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Abstract 

Engineering and computing systems are increasingly complex, intelligent, and open 

adaptive. When it comes to the dependability evaluation  of such systems, there are certain 

challenges posed by the characteristics of “complexity” and “intelligence”. The first 

aspect of complexity is the dependability modelling of large systems with many 

interconnected components and dynamic behaviours such as Priority, Sequencing and 

Repairs. To address this, the thesis proposes a novel hierarchical solution to dynamic fault 

tree analysis using Semi-Markov Processes. A second aspect of complexity is the 

environmental conditions that may impact dependability and their modelling. For 

instance, weather and logistics can influence maintenance actions and hence 

dependability of an offshore wind farm. The thesis proposes a semi-Markov-based 

maintenance model called “Butterfly Maintenance Model (BMM)” to model this 

complexity and accommodate it in dependability evaluation. A third aspect of complexity 

is the open nature of system of systems like swarms of drones which makes complete 

design-time dependability analysis infeasible. To address this aspect, the thesis proposes 

a dynamic dependability evaluation method using Fault Trees and Markov-Models at 

runtime. 

The challenge of “intelligence” arises because Machine Learning (ML) components 

do not exhibit programmed behaviour; their behaviour is learned from data. However, in 

traditional dependability analysis, systems are assumed to be programmed or designed. 

When a system has learned from data, then a distributional shift of operational data from 

training data may cause ML to behave incorrectly, e.g., misclassify objects. To address 

this, a new approach called SafeML is developed that uses statistical distance measures 

for monitoring the performance of ML against such distributional shifts.  The thesis 

develops the proposed models, and evaluates them on case studies, highlighting 

improvements to the state-of-the-art, limitations and future work. 
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Chapter 1 

 
 

1 Introduction 

Since the industrial revolution technology is growing exponentially, and it is 

expected to see even more rapid development in the future. Many technologies are used 

in safety critical applications where human life, or the environment are put at risk. 

Examples of safety critical systems include Air Traffic Control, surgical robots, chemical 

toxic processes and nuclear power plants. Technological disasters like the one seen in the 

Fukushima Daiichi nuclear power plant reminds us of the importance of building 

technologies that remain safe even in the most challenging circumstances (Perrow, 2011). 

The implication is that, when we invent new technologies or design new systems, safety 

evaluation should be a primary design concern rather than a secondary one and it should 

not be considered as an afterthought.  Safety is an attribute of “dependability”, an 

umbrella term that covers other attributes including reliability, availability, 

maintainability, and security.  While the thesis focuses on safety it also addresses 

reliability and availability hence the term dependability is frequently used (Avizienis et 

al., 2004). 
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1.1 Challenges and Motivation 

This thesis is precisely motivated by a set of new challenges for dependability 

evaluation.  A new generation of intelligent, autonomous, often open, and self-adaptive 

systems is emerging that poses difficulties for safety and dependability more broadly. 

Such systems include systems that employ machine learning or deploy swarms of 

collaborative autonomous robots. We identify two key challenges in the dependability 

evaluation of these emerging systems that, motivate this thesis – complexity and 

intelligence.   

1.1.1 Challenge of Complexity 

The complexity of a system often refers to the quality of being composed by wide 

range of interconnected parts or elements that exhibit a behaviour that is difficult to 

understand, model or predict especially in the context of their composition. It refers to the 

interconnectedness and interdependence of parts in a system, leading to behaviour that 

emerges from the interactions of these parts. Complexity can refer to a wide range of 

systems, including natural systems like ecosystems and weather, social systems like 

economies and cultures, and technological systems like computer networks. The study of 

complexity seeks to understand how these systems function. In addition, it seeks to 

understand and predict the behaviour of the systems with regards to timing.  In general, 

complexity is characterized by a high degree of unpredictability, non-linear and dynamic 

relationships, and emergent behaviours. 

1.1.1.1 Complex Architecture and Behaviour 

In the perspective of safety science and dependability evaluation the same rules 

apply. Thus, it is hard to predict all the failures of a complex system, and dynamic 

behaviours such as priority, sequence, repair, and reconfiguration are difficult to be 

modelled. State-space models are well-known for handling the dynamic behaviour of 

systems. However, by increasing the number of components in a system, state-space 

models can face the issue of state-explosion in which the number of states in the system 

increases exponentially and the dependability model is no longer interpretable. Dynamic 

Fault Tree analysis is an approach for dependability modelling that is frequently used 

because of its intuitive nature and interpretability. But, for quantitative dependability 

evaluation it is not independent from state-space models. For having a quantitative 

reliability evaluation, Dynamic fault trees need to be transformed into other model types, 

such as Markov chains, Bayesian Network, and Petri Nets. However, this conversion 
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process can lead to a significant increase in the number of states, which is commonly 

known as the state explosion problem. This makes the analysis more complex and 

computationally challenging. 

It is also limited to pre-defined dynamic gates such as SEQ, PAND, SPARE, and 

POR. A primary motivation of this thesis is to propose solutions that improve 

dependability modelling of complex architectures and behaviours whilst a) reducing 

state-space explosion b) increasing the model interpretability, and c) reducing its 

limitations with pre-defined dynamic gates. 

1.1.1.2 Environmental Factors that Influence Dependability 

System are not just machinery; the operate in physical and human environments. 

Environmental aspects can also make dependability evaluation more complex. For 

instance, the effect of environmental variables such as wind speed, wave hight and 

temperature can increase the complexity of understanding and modelling of an offshore 

wind farm. Creating a model that is both capable of modelling complex architecture and 

dynamic behaviours but also environmental factors in a challenge. The second motivation 

of this thesis is to propose solutions for that, in the context of dependability modelling in 

the domain of offshore wind. A model that deals with environmental factors should be 

capable of adapting itself based on the monitored conditions. So, we aim to provide a 

model that can update itself using real-time condition monitoring information and the 

estimated remaining useful life of the components of wind turbines. 

1.1.1.3 Autonomy in Open Multi-Agent Systems 

A system is autonomous when it decides on its actions, and it shapes its own 

configuration through its operational mission and life. Autonomy introduces 

unpredictability because decision algorithms can be highly complex. When autonomous 

systems fail, there is no operator to bring a system back into a safe state.  Another form 

of unpredictability in emerging systems is caused by the open nature of loosely connected 

multi-agent systems like swarms of robots. These systems come together and dissolve in 

configurations that can be infinite in number and hard to predict at design time. 

Unpredictability is a major concern in dependability evaluation. Traditional techniques 

require all options and configurations to be enumerated and analysed at design time. 

However, this is not possible in a large class of emerging systems and the motivation is 

to find a solution to handle this kind of systems using the multi-UAV case study. A third 

motivation in this thesis is to propose solutions that address this problem for a multi-robot 
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drone system by using a recently proposed concept of Executable Digital Dependability 

Identities (EDDIs) (Aslansefat et al., 2022).  The goal is that dependability is continually 

evaluated during operation and the proposed mechanisms for that can then inform action 

and reconfiguration when dependability thresholds are violated. 

1.1.2 Challenge of Intelligence 

Many emerging systems include intelligent components, and this poses great 

difficulty in dependability evaluation. In classical analysis the system is assumed to be 

designed or programmed and there are models providing a basis of analysis. However, 

the behaviour of intelligent components is learned from data, and the component is 

typically a black box. Therefore, it is very hard to understand and predict the behaviour, 

and it is therefore also hard to predict at what conditions they might yield failure. There 

are several standards to evaluate traditional systems and software. One may model the 

failure behaviour of a function code using Fault Tree Analysis. However, there is no 

established standard for dependability analysis of a machine learning-based pedestrian 

detection algorithm. In this thesis the motivation with regards to the challenge of 

intelligence is to focus on distributional shift that can cause a machine learning algorithm 

to fail and use statistical distance measures to evaluate and monitor the shift.  

1.2 Research Background and State-of-the-Art 

The thesis deals with two different dependability evaluation challenges (complexity 

and intelligence) and three aspects of the challenge of complexity (complex architecture 

and behaviour, environment, and open nature of systems). Therefore, there are four 

aspects addressed. These are dealt with in four main chapters, and the background and 

the state-of-the-art is addressed individually for each aspect. Thus, for clarity, each 

chapter features its own distinct literature review, methodology, and presentation of 

numerical results and discussion. To set the scene, in this section, a brief background and 

state-of-the-art (SOTA) with respect to each aspect is provided. Details can be found in 

the respective chapters. 

1.2.1 SOTA in Challenge of Complexity 

In what follows, a brief background will be provided for each of the three aspects 

of complexity challenge. 
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1.2.1.1 SOTA in Complex Architecture and Behaviour 

Safety-critical systems need to be designed with high reliability because system 

failures may contribute to hazards. Reliability is the probability of a system completing 

its expected function without any failure during its mission time (Dubrova, 2013). The 

accurate evaluation of reliability (and availability) when there is a dynamic behaviour 

such as active standby redundancy, dormant demand systems, aging of components, etc. 

is a challenging for dynamic systems as illustrated in Figure 1-1 (Norberg, Rosén and 

Lindhe, 2009).  

 
Figure 1-1. Modelling Challenges in Dependability (Norberg, Rosén and Lindhe, 2009) 

 

Three main methods and theories are applied for reliability evaluation.  

• State-space methods such as Continuous-Time Markov Chain (CTMC), Semi-

Markov Process (SMP) and Markov Regenerative Process (MRGP) (Distefano, 

Longo and Trivedi, 2012b). In these methods, by increasing the number of system’s 

components the model interpretability will be reduced and there is potential for state-

explosion. 

• Numerical methods like Monte Carlo and probabilistic expressions (Chiacchio et al., 

2013) are easier to perform but usually their answer is approximate, time-complex 

and its accuracy depends on the number of iterations in the algorithm. 
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• Combinatorial methods such as Reliability Block Diagram (RBD) and static Fault 

Tree (FT) (Misra, 2008). These are usually interpretable but limited for dynamic 

behaviour analysis. Static FT is a top-down graphical deductive technique, which is 

powerful in the description of systems' failures and their interactions. In addition, 

static FT has an independent reliability solution. However, the weakness of the static 

FT is in its inability to model the dynamic behaviour of systems such as functional 

and sequence dependence, spare and backup systems, priority, and repair. Dynamic 

Fault Tree (DFT) is introduced to model dynamic and time-dependent behaviour of 

systems through the novel gates introduced (Manian et al., 1999). Similar to static FT, 

DFT is powerful in the graphical representation of the system's failure interactions. 

Both Fault Tree (FT) and Dynamic Fault Tree (DFT) consist of different levels; top 

level and top event: usually, in the top level of a Fault Tree, there is a top event 

representing the failure of the whole system or mission. Intermediate level(s): this 

level includes the failure of sub-systems. As an example, the failure of an aircraft is a 

top event and the failure of its sub-systems such as the propulsion system, navigation 

system, etc. are the intermediate events located at an intermediate level. Basic events: 

in the FTA, a system can decompose to sub-systems and each sub-system can 

decompose to sub-sub-systems. This procedure will continue to the level that no more 

decomposition is affordable or possible. The events in the final decomposition level 

are called basic events. A failure of a GPS in a navigation system or a short circuit in 

an electronic board can be considered as examples of basic events. Gates: as 

mentioned before, the combination of failures in Fault Tree illustrates through logic 

gates (Kabir, 2017a).  

In this thesis, DFT is used as a core model because of its high-interpretability 

feature. One solution is improved using a novel hierarchical Semi-Markov process 

(Aslansefat and Latif-Shabgahi, 2020). In addition, the complex basic event concept is 

also introduced to enhance DFT in dynamic systems modelling (Kabir, Aslansefat, et al., 

2019).  

1.2.1.2 SOTA in Environmental Factors that Influence Dependability 

There are several existing methods in which environmental factors are considered 

as a variable in dependability evaluation models. For example, a three-state Markov chain 

availability model of offshore wind turbine considering accessibility problems has been 

proposed by (Huang et al., 2017). In that model weather delay, logistic delay and shift 
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time limitation regarding corrective maintenance has been studied. The results of the 

model have also been compared with Monte Carlo simulation to be validated. Another 

example is a Petri Nets-based parametric availability model proposed by (Santos, Teixeira 

and Soares, 2015) in which failure, repair, logistic time, weather delay have been 

considered. The article also considered Weibull distribution for rotor failure. Moreover, 

a queuing model constructed by a multi-state Markov process has been proposed to 

evaluate the availability of offshore wind turbines concerning the accessibility issues such 

as weather and transfer delays (Huang et al., 2016). The main limit of these addressed 

model is that they are usually limited to a specific component.  

In this thesis, using the concept of complex basic event that is presented in chapter 

2 and the butterfly maintenance model in chapter 3, a novel approach will be presented 

to combine these models for different components and evaluate the availability of the 

whole system in the offshore wind turbine use case.  

An additional aspect of taking environmental state into account is that the model 

must update their state using condition monitoring data or any external signal like the 

estimation remaining useful life. This means that the dependability model must update 

itself during operation, i.e. become executable. In this area, (Hurdle, Bartlett and 

Andrews, 2007) used a non-coherent Fault Tree for the fault diagnosis of a water tank 

system. The limitations in this method were a need for consistency checks from 

observation points. Two years later, the approach has been updated by combining the 

FTA and Bayesian Belief networks in (Lampis and Andrews, 2009).  

Cai et al. (Cai et al., 2015) proposed a new method for real-time reliability analysis 

through a combination of traditional Bayesian networks derived from root cause 

diagnosis and dynamic Bayesian networks. In fact, this study update’s prior reliability 

knowledge of the system (failure distributions) via dynamic Bayesian networks. A subsea 

pipe ram BOP system has been addressed as a case study in this paper. (Askarian et al., 

2016) proposed a new method for fault diagnosis through a fusion of micro-macro data. 

In this paper, the FTA and Bayesian networks have been combined to gain the advantages 

of both prior probability distribution in FTA and real-time data in Bayesian networks. 

Remaining Useful Life (RUL) is a parameter usually estimated through Machine learning 

approaches (Sikorska, Hodkiewicz and Ma, 2011).  

A method for combining failure rate and RUL as the basic event in Dynamic Fault 

Tree has been proposed by (Aizpurua et al., 2017). A hierarchical Bayesian network-

based model has been provided for process monitoring and decision making by (Chen 
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and Ge, 2018). This article used a data-driven algorithm to update the sub-Bayesian 

networks in the model. (Getir et al., 2018) has focused on semi-automated and co-

evaluated process as a case study and defined a number of intra- and inter-model rules of 

transformation to cover the evaluation scenarios. The outcome of this study has shown 

that realizing the co-evolution of the proposed approach required fewer user interactions. 

 The potential challenges and opportunities of using machine learning in a safety-

critical application have been reviewed in (Agrell et al., 2018). The paper illustrated how 

missing casualties in the model can be reduced through the incorporation of safety models 

and data-driven knowledge. A conceptual idea regarding the combination of artificial 

intelligence methods with safety models has been presented in (Simen et al., 2018). In 

this report, examples of golf-shot on the moon and Falcon launch from SpaceX have been 

demonstrated. (Cheng et al., 2019) has proposed an Imitation Medical Diagnosis Method 

(IMDM) in which three types of Bayesian networks have been used: Machine Learning 

BN, Expert empirical BN, and maintenance decision BN. The method also applied the 

fuzzy theorem to achieve uncertainties and conditional probabilities. 

Being able to link a dependability model with an external variable as a symptom 

is a vital step towards having an executable dependability model. In the next sub-section, 

the idea of executable digital dependable identifier (EDDI) with be discussed.  

1.2.1.3 SOTA in Unpredictability in Open Multi-agent Systems 

Despite existing guidance in terms of standards and guidelines there is significant 

diversity in the way how assurance of dependability properties is realized and 

demonstrated for open multi-agent systems. This generally makes it hard for third parties 

(e.g. certification authorities) to understand and assess the assurance approach, but 

particularly when systems are to be integrated (e,g, along a supply chain), this is a huge 

challenge which can consume significant amounts of time and money and also can lead 

to mistakes, ultimately jeopardizing the assurance of important system properties (Wei et 

al., 2018).  

Digital Dependability Identities (DDI) have been developed to address this 

problem. A DDI is modular, model-based and standardized. It contains all information 

relevant to describe the dependability characteristics of a system or component. At the 

heart of the DDI there is an assurance case, arguing the assurance of the relevant 

dependability properties and stringing together all models and artefacts (e.g. 

requirements, assumptions, architecture models, dependability analyses, evidences) that 

are required for the argumentation. A DDI is produced during design, issued when the 
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component or system is released, and is then continually maintained over the complete 

lifetime of a component or system. DDIs are used for the integration of components to 

systems during development as well as for the dynamic integration of systems to "systems 

of systems" in the field (Armengaud, D. Schneider, et al., 2021) (Schneider et al., 2015b). 

Executable digital dependable identifier (EDDI) is an executable version of DDI 

in which the dependability artifact(s) can be executed inside a system (e.g. a robot) and 

also can communicate with other systems (other robots).  As the idea is so novel there are 

few related articles about EDDI in the literature. On implementation of EDDI is based on 

conditional safety certificates (Schneider et al., 2015b; Armengaud, D Schneider, et al., 

2021).  

In this thesis we propose a novel use of Markov Models as executable EDDIs. In 

chapter 4, the idea behind this EDDI is developed and evaluated in a UAV-based case 

study (Aslansefat et al., 2022). 

1.2.2 SOTA in Challenge of Intelligence 

Machine Learning (ML) is expanding rapidly in numerous applications. In parallel 

with this rapid growth, the expansion of ML towards dependability-critical applications 

raises societal concern regarding the reliability and safety assurance of ML. To address 

concerns, organizations and governmental institutes are working on new rules, 

regulations and standards for ML, such as in (ISO, 2017; Alexander et al., 2020; on 

Standards in Public Life, 2020). 

While ML is a powerful tool for enabling data-driven applications, its unfettered 

use can pose risks to financial stability, privacy, the environment and in some domains 

even life. Poor application of ML is typically characterized by poor design, 

misspecification of the objective functions, implementation errors, choosing the wrong 

learning process, or using poor or non-comprehensive datasets for training. Thus, safety 

for ML can be defined as a set of actions to prevent any harm to humanity by ML failures 

or misuse.  

There are many perspectives and directions to be defined for ML Safety. (Amodei 

et al., 2016) have addressed different research problems of certifying ML systems 

operating in the field. They have categorized safety issues into five categories: a) safe 

exploration, b) robustness to distributional shift, c) avoiding negative side effects, d) 

avoiding “reward hacking” and “wire heading”, e) scalable oversight as shown in Figure 

1-2.  
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This categorization is helpful for an adequate assessment of the applicability a 

concept for a given (safety) problem. In the work presented here, we will be focusing on 

addressing distributional shift, however using a non-standard interpretation. 

Distributional shift is usually interpreted as the gradual deviation of the initial state of 

learning of an ML component and its ongoing state as it performs online learning. As will 

be shown later, distributional shift will instead be used by our approach to evaluate the 

distance between the training and observed data of an ML component. 

 

Figure 1-2. AI Safety Evaluation Challenges (Amodei et al., 2016) 

 

It is also worth to note that there are different existing approaches for increasing 

the safety and robustness of ML algorithms. Some papers investigate the uncertainty 

evaluation of results in a classifier while others focus on the improvement of robustness 

against uncertainties. As an example, the following figure shows the ETH Robustness 

Analyzer for Neural Networks (ERAN) that uses possible perturbations for input “8” and 

tries to create a shape that abstracts all possible outputs. If the created shape violates the 

defined boundary and the results cannot be certified. Otherwise, the outputs will be 

guaranteed (Singh et al., 2018).  
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Figure 1-3. ETH Robustness Analyzer for Neural Networks (ERAN) (Singh et al., 2018) 

 

In this thesis, we explore the use of statistical distance measures for distributional 

shift monitoring in a new method that we call SafeML which relates such shifts to 

confidence in the reasoning of ML algorithms.  

Statistical distance measures have been used to measure distributional shift. In 

modern ML algorithms like Generative Adversarial Nets (GANs), statistical distance or 

divergence measures are applied as a loss function, such as the Jensen-Shannon 

divergence (Goodfellow et al., 2014), the Wasserstein distance (Gulrajani et al., 2017), 

and the Cramer distance (Bellemare et al., 2017). For dimension reduction, the t-SNE (t-

distributed stochastic neighbour embedding) algorithm uses the Kullback-Leibler 

divergence as a loss function (Laurens van der Maaten, 2014).  However, there is a gap 

for using the statistical distance measure for the purpose of safety monitoring and the aim 

is address it in chapter 5 for challenge of intelligence.   

1.3 Research Context and Earlier Work on Challenges 

This section gives some background on the process that led to this thesis. The work 

was originally funded through a collaboration with EDF Energy R&D in London, and the 

main focus was to develop a novel approach to provide a Data-driven Reliability-centred 

modelling for Offshore Wind Farms (OWF) which addressed the attributes of complex 

architecture and behaviour and environmental factors that influences dependability in the 

challenge of complexity.  

During the first and the second year of the PhD, a novel approach for 

reliability/availability evaluation of complex systems is proposed. In addition, a new idea 

for connecting the monitoring data to the reliability/availability models was introduced to 



12 

 

make them data driven. At the end of the second year (2020), the IET Leslie H. Paddle has 

been awarded to the project to recognize its outstanding research outcomes.  

In the third year, a new approach for safety monitoring of intelligent components 

in the system like Deep Learning/Machine Learning algorithms is proposed and it was 

part of addressing the challenge of intelligence. The method called SafeML, and it can 

provide an estimation of system performance in the presence of distributional shift and 

concept drift. SafeML provides a safety monitoring of such system through using 

statistical distances and proposing a human-in-the-loop procedure. It should be noted that 

the Alan Turing Institute enrichment award was granted for the expansion of the idea of 

SafeML in 2022.  

In the write-up year, another research collaboration started in the European 

Commission Horizon 2020 project SESAME: Secure and Safe Multi-robot systems. The 

method described in this thesis has been used in this project for implementation of Safety-

Targeted Executable Digital Dependable Identities (EDDIs) in multi-robot systems. A 

novel fault tree with symptom layer was proposed as a prototype for EDDIs to make the 

FTA data-driven and able to update the reliability profile of a system at runtime. The 

proposed model was used for evaluation the reliability of drones at runtime and a python 

package developed known as SafeDrones. Moreover, the SafeML idea was also used to 

monitor the safety of object detection (mostly human detection) algorithms used in robots.   

1.4 Research Hypothesis and Objectives 

The hypothesis of the proposed work is to the introduce a set of new models 

presented in the thesis that can partly address two challenges of complexity and 

intelligence with fours aspects of 1) Complex architecture and behaviours, 2) 

Environmental factors that influence the dependability, 3) Unpredictability in open multi-

agent systems and 4) dependability vs. distributional shift.  

To test this hypothesis for each aspect, the following objectives will be addressed. 

• Research on relevant techniques to help inform a novel method that can meet the 

goals set in the hypothesis. The literature review is provided for each aspect: 

o Complex Architecture and Behaviour: Focusing on Dynamic Fault Tree 

as a model of choice and studying the existing solutions and their 

capabilities to address complex architecture and behaviour.  

ttps://www.theiet.org/impact-society/awards-scholarships/iet-postgraduate-research-awards/2020-winners
https://www.sesame-project.org/
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o Environmental Factors that Influence Dependability: Focusing on 

Offshore Wind Turbine Industry as a use case and investigating the 

literature for considering environmental factors in their proposed model. 

o Unpredictability in Open Multi-agent Systems: Focusing on UAV case 

study and addressing the state-of-the-art for dependability evaluation of 

open multi-UAV systems. 

o Distributional Shift: Investigating the existing research works on AI 

Safety evaluation. 

• Proposing of New Models for each aspect: 

o Complex Architecture and Behaviour: Proposing a new hierarchical 

solution for DFT in order to handle complex architecture and behaviours.   

o Environmental Factors that Influence Dependability: Proposing a 

novel maintenance model for offshore wind turbines with the capabilities 

of considering environmental factors. 

o Unpredictability in Open Multi-agent Systems: Proposing an 

executable real-time reliability model for UAVs. 

o Distributional Shift: Using statistical distance measure as a mean to 

detect the distributional shift in machine learning applications and a 

proposed human-in-the-loop procedure to handle ML failure cases. 

• Evaluation of the proposed methods using different use cases for each aspect: 

o Complex Architecture and Behaviour: Using the existing benchmarks 

for DFT evaluation as well as considering the use case aircraft fuel 

distribution system.  

o Environmental Factors that Influence Dependability: Considering 

offshore wind turbine and its availability evaluation as a use case for this 

aspect. 

o Unpredictability in Open Multi-agent Systems: Considering UAV case 

study and its real-time reliability evaluation.  

o Distributional Shift: Utilizing ML toy benchmarks as well as considering 

security intrusion detection benchmark.  

1.5 Summary of Contributions 

The main contribution of this PhD thesis is proposing a novel hierarchical approach 

for reliability and availability evaluation through combined dynamic fault tree and semi-
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Markov process. Considering the proposed Hierarchical DFT (HDFT) solution as a 

backbone of the whole thesis, the following contributions are then added as extensions 

that can improve the capabilities of HDFT to handle complex behaviour, maintenance 

tasks, runtime reliability evaluation and dealing with intelligent systems. The list of all 

contributions has been summarized as follows: 

1.5.1 Challenge of Complexity 

1.5.1.1 Complex Architecture and Behaviour 

• The proposed Hierarchical DFT (HDFT) solution is capable of handling non-

exponential and complex failure behaviours thanks to Semi-Markov Process 

capability. 

• Introducing the idea of complex basic events that increase the capability of dynamic 

fault tree analysis and push it beyond pre-defined dynamic gates.  

• Improving the previous approach using the idea of Markov path that can break-down 

Markov and Semi-Markov models. It can reduce the number of states and transitions 

that leads to lower computation complexity and reduce the issue of state explosion in 

Markov models. In other words, it can reduce the state explosion issue in using state-

space models like Markov. 

1.5.1.2 Environmental Factors that Influence Dependability 

• Proposing a novel method that considers both traditional and data-driven availability 

analysis by combining both simple failure distribution and remaining useful life 

(RUL)-based transition in a single MRGP. This is the first time that MRGP is 

combined with the real-time transition. The proposed model enables users to evaluate 

both condition-based maintenance and reliability-centered maintenance.  

• The introduction of an integrated BMM model incorporating more advanced logistics 

delays, weather delays and a daily briefing and transfer delays. Consideration of these 

accessibility and delay factors will lead to a more realistic availability evaluation of 

the offshore wind farm. 

• In the Markov modelling theories, the issue of considering the time-based deadline 

for a transition has rarely been discussed. This article uses the deadline transitions to 

model shift time limits of the O&M for offshore wind turbines. 

• Imperfect maintenance can make the model and its evaluation more realistic. 

However, the literature lacks proper modelling for imperfect maintenance. The 
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proposed model is not only able to consider imperfect maintenance but also able to 

use this option to model the life extension of the turbine. 

• The presented model can model non-exponential system behaviours using MRGP. 

The MRGP has higher computation complexity but at the same time offers more 

power in modelling complex failure behaviours. At the same time, the embedded and 

presented Markov model can be used with Markov processes in cases where only 

exponential failure and delay behaviours is considered. In other words, the 

computational complexity of the model is flexible and can be reduced via simplifying 

assumptions. 

1.5.1.3 Unpredictability in Open Multi-agent Systems 

• Combination of Dynamic Fault Tree Analysis with complex basic events and 

proposing symptom layer to support real-time reliability evaluation.  

• Introducing the concept of executable model for multi-UAV systems as a prototype 

of the EDDI concept known as SafeDrones. 

• Introducing a novel symptoms layer for the Dynamic Fault Tree to integrate it with 

runtime monitoring data. 

1.5.2 Challenge of Intelligence 

• Proposing SafeML approach for Safety monitoring of Deep Learning/Machine 

Learning algorithms using statistical distance measure and a human-in-the-loop 

procedure. SafeML is able to estimate the performance degradation of DL/ML 

algorithms in the presence of distributional shift and concept drift.  

• SafeML is a framework that is easy to implement and can accommodate various 

distribution families, including exponential and normal distributions.  

• Being a model-agnostic approach, SafeML can deal with variety of Machine learning 

and deep learning algorithms. 

• A new human-in-the-loop procedure is proposed to enable real-time safety monitoring 

of machine learning algorithms. This procedure operates at three levels: I) Accepting 

a decision and providing a real-time estimate of its accuracy. II) Detecting when there 

is insufficient data available and buffering more samples to improve decision-making. 

III) Rejecting a decision and requesting the involvement of a human agent (In cases 

that reaction time is not a limit). This occurs when the algorithm is unable to make a 

reliable decision on its own.  
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1.6 Thesis Structure 

The rest of this thesis is organized into two main sections (for challenge of 

complexity and challenge of intelligence) and consists of six chapters.  

Challenge of Complexity 

This section consists of three main chapters discussing challenges of complexity 

for quantitative safety analysis.  

Chapter Two – Complex Architecture and Behaviour 

This chapter starts with a discussion on how and why the Dynamic Fault Tree and 

Markov theorem is selected for reliability and availability evaluation. In addition, a 

comparison of different existing Markov models will be provided briefly. The Markov 

theorem and its mathematical equations is provided for both transient and steady-state 

evaluation. Moreover, the hierarchical Semi-Markov Process (SMP)-based solution for 

Dynamic Fault Tree is proposed and the concept of Markov path theorem is explained for 

the first time. Various examples are given to show the capabilities of the proposed 

method. The proposed method is used as a core for chapter three and four.  

Chapter Three – Environmental Factors that Influence Dependability 

This chapter starts with highlighting the importance of renewable energies and 

focusing on offshore wind energy. The challenge of external and environmental variables 

and their effect on availability models (as a subcategory of complexity challenge) is 

addressed in this chapter. In addition, this chapter provide an answer to the question of 

how the estimated remaining useful life can be included in the traditional quantitative 

safety models. Introducing the Butterfly Maintenance Model (BMM) is the main 

contribution of this chapter. In this chapter, the hierarchical dynamic fault tree analysis 

from chapter two is combined with the idea of complex basic events to handle BMM from 

different components of offshore wind turbines. Different examples are given to illustrate 

the capabilities of the proposed method. It should be mentioned that this part is related to 

my industrial collaboration with EDF Energy company.  

Chapter Four – Unpredictability in Open Multi-agent Systems 

In this chapter, another industry is chosen to showcase a different perspective of 

complexity challenge. The outcome of this chapter is the SafeDrones Python package as 

part of the EU SESAME Project. The general idea of this chapter is to show how to make 

the Safety model executable and how the safety models can be linked to the monitoring 

and diagnosis system. Moreover, a novel approach is proposed to use complex basic event 
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and Markov model and provide a real-time reliability evaluation of UAVs. In order to 

demonstrate the advantages of the proposed method, it has been implemented on a real 

industrial case study in collaboration with the KIOS Research and Innovation Centre of 

Excellence as one of industrial use case partner of the EU SESAME project.  

Challenge of Intelligence 

In this section the challenge of intelligence will be addressed.  

Chapter Five – Safety Monitoring vs. Distributional Shift 

The focus of this chapter is to highlight the importance of AI safety and its 

directions. In addition, distributional shift is discussed a one of the main reasons for 

performance drop in Machine Learning algorithms. In this chapter, SafeML is proposed 

as a solution for safety monitoring of machine learning classifiers. The chapter provides 

several examples to show how SafeML can be effective for machine learning monitoring 

at runtime. It should be mentioned that the idea won the Alan Turing Institute Award and 

in the EU SESMAE project there a number of industrial partners were interested to test 

the proposed method for their industrial use case.  

Chapter Six – Conclusion 

The summary of the thesis with an overall conclusion is provided in chapter six. In 

addition, the capabilities and limitations of the proposed ideas is discussed in this chapter 

and a couple of suggestions for future works are addressed. 
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Chapter 2 

 

2 Addressing Complex Architecture and Behaviour in 

Dependability Evaluation 

In this chapter, we tackle difficulties in dependability evaluation introduced by 

complex architecture and dynamic behaviour. A new method is proposed named as HDFT 

(Hierarchical DFT solution using Semi-Markov Process) that combines Dynamic Fault 

Tree and Markov models. The chapter provides a comparative review of different existing 

Markov models. The Markov theorem and its mathematical equations are provided for 

both transient and steady-state evaluation. Hierarchical Semi-Markov Processes (SMP) 

are integrated with Dynamic Fault Trees and the novel concept of a Markov path theorem 

is introduced. Numerical examples of application on systems show the capabilities of the 

method.  
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2.1 Dynamic Fault Tree Analysis 

Over the years, several methodologies have been developed to facilitate safety 

analysis and more broadly dependability analysis that includes prediction of reliability 

and availability of systems. Among them, Fault Tree Analysis (FTA) is one of the oldest 

and most popular techniques widely used to perform safety and reliability analysis of 

systems. In traditional FTA, systems and their components are usually considered to have 

two states: working and failed. To model the logical interaction between different failure 

events Boolean AND and OR gates are used, and the causes of system failure are 

determined in the form of combinations of events. To facilitate reliability analysis, each 

of such component can have its probability of failure or failure rate or distribution of time 

of failure or steady-state or instantaneous unavailability/availability defined. At the same 

time, if the component can be repaired then a repair rate is defined. However, modern 

large scale complex systems have the capacity to work in different states and they can 

have a complex repair process. A component in such system can work as a primary 

component at a particular point in time, and in another time instance the same component 

can work as a secondary component. Moreover, if a component acts as a spare component 

in a system, it can be in a different mode of spare such as cold, warm, and hot spares.  

Such multi-modal operation capability of systems and complex interactions 

between their components gives rise to different dynamic failure characteristics like 

priorities among events and functionally dependent events. However, using a classical 

fault tree approach it is not possible to explicitly consider system dynamics and 

sequencing/timing of events while performing analyses, which may produce inaccurate 

results (Kabir, 2017b). The limitations of the classical analysis techniques have not gone 

unnoticed, and it was recognised that methodologies with more powerful modelling 

capabilities are required to take into account the dynamic behaviour of systems for a 

comprehensive and accurate analysis of complex systems. 

Several attempts have reported in the literature to improve the modelling power of 

SFTs through augmentation to include different types of temporal and statistical 

dependencies in the FT model. In 1976, the concept of Priority-AND (PAND) gate was 

introduced by (Fussell, Aber and Rahl, 1976). Later, several extensions to the SFTs such 

as the DFT (Dugan, Bavuso and Boyd, 1992; Dugan, Sullivan and Coppit, 2000), 

temporal fault trees (Palshikar, 2002; Walker, 2009), and State/event fault trees (Kaiser, 

Gramlich and Förster, 2007) have been proposed. Among these extensions, DFT is the 

most popular dynamic extension of SFTs. The DFT retains the PAND gate and 
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additionally, it introduces new dynamic gates like Functional Dependency (FDEP), 

SPARE and Sequence Enforcing (SEQ) gates.  

Over the years, significant advancement has been made in the area of dynamic 

system analysis using DFTs. In this chapter, I reviewed different method of DFT analysis, 

which include both qualitative and quantitative analysis approaches for DFT analysis. 

Development in qualitative analysis started with the extension of the concept of minimal 

cut sets of SFTs to the minimal cut sequences (MCSQs) of DFTs. This was followed by 

the introduction of approaches for the determination of MCSQs from the structure of 

DFTs. On the other hand, the development in the quantitative analysis area mainly focuses 

on the quantitative evaluation of the top event of the DFT based on the quantitative failure 

behaviour related information, e.g., failure rate or probability of the basic events. To 

accomplish this task, a number of existing approaches such as Markov models have been 

addressed.  

2.2 Overview of Dynamic Fault Tree Analysis 

Dynamic Fault Tree has a similar logical structure to its static counterpart. The 

event at the top of the tree is known as the top event (TE), which almost always represents 

a system failure. This top event is decomposed into a combination of intermediate events 

(IE). Unlike the static fault tree, DFT uses both Boolean and dynamic gates to specify 

logical relationships among events to represent the IEs. IEs are further decomposed down 

to lowest-level events, which are known as basic events (BEs).  

 

 
Figure 2-1. DFT Logic Gates 

 

To allow the fault tree to model sequence/time dependent failure behaviour of 

systems, several dynamic gates have been introduced. Figure 2-1 shows the commonly 

used DFT gates. Priority-AND (PAND) gate is a special version of the AND gate. It 

delineates the priority behaviour in a dynamic system. In this gate, the output will be true 
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when both inputs occur, and the first input (event A) occurs sooner than the second input 

(event B). In other words, the occurrence time of event A should be less than the 

occurrence time of event B and both of them should fail to have the failure as the output 

of this gate. Like the PAND gate, the Priority-OR (POR) gate also delineates a sequence, 

however, it defines an ordered disjunction rather than an ordered conjunction. In this gate, 

first input (event A) has priority over other inputs. This event must happen first for the 

POR gate output to be true, but does not require all other events to occur(Walker, 2009). 

If other non-priority events occur, they must occur after the priority input. The Sequence-

Enforcing gate (SEQ) gate represents the sequential failure behaviour of events A, B and 

C respectively. It means events B and C cannot fail before the failure of event A. Also, 

event C cannot fail before the failure of event B.   

The SPARE gate is used to model redundancy in system design. The inputs to the 

SPARE are all BEs. The leftmost of the input corresponds to a primary event and other 

inputs represent spare components. In SPARE gate of Figure 2-1 (d), the input A is the 

primary component and S1 and S2 are two spare components. The behaviour of this gate 

is defined as such that when the primary component (A) fails the first spare (S1) will be 

activated; and if S1 fails then S2 will be activated. Finally, the outcome of the gate will 

become true when all of its inputs become true. A SPARE gate can represent three 

different types of dynamic redundancy; I) CSP: Cold Standby Spare in which the spare 

parts will be activated to be replaced when the primary unit (A) fails. That means in the 

cold spare mode the spare components are deactivated until they are required. II) HSP: 

Hot Standby Spare in which the spare part starts to work in parallel with primary unit and 

when it fails the spare part will be replaced immediately. III) WSP: Warm Standby Spare 

in which the spare part partially works in parallel with the primary unit to be replaced 

when needed. In other words, the spare components are neither on nor off, instead they 

are kept in-between these two states, i.e., components are kept in a reduced readiness state 

until required. 

The Functional dependency (FDEP) gate represents the functional dependency of 

some events to another trigger event. This gate helps to design a scenario when the 

operations of some components of a system are dependent on the operation of another 

component of the system. For example, when many components of a system receive 

power from a single source of supply, then failure of the power supply would cause all 

the dependent components to fail. In the FDEP gate there is only one trigger event (either 

a basic event or an intermediate event) but there could be multiple functionally dependent 
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events.  As illustrated, the event T is the trigger event and the events A, B, and C are the 

dependent events, and they will fail if T occurs. In other words, those events (A, B, and 

C) are functionally dependent to event T. However, they can have their own individual 

failure, which will not affect the occurrence of the trigger events. The FDEP gate is 

particularly useful for modelling networked systems, where communication between 

connected components takes place through a common network element, and failure of the 

common element isolates other connected components. This type of gate can also model 

interdependencies, which would otherwise introduce loops in the fault trees. 

2.3 Dynamic Fault Tree Analysis Methodologies 

As DFTs introduce dynamic gates in classical fault trees, the typical combinatorial 

analysis techniques available for classical fault tree analysis cannot be directly applied to 

analyse DFTs. Several methodologies have been developed for both qualitative and 

quantitative analyses of DFTs. Qualitative analysis mainly focuses on determining cut 

sequences from DFTs.  

On the other hand, quantitative analysis aims at determining the probability of the 

top event given the failure rate or failure probability or failure probability distribution of 

the basic events of the DFTs. Additionally, criticality analysis of events is also performed 

as part of quantitative evaluation of DFTs. The approaches used for developing 

methodologies for DFT analysis include, but not limited to, Markov models, Petri Nets, 

Bayesian Networks, Analytical solution, and Monte Carlo simulation. In the following 

subsections, we briefly discussed the qualitative and quantitative analysis approaches for 

DFTs. 

2.3.1 Qualitative Analysis of Dynamic Fault Trees 

In a qualitative analysis of traditional static fault trees, minimal cut sets (MCSs) are 

determined from the fault tree structure. An MCS represents the minimal combination of 

events that can cause the top event of the fault tree. An MCS-based qualitative analysis 

of a DFT is possible if the dynamic gates of the DFT are replaced by static gates. For 

instance, by replacing the FDEP gates by OR gates and replacing PAND and SPARE 

gates by AND gates. However, in this case, the temporal dependencies between events 

would not be retained.  

In (Xiang et al., 2012), a method was proposed to allow combinatorial analysis of 

DFT with priority-AND gate only. In their work, the PAND gate was transformed to an 
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AND gate by adding some conditioning events and the new gate was called CAND. The 

work was later extended in (Xiang et al., 2013). 

To capture the temporal dependencies between events, the concept of minimal cut 

sequences (MCSQ) was proposed by (Tang and Dugan, 2004). An MCSQ is the minimal 

sequence of events that is sufficient and necessary to cause the top event of the DFT. To 

generate the cut sequences for a DFT, the zero-suppressed binary decision diagrams 

(ZSBDD) (Minato, 2001) were used. It was shown that the dynamic gates can be replaced 

by the static gates to determine the cut sets and then cut sequences can obtained by adding 

necessary sequencing information into the cut sets. Later, for cut sequence generation, 

(Liu et al., 2007) proposed an algorithm called Cut sequence set algorithm (CSSA) using 

the notion of sequential failure symbol (SFS).  

SFS is a mechanism to describe the sequential failure between two independent 

events. Later, the concept of the extended cut sequence was proposed based on the general 

cut sequence by (Zhang et al., 2011). In the above approaches, the concept of cut sequence 

was under the assumption of non-repairability of system components. In (Chaux et al., 

2013), a new definition of cut sequences was provided for binary systems, i.e., the system 

can either be in working or in failed states, with repairable components.  

In (Walker, 2009), Walker proposed a qualitative analysis approach for the Pandora 

temporal fault tree. He also provided temporal laws for to facilitate the minimization of 

the temporal sequences of events. One year later, (Merle, 2010) introduced an algebraic 

method for determining and expressing cut sequences of dynamic fault trees. This 

approach was based on the extension of the structure function used for classical static 

fault tree analysis.  In (Rauzy, 2011), Rauzy introduced a variant of ZSBDD approach 

proposed in (Minato, 2001) to include sequencing information. This variant can be used 

for the determination of cut sequences of DFT.  

In (Kabir et al., 2017), a model-based approach was proposed for qualitative 

analysis of dynamic failure behaviour of systems.  (Elderhalli et al., 2017) integrated 

theorem proving and model checking to propose a comprehensive approach for 

qualitative and quantitative analysis of DFTs. Most recently, (Piriou, Faure and Lesage, 

2019) provided a new definition of MCSQ for dynamic, repairable and reconfigurable 

systems. Afterwards, an algorithm was proposed to derive the MCSQs from Generalized 

Boolean logic Driven Markov Processes (GBDMP) (Piriou, Faure and Lesage, 2017) 

models. 
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2.3.2 Quantitative Analysis of Dynamic Fault Trees 

A brief taxonomy of DFTs' quantitative solution techniques reviewed in this chapter 

is shown in Figure 2-2. The meaning of each sign has been explained at the bottom of the 

figure. As an example, in this figure, `R' sign stands for the ability to model and solve the 

repairable DFTs, `t' refers to a time-consuming procedure, and `D' means the solution is 

applicable for on-demand safety analysis. 

 
Figure 2-2. Taxonomy of existing solutions for DFTs  (Aslansefat, Kabir, et al., 2020) 
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2.3.3 Markov Models for quantifying DFTs 

Solving the DFT by the use of Continuous-Time Markov Chain (CTMC) is 

regarded as one of the first and most important solution methods developed for 

quantitative evaluation of DFTs. This method has been employed in the structure of 

software tools such as Galileo, DIFtree and HiRel (Bavuso et al., 1994; Dugan, 

Venkataraman and Gulati, 1997). 

 
Figure 2-3. Classification of Markov Models (Aslansefat, Kabir, et al., 2020) 
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As shown in Figure 2-3, Markov models can be categorized into five types; I) 

Homogenous Continuous Time Markov Chain (HCTMC) known as a traditional CMTC 

and it can model failures with exponential probability distribution with constant failure 

rates. II) The second type is the Non-Homogenous Continuous Time Markov Chain 

(NHCTMC) that can model global clock and exponential type failures with time variant 

failure rates. III) Semi-Markov Process (SMP) is the third category that enables to 

consider non-exponential probability distributions and renewal processes. IV) The fourth 

category is Markov Regenerative Process (MRGP) which is capable of considering 

operational mode changes in one transition. V) The Phased Type Markov Process (PH) 

is the last category and it can model multiple general distributions through diving the 

systems' states into some degraded states (more degraded states more accuracy) (Trivedi 

and Bobbio, 2017). It should be noted that there are some other extensions of Markov 

models such as Input/output Interactive Markov Chains and Generalized Boolean logic 

Driven Markov Processes (GBDMP) which are obtained from the combination of Markov 

theorem and Automata. In fact, each of those introduced Markov types can be merged 

with Automata or similar theories to generate the extended versions. In Figure 2-3, the 

modelling capability is increasing from top to bottom while the complexity of 

computation is also raising.   

Having categorized Markov models, the use of these models for reliability 

evaluation of DFTs is briefly studied as follows. In 1991, the first concept of dynamic 

fault tree and its dynamic gates such as PAND, SPARE, SEQ and FDEP have been 

introduced through their CTMCs (Boyd, 1992).  The reference also recommended an 

automatic way for conversion of DFT to its equivalent Markov Chain. Following this, in 

1993, evaluation of the system behaviours considering imperfect coverage has been 

studied (Dugan, Bavuso and Boyd, 1993). Two benchmarks named Fault Tolerant 

Parallel Processors (FTPP) and Mission Avoidance Systems (MAS) that are used later by 

many researchers, were also introduced in this article. The reliability analysis of DFT in 

the presence of transient and permanent faults, failure dependencies, recovery of a system 

and reconfiguration of FTPP benchmark was studied in (Dugan, 1993). From 1993 to 

2009 several studies have been performed to address different issues such as the accuracy 

of conversion procedure from DFT to CTMC (Manian et al., 1999), uncertainty analysis 

(Yin, Smith and Trivedi, 2001), imperfect coverage consideration (Vesely et al., 2002), 

decomposing DFTs into independent modules (Huang and Chang, 2007), introducing 

new Markov models for components' failures (Dominguez-Garcia et al., 2008), 
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considering repeated events and their effects in state-space modelling (Yuge and Yanagi, 

2008) in DFT-based reliability analysis.  

In 2009, (Norberg et al., 2009) presented a model for merging static fault tree with 

availability CTMC, so that it could evaluate the risk parameter. By the use of this method, 

reliability, risk, availability, failure rate, failure interval, MTBF and MTTF were induced 

from fault tree. This thesis employed this method on drinking water supply system. 

(Verma, Srividya and Karanki, 2010) studied different methods for reliability modelling 

and then discussed the behaviour of dynamic gates along with CTMC. In addition, they 

described DFT solutions by the use of CTMC and Monte Carlo theories. Although, in 

general, the CTMC-based approaches are applicable only to exponentially distributed 

data, (Guo, Han and Liu, 2011) proposed an approach combining failure rates with 

Weibull distribution with CTMC. (Zixian et al., 2011) reported a widespread use of 

reliability methods in evaluating the risk of surgery and with this purpose, they evaluated 

time independent risk and time dependent risk through merging CTMC and static fault 

tree. By calculating failure rate of medical facilities, they evaluated surgery frequency, 

rescue timeliness and risk of gastric-oesophageal surgery using fault tree. Then by using 

sensitivity analysis, the effect of retrieval time factor and rescue timeliness was measured. 

A Power Factor Correction (PFC) using CTMC in DFT of power systems has been 

presented in (Ranjbar, Kiani and Fahimi, 2011).  

In 2012, the Fuzzy-CTMC models have been proposed by (Li et al., 2012) to solve 

the Fuzzy DFTs and evaluate their reliability under the condition of uncertainty. They 

presented an example of automatic hydraulic system cutting machine (CNC). Their study 

only considered a dynamic fault tree example with FDEP gate and fuzzy evaluation of 

other gates are left vague. This fuzzy approach was also used in another thesis for the 

reliability evaluation of driver in array of solar cells (Huang et al., 2013). A year later, 

the statistical reliability evaluation of a dynamic fault tree with PAND gate has been 

proposed by (Xiang et al., 2013) in which the conversion of the PAND gate into AND 

gate along with considering some dependent conditional events was introduced. 

Moreover, the newly introduced AND gate called CAND was assumed to be dependent 

upon conditional events. In this study, CTMCs for PAND and CAND gates were provided 

with a discussion about their differences and used in the reliability evaluation of FTPP's 

benchmark. The combination of BDD and CTMC for reliability evaluation of DFTs has 

been introduced in (Hao, Zhang and Wei, 2014).  
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The use of Shannon’s decomposition theory has been proposed by (Ge and Yang, 

2015) to solve DFTs. The proposed method increased the computational efficiency. 

However, the thesis only considered PAND gate, and the method was not generalized for 

other dynamic gates.  (Brameret, Rauzy and Roussel, 2015) proposed a framework called 

“AltaRica” to reduce the state explosion through combining the Dijkstra's algorithm and 

notion of the distance factor for the DFT solution. An approximate solution for DFT 

through truncating Markov chain states has been presented in 2016 by (Yevkin, 2016). 

The method was appropriate for both repairable and non-repairable systems. In 2017, the 

research work of (Ge and Yang, 2015) has been extended and published in (Ge and Yang, 

2017). The research has covered spare and sequence gates through De Morgan theorem, 

and for negating a generalized cut sequence, they have improved explicit formula. In 

2018, a new state-space generation approach for solving the DFTs has been proposed by 

(Volk, Junges and Katoen, 2018). The presented method has the ability of model 

reduction through model checking theories. 

A hierarchical and approximate solution for availability analysis in DFTs based on 

equivalent two-state Markov models has been proposed by (Ramezani et al., 2016). Their 

approach was only tailored for exponential failure distribution-based events. 

An automated tool for the evaluation of repairable DFT has been presented by 

(Manno et al., 2014). The thesis proposed a mapping from DFT entity to adaptive 

transition system entity, and a conception of failure gates for the evaluation of both 

reliability and availability has been illustrated. This thesis used the SMP for reliability 

evaluation of DFTs. A novel hierarchical SMP-based solution for reliability assessment 

of DFTs was also proposed by (Aslansefat, 2014) in which the computational complexity 

and the state explosion of the SMP have decreased significantly.  

As mentioned before, Input/Output Interactive Markov Chain (I/O IMC) is an 

extension for CTMC which is used for DFT solutions (refer to (Hermanns, 2002; 

Crouzen, 2006; Boudali, Crouzen and Stoelinga, 2007, 2010; Arnold, Belinfante, der 

Berg, et al., 2013; Arnold, Belinfante, Van Der Berg, et al., 2013). The use of I/O IMCs 

can reduce state space explosion. In addition, these models enable us to consider the 

standby spare behaviours in the basic events. Generalized Boolean logic Driven Markov 

Processes (GBDMP) another extension of Markov Process has been also used for 

qualitative and quantitative analysis of the DFT by (Piriou, Faure and Lesage, 2017). 

Moreover, Sequential Binary Decision Diagram (SBDD) and its extensions have been 
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used in (Tannous, Xing and Dugan, 2011; Xing, Shrestha and Dai, 2011; Xing, Tannous 

and Dugan, 2012; Ge et al., 2015, 2016) for quantitative evaluation of DFTs. 

Markov process has been used by (Niwas and Garg, 2018) to propose an approach 

to evaluate the reliability, availability of an industrial system under the cost-free warranty 

policy, where the working period of a system is followed by a rest period. To address the 

issue of uncertain failure data in Markov chain-based reliability evaluation, (Garg, 2015) 

used a fuzzy Markov model of a repairable system to develop the nth order fuzzy 

Kolmogorov's differential equations. Later the fuzzy reliability of the system both in 

transient and steady state was evaluated using Runge--Kutta method. (Aslansefat and 

Latif-Shabgahi, 2020) proposed a novel hierarchical SMP-based approach as a solution 

for reliability evaluation of DFTs.  

In (Kabir et al., 2020) proposed a hybrid approach in which Markov-based solutions 

along with algebraic and Petri-nets where used in a hybrid way to increase the efficiency 

of the solution. A Fuzzy Markov-based solution has been introduced by (Yan et al., 2021) 

for applied for reliability evaluation of an autonomous computer system. The method was 

limited in its applicability especially dealing with repeated basic events. (Andrews and 

Tolo, 2023) has proposed a hybrid approach utilizing Markov process, BDD and Petri 

Nets to evaluate the reliability of the Dynamic Fault Tree considering repeated BEs and 

non-exponential failures. The work has four main phases of Contraction 1, Factorization, 

Extraction, Contraction 2. 

The thesis presented a number of hypothetical and industrial examples. It also has 

an example related to the repair consideration in DFTs and its SMP-based solution. 

Considering the addressed state-of-the-art for Markov-based quantitative DFT solution, 

it can be highlighted that the proposed approach in this thesis has its own unique 

characteristics such as considering Complex BEs, including runtime evaluation and using 

Markov path to reduce computation complexity. 

2.4 Semi-Markov Transient Analysis for Reliability Evaluation 

In this section, analytical solution of Semi-Markov Process (SMP) is addressed and 

then the reliability of PAND gate is calculated by this theorem. SMP can be modelled by 

different notations (Zajac & Kierzkowski, Attempts at Calculating Chosen Contributors 

with Regard to the Semi-Markov Process and the Weibull Function Distribution, 2011), 

This project uses tuple (trio) (p, P, F(t)), where: p is vector of initial distribution, P is 
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matrix of conditional transition probabilities and F(t) describes matrix of distribution 

functions of sojourn times in state i th, when j th state is next; 

Considering , 0,1,2,...iX i = as a random variable, the time-homogeneous SMP X 

is determined by a vector of initial state probabilities ( )    00 1,0,...,0p P X i = = = 
, and the 

conditional transition probability matrix ( ) ( )
ijP t P t=   

. The conditional probabilities' 

matrix (𝑃𝑖𝑗(𝑡) is satisfied by Kolmogorov-Feller's equations in (2-1) (Kulkarni, 1995). 

( ) ( ) ( ) ( )
0

1

t

ij ij i kj ik

K S

P t G t P t x dQ x



= − + −    
 

(2-1) 

where 1ij = if i j= and 0ij =  otherwise, iG is the distribution of the sojourn time 

in state i (Yin, Fricks, & Trivedi, 2002; Frattini, Bovenzi, Alonso, & Trivedi, 2013), and 

( )
ijQ t describes the kernel matrix. Note that the kernel matrix has a Markov renewal 

theorem in the background (Fricks, Telek, Puliafito, & Trivedi, 1998).     

Solution of (2-1) an be found by applying Laplace Stieltjes Transformation (LST) 

in (2-3) (Rios Insua, Ruggeri, & Wiper, 2012). This is a set of Voltera equations in (2-2) 

which is a Markov renewal equation (Yin, Fricks, & Trivedi, 2002). Note that for non-

exponential failure distributions such as Weibull and Gamma, some approximation is 

needed (Refer to (Zajac & Budny, On Determination of Some Characteristics of Semi-

Markov Process for Different Distributions of Transient Probabilities, 2009; Zajac & 

Kierzkowski, Attempts at Calculating Chosen Contributors with Regard to the Semi-

Markov Process and the Weibull Function Distribution, 2011; Distefano, Longo, & 

Trivedi, 2012)). 

( ) ( ) ( ) ( )1  ij ij i ik kj

K s

p s g s q s p s



= − +   
 

(2-2) 

Equation (2-2) in the matrix form can be rewritten as follows: 

( ) ( ) ( ) ( )= − +  p s I g s q s p s
 (2-3) 

Hence, it can be rewritten as (2-4) through simple algebraic replacement. 

( ) ( ) ( )( )
1

1
−

= − −  p s q s I g s
 

(2-4) 

In (2-4), the inverse of ( )1 q s− can be replaced by the summation of powers of 

( )q s . The resulted equation which is useful for a singular kernel matrix will be as (2-5). 

( ) ( ) ( )( )
0



=

 
 = −
 
 


n

n

p s q s I g s

 

(2-5) 

Having solved (2-5) with taking the inverse LST of ( )p s , the unconditional state 

probabilities in time domain are determined as follows: 
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( ) ( ) ( )0P t P P t=
 (2-6) 

Finally, the reliability of system can be achieved by summing of the transient 

probability of operational states. 

2.5 Reliability Evaluation of PAND Gate through SMP 

The Markov model of PAND gate has previously been presented in the literature. 

Figure 2-4 illustrates the semi-Markov model of PAND gate with any failure distribution 

function. It can be solved by SMP theorem. In this model, 
( )

AF t is Cumulative 

Distribution Function (CDF) of the first input of PAND gate and 
( )

BF t is CDF of the 

second input of PAND gate respectively. States are numbered from 1 to 5 from top to 

bottom and left to right. This model can be solved by SMP theorem described in the 

previous sub-section. 

 
Figure 2-4. Semi-Markov model of a PNAD gate 

The kernel matrix of Figure 2-4 can be written in the form of (2-7) and distribution 

matrix of the sojourn time in each state is in the form of (2-8). 

( )

1,2 1,3

2,4

3,5

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

Q Q

Q

Q t Q

 
 
 
 =
 
 
 
   

(2-7) 

The dimension of both kernel matrix and sojourn distribution matrix should be n by 

n where n is the number of states. 

( ) ( ) ( ) ( )(

( ) ( ) ( ))

, ,

                   , ,                  

A B A

B

G t diag F t F t F t

F t t t 

= 

− −
 

(2-8) 

where the operation is defined by (2-9). In other words this is a probabilistic OR 

algebraic operation. 

( )( )1 1 1A B A B = − − −  (2-9) 

In matrix (2-7), 1,2Q is the system failure probability up to time t, if B is occurred at 

first. It can be written as (2-10). Subscript 1,2 stands for “from state one to state two”. 
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( ) ( )

1,2 1 1 0

0

Pr{X 2, | 1}

       =Pr{L } 1
t

B A B A B

Q S t X

t L L F t dF t

= =  =

   = −  

(2-10) 

For exponential failure behaviour case of A and B (2-10) can be written as (2-11) 

where \𝑙𝑎𝑚𝑏𝑑𝑎𝐴and \𝑙𝑎𝑚𝑏𝑑𝑎𝐵are the constant failure rates of events or inputs A and B 

respectively. 

( )  

( )
( )

1,2
0

0

1 1 1

1
      

A B

A B
A B

t

tt
B

B
A B

Q e d e

e
e d

   

 
   

 
 

− −

− +
− +

 = − − − 

 − 
= =

+




 

(2-11) 

Similarly, 1,3Q is the system failure probability up to time t, in a case that A is 

occurred first. It means the related occurrence time of event A is less than related 

occurrence time of event B.  It can be written as (2-12). For exponential failure 

distribution function of both inputs, (2-12) can be written as (2-13). 

1,3 1 1 0Pr{X 3, | 1}

=Pr{L }A B A

Q S t X

t L L

= =  =

    
(2-12) 

Similarly, 𝜆𝐴 and 𝜆𝐵 are the constant failure rates of events or inputs A and B 

respectively. 

( )  

( )
( )

1,3
0

0

1 1 1

1
     

B A

A B
A B

t

tt
A

A
A B

Q e d e

e
e d

   

 
   

 
 

− −

− +
− +

 = − − − 

 − 
= =

+




 

(2-13) 

2,4Q is the failure probability of input or event A before or at time t and 3,5Q  is the 

failure probability of input or event B before or at time t. 2,4Q and 3,5Q are defined by 

(2-14) and (2-15), respectively. 

2,4 1 1 0Pr{X 4, | 2}

Pr{  fails before or at time t}

=Pr{L }A

Q S t X

A

t

= =  =

=

  

(2-14) 

Note that 2,4 denotes “from state two to state 4” and 3,5 denotes “from state three 

to state five”. 

3,5 1 1 0Pr{X 3, | 5}

Pr{B fails before or at time t}

=Pr{L }B

Q S t X

t

= =  =

=

  

(2-15) 

In exponential form (2-14) and (2-15) are written by (2-16) and (2-17), respectively. 

2,4
0

1A A
t

t
AQ e d e

   − −
== = −

 
(2-16) 

It should be noted that both failure rates are constant. 
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3,5
0

1B B
t

t
BQ e d e

   − −
== = −

 
(2-17) 

The LST of kernel matrix is written as (2-18) in its general form. As can be seen, 

in this matrix, there are four nonzero transitions.   

( )

   

( )

( )

1,2 1,3

*

*

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

A

B

L Q L Q

f s

q s
f s

 
 
 
 

=  
 
 
 
   

(2-18) 

In general form, the LST of G matrix is written as (2-19). In exponential form, it is 

written as (2-18). Note that "diag" creates diagonal matrix from each input vector. 

( ) ( ) ( )  ( ) ( )( )* *
, , ,1,1

A BA Bg s diag L F t F t f s f s= 
 

(2-19) 

It is assumed that the failure rates are constant in the following equation. 

( ) , , ,1,1
 

− =  + + + + A B A B

s s s
I g s diag

s s s   
 

(2-20) 

Similarly, (2-21) is LST of kernel matrix for exponential failures. 

( )

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

B A

A B A B

A

A

B

B

q s

s s

s

s

 

   









=

 
 + + + +
 
 
 

+ 
 
 

+ 
 
 
    

(2-21) 

By the use of (2-4) or (2-5), the unconditional probability vector of  Figure 2-4 is 

computed as (2-22). 

( )( ) ( )( ) 
( ) ( )( )  ( ) ( )( ) 
( ) ( )( )  ( ) ( )( ) 

1 * *

1 * 1 *
1,2 1,3

1 * 1 *
1,2 1,3

1 1 ,

1 , , 1

,

A B

A B

A B

P L f s f s

L q s f s L q s f s

L q s f s L q s f s

−

− −

− −

= − −


− −


  

(2-22) 

Finally, reliability of PAND gate can be obtained from the probability of fail state 

(state 5 in Figure 2-4) using (2-23). We named this equation as "general equation of 

PAND gate", Note that, this project defines a general equation for each dynamic gate of 

a given DFT obtained by SMP.   

( ) ( ) ( ) ( )( ) 1 *
1,31 1 BR t F t L q s f s−= − = −

 
(2-23) 
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The final reliability expression shows the consistency of the results with the existing 

one in the literature.   

( ) ( )

( )
( )( )

11 1

1 A B

B

A B

A B B

t
t B

A B

R t F t L
s s

e
R t e

 


 

  



 

−

− +
−

    
= − = −    

+ + +    

−
 = +

+  

(2-24) 

 

2.6 Markov Steady-state Analysis for Availability Evaluation 

Markov Regenerative Processes are founded on Markov renewal theory and enable 

complex state transitions in a state space with the general distribution. The MRGP can be 

considered as a state-space stochastic process with the ability to restart itself in a 

probabilistic domain. In this process, it is not necessary to have the Markov property 

between regeneration epochs while the Markov property will be satisfied in the sequence 

of regeneration time points (Machida, Xia and Trivedi, 2018). Note that at the 

regeneration point, the process state does not depend on the history of the previous point. 

For more information regarding the renewal processes and MRGP, see (Kulkarni, 2016). 

Consider the stochastic process 𝑋𝑛with n\𝑔𝑒𝑞0 that follows the MRGP properties. It 

has also a number of states that are defined in the state space Ω. The regeneration epochs 

can be formed by 𝑇𝑛  where n ≥ 0 . The kernel distribution representing the former 

process can be defined as (2-25) that considers the conditional probabilities going from 

state i to state j in state-space Ω. 

𝐾{𝑖𝑗}(𝑡) = Pr{𝑋{𝑛+1} = 𝑗, 𝑇{𝑛+1} − 𝑇𝑛 ≤ 𝑡 | 𝑋𝑛 = 𝑡} (2-25) 

Given kernel distributions for all transitions in a defined MRGP, the global kernel 

matrix of the MRGP can be formed. Similarly, the local kernel distribution can be formed 

as (2-26) and captures the behaviour or distribution between two consecutive regeneration 

time points when the process is in state j ∈ Φ at time t starting from state i ∈ Ω (Machida, 

Xia and Trivedi, 2018). It can also be defined as a matrix considering all possible local 

distributions. 

𝐸𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗, 𝑇1 > 𝑡 | 𝑍(0) = 𝑖} (2-26) 

The mean sojourn time in state j considering the state i as initial regeneration state 

can be calculated by (2-27). 

𝛼𝑖𝑗 = ∫ 𝐸𝑖𝑗(𝑡)𝑑𝑡
∞

0
 (2-27) 
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Considering the finite and irreducible model, the steady-state probability vector v 

is given by solving the following linear system. Note that the summation of all elements 

in this vector should be equal to one. 

v = v ∙ 𝐾(∞) (2-28) 

The steady-state probability of state j can be obtained from (2-29). 

𝜋𝑗 =
∑ 𝑣𝑘𝛼𝑘𝑗𝑘𝜖Ω

∑ 𝑣𝑘 ∑ 𝛼𝑘𝑙𝑙𝜖Ω𝑘𝜖Ω
 (2-29) 

For demonstration, a simple example with three-state MRGP follows. Consider the 

RGMP of Figure 3-5 with hypothetical parameters and distributions, where two failure 

transitions are Weibull and defined as 𝐹(𝑡) = 1 − 𝑒−(𝑡/𝛽1)𝛼1
and 𝐺(𝑡) = 1 − 𝑒−(𝑡/𝛽2)𝛼2

. 

Repair transitions consider a deterministic function defined as (2-30). Assume that 𝛼1 =

2 , 𝛼2 = 0.75 , 𝛽1 = 2000 , 𝛽2 = 10000 , 𝑇1 = 1  and 𝑇2 = 2  (Distefano, Longo and 

Trivedi, 2012a). 

𝑅(𝑡) = {
0 𝑡 < 𝑇1

1 𝑡 ≥ 𝑇1
  𝑎𝑛𝑑   𝑅́(𝑡) = {

0 𝑡 < 𝑇2

1 𝑡 ≥ 𝑇2
 (2-30) 

To simplify the problem, consider the “Op”, “PM” and “F” states as “1”, “2” and 

“3” respectively. The kernel distribution from state “1” to state “2” can be obtained using 

(2-25) as (2-31). 

𝐾12(𝑡)  =  ∫(1 − 𝐹(𝑡))

𝑡

0

𝑑𝐺(𝑡) (2-31) 

Similarly, the kernel distribution from state “1” to state “3” can be achieved as 

(2-32). 

𝐾13(𝑡)  =  ∫(1 − 𝐺(𝑡))

𝑡

0

𝑑𝐹(𝑡) (2-32) 

Two other kernel distributions will be 𝐾21(𝑡) = 𝑅́(𝑡) and 𝐾31(𝑡) = 𝑅(𝑡). Having 

obtained all kernel distributions, for the embedded Markov chain, the probability 

transition matrix can be formed as: 

𝑃 = 𝐾(∞) = [

0 𝐾12(∞) 𝐾13(∞)

𝐾21(∞) 0 0

𝐾31(∞) 0 0

] =  [
0 𝜓 1 − 𝜓
1 0 0
1 0 0

] (2-33) 

where 𝜓 =
𝛼1

𝛽1
∫ 𝑒−(𝑡/𝛽1)𝛼1 (

𝑡

𝛽1
)

𝛼1−1

𝑒−(𝑡/𝛽2)𝛼2 𝑑𝑡 
∞

0
. Now, the sojourn time 

distributions should be obtained using (2-26). 
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𝐸1(𝑡)  =  (1 − 𝐺(𝑡))(1 − 𝐹(𝑡)), 𝐸2(𝑡) = 1 − 𝑅́(𝑡) 𝑎𝑛𝑑 𝐸3

= 1 − 𝑅(𝑡) 
(2-34) 

Using (2-28), the mean sojourn time at each state can be calculated. 

𝛼1 = ∫ 𝑒−(𝑡/𝛽1)𝛼1−(𝑡/𝛽2)𝛼2 𝑑𝑡,

∞

0

 𝛼2 = 𝑇1, 𝛼3 = 𝑇2 (2-35) 

Considering 𝑣1 + 𝑣2 + 𝑣3 = 1, and solving the linear system mentioned in (2-28): 

𝑣1 = 0.5, 𝑣2 = 𝜓/2, 𝑣3 = (1 − 𝜓)/2 (2-36) 

Finally, the steady-state availability of the system can be achieved using (2-29) 

using 𝛼1 = 2, 𝛼2 = 0.75, 𝛽1 = 2000, 𝛽2 = 10000, 𝑇1 = 1 and 𝑇2 = 2. 

𝐴(∞) = 𝜋1 =
𝑣1𝛼1

𝛼1 + 𝜓𝑇1 + (1 − 𝜓)𝑇2
= 0.999172 (2-37) 

  

2.7 Comparing with Monte Carlo Simulation 

To validate the correctness and functionality of the HDFT solution, a Monte Carlo 

Simulation is used. In this simulation, the exponential failure and repair distribution are 

considered, and the inverse transform is applied to convert failure, repair, and delay rates 

to time-to-failure, time-to-repair and delay time. In addition, the RUL is executed directly 

in the simulation. As an example of the inverse transform, consider a component with an 

exponential failure distribution and the failure rate of λ . The time-to-failure can be 

obtained from (2-38) (Manno et al., 2012). 

𝑡 = −
𝑙𝑛(1 − 𝑟)

𝜆
 (2-38) 

where r is a random number generated with uniform distribution. Similarly, the 

inverse distribution can be achieved for Weibull distribution as (2-39) (de Gusmão, 

Ortega and Cordeiro, 2011).  

𝑡 = −𝛽[𝑙𝑛(1 − 𝑟)]
1

𝛼⁄  (2-39) 

Regarding inverse transformation of the other failure distributions (Chiacchio et al., 

2013) can be referred. Simulating the aforementioned example, the mean value of the 

steady-state availability is achieved as 0.9989 with the variance of 0.0003. The 

consistency of the results in both simulation and the analytical approach can be used for 

model validation. 
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2.8 Computational Complexity Analysis 

As SMPs and MRGP are using embedded Markov chain, their computation 

complexity can be described as  O((x[00] + x[01])n) in which n represents the number of 

embedded Markov chain’s states, x[00] stands for the number of non-zero transitions 

between states where the system is functional (the system is up) and x[01] stands for the 

number of transitions from operational/up states to failed/down states(Ciardo et al., 

1990). But in the proposed approach this high complexity is restricted to small component 

models. At system level, the proposed approach uses hierarchical FT evaluation, which 

means that the computation complexity can be simplified as O(k) where k is the number 

of gates in FT (Aslansefat and Latif-Shabgahi, 2020). In should be noted that the 

computational complexity of Continuous-Time Markov Chains (CTMC) without 

considering hierarchical evaluation can be described as O(n2) where n denotes the number 

of states (Ciardo et al., 1990). In fact, MRGP is more complex than a CTMC but 

proposing the hierarchical method with the assumption of independence made can reduce 

its complexity for large-scale systems. It can be even less complex that CTMC for large-

scale systems. 

2.9 Proposed Markov Path Theorem 

In this section, a novel methodology called Markov path theorem for reliability 

analysis of dynamic and complex systems is introduced through a number of examples.  

2.9.1 Extended Markov Model (EMM) 

The type of transition definition is the one of main differences of CTMC and SMP. 

In CTMC transitions are defined by constant rate or constant probability while in SMP 

transitions are defined by Cumulative Distribution Function (CDF). In this study, 

Extended Markov Model is introduced in which transitions are defined by Kernel 

Distribution Function (KDF).  In order to explain the way of EMM modelling and its 

calculation, consider a hypothetical single-component system which could be modelled 

by three-states CTMC as Figure 2-5-(a). 

In this model state A delineate operational situation of the system, state F depict 

failure of the system and state X is a hypothetical degraded operational situation of the 

system. Is assumed that system transits from state A to Failure state (F) with the rate of 

1
 and transits from state A to state X with rate of 2

 . Both mentioned rates are belonging 

to the exponential failure CDF. If the SMP theorem is considered, the SMP model of the 
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system can be illustrated as  Figure 2-5-(b) in which transitions are obey from exponential 

CDF. 

 

 
Figure 2-5. Hypothetical single-component system (a) CTMC model (b) SMP model 

 

The above-mentioned models can be replaced by EMM as Figure 2-6. In the EMM 

model transitions are KDF and the way of their calculation will be addressed in the 

following. Note that each EMM is constructed from equivalent SMP model. In the 

following figure, the ( )
1|2Q t can be called as “KDF transition”.  

 

 

Figure 2-6. Extended Markov Model (EMM) of hypothetical single-component system 

 

In case of exponential CDF, the EMM of the system can be built as Figure 2-7 in a 

similar way that the equation (2-11) obtained.  

 

 

Figure 2-7. EMM of hypothetical single-component system when exponential CDFs are embedded. 
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It is suggested that before building of a EMM from a SMP model, if there are 

parallel transitions between two specific states of the SMP model, obtain the equivalent 

single transition by the use of the following equation.  

( ) ( )( )
1

1 1

n

eq i

i

F t F t

=

= − −
 

(2-40) 

As an example, conversion of parallel transitions to single transition depicted as 

Figure 2-8 in which equivalent transition CDF can be obtained from the following 

equation. 

( ) ( ) ( )

( )( ) ( )( )

1 2

1 21 1 1

eqF t F t OR F t

F t F t

=  

= − − −
 

(2-41) 

 

 

Figure 2-8. Conversion of parallel transitions to single transition before EMM building. 

 

2.9.2 LST-based Extended Markov Model 

Having built EMM, all kernel-based transitions can be replaced by Laplace Stieltjes 

Transform (LST) (see (Rios Insua, Ruggeri, & Wiper, 2012)) of that KDF. In the 

following, it will be shown that this conversion makes calculations easier and decrease 

problem complexity. Figure 2-9 conversion of EMM to LST-based EMM in general case. 

 

 

Figure 2-9. Conversion of EMM to LST-based EMM in general case 
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When transitions obey from exponential CDF, LST-based EMM can be obtained as 

Figure 2-10. 

 

Figure 2-10. Conversion of EMM to LST-based EMM when transitions obey exponential CDF. 

 

2.9.3 Definition of Markov Path 

Consider a hypothetical Markov model and choose two different states of the 

model. Then mark one of them as a source state and mark another as a sink state. Markov 

Path defines as a set of non-repeated transitions which associate source state to the sink 

state. It is obvious that in each Markov model a number of paths between two different 

states may exist. Usually, in reliability applications, a state which describes a system with 

fully operational condition (all components of the system work perfectly) is chosen as the 

source state and failure state is chosen as the sink state.  

The following figure illustrates the overall procedure for obtaining reliability using 

Markov path theorem. In this procedure the first step is to build the SMP or MRGP model 

of the system. The model then can be converted to its equivalent EMM and its transitions 

can be converted to LST-based EMM. Once the model is converted to LST-based EMM, 

it can be broken into several paths and to calculate the reliability, it is only needed to use 

the path that goes to the failure state of the system (the remaining parts of the model can 

be removed). At the end the reliability in time domain can be obtained using LST Inverse. 
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Figure 2-11. The overall procedure of obtaining reliability using Markov Path 

 

To have an example, please consider a POR gate and its Markov model. The 

following figure illustrates how the POR gate model can be simplified using the Markov 

Path theorem. 

 

 
Figure 2-12. An example of POR gate and its simplification using Markov Path 

 

The other example can be a cascaded PAND gate or a PAND gate with three inputs. 

As can be seen in the following model, a cascaded PAND gate with inputs A, B and C 

can be modeled by a Semi-Markov model with 12 states of which there are two absorbing 

states of failure and being operational. As shown in this figure, converting the model 
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using Markov path can simplify the model into a four states model which is easier to 

solve. 

 
Figure 2-13. An example of a cascaded PAND gate and its simplification using Markov Path 
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2.10 Hierarchical Markov Models, a Solution for Dynamic Fault Tree 

Dynamic Fault Trees (DFTs) was introduced, for the first time, by  (Boyd, 1991) in 

which the whole DFT converted into a Markov model, and consequently, model 

explosion is resulted in. The problem was that the solution of this model was difficult and 

time-consuming. Later, a number of techniques based on Bayesian Networks, Petri Nets, 

Algebraic and etc. are presented for solving DFTs. In this chapter we present a 

hierarchical solving method for DFTs, based on SMP theorem. 

First, the given DFT divided into a number of layers (n). The lowest layer includes 

basic events and their associated gates. The outputs of the lowest layer form the inputs of 

first layer. The first layer contains a number of gates, the outputs of these gates form the 

input of second layer … the outputs of (n-1)th layer give the inputs of (n)th layer (Top 

layer). Starting from first layer, the gates of each layer are solved based on the method 

explained in previous sections to find their output CDF. The CDFs are used as ( )F t of 

inputs of the next layer. This procedure continuous until the CDF of Top event is obtained. 

It is now obvious that ( ) 1  = −R t output CDF . The procedure is depicted in the following 

figure. 

 

 

Figure 2-14. An example of solving DFT through HDFT method 

    

The following issue most be considered in the implementation of this procedure for 

decreasing the volume of computations. Dynamic gates are separated from static gate. 

This is because solving static gates does not need SMP theorem. They can be easily solved 

by the use of conventional probability theorem. The solution of first layer gates can be 

easily carried out if their inputs have exponential CDF because gates with inputs with 



44 

 

exponential CDF are solved with Markov theorem rather than SMP theorem. This 

consideration decreases the volume of computations. Based on these issues the flow chart 

of SMP-based DFT's reliability solution will be as Figure 2-15. 

 

 
Figure 2-15. Flow chart of SMP-based DFT's reliability solution (the proposed method of this project) 
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2.11 Results 

In this section, six examples are given to indicate the capabilities of the HDFT 

method. The first example makes a comparison between the results of the HDFT method 

and those obtained from the Windchill Quality Solution (WQS) software. The challenge 

point in this example is precision of the result in comparison with commercial tools. The 

second example studies the ability of this method applied in a DFT with repeated events. 

So, the challenge point of this example is about dealing with repeated events. In the third 

example, we will apply the HDFT method on HCAS and compare the maximum number 

of states and transitions in three selected Markov-based DFT’s solution approach. The 

robustness to state and transition explosion will be the challenge point of this example. 

The fourth example solves a selected DFT with event with exponential and non-

exponential CDF, and then compares the results taken from the HDFT method, and 

algebraic technique. Dealing with non-exponential CDF can be a challenge in reliability 

evaluation that is considered in example four. As the repair consideration can be a 

challenging issue in DFT, the fifth example discusses on the possibility of using HDFT 

method for repairable DFTs. The final example deals with a case study of Aircraft Fuel 

Distribution System (AFDS). 

2.11.1 Example of How This Method Works? 

In order to verify the accuracy of this method and discuss the way, it works a simple 

example of DFT including a cold spare gate (CSP) and a PAND gate is provided as Figure 

2-16. 

 

Figure 2-16. Example 1 (scenario 1): a tree with two dynamic PAND and CSP gates and three basic events 

 

The CTMC for the above DFT is illustrated in the following figure. This model 

contains seven states (two absorbing states and five operational states). In this example, 

the reliability achieved through the HDFT method is compared with the one achieved 
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through Markov model, so that the abilities of the HDFT method and its limitation can be 

discussed. 

 
Figure 2-17. The converted Markov model for reliability evaluation of the DFT in Example 1 (scenario 1). 

 

The above model can be redrawn as a semi-Markov model which is illustrated in 

the next figure. This model is extended to improve the ability of model in considering any 

failure distribution function. 

 
Figure 2-18. The converted SMP model for reliability evaluation of DFT in the Example 1 (scenario 1). 

 

If the CSP is solved individually, and the achieved expression from its solution is 

imported to the semi-Markov model (the HDFT method of this thesis), then semi-Markov 

model for above-mentioned DFT of the first example can be illustrated in the following 

figure. 

 

Figure 2-19. Hierarchical semi-Markov model (the HDFT approach) for reliability evaluation of DFT in 

Example 1 (scenario 1). 
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When the DFT is hierarchically modelled with semi-Markov model (HDFT 

method), some transitions between lower levels’ states are omitted. In other words, the 

displayed transition in the following figure (red transition) is omitted in the HDFT method 

of this thesis. Since this transition does not create a path to the system failure, according 

to Markov Path Theorem in reliability solutions, it cannot have any effect on the 

probability of system failure. Hence, systems’ solution through HDFT method and 

Markov model should be equal. Note that, subsidiary transition is a transition which 

transits from a state of sub-Markov in box to a state of the other sub-Markov in another 

box. 

 

Figure 2-20. Hierarchical semi-Markov model (without omitting the subsidiary transition) converted for 

reliability evaluation of DFT in Example 1 (scenario 1) 

 

In order to solve this example, it is assumed that modules’ failure obeys exponential 

distribution function and failure rates of the events are 0.06,  0.07,  0.08A B S  = = = . The 

failure rates are scaled by failure per hour. Considering 0-100 hours for mission time, the 

reliability results using CTMC, and the HDFT method (hierarchical DFT solution using 

Semi-Markov Process-based approach) can be illustrated as Figure 2-21. It can be seen 

that both achieved reliabilities match one another and calculation error is zero.  

 

Figure 2-21. Reliability of the illustrated DFT in example 1, scenario 1 through CTMC and the HDFT 

method. 
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If we locate the CSP in the second input of the PAND gate, the DFT would be in 

form of Figure 2-22. This tree has no difference with the previous one in terms of 

complexity, however, the outputs of two methods are different which are discussed in the 

following. 

 

Figure 2-22. Example 1 (scenario 2), using CSP in the right-side input and the basic event in the left-side. 

 

When a gate such as spare gate (or gates that are nature of redundancy and masking 

the failures) is located in the right-side of PAND gate, a subsidiary transition would be 

omitted in the proposed method as in Figure 2-23 which is influential in system failure. 

In the other words, one of the failure paths is omitted. Therefore, the answer is closer to 

the precise analytical answer, but it is not the same. In addition, when the redundancy is 

applied more, the achieved answer in comparison to the correct one is more inaccurate. 

 

Figure 2-23. Hierarchical semi-Markov model (the proposed method) for reliability evaluation of DFT in 

example 1, scenario 2. Note that the subsidiary transition is omitted in the proposed method. 

 

Figure 2-23 shows the reliability results through CTMC solution and the proposed 

method in this thesis for DFT in example 1, scenario 2. As it is previously said, due to the 

employed proximity in the proposed method and due to the omission of subsidiary 

transition of the achieved reliability in the proposed method, it is a bit higher than the real 

amount. 
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Figure 2-24. Reliability of the illustrated DFT in Figure 2-22 through CTMC and the proposed method of 

this thesis 

The third scenario of this example is to add two CSP into both inputs of the PAND 

gate. In this case, the system DFT is illustrated in the following figure. In this model, it is 

assumed that the failure rate of both spares is 0.08 failure per hour and A and B input 

failure rates are assigned like before. It should be noted that in DFT, gates and events are 

given numbers from top to bottom and from left to right. In addition, the left CSP is called 

CSP1, whereas the other one is called CSP2. 

 

 

Figure 2-25. Example 1 (scenario 3), using CSP in both PAND gate’s inputs. 

The semi-Markov model for the above DFT is illustrated as follows. As it can be 

seen in this model, there are two subsidiary paths and one subsidiary state which are 

omitted during the use of the proposed method of this thesis, so this causes the achieved 

reliability to be higher or lower than the real amount. 
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Figure 2-26. The hierarchical semi-Markov model (the proposed method) for evaluating the DFT reliability 

in example 1, scenario 3 

As it can be seen in the above figure, while using the proposed method, the 

subsidiary transitions are omitted as well as the subsidiary state. The reliability diagram 

of the mentioned DFT is also illustrated in the following figure comparing CTMC 

solution and the proposed method. It can be seen in this method that the achieved answer 

from the proposed method is higher than the exact answer. But it should be noted that, in 

this case, the state difference between the answers is lower than the previous state. In 

other words, in the second scenario the second difference norm of the answers is 0.40042 

and in the third scenario, the second difference norm of the answers is 0.17949. According 

to the experiences in this example and special features of CTMC of each dynamic gates, 

it can be said that whenever AND, PAND and SPARE gates are located in the left side 

input of a gate same as themselves, the answer achieved from the proposed method is 

equal to the exact answer. But if these gates are located in the right-side input or both 

inputs of a gate the same as themselves, the answer is a bit higher than the analytical 

answer in terms of reliability which totally depends on the number of gates in the previous 

level and their failure probability. Meanwhile, the proposed method of this thesis has no 

limitation for SEQ, CSP, OR and FDEP gates and the DFT which possesses these kinds 

of gates are solvable regardless of their inputs in the previous levels (i.e., in this state, the 

inputs can be AND, PAND and SPARE gates). It should be noted that there is an 

exception in case of PAND gates which means if this gates’ input is PAND, the final 

answer through the proposed method is equal with the exact answer achieved through 

CTMC solution. 
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Figure 2-27. Reliability analysis of example 1 – scenario 3. 

2.11.2 Example 2. DFT with a PAND Gate and Static Gates 

From the DFT shown in the following figure. it can be seen that this DFT consists 

of a PAND gate, two static gates and 10 basic events. Solving this DTF by the use of 

Markov theorem requires solving a CTMC with 160 states (Zhu, Han, Liu, & Zuo, 2014; 

Amari, Dill, & Howald, 2003). In contrast, the proposed method can solve this DFT 

through SMP theorem with only 5 states, it can even provide the parametric expression 

for reliability. Metrics such as sensitivity and MTBF can easily be evaluated through 

parametric results of the proposed method. 

 

 

Figure 2-28. DFT of example 2. A tree with PAND gate, two static gates and 10 basic events (Zhu, Han, 

Liu, & Zuo, 2014). 

The failure rates of the above DFT’s events have been listed in the following table. 

In this table, failure rates are “failure per hour”. 

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Reliability of Simple DFT - Ex. 1-3

Time

S
y
s
te

m
 R

e
lia

b
ili

ty

 

 

Suggested Approach

 Markov Solution



52 

 

Table 2-1. Failure rates of the above DFT (Amari, Dill, & Howald, 2003) 

Basic Events Failure Rates Basic Events Failure Rates 

𝜆𝐴 0.0011 𝜆𝐻 0.011 

𝜆𝐵 0.0012 𝜆𝐼 0.012 

𝜆𝐶 0.0013 𝜆𝐽 0.013 

𝜆𝐷 0.0014 𝜆𝐾 0.014 

𝜆𝐸 0.0015 𝜆𝐿 0.015 

 

According to the result obtained in reference (Amari, Dill, & Howald, 2003), the 

amount of unreliability of the system in 1000 hours of the mission time is 0.363. The 

value obtained from our proposed method (0.363024069761471) is completely 

coinciding with this result. 

2.11.3 Example 3. DFT with Repeated Basic Event 

This example examines the capability of the proposed method to model a DFT with 

repeated events. To do this the DFT of references (Yuge & Yanagi, 2008; Zhu, Han, Liu, 

& Zuo, 2014) which is shown in in the following figure is selected.  

 

 

Figure 2-29. DFT of example 2. A DFT with the repeated event (Yuge & Yanagi, 2008) 

This DFT consist of nine basic events in which the event E2 is repeated. The failure 

rate of all basic events is set 0.01 failure per hour. Solving the above DFT in the time 

interval 0-300 hours has been provided through three methods in reference (Yuge & 

Yanagi, 2008), using Galileo software, Monte Carlo simulation and a Yuge's method. Of 

these methods Galileo a more exact solution because its underlying approximation in the 
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solution process of DFT is less than the others. This is why research works like (Yuge & 

Yanagi, 2008) take the outcomes of Galileo as a reference. 

We solve the mentioned DFT through our proposed method, and the results are 

given along the results from the considered reference. The accuracy and precision of our 

method are then analysed. The following table indicates the results. As seen the results of 

our method is closer to those of Galileo’s results than other two methods (Yuge’s method 

and Monte Carlo simulation). 

Table 2-2. Comparing the results obtained from solving DFT in the previous figure of reference (Yuge & 

Yanagi, 2008) and the proposed method of this thesis. 

Proposed method Monte Carlo Yuge’s Method Galileo Time 

0.00000 0.00000 0.00000 0.00000 0 

0.19526 0.25647 0.25653 0.21418 50 

0.45148 0.59970 0.59960 0.49318 100 

0.64738 0.80212 0.80196 0.68751 150 

0.78226 0.90120 0.90114 0.81010 200 

0.86873 0.94869 0.94864 0.88519 250 

0.92168 0.97215 0.97213 0.93066 300 

 

The following figure shows the results graphically and as can be seen the proposed 

approach has a close reliability value to the ground truth that is generated by Galileo 

software. In addition, the provided solution has a better approximation of the reliability 

in comparison to the Monte Carlo simulation (which is time consuming). 

 

Figure 2-30. The unreliability of the DFT in example 3 and comparing the results of the proposed method 

of this thesis with results from reference (Yuge & Yanagi, 2008).  

The following table indicates the results in terms of norm function. In this table, QS 
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unreliability results obtained from Galileo and QP denotes the unreliability results 

obtained from our proposed method. 
P GQ Q− shows the difference between the 

unreliability of our proposed method and Galileo software.  

Table 2-3. Comparing difference norm of the results in reliability solution of DFT (example 3) 

infinity-norm 2-norm 1-norm d 

0.11461 0.20080 0.45951 S GQ Q−  

0.11445 0.20062 0.45918 R GQ Q−  

0.04169 0.06951 0.15401 p GQ Q−  

 

The above table shows the superiority of the proposed method (in this thesis) to the 

others. 

2.11.4 Example 4. DFT of HCAS 

Hypothetical Cardiac Assist System (HCAS) is a benchmark in validating different 

methods applied to DFT reliability solution which has also been discussed in various 

references. The DFT of HCAS as shown in the following figure, including CPU module, 

motors module, and pumps module. This DFT consists of a shared CSP in the pump 

section. 

 

 

Figure 2-31. DFT of HCAS with shared CSP gates in the pump module 

 

The failure rates of basic events for this DFT have been assigned in the following 

Table. Reference (Boudali & Bechta Dugan, A Discrete-Time Bayesian Network 

Reliability Modeling and Analysis Framework, 2005) has solved this DFT based on 

Bayesian Networks for 100000 mission time, and the system unreliability obtained 

0.36501. 
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Table 2-4. Failure rates of basic events in DFT of HCAS in example 4 (Boudali & Bechta Dugan, A 

Discrete-Time Bayesian Network Reliability Modeling and Analysis Framework, 2005) 

Failure Rates ( )6
10  F/hr

−

 Basic Events 
Failure Rates
( )6
10  F/hr

−

 
Basic Events 

5 𝑃𝑢𝑚𝑝1 1 𝐶𝑆 

5 𝑃𝑢𝑚𝑝2 2 𝑆𝑆 

5 𝑃𝑢𝑚𝑝𝐵𝑎𝑐𝑘𝑢𝑝 4 𝑃 

5 𝑀𝑜𝑡𝑜𝑟 4 𝐵 

  1 𝑀𝑜𝑡𝑜𝑟𝐶  

 

The unreliability of this system computed from our proposed method is 

0.363500847376541 which is more precise and in agreement with other research works’ 

results. Another significant point in solving this model using the proposed method is 

decreasing the size of the corresponding Markov model of these DFTs. Different 

strategies may lead to generating different state-space model. To clarify this, consider the 

following table. This table presents the number of states and the number of transitions of 

the corresponding Markov model of the largest module in DFT when solving by DIFtree, 

Coral and proposed method. The detail on how the Markov model is generated can be 

found in (Bavuso et al., 1994; Dugan, Venkataraman and Gulati, 1997).  As can be seen 

from the following table, our proposed method possesses the lowest number of states and 

transitions. Generally speaking, the proposed method enables to decrease the number of 

states by the use of a reshaped model with load sharing gate. 

Table 2-5. A comparison between different Markov-based methods for DFT solution of HCAS (Boudali & 

Bechta Dugan, A Discrete-Time Bayesian Network Reliability Modeling and Analysis Framework, 2005; 

Boudali, Crouzen, & Stoelinga, A Rigorous, Compositional, and Extensible Framework for Dynamic Fault 

Tree Analysis, 2010) 

Max. Transitions Number Max. States Number Analysis Method 

10 8 DIFtree or Galileo 

119 36 Coral 

5 5 Proposed method 

2 3 
Proposed method with 

Markov-Path 

  

As shown in the above figure, the DFT has eight gates and based on the proposed 

algorithm in each iteration only one gate will be solved through SMP, and the CDF of the 

result will be stored to be used as an input for the next level gates. It means in each 

iteration the maximum number of states will never be higher than five based on the 

provided universal gate. Similarly, the maximum number of state transitions will never 

be higher than five as well. In other words, in HCAS DFT, there are two PANDs, one 

LSH, one AND, one WSP, one FDEP and three OR which means the maximum number 
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of states will be used for evaluation of PAND gate. In addition, the maximum number of 

state transition will be used for evaluation WSP with FDEP on its. 

The computational complexity of the Semi-Markov Reward Processes has been 

studied by (Ciardo, Marie, Sericola, & Trivedi, 1990) and if we consider the reward zero 

for operational states and reward one for failed state(s), the computational complexity of 

SMPs can be described as O((x[00]+x[01])n) where n is the number of states, x[00] is the 

number of nonzero transitions between operational states and x[01] is the number of 

nonzero transitions from operational states to failed state(s). The proposed approach has 

a loop that evaluates the SMPs for each gate in the DFT. Thus, the computational 

complexity of the proposed method will be O((x[00]+x[01]) k n) where k is the number of 

gates in the fault tree. Based on the proposed universal gate, the maximum value of 

x[00]+x[01] can be five and the maximum number of state can be also 5. Therefore, because 

of bounded value in both number of states and number of transitions, the computational 

complexity of the proposed method is only depending on the number of iterations and can 

be simplified in O(k). On the other hand, the computational complexity of CTMC can be 

described as O(n2) (Ciardo, Marie, Sericola, & Trivedi, 1990) where n is the total number 

states. It is clear that the proposed approach has less computational complexity as it was 

expected than a traditional CTMC based approach. 

2.11.5 Example 5. DFT with PAND gate and non-exponential failure 

This example contains events with non-exponential CDF (Weibull CDF) to show 

the capability of the proposed method. The CDF of Weibull can be described by (2-42). 

𝐹(𝑡)  =  1 −  𝑒−(𝑡/𝜔)𝜎
 (2-42) 

where  is the shape and  denotes the scale parameter of the Weibull CDF. First, 

consider the DFT of Figure 2-28.  
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Figure 2-32. Unreliability evaluation of the DFT with PAND gate and non-exponential failure distribution 

in its BEs. 

The failure rate of basic events in this tree obeys exponential CDF with the values 

of Table 2-1 values except for J, K, and L. It is assumed that the failure distribution of J, 

K, and L obeys Weibull CDF and the value of  is 0.1 and  is 20. The following shows 

the reliability of this DFT. As seen from this figure, both methods (proposed method and 

Algebraic method) give exactly the same results. 

2.11.6 Example 6. Repairable DFT 

The first generation of DFT was unable to repair modeling. References (Codetta-

Raiteri D. , 2011; Codetta-Raiteri D. , 2005; Portinale, Raiteri, & Montani, 2010)  

presented an extended DFT able to model repair actions and solved it by the use of 

Generalized Stochastic Petri Net (GSPN) and Dynamic Bayesian Networks (DBN). This 

thesis addresses the modelling of repair gate by a hypothetical example. It should be noted 

that in the current state we cannot guarantee that the proposed approach will work for any 

other repairable DFTs. In fact, this example is only a sign that there might be an 

opportunity to improve the proposed approach for   repairable DFTs. The complete 

development of this modelling remains as future research work.  

Through an example, we show that this modeling method is a good solution for 

finding the reliability of repairable DFT. The following figure illustrates a repairable DFT 

with failure and repair rates of the following table. 

Table 2-6. Failure rates and repair rates of basic events in repairable DFT of example 6 – event C is a non-

repairable event. 

Repair Rates (R/hr.) Basic Events Failure Rates (F/hr.) Basic Events 

0.01 A  0.001 A  

0.01 B  0.002 B  

0.00 C  0.003 C  

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3 DFT with Non-Exponential Events

Time

S
ys

te
m

 R
el

ia
bi

lit
y

 

 

Suggested Approach

 Algebraic (G. Merle)



58 

 

Repairable DFT is shown in the following figure illustrates that in the case of 

finding the output of AND gate, events A and B can be repaired. In this system, it is 

assumed that event C is non-reparable. 

 

Figure 2-33. A hypothetical repairable DFT with a repair gate. 

The CTMC of this tree is illustrated in the following figure. It is assumed that the 

repair actions carry out immediately after failing the related events. This issue has been 

shown in the figure by dash transitions with repair rate  . In order to avoid model 

complexity in this figure, some self-transitions are not depicted. 

 

Figure 2-34. CTMC of the repairable DFT of Figure 2-33 

 

Recall that our hierarchical method solved the given DFT layer by layer in a bottom-

top manner. For examples the DFT of Figure 2-33 consists of two layers. First, the bottom 

layer (AND gate with repairable events; AND and repair gates) is solved. Its output is 

delivered to the left-hand-side input of PAND gate (up to a layer of the DFT). The semi-

Markov model of this gate with an input for which the impact of repair has been 

considered is shown in the following figure. The dashed transitions defer the semi-

Markov model of the PAND gate with repairable events from a simple PAND gate (a 
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PAND gate with non-repairable events). The general equation of this gate is achieved 

through solving tits semi-Markov model by SMP theorem as follows. It should be noted 

that in this model G represents repair distribution function of the input's components 

which is equal to 1 tG e −= − , if repair distribution is considered exponential. 

( )
( ) ( )

( ) ( )

1,2 2,41

1,2 2,1

1
1

q s q s
R t L

q s q s

−
  

= −  
−    

(2-43) 

where the ( )
,i jq s is the LST form of ( )

,i jQ t  explained in the methodology section. 

 

Figure 2-35. Semi-Markov model for PAND gate with reparability in the first input 

This procedure for solving DFT with repair gate (gates) can be applied for any other 

gates. This work is an open research direction for. Regarding both two presented models 

(CTMC and semi-Markov models), the unreliability behaviour of the supposed DFT will 

be as the following figure for 700 hours mission time. As seen from this figure, our 

method gives results very close to those achieved by the CTMC method. This verifies the 

correctness of our method. 

 
Figure 2-36. The unreliability of repairable DFT in two states of solving by CTMC and solving by SMP 

theorem 
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2.11.7 Example 7. Aircraft Fuel Distribution System 

As a case study, the Aircraft Fuel Distribution System (AFDS) has been chosen 

from (Edifor, Gordon, Walker, & Papadopoulos, 2014) and its DFT from (Kabir, Walker, 

& Papadopoulos, 2018). The following figure illustrates the schematic of AFDS and 

Figure 2-38 shows the DFT of the system that has been derived by HIP-HOPS tool 

(Papadopoulos, Mcdermid, Sasse, & Heiner, 2001; Kabir, Walker, & Papadopoulos, 

2018).  

 
Figure 2-37. Schematic of Aircraft Fuel Distribution System (Modified from (Edifor, Gordon, Walker, & 

Papadopoulos, 2014)) 

This system has two engines, seven bi-directional fuel pumps, five fuel tanks, and 

eleven valves enables the control system to choose active paths for fuel distribution in 

different conditions. The system also has six flow meters for fuel flow rate measurement. 

To refill the tanks, there is a refuelling point and there are two jettison points for releasing 

the fuel in some situations. 

The AFDS has been divided into three parts for performing the compositional 

analysis including Starboard Feed (SF), Central Reservation (CR) and Port Feed (PF) as 

delineated in the above figure. As can be seen, two SF and PF have identical components 

and each one of them has some subsystems. For instance, the SF includes Starboard Inner 

Subsystem (SIS), and Starboard Outer Subsystem (SOS). Through further decomposition 

of those subsystems, we have some components. For example, the SIS contains Starboard 

Inner fuel Level sensor (SIL), the valve (SIV) and Tank (SIT).  
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Figure 2-38. Dynamic Fault Tree of Aircraft Fuel Distribution System (Kabir, Walker, & Papadopoulos, 

2018). 

Distribution of the fuel throughout the system and storing the fuel in the thanks are 

two main functions of AFDS and each function can be divided into two phases of 

refuelling and consumption for different situations such as taxiing, take-off, cruising, 

approaching, and landing.  

The fuel will be injected into Central Reservation Tank (CRT) in the refuelling 

phase and then automatically distributed to Starboard and Port tanks. Moreover, the fuel 

will be consumed by both Starboard and Port engines in the consumption phase and 

certain level of fuel will be fed to engines. For more details regarding the ADFS please 

read (Kabir, Walker, & Papadopoulos, 2018).  

In DFT of AFDS, It should be noted that “O- CompX“ stands for omission of 

functionality of component X, “I-CompX” refers to the internal failure of component X 

and “Hi-CompX” includes erroneous high reading from component X. 

The DFT of AFDS has twelve identical basic events (twenty-two basic events 

counting the repeated events). The following table provides the failure rates and also short 

descriptions for the basic events.   
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Table 2-7. Failure rates and basic events in DFT of AFDS (Kabir, Walker, & Papadopoulos, 2018) 

Descriptions 
Failure Rates 

(F/hr.) 

Basic 

Events 

Internal Failure of Starboard-Central Pump 5.84267E-5 I-SCP 

Internal Failure of Central-Starboard Pump 5.84267E-5 I-CSP 

Internal Failure of Starboard Outer Valve 1.65633E-3 I-SOV 

Internal Failure of Starboard Inner Valve 1.65633E-3 I-SIV 

Internal Failure of Starboard Central-Starboard 

Valve 
1.65633E-3 I-CSV 

Internal Failure of Starboard Starboard-Central 

Valve 
1.65633E-3 I-SCV 

Internal Failure of Central Reservation Level Sensor 2.21127E-6 I-CRL 

Internal Failure or High Reading from Starboard 

Outer Feed 
4.06861E-5 I-HiSOF 

Internal Failure or High Reading from Starboard 

Inner Feed 
4.06861E-5 I-HiSIF 

Internal Failure or High Reading from Starboard 

Engine Feed 
4.06861E-5 I-HiSEF 

Internal Failure of Starboard Inner Level Sensor 1.65633E-3 I-SIL 

Internal Failure of Starboard Outer Level Sensor 3.31774E-5 I-SOL 

 

Reliability evaluation of AFDS through DFT has been addressed by (Kabir, Walker, 

& Papadopoulos, 2018). They have converted the DFT to Petri Nets and Bayesian 

Networks and consequently calculated the reliability of the system. A comparison 

between the proposed approach and two other existing addressed methods has been 

provided in the following table.  The obtained results are approximate but close to the 

existing results. 

Table 2-8. Comparison between proposed approach, Petri Nets-based, and Bayesian Networks based 

approaches. 

Bayesian Networks 

(Kabir, Walker, & 

Papadopoulos, 2018) 

Petri Nets 

 (Kabir, Walker, & 

Papadopoulos, 

2018) 

Proposed Approach Mission Time 

0.04527486000 0.04998134610 0.05261416997 100 

0.52900833000 0.55645041000 0.59015071681 500 

0.85004877000 0.87518982420 0.89056414810 1000 

0.94597227200 0.96217232090 0.96590195305 1500 

0.97782727200 0.98690630030 0.98766528020 2000 

0.99029561190 0.99502308600 0.99514980424 2500 

0.99563683150 0.99800983670 0.99801543278 3000 

0.99809093140 0.99918448590 0.99917346098 3500 

0.99916055205 0.99966205560 0.99965314139 4000 

0.99960976330 0.99985924100 0.99985398520 4500 

0.99980478790 0.99994123190 0.99993845915 5000 
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Regarding the reliability evaluation of DFTs, there are some other challenges such 

as Common Cause Failures (CCF), and Reconfiguration that are not considered in this 

thesis and can be studied as the future research. 

2.11.8 Example 8. Incorporating Complex Basic Events 

To illustrate the idea of safety analysis of systems with complex BEs via the 

proposed approach, we use a simplified version of the oxygen sensing and generation unit 

of an Automatic Pond Oxygen Management System and shown in the following figure. 

The role of this system is to continuously sense the oxygen level of a pond and if the 

oxygen level falls below a certain level, then the system will automatically generate 

oxygen.  

 

Figure 2-39. Automatic Pond Oxygen Management System. 

The system contains two oxygen level sensing blocks, A and B. Each of these 

blocks contains a battery and an oxygen sensor. The battery keeps the sensor alive, and 

the sensor senses the pond's oxygen level. Readings from both blocks are fed to the 

Decision Making (DM) block. Based on these readings, the DM can decide whether to 

generate oxygen or not. Note that although both block A and B work simultaneously, 

input from at least one of them is necessary to be decided by the DM. When the DM finds 

that it is necessary to generate oxygen, it uses the oxygen generator (OG) unit to generate 

oxygen. During operation the OG draws power from the power supply. 

For a model-based analysis of this system, the architecture of the system was 

annotated by considering the failure behaviour of each of the system components. A fault 

tree was automatically generated based on this annotated architecture and shown in the 

following figure.  
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Figure 2-40. Fault Tree of Automatic Pond Oxygen Management System 

 

Table 2-9 shows the ID and description of the basic and intermediate events of the 

fault tree. In this study, basic events 1, 4, and 6 were considered as complex basic events. 

The SMP-based failure behaviour models of these BEs are shown in Figure 2-41. 

Parameters associated with these models and failure rates of other BEs are shown in Table 

2-10. 

 
Figure 2-41.  (a) Failure behaviour of BE1 (b) Failure behaviour of BE4 and BE6 (Kabir, Aslansefat, et al., 

2019). 
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Table 2-9. ID and description of the basic and intermediate events of the fault tree shown above. 

Event ID Event Description 

TE No oxygen generated when required 

IE1 No outputs from decision making block 

IE2 No output from oxygen level sensing blocks 

IE3 No output from oxygen level sensing block A 

IE4 No output from oxygen level sensing block B 

BE1 Power supply failure 

BE2 Internal failure of oxygen generator 

BE3 Internal failure of decision-making block 

BE4 Battery in oxygen level sensing block A failed 

BE5 Sensor in oxygen level sensing block A failed 

BE6 Battery in oxygen level sensing block B failed 

BE7 Sensor in oxygen level sensing block B failed 

 

Table 2-10. Parameters for the BEs and Complex BEs 

BEs Parameters BEs Parameters 

BE1 

𝐹1,2(𝑡) = 1 − 𝑒−0.00065𝑡 BE2 𝜆 = 0.00023 

𝐹2,1(𝑡) = 1 − 𝑒−0.00073𝑡 BE3 𝜆 = 0.00023 

𝐹2,5(𝑡) = 1 − 𝑒−0.00044𝑡 
BE4 

& 

BE6 

𝛼(𝑡) = 1 − 𝑒−0.00078𝑡 

𝐹2,5(𝑡) = 1 − 𝑒−0.00044𝑡 𝛽(𝑡) = 1 − 𝑒−0.00082𝑡 

𝐹3,2(𝑡) = 1 − 𝑒−0.00075𝑡 𝐷(𝑡) = 1 − 𝑒−0.00064𝑡 

𝐹3,5(𝑡) = 1 − 𝑒−0.00044𝑡 𝐹𝑃𝑜𝑤𝑒𝑟(𝑡) = 1 − 𝑒−0.00285𝑡 

𝐹1,4(𝑡) = 1 − 𝑒−0.00860𝑡 BE5 𝜆 = 0.00015 

𝐹4,5(𝑡) = 1 − 𝑒−0.00088𝑡 BE7 𝜆 = 0.00091 

 

Without loss of generality, we evaluate the reliability of the system of Figure 2-39 

for a mission time of 500 hours. To illustrate the effectiveness of proposed framework, 

we have created some scenarios as shown in Table 2-11. As can be seen at time interval 

[0, 100] no observation has been provided for the states of the system components. As a 

result, analysis performed within this interval is like an offline analysis. At time interval 

[101, 200], it is observed that the battery system is in state D2 and at time interval [201, 

500], the power system has been observed to be in state S4. Figure 2-42 shows the 

reliability of the battery and power systems with and without observation. The changes 

in reliability of these systems due to real time monitoring is clearly reflected in the figure. 

For instance, for battery system and the power system, the reliability declined steadily 

until 100 hours and 200 hours, respectively. After 100 hours and 200 hours, respective 

reliability for each system drops sharply and then continues to decline steadily again. That 

means because of our real time observation of the battery and power system states, our 
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knowledge about the reliability of these systems is updated accordingly, which is not 

possible with design time analysis.  

Table 2-11. Experimental settings 

Mission Time Real-Time Observation 

𝑡 =  [0, 100] No Observation 

𝑡 =  [101, 200] State D2 in the SMP of Battery has been observed 

𝑡 =  [201, 500] State S4 in the SMP of Power System has been observed 

 

 
Figure 2-42. Reliability of Battery and Power systems with and without observation. 

Figure 2-43 shows the reliability of the whole system for 500 hours mission time. 

The effects of observing the operating states of battery and power system on the reliability 

of the whole system is clearly visible in the figure.  

 
Figure 2-43. Reliability of the whole system with and without observation. 



67 

 

This real-time analysis feature not only helps us to update our belief about the 

system reliability, but also allows us to perform a meaningful analysis by taking into 

account the real operational status of the system. 

2.12 Capabilities and Limitations of the Proposed Method 

In this section, some of the capabilities and limitations, mostly related to accuracy, 

of the proposed method are discussed. A number of guidelines are suggested to overcome 

that limitation.  

2.12.1 Capabilities of the Proposed Method 

The proposed method offers the following capabilities: 

• This thesis presents a universal semi-Markov model that can model any type of gates 

including static and dynamic. In addition, it embeds the functional dependencies 

behaviour of gates' inputs into gate model. This simplifies the final model of DFT. 

• The proposed method solves DFTs hierarchically through SMP theorem. So, this 

method can reduce problem complexity in order to reduce state and transition 

explosion. 

• The proposed method is able to consider non-exponential failure by means of SMP 

theorem. It is possible to consider hybrid failure distributions as the gate's input using 

the SMP theorem. 

• Basic events in this method can be defined by SMP or CTMC in which repair, 

imperfect coverage, and other issues can be considered. This idea already exists for 

static FT in the literature (Kim, Ghosh, & Trivedi, 2010) and extended here for DFTs. 

2.12.2 Limitations of the Proposed Method 

The proposed method currently has the following limitations which could be addressed 

is future works. 

• In the proposed method, the output of SEQ, OR, and POR gates with any complexity 

in their inputs will be precise. In addition, in the AND and PAND gates when a 

complex event or a sub-tree is connected to the first input and a simple event 

connected to the second input, the output will be precise. Otherwise, the output will 

be approximate for other gates and other situations for AND and PAND gates the 

output will be approximate. 
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• The results of this method are approximate and precision drops further for DFTs with 

repeated events. The proximity of the method does not necessarily diminish its 

effectiveness; the results obtained through this method are still more precise than 

those of other published research works (Yuge & Yanagi, 2008). 

• In some benchmarks in which the shared or sliding spares are used, the proposed 

method is not able to solve shared spare gates. It is suggested to replace shared spares 

and use the reshaping rules (see appendix). These gates are then modelled as a semi-

Markov model and generalized for any kind of failures distribution function. 

• In this study, it is assumed that the fault tree has only coherent events and there would 

be no guarantee for a fault tree with non-coherent events. In practice, noon-coherent 

fault trees are avoided. 

• There are still some gates like pSAND and SAND that cannot be modelled through 

the universal gate. We hope to improve this universal gate to consider pSAND and 

more other gates as future research works. It would be also possible to define new 

gates such as semi-PAND in the future. 

• The example of repairable DFT is just provided to show that there might be a 

possibility to improve the approach for repairable DFTs. However, at the moment, 

there is no guarantee for any other example of repairable DFT. In fact, this example 

is just an insight into potential future works. 

2.13 Conclusion  

In this thesis, a novel hierarchical approach to evaluating the reliability of DFTs 

based on SMP theorem was presented and the universal state space model has proposed 

for static and dynamic gates and with inputs described by exponential and non-

exponential failure distribution functions. It was shown that the proposed method 

competes well with other approximate solutions for reliability evaluation of DFT. A 

number of examples have been given to show the capabilities and limitations of the 

proposed solution in I) parametric solution that can be used for other related computations 

such as MTTF and Sensitivity, II) dealing with non-exponential failure distribution 

functions, III) dealing with repeated basic events, IV) no state explosion V) considering 

repairable events (a limited example just to provide an insight for future research works) 

and VI) a case study of AFDS. Moreover, the limitations and capabilities of the proposed 

method have been discussed. 
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SMP have limitations in modeling concurrency among generally distributed events. 

Therefore, MRGPs and phased-approximated (PH) approaches can be applied instead of 

SMP in the proposed method to address a wider range of applications (Distefano, Longo, 

& Trivedi, 2012). 
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Chapter 3 

 

3 Representing Environmental Factors that in Dependability 

Analyses 

The chapter proposes a novel model to include external environmental and 

accessibility variables for maintenance and availability modelling of offshore wind 

turbines’ components. The proposal includes a method of including the estimated 

remaining useful life (RUL) estimations in the availability prediction models. The method 

is integrated with the concepts of hierarchical dynamic fault tree and complex basic events 

presented earlier. Application to offshore wind is being considered.  
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3.1 Offshore Wind Industry and its Accessibility Modelling Challenges 

Offshore wind energy is a promising renewable energy source, and it is growing fast 

especially in Europe (Blaabjerg and Ma, 2017; Tardieu, 2017; IEA, 2019). To make the 

industry more successful and competitive, the Levelized Cost of Energy (LCOE) for 

onshore and offshore wind should be reduced. A wind turbine has four main stages in its 

life cycle I) Design and Development, II) Construction, III) Operation and Maintenance 

and IV) Decommissioning. More than 87.12 % (about 25 years) of a wind turbine’s life 

cycle belongs to the operation and maintenance stage. As reported in (Lu et al., 2009; 

Rademakers et al., 2009; Tchakoua et al., 2014), for onshore wind energy and for offshore 

wind energy with and without considering ageing components, the cost associated with 

O&M is 10-15 %, 25-30 % and up to 35%, respectively.   Note that for a 1 GW wind 

farm, the cost of O&M including insurance and internal asset owner costs is about 75 

million GBP per year (Catapult, 2019). The accessibility of a site affects maintenance and 

therefore a measure of this is also helpful.  

Availability is a measure of the percentage of time the turbine is operational versus 

total lifetime (operational time + downtime)  (Trivedi, Kim and Yin, 2012). Thus, 

unavailability gives a measure for the lost energy production because of wind turbine 

downtime. We note that downtime in areas with a larger resource or bigger wind farms 

causes significant loss of production (Martini et al., 2017). For an offshore wind turbine, 

availability not only depends upon the failure and repair distributions of components but 

also depends on accessibility restrictions such as weather and logistics delays which affect 

maintenance. Poor accessibility can indeed make a significant difference in availability 

(Ge et al., 2020). To illustrate the problem, consider an onshore wind turbine with 

availability of 97%. The same wind turbine located about 15 Km offshore and having an 

average inaccessibility of 25% will have about 76% of availability (Dowell et al., 2013), 

which is a significant reduction. Moreover, in the IEC 61400-26-1 standard, the statistical 

availability of wind turbine has been addressed with and without accessibility 

consideration (IEC 61400 - Part 26-1: Availability for wind energy generation systems, 

2019). Although accessibility can significantly influence the availability of a wind 

turbine, its modelling has seldom been studied in the traditional Reliability, Availability, 

Maintainability and Safety (RAMS) research fields.   

Inappropriate weather conditions often disrupt and delay offshore operations 

(Diamond, 2012). Typically, such operations go ahead only under certain conditions, for 

example when wind speed is less than 12 meter per second and wave height is less than 
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2 meters (Shafiee, 2015). Furthermore, conditions like fog and poor visibility at night can 

make an offshore wind turbine inaccessible due to safety regulations. A study of a 500 

MW offshore wind farm located in the Netherlands has revealed that 89.4% of all 

turbines’ downtime is due to delays in repairs caused by weather (Rademakers and 

Braam, 2003). Because of the significant influence of weather conditions on accessibility 

and consequently availability, studies have considered its uncertainties and stochastic 

behaviours (Dinwoodie, Catterson and McMillan, 2013; Catterson et al., 2016; Ioannou, 

Angus and Brennan, 2019; Yang et al., 2020). The weather delay probability for the 

offshore wind operation introduced through constant values in (Byon, Ntaimo and Ding, 

2010), and (Besnard, Fischer and Tjernberg, 2013) used a historical time series of weather 

data with two different step sizes. The seasonal effect can increase the uncertainty of the 

weather window probability calculation and (Santos, Teixeira and Soares, 2015) provides 

weather window probabilities and mean waiting time for different seasons. The wind 

speed distribution has been estimated through a Weibull distribution with shape equal to 

1.96 and scale equal to 7.21 in (Yang et al., 2020). They have also used exponential 

distribution for estimating the interval between opportunities and interval between delays. 

Another cause of offshore wind O&M inaccessibility is the delay caused by logistics. 

For logistics, different factors can be considered including Crew Transfer Vessels 

(CTVs), service operation vessel, substation for O&M, and large component repair 

vessel. Smaller boats, larger ships and helicopters can be considered for crew transfer. 

Whilst the replacement of large components may require a ship (Catapult, 2019), ships 

and helicopters are expensive, and they might not be available for daily O&M. The 

logistics delay has been divided into two categories: on-site and off-site logistics 

(Besnard, Fischer and Tjernberg, 2013; Shafiee, 2015). Logistic delays have been divided 

into in-stock and out-of-stock logistics in (Huang et al., 2017). Logistics costs can be 

reduced through resource sharing with cost benefits can reach up to 45% reported in (uit 

het Broek et al., 2019) when several offshore wind farms share their resources. 

Health and safety regulations impose a shift limit for O&M and it can also cause 

delays and specifically for large components or the components that need more than a 

shift to be repaired. The shift limit has been considered as a statistical constraint sub-

function in the repair modelling (Besnard, Fischer and Tjernberg, 2013). This research 

emphasized that the shift time can be determined as 12 hours or 24 hours and did not 

consider night-work policies. However, working on maintenance during the night is 
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prohibited in offshore wind farms (Byon, Ntaimo and Ding, 2010). In (Huang et al., 2017) 

a more advanced model is proposed which includes shift limits using a Poisson process. 

The imperfect maintenance of offshore wind farms and its effect on availability has 

been rarely studied in the literature because of its mathematical complexity. However, 

imperfect maintenance models can provide a more realistic result (Alaswad and Xiang, 

2017). Imperfect maintenance models can be classified into three categories. In the first 

category, after imperfect maintenance, the system degradation rate is increased through a 

random function or random variable, e.g. (Wu, Niknam and Kobza, 2015). The second 

category provides a number of states for the system deterioration; following imperfect 

maintenance, the system goes from Mth state to (M-1)th state (Ruiz-Hernández, Pinar-

Pérez and Delgado-Gómez, 2020). The third category uses an analytical model in which 

imperfect maintenance can influence a parameter of the model like the deterioration rate 

of the system (Zhang, Gaudoin and Xie, 2015; Alaswad and Xiang, 2017; Kang, Sobral 

and Soares, 2019).  

In model-based availability evaluation, the traditional approach is to use failure rate 

and repair rate to characterise transitions between states. However, RUL-based transitions 

have also been studied in (J.I. Aizpurua et al., 2017; Jose Ignacio Aizpurua et al., 2017) 

in the context of Stochastic Activity Networks (SAN). This thesis reshapes this idea into 

a state-space Markov model and merges it with the accessibility model proposed in 

(Huang et al., 2017). The model is then upgraded with multi-state transition-based shift 

limit and imperfect maintenance to create the proposed Butterfly Maintenance Model 

(BMM). A MRGP is underpinning the model giving the ability to consider complex and 

non-exponential failure distributions. Having defined the BMM for each system’s 

component, component models are embedded as complex basic events in a dynamic fault 

tree (DFT) to evaluate the whole system availability. The main contributions of this 

chapter can be summarised as follows: 

• Proposal of a novel method that considers both traditional and data-driven 

availability analysis by combining both simple failure distribution and remaining 

useful life (RUL)-based transitions in a single MRGP. This is the first time that 

MRGP is combined with real-time transitions. The proposed model enables users to 

evaluate both condition-based maintenance and reliability-centred maintenance.  

• The introduction of an integrated BMM model incorporating more advanced logistics 

delays, weather delays and a daily briefing and transfer delays. Consideration of these 
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accessibility and delay factors will lead to a more realistic availability evaluation of 

the offshore wind farm. 

• In the Markov modelling theories, the issue of considering the time-based deadline 

for a transition has rarely been discussed. This chapter uses the deadline transitions 

to model shift time limits of the O&M for offshore wind turbines. 

• Imperfect maintenance can make the model and its evaluation more realistic. 

However, the literature lacks proper modelling for imperfect maintenance. The 

proposed model is not only able to consider imperfect maintenance but also able to 

use this option to model the life extension of the turbine. 

• The presented model can model non-exponential system behaviour using MRGP. 

The MRGP has higher computation complexity but at the same time offers more 

power in modelling complex failure behaviours. At the same time, the embedded and 

presented Markov model can be used with Markov processes in cases where only 

exponential failure and delay behaviour is considered. In other words, the 

computational complexity of the model is flexible and can be reduced via simplifying 

assumptions. 

• The DFT is proposed to combine the availability models of components and evaluate 

the total availability of the system. Using DFTs provides an intuitive perspective on 

fault propagation in the system.  

 

The rest of the chapter is organised as follows: Section 2 provides a brief literature 

review of the existing availability and maintenance models of a wind turbine. Section 3 

defines the problem of availability modelling and evaluation studied in this chapter. 

Section 4 presents the proposed approach. Section 5 describes applications and numerical 

results highlighting capabilities and limitations. Finally, section 6 provides a conclusion 

for this chapter and points to future work. 

 

3.2 Related Works 

 Existing approaches for the quantitative evaluation of availability, including 

accessibility, can be categorized into two main categories: simulation-based and model-

based methods. The focus of this work is on model-based methods which generally scale 

up better. The review is given in chronological order and focuses on the technique/model 

used and the attributes of the problem covered by each method presented in a thesis.   
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A Markov process-based queuing model has been proposed by (Besnard, Fischer and 

Tjernberg, 2013) to assess the availability of the offshore wind turbine considering 

accessibility attributes such as the location of maintenance facilities, number and type of 

available CTVs, the use of helicopter and work shift limits.  A Petri Nets-based parametric 

availability model proposed in (Santos, Teixeira and Soares, 2015) considered failure, 

repair, CTV logistic time, and weather delay. The article also considered Weibull 

distribution for rotor failure. A queuing model constructed by a multi-state Markov 

process has been proposed to evaluate the availability of offshore wind turbines 

concerning accessibility issues such as weather and transfer delays (Huang et al., 2016).  

The risks of installation, operation and maintenance of an offshore wind farm have 

been evaluated through hazard identification and Failure Modes Effects and Criticality 

Analysis (FMECA) in (Lazakis and Kougioumtzoglou, 2019). Important factors 

including safety, environmental impact, asset integrity and operation have been 

considered in the risk evaluation. The thesis presented a Bayesian belief Networks-based 

approach for availability analysis of the wind farm. 

A three-state Markov chain availability model of offshore wind turbine considering 

accessibility problems has been proposed in (Huang et al., 2017). In that model, weather 

delay, logistic delay and shift time limitation regarding corrective maintenance have been 

studied. The results of the model have also been compared with Monte Carlo simulation. 

It should be noted that this model was unable to consider non-exponential failure 

behaviour and imperfect maintenance. Moreover, the author has mentioned that the 

expected time for fault detection and diagnosis is too short and can be ignored. In 

(Catelani et al., 2020), authors report cases and situations where 26% of the maintenance 

time was consumed by fault-finding. Paul et al. (Paul and Rather, 2018) have used an 

approach to select a suitable wind turbine for a site based on four attributes: economy, 

reliability, resilience, and environment. This study has applied a Markov chain to model 

the transition of damaged turbine states and adopted expected energy not supplied and 

availability to use in their optimization procedure. 

A Markov decision process-based method has been used to model the corrective 

maintenance of an offshore wind farm considering different policies by (Seyr and 

Muskulus, 2019b). The thesis considered actions such as stay, wait, reset wait time, go 

out, repair and return. The proposed Markov decision process has been used as a core for 

the optimization of maintenance planning. Over 135 research thesiss regarding the use of 
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decision support models for the scheduling of maintenance in offshore wind farm have 

been reviewed by (Seyr and Muskulus, 2019a).  

The thesis summarized the Key Performance Indices (KPIs) and parameters 

influential to the offshore wind farm operation and maintenance scheduling. In addition, 

various degradation and failure models in this field have been addressed. The article 

categorized these models into three classes intended for Preventive Maintenance, 

Condition-based Maintenance, and Corrective Maintenance. Furthermore, the models 

have been classified into Monte Carlo simulation, Discrete Event models, Markov 

Models, Petri nets, and Poisson process. Ruiz-Hernández et al. (Ruiz-Hernández, Pinar-

Pérez and Delgado-Gómez, 2020) have focused on O&M cost reduction and proposed 

maintenance sequential tasks allocation. The thesis modelled the imperfect and 

preventive maintenance using graph theory. However, the used model can also be 

considered as a multi-state Markov process. 

Fault Tree Analysis is one of the well-known approaches for reliability and 

availability evaluation because of its simple and powerful illustration of fault propagation. 

A Fault Tree (FT) can visualize failure combinations of the system in a top-down 

deductive way. (García Márquez et al., 2012; Artigao et al., 2018; Kang, Sun and Guedes 

Soares, 2019; Li and Coolen, 2019; Adumene and Okoro, 2020; Konstantinidis, 

Katsavounis and Botsaris, 2020) have provided fault tree models for offshore wind 

turbines.  

Dynamic Fault Tree (DFT) is an extension of Fault Trees which can model dynamic 

failure behaviours such as priority, spares and sequence (Dugan, Bavuso and Boyd, 

1992). A DFT for offshore wind turbines is provided in (Asghari, Mohammad and 

Oskouyi, 2015; Zhang et al., 2016) and (Sun et al., 2023) combined DFT with working 

condition correlations. However, although FTA-based models are used for reliability and 

availability evaluation of offshore wind farms, maintenance and accessibility are ignored.  

Moreover, in FTA, generally, the basic events of fault tree are characterised by failure 

rates or failure probabilities and repair rates. As a result of this, the complex failure 

behaviour of system components and other associated issues are usually ignored. 

 To overcome this limitation, in this thesis we use DFTs that model dynamics and in 

which complex behaviours of system components are modelled as complex MRGP-based 

events. (Leimeister and Kolios, 2018) have reviewed existing models for risk and 

reliability evaluation of offshore wind turbines.  
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(Abeynayake et al., 2021) has proposed a Markov-based solution for availability 

evaluation of large-scale offshore wind farms and included their collector system. 

Although the approach was suitable for large-scale systems but it has its own limit for 

considering the different maintenance and accessibility parameters. (Zhu et al., 2023) has 

focused on long-term reliability and availability evaluation of wind turbines and used a 

Markov-based approach for quantitative evaluation. However, the author did not consider 

the accessibility issues. 

Regarding OWTs, two types of availability are generally considered; I) power 

availability where the power curve is studied using metrological inputs (Göçmen et al., 

2019; Vahidzadeh and Markfort, 2019; Wang et al., 2019; Nielson et al., 2020) and II) 

operational availability where the effect of failure and repair plus maintenance strategies 

are addressed. This thesis deals with the second type that should not be confused with the 

first type.  

 

Table 3-1 provides a mapping of the key model-based methods for availability 

evaluation and the key aspects they address. 

 

Table 3-1. A Comparison of Model-based Availability Evaluation Approaches 
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Logistics Delay ✓ ✓    ✓ ✓ ✓ ✓ 

Weather Delay ✓ ✓    ✓ ✓ ✓ ✓ 

Transfer Time ✓ ✓    ✓ ✓ ✓ ✓ 

Repair Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Shift Time 

Consideration 
 ✓       ✓ 

Importance Measure       ✓ ✓ ✓ 

Imperfect Maintenance    ✓     ✓ 

Real-time RUL     ✓    ✓ 

Costs   ✓  ✓  ✓ ✓ ✓ 

Accessibility ✓ ✓     ✓  ✓ 

Non-Exponential 

Distribution 
     ✓   ✓ 

 

The detailed analysis of the state-of-the-art shows that no single model has yet 

considered the following issues: I) non-exponential distribution consideration through 

MRGP, II) both traditional and data-driven Markov transitions, III) modelling of shift 

limits and IV) imperfect maintenance.  

The integrated proposed method develops the comprehensive BMM model to 

capture and evaluate the availability of components in OWTs. Using this rich model as a 

complex basic event of a DFT enables the users to capture and evaluate accurately the 

availability of the turbine under complex assumptions of maintenance.      

3.3 Problem Definition 

The problem definition is divided into three parts: availability and related KPIs, 

condition monitoring and estimation of RUL, and impact of accessibility factors. 

3.3.1 Availability and related KPIs 

Time-based steady-state availability can be defined as (3-1) considering the 

operational time and total lifetime of a turbine. The best-case scenario for a wind turbine 

is to be always operational and available. 

𝐴(∞) =
𝑇𝑖𝑚𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
=

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑇𝑖𝑚𝑒

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 +  𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 (3-1) 
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The steady-state production-based availability (PBA) can be defined as in (3-2), i.e. 

as the fraction of actual generated energy over the potentially expected energy production 

including energy lost when the turbine was not operational due to inspection, failure and 

maintenance.  

𝑃 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 (3-2) 

Although our modelling focus is on availability, we also provide in (3-3) a simple 

calculation of the Cost (C) of unavailability in power production, for the purposes of 

studies of different models of maintenance on availability and thus cost.  

𝐶 = C𝑓 ∗  (1 − 𝐴(∞)) ×  𝑂𝑊𝐹𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ×  𝐷𝑎𝑦𝑠 ×  𝐻𝑜𝑢𝑟𝑠 (3-3) 

Where Cf is the cost of MW/h electricity production, and OWFCapacity is the total 

capacity of the wind turbine or wind farm. It is also possible to calculate the effect of 

carbon emission reduction based on availability which is not considered in this thesis.  

3.3.2 Condition Monitoring and Fault Prognostic 

Accessibility difficulties mean that data collection and condition monitoring have 

a vital role in offshore wind.  Supervisory Control and Data Acquisition (SCADA) and 

Condition Monitoring Systems (CMS) are widely used in this industry. SCADA typically 

generates time series that includes sensor measurements such as temperature, pressure, 

vibration, current, rotational speed, while CMS typically further processes such data. For 

instance, Envelopes, FFTs (Fast Fourier Transforms), and RMS (Root Mean Square) of 

the vibration signal can be the output of the CMS system. Generally, Condition 

monitoring can be divided into four steps; I) Data acquisition, II) pre-processing, III) 

feature extraction and IV) feature reduction. In addition, fault detection can be presented 

in three steps; I) Fault Detection, II) Fault Isolation and III) Fault Identification. Based 

on the result of fault identification, the nature of fault can be categorized as abrupt, 

incipient and intermittent. It should be noted that fault prognostics is usually applied on 

incipient faults. For incipient faults, remaining useful life can be predicted and used for 

preventive maintenance.  

On the other hand, when the nature of the fault is abrupt corrective maintenance in 

the form of repair is inevitable (Sikorska, Hodkiewicz and Ma, 2011). Figure 3-1 shows 

a general scheme of a system’s health degradation. This figure is divided into three zones; 

(I) Healthy Zone in which system has the highest operational performance. (II) 

Degradation Zone starting from an initiation event. The loss of performance is acceptable 

in this range and usually, early condition monitoring and detection can be performed in 
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this zone; Detection through (a) vibration analysis, (b) oil analysis, (c) audible noise, (d) 

abnormal pressure, (e) abnormal temperature. (III) Failure Zone in which components or 

a system may experience extreme loss of performance and symptoms like smoke and 

crack. Depending on the functionality and behaviour of the system, a region can be 

selected for the low-cost preventive maintenance with moderate and acceptable risk. 

  

Figure 3-1.Zones in System Health Degradation  

Using condition monitoring and estimation of system health degradation, it is 

possible to provide condition-based maintenance. Aizpurua et al. have studied a possible 

way of considering estimated RUL and generating a RUL-based failure distribution 

function (J.I. Aizpurua et al., 2017; Jose Ignacio Aizpurua et al., 2017). The RUL-based 

failure distribution function G(t) can be presented as (3-4). 

𝐺(𝑡) = 1 − 𝑒
−(

𝑡
𝑅𝑈𝐿(𝑇𝑃)−𝑆𝐹−𝑃𝐷

)
 (3-4) 

Where SF is the safety factor which is introduced to model the uncertainty of the 

RUL estimation and the time needed to trigger the maintenance. PD is the predicted delay 

introduced to model the effect of accessibility issues causes of delay. For example, if the 

RUL for a component is 20 days. one may consider one day as safety factor. The PD 

factor can be determined through average or expected delay time associated with 

accessibility issues over a period of time. Both SF and PD factors can be adaptively tuned 

during the maintenance procedure. The accessibility issues will be discussed in the next 

section.   
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3.3.3 Maintenance Procedure and accessibility  

A typical offshore wind farm workflow has been described in (Koltsidopoulos 

Papatzimos, Dawood and Thies, 2017; Koltsidopoulos Papatzimos, 2020) and the key 

stages are shown in Figure 3-2.  

 

 
Figure 3-2. A Typical Operation and Management Procedure of an Offshore Wind Farm (Aslansefat and 

Papadopoulos, 2020) 

An offshore operation and maintenance team start their work with early morning 

brief in which the weather status will be addressed by Marine Control Coordinator 

(MCC). A list of tasks, vessel manifest, restrictions and toolbox brief is provided by 

Original Equipment Manufacturer (OEM). The next step is preparation for sail if the 

weather permits. Owner and Operator (O&O) will determine the requirement for a sail. 

In addition, the maintenance plans are determined by the Offshore Control Coordinator 

using information from the diagnostics centre including alarms raised. At the end of the 

day, an evening debrief meeting will be held in which next day’s weather, work, and 

prioritization of tasks will be addressed. 

3.3.3.1 Delay for Vessel and Crew Availability 

Depending on the type of failure, different experts and vessels may be required. As 

an example, the failure of the turbine blade needs experts on replacement or repair. It also 

requires a bigger vessel with a crane to replace the failed blade. In contrast, failure in the 

gas detector sensor can be handled with a normal crew and any available vessel. There 

are some cases in which an expert crew or appropriate vessel are not available on-demand. 

Thus, this kind of unavailability can cause delay and consequently reduce the availability 
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of the turbine (Chiachío-Ruano, Hermile and Kolios, 2019; Kolios, 2019; Kolios et al., 

2019).  

3.3.3.2 Transfer Time 

Transfer time is usually consisting of transporting the maintenance group to the port 

and from the port to the wind farm. The transfer delay is contingent upon the type of 

vessel. In some cases, the maintenance crew can be transferred to the wind farm through 

helicopter which is faster. As the variance of transfer time is low, it is better to use the 

uniform distribution function instead of exponential distribution function for delay 

consideration. New generation offshore wind turbines with a higher rate of capacity and 

power generation can increase the delay of transfer time because they need to be installed 

in a far location which has more wind power potential. According to a System 

Performance, Availability and Reliability Trend Analysis (SPARTA) benchmarking 

system report, in the UK, less than 25% of installed offshore turbines have less than 10km 

distance to shore, about 50% of offshore turbines have 10-30 km distance to shore and 

more than 25% of offshore wind turbines have more than 30 km distance to shore (ORE 

Catapult UK, 2019).   

3.3.3.3 Logistics Delay 

The accommodation of maintenance crews can be on-site or off-site (Shafiee, 

2015). The distance of this from points where maintenance is required introduces a delay. 

In addition, spare parts that are out of stock may introduce further logistics delay (Huang 

et al., 2017). In this thesis, we consider on-site, off-site and out of stock delays.     

 

3.3.3.4 Weather Delay 

When wind speed is higher than 12 meter per second or wave height is higher than 

2 meters, the wind turbine will be inaccessible [14]. This inaccessibility can cause delay 

and consequently reduce the availability of the OWT. An example of delay estimation 

using the interval between opportunities and intervals between delays can be found in 

(Yang et al., 2020). Regarding the RUL-based predictive maintenance, it is necessary to 

use weather forecast and plan the maintenance (Yürüşen et al., 2020). Weather delay can 

differ based on seasons and as expected in winter there are higher (Santos, Teixeira and 

Soares, 2015). Online platforms such as (BMT ARGOSS - WaveClimate, no date) thcan 

provide useful weather forecast and statistics. Thus, state of the sea and consequent 

weather delays can be estimated using the forecasts given on these platforms. 
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3.3.3.5 Repair Time 

Depending on the severity of the fault, a component may need a minor repair, major 

repair or even replacement. As expected, minor repair has a smaller repair rate than a 

major repair. It is also clear that replacement of large components such as blade, rotor, 

generator, and gearbox may cause significant unavailability. However, the replacement 

of small components like a sensor or a control board should be quick. In this regard, 

references like (Carroll, McDonald and McMillan, 2016a) and (Faulstich, Hahn and 

Tavner, 2011a) have provided failure rates, repair rates and costs for different components 

of an OWF. It should be noted the statistical uncertainty in the estimation of those 

parameters for components can affect the estimated availability of the system (Scheu et 

al., 2017).  

3.3.3.6 Imperfect Maintenance 

With corrective maintenance (either minor or major repair) the system can be 

operational again. However, there are some cases that corrective maintenance does not 

fully restore the original state. In addition, a failed component is often replaced by a 

second-handed component originating from the decommissioning of another turbine. This 

thesis uses a factor called Betta denoting the imperfect coverage probability and the 

secondary failure distribution that represents the failure behaviour of the component after 

imperfect maintenance. The secondary failure distribution function enables users to use 

BMM also for availability evaluation of different life-extension strategies such as 

repowering, remanufacturing, and refurbishment (Shafiee and Animah, 2017; Ziegler et 

al., 2018).  

3.4 Butterfly Maintenance Model (BMM) Approach 

This section presents a novel approach for availability evaluation of offshore wind 

turbines considering complex behaviours and accessibility issues. The BMM approach 

has four main sections. Figure 3 illustrates the flowchart of the BMM method. The first 

section is the fault tree generation using a well-known model-based safety analysis tool 

called Hierarchically Performed Hazard Origin and Propagation Studies (HiP-

HOPS)(Papadopoulos et al., 2011, 2016; Kabir, Aslansefat, et al., 2019; Mian et al., 

2019). At the beginning of the procedure, a proper fault tree model for offshore wind 

turbine should be selected. Having a proper fault tree model for offshore wind turbine 

requires significant time and many expert meetings. In addition, given the rapid growth 

of the wind industry, it would be challenging to provide a generically applicable fault tree 

http://hip-hops.co.uk/
http://hip-hops.co.uk/
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model of OWT. In this case, the fault tree model can be generated using HiP-HOPS. In 

this tool, the user needs to provide model of the architecture of the OWT (e.g. in 

SIMULINK) annotated with the failure behaviour of the components. Then HiP-HOPS 

can automatically generate the fault tree and failure mode and effect analysis (FMEA) of 

OWT.  

Having generated the fault tree, the second step involves processing data from the 

prognostics unit of a component and estimating the remaining useful life (RUL) of that 

component. The estimated RUL-based probability distribution is used as a transition in 

the Butterfly maintenance model of the component described later here. It should be noted 

that in the case that RUL is not available, RUL value should be set to zero and the model 

will automatically adapt itself to consider traditional reliability parameters only. 

Accessibility issues are considered in a third step. The availability of spare parts for 

each basic event of the fault tree is obtained from asset management and logistics 

software. A range of factors that limit accessibility limits are optionally considered in the 

Butterfly Maintenance Model. For example, delay for vessel availability, delay for expert 

crew availability, delay for a shift or working hour limits, delay for logistics and preparing 

spare parts, and delay to find an appropriate weather window.  
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Figure 3-3. Flowchart of the BMM method 

 

Delays in calling expert crew, finding appropriate vessels, and availability of spare 

parts can be fetched from asset management and logistics software. For example, if we 

consider a blade failure, then such software may reveal that spare blade parts are available 

on off-site logistics which takes one day to prepare for replacement. For replacement, a 
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large vessel with a crane would be needed that is available after two days. Also, a team 

of expert crews are needed to install a new blade and they will be available in one day.  

Moreover, based on historical data, the needed time for blade replacement can be 

projected, and if it is more than a shift time of 8, 10, or 12 hours, then delay of the shift 

limits should be added. As shown in the flowchart, a set of regulations including shift 

limits and night work prohibition can be set in the framework to calculate the actual 

accessibility delay more accurately. Using weather forecast, the appropriate weather 

window and its corresponding delay will also be determined. Considering all delay 

factors, the PD and SF values of RUL function (in section 3.3.2) can be adaptively tuned 

to cover these delays and improve the availability of the OWT. For example, consider 

based on RUL estimation, a component may fail after 30 days. So, based on criticality of 

the component, SF can be set between 1 to 5 days. The PD factor can also be considered 

using expected value of all possible accessibility delays. 

In the next step of the process, Butterfly Maintenance Models are populated with 

parameters. These are used as complex basic events in the fault tree. The maintenance 

model is created for each part of the system individually. There are some cases in which 

the required data is not available for basic events and instead data is available for 

intermediate events. In such cases, the Butterfly Maintenance Model should be created 

for intermediate event considering the equivalent failure rate for that intermediate event. 

An example of this is included in this thesis. The steady-state availability of each Butterfly 

Maintenance Model is then calculated and using the fault tree, the unavailability of the 

whole system can be achieved. Based on the system’s unavailability the cost and other 

related parameters can be extracted.  

3.4.1 Complex Event Construction as BMM using RGMP 

Before creating the model, it is necessary to clarify the assumptions. Therefore, in 

the following model construction, it is assumed that: 

o The initial states of the system are operational, i.e. the system is healthy. This 

assumption helps determine the initial probability vector of any Markov model. 

o There are no dependencies between complex basic events (CBEs) and therefore their 

corresponding BMMs. Having a correlation or interconnection between different 

BMMs reduces the accuracy of the availability evaluation. For example, consider a 

repair team fixing one component, if in the middle of the work they start to repair 
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another component then the model will not be valid. In other words, the repair 

operation of the OWT should be sequential. 

o Common cause failures and their related issues are not considered in the BMM 

model.   

o RUL source signals should be independent and identically distributed (IID). Consider 

having two RULs for two different components, if there is a correlation between 

source siganls of each RUL, then RULs might also have correlation. In this situation 

a coherent fault tree cannot be used. The non-IID signal should be considered in a 

single model with Multivariate inputs. 

o Optimal threshold design and its performance assessment are not considered in this 

study; for further information th reader is referred to (Aslansefat et al., 2020).  

 

A basic, three-state Markov chain availability model of offshore wind turbine has 

been presented by (Huang, Fu, Mi, Cao, & Wang, 2017). In this thesis, the model 

upgraded to an MRGP to be able to consider wider range of failure, delay and repair 

distributions as shown in Figure 3-4. In this model “Op”, “F”, and “M” stands for 

operational, failed and ready for maintenance respectively. Moreover, F(𝑡), α(𝑡)  and 

R(𝑡) denote failure, delay and repair distribution functions respectively.  

 

Figure 3-4. The availability MRGP hat considers failure, delay and repair with non-exponential distribution. 

The idea of using both RUL-based and traditional failure rates in one model has 

been proposed in (J.I. Aizpurua et al., 2017; Jose Ignacio Aizpurua et al., 2017). The 

original idea has used the SAN (Stochastic Activity Networks) model but for the purposes 

of our work, we have developed the MRGP version of it as show in Figure 5. In this model 

G, F, R, and R’ are representing RUL-based failure Cumulative Distribution Function 

(CDF), traditional failure CDF, repair CDF for corrective maintenance and repair CDF 

for predictive maintenance respectively.  
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Figure 3-5. The availability model that considers both traditional failure rate and RUL-based transition  

It is now possible to merge the two models of Figures 4 and 5 to produce the more 

nuanced model of Figure 6. All models are represented as MRGPs for considering more 

realistic non-exponential transitions. In the combined model, the alpha distribution 

represents all delays including weather delay, logistics delay, crew transfer, etc. It should 

be noted that the repair CDFs can be similar for some scenarios and can be different for 

some other scenarios. In this thesis we assumed that the repair CDFs from both paths are 

identical. In general, the model is capable of considering different repair CDFs. 

 

Figure 3-6. The primary BMM availability model  

If the crew transfer flow duration follows a uniform distribution function, then it 

can be considered separately as illustrated in Figure 3-7.  

 

 

Figure 3-7. The BMM availability model considering separated uniform delays (crew transfer delay) 

The shift limit (see section 1.3) is also considered to make the model realistic. 

Figure 3-8 shows the MRGP with n shift-states. In state “M1” if the repair finishes before 

deadline d, the system will go to the operational state, but if the repair takes more than d 

the system goes to a new state “M2”. This procedure continues to create new states until 

the repair finishes before the deadline.  



89 

 

 
Figure 3-8. The BMM availability model considering the shift time limitation. 

 

Figure 3-9 shows the fully developed availability model that includes an imperfect 

maintenance factor β together with all other factors mentioned earlier. In this model, state 

Op1 is a degraded operational state following imperfect maintenance in which the system 

is not working as well as in “Op” state and it may fail sooner.  

 

 
Figure 3-9. Availability model (Butterfly Maintenance Model) for a component with imperfect maintenance 

(Aslansefat and Papadopoulos, 2019). 

For the purposes of availability modelling for the OWT, the availability model of 

each component must be created. Assuming these models are independent, then each 

model becomes a CBE in the Dynamic Fault Tree of the OWT. For more information 

regarding Fault Trees with CBEs please refer to (Kabir, Aslansefat, et al., 2019). It would 

be unrealistic to assume that RUL-estimation will exist for all components. Thus, the left 

side of the BMM will be removed when the G(t) is equal to zero or there is no RUL-

estimation available as this is shown in Figure 3-10. 
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Figure 3-10. Availability model (Butterfly Maintenance Model) when the RUL-estimation is not available. 

3.4.2 Incorporating Complex events in FTs  

Once a BMM has been created for each component of the WT, the dynamic fault 

tree is then used to provide the availability of the WT as shown in Figure 3-11. 

 

 
Figure 3-11. Stepwise procedure of generating BMM 

Note that the advantage of the use of DFT over classical fault tree is that it allows 

to model complex failure behaviour of systems by considering issues such as 

dependencies and effects of ordering between failure events and modelling different types 

of redundancy profiles. In a DFT, the top of the tree (TE) represents a system failure 
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condition. In this thesis, this failure condition can be the failure of a whole wind turbine 

system or a subsystem within the wind turbine system.  The TE is decomposed into a set 

of intermediate events (IEs), which are the immediate causes of the TE. These IEs are 

further decomposed down to lower-level IEs and at lowest-level to basic events (BEs). 

Usually, BEs represent the failure of system components. To evaluate the availability of 

the wind turbine, we need to evaluate the probability of the TE of the FT and to do this 

we need to provide quantitative data for BEs.  

Unlike in other areas, in the offshore wind industry, we need to consider complex 

failure, repair and maintenance procedures to define the failure behaviour of a component. 

And for this we have proposed the complex BMM model defined in section 3.4.1 that 

represents the behaviour of a component either as BE or as IE. After that, the DFT can be 

solved hierarchically to obtain the unavailability of the system. For more detail regarding 

the hierarchical solution of DFT, see (Aslansefat and Latif-Shabgahi, 2019b; Kabir, 

Aslansefat, et al., 2019). 

There can be two scenarios for incorporating complex events in DFT; I) scenario 1 

is when quantitative information is not available for all BEs and is there is sufficient 

information for IEs (see Example 2) and II) scenario 2 is when all needed information is 

available for BEs (see Example 3). 

Scenario 1: Typically, for wind turbines failure rates are available for BEs. 

However, in most of cases, maintenance data and RUL estimations are not available for 

BE level. In this situation, the following steps should be taken to be able to incorporate 

BMMs in the DFT of the system. 

1. Determining the IEs that repair rates are available for them. 

2. Checking the availability of RUL estimation for those selected IEs in previous step.  

3. A sub-FT bellow each selected should be removed and its equivalent failure rate 

should be stored. 

4. A BMM model for each selected IE should be created based on: event repair rate 

(step 1), RUL (step 2: if RUL estimation is not available set G(t) to zero), equivalent 

failure rate (step 3), imperfect maintenance (if beta is not available then set it to one), 

and accessibility delay parameters. It should be mentioned that the accessibility delay 

parameters such as weather delay, and transfer delay are the same for whole fault 

tree.  

5. Solving the FT/DFT to obtain the availability of OWT using the theory explained in 

the previous section. 
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To decrease the complexity of the procdure, three symbols have been invented to 

improve the understading of the FT model in case of having scenario 1. It should be 

mentioned that for scenario 2, the traditional DFT model and its symbols will be used. 

Figure 3-12 (a) illustrates the schematic of a repair gate in FT. In this gate, the input comes 

from an intermediate event in FT and the output goes to a basic event or a set of basic 

events. For each repair gate, the repair rate, imperfect maintenance coefficient and its 

probability distribution function should be defined. This gate can simply show the level 

of repair information availability in a FT. Regarding the accessibility consideration, a 

delay block or gate is proposed to model different delays. For this gate, the 

aforementioned delays for offshore wind and their probability distribution function can 

be defined. The schematic of this gate is shown in Figure 3-12 (b). Finally, Figure 12(c) 

shows a symbol of declaring that RUL estimation is available for the event on the fault 

tree connected to it.  

 
  

(a) (b) (c) 

Figure 3-12. Schematic of (a) Repair Gate (b) Accessibility Delay Block in and (c) RUL availability in FT 

Scenario 2: In this scenario, the required information for generating a BMM model 

is available for all BEs. In this case there is no need to convert any part of FT/DFT and 

we can directly incorporate the BMMs as complex BEs. As mentioned before, if the RUL 

estimation is not available for an BE, G(t) in the associated BMM should be set to zero.  

3.5 Results 

The capabilities and numerical analysis of the proposed model are addressed in this 

section. Example one is addressing the capabilities of the butterfly maintenance model 

for availability evaluation of a 2MW wind turbine considering only the failure of the high-

speed bearing. The second example demonstrates the combination of butterfly 

maintenance model and dynamic fault tree for evaluating the availability of the system.  

3.5.1 Example 1. High-speed Bearing in 2MW Wind Turbine 

In this example, we apply the Butterfly Maintenance Model (BMM) for the 

availability evaluation of a high-speed bearing component of a WT. A real-time 

exponential degradation-based model has been used to predict RUL (Wind Turbine High-
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Speed Bearing Prognosis - MATLAB & Simulink - MathWorks United Kingdom, no date). 

An open-source dataset of a high-speed shaft in 2MW wind turbine from (Bechhoefer, 

Van Hecke and He, 2013) has been used and from this dataset, for 50 consecutive days, 

a 6-second vibration signal is considered. It is known that an inner race fault developed 

and caused the bearing failure on day 50. Using the exponential degradation model, the 

fitted health indicator curve is obtained. Having fitted the health indicator, a threshold 

should be defined before calculating the RUL (as explained in section 3.3.2). In this 

example, Train-test breakpoint has been set to 20 days, and after 20 days the model starts 

to predict, and day by day adapt (i.e. correct itself) to predict more accurately. Figure 3-13 

shows both true RUL and estimated RUL with their α bound 20% as Confidence Interval 

(CI). 

 

Figure 3-13. True and estimated RUL with α bound 20 percent.  

Table 3-2 provides the parameters used in the BMM. For example, the delay rate is 

1e-2 which includes all accessibility delays as 100 hours with exponential distribution 

function. Repair rate for both RUL-based side of BMM and traditional side is the same 

as 1e-3. Thus, the meantime to repair is 1000 hours in this case. It is assumed that the 

repair CDF is equal for both sides of the model. 

Table 3-2. Parameters values and distribution type in BMM (Example 1) 

Parameter Distribution Type Rate 

Failure F(t) Exponential 5.20e-6 

RUL-based Failure 

G(t) 
Exponential 

Using Figure 3-13 

and Equation 3-4  

Repair CDF R(t) Exponential 1e-3 

Delay CDF Exponential 1e-2 
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Transfer Delay Uniform 2 Hours 

 

Using the BMM model of Figure 3-7 and the parameters of Table 3-2, the 

availability of wind turbine is plotted in Figure 3-14, considering only a bearing fault, 

perfect maintenance and no limitation in shift time. The horizontal axis denotes the 

remaining time to failure (days) and the vertical axis provides the system availability. 

Note that the component (&WT) fail when RUL is zero.  

 

Figure 3-14. Wind Turbine Availability vs. remaining useful life considering only bearing faults, perfect 

maintenance and no limitation in shift times. 

It should be noted that the accuracy of RUL estimation can affect the availability of 

WT. For instance, with low accuracy RUL, the condition-based maintenance can start 

early or late that not only affect availability but also can increase the risk of failure or the 

cost of maintenance as shown in Figure 3-1. It is also clear that without considering RUL 

estimation and using only reliability-centred maintenance the system will gain less 

steady-state availability. It is important to notice when for any reason RUL signal 

disappears, the reliability-centred part can still handle the system’s maintenance, albeit 

with less availability. 

Considering 176 GBP as a cost for energy loss per MW per day, the annual cost of 

energy loss in a WT using steady-state unavailability can be illustrated as Figure 3-15.  
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Figure 3-15. Wind Turbine cost of unavailability vs. remaining useful life considering only bearing faults, 

perfect maintenance and no limitation in shift times. 

The figure shows that using combined RUL-based (condition-based maintenance 

(CBM)) and traditional reliability-centred maintenance (RCM) vs. RCM alone has 

between 60 to 100K GBP saving per year. It also shows that as one approaches the final 

days of the component, the gap in cost closes. It is also showing the direct relation 

between availability and the cost of unavailability. 

Considering the imperfect maintenance probability with β  from 0.1 to 0.4, the 

availability of the wind turbine can be demonstrated as Figure 3-16. By increasing the 

imperfect maintenance probability, the availability of the system will be decreased having 

both estimated and true RUL considered.  

 

Figure 3-16. Wind Turbine Availability vs. remaining useful life considering only bearing faults, imperfect 

maintenance with different Beta factors and no limitation in shift times. 
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3.5.2 Example 2: Blade System failure 

This example shows how to consider failures of more than one component in the 

proposed method. Figure 3-17 illustrates the FT of the blade system in the OWT. This FT 

has three repair and delay gates connected to intermediate events. In industrial 

applications, there are cases in which detailed information is spread among IEs and BEs. 

For instance, in this figure, failure rates are available for BEs level, but repair information 

is only available for IEs. In this case, BMMs should be created for IEs. It should be 

mentioned that, in this FT, the BE numbers have been kept the same as in (Kang, Sun and 

Guedes Soares, 2019) for readers to be able to follow FT construction, failure description 

and values with more details.  

 
Figure 3-17. Sub-FT of blade system failure in the OWT 

Regarding the above illustrated FT, the short description of twenty-one BEs’ names 

and codes are shown in Table 3-3. This table also provides event names and codes for 

intermediate events. 

Table 3-3. List of basic events for rotor system failure illustrated by FT in Figure 3-17 (Kang, Sun and 

Guedes Soares, 2019) 

Event 

Code 
Event Name 

Event 

Code 
Event Name 

Basic Events 

E099 Open tip E109 Clearance loosening at root 

E100 Lightning strike on tip E110 Cracks in the hub 

E101 Cracks in the edge of blades E111 
Surface roughness in the 

hub 

E102 Erosion in edges of blades E112 Cracks in bearings of rotor 

E103 
Delamination in leading 

edges 
E113 Mass imbalance in the hub 

E104 
Delamination in trailing 

edges 
E114 Fault in pitch adjustment 

E105 
Debonding in edges of 

blades 
E115 

Corrosion of pins in 

bearings 

E106 Delamination in shell E116 Abrasive wear in bearings 
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E107 
Crack with structural 

damage 
E117 Pitting in bearings of rotor 

E108 
Crack on the beam-shell 

joint 
E118 Deformation 

  E119 
Lubrication fault in 

bearings 

Intermediate Events 

G49 Structural fault G54 Hub failure 

G50 Bearing and Hub Failure G55 Bearing’s fault 

G51 Tip damage G56 Imbalance of blade system 

G52 Edges damage G57 
Wear in bearings of the 

rotor 

G53 Shell damage   

 

Figure 3-17, shows three repair gates in IEs G49, G54 and G55.  From this tree, the 

following tree can be generated via substitution of these events with their corresponding 

BMM models. 

 
Figure 3-18. The procedure of forming complex basic events in Fault Tree of a blade system 

 

To generate the FT in Figure 3-18 the following step should be taken.  

A) when the repair gate pointing an intermediate gate, the whole sub-tree bellow 

that intermediate gate should be removed, and a its equivalent failure rate should be 

replaced. Thus, in this example three sub-trees bellow G49, G54 and G55 should be 

removed, and their equivalent failure rates should be replaced accordingly. Table 3-4 
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provides the equivalent failure rates for events G49, G54 and G55 calculated from data 

about BEs in the subtrees.  

B) In the second step, repair rates, delay information, the probability of imperfect 

maintenance, etc. should be added to CBE box. In this example, three types of repair and 

weather delay information for four seasons were available. In addition, the RUL 

estimation is available from previous example that should be added to CBE of G55.  

C) In the third step, the BMM models can be generated. As shown in this example, 

only one CBE has the BMM with RUL estimation. It is not realistic to expect RUL and 

many other parameters for all components in WT.  

D) In the fourth step, the new FT with CBE will be formed. In this example, the 

provided FT of Figure 3-17 has been simplified to FT of Figure 3-18 with CBEs. In the 

procedure of creating the FT with CBE, there are two questions to be addressed: Why 

was sub-tree conversion required? Why are BMMs different? 

Basic event G49 and G54 represent blades structural failure and hub failure 

respectively. It is assumed that their failures obey exponential distribution and there is no 

RUL estimation for these two events. So, the Markov model of Figure 3-4 is used for 

them. These two events have three types of repair rate including minor repair, major repair 

and major replacement provided in Table 3-4. For basic event G55, the Markov model of 

Figure 3-9 can be used in which both RUL-based failure and traditional one has been 

considered as explained in Example 1.  

Table 3-4. List of basic events for blade system failure illustrated by FT in Figure 3-18. The procedure of 

forming complex basic events in Fault Tree of a blade system. (Faulstich, Hahn and Tavner, 2011b)(Carroll, 

McDonald and McMillan, 2016b) 

Event 

Code 

Event 

Name 

Failure 

Rate 

Repair 

Code 
Repair Rate (Hours) Model Type 

G49 

Blades 

structural 

failure 

1.26E-5 

Exponential 
R1 

Minor Repair: 9 

Major Repair: 21 

Major Replacement: 

288 

Figure 3-10 

G54 
Hub 

failure 

2.74E-5 

Exponential 
R2 

Minor Repair: 10 

Major Repair: 40 

Major Replacement: 

298 

Figure 3-10 

G55 
Bearings 

failure 

5.25E-6  

Exponential 

+ RUL 

Estimation 

R3 
Major Replacement: 

1000 
Figure 3-9 

 

Table 3-5. Waiting delay for appropriate weather window: Probability of facing inappropriate weather delay 

and its mean waiting time for each season (Santos, Teixeira and Soares, 2015) 
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Season 

Probability 

of 

occurrence 

Mean 

Waiting 

Time (day) 

Winter 0.30 60 

Autumn 0.50 30 

Spring 0.60 10 

Summer 0.80 3 

 

Drawing from (Santos, Teixeira and Soares, 2015), the waiting delay for 

appropriate weather window can be expressed with two parameters including the 

probability of occurrence and mean waiting time for an appropriate weather window. 

Table 3-5 provides these parameters for different seasons. Values are used to compare the 

effect of different seasons.  

Considering the weather delay parameters based on the above tables and using 

minor repair values, the result shown in Figure 3-19 is obtained. It is assumed that the 

maintenance is perfect. Figure 3-19 compares the average unavailability of the blade 

system for different seasons. As shown in example 1, the unavailability of the system 

without RUL estimation is higher than the other cases. Once more the accuracy of RUL 

estimation affects the average unavailability of the system. The accessibility of offshore 

wind turbines is limited during winter and this why winter has more average 

unavailability while summer has less average unavailability.  

 

Figure 3-19. Average unavailability of blade system for different seasons considering minor repairs vs. 

(a) using estimated RUL, (b) using true RUL, and (c) without RUL. 
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Figure 3-20. Average unavailability of blade system for different seasons considering minor repairs vs. (a) 

Minor Repair, (b) Major Repair, and (c) Replacement 

Figure 3-20 shows, for different seasons, the effect of different repair/replacement 

values when the estimated RUL is used. It can be seen that replacement increases the 

average unavailability and reduces the difference between different seasons.  

3.5.3 Example 3. Rotor System Failure 

This example demonstrates the abilities of the proposed method in the steady-state 

availability analysis of OWT using a dynamic fault tree in conjunction with the BMM to 

model the system. It has been noticed that only a few research works have addressed the 

dynamic fault tree modelling of an offshore wind turbine. A sub-tree from (Zhang et al., 

2016) is shown in Figure 21 to illustrate dynamic fault tree modelling and its steady-state 

availability evaluation. Event codes have been kept as they were in the original thesis to 

enable readers find more details on DFT construction, failure description, etc. The figure 

shows the dynamic fault tree for rotor system failure. In this fault tree, there are four static 

gates, one dynamic gate (“cold spare gate”) and eight basic events.  
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Figure 3-21. Dynamic sub-FT of Rotor system (Zhang et al., 2016). 

 

Table 3-6 summarised event codes, event names and their failure rates. Regarding 

the event code R9, the output of example 2 will be considered as an input for this event. 

Actual repair rates are not available for Event R2 to R8, and for illustrative purposes, 

hypothetically the repair rates are considered as failure rates multiplied by 1000. 

Accessibility delays have been considered as equal for all components and the same as in 

example 2. Although assumed data is used for illustration, application would be identical 

on real data.  

Table 3-6. List of basic events for rotor system failure with their failure rates (Zhang et al., 2016) 

Event 

Code 
Event Name 

Failure 

Rate 

Event 

Code 
Event Name 

Failure 

Rate 

 Basic Events  

R2 First Encoder Failure 11E-6 R6 
Power Unit 2 

Failure 
57E-6 

R3 
Second Encoder 

Failure 
11E-6 R7 

Limit Switch 

Failure 
10E-6 

R4 
Lighting Protection 

Failure 
10E-6 R8 Safety Cut-off 10E-6 

R5 Power Unit 1 Failure 57E-6 R9 Blade Failure 
Example 

2 

 Intermediate Events  

D2 Encoders Failure D3 Driver System Failure 

D1 Pitch System Failure W1 Rotor System Failure 

 

Figure 3-22 compares the average unavailability of the rotor system when (a) 

estimated RUL (b) true RUL and (c) No RUL has been considered inside the event R9. 
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This figure also provides the average unavailability for different seasons. In general, the 

unavailability of the rotor system has the same pattern as that of the blade system. Also, 

the average unavailability of the rotor system is less than the average unavailability of the 

blade system.  

 

Figure 3-22. Average unavailability of rotor system for different seasons considering minor repairs vs. (a) 

using estimated RUL, (b) using true RUL, and (c) without RUL. 

Figure 3-23 shows a similar pattern for the rotor system to that for the blade system, 

regarding the effect of different seasons on the unavailability under different repair and 

replacement policies. Once more estimated RUL is used for event R9, and as it can be 

seen, replacement increases slightly the average unavailability and reduces the difference 

between different seasons. It is clear that the rotor system has less average unavailability 

in comparison to the blade system. 

 

Figure 3-23. Average unavailability of blade system for different seasons considering minor repairs vs. 

(a) Minor Repair, (b) Major Repair, and (c) Replacement. 
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Importance measures can be used for criticality analysis in a Fault Tree. Table 3-7 

provides the importance measure values of basic events in this example for different 

seasons when estimated RUL and minor repair are considered. As can be seen in Winter, 

Autumn and Spring, R9 was the most critical component contributing most to the OWT’s 

unavailability, while in Summer R5 and R6 have more criticality. This table can be 

produced for different other situations (e.g. considering true RUL and Major repair). 

Table 3-7. Importance Measure vs different seasons (considering estimated RUL and minor repair) 

Event 

Code 

Importance Measure (Considering Estimated RUL and Minor Repair) 

Winter Autumn Spring Summer 
R2 0.006164045102912 0.018675833863331 0.058308442794917 0.160873862708873 

R3 0.006164045102912 0.018675833863331 0.058308442794917 0.160873862708873 

R4 0.005885797863490 0.017832799925451 0.055676378465111 0.153611957994260 

R5 0.018909606632872 0.057292356885840 0.178874375222576 0.493517067209361 

R6 0.018909606632872 0.057292356885840 0.178874375222576 0.493517067209361 

R7 0.005885797863490 0.017832799925451 0.055676378465111 0.153611957994260 

R8 0.005885797863490 0.017832799925451 0.055676378465111 0.153611957994260 

R9 0.523479877021890 0.539743356626457 0.528234959485040 0.460238368615908 

 

3.6 Capabilities and Limitations of the Proposed Method 

In this section, some of the capabilities and limitations of the proposed method are 

discussed. A number of suggestion are given to overcome limitations.  

3.6.1 Capabilities of the Proposed Method 

• A novel butterfly maintenance model is proposed that considers both traditional and 

data-driven availability analysis by combining both simple failure distribution and 

remaining useful life (RUL)-based transitions in a single MRGP. The proposed 

model can utilize both condition-based maintenance and reliability-centered 

maintenance.  

• The introduced BMM model can incorporate more advanced logistics delays, 

weather delays and daily briefing and transfer delays. Consideration of these 

accessibility and delay factors will lead to a more realistic availability evaluation of 

the offshore wind farm. 

• In the Markov modelling theories, the issue of considering the time-based deadline 

for a transition has rarely been discussed. This chapter used the deadline transitions 

to model shift time limits of the O&M for offshore wind turbines. 

• Imperfect maintenance for BMM has been introduced that can make the model and 

its evaluation more realistic. The proposed model is not only able to consider 
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imperfect maintenance but also able to use this option to model the life extension of 

the turbine. 

• As shown in the examples, the presented model is capable of modelling non-

exponential system behaviour using MRGP. The MRGP has higher computation 

complexity but at the same time offers more power in modelling complex failure 

behaviour.  

• The use DFT has been proposed as a means of combining the availability models of 

components and evaluating the total availability of the system. Using DFTs provides 

an intuitive perspective on fault propagation in the system. It should be mentioned 

that in the literature, models with this level of details are usually considered a 

component of the system while in this chapter, the combination of such models is 

also discussed. 

3.6.2 Limitations of the Proposed Method 

• The proposed model is not capable of handling common cause failures. Consider we 

have two components A and B and assume a common cause failure can occur for 

them. In this case they cannot have a separate Markov model and instead they need 

to have a joint model to be able to consider the effect of the common cause failure in 

the model. 

• The BMM model proposed can provide an exact value for availability. However, 

combining the BMM model with the hierarchical dynamic fault tree solution (from 

Chapter 2) cannot provide the exact value for the availability and the calculations 

will only be approximate. This issue can be solved by improving the solution 

provided for hierarchical dynamic fault tree and its availability evaluation.  

• Due to the lack of data, the thesis did not examine in practice the use of deadline 

transitions to model shift time limits of the O&M for offshore wind turbines; this 

remains as the future work. 

• The BMM model and the availability evaluation are highly dependent on the 

correctness of RUL estimation. Thus, having a poor estimation can lead the model to 

provide wrong values for availability.  

3.7 Conclusion 

An advanced butterfly maintenance model for offshore wind turbines has been 

provided which considers non-exponential distribution functions and the effect of a range 

of conditions. The model enables merged condition-based maintenance and reliability-
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based maintenance, and this combination enables fine-tuning of maintenance and increase 

in system availability. In case of abrupt fault types or unavailable RUL estimation, it is 

possible to put zero for G(t) transition and practically ignore the left part of the model. 

So, the model can be still useful in those cases. 

To create a data-driven model, a real-time transition based on estimated RUL has 

been addressed. Considering real-time transitions in MRGP is a novel feature in the field.  

The model has a comprehensive perspective regarding the different types of 

logistics delays, weather delay, and shift time limitations and provides imperfect coverage 

which is rare in the availability and maintainability modelling of offshore wind farms. In 

addition, it captures imperfect maintenance and life extension. These features together 

with the use of RGMP to model non-exponential system behaviour and the ability to 

merge with dynamic fault trees makes the approach novel and powerful. 

To enable use of the BMM model as complex basic event in FTs or DFTs, no 

interaction must be assumed between any two BMMs. Correlated or interactive failures 

must be modelled within separate models, and this can make results approximate and less 

accurate in such cases.  

We have shown that the proposed Butterfly Maintenance Model can be used for the 

analysis of condition-based maintenance, reliability centred maintenance or both. The 

potential benefits were illustrated through numerical results on examples drawn from 

OWT technology. The uncertainty and sensitivity analysis of the proposed model can be 

further established in the future using perturbation theory (Do Van, Barros and Bérenguer, 

2008). Based on the idea mentioned in (Gheraibia et al., 2019), it is possible to use 

artificial intelligence to update the availability model and make it more adaptive.  
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Chapter 4 

 

4 Addressing Unpredictability in Dependability of Open 

Multi-Agent Systems 
Open systems of systems are unpredictable and can form large numbers of 

configurations which would be impossible to enumerate exhaustively and analyse for 

reliability before deployment. In this chapter, we propose a way of dealing with this 

uncertainty by making the reliability model of a system executable during operation. In 

operation, much of the uncertainty is indeed resolved, for example a configuration of a 

multi-agent system, and conditions of health of its systems are known. The proposed 

model is a fault tree augmented with complex basic event described as Markov model 

(see also chapter 2 for complex basic events). The model provides can be linked to the 

monitoring and diagnosis capabilities of a system and provides a real-time reliability 

evaluation of the system. In order to explore this proposal, a model has been developed 
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and implemented on a real industrial case study on drones for power network inspection 

in collaboration with the KIOS Research and Innovation Centre of Excellence in the 

context of the EU SESAME project. One outcome of this chapter is the SafeDrones 

Python package that provides an implementation of this work with many reusable 

elements.  

4.1 Reliability & Unmanned Aerial Vehicles Industry  

There are many potential applications for Unmanned Aerial Vehicles (UAVs), 

including logistics, emergency response, filming, traffic monitoring, search and rescue, 

rail surveillance, and infrastructure inspection (Christine M. Belcastro et al., 2017). 

However, one of the major barriers to widespread deployment and acceptance of UAVs 

is that of safety, particularly for operations in urban areas where UAV failure brings a 

higher risk of harm. For instance, during testing for Amazon's planned fast drone-based 

delivery service, their drones crashed five times over a four-month period in 2021 

(Amazon Drone Crashes, Delays Put Bezos’s Delivery Dream at Risk - Bloomberg). 

Therefore, safety and reliability must be key objectives during both the design and 

operation of UAVs to help minimise risk and improve likelihood of mission success 

(Sadeghzadeh, Mehta and Zhang, 2011). When it comes to UAVs, there are two major 

viewpoints for reliability evaluation: time and distance.  

Time-based reliability is the probability that the UAV carries out its mission during 

a specific period of time. Distance-based reliability is the probability of correct 

functioning of vehicle at a specific distance from its base station. In addition, reliability 

can also refer to the likelihood of the UAVs crashing into the ground or experiencing 

other mission failures. Reliability can be defined generally as the probability of a system 

functioning correctly over a given period of time (Trivedi and Bobbio, 2017).  In this 

chapter, the main focus is to evaluate the time-based reliability of UAVs having one or 

set of symptoms from UAV’s monitoring system. 

There is a long history of reliability engineering techniques intended to help 

analyse, understand, and prevent failures. Among the most popular are Fault Tree 

Analysis (FTA) (Stamatelatos et al., 2002) and Failure Modes and Effects Analysis 

(FMEA). Such techniques were originally manually applied but over time have evolved 

and now form integral parts of comprehensive, tool-supported methodologies, 

encompassed under Model-Based Safety Analysis (Sharvia et al., 2016). Using such 
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approaches during the design of a UAV, it is possible to determine the ways in which it 

can fail and the likelihood of those failures. 

UAVs must often operate independently in dynamic, unpredictable environments 

with varying mission goals, all of which are difficult to capture in a design-time analysis 

model. By combining design-time knowledge with safety monitoring applied at runtime, 

we can perform dynamic reliability evaluation and obtain a clearer picture of UAV 

reliability during operation. 

In the area of UAVs and their real-time health or remaining useful life estimation, 

there are some existing research works. For instance, an Integrated Vehicle Health 

Management (IVHM) framework for decision-making system has been introduced by (de 

Medeiros et al., 2014).  In this thesis, the remaining useful life (RUL) of the UAV is 

estimated through fault tree analysis and has been used for health-based task allocation in 

UAVs. In (Shi, Yang and Quan, 2016), the reliability of UAVs with different number of 

rotors and different configurations has been evaluated based on propulsion system's 

health and its real-time controllability status. 

Reference (Barr et al., 2017) considered the subject of ground collision in low-

attitude airspace and introduced a third-party casualty estimation. It also presented a 

preliminary risk analysis approach based on standard risk analysis and probabilistic 

model-based approach for UAVs. Meanwhile, (Christine M Belcastro et al., 2017) 

provided experimental flight test techniques with different possible set of hazard-based 

test scenarios to evaluate the safety of sUAS operations. The hazard analysis of sUAS 

mishaps and the future hazard analysis of a collection of sUAS use cases has been 

summarized and identified by (Christine M. Belcastro et al., 2017). 

Although there has been research into the reliability assessment of UAVs using 

FTA, none have adopted a compositional approach to the system component hierarchy 

that also considers the dynamic behaviour of the propulsion subsystem. This thesis, for 

the first time, constructs the fault tree model of UAV from its recognized operational 

faults and evaluates its reliability from this model. This thesis considered the dynamic 

behaviour of the propulsion system through Markov theorem and uses the results as a 

basic event in the fault tree. The constructed fault tree is useful at design time to enable 

designers to identify and address weaknesses in the design, but importantly it is also 

usable at runtime to diagnose faults and evaluate their effects on the system resiliency 

during operation. 
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This thesis proposes a new model-based approach to improve reliability and safety 

of UAVs called SafeDrones. SafeDrones builds upon static design-time knowledge in the 

form of fault trees by combining them with dynamic Markov-based models and real-time 

monitoring to perform continuous reliability evaluation at runtime. The result is a 

modular safety monitor known as an Executable Dependable Digital Identity (EDDI), 

which can then be used to inform operational decision making. 

4.2 Reliability Modeling using Arrhenius Equation 

The lifetime reliability of a processing unit has a strong correlation with its 

temperature (Ottavi et al., 2014). Moreover, a processor's temperature depends on the 

UAV's performance and utilization. To capture this interaction between reliability and 

temperature, the Arrhenius equation has been used. The Arrhenius equation is used to 

compute the MTTF acceleration factor (AF) depending on the processor's actual and 

reference temperatures.   

𝐴𝐹 = 𝑒
𝐸𝑎
𝑘

(
1
𝑇𝑟

 − 
1

𝑇𝑎
)
 (4-1) 

where 𝐸𝑎  is the activation energy in electron-volts, k is Boltzmann's constant 

(8.617E-05), 𝑇𝑟  is the reference temperature and 𝑇𝑎  is the actual temperature. The 

acceleration factor (AF) is then used by the MTTF model to evaluate the effects of 

temperature on the MTTF. The final MTTF of the processor is calculated using the 

following equation: 

𝑀𝑇𝑇𝐹 =
𝑀𝑇𝑇𝐹𝑟𝑒𝑓

𝐴𝐹
 (4-2) 

where 𝑀𝑇𝑇𝐹𝑟𝑒𝑓  is the reference MTTF, estimated at the reference temperature. 

𝑀𝑇𝑇𝐹𝑟𝑒𝑓 is usually given by the system's designers. 

4.3 The Executable Digital Dependable Identity (EDDI) 

Despite existing standards and guidelines, there is a great deal of variation in how 

assurance of dependability attributes is realized and claimed for concrete systems. This 

makes it difficult for third parties like certification authorities to analyse and evaluate the 

assurance approach in general, and especially when the systems are to be open, adaptive, 

or autonomous, like platooning cars (Kabir, S., et al., 2019). 

To overcome this issue, Digital Dependability Identities (DDI) were created 

(Schneider et al., 2015a; Wei et al., 2017; Armengaud, D Schneider, et al., 2021). A DDI 

is a structured, modular, and hierarchical model of a system's dependability properties. 

An assurance case is at the heart of the DDI, arguing for the assurance of the appropriate 
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dependability attributes and connecting all models and artefacts (e.g. requirements, 

assumptions, architectural models, dependability analyses, evidences) essential for the 

argumentation. A DDI is created and updated throughout the design process, issued when 

the component or system is launched, and then maintained during the component or 

system's lifespan. DDIs are utilized for the hierarchical integration of systems to "systems 

of systems" in the field, as well as the integration of components to systems during 

development. 

An Executable Digital Dependability Identity (EDDI) is an extension of the DDI 

concept that is intended to be executable at runtime. It leverages the design-time 

dependability models stored in the DDI and augments them with event monitoring and 

diagnostic capabilities to provide real-time feedback on reliability, security, and safety 

issues, thereby supporting safe operation and dynamic dependability management. 

Importantly, EDDIs are intended to act cooperatively when applied within a distributed 

multi-robot or multi-agent system, enabling on-the-fly reconfiguration, communication, 

and adaptation. The idea is to support dynamic adaptive system assurance and 

dependability management through event monitoring, run-time diagnostics, risk 

prediction, and recovery planning. 

Like DDIs, EDDIs are based on the Open Dependability Exchange metamodel 

(Sorokos, 2021). An EDDI generally consists of some higher-level ODE-based system 

models for diagnostics, capability (e.g. success trees) and risk prediction (e.g. fault trees, 

Bayesian networks) and lower-level models for event monitoring and reliability 

estimation (e.g. Markov models, Bayesian networks). Once connected to sensor data and 

other pertinent system information, the EDDI can use these models to perform 

calculations to provide feedback and recommendations to the host system. SafeDrones 

can be considered as a prototype instantiation of the EDDI concept that utilises fault trees 

and SMPs to provide dynamic reliability evaluation for UAVs. 

Executable Scenarios (ExSce) are model-based narrative descriptions of missions 

guiding the engineering of open adaptive applications. An ExSce supports the definition 

of both mission-relevant and mission-plausible information, including but not limited to, 

the environment and its dynamics, time and events, objects (e.g., inspected building) and 

subjects (e.g., human operators) and their potential behaviour. Executable Digital 

Dependability Identities (EDDI) is an extension of DDI, that are model-based artifacts 

spanning the adaptive system life cycle. An EDDI carries verifiable dependability models 

of its reference system produced at design time based on ExSec, capturing safety and 
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security hazards, their causes, effects, and possible corrective measures. The joint EDDI 

and adaptive system execution enables dynamic adaptive system assurance and 

dependability management through event monitoring, run-time diagnostics, risk 

prediction, and recovery planning. 

4.4 SafeDrones Approach 

SafeDrones is an approach for real-time reliability and risk evaluation of multi-

robot (multi-UAV) systems. The main goal of this work is to develop an early prototype 

instantiation of the EDDI concept for runtime reliability estimation for UAVs. It makes 

use of fault trees as the overall model with CBEs to support dynamic evaluation. A fault 

tree consisting of 9 main failure categories and 28 basic events is proposed for a generic 

UAV in Figure 4-1. However, to simplify the explanation of the methodology, a smaller 

fault tree of the UAV is provided in Figure 4-2.  
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Figure 4-1. A fault tree of UAV consists of nine main failure categories and twenty-eight basic events. 

The contribution and capabilities of the SafeDrones approach are as follows: 1) 

SafeDrones expands the idea of FTA with CBEs to not only consider SMPs but also other 

evaluation functions like the Arrhenius Equation; 2) it proposes the idea of having 

symptom events for each CBE; 3) it is also able to handle reliability evaluation of 

reconfigurable systems by using pre-defined models in one CBE (e.g. consider a 

hexacopter capable of reconfiguring its propulsion system on-the-fly from PNPNPN 

configuration to PPNNPN configuration), and 4) finally, SafeDrones provides Python 

functions which can be executed on each UAV and provide real-time reliability and 

MTTF evaluation. This thesis primarily explores the first and fourth capabilities. 
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Figure 4-2. Small FTA of a UAV considering complex basic events with failure symptoms and three 

different types of propulsion system reconfiguration. 

The tree provided in Figure 4-2 has three CBEs for battery failure, propulsion 

system failure and processor failure. 

The processor failure has a symptom of actual temperature (𝑇𝑎 is the symptom) and 

based on the Arrhenius Equation (in previous section), the reliability and the MTTF 

values of this basic event can be updated during the mission. The idea can be implemented 

for any component in the robot where its reliability can change based on temperature 

variation. The middle CBE is for the battery failure. This model is provided by (Kim, 

Ghosh and Trivedi, 2010) and considers battery degradation as well as failure. In this 

thesis, we have used the battery model with four degradation levels and the battery level 

status B_S is included as a symptom. So, based on the battery level status, the initial 

probability vector in the SMP will be updated and then the probability of failure 

(unreliability of the battery) will be updated accordingly.  

The third CBE is a propulsion system failure. The CBE is chosen to show the 

capabilities of SafeDrones for handling system reconfiguration. The first configuration is 

for a quadcopter that has two propellers rotating clockwise (P) and two propellers rotating 

anti-clockwise (N) forming PNPN configuration. The second and the third configurations 



114 

 

considered for hexa-copters with two different PNPNPN and PPNNPN configurations (P 

stands for clockwise rotation and N stands for anti-clockwise rotation). The detailed 

construction and simplification of these models has been discussed in one of my previous 

research projects (Aslansefat, Marques, et al., 2019). 

 
Figure 4-3. Markov model of a hexacopter with PNPNPN configuration and motor status (M_S) as a 

symptom – binary link between the symptom and the system’s states.  

 
Figure 4-4. Markov model of a hexacopter with PNPNPN configuration and motor status (M_S) as a 

symptom – considering the uncertainty of symptoms.  
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Figure 4-5 and Figure 4-6 further illustrate the idea of merging real-time monitoring 

and diagnosis with FTA. In a traditional FTA, the tree consists of a top layer, a number 

of intermediate layers, and a basic events layer. However, in SafeDrones there is a new 

layer called the symptoms layer. In the symptoms layer, the safety expert(s) should 

identify the potentially observable events in the system and define the relation between 

symptoms and basic events. For instance, in Figure 4-2, the symptoms are temperature, 

battery status, and motor status along with motor configuration. In Figure 4-2, it is 

assumed the temperature symptom only affects the processor and has no effect on the 

others. In this proposed reliability modelling approach, it is recommended to use CBEs 

to link with the symptoms. A CBE can take many forms, e.g., a multi-state Markov chain 

where the symptom affects its current state, a Bayesian Network where a symptom can 

form a belief, or some other reliability function where a symptom can be a parameter on 

it, etc. The link between symptoms and basic events can be both deterministic and 

probabilities values. 

 
Figure 4-5. Overall view on merging real-time monitoring and diagnosis system with Fault Tree Analysis 

(right-side focusing on the way that DFT is generated). 

In the right section of above figure, we propose an approach to combine systematic 

safety model generation and the expert knowledge. In addition, we show how the data 

from real-time monitoring and diagnosis system can be utilized for having a model repair 

recommendation. To read more about the idea, it is suggested to read our research on fault 

tree repair recommendation (Gheraibia et al., 2019). On the other hand, in the following 

paper, the right-side of figure is focused on the idea of safety models being executable.  



116 

 

 
Figure 4-6. Overall view on merging real-time monitoring and diagnosis system with Fault Tree Analysis 

(right-side is focusing on the way that EDDI can be generated for UAVs). 

As discussed in the previous EDDI Section, the EDDI concept uses real-time 

evaluation of dependability attributes like reliability as function(s) to update the mission 

accordingly as part of a dependability-driven decision-making system. This could lead to 

a variety of responses, such as reconfiguration during the mission (e.g., switching a 

hexacopter to quadcopter mode in the event of possible motor faults), changes to mission 

parameters (e.g., emergency landing or return to base sooner), or even requests for 

predictive maintenance of affected parts. In SafeDrones, all the calculations are 

implemented in Python (available in the GitHub repository as mentioned in the first 

section) for runtime execution. The results could also be used by technologies like 

ConSerts (Schneider and Trapp, 2013) to generate conditional guarantee outcomes and 

provide the final decision accordingly. Moreover, based on the idea provided by 

(Gheraibia et al., 2019), it is possible to investigate the use of monitoring data to obtain 

safety model repair recommendations. 

4.5 Experimental Implementation 

To evaluate the reliability models presented in the methodology section of this 

chapter, ICARUS toolkit is used (Savva et al., 2021), which uses vision-based UAV 

monitoring platforms to automate the inspection of medium voltage power distribution 

networks. As Figure 4-7 shows, the UAV gathers data and provides a real-time data 

processing to identify poles and record their accurate positions. An off-the-shelf four-

rotor UAV (DJI Matrice 300 RTK) equipped with different sensors, including 

temperature sensors, is used. On the top of the UAV, an NVIDIA Jetson Xavier NX 
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embedded platform was mounted to run the deep learning and navigation algorithms, 

allowing the UAV to perform inspection procedures autonomously. Additionally, the 

UAV is equipped with the SafeDrones tool, which monitors parameters such as processor 

temperature, battery level and execution time to estimate UAV reliability. Furthermore, 

SafeDrones can recommend actions like mission abort and emergency landing if the 

estimated reliability falls below a predetermined threshold. For the pole detection task, 

the UAV flew at a constant height of approximately 50m above the ground with the 

camera turned downwards. To identify poles (top-view) in videos under different 

background and lighting conditions, the tiny-You-Only-Look-Once (tiny-YOLO) v4 was 

employed.  

 
Figure 4-7. Inspection procedure using ICARUS toolkit (Savva et al., 2021) for pole detection. 

Table 4-1. Input values for the parameters used in the models. 

Parameters Description Setting 

Motor Parameters 

MC Motor Configuration 
PNPN (P: Positive clockwise direction, N: 

negative anti-clockwise direction) 

Motor λ Motor Failure Rate 0.0010 

Battery Parameters 

Battery λ Battery Failure Rate 0.0001 

D 
Battery Degradation 

Rate 
0.0064 

α Battery Usage Rate 0.0080 

β Battery Inactivity Rate 0.0070 

Processor Parameters 

u Utilization 1.0000 

{𝑀𝑇𝑇𝐹}{𝑟𝑒𝑓} Reference MTTF 1000 hours 

𝐸𝑎 Boltzmann Constant 8.617E-05 

k Activation Energy 0.3 electron-volts 

𝑇𝑟 
Reference 

Temperature 
{29}℃ 
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For our analysis we monitor processor temperature and battery level every 1 second to 

estimate the probability of failure for the UAV using the models described earlier. All the 

other input parameters are shown in Table 4-1. When the estimated probability of failure 

exceeds a specific threshold (we use 0.9 as a threshold for this analysis), an emergency 

action is taken. In this case, the action is to perform a safe emergency landing and continue 

the mission with another UAV. Note that the threshold can vary, depending on the 

mission and the time needed to safely land the UAV. The total execution time for the 

fault-free inspection mission to detect all the poles is 750 seconds. To demonstrate the 

SafeDrones concept, we use two scenarios: 

• Fault-free scenario. In this scenario, all the components work properly without 

experiencing any faulty conditions. 

• Faulty scenario. In this scenario, the battery stops working properly at a specific 

time X causing a sharp drop in the battery level and at time Y, where Y>X, the 

processor starts overheating due to unexplained circumstances. For this analysis, 

X equals 250 seconds and Y equals 400 seconds. 

4.6 Experimental Results 

This section reports the reliability analysis results for the two scenarios described 

in the previous Section.  

4.6.1 Reliability Analysis of the Fault-Free Scenario 

We first evaluate the probability of failure of the different components (battery and 

processor) and the total UAV for the fault-free scenario. It is assumed that the mission is 

about 800h. Figure 4-8 (a) and (b) show the battery level and processor temperature 

respectively (collected from UAV's telemetry logs), while Figure 4-8 (c) and (d) show the 

failure probability and MTTF for each component as well as the overall UAV. As Figure 

4-8 (c) shows, the lower the battery level, the higher probability of failure. The sharp 

increase here when the battery level goes below 75% is because our model discretizes the 

battery level into four states (25% each), resulting in a jump when each discrete state is 

reached.   

Additionally, Figure 4-8 (c) shows that the processor's probability of failure is also 

related to the UAV's cumulative processing time. The exact correlation between 

reliability and processor temperature is shown in Figure 4-8 (i), which illustrates how the 

processor's MTTF changes according to the current temperature. As is clearly shown, 
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when the processor's temperature increases, the MTTF also decreases. Finally, as can be 

observed in Figure 4-8 (c), the overall UAV failure probability does not exceed the 0.90 

threshold for emergency action, indicating that the inspection mission was completed 

successfully. Note that the threshold value should be determined by a team of safety 

experts. 

4.6.2  Reliability Analysis of the Faulty Scenario 

In the first scenario, the overall probability of failure was satisfactory throughout 

and the UAV managed to complete the mission safely. However, it is also possible for 

faults to develop in any component, and so in the second scenario we investigate how the 

probability of failure can be changed by simulating a faulty battery and the processor 

overheating. Here the battery stops working properly at the 250th second. At this point 

the battery level drops sharply from 80% to 40% as Figure 4-8 (e) shows. The processor's 

temperature also suddenly increases at the 400th second. 

Figure 4-8 (g) and (h) depict the impact of these simulated faults on the probability 

of failure and MTTF respectively. As Figure 4-8 (g) shows the failure probability 

threshold of the UAV is exceeded at the 500th second. This leads to an emergency landing 

of the UAV even if the mission was not completed. In a multi-UAV scenario, another 

UAV can be dynamically tasked to continue and complete the mission in this case. 

The results highlight the benefits of both the proposed SafeDrones approach and 

the overall EDDI concept in helping to avoid dangerous accidents caused by failures. By 

combining safety analysis models and reliability functions executable at runtime, we can 

obtain a more comprehensive overview of UAV dependability during real-time operation, 

one that considers multiple subsystems and sensors as well as predefined thresholds and 

corresponding mitigating actions. Such an approach is particularly valuable for 

autonomous platforms where there is no human operator to monitor safety directly. 

Consider the following figure and a scenario in which three UAVs are tasked to 

scan three fields in parallel when an internal fault occurs in UAV #3. Although it does 

not cause immediate failure, SafeDrones re-evaluates the reliability at runtime and 

determines it increases the risk above a dangerous threshold, so in order to reduce the risk 

of collision or spraying out of bounds, UAV #3 activates a fail-safe mechanism and 

returns to base. If UAV #2 has required availability, its mission can then be updated to 

cover the third field. 
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Figure 4-8. Fault-Free Scenario: (a) Battery degradation (battery level in percentage), (b) Processor 

Temperature (c) Probability of failure (d) Mean Time to failure -- Faulty Battery Scenario: (e) Battery 

degradation (battery level in percentage), (f) Processor Temperature (g) Probability of failure (h) Mean 

Time to failure -- (i) Processor’s MTTF and temperature for the Fault Free Scenario 
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Figure 4-9. Application of SafeDrones for Multi-robot Precision Agriculture 

 

Another example is provided in the following figure, considering the widely 

variable wind speeds encountered, a fault in the UAV that reduces controllability risks 

collision with a blade, causing damage to both UAV and wind turbine. The SafeDrones 

approach allows us to assess risk in real-time in response to the occurrence of faults by 

providing a runtime evaluation of reliability. Using this information, the drone can adapt 

its behaviour accordingly, e.g., by increasing safe distance to reduce risk of collision. 

 

 
Figure 4-10. Application of SafeDrones for Offshore Wind Turbine Blade Inspection 

 

4.7 Capabilities and Limitations of the Proposed Method 

In this section, some of the capabilities and limitations of the proposed method are 

discussed. A number of suggestions are given to address limitations.  

4.7.1 Capabilities of the Proposed Method 

▪ This chapter discussed the idea of executable digital dependability identifier (EDDI) 

and provided an early prototype for it as a python package (SafeDrones). This 

combination of fault tree and Markov models is one of the first incarnations, and a 

novel form, of EDDI, which demonstrates the capabilities of the EDDI concept. 
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▪ A novel symptoms layer for the Dynamic Fault Tree has been proposed. It helps the 

model to be integrated with runtime monitoring. 

▪ The case study shows how this form of EDDI can be used for power network 

inspection and how real-time reliability evaluation can be used to anticipate imminent 

failures and prevent accidents by recommending appropriate responses. 

4.7.2 Limitations of the Proposed Method 

• Currently, the provided experimental result is for a single robot and the multi-robot 

aspect is rather superficial. However, the proposed SafeDrones approach is capable 

of being considered for multi-UAV applications.  

• Regarding the multi-UAV modelling, there is also a challenge to include the robot 

collaboration aspects. For instance, the communication between two robots and the 

effect of a communication loss in one robot can affect the reliability of the others. 

Moreover, the distance between two robots and the risk of calculation should be 

considered. These form areas of further work. 

• The current proposed model is not capable of considering security events. However, 

integration is possible and pursued in work continuing this thesis in the SESAME 

project. 

• The proposed approach is dependent on the accuracy and reliability of the monitoring 

and diagnosis unit. In this chapter, a way to include the uncertainty of symptoms has 

been discussed. However, for the scheme to work well, a reliable diagnosis and 

monitoring system is assumed. 

4.8 Conclusion 

To help address the problems of UAV reliability and risk assessment, particularly 

at runtime, where operational and environmental factors are hard to predict, the 

SafeDrones reliability modelling approach has been proposed by developing a new 

instantiation of the EDDI concept. The proposed model employs a combination of FTA 

with CBEs modelled as Markov Chains to support real-time reliability evaluation. As part 

of this, it introduces a novel symptoms layer to integrate with runtime monitoring data. 

To illustrate SafeDrones, we applied it to a power network inspection use case to show 

how real-time reliability evaluation can be used to anticipate imminent failures and 

prevent accidents by recommending appropriate responses. 
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Chapter 5 

 

5 Addressing Distributional Shift with SafeML 

This chapter focuses on the challenge and importance of AI safety and its directions. 

In particular, distributional shift is discussed a one of the main reasons for performance 

drop in Machine Learning algorithms. SafeML is proposed as a solution for safety 

monitoring of machine learning classifiers. The chapter provides several examples to 

show how SafeML can be effective for machine learning monitoring at runtime.  

5.1 Artificial Intelligence and its Safety Challenges 

Artificial Intelligence (AI) is growing fast in many applications. In parallel with this 

rapid growth, the concern of the society regarding the reliability, and safety assurance of 

those algorithms is raising. For safety-critical applications where human life or privacy, 

environment and economy are the topics in which the existing concern would be more 

serious. For instance, AI in medicine by (Wiens et al., 2019), AI in autonomous systems 
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like self-driving cars by (Burton et al., 2020; Du‐Harpur et al., 2020), AI in Military 

(Sharkey, 2019), and AI in economic by (Davenport et al., 2019). In addition, different 

organizations and governmental institutes are trying to establish new rules, regulations, 

and standards for AI (Evans, 2020; ISO/IEC JTC 1/SC 42: Artificial intelligence, 2020). 

The artificial intelligence and specifically machine learning can have harmful 

behaviour and put our life, privacy, environment, and money in risk (Mohseni et al., 

2023). It can be accidentally because of poor design, specifying the wrong objective 

function, having implementation error, choosing the wrong learning process, and using a 

poor or incomprehensive dataset for training (Tambon et al., 2022). Thus, AI safety can 

be defined as a set of actions or endeavour to prevent any harm to humanity through AI. 

However, there are many perspectives and directions to be defined for AI Safety. In fact, 

(Amodei et al., 2016) have addressed different research problems of certifying the 

modern machine learning systems operating in the field. They have categorized safety 

issues into five categories including A) Safe exploration, B) Robustness to distributional 

shift, C) Avoiding negative side effects, D) Avoiding “reward hacking” and “wire 

heading”, E) Scalable oversight.  

Statistical distance measure can be considered as a common method to measure 

distributional shift. Furthermore, in modern ML algorithms like Generative adversarial 

nets (GANs), different statistical distance or divergence is applied as a loss function such 

as Jensen-Shannon divergence (Goodfellow et al., 2014), Wasserstein distance (Gulrajani 

et al., 2017), and Cramer distance (Bellemare et al., 2017). For dimension reduction, t-

SNE (t-distributed stochastic neighbour embedding) algorithm uses the Kullback-Leibler 

divergence as a loss function (Laurens van der Maaten, 2014).  In this report, the main 

focus will be on safety evaluation based on the statistical distance which is related to the 

robustness and distributional shift aspect of AI safety. A comprehensive study on dataset 

shift has been provided by (Quiñonero-Candela and Schwaighofer, 2009) and the dataset 

issues such as projection and projectability, simple and prior probability shift have been 

discussed. However, the study did not address the use of statistical distance and error 

bound to evaluate the dataset shift.  

A resampling uncertainty estimation (RUE)-based algorithm has been proposed by 

(Schulam and Saria, 2019) to ensure the pointwise reliability of the regression when the 

test or field data set is different from the training dataset. The algorithm has created 

predictions ensemble through the modified gradient and Hessian functions for ML-based 

regression problems. The following table provides a summary of some relevant research 
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in the field. The table indicates whether an approach is model-specific (i.e., needs access 

to the model’s underlying parameters and structure) or model-agnostic (i.e., treats the 

model as a black box and requires only the inputs and outputs), the type of input (e.g. 

images, tabular/numeric data), the type of task (regression or classification), and whether 

or not it can operate at runtime. 

Table 5-1 provides a brief comparison between existing frameworks that aim to 

evaluate dependability attributes of ML/DL such as reliability and safety. The 

categorization includes brief explanation of their features, access type, model type, input 

type, task type, run-time evaluation capability and references. Each column of this table 

is explained as follows: 

Name: This column provides the name(s) of each framework. It should be noted 

that some of them like SafeAI have different names for their sub-frameworks. 

 Features: The features column provides a brief introduction about the main focus 

of each framework and its main features.  

Access Type: Two types of access including model-agnostic (MA) and model-

specific (MS) access are considered. In the model-agnostic one the safety evaluation 

framework does not need to have access to the model’s parameters or specification and 

just read its input-outputs. On the other hand, in the model-specific approaches, the 

framework needs to have access to the model’s parameters and structure. Usually, the 

model specific approaches are tailored for deep neural network architectures and need to 

have access to the value of weights, biases, activation functions, number of layers, etc. 

While the model-agnostic approaches can cover wider range of existing approaches such 

as Gaussian processes, ensemble trees and support vector machines as well as deep neural 

networks.  In addition, model-specific approaches may have a higher precision because 

of accessing the inner-parameters of a model. However, due to the intrusive nature of the 

approach, it cannot be used for private models, and it should be design for a specific 

model before evaluation. Furthermore, in some cases where a new deep neural network 

(e.g. deep evidential classification (Sensoy, Kaplan and Kandemir, 2018) or regression 

(Amini et al., 2020) are used, the model-specific approaches may need to be re-designed 

and sometimes they need to come up with new solution to handle new models. 

Model Type: The model type separated into two deep learning (DL) and machine 

learning (ML). As stated before, deep learning includes deep neutral network 

architectures such as feed forward neural networks, convolutional neural networks, and 

generative adversarial neural networks. The machine learning includes both deep neural 
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network architectures and other types of machine learning algorithms. In general, 

frameworks of ML type can support wider range of algorithms and those with DL are 

only restricted to deep neural network architectures.  

Input Type: In this column, (T) stands for tabular input data, (I) stands for image 

input, (T) stands for text input, (G) stands for graph-based input, (TS) stands for time-

series and (Q) stands for quantum-based input data. In SafeML, (G*) means, the 

framework has proposed a solution for graph-based input data, but it is not a stable 

version. From this column, it is clear that there is no available framework to handle 

quantum-based classifiers.  

 Task Type: Task type can be categorized into two classification and regression 

tasks. For graph-based input the classification task can be divided further into graph 

classification vs node classification. But it is not included as currently only SafeML 

proposed a solution for graph-based inputs, and it is designed for graph classification. In 

the future, such a table can be expanded further when there are more approaches 

supporting graph-based input. 

Run-Time: For the real-time and safety critical systems, it vital to perform the 

evaluation at run-time. This column shows which framework provides a solution for run-

time safety evaluation. When a framework has “No” in this column, it means the proposed 

evaluation is offline.   

To have some examples from this table, (Zhao et al., 2021) has proposed a 

framework called ReAsDL for reliability evaluation of machine learning algorithms. In 

this framework, as stated in feature column, the input space will be divided into small 

cells and the reliability of the ML/DL will be evaluated based on robustness and 

operational profile probability of those cells. The proposed approach is model agnostic, 

works with wide range ML/DL algorithms, currently only supports tabular input data, and 

it is designed for classification tasks. Furthermore, the proposed framework is good for 

offline reliability evaluation of machine learning classifiers and does not provide any run-

time solution. (Aslansefat, Sorokos, et al., 2020) has proposed a framework called 

SafeML for safety monitoring of machine learning algorithms. The first version of the 

framework was designed only for tabular input data but later has expanded for image in 

(Aslansefat et al., 2021), the framework has also proposed a solution for graph-based 

inputs which is not stable yet.   

Going through the following table, the framework proposed a solution that utilizes 

different statistical distance measures to quantify the input distributional shift and 
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estimate the model accuracy at run-time. The proposed solution is model-agnostic and 

can deal with wide range of ML and DL algorithms. SafeML has not offered any solution 

for regression tasks and can only be used for classification tasks. It should be noted that 

in this paper, SafeML will be used as a core function to evaluate the reliability of the 

machine learning classifiers. 

Apart from comparing available frameworks for dependability evaluation of 

machine learning algorithms, let’s focus on the available research works that have paved 

the road for this paper to establish a novel approach for reliability evaluation of machine 

learning classifiers. (Pietrantuono, Popov and Russo, 2020) has proposed an approach for 

the reliability evaluation of service-based software based on operational profile 

uncertainty. In this paper, it was assumed that the ground truth exists for each request. 

Thus, the approach was limited to offline model evaluation. Another point about this 

paper was that the author did focus on serviced-based software and the detail about how 

to form operational profile for black-box software and more specifically machine learning 

algorithms were missing. A year later (Zhao et al., 2021) proposed a similar approach but 

specifically for machine learning classifiers. Zhao has focused on diving input data to 

cells to form the operational profile and did not study other possible scenarios to form the 

operational profile. So, in this paper not only different possible scenarios for forming the 

operation profile are studied but also a run-time solution is proposed. 

Table 5-1. Summary of the existing ML dependability and safety approaches 

Approach Features 
Access 

Type 

Input 

Type 

Task 

Type 

Run-

time? 

DeepCert 

(Paterson et al., 

2021) 

Aims to verify the robustness of DNN 

image classifiers in terms of sensitivity 

to image-based perturbations, e.g. blur, 

haze, contrast etc. Instead of measuring 

small pixel variations, these contextually 

relevant perturbations are encoded and 

quantified specifically. Demonstrated 

via integration with the Marabou DNN 

verification toolbox. 

MS I C No 

DeepImportance 

(Gerasimou et 

al., 2020) 

Presents a systematic methodology for 

DL testing with new Importance-Driven 

Criteria. This allows a layer-wise 

functional understanding of DL 

components — the causal relationships 

between neurons — and thus makes it 

possible to assess the semantic diversity 

of a test set in terms of testing important 

neurons (in effect, a form of test 

coverage). Has an open-source tool. 

MS T/I R/C No 
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Approach Features 
Access 

Type 

Input 

Type 

Task 

Type 

Run-

time? 

Marabou (Katz 

et al., 2019) 

A verification tool that can query fully 

connected and convolutional DNNs to 

provide a reachability and robustness 

assessment for a given neural network. 

Requires internal knowledge of the 

DNN to work as it performs a lazy 

search to locate solutions to non-linear 

constraints on the model. 

MS T/I R/C No 

NN-

Dependability 

(Cheng, Huang 

and Nührenberg, 

2019) 

Proposes new dependability metrics to 

measure the effect of uncertainty 

elimination in the ML/DL lifecycle. 

Also provides a formal reasoning engine 

to guarantee ML/DL behaviours. 

MS 
T/I 

TS 
C Yes 

ReAsDL (Zhao 

et al., 2021) 

Focuses on the impact of the operational 

profile on robustness. Divides the input 

space into small cells and evaluates the 

reliability of the ML/DL based on 

robustness and operational profile of 

those cells. Prototype tool available 

online. 

MA T C No 

Safe AI (Gehr et 

al., 2018) 

A collection of related approaches, e.g. 

DiffAI, DL2, AI2, PRIMA etc. Their 

main focus is on possible perturbation to 

the input space (adversarial examples) 

and providing robust, safe, and 

interpretable solutions and 

certifications. 

MS T/I C No 

SAFE-DNN 

(She et al., 

2020) 

Investigates the property inference in 

DNNs as part of the verification process. 

Combines supervised and unsupervised 

learning by augmenting the feature 

space of the (supervised) DNN with 

features extracted by an (unsupervised) 

spiked neural network, increasing 

robustness of the DNN. 

MS T/I C No 

Safeguard AI 

(Lee et al., 

2017) 

Calculates probability for out-of-

distribution input as confidence loss and 

adds that probability to the existing loss 

function. Intended for use during 

training by identifying OOD samples 

and generating improved training data 

using a GAN to minimise confidence 

loss. 

MS I C No 

SafeML 

(Aslansefat, 

Sorokos, et al., 

2020; 

Aslansefat et al., 

2021) 

Uses statistical distance measures to 

quantify the distributional shift. Then 

estimates the accuracy, updates the 

uncertainty, and evaluates reliability. 

MA 
T/I 

TS/G 
C Yes 
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Approach Features 
Access 

Type 

Input 

Type 

Task 

Type 

Run-

time? 

(Kläs and 

Sembach, 2019; 

Kläs and Jöckel, 

2020)Wrappers  

Focuses on three main ML verification 

domains: model performance, input 

quality, and scope compliance. Provides 

a set of useful functions to evaluate the 

existing uncertainties in each step. 

MA T/I C No 

 

Upon researching the literature, there is no conducted research work so far in which 

safety monitoring and accuracy estimation of the ML-based classification be addressed 

using ECDF-based statistical distance measures. In this thesis, a modified version of 

statistical distance is used to compare the dataset during the training procedure and the 

field test. Then a novel human-in-loop procedure has been proposed to estimate and 

certify the accuracy of the system in different scenarios. Different examples have been 

provided to show the capabilities and limitations of the proposed approach. 

The rest of this chapter is organised as follows: In section II, the problem definition 

is provided. The proposed method is addressed in section III. Numerical results are 

demonstrated in section IV with a brief discussion. The capabilities and limitations of the 

proposed method are summarised in section V and the thesis terminates with a conclusion. 

5.2 Problem Definition 

The classification algorithms have different applications. For instance, abnormality 

detection can be one of them. A simple classifier can be a line or threshold. Consider a 

hypothetical measurement (e.g. Temperature) as shown in Figure 5-1 and can be defined 

as follows:  

𝐷(𝑡)  =  {
𝐶𝑙𝑎𝑠𝑠 1 0 ≤  𝑡 ≤  100
𝐶𝑙𝑎𝑠𝑠 2 101 ≤  𝑡 ≤  200

 (5-1) 

The measurement D(𝑡) has included two classes: “Class 1” and “Class 2”. For 

instance, they can represent the normal and abnormal state of a system. From time 0 to 

100 is class 1 and from 101 to 200 is class 2.  
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Figure 5-1. A hypothetical measurement (i.e. from 0 to 100 is Class 1 and from 101 to 200 is Class 2). 

The probability density function of the measurement can be estimated as shown in 

Figure 5-2. In this figure, the threshold has been represented with a red vertical dash-line 

and value of four. The area with an overlap in this figure can cause missed and false 

detection (also called false positive/type I error and false-negative/type II error).  

 

Figure 5-2. The estimated probability density function for both Class 1 and Class 2 with a threshold equal 

to four. 

Looking at the figure of probability density functions, the area that two probability 

density functions are merging can cause the miss-classification and consequently the 

error. Probability of the error or miss-classification can be calculated using the following 

equation (Theodoridis and Koutroumbas, 2009). It should be noted that the error 
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probability is also related to the threshold (x considered as threshold value). For more 

details check (Aslansefat, Bahar Gogani, et al., 2020). 

P(𝑒𝑟𝑟𝑜𝑟)  =  ∫ 𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥)𝑃(𝑥)𝑑𝑥
+∞

−∞

 (5-2) 

In which the P├(𝑒𝑟𝑟𝑜𝑟|𝑥\𝑟𝑖𝑔ℎ𝑡)  can be calculated through calculating the 

minimum of both probability density functions as the following equation. The 

minimization is subject to variation of threshold value from -inf to +inf. 

P(𝑒𝑟𝑟𝑜𝑟|𝑥)  =  min[𝑃(𝐶𝑙𝑎𝑠𝑠 1|𝑥), 𝑃(𝐶𝑙𝑎𝑠𝑠 2|𝑥)] (5-3) 

By dividing the space into two regions as 𝑅1 and 𝑅2, the probability of error can be 

written with parts. 

𝑃(𝑒𝑟𝑟𝑜𝑟)  =  𝑃(𝑥 ∈  𝑅1, 𝐶𝑙𝑎𝑠𝑠 1) + 𝑃(𝑥 ∈ 𝑅2, 𝐶𝑙𝑎𝑠𝑠 2)

= ∫ 𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 1)𝑃(𝐶𝑙𝑎𝑠𝑠 1)

𝑅1

𝑑𝑥

+ ∫ 𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 2)𝑃(𝐶𝑙𝑎𝑠𝑠 2)

𝑅2

𝑑𝑥 

(5-4) 

To ease the minimization problem, consider the following inequity (Fukunaga, 

1992). 

𝑚𝑖𝑛[𝑎, 𝑏] ≤ 𝑎𝜆𝑏1−𝜆 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 ≥ 0 𝑎𝑛𝑑 0 ≤ 𝛼 ≤ 1 (5-5) 

Equation (5-3) can be rewritten as follows: 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥)  =  𝑚𝑖𝑛[𝑃(𝐶𝑙𝑎𝑠𝑠 1|𝑥), 𝑃(𝐶𝑙𝑎𝑠𝑠 2|𝑥)]

= 𝑚𝑖𝑛 [
𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 1)𝑃(𝐶𝑙𝑎𝑠𝑠 1)

𝑃(𝑥)
,
𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 2)𝑃(𝐶𝑙𝑎𝑠𝑠 2)

𝑃(𝑥)
] 

(5-6) 

Using the inequity rule and equation above, the conditional probability of error can 

be derived as: 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥)  

≤ (
𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 1)𝑃(𝐶𝑙𝑎𝑠𝑠 1)

𝑃(𝑥)
)

𝜆

(
𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 2)𝑃(𝐶𝑙𝑎𝑠𝑠 2)

𝑃(𝑥)
)

1−𝜆

 
(5-7) 

The following equation can be obtained using equations (5-2) and (5-7). 

𝑃(𝑒𝑟𝑟𝑜𝑟)  

≤ (𝑃(𝐶𝑙𝑎𝑠𝑠 1))
𝜆

(𝑃(𝐶𝑙𝑎𝑠𝑠 2))
1−𝜆

 ∫ (𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 1))
𝜆

(𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 2))
1−𝜆

𝑑𝑥

+∞

−∞

 

(5-8

) 
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It safety assurance, it is so important to consider the worth case scenario which can 

lead us to the following equation known as Chernoff upper bound of error (Fukunaga, 

1992). 

𝑃(𝑒𝑟𝑟𝑜𝑟)  

= (𝑃(𝐶𝑙𝑎𝑠𝑠 1))
𝜆

(𝑃(𝐶𝑙𝑎𝑠𝑠 2))
1−𝜆

 ∫ (𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 1))
𝜆

(𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 2))
1−𝜆

𝑑𝑥

+∞

−∞

 

(5-9

) 

If the probability distributions of the features obey normal or exponential 

distribution families, the integral part of above equation can be solved through the 

following equation (Fukunaga, 1992). 

∫ (𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 1))
𝜆

(𝑃(𝑥|𝐶𝑙𝑎𝑠𝑠 2))
1−𝜆

𝑑𝑥

+∞

−∞

= 𝑒−𝜃(𝜆) (5-10) 

The 𝜃(𝜆)  can be calculated using (5-11) where μ  and Σ  are mean vector and 

variance matrix of each class respectively.  

 𝜃(𝜆) =
𝜆(1−𝜆)

2
[𝜇2 − 𝜇1]𝑇[𝜆Σ1 + (1 − 𝜆)Σ2]−1[𝜇2 − 𝜇1] +

0.5 𝑙𝑜𝑔
|𝜆Σ1+(1−𝜆)Σ2|

|Σ1|𝜆|Σ2|(1−𝜆)  
(5-11) 

If you consider α = 0.5 the above equation become the Bhattacharyya distance 

which can be proven that this value is the optimal value when Σ1 = Σ2 (Fukunaga, 1992; 

Nielsen, 2014). In this study, the Bhattacharyya distance will be used to demonstrate the 

idea. It should be noted that is some case the calculated error bound might be higher than 

the real value. However, it is accepted because in Safety evaluation the worth case 

scenario is needed to be considered. As the P(𝑒𝑟𝑟𝑜𝑟)  and P(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) are 

complimentary. Then the probability of having correct decision can be calculated using 

the following equation: 

𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)  = 1 −  √𝑃(𝐶𝑙𝑎𝑠𝑠 1)𝑃(𝐶𝑙𝑎𝑠𝑠 2) 𝑒−𝜃(𝜆) (5-12) 

The Chernoff upper bound of error is usually used as a measure of separability of 

two classes of data, but with the above equation measures the similarity of two classes. 

In other words, in an ideal situation if you calculate the P(𝑒𝑟𝑟𝑜𝑟) of a class, with itself, 

the response should be equal to one while P(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) should be zero.  The idea is to 

show whether data distribution in the training procedure is the same as the data 

distribution in the field or not. The following assumptions are needed to be considered 

for this method: 
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➢ The covariance matrix of the data should be positive-definite matrix to have 

determinant and be invisible. Therefore, in each dataset, columns with all zero, Nan 

or Inf values should be removed. Also, columns with zero variance should be 

removed or it can be possible to assign a small number like 1e-6 as their variance. 

➢ Non-coherent datasets (e.g., XOR datasets) can reduce the accuracy of the algorithm. 

➢ For datasets like Circular and Spiral one, it is suggested to convert the data to the 

polar coordination before the analysis. 

Note: Using dimension reduction algorithms such as PCA and t-SNE can solve the 

existing limitations of the proposed algorithm. 

There is a relation between existing statistical distance measures as illustrated in 

Figure 5-3. So, it will be possible to extend the error bound probability calculations for 

other distance or divergence measures (Nielsen, 2018). However, computing the error 

bound using some distance or divergence measure algorithms like Kullback-Leibler 

divergence would be computationally complex (Zahm et al., 2018). 

 
Figure 5-3. The relation between statistical distances like Bhattacharyya and Kullback-Leibler and 

parameter divergences like Jensen divergence and Burbea-Rao distances (Nielsen, 2018) 

Considering P(𝐶𝑙𝑎𝑠𝑠 1)  = P(𝐶𝑙𝑎𝑠𝑠 2) , and converting the integral part to the 

cumulative distribution function as follows: 

𝑃(𝑒𝑟𝑟𝑜𝑟)  =  ( ∫ 𝑃𝐶𝑙𝑎𝑠𝑠 1(𝑥)

𝑅1

𝑑𝑥 + ∫ 𝑃𝐶𝑙𝑎𝑠𝑠 2(𝑥)

𝑅2

𝑑𝑥)

=  ((1 − 𝐹𝐶𝑙𝑎𝑠𝑠 1(𝑥)) + (𝐹𝐶𝑙𝑎𝑠𝑠 2(𝑥) − 0)) 

(5-13) 

Using Kolmogorov-Smirnov distance, probability of error upper bound can be 

achieved as the following equation: 

𝑃(𝑒𝑟𝑟𝑜𝑟)  ≈  sup
𝑥

(𝐹𝐶𝑙𝑎𝑠𝑠 2(𝑥) − 𝐹𝐶𝑙𝑎𝑠𝑠 1(𝑥)) (5-14) 

As future research, other novel statistical distance measures can be used for upper 

bound error probability estimation. For example, (Hadjeres and Nielsen, 2020) have 
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proposed a novel Schoenberg-Rao distances that used both Entropy-based and geometry-

aware statistical Hilbert distances. 

5.3 SafeML Approach 

Figure 5-4 illustrates the flowchart of the proposed approach. In this flowchart, 

there are two main sections including training phase and application phase. A) The 

training phase is an offline procedure in which a trusted dataset will be used to train the 

intelligent algorithm that can be a machine learning or deep learning algorithm. This study 

will focus on the classification ability of machine learning. Thus, using a trusted dataset 

the classifier will be trained and its performance will be measured with existing KPIs.  

 
Figure 5-4. Flowchart of the proposed approach (Aslansefat et al., 2021) 

Meanwhile, the probability density function and statistical parameters of each class 

will be estimated and stored to be used for comparison. B) The second phase or 
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application phase is an online procedure in which real-time and unlabelled data is going 

to be feed to the system. For example, consider an autonomous car has been trained to 

detect obstacles and it should prevent a collision. Therefore, in the application phase, the 

trained classifier should distinguish between the road and other objects. One important 

and critical issue in the application phase is that the data does not have any label. So, it 

cannot be assured that the classifier can operate as accurate as of the training phase. In 

the application phase, the untrusted labels of the classifier will be used and similarly, the 

probability density function and statistical parameters of each class will be extracted. 

Using modified Chernoff Error bound the statistical difference of each class in the training 

phase and application phase is compared. If the statistical difference was very low, the 

classifier results and accuracy can be trusted (In this example the autonomous car 

continuous its operation), if the statistical difference was low, the system can ask for more 

data and re-evaluation to make sure about the distance. In case of having more statistical 

difference, the classifier results and accuracy is no longer valid, and the system should 

use alternative approach or notify human agent (In this example, the system will ask the 

driver to take the control of the car). 

5.4 ECDF-based Statistical Distance Measures 

The main core of the SafeML approach is the statistical distance measures. In this 

section, five well-known distance measures including Kolmogorov-Smirnov, Kuiper, 

Anderson-Darling, Cramer-Von-Mises, and Wasserstein will be addressed briefly. The 

following equation demonstrates the Kolmogorov-Smirnov Distance (KSD) for two 

univariate distributions of 𝐹1(𝑥) and  𝐹2(𝑥)where  𝐹1(𝑥) can be the ECDF of the train 

dataset and  𝐹2(𝑥)can be the ECDF of test dataset with respect to their class labels. For 

multi-variate dataset the KSD can be calculated for each feature and finally, the 

aggregated value can be calculated for the whole dataset. 

𝐾𝑆𝐷 ≈  sup
𝑥 ∈ 𝑅

(𝐹1(𝑥) − 𝐹2(𝑥)) (5-15) 

Similar to KSD, the Kuiper Distance (KD) can be calculated using the following equation. 

The KD is more efficient when there is a situation in which two univariate datasets have 

the same mean value and different variance like circle and spiral datasets.  

KD  ≈ max
x∈R

(F1 (x) − F2 (x)) + min
x∈R

(F1 (x) − F2 (x)) (5-16) 

The Cramer-Von-Mises Distance (CVMD) uses summation like (5-17) and instead of 

max in KSD and rely on the step-size and sample rate of the features.   
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CVMD ≈ ∑|F1 (x) − F2 (x)|

x∈X

 (5-17) 

If one can form a joint distribution between two ECDF and divide the CVMD values by 

joint distribution values then the Anderson-Darling Distance (ADD) can be obtained as 

(5-18). 

𝐴𝐷𝐷 ≈ ∑
|𝐹1(𝑥) − 𝐹2(𝑥)|

𝐷(𝑥)(1 − 𝐷(𝑥))
𝑥∈𝑋

 (5-18) 

The Wasserstein Distance (WD) can be defined as (5-19). The WD is calculating the 

distance between two ECDFs and its functionality is similar to CVMD.  

𝑊𝐷 ≈   ∫ |𝐹1(𝑥) − 𝐹2(𝑥)|𝑑𝑥
+∞

−∞

 (5-19) 

 

To answer the question that why other statistical distance measures such as t-test, 

Chernoff distance, Kullback Leibler divergence, etc. were not addressed in this paper, It 

should be noted that most of the these methods rely on mean and variance values of the 

distributions and they are less sensitive to the geometry of the distribution in comparison 

to the ECDF-based distances. Their implementations are available on the SafeML GitHub 

repository for interested readers.   

One of the main drawbacks in the first version of SafeML (Aslansefat, Sorokos, et al., 

2020) was that all the distance measures were accepted in the algorithm. While 

considering the p-values, some of the measures cannot be accepted and should be 

removed from the procedure. To calculate the p-values in the aforementioned algorithms, 

the Bootstrap algorithm is used as shown in the following Algorithm (Gilleland, 2020). 

This algorithm can be performed for all aforementioned ECDF-based distance measures. 

The Algorithm is considered for the WD and can be expanded for the other distances with 

similar structure. The aim of the algorithm is to provide both WD and the p-value 

associated with the outcomes. For a univariate example, X and Y are the inputs and the 

Bootstrap algorithm will be executed for 1e5 iterations. The XY will be the concatenated 

version of X and Y and in each iteration two random samples will be extracted from XY. 

The WD of X and Y will be compared with the WD of two random samples named 

boostWD and every time that boostWD > WD, the `bigger' counter will increase. Finally, 

after performing the 1e5 iterations, the p-value named as pVal will be calculated as shown 

in this algorithm. 

Algorithm 5-1 
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MaxItr = 1e5; 

 WD = Wasserstein_Dist(X,Y); 

 XY = Concatenate(X,Y); 

 LX = len(X);  LY = len(Y); 

 n = LX + LY; 

 For ii in 1 to MaxItr: 

 e = random.sample(range(n), LX); 

 f = random.sample(range(n), LY); 

 boostWD = Wasserstein_Dist(XY[e],XY[f]); 

    If{boostWD > WD 

            bigger = 1 + bigger; 

pVal = bigger/MaxItr; 

Return pVal, WD; 

 

5.5 Results 

In this section, the proposed method is applied on I) typical synthetic benchmarks, 

II) on security intrusion dataset, and III) traffic sign recognition benchmark for ML 

classification. 

The proposed method has been implemented in three different programming 

languages including R, Python and MATLAB. Regarding R programming, three well-

known benchmarks have been selected: a) the XOR dataset, b) the Spiral dataset and c) 

the Circle dataset. Each dataset has two features (i.e. input variables) and two classes. The 

following figure illustrates the scatter plots of the selected benchmarks. More examples 

and benchmarks are available at https://github.com/ISorokos/SafeML.   

 
Figure 5-5. Scatter plot of XOR, Spiral and Circle Benchmarks 

5.5.1 Example 1.  XOR, Spiral and Circle Benchmarks 

To start the ML-based classification, 80 percent of each dataset was used for 

training and testing and 20 percent of the dataset has been used for validation, with 10-

fold cross-validation. Both linear and nonlinear classifiers have been selected for 

classification. The Linear discriminant analysis (LDA) and the Classification And 

https://github.com/ISorokos/SafeML
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Regression Tree (CART) are used as linear methods. Moreover, The Random Forest 

(RF), K-Nearest Neighbours (KNN) and Support Vector Machine (SVM) are applied as 

nonlinear methods.  As KPIs, the accuracy and Kappa measure are used to measure the 

performance of each classifier. Finally, as Empirical Cumulative Distribution Function 

(ECDF)-based statistical distance measures, the Kolmogorov-Smirnov Distance (KSD), 

Kuiper Distance, Anderson-Darling Distance (ADD), Wasserstein Distance (WD), and a 

combination of ADD and Wasserstein-Anderson-Darling Distance (WAD) have been 

selected for evaluation.  

XOR Dataset: The XOR dataset has two features and two classes in which features 

have the same mean and variance characteristics. The following table compares the 

estimated accuracy based on the ECDF measures with the Minimum True Accuracy 

(MTA) and the Average True Accuracy (ATA) over 10 folds. For instance, the second 

column of this table provides the estimated accuracy based on the KSD measure. As a 

matter of safety, MTA is more important because it represents the worst-case scenarios, 

where the lowest accuracy may be experienced and impact safety. We observe that the 

KSD measure reports low accuracy for the LDA classifier (~.77). Instead, the ADD and 

WAD measures significantly overestimate the accuracy of the LDA. 

Table 5-2. Comparison of estimated accuracies vs minimum true accuracy for XOR dataset 

Method KSD Kuiper ADD WD DTS BD MTA ATA 

LDA 0.7722165 0.7706 0.902818 0.755064 0.985666 0.154506 0.508333 0.591211 

CART 0.9281788 0.921982 0.987722 0.925458 0.995211 0.497243 0.987448 0.994158 

KNN 0.9305751 0.913063 0.993151 0.958768 0.997076 0.497102 0.974895 0.986665 

SVM 0.9310446 0.917586 0.993489 0.958191 0.997064 0.496731 0.979167 0.987917 

RF 0.9296264 0.910749 0.992742 0.957821 0.997018 0.496856 0.995833 0.998333 

Based on Table 5-2, Table 5-3 represents the (absolute) difference between 

accuracy estimations of each measure and the MTA of each classifier. The ADD, WD 

and WAD measures have the best accuracy estimations overall. In particular, when a LDA 

classifier is used, the WD measure provides an estimated accuracy with comparatively 

less error. 

Table 5-3. Difference between Distance Measures and MTA for XOR dataset 

Method KSD Kuiper ADD WD DTS BD 

LDA 0.2638832 0.262267 0.394484 0.246731 0.477333 0.353828 

CART 0.0592689 0.065466 0.000274 0.06199 0.007763 0.490205 

KNN 0.0443203 0.061833 0.018256 0.016127 0.02218 0.477793 

SVM 0.0481221 0.06158 0.014322 0.020976 0.017897 0.48231 

RF 0.0662069 0.085084 0.003092 0.038012 0.001184 0.499102 
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Spiral Dataset: Similar to the XOR dataset, the proposed method can be applied 

for the spiral dataset. Table 5-4 presents difference between ECDF-based distance 

measures and minimum true accuracy for this dataset. For brevity, for this dataset and the 

next one, only the difference table is provided. Based on this table, the KSD and Kuiper 

distance have better estimation for accuracy of the classifiers for the spiral dataset.  

Table 5-4. Difference between Distance Measures and MTA for Spiral dataset 

Method KSD Kuiper ADD WD DTS BD 

LDA 0.099447 0.088252 0.269975 0.248396 0.528852 0.043445 

CART 0.056131 0.031092 0.149191 0.09477 0.158529 0.355675 

KNN 0.047526 0.075598 0.001468 0.014756 0.002734 0.496559 

SVM 0.047526 0.075598 0.001468 0.014756 0.002734 0.496608 

RF 0.024471 0.050261 0.018778 0.003885 0.019643 0.479893 

 

Circle dataset: The circle dataset has similar statistical characteristics with the 

spiral dataset. Table 5-5 provides the difference between ECDF-based distance measures 

and MTA for this dataset. As can be seen, the worst accuracy estimation is related to the 

accuracy estimation of the LDA classifier. For the LDA, the Kuiper distance estimates 

with less error, with the KSD and WD being in second and third place respectively. 

Table 5-5. Difference between Distance Measures and MTA for Circle dataset 

Method KSD Kuiper ADD WD WAD BD 

LDA 0.329391 0.250345 0.412382 0.34745 0.498267 0.23667 

CART 0.114312 0.019111 0.168596 0.099549 0.243227 0.455675 

KNN 0.004833 0.037554 0.027649 0.010871 0.02775 0.498459 

SVM 0.016133 0.043604 0.019147 0.001695 0.01935 0.498808 

RF 0.004663 0.034529 0.027776 0.012814 0.02782 0.468893 

5.5.2 Example 2: Security Intrusion Dataset 

This case-study applies the proposed method towards the CICIDS2017 dataset, 

which was originally produced by (Sharafaldin, Lashkari and Ghorbani, 2018) at the 

Canadian Institute for Cyber Security (CICS) as an aide to the development and research 

of anomaly-based intrusion detection techniques for use in Intrusion Detection Systems 

(IDSs) and Intrusion Prevention Systems (IPSs) (Panigrahi and Borah, 2018). 

The labelled dataset includes both benign (Monday) and malicious (Tuesday, 

Wednesday, Thursday, Friday) activity. The benign network traffic is simulated by 

abstraction of typical user activity using a number of common protocols such as HTTP, 

HTTPS, FTP and SHH. Benign and malicious network activity is included as packet 

payloads in packet capture format (PCAPS). 
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Wednesday Attack: This attack occurred on Wednesday, July 5, 2017, and 

different types of attacks on the availability of the victim's system have been recorded, 

such as DoS / DDoS, DoS slow loris (9:47 – 10:10 a.m.), DoS Slow http test (10:14 – 

10:35 a.m.), DoS Hulk (10:43 – 11 a.m.), and DoS Golden Eye (11:10 – 11:23 a.m.). 

Regarding the cross-validation, a hold-out approach has been used, in which 70 percent 

of data has been randomly extracted for testing and training and the rest has been used 

for accuracy estimation. Additionally, traditional classifiers including 'Naive 

Bayes','Discriminant Analysis','Classification Tree', and 'Nearest Neighbor' have been 

used. Figure 5-6 shows the confusion matrix when Naive Bayes classifier is used.  

Figure 5-7 shows a sample result of six statistical measures (one PDF-based and 

five ECDF-based) vs. the classifier's accuracy. It is expected to have low distance (from 

the ECDF measures) when the accuracy is high and vice versa. As can be seen in this 

figure, the Kuiper distance measure performs better. However, these results were derived 

from only one iteration of the random hold-out process. Therefore, the process should be 

iterated over several times and the performance of each distance measure on average 

should be reviewed. 

 
Figure 5-6. Confusion matrix for Wednesday Security Intrusion Detection in CICIDS2017 Dataset 
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Figure 5-7. Sample statistical distance measures vs. accuracy 

 

Figure 5-8 has been generated over 100 iterations. For each iteration, 70 percent of 

the data has been randomly extracted for testing and training and the rest has been used 

for accuracy estimation. The figure shows the box plot of the statistical distance 

measurements vs. the evaluated accuracy over 100 iterations. By observing the average 

values (red lines) of each box plot, the relationship between each measure and the average 

change in accuracy can be understood. In addition, this plot shows which method has less 

variation. For instance, the Kuiper distance and WD have the best performance while 

Chernoff has the least performance. 
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Figure 5-8. Box plot of statistical distance measures vs. accuracy over 100 iterations 

 

Thursday Attack: This attack occurred on Thursday, July 6, 2017, and various 

attacks, such as the Web Attack – Brute Force (9:20 – 10 a.m.), Web Attack – XSS (10:15 

– 10:35 a.m.), and Web Attack – SQL Injection (10:40 – 10:42 a.m.) have been recorded. 

Figure \ref{fig_Th01} shows the confusion matrix for Thursday morning's security 

intrusion in the CICIDS2017 dataset when the Naive Bayes classifier is applied. Similar 

to Wednesday, 70 percent hold-out cross validation is used for this dataset. As can be 
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seen, this dataset has four classes, and the classifier has problem to detect the last class or 

last type of intrusion.  

 

 
Figure 5-9. Confusion matrix for Thursday Security Intrusion Detection in CICIDS2017 dataset 

 

The following figure shows a sample result of six statistical measures (Chern-off 

and five ECDF-based measures) vs. accuracy of the classifier. In this sample, the 

Kolmogorov-Smirnov and Kuiper measures have better performance. 
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Figure 5-10. Sample statistical distance measures vs. accuracy for Thursday Security Intrusion Detection 

in CICIDS2017 dataset 

 

Similar to the previous example, the following figure has been generated over 100 

times and the box plot of Figure \ref{fig_Th03} can be seen. In this figure, the 

Kolmogorov-Smirnov, Kuiper, and Wasserstein distance measures have a better 

performance, however, their decision variance is a bit high. 
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Figure 5-11. Box plot of statistical distance measures vs. accuracy over 100 iterations for Thursday Security 

Intrusion Detection in CICIDS2017 dataset 

 

The rest of results for Security Intrusion Detection in CICIDS2017 dataset are 

available in the SafeML GitHub Repository (https://github.com/ISorokos/SafeML).  

Figure 5-12 shows Pearson's correlation between the classes of Wednesday's data 

and the statistical ECDF-based distances. As can be seen, the WD and WAD distances 

have more correlation with the classes. This figure also shows the correlation between the 

measures themselves. The KSD and KD appear to be correlated. The WD and WAS also 

seemed to be correlated. These correlations can be explained due to the similarity in their 

formulation. P-values for the above correlations were evaluated to be zero, thereby 

validating the correlation hypotheses above. 

https://github.com/ISorokos/SafeML
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Figure 5-12. Correlation between class label numbers and statistical ECDF-based Distance Measures 

5.5.3 Example 3: German Traffic Sign Recognition Benchmark (GTSRB) 

In this section, numerical results comparing the proposed approach and existing 

approaches in the literature are presented for a German Traffic Sign Recognition (GTSR) 

dataset. The dataset has been released in 2011 and it includes 43 different traffic signs. 

The dataset is unbalanced and the number of samples for some classes can be more than 

the others. Regarding the cross-validation, the hold-out method is used to split 80\% of 

the data for training and 20\% for validation. It should be noted that the dataset has a 

separate folder for test data. 

As mentioned before, the SafeML is a model-agnostic approach that can be used on 

top of any machine learning classifier regardless of its structure. In this paper, a Deep 

Convolutional Neural Network (CNN) classifier is used because of its reputation on 

image classification. The following structure is used as the configuration of CNN. The 

input has a 2D convolution layer (Conv2D) with a filter size of 32, kernel size of 5x5 and 

the Relu activation function. The second layer has another Conv2D with a filter size of 

64, kernel size 3x3 and the Relu activation function. Then, a max pooling layer with size 

of 2x2 and a dropout layer with a rate 0.25 is used. After that, another Conv2D layer with 

a filter size of 64, kernel size of 3x3 and Relu activation function is added. A max pooling 

with the size of 2x2 and a dropout with the rate of 0.25 is applied on top of it. A flatten 
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and dense layer with size of 256, and Relu activation function, with 0.5 percent dropout 

is used. Finally, for the output, a dense layer with the size of 43 and Softmax activation 

function is considered. Moreover, the Adaptive Moment Estimation (ADAM) optimiser, 

and the cross-entropy loss function are used in the training procedure. 

Using the above configuration, the performance of the CNN classifier was 0.9797 

on the test dataset. The next level is to check whether the achieved accuracy is high 

enough or not? This part was not considered in the first version of the SafeML, and it 

could reduce the precision of the proposed approach when a poor classifier is chosen in 

the offline phase. In the case of having a poor classifier, the loop should be repeated until 

reaching a certain level of satisfaction for the accuracy. It is also possible to consider 

explainability approaches to make sure the trained classifier behaves reasonably and 

focuses on the right part of the image.  

Assuming that the level of achieved accuracy is acceptable for safety experts, the 

images of each class will be separated to R, G, and B matrix and converted to the flatten 

vectors accordingly. As the size of each image is 30x30, the equivalent vector will be 

1x900. The ECDFs of each class will be generated and stored for use in the next phase. 

In the online phase, the buffer size is considered as 15. In a practical scenario, the buffer 

size should be defined by safety experts and designers. As there was no real-time data, 

the test data are considered as the upcoming data, and we are going to see how the 

proposed approach will react to the wrong decisions.   

To have better visualization, class number three is chosen. This class is related to 

the 60 Km speed limit sign, and it has 1410 images in the training dataset and 450 images 

in the test dataset. Various risks can be considered for miss-classification of this sign like 

having a lower speed and blocking the road or having a higher speed and increasing the 

probability of hitting pedestrians passing the street. The associated risk for miss-

classification of each class can be investigated in a separate research study. The accuracy 

of the classifier for this class specifically was 0.9655. In other words, 435 images are 

detected correctly but 15 images are detected as the other classes. The following Sankey 

plot illustrates the relation between true labels and the predicted labels. As can be seen in 

this plot, the dataset is imbalanced and there some classes with low number of samples 

and other classes with a higher number of samples. In addition, it is clear that most of the 

images has been correctly classified.  
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Figure 5-13. Sankey Plot showing the relation between true labels and the predicted labels. 
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 Based on SafeML procedure, the R, G, B matrix of test images are converted to 

flatten vectors and their ECDFs have been generated. Furthermore, using the ECDF-

based statistical distance measures such as Kolmogorov-Smirnov (KS), Kuiper (K), 

Anderson-Darling (AD), Cramer-Von Mises (CVM), and Wasserstein (W), the statistical 

distances will be obtained. The first version of SafeML will jump to a comparison 

between statistical distance measures and the pre-defined expected confidence threshold. 

However, in SafeML, a bootstrap algorithm with 1000 iterations is used to obtain the P-

value and validate the measures (Gilleland, 2020). Thus, the measures with P-value lower 

than 0.05 are stored and others will be omitted. The validated statistical distance measure 

can be compared with the expected confidence level.  

It should be noted that for each ECDF-based statistical distance measure, there 

should be a particular expected confidence threshold predefined by a safety expert. The 

decision of the machine learning classifier is accepted and trusted if the distance measure 

is higher than the predefined threshold. Additionally, a report of the statistical distance 

measure will be stored in a database to be used for the further development of the system.  

In the situation that the statistical distance measure is 5% lower than the predefined 

threshold, the system may ask for further data. It should also be mentioned that in that 

situation, the autonomous vehicle can use other existing sources of information to validate 

the decision. For example, the autonomous vehicle can communicate with nearby 

vehicles or use the GPS and pre-loaded map data. The mentioned percentage can also be 

changed based on the safety experts' and system designers' opinion. At the moment there 

is no published standard to define these levels but, in the future, these parameters can be 

defined using the published standards.  

The worst scenario is that the statistical distance measure is hugely different from 

the expected threshold, meaning the upcoming data has not been seen by the classifier 

before and there is a risk of missed classification. The SafeML idea is to put human-in-

the-loop and ask the driver to make the decision. It is assumed that the driver has enough 

time for making the decision. However, there might be some cases where the time is 

restricted and SafeML cannot be used. As mentioned before, the autonomous vehicles 

that do not have wheel-based driving capability, it is suggested that a human agent from 

the control centre control the car remotely.  



150 

 

 
Figure 5-14. Sample results of SafeML with Wasserstein Dist. and considering p-values (class number 3) 

The first row of the following figure illustrates the Wasserstein distance measure of 

the 60 Km traffic sign (Class 3) for R, G, and B part of the images. As can be seen, the 

middle of the image has more statistical differences in all three colour layers. Besides, the 

blue part of the image has less statistical distance in comparison to the red and green parts 

of the image.  
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Figure 5-15. Sample result on classifier explainability on German Traffic Sign Recognition Benchmark 

using combined SafeML and LIME  
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As can be seen, in the first layer, a previous version of SafeML is used which has 

lack of P-value based distance validation while in the second row the SafeML is used that 

has the embedded P-value distance validation. Comparing the first and second row of this 

figure, it is clear that SafeML has a better statistical distance representation, and it does 

not catch the background areas of the signs.  

The third row of this figure illustrates a sample image where the classifier has 

correctly detected the sign, while the fourth row shows a sample image where the 

classifier was not able to detect the sign correctly. However, it seems that it can be 

detected by a human with careful observation. Therefore, in these cases, human-in-the-

loop can help the system to make the right decision and also learn it to make better 

decisions in the future. The AI system can be considered as a talented and clever child 

that needs to work in parallel with human and become mature over time. This figure also 

demonstrates how the ECDF-based Wasserstein is calculated for a pixel in the image. 

 The idea behind Figure 5-14 can be also extended by combining the idea of 

SafeML with explainability methods like LIME (short for local interpretable model-

agnostic explanations) by (Ribeiro, Singh and Guestrin, 2016). 

Figure 5-15 illustrates the idea of combining LIME with SafeML both for 

explainability and ML model monitoring. LIME is capable of finding top super-pixels 

responsible for getting a specific outcome in a ML model. For example, for 60 Km sign, 

it can show which super pixel are most influential one and create a mask based on them. 

The mask can then be multiplied with SafeML results. 

 In other words, it is like providing an additional weight for statistical distance 

measures. The statistical distance of the area that has higher explainability value will have 

more weight. On the other hand, the statistical distance of the area that has lower 

explainability value will have lower weight.  

SafeML can provide estimated accuracy based on statistical distance measures. The 

following table provides a comparison between true accuracy, estimated accuracy by 

SafeML, and Wilson Interval Confidence bound from (Kläs and Sembach, 2019). For the 

Wilson Interval confidence, the z-score is chosen to be 3.29053 to gain 99.99\% 

confidence level. The Wilson interval confidence usually provides both upper bound and 

lower bound. 
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Figure 5-16. (a) Kolmogorov-Smirnov Distance, (b) Kuiper Distance, (c) Wasserstein Distance, (d) 

Cramer-Von Mises Distance, (e) Comparison between true accuracy, estimated accuracy by SafeML and 

(Kläs and Sembach, 2019), (f) Comparison between true accuracy, WD with and without P-Value 

consideration) 

To ensure the maximum safety level, only the lower bound is considered. From the 

existing 43 classes in the GTSRB, 5 classes have been chosen for the comparison.  The 

results show that in most cases the Wasserstein-based accuracy estimation has less error. 

For two cases the Wasserstein algorithm was not successful: for class number 11, the 
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Anderson-Darling estimation has less error and for class number 13, the low band Wilson 

Interval has better accuracy. 

 

 
Figure 5-17. Comparison between true accuracy, estimated accuracy by SafeML II and Klas et al. 2019. 

 

In this example, we have only focused on traffic sign recognition and the idea can 

be integrated with other safety-related parts of autonomous vehicle software to cover 

wider safety perspectives. For example, in (Kabir, Sorokos, et al., 2019), it was explained 

how to build an integrated safety model and consider different components of a 

cooperative operation scenario of autonomous vehicles. The results of SafeML can be 

used as an input in the proposed safety model in that work to improve confidence in the 

provided assurance. It should be noted that the SafeML concept has some limitations. For 

example, it can only work with Machine Learning classifiers, while having the SafeML 

concept to work for prediction and regression algorithms is still an open research 

question. Moreover, we currently investigate what specific characteristics of a dataset can 

lead to a better ECDF-based statistical accuracy estimation in run time.   
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5.6 Capabilities and limitations 

In this section we discuss the capabilities and limitations of SAFEML and make 

suggestions for further work to address limitations 

5.6.1 Capabilities of the proposed approach 

• Through modifying the existing statistical distance and error bound measures, the 

proposed method enables to estimate the accuracy bound of the trained ML algorithm 

in the field with no label on the incoming data. 

• A human-in-loop procedure was proposed to enable or disable ML algorithms during 

operation.  

• The proposed approach is easy to implement, and it can support a variety of 

distributions, both exponential and normal distribution families. 

5.6.2 Limitations of the proposed approach and possible solutions 

• The proposed algorithm is only tackling the safety evaluation problem in ML 

classification. However, expansion for clustering or dimension reduction since these 

problems can be addressed using statistical distance measures.  

• There are some cases in which SafeML results are not correlated with the performance 

of the Machine Learning classifiers. For example, consider the univariate example in 

this chapter and its fixed threshold. If one holds the left distribution and moves the 

right distribution to right, the performance of the classification task will be improved. 

The further it goes, the higher performance it gets. While the main assumption of 

SafeML is that when there is a statistical distance measure, it is expected to have the 

performance dropped. There are certain ideas to think about this issue: a) in this 

example, although the performance is increasing, the results are not reliable, and the 

problem should have been defined to limit the distribution of each class. If it was a 

measured temperature, then pushing the distribution to further right means very high 

value and a potential to harm the system. b) The SafeML distance measures could 

also be defined in a more advanced manner. In other words, instead of measuring the 

statistical distance between each class for each feature, the SafeML could form an 

anchor-based distance measuring the statistical distance of each feature of each class 

I) to its own class, II) to other classes and III) to the local decision boundary.  
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• The proposed method will not be able to detect some types of adversarial attacks. For 

example, the one-pixel adversarial attack will not change the probability density 

function and the proposed method cannot detect it (Su, Vargas and Sakurai, 2019).  

5.7 Conclusion 

The multiple safety problem of AI and ML algorithms have been briefly discussed 

and the chapter then focused on the distributional shift in datasets. Research is currently 

investigating this issue and trying to make the existing ML classifiers more robust. Some 

work has focused on adding noise, perturbation, and rotation on data to make sure a 

classifier is robust to those changes. In this report, a different perspective to the problem 

was selected. Statistical approaches were used to estimate the accuracy of the classifier 

when there is no label, for example during operation. Positive results has been reported 

using Kolmogorov-Smirnov and other measures. However, the study still has a long 

journey to become mature, but this thesis is merely a starting point. Some of the key 

capabilities and limitations were highlighted.  
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Chapter 6 

 

6 Conclusion 

The motivation of this work was the observation that systems are becoming 

increasingly complex, intelligent, and open adaptive and this is alarming in a world that 

is so dependent on technology. The focus of this thesis was on addressing four aspects 

that complexity and intelligence pose for dependability: complex architecture and 

behaviour, effect of environmental factors, the autonomous and open nature of new 

systems and behaviour learned from data. In each of the four aspects of challenge, the 

state-of-the-art for the existing techniques was studied and new solutions have been 

proposed to overcome and deal with the challenge.  

6.1 Summary of Contributions 

This PhD thesis introduced a groundbreaking hierarchical method for assessing 

system reliability and availability, uniquely integrating dynamic fault tree analysis with 
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semi-Markov processes. At the core of this research was the innovative Hierarchical DFT 

(HDFT) approach, which forms the backbone of the thesis. Building upon this 

foundational model, the thesis further extends its scope and applicability. It delved into 

sophisticated extensions that enhance the HDFT's capacity to manage intricate system 

behaviours, efficiently address maintenance requirements, evaluate reliability in real-

time, and adeptly handle systems exhibiting intelligent characteristics. These extensions 

not only augment the HDFT model but also significantly contribute to the broader field 

of system dependability evaluation, offering versatile and robust solutions for complex, 

dynamic environments. The rest of contributions to the state-of-the-art have been 

discussed below with respects to the four aspects of challenged addressed: 

Complex architecture and behaviour:  In chapter 2, the thesis proposed a novel 

hierarchical model-based reliability analysis technique that combines Dynamic Fault Tree 

and Semi-Markov Process. The method is able to divide a large system into several 

manageable sub-systems for the quantitative reliability evaluation. It can handle non-

exponential failure behaviours. It improves earlier related work (Aslansefat and Latif-

Shabgahi, 2020) using the idea of Markov path that can break-down Markov and Semi-

Markov models. This can reduce the number of states and transitions that leads to lower 

computation complexity and reduce the issue of state explosion in Markov models. 

Environmental factors: In chapter 3, the thesis proposed a novel solution for 

modelling environmental factors in dependability by defining a semi-Markov-based 

maintenance model called “Butterfly Maintenance Model (BMM)” and complex basic 

events in dynamic fault trees. These events not only consider the effect of external 

variables but also update the failure profile using data from monitoring systems and 

parameters like estimated remaining useful life (RUL).  External variables such as 

weather, logistics, transportation, and crew availability were addressed in the context of 

offshore wind farms and availability modelling was provided as a use case for this model.  

The method considers both traditional and data-driven availability analysis by 

combining both simple failure distribution and remaining useful life (RUL)-based 

transition in a single MRGP. This is the first time that MRGP is combined with real-time 

transitions. The proposed model enables users to evaluate both condition-based 

maintenance and reliability-centred maintenance. The integrated BMM model 

incorporates logistics delays, weather delays and a daily briefing and transfer delays. 

Consideration of these accessibility and delay factors will lead to a more realistic 

availability evaluation of the offshore wind farm.  
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In the Markov modelling theories, the issue of considering the time-based deadline 

for a transition has rarely been discussed. The proposed model uses deadline transitions 

to model shift time limits of the O&M for offshore wind turbines. Furthermore, imperfect 

maintenance can make the model and its evaluation more realistic. However, the literature 

lacks proper modelling for imperfect maintenance. The proposed model is not only able 

to consider imperfect maintenance but also able to use this option to model the life 

extension of the turbine. The approach can model non-exponential system behaviours 

using MRGP.  

Although the MRGP has higher computation complexity, at the same time offers 

more power in modelling complex failure behaviours. Addionally, the embedded Markov 

model can be used with Markov processes in cases where only exponential failure and 

delay behaviours are considered. In other words, the computational complexity of the 

model is flexible and can be reduced via simplifying assumptions. 

Open nature of systems: In chapter 4, the thesis proposed an approach to run-time 

dependability evaluation using a new instantiation of the recently proposed EDDI 

concept. The approach is novel and demonstrates run-time use of Faulkt Trees and 

Markov Models as executable EDDIs for dynamic dependability evaluation.  A new 

symptom layer has been introduced which receives the outcome from the diagnostics and 

monitoring system and updates the reliability of the robot at runtime.  To illustrate the 

approach, a power network inspection use case was considered to show how real-time 

reliability evaluation can be used to anticipate imminent failures and prevent accidents 

by recommending appropriate responses. 

Behaviour learned from data: The thesis developed a novel approach called 

SafeML to address the Safety of Machine Learning systems. This is a challenging task 

because such systems have a black box architecture and lack a model that can used as a 

basis for analysis. The approach provides safety monitoring of machine learning 

classifiers against distributional shift using statistical distance measures. It focuses on the 

runtime evaluation of machine learning algorithms and provides statistical measures to 

constantly monitor the performance of ML that can increase our ability to detect the effect 

of distributional shifts on accuracy of reasoning.  

 A novel proposed human-in-loop procedure was also proposed to integrate 

SafeML in processes that employ ML algorithms. The process defines when to accept the 

reasoning of algorithms, when to request more data and when to remove confidence on 
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ML and seek support from operators. SafeML is easy to implement, and it can support a 

variety of distributions, both exponential and normal distribution families. 

6.2 Limitations  

Limitations of the work with respect to the four aspects of challenge examined in 

the thesis are presented below: 

Complex architecture & behaviour:  The results of this method are approximate 

for DFTs, with repeated events making the results more approximate or less precise. It 

should be noted that the proximity of the method would not diminish its effectiveness. 

Despite approximation, the results obtained through this method are more precise than 

the result of some other published research works (Yuge & Yanagi, 2008). 

In the proposed method, the output of SEQ, OR, and POR gates with any 

complexity in their inputs will be precise. In the case of AND and PAND gates, when a 

complex event or a sub-tree is connected to the first input and a simple event connected 

to the second input, the output will be precise. The output will be approximate for other 

gates and any other situations for AND and PAND gates. 

In some benchmarks in which the shared or sliding spares are used, the proposed 

method is not able to solve shared spare gates. It is suggested to replace shared spares and 

use the reshaping rules (see appendix). It should be noted that these gates are then 

modelled as a semi-Markov model and generalized for any kind of failures distribution 

function. 

In this study, it is assumed that the fault tree has only coherent events and there 

would be no guarantee for a fault tree with non-coherent events. 

There are still some gates like pSAND and SAND that cannot be modelled through 

the universal gate. We hope to improve this universal gate to consider pSAND and other 

gates in future research. It would be also possible to define new gates such as semi-PAND 

in the future. 

The example of repairable DFT is just provided to show that there might be a 

possibility to improve the approach for repairable DFTs. However, at the moment, there 

is no guarantee that the approach works for any other example of repairable DFT. In fact, 

this example is just an insight into potential future works. 

Environmental factors: The proposed model does not handle common cause 

failures. The BMM model of Chapter 3 can provide an exact value for local availability. 

However, combining the BMM model with the hierarchical dynamic fault tree solution 
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of Chapter 2 does not give exact value for the availability and the calculations will only 

approximate. This issue can be solved by improving the solution provided for hierarchical 

dynamic fault tree and its availability evaluation. The BMM model and the availability 

evaluation are highly dependent on the correctness of RUL estimation. Thus, having a 

poor estimation can lead the model to provide wrong values for availability.  

Open nature of systems: Currently, the provided experimental result of the 

proposed EDDI is for a single robot. However, the proposed SafeDrones approach is 

capable of being considered for multi-robot applications. This might be achieved by 

including the robot collaboration aspects. For instance, the communication between two 

robots and the effect of a communication loss in one robot can affect the reliability of the 

others. The approach is dependent on the accuracy and reliability of monitoring and 

diagnosis unit.  

Behaviour learned from data: SafeML is currently only tackling the safety 

evaluation problem of the machine-learning based classification. It can potentially be 

expanded for clustering, dimension reduction or any problem that can be evaluated 

through statistical difference. Furthermore, the proposed method will not be able to detect 

some types of adversarial attacks. For example, the one-pixel adversarial attack will not 

change the probability density function and the proposed method cannot detect it (Su, 

Vargas and Sakurai, 2019). 

6.3 Future Work 

Regarding future works, the following research directions and improvements are 

suggested suing the structure of the four aspects of challenge addressed in the thesis: 

Complex architecture and behaviour:  The result of proposed hierarchical 

dynamic fault tree analysis is sometimes approximate, and this issue can be improved by 

defining transformations rules like the one that has been proposed by algebraic solutions 

of DFT. 

Using the Semi-Markov Process enables us to consider non-exponential failure 

distributions. However, there are existing non-exponential failure distributions that 

cannot be transformed using the Laplace Stieltjes theorem. One solution is to convert the 

distribution to a series of exponential distributions. 

Environmental factors: The uncertainty and sensitivity analysis of the proposed 

butterfly maintenance model can be further established in the future using perturbation 

theory (Do Van, Barros and Bérenguer, 2008). Additionally, based on the idea mentioned 
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in (Gheraibia et al., 2019), it will be possible to use artificial intelligence to update the 

availability model and make it more adaptive.  

Open nature of systems: Expand the EDDI approach presented to enable safety-

security co-engineering in SafeDrones and develop approaches for application in multi-

robot systems that communicate data and together optimise responses to situations where 

dependability issues are raised. 

Behaviour learned from data: SafeML supports machine learning classifiers, so 

one avenue of extension is supporting Machine Learning Regression and Prediction 

Algorithms. Other avenues of investigation include a) considering Recurrent Methods 

and extending SafeML to deal with Multivariate Time Series. For example, it would be 

worth exploring how SafeML can be used on 12-Lead ECG signals that has been used for 

heart disease classification. Currently, the SafeML idea in being extended for single 

variate time series in collaboration by Fraunhofer IESE (Akram et al., 2022). b) 

Improving SafeML to support adaptive and online-learning algorithms where the model 

learns over time and tunes itself. c) When dealing with datasets that have many features, 

the SafeML performance is dropping. Dimensionality reduction algorithms have been 

used to deal with this issue. However, it is possible to use feature importance as part of 

the SafeML procedure. This idea has been briefly discussed in chapter 5, but more 

experiments require to show its validity.  

The Idea of SafeML is not only usable for Model monitoring but can also provide 

ML explainability. This project is currently on-going, and the project name is SMILE: 

Statistical Mode-agnostic Interpretability with Local Explanations. 

For complex ML/DL algorithms like YOLO and their complex tasks like image 

segmentation, the use of SafeML directly on input datasets might not be a good practice. 

However, using the last layer of the model or the latent space would be a perfect option 

to use SafeML (it can be model-specific version of SafeML). In addition, using domain 

representation or latent features might be a good approach to improve SafeML 

performance in these applications. 

As a final word, this PhD thesis has made steps towards addressing the challenges 

of complexity and intelligence in the context of dependability evaluation. The presented 

work has demonstrated the importance of innovative approaches in research for real-

world problems. It is almost impossible to deliver research without limitations. The 

limitations and future works in this thesis remind us that our journey for knowledge has 
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not finished and we need to continuously search for solutions and try to have a profound 

understanding of the challenges. 
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6.4 Publications and Their Relationship with Each Chapter 

ID Reference Chapter Challenge Relation  

1 

Aslansefat, K., & Latif-Shabgahi, 

G. R. (2020). A hierarchical 

approach for dynamic fault trees 

solution through semi-Markov 

process. IEEE Transactions on 

Reliability, 69(3), 986-1003. 

Chapter 2 Complexity 
The Proposed 

Approach 

2 

Aslansefat, K., Kabir, S. 

Gheraibia, Y. & Papadopoulos, Y. 

(2020). Dynamic Fault Tree 

Analysis: State-of-the-Art in 

Modelling, Analysis and Tools, In 

Reliability Management and 

Engineering: Challenges and 

Future Trends, Taylor & Francis. 

Chapter 2 Complexity 
The Literature 

Review 

3 

Kabir, S., Aslansefat, K., Sorokos, 

I., Papadopoulos, Y., & Gheraibia, 

Y. (2019). A Conceptual 

Framework to Incorporate 

Complex Basic Events in HiP-

HOPS. International Symposium 

on Model-Based Safety and 

Assessment, Lecture Notes in 

Computer Science 11842: 109-

124, Springer, ISBN: 978-3-030-

32871-9. 

Chapter 2 Complexity 

The idea of using 

Complex Basic 

Event 

4 

Aslansefat, K. & Papadopoulos, 

Y. (2019). DREAM: Data-driven 

Reliability-centred Evolutionary 

Automated Maintenance for 

Offshore Wind Farms, Global 

Offshore Wind 2019 – London. 

Chapter 3 Complexity 

The Proposed 

Butterfly 

Maintenance 

Model 

5 

Aslansefat, K. & Papadopoulos, 

Y. (2020). A Conceptual 

Framework for Data-driven 

Reliability-centred Evolutionary 

and Automated Maintenance of 

Offshore Wind Farms. EERA 

DeepWind'2020, Norway. 

Chapter 3 Complexity 

The Proposed 

Butterfly 

Maintenance 

Model 

6 

Aslansefat, K., Nikolaou, P., 

Walker, M., Akram, M. N., 

Sorokos, I., Reich, J., ... & 

Papadopoulos, Y. (2022). 

SafeDrones: Real-Time 

Reliability Evaluation of UAVs 

using Executable Digital 

Dependable Identities. In Model-

Based Safety and Assessment. 

Chapter 4 Complexity 
SafeDrones and 

Its Application 
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IMBSA 2022. Lecture Notes in 

Computer Science, Springer. 

7 

Aslansefat, K., Kabir, S., 

Abdullatif, A., Vasudevan, V., & 

Papadopoulos, Y. (2021). Toward 

improving confidence in 

autonomous vehicle software: A 

study on traffic sign recognition 

systems. IEEE Computer, 54(8), 

66-76. 

Chapter 5 Intelligence 
SafeML for Image 

Data 

 

During the PhD, I had research collaboration with other groups and the following 

papers can be listed: 

ID Reference Note 

1 

Kabir, S., Sorokos, I., Aslansefat, K., Papadopoulos, 

Y., Gheraibia, Y., Wei, R. (2019). A Runtime Safety 

Analysis Concept for Open Adaptive Systems. 

International Symp. on Model-Based Safety 

Assessment, Lecture Notes in Computer Science, 

Springer. 

Considering the challenge 

of being OpenAdaptive in 

modern systems and 

discussing a way to update 

the reliability profile for 

such systems.  

2 

Aslansefat, K., Marques, F., Mendonça, R., & 

Barata, J. (2019). A markov process-based approach 

for reliability evaluation of the propulsion system in 

multi-rotor drones. In Conference on Computing, 

Electrical and Industrial Systems, Springer. 

The Markov models of 

Propulsion System in 

UAVs in SafeDrones are 

utilized from this paper. 

3 

Akram, M. N., Ambekar, A., Sorokos, I., Aslansefat, 

K., & Schneider, D. (2022). StaDRe and StaDRo: 

Reliability and Robustness Estimation of ML-based 

Forecasting using Statistical Distance Measures. 

arXiv preprint arXiv:2206.11116. 

Expanding SafeML: 

1) for Time series,  

2) for Robustness 

Evaluation  

3) for Regression Tasks 

4 

Farhad, A. H., Sorokos, I., Schmidt, A., Akram, M. 

N., Aslansefat, K., & Schneider, D. (2022). Keep 

your Distance: Determining Sampling and Distance 

Thresholds in Machine Learning Monitoring. In 

Model-Based Safety and Assessment. IMBSA 2022. 

Lecture Notes in Computer Science, Springer. 

Improving SafeML: 1) 

Discussing how its 

threshold can be defined 

automatically. 2) 

Including more examples 

using SafeML inside Carla 

Simulator. 

5 

Walker, C., Rothon, C., Aslansefat, K., 

Papadopoulos, Y., & Dethlefs, N. (2022). A Deep 

Learning Framework for Wind Turbine Repair 

Action Prediction Using Alarm Sequences and Long 

Short-Term Memory Algorithms. In Model-Based 

Safety and Assessment. IMBSA 2022. Lecture Notes 

in Computer Science, Springer. 

This was part of our 

collaboration with EDF 

Energy R&D in UK. 

6 

Gheraibia, Y., Kabir, S., Aslansefat, K., Sorokos, I., 

& Papadopoulos, Y. (2019). Safety+ AI: A Novel 

Approach to Update Safety Models Using Artificial 

Intelligence. IEEE Access, 7(1), 135855-135869. 

In the SafeDrones section, 

the model repair part of the 

procedure is addressed in 

this paper. 
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7 

Kabir, S., Aslansefat, K., Gope, P., Campean, F., & 

Papadopoulos, Y. (2022, August). Combining 

Drone-based Monitoring and Machine Learning for 

Online Reliability Evaluation of Wind Turbines. In 

2022 International IEEE Conference on Computing, 

Electronics & Communications Engineering 

(iCCECE). 

In this paper the 

combination of SafeML 

with Fault Tree for Real-

Time Reliability 

Evaluation of Offshore 

Wind Turbine Blades is 

Discussed. 
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