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Abstract: This paper proposes a fault estimation (FE) based fault-tolerant control (FTC) strategy
to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter
system with both actuator drift and oscillation faults and saturation. The effects of the faults and
saturation are combined into a composite non-differentiable actuator fault function, which is ap-
proximated by a differentiable function and estimated together with the system state using a nonlin-
ear unknown input observer. An adaptive sliding mode controller based on the estimates is devel-
oped to compensate the effects of the faults and saturation. Taking into account the bi-directional
robustness interactions between the FE and FTC functions, an integrated design approach is pro-
posed to obtain the observer and controller gains in a single-step so as to achieve robust overall
FTC system performance. In fault-free cases, the proposed strategy can be considered as a new
approach for anti-windup control to compensate the effect of input saturation. Comparative simu-
lations are provided to verify the effectiveness of the proposed design under different actuator fault
scenarios.

1. Introduction

Reliability is critical for flight control systems, since in practical operations they may suffer from
certain system faults (e.g., actuator fault, sensor fault and component fault) that prevent them from
achieving planning tasks and degrade their system performance. In order to maintain robust flight
system performance, fault estimation (FE) and fault-tolerant control (FTC) designs have attracted
significant attention, see [1, 2] and the references therein. FE is designed to estimate the fault and
corresponding fault compensation is then performed through the FTC controller by making use of
the estimate [3].

Unmanned aerial vehicles (UAVs) have numerous applications in military and civilian domains,
due to their small size and features of long air hovering, vertical take-off and landing capability,
low-speed/-altitude and flexible flight [4]. The control designs for UAVs have been researched
extensively, see for example [5–8]. Considering reliability and safety, FE and FTC designs for
UAV control systems have also attracted lots of attention, see [9–13] and the references therein.

The implementation of FTC of most UAVs becomes very challenging due to the lack of actuator
or sensor (hardware redundancy) in these systems. An exception to this for UAVs is the actuator
redundancy that exists in hexrotor and octorotor systems. However, in this study all forms of
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hardware redundancy are excluded as a deliberate exercise to test the potential of FE-based FTC.
The Quanser 3-DOF helicopter model with twin rotors [14] is considered in this paper. This model
has been used by many researchers as a benchmark case study which is representative of the rigid
body dynamics of a full-size tandem rotor transport and rescue helicopter. Studies are focused on
the use of this system to verify control designs [7, 15–17]. It is interesting to note that this system
can also be representative of a rigid body UAV system. There is no hardware redundancy and the
FTC must be based fully on the analytical or functional redundancy concept, i.e. using combined
fault and state estimation.

Many FE/FTC designs for the Quanser 3-DOF helicopter model have also been published
[18–23]. [18] proposes an adaptive sliding mode observer (SMO) for actuator fault estimation for
a Lipschitz nonlinear helicopter model without uncertainty and external disturbance. In their work
the faults are estimated with ultimately bounded errors and FTC is out of its scope. [19] presents an
improved robust model predictive FTC design considering a linear 3-DOF helicopter system with
uncertainty, disturbance and an actuator fault. However, model predictive control involves online
optimisation and their work does not include FE. [20–22] describe adaptive FTCs for uncertain
nonlinear 3-DOF helicopter systems, also excluding FE. These methods cannot offer explicit fault
information (location, magnitude and time occurrence) that is useful for subsequent system main-
tenance. An FE-based FTC output tracking strategy is developed in [23] for a linearised 3-DOF
helicopter with perturbations and oscillatory and drift actuator faults. In their work FE is obtained
by a higher order SMO and FTC is achieved by a backstepping sliding mode controller based on
system decomposition. The main drawbacks of their work are: 1) It requires the system output
derivatives which are difficult to obtain in real implementation, and 2) it designs the FE observer
and FTC controller separately without considering the mutual influences between the estimation
and control.

Although an acceptable control performance can be achieved by the separated FE/FTC design
for line systems without uncertainty, it is difficult or impossible to be achieved in the presence
of uncertainty and nonlinearity. It is described in [24] that the occurrence of inevitable system
uncertainty leads to an existence of bi-directional robustness interactions between the FE and FTC
functions within a closed-loop system scheme, which gives rise to a requirement of an integration
of FE and FTC to achieve robust FTC performance. [24] also proposes an effective integrated
FE/FTC strategy for uncertain linear systems using an unknown input observer (UIO) and a single-
step linear matrix inequality (LMI) formulation. Their approach is further extended by [25] for
Lipschitz nonlinear systems with actuator/sensor faults. However, neither of these works considers
the effects of actuator saturation.

Actuator saturation is a function of flight system design in most real aircraft systems and for
full-size aircraft it is always taken into account. It is thus necessary to include a study of the
effect of actuator saturation on the performance of an FTC scheme for a UAV. Actuator saturation
problems for 3-DOF helicopters have been considered in [26] using an inversion-based control
approach, and by [27] with an anti-windup compensator. However, they do not pay attention to
actuator faults.

This work aims to extend the strategy in [25] for stabilising the elevation and pitch motions of an
uncertain nonlinear 3-DOF helicopter system with both actuator faults and saturation. Compared
with the existing works, the main contributions of this paper are in three aspects:

1) An uncertain nonlinear 3-DOF helicopter with both actuator faults and saturation is consid-
ered. The actuator faults and the saturation are combined into a composite fault function which
are non-differentiable. The composite fault function is further approximated by a differentiable
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function with a sufficiently small error and treated as a new system state that estimated by a non-
linear unknown input observer (NUIO). Unlike the adaptive SMO [18] and higher order SMO [23]
FE methods, the proposed NUIO can achieve asymptotic estimation of the faults with no need for
system output derivatives.

2) An adaptive sliding mode FTC controller is proposed to compensate the effects of the actuator
faults and saturation and stabilise the elevation and pitch motions of the 3-DOF helicopter. Sliding
mode control (SMC) is known as a robust control method, since once sliding motion is reached the
system is insensitive to any matched perturbation (within the range space spanned by the control
input) [28]. Moreover, the adaptive method is incorporated with the SMC to avoid the requirement
of a priori knowledge of the perturbation bounds. Compared with model predictive FTC [19],
adaptive FTCs [20–22], and backstepping sliding mode FTC [23], the proposed FTC is easier to
design and implement without online optimisation and system decomposition, and the FE observer
and FTC controller gains are obtained using a single-step LMI formulation.

3) In the absence of actuator faults, the proposed integrated FTC design reverts to a new anti-
windup control method for compensating the input saturation effect to recover the non-saturated
system performance.

The remainder of this paper is organized as follows. Section 2 models the 3-DOF helicopter
system and formulates the control problem. Section 3 proposes a NUIO for FE and Section 4
develops an adaptive sliding mode FTC controller. The synthesis of the observer and controller is
presented in Section 5. Simulation results are provided in Section 6 and conclusions are drawn in
Section 7.

Notation: The symbol R denotes the set of real numbers; | · | denotes the absolute value; ‖ · ‖p
denotes the p−norm in the Euclidean space, and ‖·‖ and ‖·‖∞ represent the 2-norm and∞−norm,
respectively; L2[0,∞) denotes the 2-norm space; He(W0) = W0+W>

0 , and ? denotes the transpose
of the matrix element on its symmetric position in a matrix; Ip denotes a p × p identity matrix;
κm×n denotes a m × n matrix whose elements are all equal to a constant κ; sign($) denotes the
signum function of the variable $ defined by sign($) = $/‖$‖, and if $ = 0, sign($) = 0.

2. Problem formulation

Fig. 1. A free body diagram of the Quanser 3-DOF helicopter [16]
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Table 1 Definitions of the physical parameters

Parameter Physical meaning
ε Elevation angle
p Pitch angle
Ff , Fb Control voltages of the front and back motors
Jε, Jp Moments of inertia of elevation and pitch axes
Kf Propeller force-thrust constant
mh Mass of the helicopter
La Distance within the travel axis and the helicopter body
Lh Distance between the pitch axis and each motor
g Gravity constant
wε, wp Unknown external disturbances belong to L2[0,∞)

This work considers the elevation and pitch motions of the Quanser 3-DOF helicopter (Fig. 1)
with the model [16]

Jεε̈ = KfLa cos(p) (Ff + Fb)−mhgLa sin(ε) + wε,

Jpp̈ = KfLh (Ff − Fb) + wp, (1)

where the physical parameters are defined in Table 1.
Define the system state vector as x = [x1 x2 x3 x4]> = [ε p ε̇ ṗ]>, the input vector as u =

[u1 u2]> = [Ff Fb]
>, and the output vector as y = [ε p ε̇ ṗ]>. Assume that the front and back

motors suffer from saturation and unknown actuator faults fa1 and fa2, respectively. The actuator
faults may be oscillatory faults [29] or drift faults [23] acting on flight or helicopter control systems.
Without loss of generality, fa1 and fa2 are assumed to have first-order time derivatives ḟa1 and ḟa2,
respectively. Moreover, fa1, fa2, ḟa1, and ḟa2 are bounded and belong to L2[0,∞). Hence, the
control inputs applied to the helicopter (see Fig. 2) can be represented as

ui = sat(u0i + fai), i = 1, 2,

where u0i is the designed control input and sat(·) is a saturation function defined by

sat(v) =

{
sign(v)ū, |v| ≥ ū

v, |v| < ū
,

with v the input to the actuator and ū the maximum voltage of the actuator.

Fig. 2. The actuator model with both fault and saturation

The control input u of the system (1) can then be rearranged into

u = u0 + f0, (2)
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where u0 = [u01 u02]> is the designed control input vector and f0 = [f01 f02]> is the composite
actuator fault vector with f0i = sat(u0i + fai)− u0i, i = 1, 2.

Remark 1. In real operations, the helicopter actuators may suffer from both stuck and partial
loss of effectiveness faults [30, 31]. For this case, the control inputs applied to the helicopter are
represented by

ui = sat(θiu0i + usi), i = 1, 2, (3)

where θi is the partial loss of effectiveness fault taking values within the sector [0, 1] and usi is
the stuck fault. Assume that both θi and usi are unknown bounded and differentiable time-varying
functions. The actuator model (3) can be rearranged into

u = u0 + f0, (4)

where u0 = [u01 u02]> is the designed control input vector and f0 = [f01 f02]> is the composite
actuator fault vector with f0i = sat(θiu0i + usi) − u0i, i = 1, 2. Since (4) and (2) are in the same
form, the FE and FTC strategies proposed in this paper can be directly applied to the estimation
and compensation of the total effect of saturation and stuck and partial loss of effectiveness faults.

According to the aforementioned definitions a state-space model of (1) is given as

ẋ = Ax+B(u0 + f0) + g(x) +Dd,

y = Cx, (5)

with d = [d1 d2]> and

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0 0
0 0
b1 b1

b2 −b2

 ,

D =


0 0
0 0
1 0
0 1

 , g(x) =


0
0

g1(x)
0

 , C = I4,

where d1 = wε/Jε+b1(cos(x2)−1) (u01 + f01 + u02 + f02), d2 = wp/Jp,g1(x) = −mhgLa sin(x1)/Jε,
b1 = KfLa/Jε, and b2 = KfLh/Jp. d is a bounded lumped uncertainty including external distur-
bances and the system uncertainty b1(cos(x2) − 1)(u01 + f01 + u02 + f02). It is verified that the
system (5) is observable and controllable. The following assumption is made throughout the paper.

Assumption 1. The nonlinear function g(x) satisfies the Lipschitz constraint

‖g(xt)− g(x)‖ ≤ Lf‖xt − x‖, ∀ x, xt ∈ R4,

where Lf is the Lipschitz constant independent of x.

Remark 2. It is seen from (5) that the nonlinear function g(x) satisfies the Lipschitz constraint in
Assumption 1 with Lf = mhgLa/Jε.

The presence of actuator faults and saturation can affect the helicopter system stability and
prevent it from performing prescribed tasks. This paper aims to stabilise the elevation and pitch
angles of the system (5) through an FTC strategy involving: 1) The design of an observer to
estimate the system state and the composite actuator fault; 2) The design of an FTC controller
based on the estimates to compensate the faults and saturation effect to ensure system stability.
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3. FE observer design

This section describes an observer design for estimating the system state x and composite actuator
fault f0. A NUIO adopted from [25] is used to achieve the estimation, in which f0 is extended as a
new system state and must be differentiable.

It can be seen from (2) that f0 is a function of the designed control input u0 and the saturation
function sat(v). In this paper u0 is designed in Section 4 as a state-feedback controller that is
differentiable. However, the saturation function sat(v) is known to be non-differentiable. There-
fore, f0 is non-differentiable which cannot be treated as a new system state. To overcome this, a
differentiable approximation of f0 needs to be attained before designing the NUIO.

3.1. Differentiable approximation of f0

The above analysis implies that if the saturation function sat(v) can be approximated by a differen-
tiable function sat(v), then f0 is modelled as a new function consisting of a differentiable function
of u0 and sat(v) and the approximation error which can be combined into the uncertainty term. In
this way, a differentiable approximation of f0 is attained.

The saturation function sat(v) is approximated by a differentiable function sat(v) modified
from [32] with the form of

sat(v) =


v, 0 ≤ |v| ≤ ū

v − [v−ūsign(v)]2sign(v)
2ε0

, ū ≤ |v| ≤ ū+ ε0
(ū+ ε0

2
)sign(v), |v| ≥ ū+ ε0

, (6)

where ε0 is a positive constant.
It can be shown that the function sat(v) satisfies continuity across |v| = ū as well as |v| = ū+ε0.

Furthermore, the left and right derivatives of sat(v) with respect to v at the above boundaries are
equal. It follows that sat(v) is differentiable. Moreover, it is bounded uniformly in ε0 on any
bounded interval of ε0, and |sat(v) − sat(v)| ≤ ε0/2 and 0 ≤ dsat(v)/dv ≤ 1 for all v ∈ R.
Hence, the approximation error of sat(v) is small as long as ε0 is selected to be sufficiently small.

According to (6), the control input (2) can be further modelled as

u = u0 + f + ∆u, (7)

where f = [f1 f2]> and ∆u = [∆u1 ∆u2]>, with fi = sat(u0i + fai) − u0i and ∆ui = sat(u0i +
fai)− sat(u0i + fai), i = 1, 2.

Now the composite actuator fault f is differentiable, which can then be augmented as a new
system state of the system (5) with input (7).

3.2. Observer design

The augmented system takes the form of

˙̄x = Āx̄+ ḡ(A0x̄) + B̄u0 + D̄d̄,

y = C̄x̄, (8)
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where x̄ = [x>f>]>, d̄ = [d̃>ḟ>]>, d̃ = d+B2∆u, B2 = [0 I2]B, A0 = [I4 0], and

Ā =

[
A B
0 0

]
, B̄ =

[
B
0

]
, D̄ =

[
D 0
0 I2

]
,

C̄ = [C 0], ḡ(A0x̄) =

[
g(A0x̄)

0

]
.

It can be verified that the system (8) is observable since the pair (A,C) is observable and CB is of
full rank for the considered helicopter system (5).

A NUIO is designed to estimate the augmented state x̄ with the form of

ż = Mz +Gu0 +Nḡ(A0 ˆ̄x) + Ly,

ˆ̄x = z +Hy, (9)

where z ∈ R6 is the observer system state and ˆ̄x ∈ R6 is the estimate of x̄. The matricesM ∈ R6×6,
G ∈ R6×2, N ∈ R6×6, L ∈ R6×4, and H ∈ R6×4 are to be designed. The estimates of x and f are
x̂ = [I4 0]ˆ̄x and [0 I2]ˆ̄x, respectively.

Define the estimation error as e = x̄− ˆ̄x, then

ė = (ΞĀ− L1C̄)e+ (ΞĀ− L1C̄ −M)z + (ΞB̄ −G)u0

+[(ΞĀ− L1C̄)H − L2]y + Ξḡ(A0x̄)−Nḡ(A0 ˆ̄x)

+ΞD̄d̄, (10)

where Ξ = I6 −HC̄ and L = L1 + L2. The matrices M , N , G, and L2 are defined as

M = ΞĀ− L1C̄, N = Ξ, G = ΞB̄, L2 = (ΞĀ− L1C̄)H. (11)

Note that the design matrices M , N , G, and L2 can be calculated directly from (11) by substituting
the matrices L1 and H attained later through the LMIs in Theorems 2 - 4 in Section 5.

Substituting (11) into (10) gives

ė = (ΞĀ− L1C̄)e+ Ξ∆ḡ + ΞD̄d̄, (12)

where ∆ḡ = ḡ(A0x̄)− ḡ(A0 ˆ̄x).
A sufficient condition for the existence of a robust NUIO (9) is given in Theorem 1.

Theorem 1. There exists a robust NUIO (9) if the error system (12) is robustly asymptotically
stable.

Proof. If (12) is robustly asymptotically stable, then by (11), the error system (10) is also robustly
asymptotically stable. Therefore, it holds that limt→∞ e(t) = 0 in the presence of uncertainty and
disturbance.

According to Theorem 1, the solvability of (9) now becomes an problem of designing the ma-
trices L1 and H such that (12) is robustly asymptotically stable.
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4. FTC controller design

This section presents the design of an adaptive system for FTC based on state and fault estimation.
The FTC function is to compensate the estimated effects of the actuator faults and saturation and
also stabilise the system state of (5). Since in the system (5) the state vector x are unavailable and
the measured output vector y may have noise, thus it is appropriate to use the concept of SMC with
adaption based on the combined state and fault estimation.

Recall that the general aim of SMC is to achieve robust insensitivity to matched uncertainty
acting within the control channels, using a combination of linear and switched feedback. The
SMC must be designed to reach a sliding surface and the switching operation designed to keep the
system motion in the sliding manifold.

So in this SMC, the sliding surface for the system (5) is a function of the system state estimates
as follows.

s = N1x̂ = 0, (13)

where s ∈ R2, x̂ is the system state estimate obtained through the observer (9) (i.e., x̂ = [I4 0]ˆ̄x),
and N1 = B† − Y1(I4 −BB†) with B† = (B>B)−1B> and a design matrix Y1 ∈ R2×4.

The first step of the SMC design is to establish the reachability of x̂ to the sliding surface (13).
Differentiating s with respect to time gives

ṡ = N1Ax+ u0 + f +N1g(x) +N1Dd̃−N1ėx, (14)

where ex is the estimation error of x defined as ex = x− x̂.
An FTC controller for the system (5) with (7) is designed as

u0 = ul + un, (15)

where ul is the linear feedback component given by ul = −K ˆ̄xwith a design matrixK = [KxKf ].
Kx ∈ R2×4 is to be determined while Kf is chosen as Kf = I2. The nonlinear component un
is un = −ρsign(s, θ0), where ρ is a design scalar function. The smooth function sign(s, θ0) is
defined as sign(s, θ0) = s

‖s‖+θ0 [28], with a sufficiently small positive constant θ0. It is a dif-
ferentiable approximation of sign(s) ensuring that the control function u0 is also differentiable.
Define the approximation error as ∆sign = sign(s) − sign(s, θ0), then it can be verified that
‖∆sign‖ ≤ 1

‖s‖/θ0+1
≤ 1 and for ‖s‖ 6= 0, ‖∆sign‖ is small by selecting a sufficiently small θ0.

Consider the following Lyapunov function

Vs =
1

2
s>s.

The time derivative of Vs along (14) is

V̇s = s>
[
(N1A−Kx)x+ ∆e − ρsign(s, θ0)

]
= s> [(N1A−Kx)x+ ∆e + ρ∆sign − ρsign(s)]

≤ (ω‖x‖+ η − ρ) ‖s‖, (16)

where ∆e = Kxex + ef + N1g(x) + N1Dd̃ + N1ėx, ef = f − f̂ , and ω = ‖N1A −Kx‖. η is an
unknown positive constant satisfying η ≥ ‖∆e‖+ ‖ρ∆sign‖.
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Define ρ = η̂ + ϕ+ ε, where ϕ and ε are positive design constants. The scalar η̂ is the estimate
of η defined by

˙̂η = σ‖s‖, η̂(0) ≥ 0, (17)

with a positive design constant σ.
Define the estimation error of η as η̃ = η − η̂. Consider a Lyapunov function

V = Vs +
1

2σ
η̃2.

It follows from (16) and (17) that

V̇ = s>ṡ− 1

σ
η̃ ˙̂η

≤ (ω‖x‖+ η − ρ) ‖s‖ − η̃‖s‖
= −ε‖s‖ − (ϕ− ω‖x‖) ‖s‖. (18)

By choosing ϕ > ωφ with a design positive scalar φ, then it follows from (18) that V̇ ≤ 0 in the
subset Ω = {x : ‖x‖ ≤ φ}. On the one hand, V̇ = 0 holds only when s = 0. On the other
hand, since V ≥ 0, then if V̇ < 0, limt→∞ V (t) = 0. Hence, if x(0) ∈ Ω, then V̇ ≤ 0 leads to
limt→∞ s(t) = 0 and all the signals (including η̂) in the dynamics (14) are bounded. This proves
that s is asymptotic convergence, i.e., converges to zero in infinite time.

However, it can be seen from (17) that η̂ is non-negative and increasing. Thus, η̂ tends to infinity
if s is asymptotically convergent, which leads to a contradiction. So the sliding surface s(t) = 0 is
reached in finite time tr, provided that x(0) ∈ Ω.

Remark 3. After finite time tr, the system dynamics reach the sliding surface and remain there
and converge to the origin asymptotically, as proved in Theorems 2 - 4. Therefore, for any given
initial state vector x(0), φ can be designed such that φ ≥ ‖x(0)‖. This means that the attraction
domain (set of admissible initial states) of the proposed FTC design is Ω1 = {x(0) : ‖x(0)‖ ≤
max(‖x(0)‖),∀ |xi(0)| ≤ x̄i, i = 1, 2, 3, 4}, where x̄i is the maximum absolute value of xi
determined according to its physical limits. For the 3-DOF helicopter system example studied in
this paper, the physical limits are those of the pitch and elevation angles. It should be noted that
after choosing φ, another control design constant ϕ should be selected such that ϕ > ωφ.

Consider next the system stability analysis corresponding to the sliding mode. After tr the
system has already reached the sliding mode with the equivalent control input

ueq = −
[
N1Ax+N1g(x) +N1Dd̃

]
+ ul. (19)

Substituting (19) into (5) gives the equivalent closed-loop system

ẋ = (ΘA−BKx)x+BKe+ Θg(x) + ΘDd̃, (20)

where Θ = I4 −BN1.
Therefore, the system (5) is maintained on the sliding mode with the equivalent control (19)

by designing Kx such that (20) is stable. The closed-loop system (20) contains the uncertainty d̃
and nonlinearity g(x), which must be minimised to achieve a suitable degree of robustness. This
is achieved using H∞ optimisation given in the next section.
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Fig. 3. The proposed FE-based FTC 3-DOF helicopter system

5. Synthesis of the FE observer and FTC controller

The 3-DOF helicopter FTC system (Fig. 3) includes the designs of the FE observer (9) and FTC
controller (15). To obtain their gains, a way widely used in the literature is the separated FE/FTC
design approach [23], in which the FE observer and FTC controller are designed separately. This
approach follows the Separation Principle by neglecting of the effects of system uncertainty and
nonlinearity on the FE performance and the effect of the estimation error on the FTC system. This
section first presents the traditional separated synthesis approach with an analysis of its limitations,
and then describes an approach based on the integrated FE/FTC strategy in [25], using the concept
of bi-directional robustness interaction developed in the original work [24].

5.1. Traditional separated approach

By neglecting the effects of the system uncertainty and nonlinearity on the FE observer, the error
system (12) is reduced to be

ė = (ΞĀ− L1C̄)e+ ΞD̄d̄s,

zs1 = Cs1e, (21)

where d̄s = [d>s ḟ
>]> and ds = [wε wp]

>. zs1 ∈ R6 is the measured output with a given coefficient
matrix Cs1 ∈ R6×6.

The following theorem is given to design the matrices H and L1 to make the error system (21)
robustly asymptotically stable.

Theorem 2. Given a positive scalar γs1 , the error system (21) is asymptotically stable with H∞
performance ‖Gzs1 d̄s

‖∞ < γs1 , if there exists a symmetric positive definite matrix Qs ∈ R6×6, and
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matrices Ms1 ∈ R6×4 and Ms2 ∈ R6×4 such that Ω1,1 (Qs −Ms1C̄)D̄ C>s1
? −γ2

s1
I4 0

? ? −I6

 < 0,

where Ω1,1 = He
(
QsĀ−Ms1C̄Ā−Ms2C̄

)
. Then the gains are given by H = Q−1

s Ms1 and
L1 = Q−1

s Ms2.

Proof. By using the Bounded Real Lemma [33] and defining Ms1 = QsH and Ms2 = QsL1, the
proof is trivial and thus is omitted here.

Similarly, in the separated approach the FTC system is assumed to be not affected by the esti-
mation error, thus the closed-loop control system (20) becomes

ẋ = (ΘA−BKx)x+ Θg(x) + ΘDd̃,

zs2 = Cs2x, (22)

where zs2 ∈ R4 is the measured output with a given coefficient matrix Cs2 ∈ R4×4.
The following theorem is given to design Kx to ensure that (22) is robustly stable.

Theorem 3. Given positive scalars γs2 and εs, the closed-loop system (22) is asymptotically stable
with H∞ performance ‖Gzs2 d̃

‖∞ < γs2 , if there exists a symmetric positive definite matrix Ps ∈
R4×4 and a matrix Ms3 ∈ R2×4 such that

Π1,1 D PsC
>
s2

Ps
? −γ2

s2
I2 0 0

? ? −I4 0
? ? ? −1/(εsL

2
f )I4

 < 0,

where Π1,1 = He(ΘAPs −BMs3) + ε−1
s ΘΘ>. Then the control gain is given by Kx = Ms3P

−1
s .

Proof. See Appendix 10.1.

The separated approach outlined in Theorems 2 and 3 allows great design freedom for the
FE/FTC design for the 3-DOF helicopter, in which the observer and controller can be optimised
independently. However, when the obtained FE observer and FTC controller are implemented in
the helicopter to formulate a closed-loop FTC system two problems arise: 1) The effects of the
system uncertainty and nonlinearity on the observer are ignored in the design procedure, so in
closed-loop operations the well designed observer is unable to achieve good estimation perfor-
mance as expected; 2) Without taking the estimation error effect into account the control system
will have slow transient performance with large overshoot and long settling time and compro-
mised robustness. The above problems degrade the FE/FTC performance and can even result in an
unstable FTC system.

It can be seen from the error system (12) and the control system (20) that the system uncertainty,
nonlinearity and disturbance affect the estimation, and in turn the estimation error has an effect on
the closed-loop control system. This leads to the fact that bi-directional robustness interactions
exist between the FE and FTC functions, which breaks down the Separation Principle on which
the separated approach based [24]. Therefore, it is necessary to introduce an integrated FE/FTC
approach to achieve robust design of the overall FTC system, taking into account the bi-directional
robustness interactions between the observer and controller.
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5.2. Integrated approach

The composite closed-loop system encompassing (12) and (20) is

ẋ = (Θ1A−BKx)x+BKe+ Θg(x) +D1d̄,

ė = (ΞĀ− L1C̄)e+ Ξ∆ḡ + ΞD̄d̄,

zc = Cxx+ Cee, (23)

where zc ∈ R4 is the measured output used to verify the closed-loop system performance with
matrices Cx ∈ R4×4 and Ce ∈ R4×6, and D1 = [ΘD 0].

Theorem 4 provides an integrated strategy adopted from [25] to design the observer and con-
troller gains simultaneously using a single-step LMI formulation .

Theorem 4. Given positive scalars γ, ε1, ε2, and ε3, the closed-loop system (23) is asymptotically
stable withH∞ performance ‖Gzcd̄‖∞ < γ, if there exist three symmetric positive definite matrices
Z ∈ R4×4, Q ∈ R4×4, and R ∈ R2×2, and matrices M1 ∈ R2×4, M2 ∈ R4×2, M3 ∈ R4×2,
M4 ∈ R2×4, and M5 ∈ R2×4 such that[

Π1 Π2

? Π3

]
< 0, (24)

with

Π1 =

[
Ξ1,1 Ξ1,2

? J2,2

]
,

Π2 =

[
Ξ1,3 Ξ1,4 Ξ1,5 0 0 Ξ1,8

J2,3 J2,4 0 I4 J2,7 0

]
,

Π3 = −diag
{
γ2I4, I4, ε

−1
3 Z, ε3Z, ε1I4, (ε2L

2
f )
−1I4

}
,

J2,2 =

[
Ξ2,2 Ξ2,3

? Ξ3,3

]
, J2,3 =

[
QD −M2CD 0
−M4CD R

]
,

J2,4 = C>e =

[
C>ex
C>ef

]
, J2,7 =

[
Q−M2C 0
−M4C R

]
,

Ξ1,1 = He(ΘAZ −BM1) + ε−1
2 ΘΘ>,Ξ1,2 = [0 B],

Ξ1,3 = [ΘD 0], Ξ1,4 = ZC>x , Ξ1,5 = BM1, Ξ1,8 = Z,

Ξ2,2 = He(QA−M2CA−M3C) + ε1L
2
fI4,

Ξ2,3 = QB −M2CB − A>C>M>
4 − C>M>

5 ,

Ξ3,3 = He(−M4CB).

Then the controller gains are given by: Kx = M1Z
−1, H1 = Q−1M2, H2 = R−1M4, L11 =

Q−1M3, L12 = R−1M5.

Proof. See Appendix 10.2.

Remark 4. The inequalities in Theorems 2 - 4 are solved using the Matlab LMI toolbox [34], after
choosing the following parameters: 1) H∞ performance indices γs1, γs2, and γ, which are positive
scalars that normally chosen within [0, 1] to attenuate the disturbance effect; 2) Other parameters
εs, ε1, ε2, and ε3, which are positive scalars introduced to offer more design freedom to handle the
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nonlinearity. However, they affect the obtained observer and controller gains and subsequently the
FE and FTC system performance. The constraints listed above can be a guidance which makes it
usually rather easy to find a suitable set of parameters to achieve admissible system stability and
asymptotic estimation and fault-tolerant control performance. Hence, in reality these parameters
are chosen through trial and error.

Remark 5. In the presence of actuator faults, the proposed strategy estimates and compensates the
total effect of the actuator faults and saturation and robustly recover the normal non-saturated sys-
tem performance. In the fault-free cases, it can be used as a novel anti-windup control framework
to recover non-saturated system performance. Adaptive anti-windup controls have been described
in many works, e.g., [35], by incorporating an auxiliary system. Nevertheless, this adaptive frame-
work involves a switched designed control through appropriately chosen bounds of the auxiliary
system state. Other mainstream anti-windup methods incorporate anti-windup compensators as a
part of the normal control function, as summarized in the review [36]. However, the above anti-
windup designs are implemented with the measurement of the actuator output, which is not the
case in reality and is not even desirable, especially if the actuator has any fast, unmodeled dy-
namics. Compared with the existing approaches, the proposed design for anti-windup control is
convenient in the sense that 1) the proposed observer can achieve simultaneous estimation of the
system state and saturation effect without requiring the actuator output measurement, and 2) all the
observer and controller gains are obtained by solving the LMI (24) in a single-step.

6. Simulation results

This section outlines comparative simulations for the elevation and pitch motions of the Quanser
3-DOF helicopter system (5) with single or multiple actuator faults, using 1) the nominal control
design (without FE/FTC and the state observer and controller are designed separately), 2) the
separated FE/FTC approach, and 3) the proposed integrated FE/FTC approach.

Table 2 Parameters of the 3-DOF helicopter system

Parameter Value
Jε 0.91 kg·m2

Jp 0.0364 kg·m2

Kf 0.5 N/V
mh 1.01 kg
La 0.66 m
Lh 0.177 m
g 9.81 m/s2

The 3-DOF helicopter system parameters are given in Table 2. Due to mechanical limits, the el-
evation angle is constrained within the range of±31.75 deg and the pitch angle is within±32 deg.
The voltage limits of the front and back motors are±12 V. The external disturbances acting on the
helicopter are supposed to be wε = 0.01 sin(10t) and wp = 0.01 sin(5t). To test the system perfor-
mance, a Gaussian noise with zero-mean and variance 0.0012 is added to the output measurement.

Choosing Y1 = 0.12×4, Cx = I4, Ce = [Cex Cef ] = [I4 14×2], and solving Theorem 4 with
ε1 = 50, ε2 = 5, ε3 = 0.015, and γ = 1, gives the following observer and controller gains:

N1 =

[
−0.1 −0.1 1.3788 0.2056
−0.1 −0.1 1.3788 −0.2056

]
,
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Kx =

[
9.7303 1.3552 9.1113 1.3457
9.7384 −1.5439 9.1113 −1.3540

]
,

M =


−1.4142 0 0 0

0 −1.4142 0 0
0 0 −1.4142 0
0 0 0 −1.4142

−0.9026 −0.9016 −0.8991 −0.8981
−0.9025 −0.9034 −0.8991 −0.9068

0 0
0 0
0 0
0 0

−27.5619 16.6599
16.6545 −27.55631

 ,

N =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−0.0004 −0.0013 −15.0315 −9.0942 1 0
−0.0004 0.0013 −15.0312 9.0919 0 1

 ,

G =


0 0
0 0
0 0
0 0

−27.5619 16.6599
16.6545 −27.5563

 ,

L =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−0.0042 −0.0579 −163.8797 −402.1261
−0.0042 0.0579 −163.8614 402.0014

 ,

H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.0004 0.0013 15.0315 9.0942
0.0004 −0.0013 15.0312 −9.0919

 .
The other control parameters are chosen as: φ = 0.4, ϕ = 7.6, ε = 0.1, σ = 0.01, and θ0 = 0.001.

For the separated design, the observer and controller gains are obtained by solving the LMIs in
Theorems 2 and 3 with γs1 = 0.55, γs2 = 0.7, and εs = 0.01.

All the three cases are simulated with ε(0) = 30 deg and p(0) = 18 deg, and the initial values
of other parameters are all set to zero. A first-order low pass filter, whose transfer function is
1/(2πf0s+ 1) with a frequency f0 = 7 Hz, is used to filter each of the measure outputs.
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6.1. Case 1: fault-free

In this case the separated and integrated FE/FTC designs revert to nominal observer-based state
feedback robust controls. It is seen from Fig. 4 that all of the three control approaches can stabilise
the elevation and pitch angles with similar control efforts. However, the proposed integrated design
has the best transient angle responses.
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Fig. 4. Angle response and control effort: Case 1. (a) Angle response; (b) Control effort

6.2. Case 2: single actuator fault

In this case the back actuator of the helicopter is healthy, while the front actuator has an actuator
fault characterized by

fa1(t) =

{
0.1t+ 0.08t2, 0 s ≤ t ≤ 10 s

2 cos(0.5π(t− 10)) + 7, 10 s < t ≤ 20 s
.

It is shown in Fig. 5 that the proposed integrated design has better FE performance than the
separated design. The angle responses and control efforts in Fig. 6 show that only the proposed in-
tegrated design can stabilise both the elevation and pitch angles in the presence of a single actuator
fault. The separated design stabilises the elevation angle but has oscillatory pitch angle response.
The nominal design suffers from saturations in the angles and control inputs.
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Fig. 6. Angle response and control effort: Case 2. (a) Angle response; (b) Control effort

6.3. Case 3: multiple actuator faults

In this case the front and back actuators have oscillatory faults fa1 and fa2, respectively. The faults
are characterized by

fa1(t) =

{
0.1t+ 0.08t2, 0 s ≤ t ≤ 10 s

2 cos(0.5π(t− 10)) + 7, 10 s < t ≤ 20 s
,

fa2(t) = sin(0.5t) + 0.5 sin(t), 0 s ≤ t ≤ 20 s.
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Similar to Case 2, the results in Figs. 7 - 8 show that compared with the other two approaches,
the proposed integrated approach achieves better performances of FE and output stabilisation.
Moreover, the nominal design has saturations in the angles and control inputs, while the separated
design suffers from significant oscillation in the pitch angle response.
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Fig. 7. Fault estimation performance: Case 3
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Summarizing the results of the three simulation cases: 1) Compared with the nominal and
separated designs, the proposed integrated design stabilises the elevation and pitch motions of
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the 3-DOF helicopter system with the best transient performance and meanwhile avoids actuator
saturation, no matter if actuator faults exist or not. Although the separated design can also avoid
actuator saturation in the presence of actuator faults, it suffers from pitch angle oscillation. 2) The
proposed integrated design approach achieves more accurate fault estimation than the separated
design.

The results represent well the expected behaviour of the FTC cases, since 1) the nominal de-
sign does not include FE and FTC modules, and 2) the separated design neglects the bi-directional
robustness interactions between the FE observer and FTC system, resulting from inaccurate esti-
mation as well as system performance with low robustness.

7. Conclusion

An FE-based FTC design has been proposed for a nonlinear 3-DOF helicopter system subject to
actuator faults, saturation and system uncertainty along with external disturbance. Furthermore,
the work is a realistic laboratory application study with some dynamic characteristics typical of
the rigid body motions of a tandem rotor helicopter. A NUIO is used to estimate the system state
and a composite fault function of the actuator faults and saturation. An adaptive sliding mode
FTC controller using the estimates is designed to compensate the fault and saturation effects and
achieve robust stabilisation of the elevation and pitch motions. An integrated design approach
described in earlier papers by the authors makes use of a single-step LMI formulation to solve the
observer and controller gains, accounting for the bi-directional robustness interactions between the
FE and FTC functions. The earlier research did not consider the important effect of the actuator
saturation. Hence, the novelty lies in the inclusion of both actuator faults (oscillation and drift)
as well as saturation as an additional hard nonlinearity. Results are compared with the nominal
control (with no applied FTC action) as well as with the more traditional approach to combined FE
and FTC using separated FE/FTC designs. The proposed integrated approach is demonstrated as a
more effective design for attaining robust FTC performance (stabilisation and fault compensation).
Future research will focus on the control of all the three motions of a helicopter system.
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10. Appendices

10.1. Proof of Theorem 3

Given a symmetric positive definite matrix Zs ∈ R4×4. Assume g(0) = 0, then ‖g(x)‖ ≤
Lf‖x‖,∀x ∈ R4. Thus for some positive scalar εs,

2x>ZsΘg(x) ≤ ε−1
s x>ZsΘΘ>Zsx+ εsL

2
f‖x‖2.

Using the Bounded Real Lemma, the closed-loop system (22) is stable with H∞ performance
‖Gzs2 d̃

‖∞ < γs2 , if  Π1,1 ZsD C>s2
? −γ2

s2
I2 0

? ? −I4

 < 0, (25)

where Π1,1 = He [Zs(ΘA−BKx)] + ε−1
s ZsΘΘ>Zs + εsL

2
fI4.

Define Ps = Z−1
s and Ms3 = KxPs. Pre- and post-multiplying both sides of (25) with

diag(Ps, I2, I4) and using the Schur complement [37], then (25) becomes
Π1,1 D PsC

>
s2

Ps
? −γ2

s2
I2 0 0

? ? −I4 0
? ? ? −1/(εsL

2
f )I4

 < 0,

where Π1,1 = He(ΘAPs −BMs3) + ε−1
s ΘΘ>.

10.2. Proof of Theorem 4

Define a symmetric positive definite matrix P1 ∈ R6×6. Since the nonlinear function g(x) is
Lipschitz, for some positive scalar ε1,

2e>P1Ξ∆ḡ ≤ ε−1
1 e>P1ΞΞ>P1e+ ε1L

2
f‖A0e‖2.

Define another symmetric positive definite matrix P ∈ R4×4. Assume g(0) = 0, then ‖g(x)‖ ≤
Lf‖x‖,∀x ∈ R4. It thus holds that, for some positive scalar ε2,

2x>PΘg(x) ≤ ε−1
2 x>PΘΘ>Px+ ε2L

2
f‖x‖2.
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Using the Bounded Real Lemma, the closed-loop system (20) is stable with H∞ performance
‖Gzcd̄‖∞ < γ if 

J1,1 PBK PD1 C>x
? J2,2 P1ΞD̄ C>e
? ? −γ2I4 0
? ? ? −I4

 < 0, (26)

where J1,1 = He [P (ΘA−BKx)] + ε−1
2 PΘΘ>P + ε2L

2
fI4 and J2,2 = He

[
P1(ΞĀ− L1C̄)

]
+

ε−1
1 P1ΞΞ>P1 + ε1L

2
fA
>
0 A0I6.

Define Z = P−1. Pre- and post-multiplying both sides of (26) with diag(Z, I6, I4) gives
J1,1 BK D1 ZC>x
? J22 P1ΞD̄ C>e
? ? −γ2I4 0
? ? ? −I4

 < 0, (27)

where J1,1 = He [(ΘA−BKx)Z] + ε−1
2 ΘΘ> + ε2L

2
fZZ and J2,2 = He

[
P1(ΞĀ− L1C̄)

]
+

ε−1
1 P1ΞΞ>P1 + ε1L

2
fA
>
0 A0I6.

By the Young relation [37], for some positive scalar ε3,

He
{
Γ1Γ

>
2

}
≤ ε3Γ1Z

−1Γ>1 + ε−1
3 Γ2Z

−1Γ>2 ,

Γ1 =

 BKxZ
0
0

 , Γ2 =

 0
I4

0

 .
Further define P1 = diag(Q4×4, R2×2), L1 = [L11;L12], H = [H1;H2], M1 = KxZ, M2 =

QH1, M3 = QL11, M4 = RH2, and M5 = RL12. Using the Schur complement repeatedly, (27)
can be finally reformulated into (24).
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