glass tanks and fed with PhytoGreen-M phytoplankton 

(Brightwell Aquatics, Fort Payne, USA). The longer maintenance period (with respect to 
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the other exposure experiments described in Chapters 2, 4, and 5) was chosen in order 

to achieve ripeness of the gonads, which was confirmed by histology analysis of test 

mussels during the course of the acclimation. Mussels were kept in a climate-controlled 

room, where the temperature was progressively raised by a total of 2°C over the first week 

in order to avoid an immediate temperature-induced shock and to facilitate the maturation 

of gonads, as it was observed in Mincarelli et al. (2021) and in Chapter 2, where an 

increase in temperature was noted to accelerate the gametogenesis cycle, especially in 

males. 

After the acclimation period, mussels were exposed for seven days to three concentrations 

of DEHP (0, 0.5 and 50 µg/L), for a final yield of three experimental treatments (CTRL, 

LOW DEHP, HIGH DEHP, Fig. 6.1 - 6.3). Exposures of 0.5 and 50 µg DEHP/L were 

chosen from the literature, in accordance with the levels found in coastal waters (Jebara 

et al., 2021; Sánchez-Avila et al., 2012). The seven-day DEHP exposure was chosen 

accounting for the non-persistency of DEHP in the environment (Peterson and Staples, 

2003; Staples et al., 1997). Mussels were not fed during the exposure and artificial 

saltwater was prepared the day before each water change, to allow the water temperature 

to adjust to the controlled room conditions. Water was partially (approx. 2-3 litre) 

changed every second day and DEHP was dosed right after (i.e., days 1, 3 and 5) from a 

stock solution of 1 mg/mL DEHP (≥ 99.5% purity, Sigma Aldrich®, Gillingham, U.K.) 

in ethanol. Temperature, pH and salinity were measured daily (Table 6.1) with a digital 

thermometer (Amarell Thermometer, Kreuzwertheim, Germany), a pH-metre (Jenway, 

Bibby Scientific Limited, Stone, UK) and a digital seawater refractometer (Hanna 

Instruments, Woonsocket, USA). After seven days of exposure, animals were stimulated 

to spawn using potassium chloride (KCl) 0.5 M injected in the valve cavity (Unlicensed 

animal ethics approval; reference no #U080/FEC_2021_10, University of Hull). Eggs 

were collected from the tanks with a single-use pipette and mussel gonads were dissected. 

Approximately 1.0 cm2 of left gonad tissue was cut and immersed in 1 mL neutral-

buffered 10% formalin solution (Sigma Aldrich, Gillingham, U.K.) at room temperature 

for histological observations.  
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Table 6.1 Experimental treatments, and measurements of temperature, pH, and salinity values. 

All parameters are expressed as mean ± standard deviation 

Name of 

treatment 

Description Temperature 

(°C) 

pH 

(Units) 

CTRL Control temperature, no DEHP  12.76 ± 0.39 7.85 ± 0.14 

LOW DEHP Low DEHP concentration  12.61 ± 0.32 7.77 ± 0.16 

HIGH DEHP High DEHP concentration 12.71 ± 0.34 7.83 ± 0.14 

  

 

Fig. 6.1 Experimental design for the 7-day exposure with the chosen parameters for DEHP (0, 0.5 

and 50 μg/L) 

 

 

 

Fig. 6.2 Pictures from the exposure room - M. edulis blue mussels at 12°C in the exposure tanks, 

covered in non-PVC cling film 
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Fig. 6.3 Details of mussels (5 individuals for 4 litres) in the exposure tanks, covered in non-PVC 

cling film 

 

6.3 Materials and Methods: Spawning induction 

During the fertilisation event, eggs are released as an intermittent pink cloud, while sperm 

is released in a thin, steady stream through the exhaling syphon cloud (Helm et al., 2004). 

Before the spawning assay, the following different spawning inductors were tested on test 

mussels, in order to determine the optimal method: 

 Thermal shock (Fitzpatrick et al., 2012; Sreedevi et al., 2014). 

 Air exposure shock (Gago and Luís, 2011). 

 Serotonin 10-3 M (dissolved in water or injected in the valve cavity, from Ram et 

al., 1993 and Fong et al., 1998). 

 Potassium chloride (KCl) 0.5 M (dissolved in water or injected in the valve cavity, 

from Resgalla, 2016). 

Other spawning induction methods such as ad libitum algae feeding (Smith and Strehlow, 

1983), the addition of H2O2 (Morse et al., 1977), high frequency-low amplitude vibrations 

(Newell and Thomson, 1984) or exposure to ultraviolet (UV)- irradiated sea water (Moss 

et al., 1995) were considered but not included in this experiment as per the 

impracticability of these methods.  

Monoamine serotonin, also known as 5-hydroxytryptamine (5-HT), is a neurotransmitter 

involved in bivalve reproduction traits such as spawning, oocyte maturation and sperm 

motility (Canesi et al., 2022). It also regulates the storage of the branched polysaccharide 

glycogen that is stored in the adipogranular (in small amounts) and vesicular connective 

(in large quantity) cells as the main energy reserve for gametogenesis (Berthelin et al. 



194   

2000). Serotonin is also involved in the reinitiation of ovarian cell meiosis (Deguchi and 

Osanai, 1995) and regulates other systems such as immune, cardiovascular, muscular and 

respiration (Canesi et al., 2022). In mammals, it acts as a peripheral hormone as well. The 

serotonergic system was observed to potentially be a target for endocrine disrupting 

chemicals such as BPA (Balbi et al., 2016), diclofenac (Balbi et al., 2018), carbamazepine 

and propranolol (Franzellitti et al., 2019a), thus we decided to use another spawning 

inductor for this experiment, to avoid a possible agonist/antagonist effect between the 

endocrine disruptive chemical activity of DEHP and the external addition of serotonin.  

 

 

Fig. 6.4 and 6.5 Details of mussels during the 2-hour exposure to air (left) and details of a female 

mussel spawning eggs (in pink, picture on the right) 

 

The KCl method from (Resgalla, 2016) was finally chosen, and carried out as follows: 

mussels were injected with 2 mL of 0.5 M KCl in the valve cavity and left  for 2 hours 

outside water. Then, they were randomly divided into 5 tanks for each treatment (n = 6 in 

a final volume of 2 L), considering that preliminary tests showed that mussels were more 

likely to spawn when placed with conspecifics and not in individual jars. Mussels were 

then let to spawn overnight in water (Fig. 6.4 and 6.5). KCl injection is provided to be an 

easy spawning inductor in many invertebrates, including sea urchins (Lotterhos and 

Levitan, 2010) and mussels, with literature reports dating back to 1950 (Iwata, 1951). 

KCl was also observed in the past to activate Ruditapes spp. oocytes that were previously 
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arrested in the first meiotic metaphase (Abdelmajid et al., 1993) and induce larval 

metamorphosis in mussel M. galloprovincialis (Yang et al., 2008).  

6.4 Materials and Methods: Wax infiltration and H/E staining   

Samples were fixed in 10% buffered formalin (Sigma-Aldrich, Gillingham, UK) and then 

washed with 0.01 M PBS (Sigma Aldrich, Irvine, UK), dehydrated with increasing 

ethanol (Fisher Scientific, Loughborough, UK) concentrations (70%, 90%, 100%) and 

cleared with Histoclear II (National Diagnostics, Atlanta, USA). The day after, the 

samples were embedded in paraffin wax (VWR, Poole, UK) in an EG 1160 Paraffin Wax 

Embedding Centre (Leica Microsystems, Milton Keynes, UK) and tissue sections (10 

µm) of wax-embedded gonads were cut on a Shandon Finesse® Manual Rotary 

Microtome 325 (Thermo Fisher Scientific, Loughborough, UK). Slides were stained with 

Mayer’s haematoxylin solution (Sigma-Aldrich, Schnelldorf, Germany) and eosin Y 

alcoholic solution (Sigma-Aldrich, Schnelldorf, Germany). Prior to microscopic analysis, 

microscope slides were coded, in order to conduct a blind observation. Males and females 

were identified, and the following stages were blindly assessed, following the stage 

descriptions reported by Seed (1969) and each stage was categorised by a maturity factor 

(MF):  

I. Spent/resting gonad (MF = 1, Fig. 6.12 and 6.13). 

II. Development, stages 1 and 3 (MF = 2). 

III. Development stage 5 (mature/ripe gonads, MF = 3, Fig. 6.6 and 6.9). 

IV. Spawning stages 3 and 1 (MF = 4, Fig. 6.7, 6.8, 6.10 and 6.11). 

Then, the sexual maturity index (SMI) was calculated according to the equation 

established by Siah et al. (2003): SMI = Σ (proportion of each stage * maturity factor). 

A more detailed protocol is provided in Chapter 2.3 Wax infiltration and H/E staining. 
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Fig. 6.6 Female mature gonad, with compacted and polygonal-shape ova and a few small oocytes 

 

 

Fig. 6.7 Female spawning stage 3 gonad with follicles displaying empty spaces and mature 

rounded eggs 
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Fig. 6.8 Female spawning stage 1 gonad with some residual ova 

 

 

Fig. 6.9 Distended follicles in male mature gonad  
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Fig. 6.10 Male spawning stage 3 gonad 

 

 

Fig. 6.11 Male spawning stage 1 gonad 
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Fig. 6.12 Empty follicles 

 

 

Fig. 6.13 Spawned gonad in a spent state with no evident presence of follicles or gametes. Spent 

gonads are described usually as thin and transparent or thick and opaque according to the feeding 

status 

 

6.5 Materials and Methods: Egg counting and size measurement 

Mussels were left to spawn overnight, and the morning after water samples containing 

eggs were transferred into 2 mL tubes and fixed with formalin 10%. 8 aliquots of 10 μL 
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each were immediately observed under a ZEISS Zen light microscope with retro 

illumination and Axiocam camera (Fig. 6.14). Pictures of each aliquot were taken and 

later analysed with the image software ImageJ. The software ImageJ was used to count 

the number of eggs (cell_counter plugin) for each aliquot and to measure the area of one 

egg per aliquot.  (Fig. 6.15 and Fig. 6.16). Egg diameter was also calculated from the area 

using the formula diameter (D) = (√ area (A) / Π) x 2 (Fig. 6.16).  

 

  

Fig. 6.14 Details of the aliquots under the microscope 
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Fig. 6.15 Details of the aliquots under the microscope, before (left) and after (right, in blue) the 

cell_counter plugin from ImageJ software 

 

 

Fig. 6.16 Details of the aliquots under the microscope, before (left) and after (right, in yellow) the 

size measurement from ImageJ software 

 

6.6 Materials and Methods: Statistical analysis 

Ordinal logistic regression was used to predict the ordinal dependent variables 

“Gametogenesis stage”, assuming “DEHP” and “SEX” as independent variables. The 

dependent variable “gametogenesis stage” was measured at the ordinal level (i.e., a 4-

point scale ranging from “development” to “mature” to “spawning” to “spent”). 

Independent variables “DEHP” and “SEX” were considered categorical variables. Model 

uncertainty was assessed by comparing ΔAICc values and Akaike weights in which the 

lowest values for ΔAICc indicate second best to last parsimonious models of the set 

(Table 6.2). Model selection was carried out in Rstudio with the AICcmodavg package 

(Mazerolle, 2013) in R 3.6.2 (CRAN). Models with ΔAIC > 10 were omitted from 



202   

considerations since they have considerably less support compared to the best-fitting 

model (Burnham and Anderson, 2002). Ordinal logistic regression was carried out using  

the polr function (MASS package, Venables and Ripley, 2002), calculating the p value by 

comparing the t-value against the standard normal distribution (Table 6.3). The 

proportional odds assumption (test of Parallel Lines) was tested using the ordinal package 

(Christensen, 2019).  

Since the sex of mussels could not be determined through external morphology but only 

by histology, we investigated whether the number of eggs observed was correlated with 

the number of females in the tank post-histology. A significant correlation between the 

number of spawned eggs and the number of females in the tanks was found by Pearson’s 

test (p < 0.001, t = 3.63). Therefore, the number of eggs was counted for each of the eight 

aliquots and then divided by the number of females present in the tank before undertaking 

the statistical analysis. One female in the HIGH DEHP treatment was taken out from the 

calculation, as displaying gonads in early developing state, thus unlikely to spawn when 

induced. Additional calculations were carried out adding resting/spent gonads (i.e., 

undetermined sex) to the statistical analysis, considering them as possible fully spawned 

and spent females.  

The relative number of eggs and the average egg size were then analysed via non-

parametric Kruskal-Wallis (number of eggs) and ANOVA (egg area and diameter), after 

verifying normality (Shapiro-Wilk’s test) and homogeneity (Levene’s test) of the dataset. 

Tukey’s multiple comparison test was used for comparisons between ANOVA groups. 

 

6.7 Results and Discussion: Histology to determine sex and gametogenesis 

status 

The most parsimonious ordered logistic regression model (with SEX as the only predictor 

variable) showed that there was a significant difference between sexes (p SEX = 0.01, t-

value = -2.54) and in their SMIs. When analysing the effect of DEHP as well, there was 

no effect of the plasticiser on the transition between stages (p > 0.05, Fig. 6.17, Table 

6.3). The effect of the predictor “DEHP” was also tested, confirming no significant effect 

(p > 0.05). 
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Fig. 6.17 Effects of DEHP treatments on gametogenesis stages. Percentage of each stage and 

sexual maturity index (SMI) of males (A) and females (B) in CTRL (n = 13 (males), 15 (females)) 

LOW DEHP (n = 17 (males), 10 (females)), HIGH DEHP (n = 9 (males), 14 (females)) and the 

associated SMIs 

 

Table 6.2 Model classification, number of estimated parameters (K) for each model, Akaike 

Information Criterion (AICc), delta AIC (ΔAIC), Akaike weights (AICcWT), cumulative Akaike 

weights (CumWT), log-likelihood of each model (LL) for the two independent variables (+) sex 

(SEX) and DEHP concentration (DEHP) and their interactions (*) on gametogenesis stages 

model K AICc Δ AIC AICcWT Cum 

WT 

LL 

SEX+DEHP 4 118.15 0.00 0.47 0.47 -54.99 

SEX 3 118.82 0.67 0.67 0.80 -56.36 

SEX*DEHP 5 119.89 1.74 0.20 0.99 -54.82 

DEHP 3 126.92 8.78 0.01 1.0 -60.41 
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Table 6.3 Results of ordinal logistic regression for the best model of treatments (SEX). Estimated 

value, standard error, t-value and p value for the independent variables sex and DEHP 

concentration (DEHP) 

Variable Value Std. Error t-value p value 

SEX 
-1.56 0.50 -3.14 0.002 

DEHP 
-0.50 0.31 -1.62 0.104 

 

Exogenous factors such as temperature, food availability, nutrient quality, salinity, 

circadian rhythm or tides could control certain aspects of the reproductive cycle, such as 

duration and periodicity of the gametogenesis and larval stages (Dixon et al. 2006; 

Kautsky 1982; Suárez et al. 2005; Tyler et al. 2007). Endogenous factors and species-

specific characteristics such as animal hormone levels or individual responses to 

environmental conditions might also affect and regulate gametogenesis or spawning 

(Zardi et al., 2007). Moreover, gametes in the water represent a chemical stimulus to ripe 

mussels, in order to induce spawning and increase the success of the fertilisation (Gosling, 

2021). As shown in Mincarelli et al. (2021, 2022), as well as Chapter 2 and 4, DEHP in 

environmentally relevant concentrations does not seem to induce any alteration of the 

gametogenesis stage in males or females. Likewise, here, even though a small decrease 

in the SMI for females was noted with the exposure to increasing concentrations of DEHP 

(Fig. 6.17), it was not significant. This does not preclude additional dysfunctions from 

the endocrine disruptor DEHP on reproductive traits, as already shown for fish (Ye et al., 

2014, Carnevali et al., 2010) or crustaceans (Forget-Leray et al., 2005; Heindler et a., 

2017) at various concentrations from 0.02 to 500 ug/L.  

 

6.8 Results and Discussion: Effects of DEHP on egg count and size 

Similar to the sexual maturity index, Kruskal-Wallis test did highlight a lowered but 

slightly not significant effect of DEHP on the number of spawned eggs by females (p = 

0.10, KW chi-squared = 4.52 Fig. 6.18). This could be related to the fact that the gametes 

were already present in the gonads at the time of the exposure and just needed to grow to 

maturation, hence there was only very little effect on the number spawned. However, it 

is important to highlight that when adding possible fully spawned and spent females to 
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the statistical analysis (i.e., undetermined sex of resting/spent gonads), the effect of DEHP 

in lowering the number of counted eggs got further pronounced, displaying a significant 

difference between the treated individuals with respect to the control.  

LOW and HIGH DEHP treatments showed the lowest average egg count in the 10 

microliter aliquots (57.1 ± 9.0 SEM eggs/female for LOW DEHP and 54.0 ± 8.9 SEM 

egg/female for HIGH DEHP), lower when compared to the control spawned eggs (77.0 

± 11.8 SEM eggs/female). Usually, M. edulis females emit ca 106 - 109 eggs per female, 

depending on body size (Honkoop & van der Meer, 1998; Sprung et al., 1983; Thompson 

1979). In this experiment, female body sizes were coherent between treatments (5.6 ± 0.7 

cm in CTRL; 5.7 ± 0.5 cm in LOW DEHP; 5.9 ± 0.6 cm in HIGH DEHP), with no 

significant difference between groups (one-way ANOVA p > 0.05). It is therefore 

unlikely that differing relative egg counts have resulted from different body sizes. When 

considering mature and spawning females, DEHP treatments had the lowest number of 

eggs per individual (albeit not significantly different from the control condition), and eggs 

were significantly smaller in the low DEHP condition. When adding spent gonads (n = 1 

for CTRL, n = 1 for LOW DEHP, n = 4 for HIGH DEHP) to the total number of females, 

the effect of DEHP was observed to intensify. In fact, adjusting the spawned eggs by the 

additional resting gonads resulted in mean ± standard error of the mean SEM of 74.9 ± 

12.1 eggs/female in CTRL, 50.0 ± 7.7 eggs/female for LOW DEHP and 29.3 ± 4.2 

egg/female for HIGH DEHP. In this case, Kruskal-Wallis test uncovered a significant 

effect of DEHP in lowering the egg count (p = 0.01, KW-H= 9.05, Fig. 6.19).  

In line with these results, when exposed for a year to concentrations 10-100 ng/L of 

tributyltin (TBT), adult periwinkle Littorina littorea showed decreased egg production, 

but with marginal effect after a short-term exposure of 9 days (Matthiessen et al., 1995). 

The exposure to the antiandrogenic compound flutamide over an exposure of 21 days 

resulted in a decrease in eggs spawned per female due to a delay in the maturation of eggs 

in fathead minnow Pimephales promelas (Jensen et al., 2004). Significant reductions of 

eggs spawned for females were also noted in Danio rerio long-term exposed to 

concentrations >1.67 ng/L and 1500 μg/L of 17α-ethinylestradiol (EE2) and BPA, 

respectively. The effects were often associated with increased vitellogenin plasma levels 

and gonadal alterations, while exposure to the same compounds for a shorter time of 0 – 

3 days post-fertilisation provoked no effect on spawned eggs (Segner et al., 2003). A 

similar reduction in female fecundity was found for D. rerio exposed to nonylphenol (100 

μg/L) or EE2 (10 μg/L) for two months (Hill and Janz, 2003). These effects could be 
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caused by interference with mitosis, cell cycle progression, protein metabolism and/or the 

final maturation of oocytes (Santos et al., 2007). The results from the literature might 

suggest a possible effect of EDCs on the number of spawned egg if the females are 

exposed for a prolonged period, even though a 7-day exposure was noted here to already 

induce a slight decrease in the DEHP-treated groups.  

 

 
Fig. 6.18 Total eggs for females counted in 10 microliters (8 replicate aliquots counted in 5 tanks 

for each treatment). Data are expressed as the mean ± standard error of the mean (SEM). 

Abbreviations are control (CTRL), low DEHP (LOW DEHP) and high DEHP (HIGH DEHP). 

Different shapes represent different replicate tanks. ANOVA p value are annotated and 

differences between groups are indicated by bars and * over the histograms 

 

 

 



207   

 

Fig. 6.19 Counted eggs adjusted by mature and spawning females in 10 microliters (8 replicate 

aliquots counted in 5 tanks for each treatment). Data are expressed as the mean ± standard error 

of the mean. Abbreviations are control (CTRL), low DEHP (LOW DEHP) and high DEHP (HIGH 

DEHP). Different shapes represent different replicate tanks. Kruskal-Wallis p value is annotated 

in the top right corner 

 

For the egg area measurement (squared micrometre), ANOVA found an effect of DEHP 

on the egg area (p < 0.001, F value = 7.63, Fig. 6.20 and 6.21). Tukey’s test highlighted 

a significant difference between the control eggs and those exposed to a low concentration 

of DEHP (p = 0.004) and between low and high DEHP treatment groups (p < 0.001). This 

seems to confirm the non-monotonic dose-response effect of endocrine disruptive 

chemicals such as DEHP. In fact, the LOW DEHP exposure had a significant effect in 

lowering the size of the eggs, with the smallest cells observable in the tanks exposed to 

the low concentration of DEHP (area = 2853 ± 67 SEM μm2; diameter = 60.1 ± 0.7 SEM 

μm), while the high concentration treatments were of similar size to the control condition 

tanks. Specifically, average values for HIGH DEHP groups were 3377 ± 100 SEM μm2 

for the egg area and 65.3 ± 1.0 SEM μm for the egg diameter, while in CTRL condition 

the average area was 3200 ± 101 SEM μm2 and diameter = 63.5 ± 1.0 SEM μm. In the 

literature, the egg diameter of Mytilus eggs is reported being around 70 μm (Honkoop & 

van der Meer, 1998) and more specifically, fertilised eggs are usually 60 - 65 μm in 

diameter (Gosling, 2021), and low DEHP treated eggs were just at that threshold which 

may indicate lower fertilisation rates. 
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Fig. 6.20 Egg area (squared micrometre) for each treatment (8 replicate aliquots measured in 5 

tanks for each treatment). Data are expressed as the mean ± standard error of the mean (SEM). 

Abbreviations are control (CTRL), low DEHP (LOW DEHP) and high DEHP (HIGH DEHP). 

Different shapes represent different replicate tanks. ANOVA p value are annotated and 

differences between groups are indicated by bars and * over the histograms 

 

As mentioned in Chapter 1, chemicals such as plasticisers or synthetic drugs are defined 

as selective modulators of the endocrine system. This means that they often cause 

nonlinear responses and either interfere with the synthesis and/or metabolism of 

hormones and their receptors (Amaral Mendes, 2002; Markey et al., 2002).  In some 

cases, the resulting dose responses follow a biphasic curve characterised by stimulation 

at low doses and inhibition at higher doses (Agathokleous, 2018). In fact, it is well known 

that some pollutants present dose responses that show not only linear, power, or 

exponential distributions, but also U-shape, inverted U-shape, J-shape, and inverted J- 

shape (Agathokleous, 2018). Inverted U-shape dose-response curves were for example 

observed for cadmium exposure on the activity of SOD and CAT in the earthworm 

Eisenia fetida, while higher doses provoked inhibition of these antioxidant enzymes, 

possibly related to the activation of pathways of adaptation (Zhang et al., 2009). Several 

studies reported that low-concentration exposure to xenobiotics such as heavy metals 

could elicit an adaptive mechanism characterised by increasing energy storage, which is 

overcompensated by excessive energy consumption at higher doses, to balance the energy 

metabolism and maintain homeostasis (Agathokleous et al., 2018; Calabrese, 2001; 

Costantini and Borremans, 2019; Kim et al., 2018). It is interesting to notice that when 
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increasing the exposure concentrations, DEHP elicited two different response curves: a 

linear one for the number of eggs spawned and a biphasic one for the egg sizes. Similarly, 

after 14 days at environmentally relevant exposures of 12 and 36 µg/L of DEHP, a U-

shaped response was noted in M. galloprovincialis for antioxidant gene expression, while 

an inverted U-shaped response was noticed for their enzyme activities at the same 

exposure concentrations (Xu et al. 2021). Considering the number of spawned eggs, it is 

important to note as well a slight trend towards a lower proportion of spawning female 

gonads with high DEHP concentration, which could also have affected egg number. 

Considering reproductive outcomes, in De Nicola et al., (2007), sperm and embryos of 

sea urchins P. lividus and Sphaerechinus granularis exposure to vegetal- and chemical- 

based tannins resulted in a general initial increase of fertilisation rate at concentrations of 

0.1 - 0.3 mg/L and a shift to toxicity at higher concentration doses. These types of 

hormetic effects are also induced by natural and environmental factors such as 

temperature, ground-level ozone, magnetic field and radiation (Agathokleous and 

Calabrese, 2020).  

 

 
Fig. 6.21 Egg diameter (micrometre) for each treatment (8 replicate aliquots measured in 5 tanks 

for each treatment). Data are expressed as the mean ± standard error of the mean (SEM). 

Abbreviations are control (CTRL), low DEHP (LOW DEHP) and high DEHP (HIGH DEHP). 

Different shapes represent different replicate tanks. ANOVA p value are annotated and 

differences between groups are indicated by bars and * over the histograms 
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The “low dose concept” describes the lowest dose at which biological change and/or 

damage is observable. In particular, the endocrine system is very sensitive to very low 

hormone concentrations (Vandenberg, 2012) and biphasic dose responses are often 

observed at the µg/L magnitude scale, considered low concentrations for most pollutants 

(Chapman, 2002). Recently, the hormetic effect of DEHP on mussels was extensively 

examined in M. galloprovincialis by Xu et al. (2021a). After 14 days at environmentally 

relevant exposures of 12 and 36 µg/L, a U-shaped response was noted for antioxidant 

GST and CAT gene expression, while an inverted U-shaped response was noticed for 

their enzyme activities.  

In bivalves, gonads consist of branching tubules united to form ducts (that eventually lead 

into a short gonoduct), with gametes situated in the epithelial lining that are subsequently 

shed into the water through the exhaling mantle opening (Gosling, 2021). In females, 

primary oogonia follow repeated mitosis to secondary oogonia (5 – 7 μm diameter), which 

as primary oocytes undergo meiosis until it is arrested at prophase I (as the remaining part 

of meiosis is completed at fertilisation). Then, vitellogenesis takes place, when oocytes 

accumulate nutritive substances such as lipid globules, vitellogenin (egg yolk vitellin 

precursor) and cortical granules (Pipe et al., 1987). Contrary to our results, in Li et al. 

(1998), the exposure to the estrogenic compound E2 of the Pacific oyster C. gigas for 40 

days increased the diameter and the vitellin content in the oocytes, suggesting that the 

chemical E2 is involved in the vitellogenesis in female oysters. This could suggest that 

DEHP in mussels might negatively affect the same pathway, affect the oocyte reserves 

and eventually, the size of the spawned eggs. Furthermore, it was recently found that 

DEHP exposure was able to affect nematode embryogenesis and alter chromosome 

morphological structures (Cuenca et al., 2020). Considering this, it is possible that in this 

experiment the low DEHP exposure for one week had affected female oocytes by 

disrupting the meiotic process and/or the accumulation of nutritive deposits during the 

vitellogenesis, eventually impacting the egg size.  

 

6.9 Conclusions 

In conclusion, a clear non-monotonic dose-response is observable for the plastic additive 

DEHP during the synchronised reproductive event, especially on the size of the eggs 

spawned. Females exposed to a low concentration of DEHP (0.5 ug/L) for seven days 
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spawned fewer and smaller eggs compared to the control groups and to the higher 

concentration (50 ug/L, with regard to the measured egg area). Regarding the egg count, 

no significant effect was noticed, even though the number of spawned eggs decrease in 

the DEHP-treated groups, with the effect further pronounced when considering spawned 

gonads. As already observed, a linear toxicity response is not observable for endocrine 

disruptiing chemicals such as DEHP, highlighting the importance for ecotoxicological 

studies to address the effect of EDCs at low concentrations, which are the most prominent 

levels found in natural environments. In fact, as this chapter and many other studies before 

have underlined, DEHP and other endocrine disruptors (used in herbicides, fungicides, 

insecticides, UV screens, lubricants and paints) could stimulate stronger effects and affect 

organisms at low environmental concentrations. Thus, policies regulating the use and 

disposition of these chemicals, along with the setting of new safe environmental levels, 

should be developed.  
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Chapter 7 

 

General Discussion and Conclusions 

Sex-related responses of blue mussels to the plasticiser DEHP under 

climate change scenario 

 

7.1 The effect of DEHP on Mytilus spp. 

Among molluscs, Bivalvia is the second-largest class in the phylum. It includes about 900 

living species, characterised by lateral compression of the body and bilateral symmetry 

by two shell valves (Gosling, 2021). About 80% of the Bivalvia molluscs populate marine 

environments, with the genus Mytilus inhabiting rocky shores from high intertidal to 

shallow subtidal regions (Gosling, 2021). Mytilus spp. started to disperse into the Atlantic 

Ocean from the Pacific about 3.5 million years ago during the Pliocene epoch after the 

opening of the Bering Strait (Vermeij 1991). For years, Mytilus spp. have been commonly 

used in biomonitoring programs worldwide (Gorbi et al., 2008; Laouati et al., 2021; 

Markert et al., 2003; Marigómez et al., 2013b; O'Connor 1998) especially after ecological 

disasters such as oil spills (Marigómez et al., 2013a; Moreira et al., 2004; Ortiz-

Zarragoitia et al., 2011; Viarengo et al., 2007). Mussels are also used as distinctive 

indicators of health and food safety because of their position in the food chain and their 

close relationship with the human diet (Chiesa et al., 2018; Van Cauwenberghe and 

Janssen 2014). In fact, the global harvest of the blue mussel M. edulis for human 

consumption is reported to have reached more than 200,000 tonnes in 2018 (FAO, 2018).  

Plastic pollution is a pressing environmental issue. Yet, its effect on the biological 

responses of Mytilus spp. is not fully understood. In this thesis, two environmentally 

relevant concentrations of the endocrine disruptive plasticiser DEHP were chosen as 

exposure levels. Overall, the low DEHP exposure (0.5 μg/L) had a stronger impact on 

mussels in contrast to the high DEHP level (50 μg/L) exposure. Specifically, in Chapter 

2 significant effects from the low concentration of DEHP on the estrogen receptor-related 

response were noted (represented by the genes estrogen-related receptor MeER1 and 

estrogen receptor MeER2), and especially on the expression of MeER1 in developing 

female gonads (Supplementary Appendix to Chapter 2). Likewise, in Chapter 6, a 

similar non-monotonic dose-response curve was observed. The LOW DEHP dose of 0.5 

μg/L significantly lowered the size (i.e., area and diameter) of spawned eggs in mature 
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females. The effect of the low DEHP exposure was also investigated in Chapter 3, from 

data generated from RNA sequencing of male gonadal tissues. Overall, features for 

stimuli response, cell cycle and DNA repair were found significantly upregulated, with 

several transcripts related to fertility, spermiogenesis and sperm motility. From these 

results, it is unambiguous that DEHP has a direct effect on many aspects of the 

reproductive cycle of mussels in both sexes, from fertility outcomes to expression of 

genes of the endocrine or reproductive pathway, especially at low concentrations that are 

commonly and widely found in nature. Thus, after the European Union, other countries 

should reconsider the use of this chemical in plastic production, to avoid the 

commercialisation and the consequent release of disruptive plastic additives in the 

environment. 

 

7.2 The effect of DEHP in combination with high temperature 

Global warming and its direct human origin were already highlighted in the Fourth (AR4) 

and Fifth (AR5) Assessment Reports from the IPCC in 2007 and 2014. It is well-known 

that temperature is a pivotal parameter for ecological responses of marine species 

(Kwiatkowski et al., 2020; Thomas et al., 2018). In mollusc biology, alteration in 

temperature and thermal tolerance influences various traits, such as survival (Beukema et 

al., 2009; Denny et al., 2011; Jones et al., 2009; Said and Nassar, 2022; Verdelhos et al., 

2015), respiration (Barbariol and Razouls 2000; Jansen et al., 2007), reproduction 

(Borcherding, 1991; Fearman and Moltschaniwskyj, 2010; Thomas and Bacher, 2018), 

immune responses (Rahman et al., 2019), energetic processes (Georgoulis et al., 2021; 

Louis et al., 2020; Pernet et al., 2007), population abundance (Thyrring et al., 2017) and 

larval growth and recruitment (Lazo and Pita, 2012; Philippart et al., 2003; Talmage and 

Gobler, 2011). Future temperature conditions may as well be optimal for growing toxic 

microorganisms such as pathogens (Anestis et al., 2010; Encomio and Chu, 2005; 

Hernández-Cabanyero et al., 2020; Rosenberg and Ben-Haim, 2002) or expanding the 

limit of distribution of harmful algal bloom (HAB, Glibert, 2020; Gobler, 2020; Visser et 

al., 2016), with inevitable consequences on health and food safety, tourism and local 

economy (Bindoff et al., 2019).  

Frequently, a seasonal presence of several contaminants such as pharmaceutical and 

personal care products is noted in water bodies due to temperature variations (Archana et 
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al., 2017; Comber et al., 2020; Yang et al., 2017). Recently, phthalate ester levels were 

found to display a seasonality in Korean and Chinese coastal water, often influenced by 

weather, seasons, river contiguity and proximity to residential or industrial areas (Heo et 

al., 2020; Sun et al., 2021). Furthermore, temperature was noticed to alter the toxicity of 

certain chemicals, as the increasing temperature can affect the ventilation rate of 

organisms due to increasing metabolic rate and decreasing oxygen solubility (Schiedek 

et al., 2007). In aquatic species, bioaccumulation of certain pollutants such as metals is 

also well-known to be regulated by abiotic factors such as water temperature (Baines and 

Fisher, 2008; Mubiana and Blust, 2007; Richards and Chaloupka, 2009). In this thesis, 

the consequences of DEHP exposure (either low 0.5 μg/L or high 50 μg/L concentration) 

in combination with a +3℃ increased temperature scenario were studied. 

An increase in temperature accelerates metabolic rate, mitochondrial respiration and 

production of ROS, raising the energy demand with a consequent oxygen deficit (Abele, 

2002; Heise et al., 2003; Lushchak, 2011). The related damage in mitochondrial 

membrane and the increased reduction of oxygen in O2
−  may eventually lead to cellular 

damage and death when not counterbalanced by the antioxidant system (Sokolova et al., 

2011). A moderate thermal increase can stimulate essential antioxidant defences such as 

catalase (CAT), a key enzymatic catalyst for reduction of the ROS hydrogen peroxide 

(H2O2) to water (Halliwell and Gutteridge, 2015; Regoli and Giuliani, 2014). Rising CAT 

levels by increasing temperature have already been demonstrated in different phyla, 

including molluscs (Abele et al., 1998; Hu et al., 2015; Rahman et al., 2019; Verlecar et 

al., 2007). Interestingly, in Supplementary Appendix to Chapter 2, high temperature 

did not only have a significant effect on cat expression in males but seemed to accentuate 

the toxic effect of DEHP as well on this enzyme. A significant effect was found for both 

stressors combined, especially for the low DEHP concentration treatment (LOW DEHP 

HIGH T). When combined, the two stressors provoked a wide array of responses also in 

RNA-seq analysis (Chapter 3). In fact, the combination of the two stressors (by +3℃ 

increased temperature and low DEHP exposure at 0.5 μg/L) resulted in a significant 

upregulation of transcripts related to fertility, muscle activity, DNA damage response and 

apoptosis, indicating that environmentally relevant concentrations of DEHP combined 

with average predicted increases in temperature over a seven-day timeframe have 

negative consequences for mussels at various biological levels. 
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7.3 The effect of DEHP in combination with low pH 

The anticipated decrease in oceanic pH will primarily be caused by the water absorption 

of CO2 and marginally by other conditions such as regional variability in physical, 

biological and chemical parameters (Hurd et al., 2018). The predicted pH drop of 0.4 units 

by 2100 for the high-emission scenario (SSP 3 - 7) would represent a 2.5 time increase in 

hydrogen ion presence with respect to pre-industrial values (Feely et al., 2009). Oceanic 

pH is also projected to decrease greatly at high latitudes and in the Arctic Sea, considering 

that the melting of ice due to global warming conditions causes an expansion of the air-

sea gas exchange surface and enhances the CO2 flux by the dilution of dissolved inorganic 

carbon with freshwater (Kwiatkowski et al., 2020; Terhaar et al., 2020; Yamamoto-Kawai 

et al., 2009). Moreover, the surface pH seasonal amplitude is projected to decrease at low- 

and mid- latitudes with high certainty by −10 ± 5 % (Kwiatkowski et al., 2020).  

Ocean acidification could eventually lead to important consequences such as 

physiological alterations and changes at molecular, sensory or metabolic levels in fish 

(Feugére et al., 2021; Munday et al., 2009; Nilsson et al., 2012), worms (Langenbuch et 

al., 2006) snails (Watson et al., 2003) or crustaceans (Roggatz et al., 2016; Schirrmacher 

et al., 2021) and at the ecosystem levels as well (Kroeker et al., 2010), even if some of 

these species could better tolerate this acidification due to their high mobility, metabolism 

or control of the ion exchange (Gutowska et al. 2008; Kroeker et al., 2010; Melzner et al. 

2009). Moreover, elevated CO2 is known to increase the H+ concentrations in the 

extracellular space and body fluids and disrupt acid - base regulation and balance (Feely 

et al., 2018; Kroeker et al., 2010) especially in early stages (Durland et al., 2021; Kroeker 

et al., 2010; Tseng et al., 2013), which can result in delayed development or altered 

growth. In bivalves, a decrease in pH can alter immune and anti-predator responses 

(Bibby et al., 2008; Jahnsen-Guzmán et al., 2022), affect calcification and energy 

metabolism gene expressions (Hüning et al., 2013), and impact growth performances in 

larvae and adults during gonadal development (Gazeau et al., 2010; Zhao et al., 2019). 

There were also reports of low-pH impairment of bioenergetic processes (Shang et al., 

2022) or fertilisation success (Munari et al., 2022).  

The scenario of increased atmospheric CO2 levels coincides nowadays with increased 

plastic pollution of aquatic environments. In this work, the two concentrations of DEHP 

caused a complex array of responses in combination with different pH (as noted in 

Chapter 5) on the oxygen consumption, a proxy for mussel metabolism. In fact, it seemed 



216   

that low DEHP increased the respiration of mussels at low pH (7.7), while high DEHP 

had an effect in mussels at control pH (8.1), along with a small effect on the valve 

movements at low pH. In Chapter 4, a small effect from only pH was also noticed on the 

biomineralisation-related gene carbonic anhydrase (CA2), but in general, mild 

consequences of the lowered pH conditions are observable across these experiments. This 

is possible due to the high adaptability of coastal organisms to fluctuating pH conditions, 

as described by Thomsen et al. (2017), who observed the high evolutionary fitness 

adaptation of mussel cohorts pre-adapted to high pCO2, in contrast to non-adapted ones.  

 

7.4 The influence of sex and gametogenesis status  

This thesis, along with other studies, demonstrated how the effect of exogenous stressors 

could be affected by sex and gametogenesis stage and highlighted the different responses 

between males and females. In detail, in Chapters 2 and 4, significant molecular 

outcomes were found differentially expressed between sexes, especially in the stress 

response and for the biomineralisation gene CA2 (analysed in Chapter 4). When exposed 

to increased temperature, male mussels were observed to be more sensitive to thermal 

stress, demonstrated by advanced gametogenesis, and an increase in both the expression 

of reprotoxicity- as well as antioxidant- related genes (particularly MeER2 and cat, 

Supplementary Appendix to Chapter 2). A slight difference between males and 

females was also noted on the estrogen receptor-related pathway, and females were found 

more affected by the plasticiser, especially regarding the expression of MeER1 gene 

(Supplementary Appendix to Chapter 2). When considering the low pH exposure, no 

effect of the stressors was noticed on either sex when exposed to DEHP and lowered pH, 

possibly due to the different origin of the population or the more advanced maturation 

state of the gonads. On the other hand, the gametogenesis stage of the two sexes 

influenced significantly the stress response (sod, cat, hsp70) in Chapter 4, alone or in 

combination with the plasticiser.  

It is well known that common biomarkers of stress such as antioxidant and peroxisomal 

enzymes undergo seasonal variation during the mussel annual cycle (Bocchetti and 

Regoli, 2006; Jarque et al., 2014). As an example, in Mytilus spp., a reduction of SOD 

and CAT was noticed during the winter months (Viarengo et al., 1991) and HSP70 

presented variable levels between autumn and summer (Hamer et al., 2004; Roberts et al., 
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1997). This could be related to external conditions such as water temperature or food 

availability, but also to the annual reproductive cycle. The expression of the estrogen 

receptors shows seasonal variations as well, with low values in winter (Raingeard et al., 

2013) and increased levels in spring (Zhu et al., 2022), with differences through the years 

possibly associated to environmental cues and nutrient supply (Ciocan et al., 2010b). In 

the literature, there are many examples of altered responses of different maturation stages 

of mussels when exposed to external chemicals (e.g., synthetic estrogens or polycyclic 

aromatic hydrocarbons), with a significant effect on the activity of antioxidants such as 

CAT and GPx or on the expression of genes such as MeER2 and VTG (Ciocan et al., 

2010a; Cubero-Leon et al., 2010; González-Fernández et al., 2016), with no or little effect 

on mature stages. This finding emphasises, along with other studies (Banni et al., 2011; 

Chapman et al., 2017; Koagouw and Ciocan, 2019; Liu et al., 2017; Matozzo and Marin, 

2010), the relevance of the identification of sex and maturation state of the investigated 

individuals when analysing molecular datasets.  

 

7.5 Relevance and contribution to the field  

Plastic pollution and changes in oceanic pH are both pressing environmental issues. 

Following the high (SSP 3 - 7) and very high (SSP 5 - 8.5) scenarios predicted by the 

IPCC (2021), the CO2 emissions will double from current levels by 2100 and 2050, 

respectively, with a consequent increase in global temperature of 3 - 5 ℃ and a decrease 

in oceanic pH of 0.3 - 0.5 units. The actions of these conditions are already having effects 

on oceanic life from algal populations to benthic organisms (Harvey et al., 2013). The 

induced responses are often species-specific (Gu et al., 2019; Lefevre, 2016) and include 

shifts in population distributions, alterations in dispersal patterns and decreasing densities 

of sensitive species (Bijma et al., 2013; Doney et al., 2012). The biological effects of 

climate change stress on aquatic species were investigated in the past decades in 

combination with pharmaceuticals (Cardoso et al., 2019; Koagouw and Ciocan, 2018; 

Mezzelani et al., 2021; Munari et al., 2018, 2020), heavy metals (Cherkasov et al., 2007; 

Coppola et al., 2018; Izagirre et al., 2014; Verlecar et al., 2007), illicit drugs (da Silva 

Souza et al., 2021), polycyclic aromatic hydrocarbon (Kamel et al., 2012), endocrine 

disruptive chemicals (Wang and Zhang, 2013), pesticides and herbicides (Baag et al., 
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2021; Greco et al., 2011), alongside the contributory papers derived from this thesis and 

further unpublished results herein (Mincarelli et al., 2021; Mincarelli et al., 2022).  

This thesis underlined the biological responses that mussels express when exposed to 

environmentally relevant concentrations of the endocrine disruptor DEHP, alone and in 

combination with climate change conditions, with particular attention to the sex-related 

outcomes. As already documented for other endocrine disruptive chemicals, a linear dose-

response curve is improbable for DEHP, due to a possible over-saturation of endocrine 

receptors. In the case of bivalves, it might be also possible that the shell movements in 

response to different levels of contaminants could modify the xenobiotic uptake and 

absorption, with a consequent altered effect on biological traits.  

The initial hypothesis of this thesis that the endocrine disruptive chemical DEHP will 

influence the reproductive traits of mussels was found validated. In fact, the reproductive 

network seems to be the pathway most affected by the plasticiser, but other systems (i.e., 

antioxidant complex, homeostasis, respiration, behaviours) were shown to be sensitive to 

DEHP, alone or in combination with end-of-the-century environmental conditions (i.e., 

high temperature in Chapter 2 and 3 and low pH in Chapter 4 and 5). However, the 

initial hypothesis that the combined effect of climate change conditions and DEHP 

exposure would be able to stimulate a stronger stress reaction in comparison with the 

responses to the single stressors found no uniform confirmation. In fact, these Chapters 

showed different magnitudes of the stress response mainly on the base of sex and the 

gametogenesis state in which the individuals were at the time of sampling. However, the 

results from the RNA-seq (Chapter 3) showed DNA damage-related processes that took 

place in male gonads exposed to the combined conditions of increased temperature and 

low DEHP concentration, suggesting an intensification of the damage that was not 

otherwise observed when analysing the effect of the single stressors. Regarding the 

hypothesised histological abnormalities from the exposure to the altered climate 

conditions, we found a sex-associated pattern of response, with an effect of simulated 

global warming in only male gonads (i.e., acceleration of gonadal maturation, Chapter 

2), while female eggs were affected by the DEHP exposure at low concentration (i.e., 

smaller eggs, possibly associated with altered meiosis and/or vitellogenesis, Chapter 6). 

Considering that also male spermiogenesis and sperm motility were affected by the LOW 

DEHP treatment (Chapter 3), it could be hypothesised that the small female egg size is 

related to altered or failed fertilisation. These results are relevant to the field of 

ecotoxicology, as they might assist in understanding the effect of plastic additives on 
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sentinel species, alone or against the climate-changing backdrop of global warming and 

ocean acidification.  

 

7.6 Limitation to the research 

This thesis provided new insights into the research on plastic additive effects on marine 

invertebrates in future climate-changing scenarios. However, some limitations out of our 

control need to be addressed. First, chemical analysis on water and/or tissues to measure 

the presence and/or the accumulation of DEHP were not performed, due to the lack of 

access to lab facilities during the COVID-19 pandemic and reduced funds intended for 

additional research. Secondly, the potential contamination of samples through plastic 

consumables and equipment was unavoidable. Nonetheless, thanks to the use of internal 

group controls to which the DEHP-treated mussels were compared, this thesis provided 

strong data about the effect of this plasticiser on histological, molecular, transcriptomic, 

metabolic and behavioural systems of marine mussels and whether these responses differ 

by sex.   

 

 

7.7 Future work 

This thesis aimed to investigate the relationship between single and combined short-term 

responses of blue mussels to contaminants and environmental factors (i.e., DEHP 

exposure, increased temperature and low pH). Assuming that the future climate 

conditions (i.e., global warming and ocean acidification) will increase the leakage of 

dangerous additives from plastic items into the environment, marine species will be 

exposed to ubiquitous concentrations of these toxic compounds, possibly leading to more 

pronounced responses in terms of general biological (i.e., stress, homeostasis, 

metabolism, behaviours) responses and variations in the reproduction cycle. This thesis 

firstly assessed the Mytilus spp. responses to two environmentally relevant levels of 

DEHP in combination with either one of the climate stressors. However, there is still a 

knowledge gap in discovering the exact way of action and response curves of the 

plasticiser DEHP, and whether lower concentrations or prolonged exposures than the ones 

used in this experiment are dangerous to marine life. It is important to note that even 

though DEHP is restricted in the European Union, it is still used worldwide as a plastic 
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additive and low levels are commonly found in natural environments. Additionally, these 

experiments assessed the background effect of the single climate-changing scenarios on 

marine mussels. Considering the projected high-emission conditions for 2100 will include 

the combination of global warming and ocean acidification conditions, future projects 

should definitely include both these experimental designs together.
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Supplementary Appendix to Chapter 1 

Supplementary Table 1.1 Phthalate concentrations found in natural environments 

COMPOUND TOXICITY SITE CONCENTRATION REFERENCES 

DMP 

Dimethyl 

phthalate 

C10H10O4 

CAS Number 131-11-3 

Not a hazardous 

substance 

 

Seawater from 

Tees Bay 

(UK) 

<1 x 10-3 μg/L 

 

 

 

Law et al., 1991 

 

 

  Seawater and 

atmosphere in 

the North Sea 

0.02 to 0.68 ng/L in 

seawater (dissolved) 

0.01 to 0.07 ng/L in the 

total suspended matter 

0.16 to 0.54 ng/m2 in 

atmosphere vapour 

ND in the particle (air) 

Xie et al., 2005 

  Surface 

seawater 

(Netherlands) 

0.004 to 0.49 μg/L Vethaak et al., 

2005 

 

  Seawater and 

sediment from 

False Creek 

Harbour 

(Canada) 

0.0035 μg/L in seawater Mackintosh et al., 

2006 

  Rainwater 

depositions 

from Paris 

urban area 

(France) 

0.116 μg/L Teil et al., 2006 

  Seawater from 

Bay of Biscay 

(Spain) 

(7.5 + 0.4) x 10-3 μg/L Prieto et al., 2007 

 

  Arctic 40 x 10-6 μg/L Xie et al., 2007 

  Caspian Sea 

(Iran) 

0.49 μg/L Hadjmohammadi 

et al., 2011 

  Coastal 

seawater, 

Mediterranean 

Sea (Spain) 

0.003 to 0.14 μg/L Sánchez-Avila et 

al., 2012 

  Marseille Bay 

(France) 

0.0008 to 0,0011 μg/L Paluselli et al., 

2018 

  Bohai Sea and 

Yellow Sea 

(China) 

0.00153 to 0.00654 μg/L Zhang et al., 

2018 

  Coastal waters 

(South Korea) 

0.02–0.10 μg/L Heo et al., 2020 

  Cochin 

estuary (India) 

ND - 1.945 μg/L Ramzi et al., 

2020 
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DEP 

Diethyl phthalate 

C12H14O4 

CAS Number 84-66-2 

Not a hazardous 

substance 

Rivers in the 

Manchester 

area (UK) 

0.1 to 0.6 μg/L Fatoki and 

Vernon, 1990 

  Seawater from 

Tees Bay, 

(UK) 

0.025 to 0.5 μg/L Law et al., 1991 

  Seawater and 

atmosphere in 

the North Sea 

0.03 to 0.71 ng/L in 

seawater (dissolved) 

ND to 0.068 ng/L in the 

total suspended matter 

0.64 to 1.6 ng/m in 

atmosphere vapour 

ND to 0.18 in the particle 

(air) 

Xie et al., 2005 

  Surface 

seawater 

(Netherlands) 

0.007 to 2.3 μg/L Vethaak et al., 

2005 

 

  Rainwater 

depositions 

from Paris 

urban area 

(France) 

0.333 μg/L Teil et al., 2006 

  Seawater from 

Bay of Biscay 

(Spain) 

(33 + 3) x 10-3 μg/L Prieto et al., 2007 

  Arctic 138 x 10-6 μg/L Xie et al., 2007 

  Caspian Sea 

(Iran) 

0.52 μg/L Hadjmohammadi 

et al., 2011 

  Coastal 

seawater, 

Mediterranean 

Sea (Spain) 

0.024 to 0.48 μg/L Sánchez-Avila et 

al., 2012 

  Marseille Bay 

(France) 

0.0033 to 0.50 μg/L Paluselli et al., 

2018 

  Bohai Sea and 

Yellow Sea 

(China) 

0.00176 to 0.00873 μg/L Zhang et al., 

2018 

  Coastal waters 

(South Korea) 

0.02–0.15 μg/L Heo et al., 2020 

  Cochin 

estuary (India) 

ND - 3.193μg/L Ramzi et al., 

2020 

  Marine water 

(Tunisia) 

Average 12.6 μg/L Jebara et al., 

2021 

DPP 

Dipentyl 

phthalate 

C18H26O4 

CAS Number 131-18-0 

Reproductive 

toxicity 

 

Bohai Sea and 

Yellow Sea 

(China) 

ND to 0.00107 μg/L Zhang et al., 

2018 
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DBP 

or DnBP 

Dibutyl 

phthalate 

C16H22O4 

CAS Number 84-74-2 

Reproductive 

toxicity 

 

Acute aquatic 

toxicity 

Rivers in the 

Manchester 

area (UK) 

6.0 to 33.5 μg/L Fatoki and 

Vernon, 1990 

  Seawater from 

Tees Bay, UK 

0.47 to 0.55 μg/L Law et al., 1991 

 

  Lakes in 

Tianjin City 

(China) 

0.00925 to 0.02394   

μg/mL (subsurface water) 

10.89 to 89.78 ng/mL 

(water surface microlayer) 

Huang et al., 

1999 

  Rivers, lakes 

and channels, 

sewage 

effluents and 

sludges 

(Germany) 

0.12 to 9.80 μg/L (surface 

water) 

0.06 to 2.08 

mg/kg(sediment) 

Fromme et al., 

2002 

  Seawater and 

atmosphere in 

the North Sea 

0.45 to 6.6 ng/L in 

seawater (dissolved) 

0.01 to 0.04 ng/L in the 

total suspended matter 

0.17 to 0.53 ng/m2 in 

atmosphere vapour 

0.10 to 1.2 in the particle 

(air) 

Xie et al., 2005 

  Surface 

seawater 

(Netherlands) 

<0.066 to 3.1 μg/L Vethaak et al., 

2005 

 

  Freshwater, 

sediment 

(Netherlands) 

Medial levels 0.21 μg/L 

(freshwater) 

25.3 μg/kg (sediments) 

Peijnenburg and 

Struijs, 2006 

 

  Rainwater 

depositions 

from Paris 

urban area 

(France) 

0.592 μg/L Teil et al., 2006 

   

Seawater from 

Bay of Biscay 

(Spain) 

(83 + 7) x 10-3 μg/L Prieto et al., 2007 

 

  Arctic 51 x 10-6 μg/L Xie et al., 2007 

  Barkley 

Sound 

(Canada) 

0.18 to 3.0 μg/L Keil et al., 2011 

  Marseille Bay 

(France) 

0.012 to 0.596 μg/L Paluselli et al., 

2018 

  Bohai Sea and 

Yellow Sea 

(China) 

0.266 to 1.584 μg/L Zhang et al., 

2018 
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  Coastal waters 

(South Korea) 

0.04 – 0.36 μg/L Heo et al., 2020 

  Cochin 

estuary (India) 

ND - 20.368 μg/L Ramzi et al., 

2020 

  House dust 17.6–666.8 µg/g Xu and Li, 2020 

  Marine water 

(Tunisia) 

Average 17.2 μg/L Jebara et al., 

2021 

 

DiBP 

Diisobutyl 

phthalate 

C16H22O4 

CAS Number 84-69-5 

Reproductive 

toxicity 

Acute aquatic 

toxicity 

Chronic aquatic 

toxicity 

Seawater from 

Tees Bay 

(UK) 

0.66 to 1.1 μg/L Law et al., 1991 

 

  Seawater and 

sediment from 

False Creek 

Harbour 

(Canada) 

4.0 ng/g dw in sediment Mackintosh et al., 

2006 

  Arctic 22 x 10-6 μg/L Xie et al., 2007 

  Marseille Bay 

(France) 

0.0275 to 0,3834 μg/L Paluselli et al., 

2018 

  Bohai Sea and 

Yellow Sea 

(China) 

0.0955 to 0.767 μg/L Zhang et al., 

2018 

  House dust 9.6–242.3 µg/g Xu and Li, 2020 

  Marine water 

(Tunisia) 

Average 75.4 μg/L Jebara et al., 

2021 

DnOP 

Di-n-octyl 

phthalate 

C24H38O4 

CAS Number 117-84-0 

Chronic aquatic 

toxicity 

Surface 

seawater 

(Netherlands) 

0.002 to 0.078 μg/L Vethaak et al., 

2005 

 

  Rainwater 

depositions 

from Paris 

urban area 

(France) 

0.010 μg/L Teil et al., 2006 

  Seawater from 

Bay of Biscay 

(Spain) 

(3.6 + 0.4) x 10-3 μg/L Prieto et al., 2007 

 

  Cochin 

estuary (India) 

ND - 0.838 μg/L Ramzi et al., 

2020 

DIOP 

Diisooctyl 

phthalate 

C24H38O4 

CAS Number 27554-26-3 

Low toxicity via 

the oral and 

dermal routes 

(Toxnet) 

Rivers in the 

Manchester 

area (UK) 

0.8 to 3.0 μg/L Fatoki and 

Vernon, 1990 

 

BBP 

Benzyl butyl 

Reproductive 

toxicity 

 

Seawater and 

atmosphere in 

the North Sea 

0.01 to 0.26 ng/L in 

seawater (dissolved) 

ND to 0.03 ng/L in the 

Xie et al., 2005 
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phthalate 

C19H20O4 

CAS Number 85-68-7 

 

Acute aquatic 

toxicity 

 

Chronic aquatic 

toxicity 

total suspended matter 

0.01 to 0.05 ng/m in 

atmosphere vapour 

0 to 0.06 in the particle 

(air) 

  Surface 

seawater 

(Netherlands) 

0.001 to 1.8 μg/L Vethaak et al., 

2005 

 

  Rainwater 

depositions 

from Paris 

urban area 

(France) 

0.081 μg/L Teil et al., 2006 

  Seawater from 

Bay of Biscay 

(Spain) 

(8 + 1) x 10-3 μg/L Prieto et al., 2007 

 

  Arctic 8 x 10-6 μg/L Xie et al., 2007 

  Coastal 

seawater, 

Mediterranean 

Sea (Spain) 

0.001 to 0.10 μg/L Sánchez-Avila et 

al., 2012 

 

  Marseille Bay 

(France) 

0.0026 to 0,061 μg/L Paluselli et al., 

2018 

  Bohai Sea and 

Yellow Sea 

(China) 

ND to 0.00362 μg/L Zhang et al., 

2018 

  Cochin 

estuary (India) 

ND to 10.634 μg/L Ramzi et al., 

2020 

DMEP 

Dimethylglycol 

phthalate 

 Bohai Sea and 

Yellow Sea 

(China) 

ND to 0.223 μg/L Zhang et al., 

2018 

MEP 

Monoethyl 

phthalate 

C10H10O4 

CAS Number 2306-33-4 

Moderate skin, 

respiratory and 

eye irritation 

(Toronto 

Research 

Chemical) 

Seawater, 

marine 

sediments 

from False 

Creek 

(Canada) 

4.41 to 38.83 ng/L in 

seawater 

0.45 to 3.63 ng/g dw in 

sediments 

 

Blair et al., 2009 

MBzP 

Monobenzyl 

phthalate 

C15H12O4 

CAS Number 2528-16-7 

Eye irritation Seawater, 

marine 

sediments, 

from False 

Creek 

(Canada) 

ND to 6.05 ng/L in 

seawater 

0.19 to 3.02 ng/g dw in 

sediments 

 

Blair et al., 2009 
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Supplementary Table 1.2 Selected exposure experiments with aquatic species exposed to 

phthalate concentrations 

COMPOUND [ ] TIME SPECIES REFERENCES 

DAP 

 

50 μg/L 21 days Gadus morhua 

(Atlantic cod) 

Baršiene et al., 2006 

 

 

 

 

50 μg/L 

 

21 days 

Scophthalmus 

maximus 

(turbot) 

 

Baršiene et al., 2006 

 

 

 

 

50 μg/L 

 

21 days 

Hyas araneus 

(Arctic spider 

crab) 

Minier et al., 2008 

 

 

 

 

 

 

 

50 μg/L 

every two days 

 

3 months 

Haliotis 

diversicolor 

supertexta 

(marine gastropod 

mollusc) 

Zhou et al., 2010 

DBP 

 

0, 2.59, 5.18, 6.90, 

And 10.35 mg/L 

24 hours Daphnia magna Huang et al., 1999 

 up to 2 mg/L 96 h B. calyciflorus 

(rotifer) 

Cruciani et al., 2016 

DiNP 0.42, 4.2 and 42 

µg/L 

21 days Danio rerio 

(females) 

Godoi et al., 2021 

DnBP 

 

 

125, 250, 500 and 

1000 μg/L 

everyday 

7 days Melanotaenia 

fluviatilis 

(female adult 

Murray 

rainbowfish) 

Bhatia et al., 2013 

BBP up to 2 mg/L 96 h B. calyciflorus 

(rotifer) 

Cruciani et al., 2016 

 

 

 



227   

Supplementary Table 1.3 Selected exposure experiments with mussels exposed to phthalate or 

endocrine disruptive chemicals 

PHTHALATE [ ] TIME SPECIES REFERENCES 

BPA 

Bisphenol A 

(Plastic additive) 

1 and 10 

µg/L 

24 and 48 

hours 

M. galloprovincialis 

(trochophore and D-

veligers) 

Balbi et al., 2016 

BPA 

Bisphenol A 

(Plastic additive) 

22.83 ng/L 

–228.3 

μg/L 

3 and 24 

hours 

M. galloprovincialis 

(digestive gland 

primary cell cultures) 

Balbi et al., 2017 

 4, 12, 36, 

108, and 

324 µg/L 

 

14 days 

M. galloprovincialis Xu et al., 2021 

DAP 50 μg/L 21 days M. 

edulis 

Baršiene et al., 2006; Sundt et 

al., 2006 

 50 μg/L 21 days M. 

edulis 

Aarab et al., 2006; Sundt et 

al., 2006 

 50 μg/L 21 days M. 

edulis 

Burlando et al., 2006 

 50 μg/L One 

month 

M. 

edulis 

Jonsson et al., 2006; Sundt et 

al., 2006 

  

50 μg/L 

 

21 days 

 

M. 

edulis 

Cajaraville and Ortiz-

Zarragoitia, 2006; Ortiz-

Zarragoitia and Cajaraville, 

2006; Sundt et al., 2006 

 

KHP 

 

250, 500, 

750 and 

1000 

mg/kg of 

mussel 

21 days M. galloprovincialis Sif et al., 2016 

 

DBP 

20 nCi 

into the 

medium 

(phytoplan

kton) 

0.5, 1, 1.5, 

2 hours 

P. viridis 

 

Wang and Zhang, 2013 
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Supplementary Appendix to Chapter 2 

S2.1 Stress-related response: male and female gene expression  

Considering the overall expression (i.e., sod, cat, or hsp70 gene expression) of stress-

related genes in males, PERMANOVA analysis underlined a significant effect of 

temperature on increased mRNA expressions of sod, cat and hsp70 (p TEMP = 0.014, F 

= 4.72, Supplementary Fig. 2.1 left). Regarding females, no significant effect of DEHP 

and temperature was noticeable on these stress response markers (Supplementary Fig.  

2.1 right). A non-significant but marginal effect was noted on the male stress response 

when exposed to only DEHP additive (p DEHP = 0.060, F = 2.35, Supplementary Fig. 

2.1 left), while examples of significant results about the activity of these enzymes were 

found in bivalve molluscs from urban and polluted areas (El Jourmi et al., 2015; Nasci et 

al., 2002; Vlahogianni et al., 2007) or when exposed to heavy metals (Boudjema et al., 

2014), synthetic estrogens (Canesi et al., 2007a) or antibacterials (Canesi et al., 2007b).  

 

 

Supplementary Fig. 2.1 left) Stress-related (sod, cat, hsp70) gene expression in males, n = 6 to 

8 right) Stress-related (sod, cat, hsp70) gene expression in females, n = 7 to 8. Abbreviations are 

control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP 

at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high 

DEHP at high temperature (HIGH DEHP HIGH T).  PERMANOVA error probabilities are 

annotated 

 



229   

S2.2 Stress-related response: individual gene expression  

Regarding the individual gene expression in male mussels, cat mRNA expression was 

significantly increased by temperature (SRH p TEMP = 0.041, H = 4.17) and by the 

combined effect of temperature and DEHP (SRH p TEMP*DEHP = 0.040, H = 6.46 

Supplementary Fig. 2.3). It is worth noting that while cat expression was influenced by 

environmental stressors, temperature and DEHP exposure had no effect on the expression 

of the related antioxidant sod (p > 0.05, Supplementary Fig. 2.2). Antioxidant enzymes 

can be inhibited by cellular products, such as singlet oxygen, ozone hydroxyl and peroxyl 

radicals (Escobar et al., 1996).  Differences in the activities of CAT and SOD were already 

observed in previous experiments involving bivalves on different days of exposure to 

heavy metals and endocrine disruptors (Gonzalez-Rey and Bebianno, 2013; Orbea et al., 

2002; Zhang et al., 2010), showing in some cases even an inverted trend (Monteiro et al., 

2019). Similarly, in D. polymorpha and Unio tumidus, various tissues and time-specific 

enzymatic responses of SOD were noted after exposure to microcystin-LR or 

cyanobacterial crude extract, with not always a clear dose-response pattern (Burmester et 

al., 2012). Manduzio et al., (2003) found three available isoforms of the Cu/Zn SOD in 

M. edulis, with only one of them (SOD-3 130 kDa) inducible by a 7-day exposure to 25 

μg/L of copper pollution. The presence of a presumed weak Mn- isozyme was also 

hypothesised, with a considered negligible activity in mussels with respect to the Cu/Zn 

form (Livingstone et a., 1992). These results underline the lack of knowledge about 

inhibition patterns, structure and transient activity of the antioxidant system in mussels 

exposed to multiple or prolonged stressors. 
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Supplementary Fig. 2.2 sod mRNA expression in males, n = 7 to 8. Abbreviations are control 

(CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high 

temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP 

at high temperature (HIGH DEHP HIGH T). No significant differences were found 

 

  

Supplementary Fig. 2.3 cat mRNA expression in males, n = 7 to 8. Abbreviations are control 

(CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high 

temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP 

at high temperature (HIGH DEHP HIGH T). Significant differences between groups and relative 

error probabilities are denoted by bars above the boxplots 

 

Regarding hsp70 expression in males, it was marginally (but not significantly) modulated 

by DEHP exposure (SRH p DEHP = 0.079, H = 5.06) and a slight but also non-significant 

effect of temperature was observed (SRH p TEMP = 0.102, H = 2.68, Supplementary 

Fig. 2.4). HSP70s play a crucial role in repairing partially denatured proteins and in the 

cellular protection from stress-induced damage, protein folding and translocation (Feder 

and Hofmann, 1999; Fink, 1999) and they can be induced by both physical and chemical 

stressors (Sanders, 1993). The slight but not significant increase of hsp70 expression to a 
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higher temperature in males could be explained by an attenuated heat-shock response 

under laboratory acclimation (Roberts et al., 1997), or the recent thermal history of the 

organism (Buckley et al., 2001). Due to the high-energy cost required for the HSP 

synthesis, a heat shock response that is mitigated over periods of persistent stress, might 

allow the allocation of energy reserves to other fitness-relevant processes (Tomanek and 

Somero, 1999; Troschinski et al., 2014). On the other hand, total HSP70 in M. 

californicanus increased in mussels exposed to higher thermal and desiccation stress, 

along with an earlier spawning activity (Petes et al., 2008). Another hypothesis for the 

mild HSP70 response is that, as remarked by Franzellitti and Fabbri (2005), the partial 

sequence for M. edulis hsp70 used in this work could encode for a constitutive HSP70 

isoform that is more associated with prolonged stress exposure instead of short-term 

responses.  

 

Supplementary Fig. 2.4 hsp70 mRNA expression in males, n = 6 to 8. Abbreviations are control 

(CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high 

temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP 

at high temperature (HIGH DEHP HIGH T). Scheirer-Ray-Hare test error probabilities are 

annotated 

 

In contrast to males, females did not show any significant differences in the expression 

of sod, cat, hsp70 from either the temperature or the DEHP exposure (SRH p > 0.05, 

Supplementary Fig. 2.5, 2.6, 2.7).  
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Supplementary Fig. 2.5 sod mRNA expression in females, n = 8. Abbreviations are control 

(CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high 

temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP 

at high temperature (HIGH DEHP HIGH T). No significant differences were found  

 

  

Supplementary Fig. 2.6 cat mRNA expression in females, n = 7 to 8. Abbreviations are control 

(CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high 

temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP 

at high temperature (HIGH DEHP HIGH T). No significant differences were found 
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Supplementary Fig. 2.7 hsp70 mRNA expression in females, n = 7 to 8. Abbreviations are 

control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP 

at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high 

DEHP at high temperature (HIGH DEHP HIGH T). No significant differences were found 

 

S2.3 Estrogen receptor-like response: male and female gene expression  

High temperature increased the expression of MeER1 and MeER2 in males (p TEMP = 

0.005, F = 5.93, Supplementary Fig. 2.8 left). In females, low and high DEHP treatments 

had opposite effects on gene expression (p DEHP = 0.049, F = 0.11, Supplementary Fig. 

2.8 right).  

   

Supplementary Fig. 2.8 left) Estrogen receptor-like (MeER1, MeER2) gene expression in males, 

n = 6 to 8 right) Estrogen receptor-like (MeER1, MeER2) expression in females, n = 7 to 8. 

Abbreviations are control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW 

DEHP), low DEHP at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH 

DEHP) and high DEHP at high temperature (HIGH DEHP HIGH T). PERMANOVA error 

probabilities are annotated 
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S2.4 Estrogen receptor-like response: individual estrogen receptor-like responses 

Considering the individual gene response, no effect on the expression of males’ MeER1 

was noted (p > 0.05, Supplementary Fig. 2.9). Surprisingly, our study highlighted a 

temperature effect on MeER2 expression in males treatments (SRH p TEMP = 0.011, H 

= 6.55, Supplementary Fig. 2.10). Males in higher temperature treatments displaying 

advanced spawning stages may constitute a causal link to elevated MeER2 levels. A 

similar effect of temperature on MeER2 upregulation was recently observed by Koagouw 

and Ciocan (2018). Smolarz et al. (2018) suggested that steroids such as estrogens and 

androgens might be active modulators of only the final stage of the gametogenesis cycle 

(i.e., spawning), as they appear to be more associated with environmental cues such as 

water temperature. MeER2 expression in M. edulis in their natural environment varied in 

mature gonads in different years (Ciocan et al., 2010b) suggesting that annual and 

seasonal environmental cues could lead to nuances in the gametogenesis status and the 

related estrogen-like responses. In contrast to the temperature effect, the exposure to 

environmentally relevant concentrations of DEHP (both 0.5 and 50 μg/L) did not elicit an 

estrogenic effect on males. Similarly, no effects were found in male ricefish Oryzias 

latipes exposed to concentrations up to 50 μg/L (Kim, 2003), but significantly higher 

concentrations of 100 and 500 μg/l caused an increase in estradiol levels and reduced 

number of spermatozoa in Oryzias melastigma males (Ye et al., 2014). In Puinean et al., 

(2006), the non-significance of the estrogen effect was explained by a possible 

homeostatic mechanism of conversion into inactive esters, alongside the duration and 

level of exposure. Our results suggest no reprotoxicity effect of DEHP on gametogenesis 

timing in male blue mussels at environmentally relevant concentrations, but other adverse 

effects such as germ cell toxicity cannot be excluded at this time. 
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Supplementary Fig. 2.9 MeER1 mRNA expression in males, n = 6 to 8. Abbreviations are control 

(CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP at high 

temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high DEHP 

at high temperature (HIGH DEHP HIGH T). No significant differences were found 

 

 
Supplementary Fig. 2.10 MeER2 mRNA expression in males, n = 7 to 8. Abbreviations are 

control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP 

at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high 

DEHP at high temperature (HIGH DEHP HIGH T). Scheirer-Ray-Hare test error probability is 

annotated  

 

In female mussels, MeER1 mRNA expression was significantly influenced by the DEHP 

exposure (SRH p DEHP = 0.041, H = 6.40, Supplementary Fig. 2.11), but neither 

temperature nor DEHP exposure had an effect on the expression of MeER2 in females (p 

> 0.05, Supplementary Fig. 2.12). Similarly, exposure to chemicals such as EE2 and the 

surfactant sodium lauryl sulphate induced expression of ER1 in M. galloprovincialis 

digestive tubules, while in gonads the expression was weakly downregulated, probably 

due to their spent stage (Lopes et al., 2022). Here, MeER1 levels were lower in the low-
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concentration groups compared to both control and high DEHP treatments, thus a linear 

dose response does not appear to be present. In fact, we found a lowered MeER1 

expression at 0.5 μg DEHP/L and higher expression in response to 50 μg/L DEHP at 

control temperature. Molluscs seem more sensitive to exposure to plasticisers in water at 

concentrations in the order of magnitude of micrograms per litre (Oehlmann et al., 2008), 

and as already described, endocrine active chemicals can follow a nonmonotonic dose-

response curve (Conolly and Lutz, 2004; Do et al., 2012; Li et al., 2007; Vandenberg et 

al., 2012). Furthermore, it was recently described that low doses of DEHP can alter the 

meiotic processes in C. elegans nematodes, through considerable morphological defects 

of chromosomes in oocytes and impaired embryogenesis (Cuenca et al., 2020). Therefore, 

in light of the effect of DEHP on the female estrogen receptor-like responses observed in 

this study, we cannot exclude impairment of their reproductive cycle that could affect not 

only the egg maturation but also larval development.  

 

 

Supplementary Fig. 2.11 MeER1 mRNA expression in females, n = 7 to 8. Abbreviations are 

control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP 

at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high 

DEHP at high temperature (HIGH DEHP HIGH T).  Scheirer-Ray-Hare test error probability is 

annotated  
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Supplementary Fig. 2.12 MeER2 mRNA expression in females, n = 7 to 8. Abbreviations are 

control (CTRL), high temperature (HIGH T), low DEHP concentration (LOW DEHP), low DEHP 

at high temperature (LOW DEHP HIGH T), high DEHP concentration (HIGH DEHP) and high 

DEHP at high temperature (HIGH DEHP HIGH T). No significant differences were found
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Supplementary Appendix to Chapter 3 

S3.1 FastQC quality control  

The quality control job was submitted to the HPC Viper as a SLURM submission batch 

script as follows: 

#!/bin/bash 

#SBATCH -J FASTQC.job 

#SBATCH -N 1 

#SBATCH -n 28 

#SBATCH -o FASTQC.out 

#SBATCH -e FASTQC.err 

#SBATCH -p highmem 

#SBATCH --exclusive 

cd /home/userID/ 

module purge 

module add fastqc/0.11.9  

fastqc COMB_07_1.fq.gz | fastqc COMB_07_2.fq.gz 

fastqc COMB_10_1.fq.gz | fastqc COMB_10_2.fq.gz 

fastqc COMB_26_1.fq.gz | fastqc COMB_26_2.fq.gz 

fastqc DEHP_12_1.fq.gz | fastqc DEHP_12_2.fq.gz 

fastqc DEHP_13_1.fq.gz | fastqc DEHP_13_2.fq.gz 

fastqc DEHP_17_1.fq.gz | fastqc DEHP_17_2.fq.gz 

fastqc TEMP_08_1.fq.gz | fastqc TEMP_08_2.fq.gz 

fastqc TEMP_13_1.fq.gz | fastqc TEMP_13_2.fq.gz 

fastqc TEMP_18_1.fq.gz | fastqc TEMP_18_2.fq.gz 

 

Where -J represents the job name, -N represents the number of cores, -n represents the 

number of nodes, -o represents the standard output, -e represents the standard error and 

-p represents the slurm partition. highmem requests more memory than the standard 

provision of approximately 4 GB. --exclusive requests exclusive access to a node.  

 

S3.2 Read trimming with Trimmomatic 

The Trimmomatic code command was run as follows: 

module load java/jdk1.8.0_102 

module load trimmomatic/0.38/gcc-8.2.0 

java -jar /home/ViperAppsFiles/trimmomatic/0.38/gcc-

8.2.0/ziyqkicrbkapjo4ugbqasxvviucog2ix/bin/trimmomatic-0.38.jar PE -

phred33 -threads 16 -trimlog logfile /home/userID/sample_1.fq.gz 

/home/userID/sample_2.fq.gz  

Paired1_sample_trim.fq Unpaired1_sample_trim.fq Paired2_sample_trim.fq 

Unpaired2_sample_trim.fq 

ILLUMINACLIP:Nextera.fa:2:30:10:2:keepBothReads HEADCROP:11  

 

S3.3 Trinity de novo assembly 

The Trinity slurm job was launched using -p gpu, which requests the use of the GPU 

resources, not the CPU: 



239   

module add test-modules singularity/3.5.3/gcc-8.2.0 

singularity exec -e 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg  

Trinity \ 

       --seqType fq \ 

       --samples_file data/samples.txt \ 

          --max_memory 100G --CPU 20 \ 

          --output /home/userID/Trinity.output.fastafile 

The --samples_file data/samples.txt consisted in a table file in the format 

Treatment (tab) Sample_id as follows: 

COMB    COMB_07 

COMB    COMB_10 

COMB    COMB_26 

DEHP    DEHP_12 

DEHP    DEHP_13 

DEHP    DEHP_17 

TEMP    TEMP_08 

TEMP    TEMP_13 

TEMP    TEMP_18 

 

S3.4 Assessing the read content of the transcriptome assembly 

A bowtie2 index was first built for the transcriptome: 

singularity exec -e 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg 

bowtie2-build  ./Trinity.output.fastafile 

Then, the read alignment statistics was performed: 

cat COMB_07_Paired1_trim.fq COMB_10_Paired1_trim.fq 

COMB_26_Paired1_trim.fq DEHP_12_Paired1_trim.fq DEHP_13_Paired1_trim.fq 

DEHP_17_Paired1_trim.fq TEMP_08_Paired1_trim.fq TEMP_13_Paired1_trim.fq 

TEMP_18_Paired1_trim.fq > left.fq 

cat COMB_07_Paired2_trim.fq COMB_10_Paired2_trim.fq 

COMB_26_Paired2_trim.fq DEHP_12_Paired2_trim.fq DEHP_13_Paired2_trim.fq 

DEHP_17_Paired2_trim.fq TEMP_08_Paired2_trim.fq TEMP_13_Paired2_trim.fq 

TEMP_18_Paired2_trim.fq > right.fq 

singularity exec -e 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg  

bowtie2  -p 10 --no-unal -q -k 20 -x  ./Trinity.output -1 left.fq -2 

right.fq 2>align_stats.txt 

singularity exec -e 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg 

samtools view -@10 -Sb -o bowtie2.bam 

To visualise statistics: 
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cat 2>&1 align_stats.txt 

 

S3.5 Explore completeness with BUSCO 

In Viper, a miniconda environment (environment1) was first built and then the BUSCO 

command was launched as follows: 

module load python/anaconda/4.6/miniconda/3.7 

source activate /home/userID/.conda/envs/environment1 

export PATH=/home/<user>/.conda/envs/bioinformatics/bin:${PATH} 

python /home/user/TATT-CPU.py 

busco -i /home/userID/Trinity.output.fastafile -o busco_results -m 

transcriptome --auto-lineage-euk 

 

S3.6 Trinity transcriptome ExN50 statistics 

In this case, salmon was used as a fast alignment-free method, which examined k-mer 

abundances and in the assembles: 

$TRINITY_HOME/util/align_and_estimate_abundance.pl --transcripts 

Trinity.output.fastafile --seqType fq --samples_file data/samples.txt -

-est_method salmon --trinity_mode  --prep_reference --output_dir 

Abundance_Estimate_Trinity 

 $TRINITY_HOME/util/abundance_estimates_to_matrix.pl --est_method 

salmon --out_prefix Trinity --name_sample_by_basedir  --quant_files 

quant_files.list  --gene_trans_map Trinity.output.fasta.gene_trans_map 

Additionally, the number of expressed transcripts and genes was counted: 

$TRINITY_HOME/util/misc/count_matrix_features_given_MIN_TPM_threshold.

pl Trinity.isoform.TPM.not_cross_norm | tee 

isoforms_matrix.TPM.not_cross_norm.counts_by_min_TPM 

Finally, the ExN50-length statistics was run: 

$TRINITY_HOME/util/misc/contig_ExN50_statistic.pl 

Trinity.isoform.TMM.EXPR.matrix Trinity.output.fastafile | tee 

isoforms.ExN50.stats 

 

S3.7 Identification and filtering of non-target data 

A standard nucleotide-type BlastN research was performed using megablast (highly 

similar sequences) against the nt database: 

/home/userID/ncbi-blast-2.13.0+/bin/blastn \ -task megablast \ -query 

/home/userID/Trinity.output.fastafile \ -db /home/userID/blastdb/nt \ -

outfmt '6 qseqid staxids bitscore std' \ -max_target_seqs 1 \ -max_hsps 

1 \ -num_threads 28 \ -evalue 1e-25 \ -out blastn.Nt.outfmt6 
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Where -outfmt '6 qseqid staxids bitscore std' specifically researched for 

species and taxon ID of the transcripts. The .bam output file (created during the read 

alignment statistics in Chapter 3.7.1: Assessing the read content of the transcriptome 

assembly) was sorted and indexed increasing the RAM allowance to 16 Gb: 

samtools sort /home/userID/bowtie.bam -o /home/userID/bowtie.sorted.bam 

-m 16000000000 

 

The assembly was analysed with Blobtools by parsing the BlastN output hitfile against 

the sorted bowtie bam file and the Trinity assembly output datafile. For each entry of the 

hit file, the taxonomy identification was generated:  

./blobtools create \ --infile /home/userID/Trinity.output.fastafile \ -

-bam /home/userID/bowtie.sorted.bam \ --hitsfile  

/home/userID/BlastN.out \ --out /home/userID/my_BlastN_blobplot && \ 

./blobtools view \-i /home/userID/my_BlastN_blobplot.blobDB.json \ 

 -o /home/userID/ && \ 

./blobtools plot \ -i /home/userID/my_BlastN_blobplot.blobDB.json \ -o 

//home/userID/ 

 

S3.8 Differential expression using DESeq2 

Then, the DESeq2 analysis was launched inside the Trinity singularity container, using 

input files Trinity.isoform.counts.matrix and 

Trinity.isoform.TMM.EXPR.matrix (created in Chapter 3.7.3: Trinity transcriptome 

ExN50 statistics).  

First, the DeSeq2 analysis generated pairwise comparisons (DEHP vs TEMP, DEHP vs 

COMB, COMB vs TEMP): 

$TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl --

matrix Trinity.isoform.counts.matrix  --samples_file sample.txt  --

method DESeq2 --output DESeq2_trans 

Transcripts at least 4-fold differentially expressed at the significance of <= 0.001 were 

then extracted, including analysis of upregulation for each treatment, with the associated 

including log2FC and p adjusted value: 

TRINITY_HOME/Analysis/DifferentialExpression/analyze_diff_expr.pl --

matrix Trinity.isoform.TMM.EXPR.matrix --samples sample.txt -P 1e-3 -C 

2  
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S3.9 Assembly annotation 

A blastable database was built for sequence homology research: 

singularity exec -e 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg 

makeblastdb -in uniprot_sprot.fasta -dbtype prot 

singularity exec -e 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg 

makeblastdb -in uniprot_sprot.pep -dbtype prot  

The blast search was performed, reporting only the top alignment: 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg blastx 

-query Trinity.output.fasta -db uniprot_sprot.fasta -out blastx.outfmt6 

-evalue 1e-25 -num_threads 28 -max_target_seqs 1 -outfmt 6  

And the percent of the aligned target by the best matching Trinity transcript was examined 

by  

$TRINITY_HOME//util/analyze_blastPlus_topHit_coverage.pl blastx.outfmt6 

Trinity.output.fastafile uniprot_sprot.fasta 

And a scan for sequence homologies with the command blastp in Transdecoder predicted 

protein sequences was run to maximise the sensitivity for functionally significant ORFs.  

 

/home/ViperAppsFiles/singularity/containers/Trinity-v2.13.1.simg blastp 

-query /home/userID/TransDecoder-TransDecoder-

v5.5.0/Trinity.output.transdecoder.pep -db 

/home/userID/uniprot_sprot.pep -num_threads 28 -max_target_seqs 1 -

outfmt 6 -evalue 1e-25 > blastp.outfmt6 

A HMMER search was also run against the Pfam database: 

hmmscan --cpu 20 --domtblout TrinotatePFAM.out Pfam-A.hmm 

Trinity.output.fasta.transdecoder.pep 

The SQlite database generated from  

$TRINOTATE_HOME/admin/Build_Trinotate_Boilerplate_SQLite_db.pl  

Trinotate 

was populed by adding the followings: 

● Transcript sequence (from Trinity de novo assembly, Chapter 3.6) 

● Protein sequences (from TransDecoder definition, Chapter 3.10) 

● Gene and Transcript Map generated by: 

$TRINITY_HOME/util/support_scripts/get_Trinity_gene_to_trans_map.pl 

Trinity.fasta >  Trinity.fasta.gene_trans_map 
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The Trinity.fasta.gene_trans_map was then loaded into the Trinotate SQlite 

database: 

Trinotate Trinotate.sqlite init --gene_trans_map 

Trinity.fasta.gene_trans_map --transcript_fasta Trinity.fasta --

transdecoder_pep transdecoder.pep 

Blast homologies blastx.outfmt6 and blastp.outfmt6 were then loaded: 

Trinotate Trinotate.sqlite LOAD_swissprot_blastp blastp.outfmt6 for 

protein hits 

Trinotate Trinotate.sqlite LOAD_swissprot_blastx blastx.outfmt6 for 

transcript hits 

Followed by Pfam domain entries, transmembrane domains, signal peptide predictions 

and Trinity transcripts search results: 

Trinotate Trinotate.sqlite LOAD_pfam TrinotatePFAM.out 
Trinotate Trinotate.sqlite LOAD_tmhmm tmhmm.out 
Trinotate Trinotate.sqlite LOAD_signalp signalp.out 
Trinotate Trinotate.sqlite LOAD_rnammer 

Trinity.second.output.Trinity.fasta.rnammer.gff 

 

S3.10 Gene Ontology enrichment using GOseq 

For all the transcripts in each treatment that resulted upregulated in Chapter 3.9, the GO 

assignments for each gene feature were extracted using: 

${TRINOTATE_HOME}/util/extract_GO_assignments_from_Trinotate_xls.pl --

Trinotate_xls trinotate_annotation_report.xls -G --

include_ancestral_terms > go_annotations.txt 

 

Then, the Bioconductor package Goseq was used to perform functional enrichment tests: 

 

${TRINITY_HOME}/Analysis/DifferentialExpression/run_GOseq.pl --

factor_labeling  factor_labeling.txt --GO_assignments 

go_annotations.txt  

--lengths gene.lengths.txt 

Where factor_labeling.txt is a .txt file describing that subset of genes in the form  

factor (tab) gene_id 

And gene.lengths.txt was created by: 

${TRINITY_HOME}/util/misc/fasta_seq_length.pl  Trinity.fasta > 

Trinity.fasta.seq_lens 

http://www.bioconductor.org/packages/release/bioc/html/goseq.html
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${TRINITY_HOME}/util/misc/TPM_weighted_gene_length.py --gene_trans_map 

trinity_out_dir/Trinity.fasta.gene_trans_map --trans_lengths 

Trinity.fasta.seq_lens --TPM_matrix isoforms.TMM.EXPR.matrix > 

Trinity.gene_lengths.txt 

 

The resulting Gene Ontology matrix was visualised in Revigo with Simrel semantic 

similarity measure and uniprot database research (http://revigo.irb.hr/).  Scatter plots and 

Treemaps were chosen to visualize the results for each individual treatment 

(Supplementary Fig. 3.1 and 3.2 for TEMP enriched Biological Process, 

Supplementary Fig. 3.3 and 3.4 for TEMP enriched Cellular Component, 

Supplementary Fig. 3.5 and 3.6 for TEMP Metabolic Function; Supplementary Fig. 

3.7 and 3.8 for DEHP enriched Biological Process, Supplementary Fig. 3.9 and 3.10 

for DEHP enriched Cellular Component, Supplementary Fig. 3.11 and 3.12 for DEHP 

Metabolic Function; Supplementary Fig. 3.13 and 3.14 for COMB enriched Biological 

Process, Supplementary Fig. 3.15 and 3.16 for COMB enriched Cellular Component, 

Supplementary Fig. 3.17 and 3.18 for COMB Metabolic Function).  

  

 

 

 

 

 

 

 

http://revigo.irb.hr/
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Supplementary Fig. 3.1 Biological process for TEMP (enriched) - scatter plot. REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.2 Biological process for TEMP (enriched) - tree map 
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Supplementary Fig. 3.3 Cellular component for TEMP (enriched) - scatter plot.  REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.4 Cellular component for TEMP (enriched) - tree map 
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Supplementary Fig. 3.5 Molecular function for TEMP (enriched) - scatter plot.  REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.6 Molecular function for TEMP (enriched) - tree map 
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Supplementary Fig. 3.7 Biological process for DEHP (enriched) - scatter plot.  REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.8 Biological process for DEHP (enriched) - tree map 
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Supplementary Fig. 3.9 Cellular component for DEHP (enriched) - scatter plot.  REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.10 Cellular component for DEHP (enriched) - tree map 

 



250   

 

Supplementary Fig. 3.11 Molecular function for DEHP (enriched) - scatter plot. REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.12 Molecular function for DEHP (enriched) - tree map 
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Supplementary Fig. 3.13 Biological process for COMB (enriched) - scatter plot. REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.14 Biological process for COMB (enriched) - tree map 
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Supplementary Fig. 3.15 Cellular component for COMB (enriched) - scatter plot. REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

 

 
Supplementary Fig. 3.16 Cellular component for COMB (enriched) - tree map 
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Supplementary Fig. 3.17 Molecular function for COMB (enriched) - scatter plot. REVIGO plot 

axes have no intrinsic meaning. Multidimensional Scaling (MDS) was used by the software to 

reduce the dimensionality of the GO term pairwise semantic similarity matrix, i.e., semantically 

similar GO terms are close together in the plot 

  

 
Supplementary Fig. 3.18 Molecular function for COMB (enriched) - tree map 

 

Additionally, the GO term IDs for all the experimental treatments were listed 

(Supplementary Table 3.1 - 3.3) for depleted transcripts. 
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Supplementary Table 3.1 List of depleted GO terms in TEMP treatment for Biological Process 

(BP), Cellular Component (CC) and Molecular Function (MF) 

Category Ontology GO_term 

GO:0015630 CC CC microtubule cytoskeleton 

GO:0043410 BP BP positive regulation of MAPK cascade 

GO:0032553 MF MF ribonucleotide binding 

GO:0097367 MF MF carbohydrate derivative binding 

GO:0017076 MF MF purine nucleotide binding 

GO:0032555 MF MF purine ribonucleotide binding 

GO:0006631 BP BP fatty acid metabolic process 

GO:0006732 BP BP coenzyme metabolic process 

GO:0044272 BP BP sulphur compound biosynthetic process 

 

Supplementary Table 3.2 List of depleted GO terms in DEHP treatment for Biological Process 

(BP), Cellular Component (CC) and Molecular Function (MF) 

Category Ontology go_term 

GO:0002376 BP BP immune system process 

GO:0097159 MF MF organic cyclic compound binding 

GO:1901363 MF MF heterocyclic compound binding 

GO:0050896 BP BP response to stimulus 

GO:0010604 BP BP positive regulation of macromolecule metabolic process 

GO:0043168 MF MF anion binding 

GO:0051173 BP BP positive regulation of nitrogen compound metabolic process 

GO:0010557 BP BP positive regulation of macromolecule biosynthetic process 

GO:0009314 BP BP response to radiation 

GO:0022604 BP BP regulation of cell morphogenesis 

GO:0045893 BP BP positive regulation of transcription, DNA-templated 

GO:1902680 BP BP positive regulation of RNA biosynthetic process 
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GO:1903508 BP BP positive regulation of nucleic acid-templated transcription 

GO:0033044 BP BP regulation of chromosome organization 

GO:0080134 BP BP regulation of response to stress 

GO:0016787 MF MF hydrolase activity 

GO:0051052 BP BP regulation of DNA metabolic process 

GO:0022603 BP BP regulation of anatomical structure morphogenesis 

GO:0010975 BP BP regulation of neuron projection development 

GO:0043269 BP BP regulation of ion transport 

GO:0009416 BP BP response to light stimulus 

GO:0071214 BP BP cellular response to abiotic stimulus 

GO:0071496 BP BP cellular response to external stimulus 

GO:0016462 MF MF pyrophosphatase activity 

GO:0016817 MF MF hydrolase activity, acting on acid anhydrides 

GO:0016818 MF MF hydrolase activity, acting on acid anhydrides, in phosphorus-

containing anhydrides 

GO:0017111 MF MF nucleoside-triphosphatase activity 

 

Supplementary Table 3.3 List of depleted GO terms in COMB treatment for Biological Process 

(BP), Cellular Component (CC) and Molecular Function (MF) 

Category Ontology go_term 

GO:0002376 BP BP immune system process 

GO:0097159 MF MF organic cyclic compound binding 

GO:1901363 MF MF heterocyclic compound binding 

GO:0050896 BP BP response to stimulus 

GO:0010604 BP BP positive regulation of macromolecule metabolic process 

GO:0043168 MF MF anion binding 

GO:0051173 BP BP positive regulation of nitrogen compound metabolic process 

GO:0010557 BP BP positive regulation of macromolecule biosynthetic process 

GO:0009314 BP BP response to radiation 
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GO:0022604 BP BP regulation of cell morphogenesis 

GO:0045893 BP BP positive regulation of transcription, DNA-templated 

GO:1902680 BP BP positive regulation of RNA biosynthetic process 

GO:1903508 BP BP positive regulation of nucleic acid-templated transcription 

GO:0033044 BP BP regulation of chromosome organization 

GO:0080134 BP BP regulation of response to stress 

GO:0016787 MF MF hydrolase activity 

GO:0051052 BP BP regulation of DNA metabolic process 

GO:0022603 BP BP regulation of anatomical structure morphogenesis 

GO:0010975 BP BP regulation of neuron projection development 

GO:0043269 BP BP regulation of ion transport 

GO:0009416 BP BP response to light stimulus 

GO:0071214 BP BP cellular response to abiotic stimulus 

GO:0071496 BP BP cellular response to external stimulus 

GO:0016462 MF MF pyrophosphatase activity 

GO:0016817 MF MF hydrolase activity, acting on acid anhydrides 

GO:0016818 MF MF hydrolase activity, acting on acid anhydrides, in phosphorus-

containing anhydrides 

GO:0017111 MF MF nucleoside-triphosphatase activity 
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Supplementary Appendix to Chapter 4 

S4.1 Stress-related response: male and female gene expression 

Considering the overall expression (i.e., sod, cat, or hsp70 gene expression) of stress-

related genes, PERMANOVA showed no significant effect of either pH or DEHP on sod, 

cat or hsp70 gene expression in male or female groups (p > 0.05, Supplementary Fig. 

4.1). 

  

Supplementary Fig. 4.1 left) Stress-related (sod, cat, hsp70) gene expression in males, n = 7 to 

8. right) Stress-related (sod, cat, hsp70) mRNA expression in females, n = 6 to 8. Abbreviations 

are control (CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at 

low pH (LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at 

low pH (HIGH DEHP LOW pH).  No significant PERMANOVA differences were found 

 

S4.2 Stress-related response: individual gene expression  

No particular effect was found for the individual stress-related gene expression in males 

and females, respectively (Supplementary Fig. 4.2 - 4.7). As previously highlighted, this 

could be related to the adaptive strategies of intertidal organisms.  
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Supplementary Fig. 4.2 sod mRNA expression in males, n = 7 to 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH) 

 

 
Supplementary Fig. 4.3 cat mRNA expression in males, n = 7 to 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 
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Supplementary Fig. 4.4 hsp70 mRNA expression in males, n = 7 to 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 

 

 

Supplementary Fig. 4.5 sod mRNA expression in females, n = 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 
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Supplementary Fig. 4.6 cat mRNA expression in females, n = 7 to 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 

 

 
Supplementary Fig. 4.7 hsp70 mRNA expression in males, n = 7 - 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 

 

S4.3 CA2 response: individual gene expression 

As with the previous outcomes, no significant differences were found observing males 

and females individually, apart from a mild effect of pH on females 2−ΔCt values (SHR p 

value = 0.09, H = 2.72, Supplementary Fig. 4.8 and 4.9).  
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Supplementary Fig. 4.8 CA2 mRNA expression in males, n = 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 

 

 
Supplementary Fig. 4.9 CA2 mRNA expression in females, n = 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). Scheirer-Rey-Hare test error probability is annotated 

 

S4.4 Estrogen receptor-like responses 

No particular effect was found on the estrogen receptor-related responses when 

considering individual responses or male and female levels of both MeER1 and MeER2 

(Supplementary Fig. 4.10 - 4.14).  
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Supplementary Fig. 4.10 left) Estrogen receptor-like (MeER1, MeER2) gene expression in 

males, n = 6 to 8. right) Estrogen receptor-like (MeER1, MeER2) mRNA expression in females, 

n = 7 to 8.  Abbreviations are control (CTRL), low pH (LOW pH), low DEHP concentration 

(LOW DEHP), low DEHP at low pH (LOW DEHP LOW pH), high DEHP concentration (HIGH 

DEHP) and high DEHP at low pH (HIGH DEHP LOW pH).  No significant PERMANOVA 

differences were found 

 

 

 
 

Supplementary Fig. 4.11 MeER1 mRNA expression in males, n = 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 
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Supplementary Fig. 4.12 MeER2 mRNA expression in males, n= 7 to 8. Abbreviations are 

control (CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low 

pH (LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 

 

 
Supplementary Fig. 4.13 MeER1 mRNA expression in females, n = 8. Abbreviations are control 

(CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 

(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found 
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Supplementary Fig. 4.14 MeER2 mRNA expression in females, n= 6 to 8. Abbreviations are 

control (CTRL), low pH (LOW pH), low DEHP concentration (LOW DEHP), low DEHP at low 

pH (LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) and high DEHP at low pH 

(HIGH DEHP LOW pH). No significant ANOVA p values were found
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