
, VOL. , NO. , 2023 1

Spatial Spectral Transformer with Conditional
Position Encoding for Hyperspectral Image

Classification
Muhammad Ahmad, Muhammad Usama, Adil Mehmood Khan, Salvatore Distefano, Hamad Ahmed Altuwaijri,

and Manuel Mazzara

Abstract—In Transformer-based Hyperspectral Image Clas-
sification (HSIC), predefined positional encodings (PEs) are
crucial for capturing the order of each input token. However,
their typical representation as fixed-dimension learnable vectors
makes it challenging to adapt to variable-length input sequences,
thereby limiting the broader application of Transformers for
HSIC. To address this issue, this study introduces an im-
plicit conditional PEs (CPEs) scheme in a Transformer for
HSIC, conditioned on the input token’s local neighborhood.
The proposed SSFormer integrates spatial-spectral information
and enhances classification performance by incorporating a
CPE mechanism, thereby increasing the Transformer layers’
capacity to preserve contextual relationships within the HSI
data. Moreover, SSFormer ensembles the cross-attention be-
tween patches and proposed learnable embeddings. This enables
the model to capture global and local features simultaneously
while addressing the constraint of limited training samples in
a computationally efficient manner. Extensive experiments on
publicly available HSI benchmarking datasets were conducted
to validate the effectiveness of the proposed SSFormer model.
The results demonstrated remarkable performance, achieving
classification accuracies of 97.7% on the Indian Pines dataset
and 96.08% on the University of Houston dataset.

Index Terms—Spatial Spectral Transformer (SSFormer); Hy-
perspectral Image Classification (HSIC).

I. INTRODUCTION

HYPERSPECTRAL IMAGING (HSI) has gained sig-
nificant attention due to its ability to capture fine-

grained spectral information, providing a wealth of data
across multiple domains [1]–[7]. However, accurately clas-
sifying HSI data poses challenges due to its high dimen-
sionality, spectral variability, complex spatial patterns, and
Hughes phenomenon [8]–[10]. Several efforts have focused
on developing accurate and computationally efficient algo-
rithms to extract rich spectral information [11]. Recent works
have developed effective classification frameworks based on
jointly exploiting spectral-spatial features [12]–[14].
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Recent advances in Transformer-based models have
demonstrated remarkable success in HSIC by employing
self-attention mechanisms to process image patches directly
[15]–[22]. For instance, combining spectral-spatial kernels
with improved SST enables the joint extraction of spectral-
spatial features [23]. Lifan et al. [24] introduced a spatial-
spectral hierarchical Vision Transformer (ViT), while X. He
et al. [25] proposed an SST that jointly exploits spectral-
spatial information through a dedicated module. Hyper-ES2T
and CSiT achieved state-of-the-art performance on several
datasets using Transformer-based models [26], [27], and a
spatial-spectral Transformer has been utilized for HSI de-
noising [28]. Despite their effectiveness, these models often
face computational constraints and challenges in handling
variable-length input sequences. Transformers rely on prede-
termined positional encodings (PEs) to capture the sequential
order of input tokens, typically represented as learnable
fixed-dimensional vectors. However, they struggle to adapt
to variable-length input sequences, which is crucial for gen-
erating meaningful outputs from HSI data. This limitation
restricts the broader applicability of Transformers.

The Spatial-Spectral Transformer (SSFormer) proposed
in this study addresses the aforementioned challenges by
effectively integrating spatial-spectral patterns through Con-
ditional Positional Encoding (CPE) and cross-attention mech-
anisms. The key contributions can be summarized as:

1) Unlike traditional fixed-dimension encodings, the CPE
is conditioned on the input token’s local neighborhood,
enabling the model to process varying input sequence
lengths. This provides the Transformer with crucial
pixel arrangement and sequence knowledge, allowing
for better differentiation of pixels based on their rel-
ative positions and preserving the underlying spatial
associations.

2) Cross-attention mechanisms enhance the ability to cap-
ture spatial context and relationships between pixels by
combining positional information with spectral data.
This integration improves the overall accuracy and
efficiency of the model.

3) SSFormer leverages a backbone CNN to extract joint
spatial-spectral features from the HSI cube, which are
then encoded in the Transformer alongside CPEs. This
combination enhances the model’s ability to exploit
spatial-spectral patterns, leading to improved general-
ization performance.
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Fig. 1: SSFormer: A backbone CNN extracts joint spatial-spectral features from the HSI cube. These are encoded in the
Transformer alongside CPEs, which selectively represent image information better than standard fixed-dimension encodings.
The Transformer output then feeds into an MLP head for ground truth generation.

II. PROPOSED METHODOLOGY

To transform a 3D HSI cube X ∈ RM×N×B into small
3D cubes suitable for the Transformer, the model first divides
HSI into overlapping small patches. So, the model reproduces
X into a sequence of patches which are then linearly pro-
jected into lower-dimensional embedding using a learnable
weight matrix W ∈ R(D×N×S×S), where D, H, and S
are embedding dimension, liner projection, and patch size,
respectively:

H(n, d, i, j) =
∑
m

∑
k

∑
l

Xpatches ∗W (d, n, k, l) (1)

Xpatches = ϕ

(
bi,j+
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τ=1

δ∑
σ=−δ

v∑
λ=−v

γ∑
ρ=−γ

wσ,ρ,λ
i,j,τ × vx+σ,y+ρ,z+λ

i−1,τ

)
(2)

where dl−1, bi,j , and wi,j correspond to the number of feature
maps, bias parameter, and depth of the kernel for the jth

feature map at the (l− 1)th layer, respectively. Additionally,
2v + 1, 2γ + 1, and 2σ + 1 represent the depth, width, and
height of the kernel of 3D CNN as the backbone model [29].
To better incorporate spatial information, CPEs are added,
i.e., for each position (i, j) in the patch grid, we generate
a CPE F ∈ RD. The CPE is added element-wise (where
deemed necessary) to the embeddings, resulting in Hpos ∈
R(M×D×(P//S)×(Q//S)):

Hpos(m, d, i, j) = H(m, d, i, j) + F(pos, i) (3)

where pos is the position of the element in the sequence
and i is the index of the dimension in the embedding vector.
The F provides a unique CPE value for each position and
dimension within the input sequence. For instance, to create
the reference points, features undergo boundary padding,
as an illustrative example, when conducting convolutions
on feature maps, the use of zero padding serves to denote

the position of the boundary point. The combination of the
above CPEs with the patch data allows the SSFormer to
learn and capture positional information, ensuring that it
can effectively process sequences with different orders or
positions. F can be viewed as a local regularization applied
to Xpatches. As the class token does not incorporate position
information, it remains unaltered. Consequently, the ultimate
output is created by concatenating the unmodified class token
and the regularized Xpatches along the last dimension. The
SSFormer employs multi-head attention to capture contextual
relationships within the patches. To capture both spatial-
spectral information, cross-attention is performed between
the output (Oatt) and the original embeddings (Hpos).

Attentionc(Qc,Kc, Vc) =

(
Qc ×KT

c√
D

)
× Vc (4)

where Kc, Vc, and Qc are the query, key, and value matrices
for cross-attention, respectively. The output of the cross-
attention is represented as:

Ocross−att = Attentionc(Oatt, Hpos, Hpos) (5)

The cross-attention output is fed into a feed-forward neural
network with two fully connected layers to further process
the features. Global average pooling is applied along the
spatial dimensions to obtain a fixed-size representation for
each band. The output is reshaped back into patches and
concatenated to form the final output Y . The softmax func-
tion generates class probabilities to produce ground truth
maps. The SSFormer effectively handles the HSI cube with
reduced complexity by integrating spatial-spectral informa-
tion through attention mechanisms and projections, making it
suitable for resource-constrained environments. The complete
model is demonstrated in Figure 1.

Y (m, d, i, j) = FFN(Ocross−att(m, d, i, j)) (6)
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III. EXPERIMENTAL RESULTS AND DISCUSSION

SSFormer’s weights were initially randomized and then
optimized over 50 epochs using the Adam optimizer (learning
rate 0.0001) and softmax loss. Training occurred in mini-
batches of 256 samples per epoch, enabling the SSFormer
to learn patterns from repeated exposure to training data and
adjust its parameters to reduce loss over multiple iterations.

A. Patch Size and Train-Validation-Test Samples

Two key parameters, train/test split, and patch size, were
meticulously examined. Various combinations of these pa-
rameters were tested and evaluated to determine the optimal
configuration for achieving the best results. The model’s
performance with different training and test percentages is
tested as is shown in Table I, with a fixed patch size of 9×9.
Furthermore, Table II details the results for using various
patch sizes.

TABLE I: We assess the performance of the proposed model
using a 9 × 9 patch size with various Train/Validation/Test
(Tr/Val/Te) splits.

Tr/Val/Te AA OA κ Tr Time Te Time
Indian Pines Dataset

5/5/90 64.44 74.60 70.82 54.49 5.89
10/10/80 77.12 81.92 79.24 66.75 5.92
15/15/70 82.42 86.41 84.42 80.31 3.10
20/20/60 87.97 89.78 88.33 149.64 3.62

Pavia University Dataset
5/5/90 93.71 96.05 94.74 153.73 21.89

10/10/80 96.46 97.75 97.02 210.88 21.53
15/15/70 97.28 98.26 97.70 204.77 11.22
20/20/60 97.89 98.64 98.20 270.83 8.50

University of Houston Dataset
5/5/90 94.93 96.08 95.77 46.87 6.2470

10/10/80 96.68 97.38 97.17 65.45 11.2144
15/15/70 97.63 98.09 97.94 154.74 6.2593
20/20/60 98.09 98.68 98.57 109.03 3.7363

TABLE II: Proposed model’s performance using a fixed
Training(40%)/Validation(40%)/Test(20%) split and different
patch sizes.

Patch Size AA OA κ Tr Time Te Time Parameters
Indian Pines Dataset

3× 3 85.35 88.29 86.68 184.39 1.53 784,016
5× 5 92.98 93.31 92.37 210.57 2.04 799,376
7× 7 94.90 94.09 93.26 211.32 2.03 822,416
9× 9 96.53 96.14 95.60 175.90 1.53 853,136

Pavia University Dataset
3× 3 95.52 96.76 95.71 213.72 21.21 782,217
5× 5 96.04 97.33 96.46 154.42 11.82 797,577
7× 7 96.41 97.51 96.71 149.17 11.69 820,617
9× 9 98.39 99.06 98.76 574.58 3.26 851,337

University of Houston Dataset
3× 3 97.46 97.70 97.52 197.73 1.57 779,217
5× 5 99.06 99.26 99.20 214.27 1.58 799,119
7× 7 99.34 99.40 99.35 212.12 2.04 822,159
9× 9 99.13 99.36 99.31 214.47 2.30 852,879

The results indicate that SSFormer excels at capturing
minute details and local patterns with smaller patch sizes.
However, sensitivity to noise and fluctuations may lead to
overfitting, especially with smaller sample sizes. In contrast,
larger patch sizes enable SSFormer to encapsulate global
features and contextual information, exhibiting enhanced
robustness against noise perturbations. As sample sizes in-
crease, SSFormer’s robustness and generalization capabilities
improve. The optimal patch size depends on the specific

sample size, with smaller sample sizes benefiting from larger
patch sizes to capture essential features, and larger sample
sizes leveraging smaller patch sizes for precise pattern extrac-
tion. Increasing the training set size improved performance,
particularly with larger patch sizes, by enabling the model
to learn complex patterns and reduce overfitting. A moderate
validation sample size is crucial for proper hyperparameter
tuning. Too small a validation set might lead to suboptimal
parameter choices, while too large a set might increase
computation time without significant performance gains. Ad-
ditionally, extremely small test sets might not provide a
reliable estimation of SSFormer’s generalization ability.

B. Experimental Results with CNN-based Models

A consistent experimental methodology is crucial for fair
model comparison. In this paper, we utilized unique sample
distributions, geographical locations, and a controlled 9 × 9
pixel patch size across models. This controlled experimen-
tal setup allows for a fair comparison of competing CNN
architectures. Figure 2 shows loss and accuracy trends on
the University of Houston dataset. The ground truth maps
for comparative and SSFormer are presented in Figures 3, 4,
and 5.

Fig. 2: The comparison above shows the accuracy and
loss trends of CNN-based methods on the Houston dataset.
The SSFormer (red line) demonstrates quicker convergence
compared to traditional CNN models.

(a) [30] (b) [31] (c) [32] (d) [33] (e) [29] (f) [34] (g) SSF

Fig. 3: Indian Pines Dataset: The proposed SSFormer
achieves OA=97.07% showing competitive performance.

(a) [30] (b) [31] (c) [32] (d) [33] (e) [29] (f) [34] (g) SSF

Fig. 4: Pavia University Dataset: The proposed SSFormer
achieves OA=99.39% showing competitive performance.

Models evaluated include 3D CNN [29], Hybrid Inception
Net [32], 3D Inception Net [31], 2D Inception Net [30], 2D
CNN [33], and Hybrid CNN [34]. The findings highlight the
advantage of decoupling spatial and spectral information over
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(a) [30] (b) [31] (c) [32]

(d) [33] (e) [29] (f) [34]

(g) SSF

Fig. 5: University of Houston Dataset: The proposed
SSFormer achieves OA=95.99% showing competitive perfor-
mance.

alternative strategies. SSFormer achieves impressive scores of
97% and performs on par with 3D models. Models employing
2D convolutions exhibit varying performance results on the
Indian Pines dataset, with 2D CNN achieving scores of
89% and 2D Inception Net attaining scores of 96%. The
marginal difference in accuracy between the SSFormer and
comparative CNN-based methods can be attributed to the
computational efficiency, overfitting mitigation, and enhanced
spatial, and spectral dependencies modeling of the SSFormer.
Similar observations can be made for other experimental
datasets.

C. Comparative Results with Transformer-Based Networks

Several recently proposed Transformer-based networks for
HSIC were selected for comparison with the SSFormer,
including Attention is all you need (ViT) [35], Rethink-
ing Hyperspectral Image Classification with Transformers
(Spectralformer – SF) [22], Hyperspectral Image Transformer
Classification Networks (HiT) [36], A Multiscale Vision
Transformer for HSIC (CSiT) [27], Spectral–Spatial Feature
Tokenization Transformer for HSIC (SSFTT) [37], Spectrum
Transformer for Self-Supervised Learning in HSIC (S3L)
[38], Rotation-Invariant Attention Network for HSIC (RIAN)
[39], Center Attention Transformer With Stratified Spa-
tial–Spectral Token for HSIC (CAT) [40], Local Transformer
With Spatial Partition Restore for HSIC (SPRLT) [41], A
Center-Masked Transformer for HSIC (CMT) [42].

A classical SST architecture was adopted and redesigned
to accommodate pixel-wise HSI input. The Spectralformer
network retained the original architecture, while the HiT
architecture incorporated two depth-wise convolution layers
for spatial information processing and a point-wise convo-
lution layer for spectral information processing. HiT relies
solely on patch-wise input. The CSiT architecture employed
a similar backbone Transformer architecture in each branch,
with a stack of multiscale Transformer encoders. The CSiT
was evaluated both with and without Cross-spectral Attention
Fusion (CSAF) modules for insightful comparisons.

The detailed comparison of the aforementioned models
is presented in Tables III, IV and V. For the IP dataset,
the proposed SSFormer demonstrates superior performance
and outperforms all comparative models by wide margins.
It surpasses the baseline SST by more than 19% and the
SpectralFormer by approximately 18%. For the University of
Houston dataset, the proposed SSFormer outperforms other
compared models for several classes in the dataset, as shown
in Table V. Additionally, the SSFormer achieves better AA,

TABLE III: Classification accuracy (%) and Kappa (κ) mea-
sure for Indian Pines Dataset.

Class ViT SF HiT CSiT SSFTT RIAN CAT S3L SPRLT CMT SSFormer
1 76.47% 81.82% 80.95% 81.82% 100.00% 76.92% 94.87% 88.47% 98.78% 97.32% 100.00%
2 77.18% 76.70% 75.11% 81.41% 87.54% 88.58% 84.75% 94.82% 45.56% 61.49% 95.80%
3 58.63% 76.11% 57.05% 77.79% 86.22% 79.97% 92.47% 95.27% 51.99% 46.96% 87.95%
4 69.16% 58.60% 81.95% 81.44% 98.94% 77.72% 99.46% 84.13% 75.09% 85.69% 91.66%
5 84.70% 75.34% 79.39% 86.08% 92.08% 86.13% 93.29% 96.70% 66.05% 68.20% 100.00%
6 83.60% 76.69% 93.85% 90.20% 97.11% 82.21% 97.85% 100.00% 94.08% 98.34% 100.00%
7 62.50% 57.14% 87.50% 40.91% 100.00% 100.00% 90.91% 94.40% 100.00% 100.00% 100.00%
8 92.83% 93.54% 100% 97.48% 99.07% 99.54% 99.09% 93.16% 99.75% 100.00% 100.00%
9 19.23% 16.67% 12.50% 57.14% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
10 80.85% 76.71% 75.95% 77.02% 88.70% 89.11% 90.52% 85.74% 63.31% 81.44% 90.72%
11 80.30% 76.06% 76.53% 81.48% 84.86% 88.17% 95.24% 88.69% 52.71% 71.44% 99.59%
12 62.45% 75.71% 66.60% 72.45% 76.18% 80.85% 90.25% 96.77% 42.60% 77.35% 98.30%
13 86.96% 79.36% 74.77% 98.36% 98.90% 92.59% 92.59% 92.53% 99.65% 99.15% 100.00%
14 84.56% 89.44% 91.87% 92.57% 97.81% 98.87% 9895% 100.00% 84.23% 92.44% 99.20%
15 71.81% 61.36% 78.65% 75.60% 94.51% 95.45% 98.79% 94.47% 89.37% 97.35% 100.00%
16 89.87% 93.51% 90.12% 90.24% 100.00% 97.78% 97.78% 88.73% 100.00% 100.00% 100.00%
OA 77.84% 78.07% 75.01% 83.40% 91.14% 88.74% 93.69% 93.45% 65.32% 77.34% 97.07%
AA 74.73% 75.82% 65.94% 82.27% 91.68% 89.62% 94.80% 92.20% 78.95% 86.07% 97.70%
κ 74.70% 74.86% 71.73% 81.02% 89.24% 87.11% 92.75% 92.78% 61.13% 74.56% 96.66%

TABLE IV: Classification accuracy (%) and Kappa (κ)
measure for Pavia University.

Class ViT SF HiT CSiT SSFTT RIAN CAT S3L SPRLT CMT SSFormer
1 95.67% 92.67% 95.21% 95.25% 88.58% 90.44% 94.75% 98.76% 78.09% 76.94% 96.34%
2 88.37% 92.79% 92.54% 96.64% 96.79% 96.63% 95.54% 95.46% 84.67% 93.70% 99.61%
3 73.71% 90.60% 91.18% 81.74% 96.60% 93.50% 99.83% 87.75% 53.47% 81.10% 82.74%
4 98.03% 98.15% 97.21% 95.50% 87.37% 90.94% 93.99% 91.37% 75.09% 78.42% 96.33%
5 99.01% 98.28% 100.0% 99.59% 99.62% 98.71% 95.82% 92.13% 99.83% 100.00% 100.00%
6 89.26% 93.29% 99.93% 93.43% 94.94% 98.82% 97.32% 97.10% 52.40% 64.24% 92.31%
7 79.40% 83.01% 95.75% 89.24% 92.63% 98.13% 96.58% 96.47% 78.74% 96.27% 92.06%
8 85.54% 84.50% 97.59% 88.81% 87.68% 93.95% 95.37% 86.25% 84.35% 58.58% 90.67%
9 99.65% 99.77% 99.47% 99.53% 94.04% 95.24% 92.18% 89.27% 99.60% 98.16% 93.30%

OA 89.32% 92.30% 91.35% 94.48% 90.65% 95.25% 95.05% 94.64% 78.23% 83.28% 96.05%
AA 87.39% 88.86% 85.07% 93.15% 93.44% 95.15% 93.01% 92.78% 78.47% 83.06% 93.71%
κ 86.60% 89.66% 88.94% 92.67% 91.73% 93.55% 94.70% 93.54% 71.55% 77.74% 94.74%

TABLE V: Classification accuracy (%) and Kappa (κ) mea-
sure for University of Houston.

Class ViT SF HiT CSiT SSFTT RIAN CAT S3L SPRLT CMT SSFormer
1 90.28% 93.31% 97.26% 93.39% 91.78% 83.00% 88.13% 81.23% 80.51% 79.47% 97.24%
2 98.21% 97.81% 97.29% 99.54% 78.42% 83.74% 90.04% 87.59% 67.45% 79.08% 97.69%
3 96.90% 100.00% 98.74% 100.00% 80.57% 89.70% 100.00% 88.19% 99.12% 100.00% 97.76%
4 100.00% 100.00% 95.78% 98.09% 90.98% 92.57% 89.49% 77.05% 97.39% 98.51% 97.85%
5 96.89% 98.16% 98.41% 97.70% 87.08% 99.81% 98.20% 90.09% 96.64% 100.00% 99.91%
6 98.21% 100.00% 91.36% 100.00% 90.92% 100.00% 99.30% 93.94% 84.66% 87.53% 92.46%
7 82.82% 87.83% 94.60% 90.96% 93.02% 87.59% 98.97% 87.53% 78.78% 77.00% 90.70%
8 79.83% 85.91% 91.82% 89.18% 92.36% 73.22% 98.01% 93.02% 45.49% 49.77% 96.78%
9 76.88% 75.33% 92.39% 90.62% 93.02% 81.21% 95.94% 86.12% 76.05% 72.19% 94.85%
10 80.31% 82.52% 90.61% 93.22% 82.60% 68.15% 98.65% 78.68% 36.93% 94.51% 99.27%
11 83.17% 79.19% 89.09% 87.91% 77.68% 89.85% 87.38% 81.65% 64.05% 85.59% 96.13%
12 69.42% 72.76% 94.18% 83.15% 70.36% 89.15% 94.33% 89.71% 70.01% 59.63% 99.18%
13 63.08% 79.49% 82.51% 84.11% 91.82% 92.28% 98.95% 85.49% 98.81% 80.06% 65.16%
14 90.36% 93.90% 91.55% 97.21% 91.71% 100.00% 98.79% 93.02% 99.81% 100.00% 98.96%
15 94.40% 97.50% 96.72% 100.00% 89.87% 100.00% 62.16% 88.33% 96.41% 99.57% 100.00%
OA 86.45% 88.45 93.06% 93.09% 83.05% 86.30% 93.21% 86.50% 75.65% 82.14% 96.08%
AA 86.60% 87.81 86.61% 92.06% 84.40% 88.68% 93.22% 85.25% 79.34% 84.19% 94.93%
κ 85.35% 87.50 92.50% 92.53% 81.79% 85.14% 92.63% 85.85% 73.73% 80.70% 95.76%

OA, and κ values, emphasizing the potential efficacy of
spatial-spectral feature extraction.

IV. CONCLUSION

Hyperspectral Image Classification (HSIC) faces chal-
lenges due to high-dimensional data and spectral variability.
To address these, this work proposed a Spatial Spectral Trans-
former (SSFormer) for HSIC. The SSFormer effectively com-
bines spatial and spectral information, resulting in improved
classification accuracy. By incorporating CPEs, the SSFormer
better captures spatial information and enhances contextual
relationships within the Transformer layers. Additionally, the
integration of cross-attention between patch and learnable
embeddings enables the simultaneous capture of global and
local features, further enhancing performance. Experimental
evaluation on publicly available HSI datasets demonstrated
that the SSFormer outperforms SOTA methods, validating
its effectiveness for HSIC tasks. Future research may explore
how SSFormer and other Transformer-based models perform
on different HSI datasets, expanding applicability across real-
world applications. Additionally, it opens opportunities to
investigate combining SSFormer with transfer learning and
domain adaptation techniques.
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