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Abstract 

Mitochondria play a pivotal role in cellular function, not only acting as the powerhouse of the cell, 
but also regulating ATP synthesis, reactive oxygen species (ROS) production, intracellular Ca2+ cycling, 
and apoptosis. During the past decade, extensive progress has been made in the technology to assess 
mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a 
key pathophysiological mechanism for many diseases including cardiovascular disorders, such as 
ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock. The 
advances in methodology have been accelerating our understanding of mitochondrial molecular 
structure and function, biogenesis and ROS and energy production, which facilitates new drug target 
identification and therapeutic strategy development for mitochondrial dysfunction-related disorders. 
This review will focus on the assessment of methodologies currently used for mitochondrial research 
and discuss their advantages, limitations and the implications of mitochondrial dysfunction in 
cardiovascular disorders. 
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1. Introduction 

Mitochondria are known as the powerhouse of the cell. Keeping mitochondrial function normal is 
necessary in the tissues and organs that are of high energy demand [1]. The maintenance of 
mitochondrial structural integrity, biogenesis and function is essential to the cells, since mitochondrial 
abnormalities can lead to a progressive mitochondrial dysfunction including the defects in the 
respiratory chain, uncoupling of the electron transport chain, ATP synthesis, reactive oxygen species 
(ROS) production, and in turn resulting in the disturbances of energy metabolism [2]. Such 
abnormalities can trigger the signaling pathways of necrotic or apoptotic cell death, which is a hallmark 
of various diseases.  

In the last decades, a variety of in vitro methods have been developed to assess the disruption of 
mitochondrial function, including the detection of superoxides, mitochondrial membrane permeability, 
membrane potential, mitochondrial calcium, oxygen consumption and heat production. However, 
crosstalk between mitochondria and mitochondrial surrounding environment plays a crucial role in the 
regulation of mitochondria homeostasis, it is therefore important to assess mitochondrial function in 
vivo settings without isolating them from the natural cellular environment, such as freshly isolated 
mitochondria. Recently, a new approach to restore frozen biological samples to measure 
mitochondrial function seems to be plausible, which could enable to assess the integrated 
mitochondrial function using tissues in tissue biobanks retrospectively [3]. In addition, imaging of 
mitochondrial membrane potential in vivo using a voltage-sensitive positron emission tomography 
(PET) radiotracer might provide a valuable methodology for the evaluation of mitochondrial activity in 
physiology and diseases [4]. Effective approaches to assess mitochondrial function in vitro or in vivo 
are crucial for studying mitochondrial dysfunction in diseases. This review is aimed to address recent 
advances in the methodology of mitochondrial function assessment and the implications of 
mitochondrial dysfunction in the pathogenesis of cardiovascular diseases. 

2. Overview of mitochondrial structure  

Mitochondria exist in the cytoplasm of nearly all eukaryotic cells except for mature mammalian red 
blood cells. The shape and number of mitochondria in a cell vary considerably depending on the cell 
type or functional status with a length of 0.75–3 µm [5]. Cells with intensive oxidative capacity 
usually have more mitochondria with large numbers of cristae, whereas oxidative stress can cause 
mitochondrial swelling and loss of cristae [6].   

Mitochondria are enclosed by two membranes, i.e., the outer mitochondrial membrane (OMM) 



and the inner mitochondrial membrane (IMM) (Figure1). The OMM is composed of a phospholipid 
bilayer embedded with integral proteins porin (or called voltage-dependent anion channels, VDAC). 
Ions, nutrients, small molecules and proteins (<10kDa) can move freely into the intermembrane space. 
Disruption of the OMM leads to proteins in the intermembrane space to leak into the cytosol, 
especially some caspase activators including cytochrome c (Cyt c) release through the OMM, which 
could trigger cell apoptosis [7, 8]. By contrast, the inner membrane is a tight permeable barrier to all 
ions and molecules, which mediate highly selective diffusion of oxygen, carbon dioxide, and water. As 
a result of its selective permeability, an electrochemical membrane potential of about -180 mV builds 
up across the IMM. The IMM is extensively folded and compartmentalized. It comprises critical 
membrane proteins and enzymes, including those from electron transport chain (ETC), metabolite 
transporters such as the adenine nucleotide translocase (ANT), the mitochondrial calcium uniporter 
(MCU), and ATP synthase essential for cell survival. The matrix is the space enclosed by the inner 
membrane and contains specialized mitochondrial ribosomes, tRNA, DNA and soluble proteins and 
enzymes involved in the oxidation of pyruvate and fatty acids and the Krebs cycle [7]. The 
mitochondrial permeability transition pore (mPTP) is a supramolecular entity assembled at the 
interface of the IMM and spans across the OMM.   

Mitochondria can be visualized under a phase contrast light microscopy, but their ultrastructure 
can only be seen by electron microscopy. The conventional transmission electron microscopy (EM) has 
been an indispensable technology in cell biology ever since it was first introduced in the early 1940s 
[9]. In addition, electron tomography (ET), Cryo-ET, and the newly emerging Cryo-EM have provided 
powerful tools to get insights into the 3D structures of mitochondrial transporters and multiprotein 
complexes architecture at near-atomic resolution [10]. These techniques have provided valuable 
structural information of mitochondrial enzymes and transporters.  

 

Figure 1. Schematic diagram of mitochondrial structure. Ion channels and enzymes in the outer mitochondrial membrane 
(OMM) including porins, monoamine oxidases, creatine kinases, nucleotide kinases, etc. The mitochondrial permeability 
transition pore (mPTP) spanning across the inner and outer membrane. The inner mitochondrial membrane (IMM) holds 
transporters (MCU, NCLX, Letm1), ATP synthase and proteins in electron transport chain (ETC). Mitochondrial matrix contains 
a mixture of enzymes for Krebs cycle, ribosomes, mitochondrial DNA and small soluble proteins and ions. 

 

 

 



3. Assessment of mitochondrial dysfunction 

3.1. mPTP and functional assessment 

The inner membrane of mitochondria contains a high-conductance nonspecific channel, known as 
mPTP. Since the first biochemical description of the mitochondrial permeability transition in 1976 [11], 
many proposals have been made about the protein constituents of the mPTP. However, the precise 
molecular structure of mPTP still remains putative, although cyclophilin D (CyPD), the ADP/ATP 
translocase, the F1-FO-ATP synthase, and spastic paraplegia 7(SPG7) are key players for its function 
[12, 13]. 

The mPTP may operate under two distinct modes: low- and high-conductance modes [14, 15]. 
Under physiological conditions, the mPTP may serve as low-conductance state, open and close 
transiently and participate in the regulation of mitochondrial Ca2+ homeostasis [15], which is 
characterized by very limited permeability (cutoff, <300 Da) and permits the diffusion of small ions 
such as H+, Ca2+ and K+ but does not trigger detectable mitochondrial swelling (Figure 2). The functional 
coupling between transient mPTP opening and ETC may stimulate mitochondrial superoxide 
production, i.e., so-called “superoxide flashes” [16, 17]. Under pathophysiological conditions, mPTP 
shows high-conductance state (1-1.3 nS) and allows free movement of molecules with a molecular 
mass up to 1.5 kDa across the inner membrane and results in mitochondrial matrix swelling. The 
sustained opening of mPTP is potentiated by elevation of mitochondrial matrix [Ca2+], especially when 
accompanied by oxidative stress or high phosphate [18, 19], resulting in uncoupling of oxidative 
phosphorylation and potentially cell death [20]. Therefore, the opening of mPTP is critical for initiating 
cell apoptosis and necrosis, which may act as a drug target [21].  

Ca2+ retention capacity assay and Ca2+-triggered mitochondria swelling assay are commonly used to 
assess the mitochondrial permeability transition using freshly isolated mitochondria [22]. Ca2+ uptake 
and release from mitochondria can be monitored using calcium-sensitive fluorescent probes, and the 
mitochondria swelling can be detected by a luminescence spectrometer to assess the light scattering 
intensity. . Therefore, several approaches have been developed to monitor the permeability of mPTP 
in situ or in vivo, which can be grouped as indirect pharmacological approaches and direct assays using 
fluorescent indicators or radioactive tracer.  Application of cyclosporin A (CsA) to inhibit mPTP opening 
is the pharmacological approach, which can be used for cultured cells or freshly isolated cells.   The 
inhibition of mPTP by CsA is mediated via the binding to mitochondrial CyPD [23]; however, CsA may 
also bind to cyclophilin-A and result in the inhibition of calcineurin-dependent signaling pathway [24]. 

The Co2+-calcein assay has been introduced to assess mPTP opening in living cells in vitro since 1990s. 
Calcein-AM is a membrane permeable non-fluorescent hydrophobic probe. Calcein-AM accumulates 
in cytosolic compartments and mitochondria after loading and converted to green fluorescence calcein 
after hydrolysis by intracellular esterases. Co2+ causes quenching of cytosolic and nuclear calcein 
fluorescence, but it is impermeable to the normal IMM. However, once the pores of mPTP open, Co2+ 
can enter mitochondrial matrix and result mitochondrial fluorescence quenching. The intensity of 
mitochondrial fluorescence can be monitored by fluorescence microscopy or flow cytometry [25, 26]. 
This approach can be applied in different cell types and useful for the assessment of mPTP activity. The 
limitation of Co2+-calcein approach is that Co2+, a heavy metal, may exert toxic effects on cells such as 
by inhibiting respiration chain and Ca2+ uptake [27, 28]. 

 

 

 



Figure 2. Mitochondrial permeability transition pore (mPTP) under healthy and diseased conditions. mPTP in normal or 
healthy condition remains closed or transient opening, which serves as a physiological role by allowing a quick exchange of 
ions and small molecules (<300 Da) in the matrix.  Under the diseased status, numerous factors such as oxidative stress, 
increased matrix Ca2+ concentration, elevated phosphate concentrations and pH increases, can facilitate the persistent 
opening of mPTP, which leads to unselective diffusion of <1500 Da solutes and water across the IMM. Long-lasting opening 
of mPTP results in mitochondrial depolarization, ATP depletion, ROS overproduction, impaired cellular Ca2+ homeostasis, 
mitochondrial swelling and eventually cell death.  

 

The permeability of mPTP in situ or in vivo may be different from that in the isolated mitochondria 
preparations. Radioactive tracer with 2-deoxy [3H] glucose ([3H]-DOG) is an in vivo approach to monitor 
mPTP activity. [3H]DOG is phosphorylated to 2-deoxyglucose 6-phosphate inside a cell and 
accumulates in the cytosol, but not able to pass through the IMM until the mPTP pores are open. 
Therefore, measurement of mitochondrial [3H] DOG entrapment could indicate the opening of mPTP. 
This approach can be used for in vivo organ or animal studies, such as ischemia/reperfusion (I/R) injury 
in isolated heart [29, 30]. However, [3H] DOG approach is not suitable for research using single cells. 
Due to the requirement of special facility and the potential contamination issues of radioactive 
substances, the radioactive tracer approach is not popular for research laboratories and gradually 
replaced by the fluorescent probes [31]. 

3.2 Assessment of mitochondrial dynamics 

Mitochondria are dynamic organelles showing membrane fusion and fission constantly. The cellular 
process of fusion and fission is called mitochondrial dynamics. Mitochondrial fission results in small 
and round mitochondria, while mitochondrial fusion leads to thin and elongated mitochondria with 
highly interconnected networks [32]. Fusion allows one mitochondrion to compensate another 
defected mitochondrion by sharing components, while fission is an important process for 
mitochondrial self-renewal, contributing to quantity by facilitating mitochondrial trafficking to form 
new mitochondria [33]. A series of GTPases is involved in the regulation of mitochondrial dynamics 
(Figure 3). Fission is driven by dynamic-related protein1 (DRP1) and mitochondrial fission 1 protein 
(FIS1) [34], whereas the fusion is regulated by mitofusin 1 and 2 (MFN1 and MFN2) and  optic atrophy 
1(OPA1) [35, 36]. Cytoskeleton is linked to focal adhesions and the mechanical force from extracellular 
matrix can be transmitted to the mitochondria and thus affect the mitochondrial dynamics [37]. 
Importantly, both cytoskeletal microfilaments and microtubules promote the recruitment of Drp1 to 
mitochondria anddrive mitochondrial fission [38]. Fission–fusion shifts can frequently occur under 
various stressful conditions, indicating an early event in mitochondria-dependent apoptosis or 
mitophagy [39, 40], which has been implicated in the pathophysiology of many diseases [41].  



 

Figure 3. Mitochondrial fusion and fission cycle. Mitochondrial fusion joins two mitochondria together, while fission 
separates one into two. Mitochondrial fusion is facilitated by the proteins such as MFN1, MFN2 and OPA1, and mitochondrial 
fission is promoted by the multiple OMM-bound proteins (DRP1, FIS1, MFF, MIEF1/2 and MID51). Mitochondrial dysfunction 
results in the damaged mitochondria, which characterized by swelling and membrane leaks and then degraded by mitophagy. 
Yellow lines represent cytoskeleton, along which small mitochondrial clusters can travel with the aid of motor proteins. 

 

The discovery of green fluorescent protein (GFP) from the jellyfish Aequorea victoria in the early 
1970s has made a breakthrough for dynamically monitor proteins and structural changes in a cell [42]. 
Mitochondrial proteins tagged with GFP in live cells can be visualized using a fluorescent microscope 
or laser confocal microscope. Mitochondrial network can also be assessed by the diffusion of 
mitochondria-targeted photo-activatable GFP (mt-PA-GFP) in live cells [43, 44]. For long-term imaging 
of mitochondrial dynamics in live cells, the progresses in super-resolution fluorescence microscopy 
development, such as stimulated emission depletion (STED), structured illumination microscopy (SIM) 
and stochastic optical reconstruction microscopy (STORM), combined with SNAP-tag fluorogenic 
probes, allow to sample high resolution live cell image with time lapse [45].  

Mitochondrial dynamics can also be monitored in living cells by using highly sensitive photothermal 
microscopy without fluorescent labeling. Non-fluorescent molecules are usually less affected by 
photobleaching and thus make better imaging contrasts [46]. However, this technique may require a 
specialist to carry out such experiments and the facility is expensive, which limits its application. 
Instead, immunostaining of mitochondrial protein markers in fixed cells is a simple and inexpensive 
approach to monitor mitochondrial dynamics, which can also provide direct evidences of 
mitochondrial morphology and dynamics[47]. Additionally, transgenic mice such as alpha-MHC-
MitoTimer mice [48], CAG-mito::mKate2 mice [49] with fluorescent reporter genes were generated for 
monitoring mitochondrial turnover or dynamics in vivo. Such in vivo approach development will give 
new insights into mitochondrial biology in health and disease.  

3.3 Intracellular ATP measurement  

Mitochondria are specialized organelles that generate ATP via ETC and oxidative phosphorylation 
system and maintain energy homeostasis in a cell [50]. ATP deficiency may come from mitochondrial 
dysfunction or the insufficient supply of oxygen or nutrients to the cells due to some pathological 



conditions. Therefore, measurement of ATP as an index of mitochondrial dysfunction should consider 
other pathological factors affecting cell morphology and metabolism.  

ATP in extracellular fluid or serum can be measured by biochemical endpoint assays, nuclear 
magnetic resonance spectroscopy (NMR), high-performance liquid chromatography (HPLC), and 
fluorescence-based biosensors or fluorescent ATP analogues [51, 52]. NMR is particularly useful in 
pathological situations where cytoplasmic ATP is mainly released into the circulation. The NMR method 
has good linearity in a range of 0.1–100 mM, but shows low temporal resolution (about 14 h). The 
usage cost for the equipment may also hinder its application [53]. HPLC is widely used to determine 
ATP, ADP, and AMP levels in different types of samples. The sensitivity of HPLC in detecting nucleotides 
is in the order of µM. Compared with NMR, HPLC is a fast (the retention time is about 20 min), 
automated, highly reproducible and accurate method to identify nucleotides in total cellular extracts 
[48, 54]. However, these approaches are hardly compatible with real-time analyses and do not provide 
a sufficient spatiotemporal resolution. 

The most sensitive and reliable technique for detecting ATP levels in isolated living cells, subcellular 
level or serum samples is based on bioluminescent luciferin–luciferase reaction. Briefly, luciferase can 
oxidize luciferin into oxyluciferin, and the resulting luminescence is proportional to ATP concentration 
in the surrounding environment. Given that luciferase can be compartmentalized in different 
subcellular organelles, it could be used to measure ATP level in subcellular regions (mitochondria, 
cytoplasm, nucleus, etc.) [55, 56]. However, measurements of ATP by using luciferase or 
chromatography can only provide average ATP concentrations of the cell extracts. In addition, the 
extraction procedure might result in ATP loss or degradation. Attempts to monitor ATP levels in real-
time using chemiluminescence have been reported; however, the luciferase concentration and activity, 
oxygen, luciferin as well as the consumption of ATP by luciferase itself may interfere intracellular ATP 
measurement [57]. Additionally, luciferase’s bioluminescent output yields low photon fluxes and limits 
cellular-scale resolution imaging. 

Recently, a series of alternative approaches have been reported for real-time detection of ATP 
production at the single cell level using fluorescent protein-based ATP sensors [58-60], including 
ATeam, iATPSnFRs, PercevalHR and GRABATP1.0 [61-63].These sensors display a range of ATP affinities, 
monitor ATP release and  dynamics, being considered complementary to the use of luciferase-based 
ATP imaging approaches. Since fluorescence-based ATP sensors can be unlikely used for whole-rodent 
imaging, which is possible for luciferase-based sensors. Furthermore, the potential limitations 
including the pH sensitivity of fluorophores, autofluorescence artifacts and phototoxicity in long-term 
experiments could affect the results obtained with all fluorescent-based probe. Taken together, it is 
still challenging to determine absolute mitochondrial ATP concentrations in living cells.  

3.4 Mitochondrial respiration 

Mitochondrial respiration is the set of metabolic reactions to convert energy stored in 
macronutrients into ATP. Mitochondrial dysfunction affects mitochondrial bioenergetics and causes 
oxidative phosphorylation defects, and thus leads to altered cellular respiration and overproduction 
of ROS, thus inducing oxidative stress and cellular damage. Detection of the activity of respiratory 
enzymes is a straightforward approach for investigating mitochondrial dysfunction. There are several 
biochemical assays, such as cytochrome c oxidase (COX), succinate dehydrogenase (SDH) activity and 
Complex IV assays, can be used to measure mitochondrial dysfunction [64]. However, none of these 
assays can be performed in real time.  

The high-resolution Clark electrodes (e.g., Oxygraph-2K) and the sensitive, high-throughput 
microplate reapirometry-based approach called Seahorse XF Analyzer have been developed to 
monitor mitochondrial bioenergetics [65]. The two systems enable the real time detection of the 
respiration rate of mitochondria. Both can be applied to monitor the mitochondrial respiratory 
function by simultaneously recording of oxygen consumption rate (OCR) and extracellular proton flux 
on isolated mitochondria as well as in cultured cells and tissues [66, 67]. Furthermore, OCR 
measurements in the isolated mitochondria allow to determine the direct effects of pharmacological 
agents on mitochondrial respiration. However, the limitation by using Oxygraph-2K is due to high labor 



intensity to obtain optimal signal intensity and low throughput (only two samples can be performed at 
any one time) as well as incapable of recording extracellular pH levels. For the Seahorse XF analyzer, 
the disposable fluorescent plates are expensive. In addition, the injectable compounds may potentially 
interfere with sensor fluorescence and cause artifacts [66]. Moreover, the substrate-specific analysis 
is usually performed under non-physiological conditions, so such results may not accurately reflect the 
native physiological environment [68]. 

The main restriction for oxygen consumption measurements is that fresh tissue or cells are required, 
which prevents researchers from carrying out large-scale studies to examine the mitochondrial 
function both in health and disease groups, because freeze-thaw samples may impair the ETC activity. 
Recently, an approach named  Respirometry In Frozen Samples (RIFS) has been reported with 90–95% 
recovery of the maximal respiratory capacity using frozen samples [3], which may open a new avenue 
for future clinical application.  

3.5 Mitochondrial membrane potential measurement 

The mitochondrial membrane potential (ΔΨm) generated by proton pumps (complexes I, III and IV) 
is a key indicator of mitochondrial activity. It reflects the process of electron transport and oxidative 
phosphorylation.  The electrochemical gradient across the IMM couples ATP synthesis, the stability of 
ATP and ΔΨm is thought to be a requisite for normal cell function [69]. The occurrence of inner 
membrane ion leaks could significantly affect the magnitude of ΔΨm. Furthermore, at a high ΔΨm 
level, the mitochondrial respiratory chain leads to decreased energy production and increased 
production of ROS [70] . 

The microelectrode recording was initially introduced to directly measure ΔΨm [71]. However, this 
technique is especially difficult. The integrity of the cells may be quickly damaged by the 
microelectrode and could only provide limited information related to the in vivo situations.   

Due to the difficulties of direct ΔΨm recording, organic fluorescent probes based on cationic, 
lipophilic dyes have been developed and becoming the most common technique to monitor ΔΨm [72, 
73]. For example, JC-1, Rhodamine 123 (Rhod123), Tetramethyl rhodamine ethyl (TMRE) or methyl 
(TMRM) ester. The intensity of such fluorescent probes shows a linear correlation to Δψm, which  can 
be measured by flow cytometry, fluorescence microscope or plate reader [74]. Among probes, JC-1 is 
a classical ratio probe with the ability to discriminate low and high membrane potential in 
mitochondria [75]. The JC-1 exhibits potential-dependent accumulation in mitochondria and forms J-
aggregates and emits red fluorescence (590 nm) at normal ΔΨm level, whereas emits green 
fluorescence (520 nm) in unhealthy or apoptotic cells. Decrease in the red/green fluorescence ratio of 
JC-1 indicates mitochondrial depolarization. However ， labelling thick tissue slices with these 
fluorescent indicators poses limitations in requirement of increased dye concentration and loading 
time, resulting in non-specificity and concentration-dependent artifacts. A newly developed method 
by utilizing a low resistance glass pipette attached to a pressure injector shows highly precise 
fluorescent dye labelling of mitochondria, thereby enhancing signal to noise ratio [76]. Some 
nanomaterials, such as a fluorescent carbon dot [77], could be designed to combine ΔΨm fluorescent 
probes to enhance contrast and photostability for precise and long-term mitochondrial tracking.  

The emergence of the target-switchable fluorescent probes provides a guide to the development 
of multi-mode probes, both the space and colors could indicate the variation of ΔΨm [78]. The two-
photon and near-infrared fluorescent probes (KMG-501) have a huge potential for detecting ΔΨm in 
tissues and living animals due to their low fluorescent signal background and ultra-high tissue 
penetration [79, 80]. Furthermore, an in vivo non-invasive approach using a voltage sensitive PET 
tracer, 4-[18F]fluorobenzyl triphenylphosphonium (18FBnTP), has been developed to functionally 
image the mitochondrial membrane potential in live tumors [4, 81, 82].  

3.6 Detection of ROS homeostasis  

Mitochondrial ROS play important roles in cell signaling, homeostasis, and apoptosis [83]. ROS are 
natural byproducts of highly reactive oxygen metabolites in the mitochondria, comprise a number of 
oxygen-containing molecules such as superoxide (O2

•−), hydrogen peroxide (H2O2), peroxynitrite 



(ONOO•−), hydroxyl radicals (•OH), and singlet oxygen (1O2). These radicals accumulate over time in 
living system,  stimulate distinct cell signaling pathways and lead to diverse outcomes depending on 
their amount and subcellular localization [84]. Due to their high reactivity and numerous clearance 
mechanisms, ROS exist in vivo in either picomolar or nanomolar steady-state concentration. Therefore, 
determination of mitoROS in biological systems requires probes that react very rapidly with ROS to 
compete with antioxidants and produce stable products, which can be quantified [85].  

A series of redox-active fluorescent probes such as Amplex Red or CellROX Deep Red, 
Dihydroethidium (DHE), MitoSOX Red reagent have been developed for the detection of different 
species (O2

•−  or H2O2). Amplex Red is a highly specific and sensitive probe for quantitative analysis of 
H2O2 released from isolated mitochondria [86]. Amplex Red is a colourless and nonfluorescent 
compound. It can convert into the highly fluorescent product resofurin when oxidized by H2O2. 
Resorufin is a stable product that allows detection of H2O2 both in oxidative and reductive conditions 
[87]. Another cell permeant reagent dihydroethidium (DHE) is a fluorogenic dye commonly used for 
the detection of O2

•−. However, these fluorophores are prone to autoxidation during sample treatment 
[88]. MitoSOX Red is a mitochondria-target form of DHE, its reaction with superoxide anions is very 
similar to that of DHE but with faster kinetics [89]. The dynamics of mitoSOX Red can be monitored 
using FlexStation [90].  Whereas a caveat to use of mitoSOX is that high concentrations can overload 
the mitochondria and compromise mitochondrial specificity for O2

•− detection [91]. Additionally, the 
probe is susceptible to photobleaching and prone to photo-oxidation, and high concentrations of 
mitoSOX significantly interfere with and even impair mitochondrial function [92]. Similar to MitoSOX, 
another membrane permeable fluorescent probe 2’,7’-dichlorofluorescein diacetate (DCFH-DA), 
routinely used to detect H2O2 and oxidative stress in cells or mitochondria, is also susceptible to 
photobleaching.  Different conditions of dye loading could potentially influence the subcellular 
compartmentalization of DCFH-DA, which may result in a mixed signal from cytosol, mitochondria, and 
other organelles [92]. 

For the in vivo measurement of ROS with low levels and transient lifetimes , the choice of an assay 
for a particular application may vary greatly [84, 93]A variety of genetically encoded fluorescent 
protein-based ROS indicators targeting mitochondria opened a new era in redox biology research. 
These methods do not introduce artifacts caused by sample preparation. The most widely used in vivo 
redox probes belong to HyPer and the redox-sensitive green FP (roGFP) families. HyPer is the first fully 
genetically encoded ratiometric fluorescent indicator capable of monitoring H2O2 in live cells [94]. But 
all HyPer family probes have the disadvantage of being pH sensitive, and thus pH changes in 
mitochondria could lead to misinterpretation. Another group of H2O2 probe is based on reduction–
oxidation-sensitive green fluorescent proteins (roGFPs), which have similar sensitivity but  slower 
responsiveness compared to HyPer. However, H2O2 probes are not so sensitive to detect the basal 
intracellular H2O2 concentrations in the sub-nanomolar to low nanomolar range. HyPer7, a recently 
new discovered ultrasensitive and ultrafast indicator, is stable to pH variations, and functional in 
different organisms [95]. The limitation of Hyper7 is due to its green fluorescence, which means that 
its spectrum is not optimal for deep-tissue imaging in relatively large non-transparent organisms like 
rodents [96]. Given the limitations of each assay, it is advisable to use more than two methods to 
ensure the accuracy and specificity for  in vivo ROS measurement [89, 92]. 

3.7 Mitochondrial calcium monitoring  

Ca2+ is a ubiquitous cellular signal. Changes in intracellular Ca2+ concentration not only stimulate a 
variety of intracellular events but also trigger cell apoptosis or necrosis. Mitochondrial Ca2+ uniporter 
(MCU), Na+/Ca2+ exchanger (NCLX) ，Ca2+/H+ antiporter (Letm1), and mPTP tightly maintain cellular 
Ca2+ homeostasis and regulate physiological Ca2+-dependent processes [97, 98]. Uptake and release of 
Ca2+ by mitochondria serve to buffer and shape intracellular Ca2+ transient, and also to maintain 
intracellular Ca2+ homeostasis, regulate energy metabolism and cell death [99]. Critical processes such 
as mitochondrial fission and fusion, ATP generation, ROS homeostasis, and  mPTP opening, depend 
directly on the dynamic changes of mitochondrial Ca2+[99]. Thus, precise determination of influx and 



efflux of Ca2+ from mitochondria is crucial for understanding mitochondrial Ca2+ handling in these 
processes. 

Numerous methods have been developed to measure mitochondrial Ca2+ concentrations ([Ca2+]m). 
These methods are essentially classified into two major groups: fluorescent dyes and genetically 
encoded Ca2+ indicators (GECIs). A number of fluorescent indicators like the Fura-2 and Indo-1 families 
are currently available, and most of them can be easily loaded into the cytosol with the help of non-
invasive acetoxymethyl (AM) ester loading technique. To further promote the mitochondrial 
accumulation, a positively charged Ca2+ sensitive dye Rhod-2/AM and Fura2-FF AM results in Δψm-
driven uptake into the mitochondrial matrix, eliminating cytosolic dye contamination and thus more 
reliable mitochondrial Ca2+  can be monitored [100]. In some studies, Fura-2 was usually used in 
combination with Rhod-2, allowing simultaneous measurement of cytoplasmic Ca2+ concentration 
([Ca2+]c) and [Ca2+]m, respectively.  

The discovery of GDCIs targeting to mitochondrial matrix, such as R-CEPIA3mt and R-CEPIA4mt, has 
enabled monitoring mitochondrial Ca2+ dynamics with high spatiotemporal resolution in parallel with 
the use of green fluorescent probes and optogenetic tools [101]. Advancements in imaging and 
genetically encoded sensor technologies enable visualization of mitochondrial Ca2+ dynamics with high 
spatiotemporal resolution, and provide the opportunity to visualize mitochondrial Ca2+ transients in 
live mice.  

3.8 Mitochondrial thermo indicators 

Mitochondria are major actors in maintaining body temperature in warm-blooded animals. It has 
been demonstrated that only part of the energy (67%) in brain is used to synthesize ATP, the rest 33% 
of this energy is immediately dissipated into heat [102]. Therefore, mitochondrial temperature is a 
critical indicator of cell metabolism.  

Using a temperature-sensitive fluorescent probe Mito-Thermo-Yellow (MTY), Chrétien and 
colleagues first reported that mitochondria are physiologically maintained at close to 50˚C. The 
fluorescence of MTY falls by around 2.7% for each 1 °C rise in temperature in aqueous solution. When 
the mitochondrial respiration was inhibited or mitochondrial DNA was depleted, the differential 
between mitochondria and external temperature will be abolished [103]. 

Many factors could affect the measurement using fluorescence thermo indicator. For example, the 
loading of thermo indicator in the mitochondria could be affected by pH, oxygen tension, superoxide 
production, and membrane potential [104]. Recently, a breakthrough has been made in the 
quantitative visualization of mitochondrial temperature [105, 106]. As the first fixable, fluorescent 
molecular thermometer, Mito-TEM is based on a positively charged rhodamine B fluorophore that has 
the tendency of being attracted into mitochondria, and can be used to visualize the temperature 
changes quantitatively in live cells [107]. In addition, a thermosensitive rhodamine B (RhB)-derived 
fluorogenic probe (RhBIV) was also reported, it has a long half-life (t1/2) and enables fluorescent 
labeling of cell mitochondria at concentrations as low as 1 μM. This unique thermosensitive probe 
offers a simple, nondestructive method for longitudinal monitoring of mitochondrial temperature both 
in vitro and in vivo [108]. Furthermore, a new generation of ratiometric fluorescence probe Mito-TEM 
2.0 exhibits excellent linear correlation and temperature sensitivity, indicating that the fluorescent 
thermo probe could be a reliable tool for monitoring mitochondrial temperature for a long time in vivo 
experiment [105].  

4. Mitochondrial dysfunction in cardiovascular diseases 

Many studies have demonstrated that mitochondrial dysfunction is closely related to the 
development of cardiovascular diseases, including ischemic heart disease, cardiomyopathy, 
atherosclerosis, hypertension, and severe hemorrhagic shock [109]. Mitochondrial abnormalities in 
cardiovascular diseases include impaired mitochondrial electron transport chain activity, increased 
ROS production, disturbed energy metabolism, aberrant mitochondrial dynamics, and abnormality of 
Ca2+ homeostasis. Interventional procedures to improve mitochondrial dysfunction seems to be 
beneficial [110]. For example, the reduction of mitochondrial ROS production significantly improved 



the endothelial function and also associated with better metabolic control [111]. Alterations of 
proteins responsible for mitochondrial fission and fusion have been linked to the progression of 
cardiovascular diseases [112]. Identification of mitochondrial dysfunction biomarkers in blood may 
enable the selection of patients who could benefit from therapies targeting mitochondria [113]. 
Therefore, restoration of normal mitochondrial function may be considered as a new therapeutic 
strategy for cardiovascular diseases. 

4.1 Ischemic heart disease and cardiomyopathy  

Cardiomyocytes are highly dependent on aerobic metabolism to meet their energy requirements. 
Mitochondrial quality is critical in the pathological process of ischemic heart disease [114]. Excessive 
ROS production during ischemic myocardial reperfusion damages the mitochondrial membrane 
system, which impairs the ΔΨ  and mitochondrial ATP synthesis, and causes oxidative stress, Ca2+ 
overload, and sustained mPTP opening [115]. In addition, disturbance of Ca2+ homeostasis in 
mitochondria contribute to abnormal cardiac excitation–contraction coupling [116]. Accumulating 
studies have demonstrated that a series of molecular mechanisms are involved in promoting the 
transition of mitochondria in heart from energy-producing to death-initiating functions [117, 118], but 
their role in cardiac hypertrophy awaits further investigations. The morphology and function of 
mitochondria is responsive to changes in cardiomyocytes during the development of pathological 
cardiac hypertrophy [119]. For example, cardiac hypertrophy secondary to aortic constriction in rats is 
associated with aberrant electron transport chain activity, loss of mitochondrial membrane potential, 
altered mPTP opening, and ultimately swelling of the mitochondria. Moreover, impaired mitochondrial 
dynamics, reduced production of ATP, incapability of the mitochondrial network to regulate Ca2+ 
homeostasis can alter cardiac function [120, 121]. Furthermore, fission–fusion shifts can frequently 
occur under various stress conditions, representing an early event in the mitochondria-dependent cell 
apoptosis, which eventually leads to chronic myocardial damage [122].  

 
4.2 Atherosclerosis 

Atherosclerosis is a chronic inflammatory condition and the underlying pathological basis of 
cardiovascular disease. A growing number of studies have demonstrated that mitochondrial function 
is required for normal vascular cell growth and function. Vascular smooth muscle cells are the main 
components of the blood vessel wall and plaques. Accumulation of mitochondrial DNA (mtDNA) 
mutations and damage, increased production of ROS, and progressive respiratory chain dysfunction 
lead to the dedifferentiation and abnormal proliferation of vascular smooth muscle cells, promote the 
development of atherosclerosis and plaque vulnerability [123]. Besides, accelerated accumulation of 
oxidized low-density lipoprotein (ox-LDL) in arterial wall can inhibit the activity of mitochondrial 
respiratory enzymes or mitochondrial dynamics, induce alterations in mitochondrial membrane 
potential, lead to prolonged opening of the mPTP and increase the generation of MitoROS, thus 
forming a vicious circle and promoting endothelial apoptosis and atherosclerosis [124, 125]. 
Furthermore, mitochondrial dysfunction may promote the activation of NLRP3 inflammasomes 
through the excessive generation of ROS, eventually leading to the occurrence and development of 
atherosclerosis [126]. Moreover, mitochondrial dysfunction in macrophages or pericytes may also 
contribute to unstable plaque development through maintaining chronic inflammatory conditions, 
favoring foam cell formation or plaque rupture [127]. Therefore, mitochondrial dysfunction could 
affect endothelial NO bioavailability, vascular smooth muscle proliferation and macrophage 
polarization, which play a key role in the initiation and progression of atherosclerosis.  

4.3 Hypertension 

Many studies have suggested that mitochondria-derived superoxide anion can oxidize the NO 
released by endothelial cells, decrease the endothelium-dependent vasodilation, and contribute to 
vascular dysfunction and remodeling in hypertension. Moreover, ROS induce mutations in mtDNA, 
which result in a marked loss of complex-I activity and ATPase synthase subunits and thus decrease 
electron-transport chain activity and ATP synthesis, which is implicated to the development and 
progression of hypertension and its complications [128].  



In addition, numerous studies have demonstrated that mitochondrial metabolic disorders and 
oxidative stress can be mediated by hyperacetylation of mitochondrial proteins (such as sirt3, SOD2 or 
CyPD), promoting vascular dysfunction and hypertension [129-131]. For example, Cyclophilin D (CypD), 
an essential structural component of mPTP, promotes mitochondrial impairment and oxidative stress 
due to being activated by S-glutathionylation and acetylation, which contribute to vascular dysfunction 
and hypertension, targeting CyPD decreases mitochondrial O2•− and reduces hypertension[132, 133]. 
Alterations in both mitochondrial dynamics and ROS production have been associated with endothelial 
dysfunction, development of inflammation and hypertension [134]. Therefore, the effective agents 
targeting mitochondrial dysfunction may be useful for the treatment or prevention of hypertension.  

4.4 Hemorrhagic shock 

Hemorrhagic shock is characterized by profound hemodynamic alterations, microcirculatory 
dysfunction associated with multiple organ dysfunction. Our previous data [135, 136] and others [137, 
138] have demonstrated that mitochondrial dysfunction occurred in different organs and cell types, 
which is a common pathway involving in the cell injury and organ failure of severe shock. Mitochondria 
in severe shock appeared spherical or irregularly shaped, apparently swollen with poorly defined 
cristae. The mitochondrial structure，the opening of mPTP, membrane potential and ATP production 
in shock were partially protected by mitochondrial protectors such as ciclosporin A, resveratrol and 
polydatin. The morphological damage is fundamental for the assessment of mitochondrial dysfunction 
in severe shock. In addition, the abnormal opening of mPTP, the reduced mitochondrial membrane 
potential (mitochondrial depolarization), the increased intracellular lipid hydroperoxide (LPO), and the 
reduced intracellular ATP content were observed in severe hemorrhagic shock and all of which 
indicated the mitochondrial dysfunction [136]. The treatment to prevent mitochondrial dysfunction 
has become a new potential management for severe shock, which includes following approaches: 
provision of mitochondrial substrate or mitochondrial cofactor; reduction of mitochondrial oxidative 
stress; inhibition of mPTP opening; and activation of SIRT1/3 [135 ]. 

5. Conclusion 

Mitochondrial dysfunction is currently recognized as an important therapeutic target for treatment 
of many chronic diseases. Considering that mitochondria are dynamic and highly compartmentalized, 
approaches that allow to simultaneously visualize mitochondrial structure and function will certainly 
be of particular interest in the future. Recent advances in biological technology and development of 
instrumentation and reagents have facilitated investigations into the mitochondrial function both in 
vivo and in vitro. Each method in vitro provides a unique set of advantages as well as limitations. For 
example, isolation of mitochondria is the pure way to assess mitochondrial function free from other 
factors, but the isolation procedure requires relatively large tissue samples and may cause some 
disruption of the mitochondrial structure and morphology. However, it has been suggested recently 
combining multiple approaches may yield significant insight into the regulation of mitochondrial 
bioenergetics in cardiovascular diseases. Since each method has potential pitfalls and advantages, it is 
clear that a variety of experimental parameters and/or approaches must be carefully considered and 
combined when selecting and conducting studies on mitochondrial function. The mitochondrial 
dysfunction targets and assessment methods are summarized in Table 1. Given the molecular 
mechanisms of mitochondrial dysfunction and their relationship with diseases require further 
clarification, proper assessment of mitochondrial functions in different pathological conditions will 
facilitate the development and design of pharmacological therapies to target mitochondria and 
promise benefits in the treatment of cardiometabolic diseases. 
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     Table 1. Mitochondrial dysfunction and major assessment methods 

 

Targets Assessment methods Advantages and limitations Ref 

 
Morphology 

In 
vitro 

Transmission electron microscopy 
(EM);  
Electron tomography (ET), Cryo-ET, 
and Cryo-EM 

3D structures with superresolution  
highly sophisticated but expensive for such facilities. 

10 

 
 
mPTP 

In 
vitro 

Ca2+ retention capacity assay 
Ca2+-triggered mitochondria 
swelling assay  
Pharmacological approach: mPTP 
inhibitor-CsA   
Fluorescent probe: Co2+-calcein 
assay  

Simple and effective for Ca2+ and swelling assays. 
Potential inhibition of calcineurin-dependent 
signaling by CsA.  
Co2+ may exert toxic effects.  

22,23 
25,26 

In 
vivo 

Radioactive tracer: 2-deoxy [3H] 
glucose ([3H]-DOG 

Special facility requirement; Radioactive 
contamination.  

29,30 

 
Mitochondrial 
dynamics 

In 
vitro 

Fluorescent probe: mt-PA-GFP 
Non-fluorescent labeling: 
photothermal microscopy  
Imaging of mitochondrial protein 
markers 

Kinetic data acquisition from multiple cells in parallel; 
Simple and less affected by photobleaching. 
Live cell imaging facilities required. 

43-47 

In 
vivo 

Transgenic mice with fluorescent 
reporter gene:  
MitoTimer mice; CAG-mito::mKate2 
mice  

In vivo imaging 48,49 

 
Mitochondrial 
ATP  

In 
vitro 

NMR, HPLC 
Luciferase-based sensors 

NMR with good linearity but low temporal resolution; 
HPLC is fast and highly reproducible; Luciferase 
sensors can be for real-time. 

51-54 
 

In 
vivo 

Fluorescent probes  
ATeam, iATPSnFRs, PercevalHR, 
GRABATP1.0 

Fluorescent probes can be used for in vivo studies. 55-63 

 
Mitochondrial 
respiration 

In 
vitro 

Biochemical assays: COX, SDH or 
Complex IV assays 
High-resolution Clark electrodes 
(e.g., OxygraB) 
Seahorse XF Analyzer 
Respirometry In Frozen Samples 
(RIFS) 

Biochemical assays are simple and inexpensive. 
Unstable signals and high background noise for 
OxygraB. 
Real-time monitoring for mitochondrial function using 
Seahorse.   
RIFS with frozen biological specimens. 

3, 64-68 
 

 
Mitochondrial 
membrane 
potential 
(ΔΨm) 

In 
vitro 

Microelectrode recording 
Fluorescent probes: JC-1, Rhod123, 
TMRE or TMRM. 
Nanomaterials: fluorescent carbon 
dot 

Technical difficult to use microelectrode. 
Δψm sensitive, pH sensitive, potential respiratory 
inhibition 
Enhanced contrast and photostability  

71 
72-75, 
77 

In 
vivo 

Two-photon and near-infrared 
fluorescent probes (KMG-501) 
PET tracer: 18FBnTP  

Low background, ultra-high tissue penetration 
PET imaging with 18FBnTP and expensive 

79,80 

81,82 

 

ROS  

In 
vitro 

Fluorescent probes: Amplex Red,  
Dihydroethidium, MitoSOX Red  

Detection of H2O2 , specific and sensitive 
Detection of O2

•− , photobleaching and photo-
oxidation 

86-92 

In 
vivo 

Genetically encoded fluorescent 
protein-based ROS indicators: 
HyPer, HyPer7 and roGFP 

Not optimal for deep-tissue imaging  94-96 

 
Mitochondrial 
calcium 

In 
vitro 

Fluorescent dye: Fura-2 AM, Indo-
1AM; Fura2-FF AM  
Rhod-2/AM 

cell-permeable, atiometric and UV light—excitable 
high specificity, wide dynamic range, and low pH 
sensitivity 

100 

In 
vivo 

Genetically encoded Ca2+ 
indicators (GECIs): 
R-CEPIA3mt and R-CEPIA4mt 

high spatiotemporal resolution 101 

 
Mitochondrial 
temperature 

In 
vitro 

Temperature-sensitive fluorescent 
probe: Mito-Thermo-Yellow (MTY); 
Mito-TEM 

sensitivity but high endogenous background 
permanent immobilization but poor quantitative 
accuracy. 

103-107 

In 
vivo 

Rhodamine B (RhB)-derived 
fluorogenic probe (RhBIV); 
Mito-TEM 2.0 

brightness, light stability, and sensitivity 
ratiometric imaging, sensitivity, and specific 
immobilization 

105,108 


