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Abstract: Negative pressure wound therapy(NPWT) has significantly advanced wound care and
continues to find new applications. Its effects at a molecular level however, remain a
subject of debate. The aim of this systematic review is to summarize the current
evidence regarding the molecular mechanisms of action of NPWT. Medline, Embase,
EBSCO databases and clinical trial registries were searched from inception to January
2023.  Clinical studies, animal models or in-vitro studies that quantitatively or semi-
quantitatively evaluated the influence of NPWT on growth factors, cytokine or gene-
expression in the circulation or wound-bed were included. Risk of Bias assessment
was performed using the RoBANS tool for non-randomized studies, the COCHRANE’s
Risk of Bias 2(ROB-2) tool for randomized clinical studies, OHAT tool for in-vitro
studies or the SYRCLE tool for animal model studies. A descriptive summary was
collated and the aggregated data is presented as a narrative synthesis. This review
included 19 clinical studies, 11 animal studies and 3 in-vitro studies. The effects of
NPWT on 43 biomarkers and 17 gene expressions were studied across included
studies.  NPWT stimulates modulation of numerous local and circulating cytokines and
growth factor expressions to promote an anti-inflammatory profile. This is most likely
achieved by downregulation of TNFα, upregulation of VEGF, TGF-β and fibronectin.
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Abstract: 27 

 28 

Negative pressure wound therapy(NPWT) has significantly advanced wound care and continues to 29 

find new applications. Its effects at a molecular level however, remain a subject of debate. The aim 30 

of this systematic review is to summarize the current evidence regarding the molecular mechanisms 31 

of action of NPWT. Medline, Embase, EBSCO databases and clinical trial registries were searched 32 

from inception to January 2023.  Clinical studies, animal models or in-vitro studies that quantitatively 33 

or semi-quantitatively evaluated the influence of NPWT on growth factors, cytokine or gene-34 

expression in the circulation or wound-bed were included. Risk of Bias assessment was performed 35 

using the RoBANS tool for non-randomized studies, the COCHRANE’s Risk of Bias 2(ROB-2) tool for 36 

randomized clinical studies, OHAT tool for in-vitro studies or the SYRCLE tool for animal model 37 

studies. A descriptive summary was collated and the aggregated data is presented as a narrative 38 

synthesis. This review included 19 clinical studies, 11 animal studies and 3 in-vitro studies. The 39 

effects of NPWT on 43 biomarkers and 17 gene expressions were studied across included studies.  40 

NPWT stimulates modulation of numerous local and circulating cytokines and growth factor 41 

expressions to promote an anti-inflammatory profile. This is most likely achieved by downregulation 42 

of TNFα, upregulation of VEGF, TGF-β and fibronectin.  43 

 44 
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 61 

Molecular Mechanisms of Action of Negative-Pressure Wound Therapy: A Systematic Review 62 

 63 

Introduction: 64 

 65 

Open surgical wounds or surgical wounds healing by secondary intention are a common and 66 

complex problem. These wounds frequently take a long time to heal, require regular dressing 67 

changes and present a significant morbidity to the patient and a significant financial burden to 68 

healthcare systems. They may need many modalities of treatment, are susceptible to secondary 69 

infection, and may also require prolonged hospitalisation and/or further operations.[1] The 70 

requirement to manage exudate and avoid repeated wound dressing changes has led to a significant 71 

increase in the use of newer modalities of wound management such as Negative pressure wound 72 

therapy(NPWT).[2] 73 

 74 

Negative pressure wound therapy (NPWT) is currently used widely in many aspects of wound care 75 

and has been strongly promoted for use on complex wounds.[3][4] NPWT involves the application of 76 

an airtight wound dressing through which a negative pressure is applied, often with any wound and 77 

tissue fluid drawn away from the area being collected into a canister. The amount of pressure 78 

applied using the therapy can vary and there is no universally agreed protocol for its use.[5] A 79 

number of surgical and non surgical specialties prescribe NPWT leading to its widespread 80 

implementation in both primary/community care and in tertiary care.[6][7]  81 

 82 

NPWT is postulated to facilitate wound healing via several primary and secondary mechanisms. The 83 

proposed primary mechanisms of action include macro-deformation or wound shrinkage, micro-84 

deformation at the foam-wound interface, fluid removal whilst maintaining a moist environment  85 

and stabilisation of the wound environment. The proposed secondary mechanisms include alteration 86 

of the mechanotransduction pathways and alteration of the wound healing microenvironment 87 

including cellular proliferation, differentiation, cell migration, angiogenesis and neurogenesis. Many 88 

theories have been proposed to support these primary and secondary mechanisms at a molecular 89 

level and the aim of this systematic review is to summarize the currently available evidence 90 

regarding the molecular mechanisms of action of NPWT.[8][9][10][11][12][13][14][15]  91 

 92 

 93 

Methods: 94 



 95 

Search Strategy: 96 

 97 

Medline, Embase and Elton Bryson Stephens Company(EBSCO) databases, and Clinical trial registries 98 

were searched from inception to January 2023 using pre-specified key words( Supplementary file 1). 99 

Article screening and extraction was performed by two authors(BR and NS) using the Rayyan online 100 

screening and data tool[16].The reference lists of the retrieved articles and similar review articles in 101 

the field were also searched to identify additional papers. Studies that examined the mechanism of 102 

action of NPWT in patients or in animal models in preclinical studies or in-vitro studies were 103 

included. We included studies that evaluated the effect of any form of NPWT on open surgical 104 

wounds including diabetic foot ulcers, pressure ulcers, surgical site infections(SSI), traumatic wounds 105 

and post-operative wounds. Studies which focussed on the effects of NPWT on primarily closed 106 

wounds or stoma creation were excluded. Case reports, non-English papers, 107 

editorials/commentaries, reviews, letters and papers with limited data on methodology were 108 

excluded. The study was registered in the PROSPERO database (CRD42022303088) and was 109 

performed according to Preferred Reporting Items for Systematic Reviews and Meta Analyses 110 

(PRISMA) guidelines[17].  111 

 112 

Data extraction: 113 

 114 

The key details regarding the method and results were recorded on a bespoke data extraction sheet. 115 

Data extraction was conducted by two independent reviewers (BR and NS). Discrepancies were 116 

resolved by discussion amongst the authors and a tie-breaking vote from the authors not involved in 117 

the screening process. Data elements extracted included study name and year of publication, 118 

country, immune cell/mediator(s) described in the study, model (clinical studies, animal wound 119 

models or in-vitro),type of wound, specific device with control intervention, duration and time 120 

points of analysis, quantitative/qualitative outcomes, duration of follow-up, publication status, 121 

funding and conflict of interest.   122 

 123 

Assessment of risk of bias(RoB): 124 

 125 

Risk of Bias assessment was performed using the RoBANS tool[18] for non-randomized studies, the 126 

COCHRANE’s Risk of Bias 2(ROB-2) tool[19] for randomized clinical studies, Office of Health 127 

Assessment and Translation (OHAT) tool[20] for in-vitro studies or the Systematic Review Centre for 128 



Laboratory Animal Experimentation (SYRCLE) tool[21] for animal model studies. The risk of bias 129 

assessment and quality assessment figures were produced with the help of the interactive online 130 

web application, “robvis”[22] . 131 

 132 

Data synthesis and analysis: 133 

Due to the diversity of the variables and immune markers being evaluated and the heterogeneity of 134 

the studies being reviewed, it was not possible to pool data and present findings as a meta-analysis. 135 

Instead, a descriptive summary was performed with aggregated data presented as a narrative 136 

synthesis. The narrative synthesis includes elements such as the immune cell or biomarker of 137 

interest, its context and the impact of NPWT on it. The relationship between the immune 138 

cell/biomarker and wound healing and the concordance between studies with respect to these 139 

findings. Also, each study’s methodological and summary characteristics are presented in a separate 140 

table to include the author(s), institution, year of publication, sample size, study model, 141 

biomarkers/cell markers under review, and key findings reported by authors. 142 

 143 

Results: 144 

Out of 6397 potential studies, 33 studies were included in the systematic review. This included 19 145 

clinical studies, 11 animal studies and 3 in-vitro studies. The exclusion of all the other studies have 146 

been outlined in Figure 1 in accordance with the PRISMA reporting guidelines. Out of the 11 animal 147 

models, 1 study was conducted in a rabbit model, 5 studies were conducted in murine models and 5 148 

studies in porcine models.  13 studies had a high risk of bias and 3 studies had some concerns of 149 

bias.  10 clinical studies and 10 animal studies analysed tissue samples from wounds while 5 clinical 150 

studies analysed the wound effluent. 5 clinical studies and one animal study also used serum 151 

samples to correlate the effect of NPWT on wounds.  28 studies focussed on the effect of NPWT on 152 

molecular and cellular biomarkers, while 5 focussed on the effect of NPWT on differential gene 153 

expression in wound or serum samples. Substrate analysis was carried out by a combination of 154 

quantitative and semiquantitative methods including enzyme-linked immunosorbent assay(ELISA), 155 

immunohistochemical(IHC) staining or Western blot analysis. Analysis of gene expression was 156 

predominantly carried out by RNA sequencing and/or reverse transcription-quantitative polymerase 157 

chain reaction(RT-qPCR). These findings are elaborated in Table 1.  158 

 159 

Vascular Endothelial Growth Factor (VEGF) was the most frequently studied growth factor in relation 160 

to NPWT with 7 papers identified[23][24][25][26][27][28,29][30]. Results from clinical studies were 161 

reported in 4 studies[23–26]. A significant increase in the local VEGF concentration was seen in 162 



clinical wounds treated with NPWT, and reports from animal studies concurred with these 163 

findings[27–30]. This increase in VEGF has been postulated to contribute to the increased 164 

neovascularization and granulation tissue formation in patients treated with NPWT. VEGF was 165 

elevated in all 7 studies which studied its effects. Tumour necrosis Factor alpha(TNF α) was 166 

downregulated in 5 out of 8 studies and was the next most common biomarker that was 167 

studied[25,31,32][33–35]. TNF α is considered as a pro-inflammatory cytokine and a potent inducing 168 

agent for the upregulation of cytokines, reactive oxygen species and apoptosis. Elevated levels of 169 

TNF α in the wound bed has been associated with chronic non healing wounds with reduced 170 

granulation tissue production. Transforming Growth Factor Beta(TGF β) was upregulated in 5 out of 171 

7 studies that studied its effects. The data from the in vitro models included in this paper[34,36,37] 172 

suggest that it leads to increased granulation tissue production. NPWT induces the production of 173 

TGF-β1, which is crucial for the initiation of the proliferation phase of wound healing. The effect of 174 

NPWT on wound healing is mediated through various signals, including TGF-β-Smad, which further 175 

underscores the importance of TGF-β in this context. Fibronectin was upregulated in both studies 176 

which evaluated its effects[38,39]. Equivocal results were obtained across all studies with respect to 177 

Interleukins(IL) and Matrix Metalloproteinases(MMP) including IL1β,IL 6,IL8,IL8, MMP 2,3 and 9.  The 178 

effects of NPWT on 43 other molecular biomarkers and 13 different gene expressions were analysed 179 

across included studies(Table 1). 180 

 181 

 182 

Clinical/Human studies: 183 

19 clinical studies were conducted to assess the MOA of NPWT from 2003 to 2022 with study 184 

numbers varying from three to172 patients. Out of these, 12 studies compared the mechanisms of 185 

action between NPWT and standard dressings and other studies studied the MOA of NPWT alone. 186 

Eleven studies used granulation tissue samples from wound beds, 5 studies studied samples from 187 

wound effluents and 5 studies analysed peripheral blood samples. Ten studies had a high risk of bias, 188 

one study had some concerns of bias and eight studies had a low risk of bias.(figure 2a,2b)The main 189 

cytokines of interest in these studies were VEGF,TNF α, Interleukin(IL)-6,IL - 8, IL 1B, and the family 190 

of matrix metalloproteinases(MMP) MMP-1,MMP-2,MMP-9,MMP-13. VEGF was upregulated in all 191 

four studies which studies it’s effects TNF α was downregulated in four out of four studies, 192 

Fibronectin and TGF B1 were upregulated in both studies which studied their effects. There was no 193 

concordance regarding the impact of NPWT on the other cytokines, biomarkers and/or genes. 194 

 195 

Animal studies: 196 



11 animal studies were included in this review out of which five studies used murine models, five 197 

studies used porcine models and one study used rabbit models. The sample size ranged from six to 198 

56 animals. Three studies had a high risk of bias, two studies had some concerns and six studies had 199 

a low risk of bias.(figure 2c) All studies used tissue samples and two studies also used serum samples 200 

in addition for analysis. The main cytokines of interest in these studies were TNF α, FGF-2, TGFB1, 201 

PDGF and VEGF. Three out of three studies reported the upregulation of VEGF following NPWT. Two 202 

studies reported the upregulation of TNF α while one study reported its upregulation following 203 

NPWT.  The results of most of the included animal studies suggest that many of the 204 

cytokines/chemokines and genes are upregulated following the upregulation of NPWT.   205 

 206 

In Vitro studies: 207 

Three studies studied the mechanisms of action of NPWT using in vitro models using murine 208 

fibroblasts[40], human fibroblasts in a 3D fibrin matrix[41] and a combination of PMNs, HL 60 cell 209 

lines and Macrophages[34] respectively. Each study examined a completely different set of 210 

biomarkers (Table 1). Two studies conducted their experiments in a cell culture under negative 211 

pressure. Two studies also reported the upregulation of TGF-B under the effect of 212 

NPWT[40,41].  The risk of bias assessment using the OHAT tool revealed a low risk of bias for one 213 

study, some concerns of bias and high risk of bias for the other two studies.  214 

 215 

Gene expression changes: 216 

The effect of NPWT on 17 different gene expressions was assessed in this systematic review(Table 217 

1). Since no two studies evaluated the effects of similar gene expressions, it was not possible to 218 

collate these findings. The results of the included studies have suggested that the genes induced by 219 

NPWT were associated with cell proliferation and inflammation, and the most down-regulated genes 220 

were linked to epidermal differentiation. NPWT has also been postulated to aid differential gene 221 

expression to influence re-epithelialization and angiogenesis [42].NPWT was also observed to alter 222 

multiple proteins in the granulation tissue to aid antioxidant pathways and detoxification.[43] The 223 

gene ontology enrichment analysis performed in one of the studies was consistent with a number of 224 

previous studies showing that the wound healing process was associated with altered extracellular 225 

matrix deposition[44], cytoskeletal deregulation [45], dyslipidemia [46] and prolonged inflammation 226 

response [47]. They also unexpectedly found some signalling pathways that seemed weakly relevant 227 

to the curative effect of wounds in the enrichment analysis of Kyoto Encyclopaedia of Genes and 228 

Genomes(KEGG) signalling pathways, such as thyroid hormone synthesis, thyroid hormone signalling 229 

pathway, human T‐cell leukaemia virus 1 infection and African trypanosomiasis.[48][49][50]. 230 



 231 

Discussion: 232 

 233 

This systematic review summarises the current understanding of the mechanism of action of NPWT 234 

based on studies published over the last 20 years. The effect of NPWT was assessed in 33 studies 235 

which included 19 clinical studies, 11 animal models and 3 in-vitro studies. Given that more than 43 236 

different molecular biomarkers and 17 different gene expressions were analysed across all studies, 237 

there was some clear concordance in actions on several markers studied and variation between 238 

studies with respect to the effects on other biomarkers/genes following NPWT (table 2).  239 

 240 

It has been postulated that NPWT produces hypoxia driven immunomodulation, local and/or 241 

systemic attenuation of the acute inflammatory response, angiogenesis and cell recruitment which 242 

combine to produce the clinical effects of NPWT.[15][51] However, the specific mechanisms of 243 

action by which these are achieved continue to be controversial. This is mainly because of the 244 

limited concordance among these studies to enable conclusions with regard to the specific 245 

mechanisms involved. The previous systematic review in this topic [52] suggested that human 246 

studies supported angiogenesis via VEGF, cell recruitment predominantly via IL-8 and reduced MMP 247 

expression, animal models suggested an anti-inflammatory response via IL-10,VEGF, FGF-2, CGRP 248 

and substance P and in vitro models suggested increased granulation tissue formation. They also 249 

reported that human studies predominantly studied cytokine and MMP data while growth factor 250 

data were predominantly derived from animal studies and in vitro models. However, the effect of 251 

NPWT on the differential gene expressions was not explored in this review. First insights into the 252 

molecular mechanisms behind NPWT suggested that NPWT also induces gene expression changes at 253 

the wound bed. These changes were postulated to range from 10-fold induction to 27-fold 254 

suppression.[53][27][54] 255 

 256 

Since this previous systematic review, more than 20 newer biomarkers, cytokines and genes have 257 

been studied across 19 more recent studies, the summary of which has been collated in this 258 

paper. The data summarized in this review confirms that NPWT-induced strain promotes a pro-259 

angiogenic and pro-mitogenic phenotype in subjacent cell proliferation. NPWT induced cell 260 

deformation leads to proliferation as a consequence of cytoskeletal tension. Integrins, adhesive 261 

contacts within the cell matrix, act as strain gauges, triggering mechanoreceptor signalling pathways. 262 

[55][56]Application of NPWT results in positive pressure at the wound bed and hence reduced blood 263 

flow in the tissue immediately adjacent to the filler material.[57] NPWT enhances specific 264 



inflammatory gene expression at the acute phase associated with epithelial migration and wound 265 

healing. However, its continued use may inhibit epithelial differentiation.[53] NPWT is also 266 

associated with an up-regulation of basic fibroblast growth factor (bFGF) and extracellular signal-267 

regulated kinase (ERK) 1/2 signalling, which may be involved in promoting the NPWT-mediated 268 

wound healing response.[27] 269 

 270 

This systematic review has a few limitations. The inherent heterogeneity of the included studies 271 

makes the data unsuitable for meta-analysis. The clinical studies were mostly underpowered and 272 

were opportunistic as reported in the previous review. There was a significant variation in terms of 273 

the methodology, mainly concerning sample collection/storage, time interval from collection to 274 

analysis and techniques utilized to extract and study the biomarkers of interest. The data from a 275 

majority of human studies do not take into account extrinsic factors such as collection and storage of 276 

samples which do not account for degradation of biomarkers. Moreover, important clinical 277 

information including the use of antibiotics, immunosuppressants including corticosteroids or anti-278 

biologicals were not included. Given the extensive number of biomarkers and genes analysed in the 279 

included studies, there was limited concordance to suggest a strong correlation between NPWT and 280 

regulation of many biomarkers. The time-points at which these biomarkers were studied also varied 281 

significantly among studies. It has also been suggested that the magnitude of negative pressure 282 

employed is likely to influence blood flow, which in turn influences the degree of hypoxia and 283 

reperfusion. This has been shown to alter the expression of mechanosensitive genes[10,58]  284 

 285 

There were some discrepancies between animal and human studies especially with respect to the 286 

regulation of MMP and IL-6. Although the animal studies address most of these issues, the 287 

extrapolation of this data to predict clinical biological response is not appropriate. Although in-vitro 288 

studies using human cell lines has the potential to circumvent these concerns, only three studies 289 

have been conducted over the last 10 years. Only two out of three studies studied the effects of 290 

NPWT on human derived cell lines and analysed a completely different set of biomarkers via 291 

different methodologies. Although we have a better understanding of the primary and secondary 292 

mechanisms of action of NPWT, namely: macrodeformation, cellular proliferation, differentiation, 293 

cell migration, angiogenesis and neurogenesis, a comprehensive temporal expression profile of most 294 

biomarker changes with NPWT remains elusive. However, VEGF (Vascular Endothelial Growth 295 

Factor) was elevated in all 7 reports which had studied its effects. Tumour necrosis Factor alpha (TNF 296 

α) was downregulated in 5 out of 8 studies, Transforming Growth Factor Beta (TGF β) was 297 



upregulated in 4 out of 7 studies, and Fibronectin was upregulated in both studies which evaluated 298 

its effects. 299 

 300 

In conclusion, NPWT stimulates modulation of numerous local and circulating cytokines and growth 301 

factor expressions to promote an anti-inflammatory profile. This is most likely achieved by 302 

downregulation of TNFα, upregulation of VEGF, TGF-β and fibronectin. This review has also 303 

identified many other biomarkers and gene expressions of interest with regard NPWT actions which 304 

may help to direct future research in this field. 305 

 306 
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Legends for figures: 615 

Figure 1: Literature search and study selection 616 

Fig 2: Risk of Bias Assessment of the included studies: (a) RoBANS for non-randomized studies,(b) 617 

SYRCLE tool for Animal studies, (c) RoB-2 tool for randomized studies 618 
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Li 2013[72] Porcine 56 L Y Standard 
dressing 

Tissue Biomarke
rs 
 

MPO: 
increased 
IL 1B: 
increased 
TNFA: 
Increased 
IL 10: 
Increased 
ICAM: CD54 
increased 

Aydin 
2019[73] 

Rabbit 30 S N Control Tissue Biomarke
rs 

No change in 
CD34/CD31 

Younan 
2010[74] 

Murine 40 L N Cyclical 
NPWT; 

Occlusiv
e 

dressings 

Tissue Biomarke
rs 

CGRP : 
increased 
substance P: 
increased 
NGF : 
increased 
Highest for 
cyclical > 
continuous 

Erba 2011[29] Murine 50 L N Continuo
us vs 

cyclical 
NPWT 

Tissue Biomarke
rs- 

 

VEGF dimers 
higher in VAC 
VEGF higher at 
surface of 
wound 
 HIF 1alpha 
higher in 
control 

Jacobs 
2009[75] 

Murine - L N Standard 
dressing 

Tissue Biomarke
rs 

VEGF 40% 
upregulation 
FGF-2 140 % 
upregulation 
CD31: 
increased 
expression 

Scherer 
2008[76] 

Murine 20 L N Duoder
m 

Tissue Biomarke
rs: 

 

PECAM-1 
Increased 
Ki 67 - 
increased 



Qiu 2021[77] Murine 48 L Y None Tissue Biomarke
rs 

CD31: 
Increased 
CD68 : 
Reduced 
MDA: 
Reduced 
SOD: reduced 
CAT: reduced 
Raftlin: 
increased 

Lu 2011[40] In vitro - L N PU Foam Murine 
fibroblast 
cultured 

Biomarke
rs 

FGF-2 
upregulated 
B FGF - 
upregulated 
TGFB1 
upregulated 
Alpha SMA 
upregulated 
Type 1 
collagen alpha 
1 upregulated 

McNulty 
2009[78] 

In vitro - L N None Human 
fibroblast

s in 3d 
fibrin 

matrix 

Biomarke
rs 
 

PDGF: 
Increased by 
53% 
TGF-B 
increased by 
80% 

Dong 2020[34] In vitro - L N None PMNs 
HL 60 

Macropha
ges 

Biomarke
rs 

Flow 
cytometry 
Decreased 
apoptosis by 
PMN/macroph
ages  
ELISA 
TNF alpha 
downregulate
d 
IFN Gamma 
upregulated 
EGF 
upregulated 
EGFR 
upregulated 
IL17 
upregulated 
Western blot 
CDC42 
increased  
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Table 2: Variation in outcomes following NPWT on common biomarkers of interest 628 
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 639 
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Biomarker of interest Studies suggesting 
upregulation 

Studies 
suggesting 

downregulation 

Studies 
suggesting no 

change 

Vascular endothelial growth 
factors(VEGF) 

Zhou 2012, Erba 2011, 
Jacobs 2009, Labler 
2006, Labler 2009, 

Karam 2018,Mu 2019, 
 

  

Tumour Necrosis Factor-alpha Brownhill 2021, Li 2013 Stechmiller 
2006,Eisenhardt 

2012, Karam 
2018,Wang 

2019, Dong 2020 

Norbury 2007 

Transforming Growth Factor 
Beta 

Karam 2018,Yang 
2017,Lu 2011,McNulty 
2009, Brownhill 2021 

 Kilpadi 2016, 
Norbury 2007 

Interleukins(IL) 
IL6 
IL8 

IL-1B 

 
Labler 2006 

Labler 2006, Labler 
2009 

Stechmiller 2006, 
Brownhill 2021, Li 2013 

 
Wang 2019 

 
Kilpadi 2016, 
Labler 2009 
Kilpadi 2016 

MatrixMetalloproteinases(MMP) 
MMP 2 
MMP 3 
MMP 9 

 
Stechmiller 

2006,Greene 2006,  
Stechmiller 

2006,Brownhill 2021 
Stechmiller 2006, 

Brownhill 2021 

 
 
 

Karam 
2018,Greene 

2006 
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Fig 2: Risk of Bias Assessment of the included studies: (a) RoBANS for non-
randomized studies,(b) SYRCLE tool for Animal studies, (c) RoB-2 tool for randomized
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Response to reviewers: 

Reviewer #1: Dear authors, The work is really interesting about the several studies at different stages 

about negative pressure wound therapy. However, I have some suggestions to improve the quality of 

the manuscript. 

Response: Dear reviewer, many thanks for your kind comments and key suggestions. They have been 

incorporated as follows. 

 

Comment 1. The references should be revised because I found one of them in red. 

Response: Many thanks for pointing this out, this has duly been rectifieed.  

Comment 2. The authors should discuss more in deep the subtype of TGF-beta is involved in the 

negative pressure wound therapy? 

Response:  Many thanks for this suggestion, they have duly been added to lines 171-176.  

Comment 3. I think the authors should include a graphical abstract about the work 

Response: Many thanks for this suggestion. The graphical abstract has been added as an additional 

fiele.  

 

 

Reviewer #2: Dear Editor, 
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This systematic review summarises the current understanding of the mechanism of action of 

negative pressure wound therapy on open surgical wounds at a molecular level, based on studies 

published over the last 20 years. Although many theories have been proposed to support its primary 

and secondary mechanisms at a molecular level, the evidence has not been collated since 2014.  

The wide-ranging readership of the Expert Reviews in Molecular Medicine undoubtedly offers the 

appropriate platform to disseminate this work at the interface between wound healing and 
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elsewhere in the same form without the consent of the publisher.  
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Supplementary material  

Search strategy  

1. exp Negative-Pressure Wound Therapy/     

2. exp Suction/     

3. exp Vacuum/     

4. (negative pressure or negative-pressure or NPWT).tw.     

5. (sub-atmospheric or subatmospheric).tw.     

6. Topical Negative Pressure.tw.     

7. TNP.tw.     

8. Sub-atmospheric wound therapy.tw.     

9. Microdeformational wound therapy.tw.     

10. MDWT.tw.     

11. (wound adj3 suction).tw.     

12. (wound adj3 drainage).tw.     

13. ((foam adj3 suction) or (suction adj dressing$)).tw.     

14. (vacuum assisted closure technique or VAC).tw.     

15. 
((vacuum adj therapy) or (vacuum adj dressing$) or (vacuum adj seal$) or (vacuum adj closure) 

or (suction$ adj drainage)).tw. 
    

16. or/1-15     

17. exp Surgical Site Infection/     

18. Surgical Site Dehiscence.tw.     

19. (wound* adj7 dehisc*).tw.     

20. (wound* adj7 infect*).tw.     

21. (wound adj7 disrupt*).tw.     

22. wound complication*.tw.     

23. (surg* adj7 infect*).tw.     

24. (surg* adj7 wound*).tw.     

25. (surg* adj7 site*).tw.     

26. (surg* adj7 incision*).tw.     

27. (surg* adj7 dehisc*).tw.     

28. or/17-27     

29. (intent* or second* or heal* or complic*).tw.     

30. ((open* or clos*) adj5 wound*).tw.     

31. 29 or 30     

Search Strategy



32. 31 and 28     

33. randomised controlled trial.pt.     

34. controlled clinical trial.pt.     

35. randomi?ed.ab.     

36. placeb*.ab.     

37. clinical trials as topic.sh.     

38. random*.ab.     

39. trial.ti.     

40. exp animals/ not humans.sh.     

41. or/33-40     

42. 32 and 41     

43. cytokin*.tw.     

44. chemokin*.tw.     

45. Angio*.tw.     

46. exp growth factors/     

47. tumour necrosis factor-alpha.tw.     

48. TNF.tw.     

49. Interleukin.tw.     

50. or/43-49     

51. 42 and 50     
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